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Abstract

This thesis focuses on modeling and control of a bipedal wheeled robot. The main objective
is threefold: provide simulation tools essential for control design, design a control system
capable of balancing and steering the robot, and find a feasible jump trajectory. First, a
non-linear planar model of the robot is derived using Euler-Lagrange equations. In addition,
a 3D simulation environment is created within the Gazebo robotics simulator. The 3D
simulations are used throughout the thesis for verification and testing purposes. Then, the
controller consisting of two independent parts is designed. The wheels are controlled by
a linear-quadratic regulator (LQR) with integral control based on a linearized two-wheel
inverted pendulum 3D model. Two proportional-derivative (PD) regulators are used to
control the legs of the robot. Furthermore, Unscented Kalman Filter (UKF) for state
estimation and mainly the optimization-based method for jump trajectory computation are
implemented. Lastly, the LQR and PD controllers were tested on the real robot, and the
results from the conducted experiments are also documented in this thesis.

Keywords: bipedal wheeled robot, Gazebo, LQR, jump trajectory computation, UKF

Abstrakt

Tato práce se zabývá modelováním a řízením dvounohého robotu s koly. Cílem práce je
vytvořit potřebné simulační nástroje pro návrh řídicího systému, návrh řídicího systému
schopného stabilizace a řízení pohybu robotu, a nalézt vhodné trajektorie skoku. Nejdříve
je odvozen nelineární planární model robotu za použití Euler-Lagrangeových rovnic. Navíc
je k tomu vytvořeno 3D simulační prostředí v robotickém simulátoru Gazebo. Tyto 3D
simulace jsou napříč prací použity jako hlavní verifikační a testovací nástroj. Poté je navržen
řídicí systém skládající se ze dvou částí. Kola jsou řízena lineárně-kvadratickým regulátorem
(LQR) s integrálním řízením navrženým na základě linearizovaného 3D modelu dvojkolého
inverzního kyvadla. Nohy jsou řízeny dvěma proporčně-derivačními (PD) regulátory. Dále je
implementován tzv. Unscented Kalman Filter (UKF) k odhadování stavů, a také na optimal-
izaci založená metoda určena k výpočtu trajektorie skoku. Navržené LQR a PD regulátory
byly otestovány na reálném robotu a výsledky experimentů jsou zde také prezentovány.

Klíčová slova: dvounohý robot s koly, Gazebo, LQR, výpočet trajektorie skoku, UKF
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1 | Introduction

In this thesis, I deal with modeling, simulation, and control of a two-legged wheeled robot.
I present a simplified planar model of the robot, a control system, and a jump trajectory
computation method. I verified all the components in a physics-based simulator and
successfully used the designed controller for real robot stabilization and steering. The results
are documented by a video1 and the code is published in a gitlab repository2.

1.1 Problem Statement

The objective of this thesis is threefold. Firstly, to create an environment for the 3D
simulation of the robot within a robotic simulation software. Secondly, to design a simple
control system that is capable of balancing and steering the robot. Finally, to derive a
planar model of the robot and use it for jump trajectory computation. These components
are intended to form basic simulation and control tools for the robot that my colleagues
designed and whose prototype was being manufactured simultaneously to work on this thesis.
I was also able to test the designed controller on the real robot, thanks to my fellow workers
that managed to finish the prototype at the beginning of December, despite the second wave
of the COVID-19 outbreak.

1.2 Related Work

With the increasing popularity of mobile robotics in recent years, the number of various
original legged systems also rises. Undoubtedly, the most famous are the robots made by
Boston Dynamics3, namely the human-like Atlas, four-legged Spot, and two-legged wheeled
Handle. Among others, I want to mention the ANYmal [1], [2], and mainly the Ascento [3], [4]
which served as inspiration for our robot sharing the same topology.

For the ANYmal and in the newest Ascento paper [4] they implemented so-called Whole-Body
Control (WBC) [5] which is a modern real-time optimization-based control approach requiring
a full model of the robot. Even though the WBC is a well-performing method used in
many legged robot projects, it does not fit the goal of this thesis because of its design and
implementation complexity. In the first Ascento paper [3], authors used LQR based on

1https://youtu.be/B6OaJCYD5C8

2https://gitlab.fel.cvut.cz/kollaada/master-thesis-by-adam-kollarcik

3https://www.bostondynamics.com/

1

https://youtu.be/B6OaJCYD5C8
https://gitlab.fel.cvut.cz/kollaada/master-thesis-by-adam-kollarcik
https://www.bostondynamics.com/


2 Chapter 1. Introduction

linearized inverted pendulum model and achieved good results, especially if the simplicity is
taken into consideration. This is the approach I chose as well.

1.3 Robot Description

At the time of writing the thesis, the robot is not documented anywhere. Thus, I here briefly
describe the construction and electronics aspects that are relevant to this thesis. I want to
emphasize that I was not involved in any design, construction, or programming tasks, and
everything described in this section is the work of my colleagues.

As I already mentioned, our robot captured in Figure 1.1 shares the same topology with
Ascento, having two wheeled legs with a closed kinematic chain. In each knee, there is
a torsion spring placed to counteract the weight in the balancing position. Also, most of
the parts were created using a 3D printer, including the tires. The dimensions and other
parameters listed in Chapter 2 differ from the actual values because they were changing
during the design process or were not identified.

The simplified diagram of the used electronics hierarchy is shown in Figure 1.2. The robot
has four eX8108 105KV brushless DC motors. Two are placed in wheels, and the remaining
two are placed in the joints connecting the black links with the body on both sides, together

Figure 1.1: First working prototype of our bipedal wheeled robot.
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ODROID Teensy
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Wi-Fi

Xbox controller
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Figure 1.2: Electronics diagram.

with 1:16.5 gearboxes that increase the maximal achievable torques. The motors are driven
by four 3-phase controllers4 at 40 kHz, providing position, velocity, and current feedback
together with corresponding measurements. The robot control loop runs at 1 kHz on Teensy
4.0, connected with the drivers through CAN. The Teensy sends position, velocity, and
current (torque) references and PD controller parameters to the drivers in each iteration.
Additionally, the ICM-42688-P IMU measures linear accelerations and angular velocities of
the body at 2 kHz. These measurements are filtered with a low-pass filter with 1 kHz cut-off
frequency and sent to the Teensy through I2C. Finally, ODROID N2+ communicating with
Teensy through UART at 2 Mbaud/s serves for other computations and interfacing. The
whole system is powered by a commonly available 24V cordless power tool battery.

Based on the hardware, the following specifications were formulated:

1. The sampling frequency of the control loop is 1 kHz.

2. The measured quantities are the motor positions, motor velocities, motor torques, body
pitch angle, body roll angle, body pitch rate, body roll rate, and body yaw rate.

3. The motors should not exert torque higher than 2 Nm.

1.4 Outline

This thesis is divided into five chapters. In Chapter 2, I derive the simplified planar model
of the robot and comment on the creation of the 3D simulation environment in the Gazebo
simulator. Chapter 3 is devoted to the control system. I describe the inverted pendulum-
based LQR design, the Unscented Kalman Filter design, and the optimization-based jump
trajectory computation. In Chapter 4, I present the real robot experiments. I conclude the
thesis in Chapter 5 by discussing the achieved results and by suggesting future improvements.

4The motor controllers are based on Ben Katz’s design: https://github.com/bgkatz/3phase_integrated

https://github.com/bgkatz/3phase_integrated




2 | Modeling and Simulation

In this chapter, I derive a simplified planar model. Also, I present a full 3D robot simulation
model within a robotics simulation software that served for testing and verification purposes.

2.1 Simplified Planar Model

The planar variant of the robot is shown in Figure 2.1a. It consists of a wheel, a body, and
three links denoted by their lengths l1, l2, l3. The parts are connected with five revolute
joints. Two motors placed in the wheel and in the connection between the body and the
second link generate torques u0 and u4. Also, a torsion spring is attached between the first
and the second link. All the parameters are listed in Table 2.1.

I approached the modeling in two steps similarly as in [4]. First, I derived a robot model
without the fifth joint attached, as shown in Figure 2.1b using the Euler-Lagrange equations.
Second, I added the reaction forces (torques) caused by fixing the third link to the body with
the Lagrange multiplier framework. Lastly, I converted the obtained differential-algebraic
equations (DAE) model to a reduced-order ordinary differential equation (ODE) model
because it is more convenient to work with as most of the standard control system design
techniques require ODE formulation.

y

x
r0

l1

l2

l4 l3

θ0

θ4

θ3

θ2

θ1
l2,3

r3

α

u4

u0

(a) (b)

Figure 2.1: Planar wheeled robot: (a) Diagram with labeled quantities. (b) Basic diagram
with unconnected fifth joint.
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6 Chapter 2. Modeling and Simulation

Table 2.1: Planar robot model parameters

Symbol Parameter Value Unit
b damping coefficient 0.01 N m s rad−1

I0 moment of inertia of the wheel 7.35 · 10−4 kg m2

I1 moment of inertia of the first link 9.60 · 10−4 kg m2

I2 moment of inertia of the second link 5.89 · 10−4 kg m2

I3 moment of inertia of the third link 3.10 · 10−4 kg m2

I4 moment of inertia of the body 1.19 · 10−2 kg m2

k torsion spring stiffness 0.25 N m rad−1

l1 length of the first link 0.24 m
l2 length of the second link 1.88 · 10−1 m
l3 length of the third link 1.93 · 10−1 m
l2,3 second and third joint distance 0.05 m
l4 fourth and fifth joint distance 0.93 · 10−1 m
m0 mass of the wheel 0.30 kg
m1 mass of the first link 0.20 kg
m2 mass of the second link 0.20 kg
m3 mass of the third link 0.10 kg
m4 mass of the body 1.50 kg
r0 wheel radius 0.07 m
r3 body COG and fourth joint distance 0.05 m
α rotation offset of the body 45 ◦

β torsion spring zero torque angle −487 ◦

2.1.1 Potential and Kinetic Energy

The open-chain robot has five degrees of freedom, assuming the wheel does not slip and is
always in contact with the ground. The generalized coordinates completely describing the
position of the system are the wheel and joint angles

θ =
[
θ0 θ1 θ2 θ3 θ4

]ᵀ
. (2.1)

Using coordinate transformations, I obtained the center of gravity (COG) positions of the
wheel, body, and links (assuming that the links have their COGs located in the geometri-
cal center) in an inertial frame of reference:

x0 = x0(θ0) , (2.2)

x1 = x1(θ0, θ1) , (2.3)

x2 = x2(θ0, θ1, θ2) , (2.4)

x3 = x3(θ0, θ1, θ3) , (2.5)

x4 = x4(θ0, θ1, θ2, θ4) . (2.6)
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The potential energy V is

V =
4∑
i=0

miyig + 1
2k(θ2 − β)2 , (2.7)

where mi is the mass of the ith component, yi is the y-coordinate of the COG of the i-th
component, and g is the gravitational acceleration. Stiffness k and zero force angle β are
parameters of the torsion spring. The kinetic energy T is

T =
4∑
i=0

(1
2miẋ

ᵀ
i ẋi + 1

2Iiω̇
2
i

)
, (2.8)

where Ii is a moment of inertia for rotation around COG of the ith component, ẋ is the time
derivative of the COG position of the ith component, and ωi is the angular velocity of the
corresponding link 

ω0

ω1

ω2

ω3

ω4


=



1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
0 1 0 1 0
0 1 1 0 1





θ̇0

θ̇1

θ̇2

θ̇3

θ̇4


. (2.9)

According to [6], I reformulated the kinetic energy as follows:

T = 1
2 θ̇

ᵀMθ̇ , θ̇ =
[
θ̇0 θ̇1 θ̇2 θ̇3 θ̇4

]ᵀ
, (2.10)

where M = M(θ) is the 5 × 5 mass matrix, which depends only on the angles.

2.1.2 Equations of Motion

After formulating the potential and kinetic energy, I proceeded in deriving the motion
equations. They can be expressed in a vector form as:

τin = Mθ̈ + (C + D)θ̇ + g , (2.11)

where M is the mass matrix mentioned above, D is the matrix of friction and damping coef-
ficients computed later, C = C(θ, θ̇) is the 5 × 5 Coriolis matrix, τin =

[
u0 u0 0 0 u4

]ᵀ
is the input torque vector, and

g(θ) = ∂V

∂θ
. (2.12)

I obtained the Coriolis matrix using the Christoffel symbols of the first kind Γijk:

Γijk = 1
2

(
∂mij

∂θk
+ ∂mik

∂θj
− ∂mjk

∂θi

)
, (2.13)

cij =
4∑

k=0
Γijkθ̇k , (2.14)



8 Chapter 2. Modeling and Simulation

where mik, mik, mjk are the (i+ 1, j + 1)th, the (i+ 1, k + 1)th, and the (j + 1, k + 1)th
element1 of the mass matrix, respectively. Similarly, cij is the (i+ 1, j + 1)th element of the
Coriolis matrix.

2.1.3 Adding Constraints

The geometrical constraints caused by fixing the fifth joint in place are:

a =
[
l2 cos (θ2) + l4 cos (θ2 + θ4) − l2,3 − l3 cos (θ3)

l2 sin (θ2) + l4 sin (θ2 + θ4) − l3 sin (θ3)

]
= 0 . (2.15)

The time derivative of the constraints should also be zero, thus

da
dt = ȧ = ∂a

∂θ
θ̇ = Aθ̇ = 0 . (2.16)

The same is true for the second time derivative as well:

dȧ
dt = Ȧθ̇ +Aθ̈ = 0 . (2.17)

Under the assumption that a are workless constraints, the following must hold for the
reaction forces τcon caused by them:

τ ᵀ
conθ̇ = 0 . (2.18)

By comparing (2.16) and (2.18) I can say that the reaction forces are linear combinations of
the rows of A. I write this as

τcon = Aᵀλ , (2.19)

where elements of vector λ are usually referred to as Lagrange multipliers. I can now expand
the equations of motion of the unconstrained system (2.11) with (2.17) and (2.19) to obtain
the dynamic equations for the robot with closed kinematic chain:

τin +Aᵀλ = Mθ̈ + (C + D)θ̇ + g , (2.20)

Ȧθ̇ +Aθ̈ = 0 . (2.21)

2.1.4 Damping

After fixing the fifth joint in place, matrix D can be computed. The interior angles of a
quadrilateral add up to 2π rad, therefore the norm of the angular velocity of the fifth joint is∣∣∣θ̇5

∣∣∣ =
∣∣∣θ̇2 − θ̇3 + θ̇4

∣∣∣ . (2.22)

1It is needed to add one to the element’s position since the first index is 0.
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Assuming the same linear damping b in all joints, the dissipation torques d are

d = −Dθ̇ = −∂R

∂θ̇
, (2.23)

where R is the dissipated energy also referred to as the Rayleigh’s Dissipation Function [7]:

R(θ̇) = 1
2b
[
(θ̇0 + θ̇1)2 + θ̇2

2 + θ̇2
3 + θ̇2

4 + θ̇2
5

]
. (2.24)

I obtained matrix D by combining equations (2.22), (2.23), and (2.24):

D = b



1 1 0 0 0
1 1 0 0 0
0 0 2 −1 1
0 0 1 2 1
0 0 1 −1 2


. (2.25)

2.1.5 Reduced Order Model

The pseudo velocity approach [8] is an effective way of converting the derived DAE model
(2.20), (2.21) to an ODE model. If I define G(θ) as a 5 × 3 matrix, where columns are the
basis of the null space of A

AG = 0 , (2.26)

then correspondingly to (2.18) I can write that

θ̇ = Gv , (2.27)

such that v is a vector of three real values called pseudo velocities. It is worth mentioning, that
even though there is an infinite number of valid matrices G giving various transformations, I
found one with simple mapping such as:

v =
[
θ̇0 θ̇1 θ̇3

]ᵀ
(2.28)

This is not surprising, as θ̇0 and θ̇1 should not be affected by the constraints and θ̇2, θ̇3, θ̇4

depend on each other.

By multiplying (2.20) with Gᵀ from left and substituting with (2.27) I obtained

Gᵀτin = Mgv̇ +Cgv +Gᵀg , (2.29)

where
Mg = GᵀMG , Cg = GᵀMĠ+Gᵀ (C + D)G . (2.30)
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Matrix Mg is positive definite [8], which allows me to simplify (2.29) and receive equation

v̇ = M−1
g (−Cgv −Gᵀg +Gᵀτin) , (2.31)

that together with (2.27), forms the reduced-order ODE model.

2.2 Full Robot 3D Simulation

It is a common and necessary practice to verify a control system’s performance using complex
model simulations before its real-life application to avoid any unnecessary damage. There are
various free and paid software tools offering 3D robot simulations, including the Simscape
Multibody toolbox for Matlab/Simulink. Even though it would be appealing to stay within
the Matlab/Simulink products that I used for most of the work, I chose the Open Robotics’
Gazebo open-source simulator. It has become one of the standard simulation tools in the
robotics community used in many prestigious competitions such as DARPA Subterranean
Challenge2 and NASA Space Robotics Challenge3.

2.2.1 Gazebo & Simulink Co-Simulation

Gazebo performs simulations through so-called worlds. A world is a simulation environment
containing all objects and settings of the simulation. The words can be created and set
through the program’s graphical user interface or via Simulation Description Format (SDF)
file, an XML format file created especially for this purpose. A crucial feature of SDF for me
was the support of kinematic loops, which a similar file format URDF lacks.

A model might be created directly in the world it is simulated in or more conveniently imported
from a separate SDF model file. The creation of a model in SDF itself is straightforward.
First, all links are defined. That means setting their position, orientation, physical parameters,
collision mesh, and visual mesh. Then, the links are interconnected with joints. Again, there
are multiple parameters and settings options. Also, SDF has a selection of standard sensors
such as IMU, GPS or camera that may be directly included in the model. Lastly, the model’s
functionality can be expanded with C++ plugins that use Gazebo API.

I proceeded exactly as mentioned above4 while creating the model of the robot that is shown
in Figure 2.2. I picked the same parameters as in the simplified model in cases of matching
counterparts (see Table 2.1). The only exception was the weight of the body. Since the
number of actuators is doubled in the 3D model, I chose the weight as twice the amount
used in the simplified 2D case.

2www.subtchallenge.com

3www.spaceroboticschallenge.com

4All files are available at https://gitlab.fel.cvut.cz/kollaada/master-thesis-by-adam-kollarcik.

www.subtchallenge.com
www.spaceroboticschallenge.com
https://gitlab.fel.cvut.cz/kollaada/master-thesis-by-adam-kollarcik
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(a) (b)

Figure 2.2: Model of the robot in Gazebo simulator: (a) Regular view. (b) Transparent
view of collision meshes, coordinate frames and COGs.

To enable feedback control, I created a model plugin that reads all the measurements and
state information. The plugin publishes the data on a specific TCP/IP-based Gazebo
communication channel called a topic. The topic is connected to the Simulink environment,
as Simulink has Gazebo co-simulation support enabled by the Robotics System Toolbox. The
computed control action values are published on a dedicated topic from the Simulink feedback
loop. They are then retrieved by the plugin and applied to the model. The simulation
diagram is shown in Figure 2.3.

2.2.2 Comparison with the Planar Model

For comparison of 3D simulation with the derived model, I chose two simple open-loop
scenarios. In both cases, the useful simulation time for the comparison is small because the
planar model does not include ground collisions nor taking off the ground. Unfortunately,
this restriction is inevitable in open-loop simulations.

In the first scenario, the same constant torque was applied to the wheel. As can be seen in

plugin SimulinkGazebo

API Topics

measurements

control command

measurements

control command

Figure 2.3: Simulation diagram.
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Figures 2.4a, 2.4b5 the robot in the 3D simulation falls down faster. Otherwise, the trend in
both cases is similar. At around 0.4 s, the robot fell and lifted the wheels off the ground
in Gazebo.

In the second scenario, I applied the same constant torque(s) to the body motor(s). This is
shown in Figures 2.4c, 2.4d where both simulations are almost indistinguishable. The robot
jumps off the ground in Gazebo slightly before 0.7 s.

According to the results, I found the planar model sufficiently accurate. This is also confirmed
in section 3.3, where the precomputed jump sequences match the feedforward behavior of
the 3D model.

5In the figures, only data from one side of the 3D robot are captured, as both sides are the same when
equal torques are used.

(a) (b)

(c) (d)

Figure 2.4: Comparison scenarios: (a),(b) First scenario — constant wheel torque(s).
(c),(d) Second scenario — constant body torque(s).
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In this chapter, I present the controller for stabilization and motion control, the state
observer, and computation of jumping trajectory. I designed a state feedback control law
based on a linearized 3D wheeled inverted pendulum model. In order to filter and fuse all
the available measurements, I used an Unscented Kalman Filter. Finally, I describe the
computation of the jumping state trajectory by solving a non-linear optimization problem.

3.1 Stabilization and Motion Control

Initially, I intended to design two independent LQ state controllers for the robot’s left and
right side based on the linearized planar model. Unfortunately, due to the non-minimum
phase dynamics of such a system, this approach turned out to be unstable in the yaw motion
as the coupling of the two sides was not considered. I managed to overcome this problem in
simulations by introducing an external proportional yaw damper. This solution proved to be
non-functional when applied on the real robot since the damper gains that worked in the
simulation were too big, which led to twitching and falling of the real robot. On the other
hand, the damper with smaller gain values could not stabilize the yaw dynamics. Thus, I
had to use a model with the yaw coupling included for the controller design. The natural
choice would be a full 3D model of the robot. Nevertheless, this thesis aims to design a
control system for the first prototype of a robot. Thus, I intended to keep the mathematical
model and the control system as simple as possible. I decided to use an inverse pendulum
simplification of the robot for the wheel stabilization and PD control of the body motors,
similarly as in [3].

3.1.1 Equilibrium of the Non-Linear Model

Before the controller design itself, I needed to find the robot configuration—the equilibrium—
in which I would stabilize the robot. Since the derived motion equations are non-linear and
complex, it would be a tedious and maybe even impossible task to compute its solution
analytically. Hence, I applied numerical optimization.

I set the angular accelerations and velocities in the equilibrium to zero, therefore according
to (2.27), the :

v̇ = 0 , v = 0 . (3.1)

13
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This together with the reduced-order model from (2.31) gives the equilibrium condition

M−1
g (−Gᵀg +Gᵀτin) = 0, (3.2)

which can further be simplified to

Gᵀ (−g + τin) = 0. (3.3)

If the term g is compensated by the inputs τin or if vector −g + τin is an element of the null
space of Gᵀ, the condition is satisfied. To find such equilibrium, I formulated the following
optimization task:

arg min
θ,τin

τ ᵀ
inτin , (3.4)

minimizing the input torques under conditions (3.3), and closed chain kinematic constraints
(2.15) with the specified desired value for θ1:

Gᵀ(τin − g)
a

θ1 + π
4

 = 0 . (3.5)

There are multiple solutions to this problem; some of them lead to link intersection. To
avoid those configurations, I restricted the values of the remaining angles such that they
lie within the acceptable range. I found the desired solution with a solver for constrained
non-linear problems in Matlab, and the results are shown in Table 3.1.

3.1.2 3D Wheeled Inverted Pendulum Model

The models of most pendulum-like systems are well-known, and the wheeled pendulum shown
in Figure 3.1 is no exception. Therefore, I did not have to derive it myself and used the one
derived in [9]. For the reader’s convenience, I repeat the equations here. The state-space
model is the following:


ẍ

ϕ̈

ψ̈

 =


m11 m12 0
m21 m22 0

0 0 m33


−1


1
r0

(u0R + u0L)
mplg sinϕ− u0R − u0L

w
2 (u0R − u0L)

−


2b
r2

0
d12 d13

−2b
r0

2b d23

d31 d32 d33



ẋ

ϕ̇

ψ̇


 ,

(3.6)

Table 3.1: Equilibrium angle and input values

θ0,eq (rad) θ1,eq (rad) θ2,eq (rad) θ3,eq (rad) θ4,eq (rad) u0,eq (Nm) u4,eq (Nm)
0.00 −0.79 1.76 1.53 −1.67 0.00 0.00
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θ̇0R

θ̇0L

ẋ

ψ̇

ϕ

w

l

Figure 3.1: Simplified 3D wheeled inverted pendulum

m11 = mp + 2m0 + 2I0
r2

0
, m12 = m21 = mpl cosϕ , m22 = Ipy +mpl

2 , (3.7)

m33 = Ipz + 2I0xy +
(
m0 + I0

r2
0

)
w2

2 − (Ipz − Ipx −mpl
2) sin2 ϕ , (3.8)

d12 = −mplϕ̇ sinϕ− 2b
r0
, d13 = mplψ̇ sinϕ , d23 = (Ipz − Ipx −mpl

2)ψ̇ sinϕ cosϕ , (3.9)

d31 = mplψ̇ sinϕ , d32 = −d23 , d33 = −(Ipz − Ipx −mpl
2)ϕ̇ sinϕ cosϕ+ w2

2r2
0
b , (3.10)

where I0xy is the moment of inertia of the wheel in the vertical direction, mp, Ipx, Ipy, Ipz,
are mass and moments of inertia of the whole pendulum without wheels, l is the length of
the rod, w is the distance between the wheels, x is the forward distance traveled by the
pendulum, ϕ is the pitch angle, ψ is the yaw angle and u0L, u0R are the left and right wheel
torques, respectively. Parameters m0, r0, I0, b, g are the same as in the planar robot model.

Next, the planar model and the equilibrium pose from the previous section are used to
compute the pendulum’s parameters. I obtained the pendulum mass as a sum of the masses
of all robot parts except for the wheels:

mp = 2m1 + 2m2 + 2m3 + 2m4 . (3.11)

The rod length l was computed as the distance of the wheel and body in the equilibrium
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position:
l =

√
(x4,eq − x0,eq)ᵀ(x4,eq − x0,eq) . (3.12)

I decided to neglect the moments of inertia of the links because their values are about two
orders of magnitude smaller than the body values. Thus, I set the pendulum inertia to match
the body parameters in the Gazebo simulator. The distance w was also selected according
to the 3D Gazebo model.

3.1.3 Linearization and Discretization

Next, I continued with the linearization of the 3D wheeled inverted pendulum model (3.6)

q̇ = f(q,u) , q =
[
ẋ ϕ̇ ψ̇ x ϕ ψ

]ᵀ
, u =

[
u0L u0R

]ᵀ
, (3.13)

by computing the state-space matrices of the linearized continuous system Ac, Bc:

∆q̇ = Ac∆q + Bc∆u , ∆q = q − qeq , ∆u = u− ueq , qeq = 0 , ueq = 0 , (3.14)

Ac = ∂f

∂q

∣∣∣
qeq,ueq

, Bc = ∂f

∂u

∣∣∣
qeq,ueq

. (3.15)

From the linearized continuous system, I obtained the discrete-time system with state-space
matrices Ad, Bd using zero-order hold:

∆qk+1 = Ad∆qk + Bduk , (3.16)

Ad = eAcT .=



0.99212 0.00052 0 0 −0.05935 0
0.02699 0.99823 0 0 0.22980 0

0 0 0.99590 0 0 0
0.00100 0 0 1.00000 −0.00003 0
0.00001 0.00100 0 0 1.00012 0

0 0 0.00100 0 0 1.00000


, (3.17)

Bd =
∫ T

0
eActdtBc

.=



−0.02757 −0.02757
0.09447 0.09447
0.08965 −0.08965

−0.00001 −0.00001
0.00005 0.00005
0.00004 −0.00004


, (3.18)

where T = 0.001 s is the expected sampling period.

3.1.4 Controller Design

Having the linearized model, I proceeded with the controller design. First, I reduced the
model by removing the yaw angle and the forward distance. None of these states is important
for stabilizing or steering and the rest of the states are independent of them. Therefore, the
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reduction was only a matter of removing 4th and 6th rows and columns from Ad and 4th
and 6th rows from Bd.

Upon obtaining the state-space matrices Ar and Br of the reduced model, I created an
augmented system to include integral action [10] in the LQR for speed and yaw rate reference
tracking [

∆qr,k+1

εk+1

]
=
[
Ar 0
L I

]
︸ ︷︷ ︸

Aint

[
∆qr,k+1

εk

]
+
[
Br

0

]
︸ ︷︷ ︸
Bint

uk +
[
0
r

]
, (3.19)

L =
[
−1 0 0 0

0 0 −1 0

]
, r =

[
ẋref

ψ̇ref

]
∆qr =

[
∆ẋ ∆ϕ̇ ∆ψ̇ ∆ϕ

]ᵀ
, (3.20)

where ε is the integrated tracking error, I is a 2 × 2 identity matrix, and r is the reference
vector. Then the standard infinite horizon LQR design procedure [11] followed to obtain the
state feedback gain K for the wheel stabilization control law with state and input weight
matrices QLQR, RLQR:

[
u0L u0R

]ᵀ
= −K

[
∆qr ε

]ᵀ
, RLQR =

[
1000.000 0.000

0.000 1000.000

]
, (3.21)

QLQR =



4081.633 0.000 0.000 0.000 0.000 0.000
0.000 1.000 0.000 0.000 0.000 0.000
0.000 0.000 313.470 0.000 0.000 0.000
0.000 0.000 0.000 1.000 0.000 0.000
0.000 0.000 0.000 0.000 0.082 0.000
0.000 0.000 0.000 0.000 0.000 0.002


, (3.22)

with the diagram of the feedback loop shown in Figure 3.2.

The mapping of the pendulum states to the robot states that are measured (or estimated) is
following:

∆ẋ = r0
2 (θ̇0R + θ̇0L) , ∆ϕ̇ = θ̇1 + θ̇2 + θ̇3 , ∆ψ̇ = r0

w
(θ̇0R − θ̇0L) , (3.23)

1

z

−K systemεk+1 εkr

+

−

+

[

∆ẋk ∆ψ̇k

]⊺

∆qr,k

[

u0L,k

u0R,k

]

Figure 3.2: Control loop of the proposed LQR.
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∆ϕ = θ1 + θ2 + θ4 − θ1,eq − θ2,eq − θ4,eq , (3.24)

where the subscripts R and L denote the right or left side of the robot.

The body motors are controlled using simple PD control law:

u4R,L = −p(∆θ4R,L − ∆θ4,ref) − dθ̇4 , (3.25)

∆θ4R,L = θ4R,L − θ4,eq , ∆θ4,ref = θ4,ref − θ4,eq , (3.26)

with p, d values tuned experimentally. The reference is used to change the length of robot’s
legs with default value ∆θ4,ref = 0.

3.1.5 Balancing Performance

I examined the balancing performance of the controller for three different values of leg
lengths. The first one is the default length given by the equilibrium depicted in Figure 2.2.
The other two cases correspond to stretched and squatted robot poses shown in Figure 3.3
with ∆θ4,ref = 0.15 rad and ∆θ3,ref = −0.15 rad, respectively.

In the test scenario, I first applied a 0.2 ms long force impulse of 2 kN to the back of the
robot in rest, simulating a significant push in the forward direction. After two seconds,
I applied the same force impulse to the robot’s side to see how well the body controllers
perform.

The responses of the system varied with the Gazebo simulator settings, in particular with
the Constraint Force Mixing1 (CFM) parameter value. This parameter is used to increase
simulation stability by converting hard joint constraints to soft constraints, reducing accuracy.
With the CFM set to a low value or zero, spikes in joint angles and velocities occur during
the simulation. On the other hand, with high CFM, simulation behavior is unnatural. I

1http://www.ode.org/ode-latest-userguide.html#sec_3_8_0

Figure 3.3: Stretched and squatted balancing pose.

http://www.ode.org/ode-latest-userguide.html#sec_3_8_0
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always tried to set CFM as low as possible. In most simulations, that was between 10−3 and
10−4.

The robot in the default pose handled both disturbances well which is shown in Figures 3.4
and 3.5. The peak torque values for the back push were around −0.7 Nm for both u0 and
0.4 Nm for u4. After the side hit, u4 peaked at ±0.5 Nm, and almost no torque was applied
on the wheels. After the side push, the visible oscillations are caused by the weight load
transfer between the robot’s legs.

The stretched robot performed similarly as in the default pose which is reflected in Figures
3.6 and 3.7. The only exception is a u4 spike right after the back push, which might be
caused by the numerical error related to the CFM parameter. The non-zero steady-state
value of u4 and ∆ϕ is just a consequence of stabilization in the non-equilibrium pose. For
the back push, u0 again peaked at around −0.7 Nm and u4 at ±0.4 Nm difference from the
steady-state value (if the spike is not counted). The side push behavior was also comparable
with u4 peak at ±0.5 Nm steady-state difference and negligible wheel torques.

The back push response for the squatted pose again matched the default pose behavior, as
shown in Figure 3.8, with a slightly higher wheel torque peak of −0.8 Nm. The side push
behavior captured in Figure 3.9 corresponds to the other two poses with the same u4 peak
at ±0.5 Nm steady-state difference.

Figure 3.4: Default pose — back push response.
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Figure 3.5: Default pose — side push response.

Figure 3.6: Stretched pose — back push response.
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3.1.6 Steering Performance

I tested the steering performance for the three poses with a simple reference trajectory. First,
the robot was required to reach a velocity of 0.5 m/s. Then, it should start turning left with
1.1 rad/s yaw rate while keeping the velocity. After 3 seconds of turning, the robot was
supposed to stop moving.

In all the cases, the robot was able to follow the references without a problem as can be
seen from Figures 3.10, 3.11 and 3.12. It reaches the speed and yaw reference (denoted by
blue and yellow dashed lines in the top graphs) after 1 s with peak wheel torque values
around −0.2 Nm. In the default and stretched pose, a load transfer between the legs occurs
during the cornering, possibly due to the centrifugal force. When the turning stops, the
load transfer leads to similar oscillatory behavior as in the side push balancing test. The
centrifugal force effect in the squatted pose is probably negligible, and thus the oscillations
are not observed.

Despite the simplicity of the selected approach, the controller can stabilize and steer the
robot even with varying leg lengths. This was also confirmed in experiments with the real
robot described in Chapter 4.

Figure 3.7: Stretched pose — side push response.
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Figure 3.8: Squatted pose — back push response.

Figure 3.9: Squatted pose — side push response.
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Figure 3.10: Default pose — steering.

Figure 3.11: Stretched pose — steering.
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Figure 3.12: Squatted pose — steering.

3.2 State Observer

As I mentioned in the previous section, I originally intended to use two state feedback
controllers based on the planar model. Only one of the angles (θ4) and angular velocities (θ̇4)
in the closed chain of the leg are measured and only sums of θ0, θ1 and θ̇0, θ̇1 are available from
the encoders. Thus, they had to be computed or estimated. For this purpose, I implemented
the Unscented Kalman Filter, which, apart from the computation of unmeasured quantities,
filters, and fuses all the available measurements. This is convenient even for the pendulum
state feedback that has the necessary data at its disposal.

3.2.1 Unscented Kalman Filter

The Unscented Kalman Filter (UKF) [12],[13] is a Kalman filter variant that uses so-
called unscented transformation to estimate mean and covariance of the state distribution
propagated through the non-linear dynamics and measurements of the system. The UKF is
more accurate [12],[13] than the Extended Kalman Filter (which relies on system linearization
for the distribution estimation) with the same order of computational complexity.

In the unscented transformation, a set of points called sigma points is chosen such that its
sample mean and sample covariance is the same as for the state distribution. Then, the
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non-linear transformation is applied to each point separately. Their new weighted sample
mean and sample covariance are used for the estimation of the new distribution.

I implemented the UKF with nonagumented unscented transform [14] assuming only white
additive Gaussian process and measurement noise with covariances Q, R. In the data update
step, the 2n + 1 sigma points sσ+

i and their weights Wi are computed from the previous
predicted value ŝ+

k−1 and its covariance P+
k−1:

sσ+
0 = ŝ+

k−1 , W0 = κ

n+ κ
, (3.27)

sσ+
i = ŝ+

k−1 +
(√

(n+ κ)P+
k−1

)
i
, Wi = 1

2(n+ κ) , i = 1, . . . , n , (3.28)

sσ+
i = ŝ+

k−1 −
(√

(n+ κ)P+
k−1

)
i
, Wi = 1

2(n+ κ) , i = n+ 1, . . . , 2n+ 1 , (3.29)

where n in the number of the states, κ is a scaling parameter and
(√

(n+ κ)P+
k−1

)
i
is the

ith column of matrix square root of (n + κ)P+
k−1 (that may be obtained from Cholesky

factorization if the matrix is positive definite). The sigma points are transformed by the output
function h(s), compared with the actual measurement y and the state estimate is updated:

yσi = h(sσ+
i ) , yσ =

2n+1∑
i=0

Wiy
σ
i , (3.30)

Py =
2n+1∑
i=0

Wi (yσi − yσ) (yσi − yσ)ᵀ + R , (3.31)

Psy =
2n+1∑
i=0

Wi

(
sσ+
i − ŝ+

k−1

)
(yσi − yσ)ᵀ , (3.32)

P−
k = P+

k−1 − PsyP−1
y P ᵀ

sy , ŝ−
k = ŝ+

k−1 + PsyP−1
y (y − yσ) . (3.33)

In the time update step, the sigma points sσ−
i are computed from ŝ−

k and P−
k analogously

as in the data update step (3.27), (3.28), (3.29). Then, they are transformed applying the
discrete (or discretized) system dynamics z(s,u) with inputs u and the states are predicted:

s̃σi = z(sσ−
i ,u) , s̃σ =

2n+1∑
i=0

Wis̃
σ
i , (3.34)

P+
k =

2n+1∑
i=0

Wi (s̃σi − s̃σ) (s̃σi − s̃σ)ᵀ + Q , ŝ+
k = s̃σ . (3.35)

Such implementation does not enforce the angle constraints a(s) (2.15) because they are
included in the model only through the pseudovelocities. Hence, their values would not be es-
timated correctly. I overcame this by introducing the constraints as perfect measurements [15],
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which is done by expanding the measurement transformation:

he(s) =
[
h(s)
a(s)

]
, ye =

[
y

0

]
, Re =

[
R 0
0 0

]
. (3.36)

I implemented two separate UKFs for each side of the robot with shared pitch and pitch rate
data. The available roll (roll rate) and yaw (yaw rate) information were not used because
it would require coupling between the sides, which is not included in the simplified planar
model. The measurement noise covariance was selected based on the worst-case expectation
for the real robot measurements (the real robot had not been constructed yet at the time of
the design).

3.2.2 Estimation and Control Performance

I tested the estimation and control performance with the observer included in the feedback
loop in the same two scenarios as before (see subsections 3.1.5 and 3.1.6). The estimation
performance for all three leg lengths was similar, which is not surprising since UKF is a
non-linear observer. Thus, I will present the results only for the default pose.

In the balancing test, the robot managed to withstand back, and side pushes as depicted
in Figures 3.13 and 3.15. The response was slightly slower than in the ideal case, but this
was to be expected. Otherwise, the performance was decent, and the state estimates closely
matched the real values, which is reflected in Figures 3.14 and 3.16.

The robot could also follow the references in the steering test as can be seen from Figure
3.17, yet the oscillatory behavior after the cornering is much worse. Figure 3.18 shows, that
the θ̇1 and θ̇3 estimates drifted from the real values while the robot was turning left. After
the turning was over, the estimates shifted back while heavily oscillating. This, again, is
caused by the fact that the coupling and load transfer between the two sides while turning
is not considered.

Overall, the state estimation worked well for balancing and forward (backward) movement.
The control system was also able to steer the robot, even though the estimates shifted during
the turn. The coupling of the two robot sides should be introduced to improve the estimation,
ideally, by using the full robot model for the UKF design instead of two independent planar
models.
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Figure 3.13: Back push response with UKF.

Figure 3.14: Back push — left side comparison of true (red) and estimated values (blue).
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Figure 3.15: Side push response with UKF.

Figure 3.16: Side push — left side comparison of true (red) and estimated values (blue).
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Figure 3.17: Steering performance with UKF.

Figure 3.18: Steering — left side comparison of true (red) and estimated values (blue).
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3.3 Jumping Maneuver

In this section, I describe the jumping maneuver trajectory computation, which is a simpli-
fication of the method described in [16]. First, I rederived the planar model of the robot
(2.27),(2.31) so that it does not include constant wheel height and no-slip conditions directly
but enforce them via Lagrange multipliers representing the ground reaction forces. Then, I
used non-linear optimization to find the jumping trajectory, which satisfies the discretized
dynamics. I tested this trajectory by applying the obtained control sequence as feedforward
in the 3D simulation.

3.3.1 Expanded Model

The derivation of the expanded model is exactly the same as in Chapter 2, the only difference
is the addition of two generalized coordinates representing the position of the wheel and two
constraints

x0 =
[
x0 y0

]ᵀ
, ā =

[
x0 − r0θ0 y0 − r0

]ᵀ
= 0 . (3.37)

I skip the derivation to avoid any unnecessary repetition. The resulting model, that
corresponds to (2.29) is the following:

Ḡ(θ)ᵀ
[

0
τin

]
︸ ︷︷ ︸

B̄(z)ū

= M̄(z)ẇ + C̄(z,w)w + Ḡᵀ(θ)ge(z)︸ ︷︷ ︸
ḡ(z)

−J̄ᵀλ̄ , (3.38)

ū =
[
u0

u4

]
, w =

[
ẋ0

v

]
, z =

[
x0

θ

]
, J̄ = ∂ae

∂z
Ḡ =

[
1 0 −r0 0 0
0 1 0 0 0

]
, λ̄ =

[
λs

λg

]
. (3.39)

3.3.2 Optimization

A feasible state trajectory is constrained by integrated dynamics, which I obtained form (3.38)
with the backward Euler method similarly as in [16]:

zk − zk+1 + T Ḡk+1wk+1 = 0 , (3.40)

M̄k+1(wk+1 −wk) + T
(
C̄k+1 + ḡk+1 − B̄k+1ūk+1 − Jᵀ

k+1λ̄k+1
)
, (3.41)

with M̄k+1 = M̄(zk) and likewise.

The jump can be divided into two phases. During the first phase, the robot is on the ground
preparing to jump. That means that constraints ā (or equivalently J̄w) are active and
should be equal to zero. In the second phase, the robot is in the air. Therefore, λ̄ = 0 as
no reaction forces from the ground are applied on the wheel. From this, I formulated the
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following constraints:

J̄kwk = 0 , λg,k ≥ 0 , k = 1, . . . , Njump − 1 , (3.42)

λk = 0 , k = Njump, . . . , N , (3.43)

y0,N = r0 , (3.44)

where Njump is the discrete time of the jump and N is the final time of the whole maneuver.
The condition λg,k ≥ 0 in (3.42) represents the fact, that the reaction force that prevents
the wheel from penetrating the ground is non-negative. The constraint (3.44) ensures that
the wheel is at ground level in the end of the air phase. More constraints might be used to
tweak the jump properties or to limit maximal and minimal state and input values. Also,
the landing can be added analogously to the jump preparation phase, if a landing reference
is desired. The cost function should be any nonlinear function based on the states, inputs
and multipliers. I chose a quadratic cost on inputs to avoid needlessly high inputs:

minimize
ū1,...,ūN

N∑
k=1

ūᵀ
kQ̄ūk . (3.45)

It is worth mentioning that this simplified approach is by no means perfect. It requires
manual tuning of Njump and N for given sample time T , which might be made slightly less
inconvenient by setting a variable sample time. Appropriate time interval values could be
obtained from the resulting trajectory and then adapted for a chosen fixed sample time.
Furthermore, an adaptation of the full method suggested in [16] would resolve this problem.

I formulated the problem in Matlab using CasADi [17], which is a framework that allows
the formulation of an optimization task using a high-level programming language. CasADi
uses algebraic differentiation to compute the necessary derivatives and then calls a general
non-linear problem solver, particularly interior point optimizer (IPOPT). That made the
implementation both easy and efficient. For N values around 500, the problem converged
within a couple of minutes after the program was initialized (on my laptop with Intel i7-8750H
CPU).

3.3.3 Results

I tested the method in two test scenarios by applying the input values as a feedforward control
sequence in the 3D simulation. The stabilization was switched off during the maneuver and
turned on right after it. This is not ideal because such an approach heavily relies on the
model’s precision during the jump and stabilization control for the landing. In [3], authors
improved this by implementing heuristic feedforward control with five different phases and
ground contact detection. An even better solution would be the use of the jump trajectory
tracking controller. Nevertheless, the simulation experiments still serve as proof that the
generated trajectories are valid.
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The first test scenario was an upward jump. The optimization result can be seen in Figure 3.19
with an achieved jump height of 20 cm above the ground. Besides limiting the maximal
input values, I restricted the wheel height y0 in the middle of the jump phase to achieve
such height. The feedforward 3D simulation trajectory is almost indistinguishable from the
precomputed one, as shown in Figure 3.20. The only visible difference in the comparison
from Figure 3.21 is that in the 3D simulation, the robot is slightly more tilted.

The second test scenario was a forward jump. Figure 3.22 shows the obtained state trajectory
and input signals. The jump height was 3.5 cm, and the jumped distance was around 30 cm.
In this case, I also limited the maximal input values and added a jump distance requirement
based on the x0 value at time N . Again, the trajectory from the 3D simulation is nearly
identical, which is illustrated in Figure 3.23. The visual comparison in Figure 3.25 confirms
that as well. Even though the forward jump trajectories matched the reference closely, the
stabilization after the jump was not always successful, especially for higher jumps; this only
highlights the drawbacks of the feedforward and stabilization switching approach.

Figure 3.19: Upward jump — state trajectory and input sequence obtained from optimiza-
tion.
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Figure 3.20: Upward jump — feedforward 3D simulation state trajectory.

Figure 3.21: Upward jump — visual comparison of simplified model simulation (top) and
3D feedforward simulation (bottom).
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Figure 3.22: Forward jump — state trajectory and input sequence obtained from optimiza-
tion.

Figure 3.23: Forward jump — feedforward 3D simulation state trajectory.
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Figure 3.25: Forward jump — visual comparison of simplified model simulation (top) and
3D feedforward simulation (bottom).





4 | Real Robot Results

In this chapter, I present the results that I (and my colleagues) achieved with the real robot.
We implemented the suggested control system from Chapter 3 without the UKF due to
the limited time we had for experiments. The controllers (mainly the body motors PD
regulators) were tuned to reflect the differences in parameters from the simulation model.

4.1 Experiments

In our experiments1, we again tested the balancing and steering performance. The robot had
no problem withstanding pushes from all directions. Snapshots of one push can be seen in
Figure 4.1. As for the movement, the robot was capable of all kinds of different maneuvers,
including fast stops or quick turns, following the references from a human-operated Xbox
gamepad. Figure 4.2 shows that it even managed to go up a narrow ramp, turn around and
go back down. We tried the experiments for different leg lengths and achieved decent results,
but especially for more stretched poses, the performance was visibly worse and less robust.

The real robot performance exceeded my expectations in all aspects. The only thing that
turned out to be of greater concern than we anticipated initially is the wheel slip. The wheels
start slipping at torque values around 0.5 Nm, which significantly reduces the usable ±2 Nm
wheel motor torque range. Another (though expected) issue was the noise of motors velocity

1The recorded videos of the experiments are available at https://youtu.be/B6OaJCYD5C8.

Figure 4.1: Real robot experiment — push.

37
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Figure 4.2: Real robot experiment — ramp turn.

and pitch rate measurements, preventing us from using faster, more aggressive control system
tuning. This could be resolved by implementing the suggested UKF or by other filtering
techniques.

4.2 Measurements

For the sake of completeness, I also present measured data from balancing and steering
experiments.

Figure 4.3 shows measurements from a balancing experiment. The robot was initially pushed
three times to its front, then hit three times from the side, and finally pushed four times to
the back. The response is similar to the simulations. The main difference is that the side
oscillations are damped quickly. This is probably caused by friction, which is, in reality,
much higher than what was set in the 3D simulations. The steady state values of body
motor torques u4 were non-zero, which implies that the robot was not in equilibrium position.
Furthermore, the peaks of u4 are higher than in simulations, but that is caused by the
different PD controller tuning2.

Steering experiment data can be seen from Figure 4.4. The robot tracked the speed reference
(denoted by the dark blue dotted line) with an approximately one-second delay, which
corresponds to the simulations. The yaw rate reference tracking (denoted by the light yellow
dotted line) was faster than in simulations with a delay of around 0.5 s. Leg weight load
transfer occurred during cornering in agreement with the simulations, but no side oscillations
are observed when the turning is stopped. Regarding the u4 peak and steady-state values,

2The derivative gain was set lower than in simulations, thus the oscillation damping cannot be explained
by the different tuning.
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the same as for the previous balancing experiment holds.

The presented measurements only confirmed my claims about the performance from the
previous section. The results are comparable to the simulations, except for side oscillations,
which were quickly damped or did not occur at all. As I already mentioned, I explain this
by differences in friction.

Figure 4.3: Real robot experiment data — balancing.
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Figure 4.4: Real robot experiment data — steering.



5 | Conclusion

The goal of this thesis was to form basic simulation and control tools for our bipedal wheeled
robot. In particular, to create a 3D simulation environment, design a control system, and
implement the jump trajectory computation method based on the robot’s planar model.
I believe that I achieved the goal successfully.

In Chapter 2, I derived the planar model of the robot, which proved to be sufficiently
accurate, and I used it for the jump trajectory computation and state observer design in
Chapter 3. Moreover, I described the Simulink-Gazebo co-simulation that brings together
the quick prototyping functionalities of Matlab/Simulink with Gazebo’s 3D environment
simulation tools. The 3D simulations served as the primary verification tool throughout the
thesis.

Chapter 3 documents the control system. The planar model turned out to be insufficient
for controller design due to couplings in yaw and roll dynamics. Thus, I switched to the
two-wheel inverted pendulum model and used it to design an LQR with integral action for
reference tracking. In combination with two body PD controllers, the LQR could stabilize
and steer the robot with varying leg lengths. Furthermore, I designed an Unscented Kalman
Filter, estimating the states of the planar model. The UKF worked well for balancing and
straight motion, but the state estimates diverged from the true values during cornering due to
unmodeled 3D dynamics in the planar model. In the last section of the chapter, I presented
the optimization-based method for jump trajectory computation. The accuracy of the
obtained trajectories was verified through simulation experiments, where the precomputed
input values were used as a feedforward control sequence.

I described the experiments with the real robot in Chapter 4. The proposed controllers
performed better than one could hope in terms of maneuverability, capable of quick turns while
moving fast. The balancing performance was also great as the robot was able to withstand
all kinds of pushes. The measurements only supported these claims and corresponded with
the simulations, except for the unobserved side oscillations that were probably caused by
different simulation friction settings.

5.1 Future Work

There is only a little room for improving the control system without the full 3D mathematical
model of the robot. Thus, I see its derivation as the logical next step. Besides that, the
method for jump trajectory computation needs to be upgraded. The manual tuning of

41
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the jump time is impractical and time-consuming. Lastly, the jump trajectories should be
experimentally tested on the real robot.
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