
Czech Technical University in Prague

Faculty of Electrical Engineering

Graduation theses

Heuristic Algorithms for Project Scheduling

Prague, 2008 Author: Peter Kovalč́ık

i

ii

Thanks

I would like to thank everybody who helped me either directly or indirectly during

the working on this thesis. Especially I want to thank to Ing. Premysl Sucha, Ph.D, the

thesis supervisor, who always gratefully supported me and led me through the thesis up

to its end.

Many thanks belong to my parents and my close friends, who have been supporting

me and making a great working atmosphere during my studies. Special thanks goes to

my mother Eva, who supports me all the time and who is a respectable person for me.

iii

iv

Abstract

The thesis is concerned about implementation of An Effective Algorithm For Project

Scheduling With Arbitrary Temporal Constraints which is a scheduling algorithm solving

mostly project management problems, where total project length needs to be minimized.

The algorithm has been implemented and modified in Mathworks Matlab environment.

The modifications have been done in order to increase the algorithm speed at the price of

its less efficiency. The modified algorithm has been implemented into a Java open-source

project manager software, GanttProject. The first half of the thesis covers the theory

about the scheduling essentials and about the implemented algorithm. The second one

closely describes the algorithm implementation process into the both environments and

represents the algorithms experimental results.

Abstrakt

Diplomová práca sa zaoberá implementáciou Efekt́ıvneho Algoritmu pre Rozvrho-

vanie Projektov s L’ubovol’nými Dočasnými Obmedzeniami, čo je rozvrhovaćı algoritmus

riešiaci hlavne projektovo-manažérske problémy, kde celková d́lžka projektu muśı byt’

čo najkratšia. Algoritmus bol implementovaný a modifikovaný v prostred́ı Mathworks

Matlab. Modifikácie algoritmu boli vykonané s ciel’om urýchlit’ výpočetnú dobu algo-

ritmu aj za cenu stráty jeho efektivity. Modifikovaný algoritmus bol implementovaný do

Java open-source aplikácie GanttProject, určenej pre riadenie projektov. Prvá polovica

práce pokrýva teóriu základných pojmov rozvrhovania a teóriu popisujúcu implemento-

vaný algoritmus. Druhá čast’ detailne popisuje postup implementácie algoritmu do oboch

prostred́ı a prezentuje výsledky experimentov, na ktorých bol algoritmus testovaný.

v

vi

Contents

Table of Figures viii

Table of Tables x

1 Introduction 3

1.1 Motivation . 3

1.2 Problem statement . 4

1.3 Related work . 7

1.3.1 Scheduling algorithms . 7

1.3.1.1 Branch-and-Bound algorithms 8

1.3.1.2 Linear programming . 8

1.3.1.3 Heuristics . 9

1.3.2 Scheduling tools . 10

1.4 Contribution . 12

2 RCPSP/max Problem 15

2.1 Introduction to scheduling . 15

2.2 RCPSP/max problem . 17

3 Squeaky Wheel Optimization 19

3.1 Squeaky Wheel Optimization . 19

4 An Algorithm For Project Scheduling 23

4.1 Algorithm Implementation . 24

4.2 Own Algorithm Modifications . 35

4.2.1 Prioritization phase modifications 36

4.2.2 Reducing the code . 37

vii

5 Project Management Software, GanttProject 39

5.1 Project Management . 39

5.2 Project Management Software . 40

5.3 GanttProject . 45

5.3.1 GanttProject structure . 46

5.3.2 Scheduling algorithm implementation 49

5.3.2.1 Create a menu item to invoke the Resource Leveling function 49

5.3.2.2 Create a Java class to handle the event when the Resource

Leveling function is invoked 49

5.3.2.3 Create a Java class implementing the scheduling algo-

rithm function . 52

5.3.2.4 Involve the newly created classes to the overall GanttPro-

ject structure . 52

5.3.3 Compiling and running GanttProject 53

5.3.4 GanttProject vs. Microsoft Project 2007 56

6 Experimental Results 59

6.0.1 Generating the instances . 59

6.0.2 Testing the instances . 61

6.0.2.1 Running the benchmarks 61

6.0.2.2 The benchmark results 62

7 Conclusions 67

Bibliography 70

viii

List of Figures

1.1 Task-on-Node graph . 4

1.2 Example: Building a house, task-on-node graph 6

1.3 Example: Building a house, resulting schedule 6

1.4 Microsoft Project 2007 . 10

1.5 Microsoft Project, two-task problem example 11

1.6 Sciforma Corporation PS8 . 11

2.1 Graphic representation of task parameters 15

2.2 Two tasks with generalized precedence constraints 17

3.1 Construct/Analyze/Prioritize cycle . 19

3.2 Example task-on-node graph . 20

3.3 The first SWO iteration schedule . 21

3.4 The second SWO iteration schedule . 22

3.5 The third SWO iteration schedule . 22

4.1 Initial priorities calculation . 26

4.2 Two tasks with generalized precedence constraints 27

4.3 ESTi calculation, predecessors order . 29

4.4 LSTi calculation, successors order . 29

4.5 Bulldozing method example, task-on-node graph 31

4.6 Bulldozing method example . 31

4.7 Bulldozing method example . 32

4.8 LeftBulldozing method example . 34

5.1 The Project Management Triangle . 40

5.2 Example 5.1: resource Group A overallocation 42

5.3 Example 5.1: resource Group B overallocation 43

5.4 Example 5.1: Group A, Resource Leveling function result 43

ix

5.5 Example 5.1: Group B, Resource Leveling function result 44

5.6 The basic GanttProject functions . 46

5.7 The GanttProject structure . 47

5.8 The relationship between the ResourceLevelingAction class and the Re-

sourceLevelingAlgorithm class . 51

5.9 The call sequence between the ResourceLevelingAction class and the Re-

sourceLevelingAlgorithm class . 52

5.10 Involving the new classes into GanttProject structure 53

5.11 Create a new project from CVS . 54

5.12 Checkout the project from CVS repository 55

5.13 Running GanttProject . 56

5.14 Microsoft Project, two-task problem example 57

5.15 MS Project 2007, Resource Leveling function example 57

5.16 GanttProject, Resource Leveling function example 58

6.1 Progen/Max . 60

6.2 Scheduling Algorithm Tester . 62

6.3 The Cmax comparison . 63

6.4 The Cmax comparison with higher percentage of maximal time lags . . . 63

6.5 The Cmax comparison of ALG and modified ALG for high scale problem

instances . 64

6.6 The CPU time comparison . 65

6.7 The CPU time comparison with higher percentage of maximal time lags 65

6.8 The CPU time comparison of ALG and modified ALG for high scale

problem instances . 66

x

List of Tables

xi

List of Abbreviations

Abbreviation Term

BaB Branch-and-Bound

CPU Central Processing Unit

CVS Concurrent Versions System

GUI Graphical User Interface

GPL General Public License

ILP Integer Linear Programming

JDK Java Development Kit

JRE Java Runtime Environment

MS Microsoft

RCPSP Resource-Constrained Project Scheduling Problem

RLP Resource Leveling Problem

SWO Squeaky Wheel Optimization

Notation Term

Cmax Makespan - total project length

EST Earliest Task Start Time

LST Latest Task Start Time

m Number of resources

n Number of tasks

p Task processing times

S Task start times

T Task

W Precedence matrix with general precedence constraints

xii

1

2

Chapter 1

Introduction

1.1 Motivation

Nowadays, scheduling becomes more and more important part of our life. Many people

face scheduling problems every day, e.g. at the airport (someone is responsible for assign-

ing the planes to gates), in the hospital (creating nurse worksheets), at the constructions

(creating workers worksheet, construction process plan) and so on. In general, scheduling

is the process of assigning a set of tasks (or commonly called jobs) to a set of resources

(humans, machines, processors, etc). The result is a timetable, schedule or plan. Before

defining scheduling more precisely, let us give an intuition about typical applications.

One of the typical applications is Project management. Project management is a

process of organizing and managing resources to achieve a specific goal (e.g. minimizing

total project length, minimizing total cost, etc). A project might be a building construc-

tion, a chemical process or a computer system implementation.

Scheduling also plays an important role in computer science. The fast expansion of

use of computers in public and private sector not only provided a tool to practically solve

scheduling problems, but also created a new source of these problems itself: problems

that arise in computer control (e.g. software scheduling problems, parallel processing,

computer networks etc).

As we mentioned before, there are typical scheduling applications, each of this applica-

tions contains scheduling problems that need to be solved. To find a solution, scheduling

algorithms are used. The result is the schedule that achieves required goal. This the-

sis is concerned about implementation of An Effective Algorithm For Project Scheduling

With Arbitrary Temporal Constraints (Smith a Pyle, 2004), which is a scheduling algo-

3

4 CHAPTER 1. INTRODUCTION

rithm solving mostly project management problems, where total project length needs to

be minimized. The algorithm has been implemented and modified in Mathworks Mat-

lab environment. The modifications have been done in order to increase the algorithm

speed at the price of its less efficiency. The modified algorithm has been implemented

into GanttProject (http://ganttproject.biz/), which is a Java based open-source project

manager software.

1.2 Problem statement

The scheduling problem is given by a list of tasks, a list of precedence constraints and

a list of available resources. Problem should be represented by task-on-node graph1 (see

Figure 1.1).

Figure 1.1: Task-on-Node graph

There can be two types of precedence constraints:

• The (classic) precedence constraints (shown in Figure 1.1), constraints where each

arc between two nodes is weighted by 1. They represent only an existence of rela-

tionship between two tasks (exists or not) without information about relationship

characteristics.

• The generalized precedence constraints represent as well relationship existence as

relationship characteristics.

1Graph where tasks are represented by nodes and dependencies between tasks are represented by

edges.

http://ganttproject.biz/

1.2. PROBLEM STATEMENT 5

Assuming a generalized precedence constraints, there can be two edge types:

1. The forward edge, the edge from node Ti to node Tj with positive time lag wij. It

indicates that Tj must start at least wij time units after Si (start time of task Ti).

2. Backward edge, the edge from node Tj to node Ti with negative time lag wji. It

indicates that Sj must be no more than wji time units after Si.

The objective is to find a schedule with minimal makespan (Cmax)
2 satisfying task

durations and relations, and resource constraints.

Example 1.1 : Building a house

The table below shows a simple project plan for building a house (note that task

durations are not real).

Task number Task Duration General precedence constraint

1 Foundations 15 days

2 Walls 10 days Starts at least 5 days after finishing

the foundations (task 1).

3 Roof 12 days Starts after finishing the walls

(task 2).

4 Doors and windows 2 days Starts after finishing the roof

(task 3).

5 Cross buntons 2 days Starts after finishing the doors and

windows (task 4).

6 Kitchen 2 days Starts at least 3 days after starting

the cross buntons (task 5).

7 Bedroom 3 days Starts no more than 4 days after

start building the kitchen (task 6).

8 Bathroom 2 days Starts at least 2 days after starting

the cross buntons (task 5).

9 Living room 3 days Starts at least 3 days after starting

the cross buntons (task 5).

The problem representation could be rewritten to task-on-node graph with generalized

2Cmax (makespan) = max (Ti + pi) the length of schedule.

6 CHAPTER 1. INTRODUCTION

precedence constraints.

Figure 1.2: Example: Building a house, task-on-node graph

The objective is to find a schedule minimizing total project length with respect to gener-

alized precedence constraints. The solution of our problem could be represented by the

schedule shown in Figure 1.3.

Figure 1.3: Example: Building a house, resulting schedule

The problem is referred to NP-hard class problems which means that no polynomial

time algorithm3 exists for its solution. There are three approaches to solve NP-hard

problems:

1. Algorithms like Branch-and-Cut or Branch-and-Bound, which find an optimal so-

lution at the expense of worst-case computation time4.

3Polynomial time algorithm is an algorithm, where its computational time is in worst case upper

bounded by polynomial function of the input problem size.
4Computation time is a time that takes algorithm to find an optimal solution.

1.3. RELATED WORK 7

2. Heuristic algorithms are used to find a solution among whole solution space, but

they do not guarantee that the found solution is the best one. They work with

respect to the computation time.

3. Approximation algorithms work in polynomial time, but there is no guarantee that

the found solution is optimal. The only guarantee is that relative error between

approximation algorithm solution and optimal solution is lower than a certain co-

efficient.

The primary goal of this work is to find and implement the most suitable algorithm

to minimize the total project length, with respect to generalize precedence constrains

between tasks. This problem is known as the Resource-Constrained Project Scheduling

Problem with Arbitrary Temporal Constraints (RCPSP/max). There have been many

scheduling algorithms solving RCPSP/max. We decided for An Effective Algorithm for

Project Scheduling With Arbitrary Temporal Constraints which is a heuristic algorithm

invented by Tristan B. Smith and John M. Pyle (2004). At the core of selected heuristic

is a Squeaky Wheel Optimization (Joslin a Clements, 1998) method with an effective

resolution mechanism called Bulldozing. Selected method is competitive to Branch-and-

Bound (BaB) and Integer Linear Programming (ILP) algorithms. It consistently solves

all feasible problems with respect to algorithm computation time, which is mostly lower

than above mentioned methods.

1.3 Related work

Related work can be characterized along two dimensions: scheduling algorithms and

scheduling tools.

1.3.1 Scheduling algorithms

As we mentioned before, the problem consists of a set of activities and a set of renewable

resources. All algorithms assume that resource capacities, activity processing times and

activity dependencies are fixed throughout project, and the objective is to minimize

the total project duration (makespan). Preemption is not allowed. Previous research

on algorithms solving RCPSP/max problem uses mathematical programming techniques

8 CHAPTER 1. INTRODUCTION

and implicit enumeration, e.g., linear programming and branch-and-bound. Nowadays,

when project scale is growing, heuristic algorithms are more interesting.

1.3.1.1 Branch-and-Bound algorithms

There have been developed various branch-and-bound algorithms to find an optimal solu-

tion. There are different branching and pruning methods used to solve the RCPSP/max

problem. The static RCPSP has been extensively studied by Brucker (1998). A major

difficulty in this problem is to maintain the resource limitation over the horizon time.

A Branch-and-Bound Algorithm for a Single-machine Scheduling Problem With Pos-

itive and Negative Time-lags (Brucker et al., 1999) shows that complex scheduling prob-

lems can be reduced to the problem of scheduling tasks with arbitrary time-lags given

by relations on a single-machine. The second part introduces the branch-and-bound al-

gorithm for solving single-machine problem.

A Branch-and-Bound Procedure for the Generalized Resource-Constrained Project Schedul-

ing Problem (Demeulemeester a Herroelen, 1997) is based on a depth-first solution strat-

egy that solves resource capacity violations by delaying a minimal subset of activities.

Nodes in the solution tree represent resource and precedence feasible partial schedules.

Branches coming from a parent node correspond to minimal combinations of activities,

the delay of which resolves resource conflicts at each parent node. Precedence based lower

bound and two dominance rules (left-shift rule, cutset rule) are introduced in order to

restrict the growth of the solutions tree.

1.3.1.2 Linear programming

Scheduling with Start Time Related Deadlines (Sucha a Hanzalek, 2004) is based on

integer linear programming method. The algorithm complexity is not polynomial but

method is able to find an optimal solution.

Linear programming based algorithms for preemptive and non-preemptive RCPSP

(Damay et al., 2007). The algorithm uses variables associated to subsets of independent

activities that can be processed simultaneously. These activities are called antichains.

Precedence and non-preemption constraints are represented by antichains and eliminated

by the linear formulation.

1.3. RELATED WORK 9

1.3.1.3 Heuristics

Local Search Algorithms for a Single-Machine Scheduling Problem with Positive and

Negative Time-Lags (Hurink a Keuchel, 2001) is a local search algorithm where basic

method is a tabu search approach which starts with an ’infeasible’ sequence of the jobs

and tries to guide the search to a feasible sequence. This method can be considered as

general metaheuristic and mostly succeeds in feasible solution. One of the biggest disad-

vantages of this algorithm is that the computational times are very often high.

In an article, Self-Adapting Genetic Algorithms with an Application to Project Schedul-

ing (Hartmann, 1999), genetic algorithm is presented using mechanisms or processes such

as selection, crossover and mutations, similar to Darwinian natural selection biological

model. The goal is to produce a better solution by selecting only the best existing solu-

tions and their recombination.

Squeaky wheel optimization (Joslin a Clements, 1998) is an iterative search technique

for solving optimization problems. A solution is constructed by a greedy algorithm based

on the priorities assigned to all elements of the problem (elements with higher priority

are handled earlier). Constructed solution is then analyzed and elements priorities are

changed. The result of this analysis is a new priority order used by the greedy algorithm

to construct the next solution. This Construct/Analyze/Prioritize cycle continues until

some accepted or required solution is found.

A Constraint-Based Method for Project Scheduling with Time Windows (Cesta et al.,

2000). At the core of the algorithm is a Constraint satisfaction problem solving (CSP)

search procedure, which generates a set of task start times and removes resource conflicts

from otherwise temporary feasible solution. This is done by a conflict sampling method

that selects conflict sets involving tasks with higher capacity requests.

The article, A Competitive Heuristic Solution Technique for Resource-Constrained

Project Scheduling (Tormos a Lova, 2001), presents heuristic approach, based on multi-

pass method, combining random sampling procedures with backward-forward method.

The algorithm component parameters are specified through a step-wise computational

analysis.

10 CHAPTER 1. INTRODUCTION

1.3.2 Scheduling tools

In this work, when we talk about scheduling tools, we mostly mean project management

software that uses scheduling algorithms to perform a Resource Leveling5 function.

Microsoft Project 2007 (http://office.microsoft.com/project) is a proprietary, widely

used project management software. Optimization of the project schedule is done by man-

ually assigning a priority number to a task. MS Project allows user to set resource leveling

properties (see Figure 1.4). The most important property is ’Leveling order’ that deter-

mines how will scheduling algorithm treat with tasks and in which order.

Figure 1.4: Microsoft Project 2007

There are 3 possibilities:

• ID Only - algorithm delays tasks with higher Task ID first before looking at lower

IDs.

• Standard - algorithm examines following criteria in this order: predecessor relation-

ship, slack, dates, priorities, constraints.

5Resource leveling is a process of resolving resources over-allocations in the project.

http://office.microsoft.com/project

1.3. RELATED WORK 11

• Standard and Priority - same as Standard, but uses priorities as primary factor.

Even though, Microsoft Project is very popular and prestige software, it is unable to bind

two tasks with forward and backward edge all at once (see Figure 1.5).

Figure 1.5: Microsoft Project, two-task problem example

Sciforma Corporation PS8 (http://www.sciforma.com/) is proprietary project

management software. It allows to set resource leveling properties, and to specify both

project and task priorities for use in resource leveling. It also allows to define margins

for each resource that determine what conditions constitute an overload.

Figure 1.6: Sciforma Corporation PS8

Open Workbench (http://www.openworkbench.org/) is an open-source project man-

agement software. The main difference between Microsoft Project and Open Workbench

is that Microsoft Project leveling resource algorithm is only shifting overloaded tasks on

the schedule to find the next contiguous window in which the resource can complete the

entire task. In Open Workbench, the resource leveling algorithm calculates the whole

schedule from the beginning. Although, it is an open-source software, scheduling algo-

rithms are currently not open sourced.

http://www.sciforma.com/
http://www.openworkbench.org/

12 CHAPTER 1. INTRODUCTION

1.4 Contribution

BaB or ILP algorithms find always an optimal solution of RCPSP/max. However, they

are not able to find an optimal solution for a large scale scheduling problems. Therefore

heuristic algorithms are used. Their computational times are very often less than BaB or

ILP algorithms but on the other side, they often leads to loss of finding the best solution.

Heuristic mostly find a near optimal solution in polynomial time.

The thesis primary object is to implement An Effective Algorithm for Project Schedul-

ing with Arbitrary Temporal Constraints which is heuristic based on Squeaky Wheel

Optimization and resolution method called Bulldozing. Selected heuristic will be imple-

mented into Mathworks Matlab environment and into an open-source project, GanttPro-

ject. GanttProject is the project manager software working under GPL6. It will be

extended for a new function called Resource Leveling which will improve application us-

ability closer to commercial software like MS Project. All source-codes will be uploaded

to GanttProject CVS7 server, hosted at SourceForge(http://sourceforge.net/), and will

be a part of the future version.

Outline of this thesis. The thesis is divided into six chapters. To give a concise

overview, let us summarize the contents of the individual chapters:

CHAPTER 1: Provides a brief introduction to project scheduling, problem statement

and related works.

CHAPTER 2: This chapter gives a detailed introduction to RCPSP/max. It contains

problem description and also introduces basic scheduling theory notions like task, process-

ing time, release date, Cmax, etc.

CHAPTER 3: Describes closely Squeaky Wheel Optimization approach.

CHAPTER 4: Here, individual parts of selected algorithm are analyzed. It is divided

into two sections. The first one introduces main algorithm parts: Squeaky Wheel opti-

mization as a part of an implemented algorithm, Bulldozing and Refilling methods. The

second one concerns about own algorithm modifications that lead to enhancement its

6General Public License
7Concurrent Versions System

http://sourceforge.net/

1.4. CONTRIBUTION 13

performance.

CHAPTER 5: This chapter gives an information about GanttProject structure and about

own implementation of the scheduling algorithm as a Resource Leveling method.

CHAPTER 6: Chapter six presents an experimental results of the implemented algo-

rithm and its modification.

14 CHAPTER 1. INTRODUCTION

Chapter 2

Resource-Constrained Project

Scheduling Problem with Arbitrary

Temporal Constraints

(RCPSP/max)

2.1 Introduction to scheduling

Before defining RCPSP/max more closely, let’s introduce some basic scheduling theory

terms that are used throughout the thesis.

One of the most important term is Task (or sometimes called Activity). Graphic

representation of task and its paremeters is shown in Figure 2.1.

Figure 2.1: Graphic representation of task parameters

Tasks are characterized by following notions:

• Task processing times p = (p1, p2, . . . , pi, . . . , pn). Concern about how long are

individual tasks processed without interruption.

15

16 CHAPTER 2. RCPSP/MAX PROBLEM

• Ready times r = (r1, r2, . . . , ri, . . . , rn). Express time where each task is ready to

be processed.

• Due dates d = (d1, d2, . . . , di, . . . , dn). Due dates specify times when each task

should be finished. If task is finished later than its due date, some penalization is

imposed (e.g. increase production costs).

• Deadlines d̃ = (d̃1, d̃2, . . . , d̃i, . . . , d̃n). In comparison to due dates, deadlines specify

times when each tasks must be finished otherwise the scheduling is assumed to be

failed.

• Priorities w = (w1, w2, . . . , wi, . . . , wn). Concern about task priority with respect

to other tasks (e.g. one task must be scheduled before another).

For each task, there are additional parameters, used like a criterion for resulting schedule

classification:

• Completion time Ci. Time when task is truly finished.

• Flow time Fi = Ci - ri. Represents total task processing time, including task’s

waiting.

• Tardiness Di = max(Li,0). Non-zero value indicates overrun required due date.

• Earliness Ei = max(-Li,0). Non-zero value indicates that task has been finished

earlier than required due date.

We have introduced terms like task and its parameters. Now let’s introduce some crite-

rions along which resulting schedules are optimized:

• Makespan (total schedule length):

Cmax = max{ci}

• Maximum lateness :

Lmax = max{Li}

2.2. RCPSP/MAX PROBLEM 17

• Mean flow time:

F̄ =
1

n

n∑
i=1

Fi

• Mean weighted flow time:

F̄ =

n∑
i=1

Fi

n∑
i=1

wi

• Mean earliness :

Ē =
1

n

n∑
i=1

Ei

2.2 RCPSP/max problem

RCPSP/max problem contains a set {T1, ...,Tn} of tasks and a set {R1, ...,Rm} of re-

sources. Each task Ti has its start time Si and a processing time pi. Each resource has

its maximum capacity ck and execution of each task Ti requires an amount rik of resource

k for each time unit of execution. There are two types of constraints:

Precedence constrains mean that the start time of each task is related to the start

time of another task. There are two types of generalized precedence constraints:

1. Positive time lags wij, from task Ti to taks Tj, indicates that Si must be at least

wij time units after Sj.

2. Negative time lags wji, from task Tj to taks Ti, indicates that Sj must be no more

than wji time units after Si.

18 CHAPTER 2. RCPSP/MAX PROBLEM

Figure 2.2: Two tasks with generalized precedence constraints

Precedence constrains can be summarized as follows:

min

w ≤
i,j

Sj − Si ≤
max
w
i,j

Resource constraints represent maximum capacity of each resource.

Resource constraints can be summarized as follows:∑
{i|Si≤t≤Si+pi}rik ≤ck,∀t,∀k

A schedule can be considered as an assignment of start time Si to each task Ti. It is

time-feasible if it satisfies all precedence constraints and is resource-feasible if it satisfies

all resource constraints. A schedule satisfying both time-feasible and resource-feasible

constraints is feasible. The goal of an RCPSP/max problem is to find a feasible schedule

minimizing Cmax = max(Si+pi). Minimizing the Cmax is not the only one criterion while

solving the RCPSP/max problem. Cmax is always bound with tasks and their start times.

Sometimes there is a need for criteria, where the objective function does not depend on

how the individual activities are scheduled, but on how they are combined in order to use

the resources. For this purpose, the Resource Leveling Problem (RLP) criterion is used.

RLP minimizes:

• The total squared utilization cost of all resources.

• The total overload cost (loading the resource Rk over its capacity ck incurs the total

overload cost).

RCPSP/max is referred to the NP-hard class problems. It means that no polynomial

time algorithm exists for this problem.

Chapter 3

Squeaky Wheel Optimization

3.1 Squeaky Wheel Optimization

Squeaky Wheel Optimization (SWO) is an iterative search technique for solving opti-

mization problems. A solution is constructed by a greedy algorithm with priority scheme.

When constructing a solution, greedy algorithm is making its decision based on priori-

ties assigned to all elements of the problem1 (elements with higher priority are handled

earlier). Constructed solution is then analyzed and elements priorities are changed. The

result of this analysis is a new priority order, used by the greedy algorithm to construct

the next solution. This Construct/Analyze/Prioritize cycle (see Figure 3.1) continues

until some accepted or required solution is found.

Figure 3.1: Construct/Analyze/Prioritize cycle

1In scheduling domain, those elements are referred to tasks.

19

20 CHAPTER 3. SQUEAKY WHEEL OPTIMIZATION

Squeaky wheel optimization can be split into three parts:

Constructor

The constructor adds elements, one at a time, into schedule based on priority order.

Priorities are arranged in increasing order which means that elements with higher priority

are handled by constructor earlier.

Analyzer

The analyzer analyzes the solution created by the constructor and tries to find trouble

elements (elements that are hard to schedule or don’t respect task constrains). After find-

ing trouble elements, the “blames” are assigned. The analyzer calculates a lower bound on

the minimum possible cost (minimum worthiness that task extends actual makespan) that

each task could contribute to schedule. The blame assigned to each task is the difference

between its actual cost and a minimum possible cost. In other words, priorities of trou-

ble elements are increased much more than non-trouble elements. In the next algorithm

iteration, trouble elements (or hardly scheduled tasks) are handled by constructor earlier.

Prioritizer

Once the blame has been assigned, the prioritizer modifies the previous sequence of

elements by moving tasks with higher blame into the front of sequence. The higher the

blame, the further the element is moved.

Example 3.1 : Squeaky wheel optimization

Let’s have a look at simple example for better understanding Construct/Analyze/Prioritize

cycle. The problem is represented by task-on-node graph shown in Figure 3.2.

Figure 3.2: Example task-on-node graph

task processing times: p1 = p2 = p3 = 1

initial task priorities: Priorities(T1) = 1, Priorities(T2) = 2, Priorities(T3) = 3

3.1. SQUEAKY WHEEL OPTIMIZATION 21

precedence constraints:

T1 must start at least 2 time units before T2

T2 must start at least 2 time units before T3

The first SWO iteration:

Construction

Construction task order (based on task priorities) is (T3, T2, T1).

Figure 3.3: The first SWO iteration schedule

Analyze:

Schedule is not feasible.

Based on precedence constraints, T1 must be placed at least 2 time units before T2 (S1’

= -1) and T2 must be placed at least 2 time units before T3 (S2’ = -2)

Blames(T1) = S1 - S1’ = 2 - (-1) = 3

Blames(T2) = S2 - S2’ = 1 - (-2) = 3

Blames(T3) = S3 - S3’ = 0

newPriorities(T1) = Priorities(T1)+ Blames(T1) = 1 + 3 = 4

newPriorities(T2) = Priorities(T2)+ Blames(T2) = 3 + 2 = 5

newPriorities(T3) = Priorities(T3)+ Blames(T3) = 3 + 0 = 3

Prioritize

New construction order = (T2, T1, T3).

The second SWO iteration:

Construction:

Construction task order is (T2, T1, T3)

22 CHAPTER 3. SQUEAKY WHEEL OPTIMIZATION

Figure 3.4: The second SWO iteration schedule

Analyze:

Schedule is not feasible.

Based on precedence constraints, T1 must be placed at least 2 time units before T2 (S1’

= -2).

Blames(T1) = S1 - S1’ = 1 - (-2) = 3

newPriorities(T1) = Priorities(T1)+ Blames(T1) = 4 + 3 = 7

newPriorities(T2) = Priorities(T2) = 5

newPriorities(T3) = Priorities(T3) = 3

Prioritize:

New construction order = (T1, T2, T3)

The third SWO iteration:

Construction:

Task order is (T1, T2, T3)

Figure 3.5: The third SWO iteration schedule

Analyze:

The schedule is feasible.

Chapter 4

An Effective Algorithm For Project

Scheduling With Arbitrary

Temporal Constraints

In the Chapter 2, RCPSP/max problem has been introduced. Now, let’s have a look how

to solve it. There are many approaches to solve RCPSP/max. We have decided for An

Effective Algorithm For Project Scheduling With Arbitrary Temporal Constraints (Smith

a Pyle, 2004). This algorithm has been chosen because of its low computation time and

good solution quality. The chapter is divided into two sections. The first one deals with

the algorithm fundamentals. The second one describes the algorithm implementation

into Mathworks Matlab environment. The next chapter gives an introduction to project

management and concerns about the implementation of the algorithm into an open-source

project management software, GanttProject.

The algorithm represents a heuristic approach using an iterative method called Squeaky

wheel optimization (SWO) to aim RCPSP/max problem. At the core of SWO is a greedy

schedule constructor. The constructor is priority-based, which means that the tasks are

placed one at time into the schedule according to their priorities (higher the priority,

earlier the task is handled by constructor). Each solution is then analyzed and the pri-

orities are changed in order to find a feasible solution. This cycle continues until some

acceptable solution is found.

Since RCPSP/max belongs to NP-hard problems, it can happen that SWO will be

ineffective and not able to find a feasible solution. Therefore, the algorithm is extended

for a new conflict resolution mechanism called Bulldozing. This method is trying to main-

23

24 CHAPTER 4. AN ALGORITHM FOR PROJECT SCHEDULING

tain a partial-constructed schedule feasibility by moving the set of tasks to the later start

times. After finding a feasible solution, similar methods are used to move certain sets of

tasks back to earlier start times, in order to preserve schedule feasibility.

Before describing algorithm implementation, let’s briefly remind some RCPSP/max

problem fundamentals introduced in Chapter 2:

The problem contains a set {T1, ...,Tn} of tasks and a set {R1, ...,Rm} of resources.

Each activity Ti has its start time Si and a processing time pi. Each resource has a

maximum capacity ck and execution of each task Ti requires an amount rik of resource k

for each time unit of execution.

Precedence constrains:

Si + wij ≤ Sj

Resource constraints: ∑
{i|Si≤t≤Si+pi}rik ≤ ck, ∀t,∀k

The main goal is to minimize Cmax = max(Si+pi) representing the total schedule length.

The resulting schedule has to be feasible which means that it has to satisfy all precedence

and resource constraints.

4.1 Algorithm Implementation

At first, let’s give an general overview and then explain certain algorithm features more

closely.

As it was mentioned before, SWO is an iterative search technique for solving optimiza-

tion problems. It means that solution is found after minimal Construct/Analyze/Prioritize

cycles (iterations). In each iteration, the constructor (represented by the ScheduleWith-

Dozing(Ti,X
1) method) selects a start time for each unscheduled task from a time win-

dow [ESTi, LSTi] (ESTi - Eearliest Task Start Time, LSTi - Latest Task Start Time).

Each window represents all time points between the earliest and latest start time we

1where X is a set of tasks that need to be moved by the Bulldozing method

4.1. ALGORITHM IMPLEMENTATION 25

wish to consider, and is initialized to [0, horizon-pi], where initial horizon is the goal

makespan. When [ESTi, LSTi] interval is selected then PlaceTask(Ti,t) places task Ti

into the Schedule at a time point t. If t is later than LSTi, Bulldozing method is invoked.

If there has been still no feasible start time selected, then Ti is placed at ESTi and is

marked as unfeasible. After exploring all tasks, resulting schedule is analyzed, blames

are assigned and priorities are updated. When a feasible solution is found, LeftShifting

method is trying to move all tasks to earlier start times in order to preserve feasibility.

After finding a feasible solution, makespan is counted and compared to the previous so-

lution. If the new solution is better then the previous one, the new solution is saved and

kept by the algorithm.

An algorithm general overview can be summarized in the following pseudo code:

1: MKbest = infinity

2: horizon = goal makespan

3: initialize all Priorities

4: for 1 to MaxIter

5: for 1 to n

6: Ti - get unscheduled task with the highest priority

7: X = { }
8: if ScheduleWithDozing(Ti,X) fails

9: feasible = FALSE

10: end

11: if feasible

12: LeftShifting(Schedule)

13: if (MKcurrent less than MKbest)

14: MKbest = MKcurrent

15: decrease horizon

16: if 10 iteration without feasible solution

17: increase horizon

18: update Priorities

19: end

At the beginning of the algorithm, priorities need to be initialized. However, the al-

26 CHAPTER 4. AN ALGORITHM FOR PROJECT SCHEDULING

gorithm is able to find a feasible solution without priorities initialization, the proper

initialization can help to find a feasible solution faster. Each Priority(Ti) is initialized

to 10 x LSTi value, calculated by the temporal constraint propagation (Caseau, 1997).

Before LSTi calculation, the problem is transformed into the task-on-node graph with

general precedence constraints. This graph is then used as an input argument for the

Floyd-Warshall algorithm (Demel, 2002) which returns the longest path between each

two nodes (tasks) in a weighted, directed graph (task-on-node graph).

Figure 4.1: Initial priorities calculation

Now, let’s describe individual methods more closely:

The ScheduleWithDozing method

Before describing the ScheduleWithDozing method, some basic scheduling terms will

be remembered, and a Precedence matrix (with general precedence constraints) will be

introduced:

• Task processing times p = (p1, p2, . . . , pi, . . . , pn). Concern about how long are

individual tasks processed without interruption.

• Task start times S = (S1, S2, . . . , Si, . . . , Sn). Specify the task processing start

time.

4.1. ALGORITHM IMPLEMENTATION 27

• Precedence matrix with general precedence constraints W

W =



w11

w12

w12

w22

. . .

. . .

w1j

w2j

. . . w1n

. . . w2n

...
...

...
...

wi1 wi2 . . . wij . . . win

...
...

...
...

wn1 wn2 . . . wnj . . . wnn


The matrix represents how the each task start time pi is related to the start time

of another tasks pj (see Figure 4.2).

Figure 4.2: Two tasks with generalized precedence constraints

At the beginning, the function calculates a time window domain [ESTi,LSTi] for the

specified task Ti. This bounds (ESTi,LSTi) are calculated using the task start times

vector p and the precedence matrix W . When the time window domain [ESTi,LSTi] is

determined, the algorithm is exploring all time slots in the schedule in an effort to find

a free resource-feasible time slot for starting the task Ti. If none is found, Bulldozing

method is invoked. Bulldozing allows the greedy constructor to move the sets of tasks

X later in a partial schedule to maintain feasibility. After a successful bulldoze, the

LeftBulldozing method is trying to move the same sets of tasks back to the earlier start

times. If bulldozing fails and none resource feasible time slot has been found, resource

constraints are neglected, and the task Ti is placed at the earliest start time ESTi. The

task Ti is then marked as unfeasible.

28 CHAPTER 4. AN ALGORITHM FOR PROJECT SCHEDULING

The ScheduleWithDoz ing(Ti,X) method pseudo code is shown below:

1: t = earliest resource-feasible time for Ti in [ESTi,LSTi(orig)]

2: if (t ≤ LSTi)

3: PlaceTask(Ti,t)

4: else if (t more than LSTi) % Bulldozing method is invoked

5: PlaceTask(Ti,t)

6: Tj = tasks that need to be moved to preserve schedule feasibility

7: X = X ∪ {Tj}
8: Y = X

9: while (Y is NOT empty) do

10: Tk = randomly selected task from the set X

11: UnplaceTask(Tk)

12: X = X - {Tk}
13: ScheduleWithDozing(Tk,X)

14: end

15: LeftBulldozing(Y)

16: else

17: PlaceTask(Ti,ESTi)

18: Undo All Bulldozing

19: feasible = FALSE

20: end

ESTi calculation

For task Ti, all predecessors Tj are checked whether they are scheduled or not.

If yes, then:

ESTi = max (ESTi, S(Tj) + w(Tj,Ti)).

The predecessors (in the matrix W) are examined in the order shown in Figure 4.3.

4.1. ALGORITHM IMPLEMENTATION 29

Figure 4.3: ESTi calculation, predecessors order

LSTi calculation

For task Ti, all successors Tj are checked whether they are scheduled or not.

If yes, then:

LSTi = min (LSTi, S(Tj) - w(Ti,Tj)).

The predecessors (in the matrix W) are examined in the order shown in Figure 4.4.

Figure 4.4: LSTi calculation, successors order

The Bulldozing method

For highly constrained problems the SWO greedy algorithm is unable to find a feasible

schedule. This problem is mostly occurred because of existence of the maximum time

lags (the negative time lags between two nodes). Without maximum time lags, a greedy

algorithm can find always a feasible schedule, because each task Ti can be postponed as

30 CHAPTER 4. AN ALGORITHM FOR PROJECT SCHEDULING

long as it is necessary to conserve resource availability. Using the maximum time lags,

the task Ti can not be postponed long enough, if the tasks that constraints Ti have been

scheduled too early. The main idea of bulldozing is to delay the set of tasks X constrain-

ing Ti, so that Ti can be scheduled in the postponed time.

The Bulldozing method is invoked when the task Ti can not be scheduled in the current

[ESTi,LSTi] time window domain. Bulldozing considers a larger time window domain to

find a free time slot in the schedule for placing the task Ti. It extends the [ESTi,LSTi]

time window domain to [ESTi,LSTi(orig)], where LSTi(orig) is the latest start time of the

task Ti when no other activities are scheduled. If bulldozing finds a free time slot (at the

time t) for task Ti outside the [ESTi,LSTi] window but within the [ESTi,LSTi(orig)], the

task Ti is placed at the time t. After placing the task Ti, algorithm finds all tasks Tj that

constrain task Ti and places them into the set X (which is the set of all tasks that need

to be moved). Each task Tk that is randomly selected from the set X, is taken out from

this set, unplaced and the algorithm is trying to find a new feasible start time for the

task Tk using the recursive call of ScheduleWithDozing(Tk,X). If all tasks from set X are

scheduled feasible then bulldozing success. Otherwise, all delayed tasks Tk from the set

X revert to their previous position (position before invoking bulldozing).

One of the main advantages of the Bulldozing method is its recursive nature, which

means that more tasks can be moved than the original set X forced by task Ti. Each

task Tk from the set X can also force another set of tasks X ′. From a broader point of

view, we can say that each bulldozed task Ti forces sub-sets of highly constrained tasks.

These sub-sets will be moved to later start times until all sub-sets precedence constraints

are satisfied. This approach is very interesting because it is able to divide problem into

the sub-problems. Each sub-problem is then solved separately and these partial solutions

are then combined into the overall solution.

Example 4.1 : The Bulldozing method

The purpose of this example is to better explain the Bulldozing method. Let the

example consist of four tasks with the following precedence constraints:

• Task T4 can start at least 5 time units after starting the task T1.

• Task T4 must start no more then 3 time units after starting task T2.

• Task T4 must start no more then 2 time units after starting task T3.

4.1. ALGORITHM IMPLEMENTATION 31

• Between all other tasks there are no precedence constraints.

The problem could be also presented by task-on-node graph shown in Figure 4.5:

Figure 4.5: Bulldozing method example, task-on-node graph

Consider that tasks T1,T2 and T3 have been scheduled within the following time domain

windows:

EST1(orig)=EST1=0, LST1=10

EST2(orig)=EST2=1, LST2=10

EST3(orig)=EST3=2, LST3=10

Now, we are trying to schedule T4 inside a time window domain EST4=5, LST4=4.

The constructor is unable to find a resource feasible time slot in the schedule. Therefore

the LST4 is updated to LST4(orig)=10 and the constructor is trying to examine the fea-

sible schedule once again. Now, the constructor has found a free time slot at time t=5.

The task is scheduled at t=5 apart from maximum time lags between tasks T2 and T3

(see Figure 4.6).

Figure 4.6: Bulldozing method example

Bulldozing method finds all tasks Tj causing unsatisfied (maximum time lags) constraints

and updates the set X.

32 CHAPTER 4. AN ALGORITHM FOR PROJECT SCHEDULING

Constraining tasks are: T2,T3

Update the set X: X = {T2,T3}

After unscheduling the tasks (one at time) {T2,T3}, the time domains for each task T2

and T3 is updated:

EST2=3, LST2=10

EST3=4, LST3=10

After the successful bulldoze (moving all tasks form the set X to the later start times),

the resulting schedule in Figure 4.7 is feasible and all general precedence constraints are

satisfied.

Figure 4.7: Bulldozing method example

The LeftBulldozing method

However, bulldozing finds almost always a feasible solution (if exists), this solution is

often not optimal. The LeftBulldozing method is trying to reduce the schedule Cmax and

helps to find an optimal solution. After a successful bulldoze, the same set of tasks X,

that have been moved by bulldozing, is tried to be moved by leftBulldozing back to the

earlier start times. This approach is also Bulldozing, because we are trying to move the

sub-sets of tasks that are highly constrained among themselves.

The leftBulldozing is the same as scheduleWithDozing except for these three differences:

• On line 1, the range tried is [ESTi(orig),LSTi] (ie we try placing the task earlier

than it can currently go, not later). We assume that ESTi(orig) is a counted ESTi

before running bulldozing.

• On line 2, we instead use t ≥ ESTi.

• On line 17, we place the activity where it was already, rather than at ESTi.

4.1. ALGORITHM IMPLEMENTATION 33

The LeftBulldoz ing(X) method pseudo code is shown below:

1: Ti = the first task from the set X

2: X = X - {Ti}
3: t = earliest resource-feasible time for Ti in [ESTi(orig),LSTi]

4: if (t ≤ ESTi)

5: PlaceTask(Ti,t)

6: Tj = tasks that need to be moved to earlier start time

7: Y = Y ∪ {Tj}
8: while (X is NOT empty) do

9: Tk = randomly selected task from the set Y

10: UnplaceTask(Tk)

11: Y = Y - {Tk}
12: LeftBulldozing(Tk,Y)

13: end

14: if (t > LSTi)

15: Undo All LeftBulldozing

16: feasible = FALSE

17: end

Example 4.2 : The LeftBulldozing method

Let’s have a look at the previous example and try to perform the LeftBulldozing

method to the resulting schedule. Even though, the purpose of the LeftBulldozing method

is to reduce the schedule makespan, this approach rarely works. Because of this, the ex-

ample mainly shows how to count the ESTi(orig) for tasks that are left bulldozed.

After a successful bulldoze of the tasks T2 and T3, leftBulldozing is trying to move the

same set of tasks back to the earlier start times. At first, the ESTi time domains are

updated to:

EST2=EST2(orig)=1, LST2=10

EST3=EST3(orig)=2, LST3=10

34 CHAPTER 4. AN ALGORITHM FOR PROJECT SCHEDULING

Applying the LeftBulldozing method, the resulting schedule (in Figure 4.8) hasn’t

change compared to the resulting schedule produced by the Bulldozing method.

Figure 4.8: LeftBulldozing method example

The LeftShifting method

After finding a feasible solution (schedule), this method is trying to reduce the schedule

makespan. The main idea of this method is to left-shift tasks that can take an advan-

tage of resources vacated by bulldozed activities. Simply said, this approach is trying

to move each task Ai, for which holds start time Si > ESTi, to the left as much as possible.

The algorithm explores start times Si of all tasks (in order they were scheduled) and

counts appropriate ESTi. If Si > ESTi then the task is moved to the earlier start time

as much as possible.

The LeftShifting(Schedule) method is represented by the following pseudo code:

1: for 1 to n

1: t = earliest resource-feasible time for Ti in [ESTi,LSTi]

2: if (t < Si)

3: PlaceTask(Ti,t)

4: end

4.2. OWN ALGORITHM MODIFICATIONS 35

The Priorities update

The priorities are updated at the end of each algorithm iteration. This is a very

important phase, because it strongly affects the construction task order in the next al-

gorithm iteration. The main idea of priorities updating is to increase priorities to all

not-scheduled tasks by a constant amount. All other tasks priorities are increased by a

smaller amount with a small probability. Doing these two steps, we ensure that in each

iteration, at least one task will have its priority changed.

In our implementation, following priorities-increase constants are chosen:

• An amount, how much more the task priority is increased, when the task has been

scheduled = 2

• An amount, how much more the task priority is increased, when the task could not

been scheduled = 4

• A probability, with which the task priority is increased, when the task has been

scheduled = 0.01

4.2 Own Algorithm Modifications

Even thought, the implemented algorithm shows a very good benchmark results (shown

in the Chapter 6), there are some modifications that can be done to increase its perfor-

mance. The main impact of these changes is to decrease algorithm computational time

on the assumption, that the resulting makespans of the original and modified algorithm

are nearby equal. This can be done in two ways:

• By modifying the prioritization phase or more precisely, to change the idea of up-

dating the priorities.

• By exchanging the certain algorithms for the simpler ones with nearby the same

result.

Now, let’s have a look at it more closely:

36 CHAPTER 4. AN ALGORITHM FOR PROJECT SCHEDULING

4.2.1 Prioritization phase modifications

The main purpose of the algorithms solving the RCPSP/max is to find an appropriate

construction order in which the tasks are scheduled feasibly. The schedule, constructed

in this order, should also minimize the Cmax criterion. Therefore, the prioritization phase

is very important because it strongly influences the next iteration constructor task or-

der. Compared to the original implementation, the main change is that priorities are

not updated in the end of each iteration, but they are update continuously in the bull-

dozing part of the ScheduleWithDozing method. The main idea is that task Ti, that

needs to be bulldozed, forces another tasks Tk (all tasks in the set X) to be moved to

the later start times. All tasks Tk from X are then feasibly rescheduled; videlicet these

tasks, for conserving the schedule feasibility, must be in the construction order later than

Ti. Therefore, the best what way to update the priorities is to make sure, that in the

construction order, all tasks Tk ∈ X are later than Ti. Notice, that we do not do the

difference between the tasks in the set X. We can afford it, because the tasks Tk that

are moved by bulldozing are selected randomly (from the priorities point of view, these

tasks are equal). This is done by assigning the priority values to all tasks Tk less than the

priority of task Ti. We decided to decrease this value by a constant amount weighted by 2:

Priorities(Tk) = Priorities(Ti)− 2

An important observation is that the correct construction order (obtained from the ap-

propriate priority values), which achieves a feasible schedule, is found only in the one

algorithm iteration.

This is not an only one difference. Another modification, but not as important as previ-

ous one, is that at the beginning of each iteration, a random constant amount is added

to each priority. This is done because it can happen, that two tasks will have the same

priority and it needs to be decided which one to schedule first.

Priorities(Ti) = Priorities(Ti) + random(0..1)/1000

4.2. OWN ALGORITHM MODIFICATIONS 37

4.2.2 Reducing the code

The main idea is to exchange certain algorithms, that take a long time to be processed

or their effect to the resulting schedule is not equal to their processing time. These

algorithms are substituted for the simpler ones that provide nearby the same result, but

using the smaller amount of CPU time. We decided for letting out the LeftBulldozing

method. There are two reasons to do it:

1. It is a recursive method that is invoked every time when bulldozing success.

2. If the correct construction task order is known, we are able to schedule all tasks

once again from the beginning. Using this construction order, we will always find a

feasible solution where majority part of tasks is placed to their earliest start times,

which achieve the minimal makespan. This can be done without using the Left-

Bulldozing method.

The leftBulldozing is then replaced by a new algorithm that originates by modifying the

LeftShifting method. The new method, in comparison to the original one, finds not only

tasks that can be moved to the earlier start times, but constructs the whole schedule from

the beginning using the feasible construction order. This all is done not after a successful

bulldoze but at the end of each algorithm iteration.

The comparisons of the original and modified algorithm are presented in the Chapter

6.

38 CHAPTER 4. AN ALGORITHM FOR PROJECT SCHEDULING

Chapter 5

Project Management Software,

GanttProject

5.1 Project Management

The project management is the discipline of organizing and managing the resources, with

a view to achieving a specific goal (e.g. minimizing the total project cost or total project

length). A project might be a building construction, implementation of new technologies

into a factory or a political campaign. The project management in the modern sense

began in the early 1960s, but it was also known by ancient Egyptians engineers while

they were building great pyramids, that are seen still today. They had to plan how many

people would be involved in specified works, how much material they would need, how

much it would cost, how long it would take, etc. Nowadays, it is very similar, but the

use of the project management is wider. People involved in business realized, that the

properly planed projects lead to saving costs, and to the better prevention before prob-

lems that could happened during the project realization. The project requirements are

often summarized in a triangle (see Figure 5.1), where each vertex represents one of the

following constraints: time, cost and scope.

39

40 CHAPTER 5. PROJECT MANAGEMENT SOFTWARE, GANTTPROJECT

Figure 5.1: The Project Management Triangle

Each of these constraints has its own meaning:

• Time, represents the total project length.

• Cost, is equal to the total project cost.

• Scope, refers to what must be done to produce the project’s end result.

The main idea is that the one side of the triangle cannot be changed without impacting

the others. E.g. increasing the scope typically leads to increase of time and increase of

the cost. The deal of the project management is to organize the project team in the way

that will meet these constraints.

We have introduced the basics of the project management. Now becomes a question,

how to plan the project in the easiest and most efficient way? The answer is, use the

project management software.

5.2 Project Management Software

The project management software is an important tool for each project manager. It allows

user to easily create, modify, share projects between managers, show Gantt charts1, etc.

Each project consists of the set of resources, of the set of tasks and of the set precedence

1Gantt chart is a type of bar chart illustrating a project schedule (start and finish dates of the tasks,

project length, etc.). For more, see information (http://www.ganttchart.com/)

http://www.ganttchart.com/

5.2. PROJECT MANAGEMENT SOFTWARE 41

constraints between tasks (notice, that this is the same as RCPSP/max problem). During

the project planning, these tasks are created and assigned to the appropriate resources.

One of the purposes of the project management software is to continuously inform the

manager about the project state (e.g. gives information about total project length, task

start times, task end times, critical path2 length, resource allocation, etc.). These indices

are mostly shown through Gantt charts. However, there are more important project state

indices; we will take interest about resources allocation and its prevention.

Resource allocation is the process of assigning the tasks to the appropriate resources.

During the project planning, it can happen that more tasks are assigned to resource then

the resource is able to handle. This is called resource overloading and it could lead to the

problems during the project realization. Most of the project management software can

detect and alert this problem, but in many cases it is the role of the user to maintain it.

Now, you can say: “It is not so bad, just move problem tasks to the later start times..”.

You are right, but what if there are more overloaded resources and more then one hun-

dred tasks and precedence constraints among themselves? It is still so easy to reschedule

them, considering the precedence constraints and conserving the minimal project length?

The answer is “No” and therefore the good-class project management software allow user

to maintain this problem using scheduling algorithms instead of manual correction.

Example 5.1 : Building the house

Assume the Building the house example presented in the Chapter 1. Let’s modify it

slightly:

• Suppose that there are two workers groups. The group A works on the project all

the time (is able to work on all tasks). The group B is smaller then the group A

and specializes only for building the rooms (e.g. living room).

• Consider, that after finishing the cross buntons, we are able to build the kitchen,

bedroom, bathroom and living room simultaneously.

The table below shows a simple project plan for building a house (note that task dura-

tions are not real).

2Critical path is the series of events (tasks) depending on each other and whose durations directly

determine the length of the whole project.

42 CHAPTER 5. PROJECT MANAGEMENT SOFTWARE, GANTTPROJECT

Task number Task Duration General precedence constraint

(assigned group)

1 (group A) Foundations 15 days

2 (group A) Walls 10 days Starts at least 5 days after finishing

the foundations (task 1).

3 (group A) Roof 12 days Starts after finishing the walls

(task 2).

4 (group A) Doors and windows 2 days Starts after finishing the roof

(task 3).

5 (group A) Cross buntons 2 days Starts after finishing the doors and

windows (task 4).

6 (group B) Kitchen 2 days Is able to start immediatelly after

finishing the cross buntons (task 5).

7 (group A) Bedroom 3 day Is able to start immediatelly after

finishing the cross buntons (task 5).

8 (group B) Bathroom 2 days Is able to start immediatelly after

finishing the cross buntons (task 5).

9 (group A) Living room 3 day Is able to start immediatelly after

finishing the cross buntons (task 5).

The project has been designed in Microsoft Project 2007. Figure 5.2 shows resource

Group A allocation graph. Take notice of resource overallocation on 10th February.

5.2. PROJECT MANAGEMENT SOFTWARE 43

Figure 5.2: Example 5.1: resource Group A overallocation

The same situation, but for resource Group B, is shown in Figure 5.3. Remark that the

resource is either overallocated.

Figure 5.3: Example 5.1: resource Group B overallocation

Now, we will solve the overallocation problem using the function from the menu Tools →
Resouce Leveling. In the next two figures, we can see that the algorithm implemented in

the Resource Leveling function has moved the problem tasks to the later start times in

order to preserve the resources capacities.

Figure 5.4: Example 5.1: Group A, Resource Leveling function result

44 CHAPTER 5. PROJECT MANAGEMENT SOFTWARE, GANTTPROJECT

Figure 5.5: Example 5.1: Group B, Resource Leveling function result

Understanding the Example 5.1, we should have a clear idea about resource leveling as

a solution of the overallocating problem. In the next section, we will concern about

an open-source management software called GanttProject and we will extend it for the

scheduling algorithm (introduced in the Chapter 4) as a Resource Leveling function.

5.3. GANTTPROJECT 45

5.3 GanttProject

As we have mentioned before, GanttProject is an open-source project management soft-

ware developed under the GPL license. It allows to simple create the tasks, assign them to

the human resources and easily establish the dependencies between the tasks. For project

control, GanttProject renders the project using two charts: a Gantt chart, displaying all

tasks, dates and dependencies between the tasks; and a Load chart for resource, where all

resources and their loads are shown. Here we are able to see whether some resources are

overallocated or not. GanttProject is also able to print charts, generate PDF and HTML

reports, exchange data with Microsoft(R) Project(TM) and spreadsheet applications3.

Although, there are many various project management applications, GanttProject

offers an open-source software that is easy to learn, and is still extending its set of the

basic features. Another advantage resides in its cross platform. GanttProject is a Java

based application that runs on Windows, Linux, MacOSX and other operating systems

supporting Java.

3The typical spreadsheet application is MS Office

46 CHAPTER 5. PROJECT MANAGEMENT SOFTWARE, GANTTPROJECT

Figure 5.6 shows the interactions between the user and the basic GanttProject func-

tions.

Figure 5.6: The basic GanttProject functions

5.3.1 GanttProject structure

GanttProject contains of 21 packages and 24 subpackages. The main project structure

(without subpackages) is shown in Figure 5.7.

5.3. GANTTPROJECT 47

Figure 5.7: The GanttProject structure

In this section, we will explain only those packages and subpackages, that are in touch

with our implementation (extension for the scheduling algorithm as a Resource Leveling

function):

package net.sourceforge.ganttproject

Contains all general classes (e.g. classes for project variables initialization, graphical

user interface (GUI), etc.).

package net.sourceforge.ganttproject.action

Includes all action listeners4 : in our case, for the GUI items (e.g. buttons).

package net.sourceforge.ganttproject.task

4Listener is the class that handles an event (e.g. after clicking the button, it calls the appropriate

method)

48 CHAPTER 5. PROJECT MANAGEMENT SOFTWARE, GANTTPROJECT

This package holds the classes for the manipulation with the tasks (e.g. create or

delete task, assigning the resources, task duration, task start and task end date, etc.).

package net.sourceforge.ganttproject.task.dependency

Contains the classes that concern about dependencies between the tasks (e.g. type

of the relationship, the weight of the edge between themselves, the set of the successors,

the set of the predecessors, etc.).

package net.sourceforge.ganttproject.task.algorithm;

Covers the classes for handling the tasks events (e.g. moving tasks to another start

times, critical path computation, etc.).

package net.sourceforge.ganttproject.resource

This package holds the classes for the manipulation with the resources (e.g. create or

delete resource, resource load etc.).

5.3. GANTTPROJECT 49

5.3.2 Scheduling algorithm implementation

We decided to implement the scheduling algorithm, described in the Chapter 4, as the

Resource Leveling function. Therefore, there is no need to explain the algorithm idea

(and how it works) again. We will rather concern about mounting the algorithm in to

Ganttproject as a Java environment. There are three main issues to do so:

1. Create a menu item to invoke the Resource Leveling function.

2. Create a Java class to handle the event when the Resource Leveling function is

called.

3. Obtain the input data for the scheduling algorithm from the Ganttproject structure.

4. Create a Java class implementing the scheduling algorithm function.

5. Involve the newly created classes to the overall GanttProject structure.

5.3.2.1 Create a menu item to invoke the Resource Leveling function

Creating the menu item for invoking the Resource Leveling action is not a big deal. It is

just adding some lines of code into the main GanttProject package, into the GanttPro-

ject.java file. We have created a new item and assigned it to the appropriate menu. The

next step was to “tell” the button what to do, when the user clicks on it. For this pur-

pose, we used “event action handler” which is the class containing the instructions that

are invoked after clicking the menu item. The last think to do was to add the “Resource

Leveling” item into the i18n.properties file, which is the language database file containing

all english translations for each menu item.

5.3.2.2 Create a Java class to handle the event when the Resource Leveling

function is invoked

Creating the event action handler class for the Resource Leveling menu item, ResourceLevelin-

gAction.java, involves addressing following three subissues:

• Obtain the input data for the scheduling algorithm from the Ganttproject structure.

• Call the scheduling algorithm class with the specified input parameters.

• Use the results, returned by the algorithm, to move the tasks to start times where

the resources are not overallocated.

50 CHAPTER 5. PROJECT MANAGEMENT SOFTWARE, GANTTPROJECT

For acquiring the data from the project, we had to decide what kind of data we would

need. If we look back to the Chapter 4, we can see that the input parameters for the

algorithm are: taskprocessing times p, the precedence constraints that are represented by

the matrix W and the assigned resources R. For this purpose, following methods were

implemented (note, that the objective of this section is not to describe these method

in detail, rather the design of the classes that need to be implemented to perform the

Resource Leveling function).

• short[] getTaskProcessingTimes() - returns the one-dimensional array of the task

processing times p

• float[][] getW() - returns the two-dimensional array of the task processing times

W

• float[][] getTaskResources() - returns the two-dimensional array of the assigned

resources R

The next issue was to design how to call the scheduling algorithm. We decided to create

the new class, ResourceLevelingAlgorithm.java, that implements the algorithm function.

The ResourceLevelingAction class then creates a new instance of the ResourceLevelin-

gAlgorithm class with the p, W and R as the input parameters. The output parameter

of the algorithm specifies the task start time for each task, and the resource where each

task should be processed.

5.3. GANTTPROJECT 51

Figure 5.8 shows the relationship between the ResourceLevelingAction class and the Re-

sourceLevelingAlgorithm class.

Figure 5.8: The relationship between the ResourceLevelingAction class

and the ResourceLevelingAlgorithm class

We have introduced both classes. Now, becomes a question. How does it work together?

Figure 5.9 shows the whole call sequence.

52 CHAPTER 5. PROJECT MANAGEMENT SOFTWARE, GANTTPROJECT

Figure 5.9: The call sequence between the ResourceLevelingAction class

and the ResourceLevelingAlgorithm class

After clicking the Resource Leveling menu item, an instance of the ResouceLevelingAction

class is created and the actionPerformed method invoked. The getTaskProcessingTimes,

getW and getTaskResources methods are called to acquire the appropriate data form the

project. After this, the new instance of the ResourceLevelingAlgorithm class is created

and the ResourceLevelingAlgorithmRun method, with p, W and R as the input argu-

ments, is called. The result of the ResourceLevelingAlgorithmRun method is then handed

by the actionPerformed method of the ResouceLevelingAction class. The method moves

the tasks according to the output argument (Result) of the ResourceLevelingAlgorithm-

Run method, in order to prevent the resources oveallocation.

5.3.2.3 Create a Java class implementing the scheduling algorithm function

As it was mentioned before, the implemented algorithm is the same as it was closely

described in the Chapter 4. While the algorithm performs the same function and uses

exactly the same idea, we decided that it is not necessary to describe it once again. For

those ones, who have not heard about the implemented algorithm, see the Chapter 4.

5.3.2.4 Involve the newly created classes to the overall GanttProject

structure

As it was mentioned before, GanttProject contains more than twenty Java packages and

subpackages. These packages are logically named and ordered by the purpose of the

classes involved in each package. We decided to place the ResouceLevelingAction class

into the package net.sourceforge.ganttproject.action.resource. The ResouceLevelingAlgo-

rithm class is placed in the package net.sourceforge.ganttproject.resource.algorithm.

5.3. GANTTPROJECT 53

Figure 5.10 shows the updated part of the GanttProject structure.

Figure 5.10: Involving the new classes into GanttProject structure

5.3.3 Compiling and running GanttProject

This subsection gives a step-by-step tutorial how set the project to be compilable in the

easiest way. During my first project compilation, I met some troubles that I want to

prevent other users (developers).

Before introducing the individual steps how to compile it, we will briefly summarize

some requirements that need to be met:

• The official Java Development Kit (JDK) is Sun’s JDK 1.4.2. GanttProject is

compilable only with this version and probably is not compilable by uncertified

Java compilers.

• The official development tool is Eclipse 3.1. It is also compilable with the newer

versions or with Sun’s Netbeans, but Eclipse 3.1 is the easiest way how to set

the project in order to compile it. If you would like to use another develop-

ment tool (e.g. the one, that you are familiar to), then you have to use ANT5

(http://ant.apache.org/) for building the project. Nevertheless, if you decided to

use another development tool then setup the ANT in the following way:

In the source code distribution, there is a folder called ganttproject-builder con-

taining build artifacts. There is a build.xml with default target dist-bin.

5ANT is a tool for building the Java applications.

http://ant.apache.org/

54 CHAPTER 5. PROJECT MANAGEMENT SOFTWARE, GANTTPROJECT

Target dist-bin

Builds a ready to use binary distribution and puts it into dist-bin subfolder. No

need to edit any files.

Target dist-src

Builds a source code distribution and puts it into dist-src subfolder. No need to

edit any files.

• All codes are stored in CVS. GanttProject CVS server is hosted on SourceForge

(http://sourceforge.net/). Most of the development tools have already integrated

CVS clients to download a project from the repository. If your tool doesn’t support

it, then try to download an external CVS client (e.g. TortoiseCVS).

Compiling GanttProject

This step-by-step tutorial is only for Eclipse 3.1 over the Microsoft Windows XP opera-

tion system. It is possible that it will also suit for other Eclipse versions, but we do not

give any guarantee.

1. step: Create a new project from CVS

Invoke File → New Project, select CVS → Checkout project from CVS, and create

a new repository location using information shown below.

http://sourceforge.net/
http://www.tortoisecvs.org/

5.3. GANTTPROJECT 55

Figure 5.11: Create a new project from CVS

• Host : “ ganttproject.cvs.sourceforge.net ”

• Repository path : “ /cvsroot/ganttproject ”

• User/Password : “ anonymous/anonymous ”

• Connection type : “ pserver ”

On the next page, you may type in the text field: Use specified module name, the

value “ ganttproject ”. If you press “Next” button three times, you’ll see a page

titled Select tag. Press the button “Refresh tags” and then choose node Branches

→ BRANCH 2 0 0 (see Figure 5.12).

Figure 5.12: Checkout the project from CVS repository

2. step: You should change the compiler in your Eclipse enviroment to 1.4 version.

Get back to Java (default) perspective and invoke Window → Preferences, page

Java → Compiler. Uncheck Use default compliance settings and select 1.4 in all

three combo boxes.

56 CHAPTER 5. PROJECT MANAGEMENT SOFTWARE, GANTTPROJECT

Running GanttProject as an Eclipse Application

1. step: Create new Eclipse application configuration. Menu Run → Run..., select

Eclipse Application in the tree view and press button New. Then fill in accordance

with Figure 5.12. Do not forget to change the Runtime JRE to Java 1.4.2 (in our

case → j2re1.4.2 15), because as it was mentioned before, it works only with JDK

1.4.2.

Figure 5.13: Running GanttProject

• Run an application : “ net.sourceforge.ganttproject.GanttProject ”

• Runtime JRE : “ j2re1.4.2 15 ”

All other settings leave to default.

2. Run the project by pressing the Run button.

5.3.4 GanttProject vs. Microsoft Project 2007

There are many differences between GanttProject and Microsoft Project 2007. The essen-

tial difference lies in supported user functions and features. MS Project has a long time

tradition and supports much more features then GanttProject. However, there are many

other differences, this section concerns about the differences between Resource Leveling

functions. There are two main differences:

5.3. GANTTPROJECT 57

1. GanttProject doesn’t care about the assignment of the tasks to the resources before

running the Resource Leveling function. The newly created schedule might assign

to each task different resource. This is done because the algorithm is trying to find

a first free resource to assign the task, in order to minimize total project length.

2. MS Project is unable to bind two tasks with forward and backward edge all at once

(see Figure 5.14).

Figure 5.14: Microsoft Project, two-task problem example

Now, let’s present the project that shows the differences between MS Project 2007 and

GanttProject Resource Leveling algorithms6. Figures 5.15 and 5.16 show the same project

before and after invoking the Resource Leveling algorithm, for both software products.

We can see that the resulting schedule for GanttProject is one day shorter then for MS

Project 2007.

MS Project 2007

6Algorithms that solve the RCPSP/max problem along the RLP criterion

58 CHAPTER 5. PROJECT MANAGEMENT SOFTWARE, GANTTPROJECT

Figure 5.15: MS Project 2007, Resource Leveling function example

GanttProject

Figure 5.16: GanttProject, Resource Leveling function example

Chapter 6

Experimental Results

This chapter presents the experimental results of the implemented algorithm and its

modification. The algorithms were tested in the Matlab environment along following two

criteria:

1. Cmax, the length of the resulting schedule.

2. CPU time, time required to find a resulting schedule.

The experiments were performed on the various sets of RCPSP/max instances gener-

ated by ProGen/Max (Schwindt, 1995). Each set contains 185 problem instances. The

results are compared to the ILP algorithm (Sucha a Hanzalek, 2004) along both crite-

ria. This chapter is divided into two parts. The first one concerns about setting up

the ProGen/Max and the hardware performance where the algorithms were tested. The

second one gives an information about the GUI for testing the instances and presents the

experimental results.

6.0.1 Generating the instances

All the instances were created using the ProGen/Max (see Figure 6.1) which is the random

instance generator for three different types of the resource-constrained project scheduling

problems with minimal and maximal time lags: the resource-constrained project schedul-

ing problem RCPSP/max, the resource-leveling problem RLP/max, and the resource

investment problem RIP/max.

59

60 CHAPTER 6. EXPERIMENTAL RESULTS

Figure 6.1: Progen/Max

The software package generates the problem instances, which are run through both al-

gorithms. We have generated three different sets of instances, using the following settings:

1st set

• Minimal number of activities (nmin): 10

• Maximal number of activities (nmax): 80

• Number of resources (m): 1

• Minimal duration of activity (pmin
j): 1

• Maximal duration of activity (pmax
j): 15

• Minimal percentage of maximal time lags: 0.05

• Maximal percentage of maximal time lags: 0.15

2nd set

• Minimal number of activities (nmin): 80

• Maximal number of activities (nmax): 130

• Number of resources (m): 1

61

• Minimal duration of activity (pmin
j): 1

• Maximal duration of activity (pmax
j): 15

• Minimal percentage of maximal time lags: 0.05

• Maximal percentage of maximal time lags: 0.15

3rd set

• Minimal number of activities (nmin): 10

• Maximal number of activities (nmax): 80

• Number of resources (m): 1

• Minimal duration of activity (pmin
j): 1

• Maximal duration of activity (pmax
j): 15

• Minimal percentage of maximal time lags: 0.1

• Maximal percentage of maximal time lags: 0.3

6.0.2 Testing the instances

Both algorithms were implemented and tested in Matlab R2007a environment and were

run on a 2000MHz Intel Pentium Core 2 Duo processor, with 2GB RAM and Microsoft

Windows XP Professional installed.

6.0.2.1 Running the benchmarks

Each benchmark instance generated by ProGen/Max is saved in a separated file. The

structure of these files is organized in a ProGen/Max format and is not so easy to be

“understood” for our implemented algorithms. Therefore, there was a need to parse

these files in order to obtain the data needed as an input for our algorithms. The input

parameters for both algorithms include:

• Task processing times p.

62 CHAPTER 6. EXPERIMENTAL RESULTS

• Task dependency matrix W.

For acquiring the above mentioned data, the Scheduling Algorithm Tester for Matlab was

developed (see Figure 6.2). It allows importing more than one Progen/Max output file

at time. The imported files are then parsed and obtained data (p, W) are used as an

input for the tested algorithms. This is not the only feature of the developed Scheduling

Algorithm Tester. It also allows to choose the algorithms (from the checkbox) which the

user would like to run the tests. After finishing all tests, the Scheduling Algorithm Tester

saves data into “.mat” file and shows the benchmark graphs representing the above men-

tioned criteria.

Figure 6.2: Scheduling Algorithm Tester

6.0.2.2 The benchmark results

The results are shown in the order already mentioned criteria and compared to ILP

algorithm. For better text lucidity, we decided to denote the implemented algorithm as

ALG. Here, we would like to remind that the main differences between the implemented

algorithm and its modification rely on omitting certain parts of the code and on changes

in the algorithm prioritization phase.

63

The Cmax criterion

Figures bellow show the comparison results of the implemented algorithms to ILP and

to themselves:

The comparison of ALG and modified ALG to ILP, tested set #1:

Figure 6.3: The Cmax comparison

The comparison of ALG and modified ALG to ILP, tested set #2:

Figure 6.4: The Cmax comparison with higher percentage of maximal time

lags

64 CHAPTER 6. EXPERIMENTAL RESULTS

The comparison of ALG to modified ALG, tested set #1:

Figure 6.5: The Cmax comparison of ALG and modified ALG for high

scale problem instances

In Figure 6.3 and 6.4, it can be seen that the most effective is ILP, then ALG and at the

end modified ALG. This is done, because ALG and modified ALG are heuristic and they

are not always able to find the best solution. The modified ALG is even less effective

than ALG (see Figure 6.5), because it omits some parts of code that are trying to reduce

the total length of the feasible schedule at the price of higher CPU time.

65

The CPU time criterion

The comparisons are shown in figures bellow:

The comparison of ALG and modified ALG to ILP, tested set #1:

Figure 6.6: The CPU time comparison

The comparison of ALG and modified ALG to ILP, tested set #2:

Figure 6.7: The CPU time comparison with higher percentage of maximal

time lags

66 CHAPTER 6. EXPERIMENTAL RESULTS

The comparison of ALG to modified ALG, tested set #1:

Figure 6.8: The CPU time comparison of ALG and modified ALG for

high scale problem instances

The graphs in Figure 6.6 and 6.7 present that ILP is the most time-consuming, then the

ALG and at the end again modified ALG. The reason is the same as in the previous

criterion. The ALG and modified ALG are heuristics. In advance, the modified ALG

omits the LeftBulldozing part of the code which is the recursive called function and

increases the CPU time. The less CPU time consumption of the modified ALG, seen in

Figure 6.8, is the big advantage, especially in large scale scheduling problems, where the

Cmax is not so important.

Chapter 7

Conclusions

The main purpose of this thesis was to find, analyze and implement a scheduling al-

gorithm (heuristic) suitable as a Resource Leveling function for an open-source project

management software GanttProject. After choosing the appropriate algorithm, it has

been implemented and subsequently tested in Matlab R2007a environment. We also

decided to modify the algorithm in order to increase its performance, concretely to de-

crease the CPU time, at the price of increasing the Cmax. The testing sets were gen-

erated as a RCPSP/max problem instances using the ProGen/Max scheduling utility

(Schwindt, 1995). Both algorithms were tested along the following criteria: Cmax and

CPU time; and compared to the results of ILP algorithm (Sucha a Hanzalek, 2004). The

conclusion of these experiments was quite clear. Even if, the Cmax of the implemented

algorithms is greater than the Cmax of ILP, the CPU time is much less for more then sixty

tasks. At this place, we would like to note, that the modified algorithm, in comparison

to the original one, consumes less CPU time (finds a feasible solution faster) at the price

of the increased Cmax. This is a big advantage in solving the large scale RCPSP/max

problems, where the Cmax is not so important.

The results satisfy the requirements, because we were looking for an algorithm that

was able to solve the large scale RCPSP/max in the short time. For the problems contain-

ing a fewer tasks, we can still use the BaB or ILP algorithms. Respecting the experimental

results, we decided to implement the modified algorithm into GanttProject. The rest of

the thesis is concerned about the involving the algorithm implementation into the overall

GanttProject structure. The algorithm has been implemented as the Resource Leveling

function and compared to the Microsoft Project 2007. Even thought, GanttProject is not

as famous and sophisticated project management software as MS Project 2007 is, and

GanttProject Resource Leveling function setting are not as extraordinary as MS Project

67

68 CHAPTER 7. CONCLUSIONS

2007 are, our implemented algorithm behaves very well and in certain special cases was

able to find a feasible solution while MS Project 2007 wasn’t (forward and backward edge

all at once). In cooperation with GanttProject administrators, all source-codes have been

uploaded to SourceForge patch tracker, and are waiting to be approved as a part of the

future version.

Future works

Extend the GanttProject Resource Leveling function options. This includes:

• To allow the user to level the resources based on the task ID or task priorities.

• To allow the user to level the resources only for a certain time period (from date to

date).

• To allow the user to set the option - running the Resource Leveling function do not

change the assignment of the tasks to the resources.

• Extend the algorithm for the preemption feature (e.g. to allow Resource Leveling

function to maintain the tasks which duration is more then five days).

Bibliography

Brucker, P., Hilbig, T. a Hurink, J. (1999), ‘A branch and bound algorithm for a single-

machine scheduling problem with positive and negative time-lags’, Discrete Applied

Mathematics 94(1-3), 77–99.

Caseau, Y. (1997), ‘Using constraint propagation for complex scheduling problems’,

1330/1997, 163–166.

Cesta, A., Oddi, A. a Smith, S. (2000), A constraint-based method for project schedul-

ing with time windows, Technical Report CMU-RI-TR-00-34, Robotics Institute,

Carnegie Mellon University, Pittsburgh, PA.

Damay, J., Quilliot, A. a Sanlaville, E. (2007), ‘Linear programming based algorithms for

preemptive and non-preemptive RCPSP’, European Journal of Operational Research

127(3), 1012–1022.

Demel, J. (2002), Grafy, Academia.

Demeulemeester, E. L. a Herroelen, W. S. (1997), ‘A branch-and-bound procedure for the

generalized resource-constrained project scheduling problem’, Management Science

45(2), 202–212.

Hartmann, S. (1999), ‘Self-adapting genetic algorithms with an application to project

scheduling’.

Hurink a Keuchel (2001), ‘Local search algorithms for a single-machine scheduling prob-

lem with positive and negative time-lags’, DAMATH: Discrete Applied Mathematics

and Combinatorial Operations Research and Computer Science 112.

Joslin, D. E. a Clements, D. P. (1998), Squeaky wheel optimization, in ‘Proceedings of

the Fifteenth National Conference on Artificial Intelligence (AAAI-98), Madison,

WI’, pp. 340–346.

69

70 BIBLIOGRAPHY

Schwindt, C. (1995), ‘Progen/max: A new problem generator for different resource-

constrained project scheduling problems with minimal and maximal time lags/’.

Smith, T. B. a Pyle, J. M. (2004), ‘An effective algorithm for project scheduling with

arbitrary temporal constraints’, pp. 544–549.

Sucha, P. a Hanzalek, Z. (2004), ‘Scheduling with start time related deadlines’, IEEE

Conference on Computer Aided Control Systems Design .

Tormos, P. a Lova, A. (2001), ‘A competitive heuristic solution technique for resource-

constrained project scheduling’, Annals of Operations Research 102, 65–81.

	Table of Figures
	Table of Tables
	Introduction
	Motivation
	Problem statement
	Related work
	Scheduling algorithms
	Branch-and-Bound algorithms
	Linear programming
	Heuristics

	Scheduling tools

	Contribution

	RCPSP/max Problem
	Introduction to scheduling
	RCPSP/max problem

	Squeaky Wheel Optimization
	Squeaky Wheel Optimization

	An Algorithm For Project Scheduling
	Algorithm Implementation
	Own Algorithm Modifications
	Prioritization phase modifications
	Reducing the code

	Project Management Software, GanttProject
	Project Management
	Project Management Software
	GanttProject
	GanttProject structure
	Scheduling algorithm implementation
	Create a menu item to invoke the Resource Leveling function
	Create a Java class to handle the event when the Resource Leveling function is invoked
	Create a Java class implementing the scheduling algorithm function
	Involve the newly created classes to the overall GanttProject structure

	Compiling and running GanttProject
	GanttProject vs. Microsoft Project 2007

	Experimental Results
	Generating the instances
	Testing the instances
	Running the benchmarks
	The benchmark results

	Conclusions
	Bibliography

