
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

Diploma Thesis

Finding Deadlocks Using Static Code Analysis

Filip Navara

Supervisor: Ing. Radek Mař́ık, CSc.

Study Programme: Open Informatics

Field of Study: Computer Engineering

May 11, 2011

Acknowledgements

In 2008, when I was still studying at Czech Technical University for a
bachelor’s degree I attended a Theorical Computer Science course with Mgr.
Petr Matyáš. He taught me basics of graph theory, which served important
role in my reasoning about mathematical and computer science problems.
My final work for the course served as a basis for this thesis. It was a home
work written over the course of single weekend, which targeted the same
goals as this thesis. Unfortunately at that time my understanding of the
problem was very limited, yet the work has taught me that I wasn’t aiming
for an impossible target.

A year later, in 2009, Ing. Ladislav Vagner, Ph.D. thought me the
basics of compiler construction and intermediate representation of computer
programs. This provided me with the necessary theoretical background for
understanding how optimizing compilers work, which is very close to how
static code analysis tools work.

In 2011, I attended a Software Verification and Testing class with Ing.
Radek Mař́ık, CSc. The class provided me with deeper understanding of
how programs can be analyzed and renewed my interest in the static code
analysis. It also introduced me to model checkers and their ability to detect
deadlocks. He later became my supervisor for this thesis and only thanks
to his dedication and experience I was able to finish all the work in time.

Lastly, and most importantly, I wish to thank my family for supporting
me throughout all my studies.

i

Declaration

I hereby declare that I have completed this thesis independently and that I
have listed all the literature and publications used.
I have no objection to usage of this work in compliance with the act §60
Zákon č. 121/2000Sb. (copyright law), and with the rights connected with
the copyright act including the changes in the act.

Prague, May 11, 2011 .

ii

Abstract

The thesis explores an algorithm for finding potential deadlocks in parallel
programs written for the .NET Framework. Our goal is to simplify testing
of parallel programs and to determine places in the code that could possibly
cause problems and that should be examined as a part of the software testing
life cycle.

We present a design and implementation of an algorithm for finding
these potential deadlock possibilities by construction of a lock-order graph
by a static code analysis. This graph represents the order in which locks are
acquired by the program. Cycles in the graph indicate deadlock possibilities,
and our tool reports them.

We evaluated the implementation on one commercial application and
identified that 4 out of the 40 reported possibilities may lead to a deadlock.

Abstrakt

Tato práce zkoumá algoritmus pro hledáńı potenciálńıch uváznut́ı v para-
lelńıch programech napsaných pro .NET Framework. Našim ćılém je usnadněńı
testováńı paralelńıch programů a nalezeńı mı́st v kódu, kde by potenciálně
mohlo doj́ıt k uváznut́ı, aby mohla tato mı́sta být prozkoumána v rámci
životńıho cyklu testováńı softwaru.

Představujeme návrh a implementaci algoritmu pro nalezeńı potenciálńıch
uváznut́ı pomoćı sestrojeńı lock-order grafu statickou analýzou kódu. Tento
graf reprezenuje pořad́ı, v němž jsou zámky programem uzamykány. Smyčky
v tomto grafu reprezentuj́ı možná uváznut́ı a náš nástroj tato možná uváznut́ı
vypisuje.

Implementaci jsme vyhodnotili spuštěńım na komerčńı aplikaci, kde jsme
ověřili, že z 40 vypsaných možnost́ı uváznut́ı vedou 4 na skutečná uváznut́ı
v programu.

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 1
1.3 Overview . 2

2 Background 3
2.1 .NET Framework . 3
2.2 Locks in .NET Framework . 4
2.3 Deadlock . 5
2.4 Lock order graph . 6

3 Static program analysis 8
3.1 Metadata analysis . 8
3.2 Intraprocedural analysis . 10
3.3 Interprocedural analysis . 18

4 Related works 27
4.1 Run-time deadlock detection 27
4.2 Data-flow analyses . 27
4.3 Model checking . 29
4.4 Petri nets . 29
4.5 Companion tools for testing 29

5 Design 31
5.1 Goals . 31
5.2 Algorithm overview . 31
5.3 Algorithm details . 32

6 Implementation 41
6.1 Static analysis library . 43
6.2 LovePrototype tool . 43
6.3 Lock Graph Analyzer . 45

7 Testing and experimental results 47
7.1 Test cases . 47
7.2 Results . 48

8 Future work 52
8.1 Improving precision . 52
8.2 Extending scope . 53
8.3 Presentation of results . 54

iv

9 Conclusion 55

A CD contents 62

v

Irreproducible bugs become
highly reproducible right after
delivery to the customer.

Michael Stahl 1
Introduction

1.1 Motivation

Modern software design includes concurrent programming. It is widely ac-
cepted that designing and testing concurrent programs is hard. Two major
problems with designing concurrent programs are deadlocks and race con-
ditions.

Deadlock is a condition under which program is halted because each
thread in a set is waiting for a resource that is currently held by other
thread in the set. Since deadlocks prevent the application from running, it
poses a significant problem.

Finding deadlocks using traditional testing techniques, such as unit tests,
integration tests and validation testing, proved to be difficult since reach-
ing a deadlock may require a specific interleaving of threads. It is usually
infeasible to simulate all thread interleavings of a program, because it has
exponential complexity with regard to the number of threads.

Many techniques [Hewitt et al., 1973] and language extensions [Agarwal
et al., 2006, Permandla et al., 2007] were developed that aim to reduce or
eliminate the potential for deadlocks at the expense of requiring the pro-
grammer to learn new methods of how to write programs. This approach
has two major drawbacks. Firstly, the learning curve is often very steep and
thus the programmer has to spend more time to learn the new techniques.
Secondly, there are often large legacy code bases that can’t be easily refac-
tored to accompany the new techniques. These drawbacks largely contribute
to the fact that these techniques are rarely used outside of the academic
community and mission critical systems.

1.2 Objectives

This paper aims at introducing a design of a tool for analyzing whole pro-
grams written for the .NET Framework for a potential presence of deadlocks
in the code.

1

CHAPTER 1. INTRODUCTION 2

The tool will operate on programs without actually executing them us-
ing a set of techniques known as static program analysis. Benefit of this
approach is that the tool can readily be run on existing programs with no
modifications required. It will work on legacy code bases and require no
changes to the design of programs or language.

A reference implementation of the design will be provided and evaluated
on several test programs and one commercial application.

The objective is to provide a tool that is fast enough to be used on large
scale code bases. At the same time the amount of false positives reported by
the tool should be minimized to allow for manual inspection of the results.

1.3 Overview

The rest of the paper is organized as follows. In Chapter 2 an overview of
.NET Framework and its locking mechanisms is given, followed by explana-
tion of how the mechanisms can lead to deadlock. In Chapter 3, we provide a
brief introduction to static program analysis techniques. Chapter 4 gives an
overview of existing methods and tools for deadlock detection. In Chapter 5
a design is outlined for the analysis. Chapter 6 describes the architecture of
the tool and implementation details. In Chapter 7, we present experimental
results. Finally, we describe the future work in Chapter 8.

When two trains approach each
other at a crossing, both shall
come to a full stop and nei-
ther shall start up again until
the other has gone.

Kansas State Law, early 20th
century 2

Background

In this chapter we will describe what .NET Framework is, which locking
mechanisms are available in the framework and how usage of these lock-
ing mechanisms can lead to deadlock. We will also introduce lock order
graph structure that is used by many of deadlock detection tools, which are
described later in Chapter 4.

2.1 .NET Framework

The .NET Framework is a general-purpose software development platform
similar to the Java Development Kit. It includes a rich class library (Base
Class Library or BCL) and a virtual machine model that is independent of
the underlying platform.

The platform independent code is stored using an intermediate language
(also referred to as Common Intermediate Language, CIL, IL or bytecode).
The data are passed around between individual instructions using a stack.
The instructions are aware of the object-oriented programming model and
are more high-level than the native processor instructions. For example,
there are instructions to allocate a new object, load a field from object or
to call a virtual method.

Information about the program structure is largely preserved in meta-
data of the executable files. This includes class structure, typing information
and method signatures. The code also remains separated into individual
methods.

The virtual machine is intended to be type-safe and verifies the code
before execution. However, the .NET Framework also supports a notion of
unsafe code that operates on pointers. The unsafe code is most commonly
used for interoperability with native platform libraries and its use makes the
program unverifiable. The virtual machine may disallow execution of unsafe
code based on the security context the application is run under.

Unlike Java, the .NET intermediate language has notion of generics,
function pointers (called delegates) and passing of parameters by reference.

3

CHAPTER 2. BACKGROUND 4

A more detailed overview of the .NET framework is given in ECMA-335
standard [ECMA International, 2006].

2.2 Locks in .NET Framework

In .NET Framework, each object has an associated lock. This lock can
be acquired using the Monitor.Enter or Monitor.TryEnter method and
released using the Monitor.Exit method. The C# language also offers a
simplified lock (object) construct that is translated by the compiler to
appropriate Monitor.Enter and Monitor.Exit calls with proper exception
handling (Listing 2.1 and 2.2). While not enforced by the runtime it is an
accepted practice, supported by the language syntax, that locks are released
in reverse order of their acquisition.

A lock that is held by one thread cannot be acquired in another thread
until the first thread releases it. Thread blocks if an attempt is made to
acquire lock that is held by another thread and it is blocked until it success-
fully acquires the lock1. Exception to this behavior is the Monitor.TryEnter
method which allows execution to continue even if the lock wasn’t acquired
provided that a specified timeout was reached while waiting for the lock to
be released by another thread.

Locks are held per-thread and they are re-entrant. Acquiring a lock that
is already held by the thread doesn’t block the execution and the lock is
released when the outermost Monitor.Exit for the given lock is called.

Methods Monitor.Wait, Monitor.Pulse and Monitor.PulseAll are avail-
able to facilitate signaling. All of these methods operate on locks that are
already held.

When a thread calls Monitor.Wait, it releases the lock on the object
and enters the object’s waiting queue. The next thread in the object’s
ready queue (if there is one) acquires the lock and has exclusive rights to the
object. All threads that call Monitor.Wait remain in the waiting queue until
they receive a signal from Monitor.Pulse or Monitor.PulseAll. Once a
thread is removed from an object’s waiting queue, the Monitor.Wait method
attempts to reacquire the lock for the object it was invoked on. The method
returns only after the lock is reacquired.

The .NET Framework also offers other locking primitives, such as Mutex,
AutoResetEvent, ManualResetEvent and Semaphore, that offer different
capabilities than the regular locks. These locking primitives are implemented

1The thread may not be completely blocked. Due to compatibility with COM,
a thread that uses single thread apartment model has to process incoming messages
while waiting for the lock to be acquired. This is implemented internally using the
SynchronizationContext abstraction and the CoWaitForMultipleObjects Win32 API
function. It may cause unexpected changes to the lock hierarchy for implementations
of COM objects and for paint messages in UI frameworks such as WPF and Sys-
tem.Windows.Forms.

CHAPTER 2. BACKGROUND 5

using operating system kernel objects and thus they can be used for inter-
process synchronization. Semantics of these locking primitives also differ
from regular locks in terms of reentrancy and thread ownership.

For a more detailed overview of threading and locking mechanisms in
.NET Framework please refer to the Threading in C# book [Albahari, 2006].

Listing 2.1: lock(o) construct in C# 2.0

Monitor.Enter(o);

try

{

...

}

finally

{

Monitor.Exit(o);

}

Listing 2.2: lock(o) construct in C# 4.0

bool acquired = false;

try

{

Monitor.Enter(o, ref acquired);

...

}

finally

{

if (acquired)

Monitor.Exit(o);

}

2.3 Deadlock

For a deadlock to occur it is necessary to fulfill a set of conditions known
as Coffman conditions [Coffman et al., 1971]. The necessary conditions are
the following:

• mutual exclusion - Tasks claim exclusive control of a resource they
require.
• hold and wait - Tasks hold resources that already have control of while

waiting to acquire additional resources.
• no preemption - Resources are not forcibly removed from under the

task that currently controls them. The task is responsible for releasing
the resource it acquired.
• circular wait - Two or more tasks form a circular chain where each

task waits for a resource already owned by a different task in the set.

CHAPTER 2. BACKGROUND 6

In .NET, the tasks can be seen as threads and the resources as the
implicit locks associated with every object. It is possible to hit all four
conditions in .NET and thus deadlock can occur.

The circular wait condition itself is very broadly defined and can further
be dissected into subconditions that have to be met for the deadlock to
occur:

• Lock order inversion - Locks on two or more objects are acquired in
different code paths in different order (Listing 2.3 and 2.4).
• Parallel execution - The lock order inversion has to happen in two

separate threads that may run in parallel.
• No guard lock - If each lock order inversion is guarded by an additional

lock, also known as guard lock, then no execution path can actually
reach the locks in inverted order and thus the inversion cannot cause
a deadlock (Listing 2.5).

Listing 2.3: Lock order inversion with 2 resources

/* Thread 1: */ lock (a) { lock (b) { ... } }

/* Thread 2: */ lock (b) { lock (a) { ... } }

Listing 2.4: Lock order inversion with 3 resources

/* Thread 1: */ lock (a) { lock (b) { ... } }

/* Thread 2: */ lock (b) { lock (c) { ... } }

/* Thread 3: */ lock (c) { lock (d) { ... } }

Listing 2.5: Lock order inversion protected by guard lock

/* Thread 1: */ lock (c) { lock (a) { lock (b) { ... } } }

/* Thread 2: */ lock (c) { lock (b) { lock (a) { ... } } }

2.4 Lock order graph

A graph representation of the lock order hierarchy is called lock order graph.
Each vertex in the graph is a resource that program locks on. Each edge rep-
resents a lock hierarchy, ie. acquisition of resource r1 while already holding
resource r2 is represented by an edge r1 → r2.

Definition 1. A lock order graph is directed graph 〈N,E〉, where N is the
set of vertices corresponding to abstract objects that are used as locks, and
E is the set of directed edges that reflect the order in which each thread
acquires the locks.

Definition 2. Additionally we define a set roots that specifies vertices of
the lock order graph that are top-level locks in any thread.

CHAPTER 2. BACKGROUND 7

�

�

Figure 2.1: Lock order inversion with 2 resources

�

�

�

Figure 2.2: Lock order inversion with 3 resources

�

�

�

Figure 2.3: Lock order inversion protected by guard lock

3
Static program analysis

Static code analysis is a field of computer science that studies algorithms for
analyzing the program code. As opposed to dynamic code analysis that relies
on executing the code and capturing information during the execution, the
static analysis works on code without ever executing it. Techniques studied
in this field are leveraged in today’s optimizing compilers and specialized
tools for verifying program correctness.

It is important to note that according to the Rice’s theorem [Rice, 1953]
any non-trivial property of the program behavior in a Turing-complete lan-
guage is undecidable. Thus most of the techniques outlined below compute
only conservative approximate answers. The engineering challenge is to use
a correct combination of the algorithms and to choose a correct approxima-
tion for a particular problem. Most of the methods outlined below could
be implemented with different levels of precision at the cost of the analysis
time. While it may be tempting to assume that the most precise method
will always give the best answer it was shown before [Milanova et al., 2001]
that even less precise methods could lead to the best solutions.

The rest of this chapter is organized as follows. Section 3.1 describes
the analysis of program metadata and defines class hierarchy graph. Sec-
tion 3.2 describes the concepts behind intraprocedural analysis, specifically
the control-flow graphs and data-flow analysis and shows how to implement
them. Section 3.3 then extends the intraprocedural concepts to interproce-
dural level.

3.1 Metadata analysis

Metadata analysis is by far the cheapest static analysis that can be per-
formed. It summarizes facts about program metadata, such as method and
variable names, class hierarchy and other attributes.

In the context of .NET Framework the metadata analysis is widely used
by tools like Gendarme, FxCop and Visual Studio Code Analysis to analyze
programs and libraries for violation of naming conventions. Tools like .NET
Reflector, ILSpy [Grunwald and Srbecky, 2011] or Visual Studio Object

8

CHAPTER 3. STATIC PROGRAM ANALYSIS 9

Browser use metadata to allow browsing .NET assemblies. It also serves as
a basis for more advanced analyses.

3.1.1 Class hierarchy

Class hierarchy analysis builds a graph that represents inheritance relation-
ships of object types and interfaces in a program. Each vertex of the graph
represents a single type. Edges represent a relation of inheritance or, in case
of interfaces, implementation respectively.

The class hierarchy graph is useful for resolving dynamic calls to vir-
tual or interface methods. Given a known type and a method reference
it is possible to traverse the class hierarchy towards the leafs and find all
implementations of the method.

Example On Listing 3.1 we present a simple class hierarchy written in
C# code. The corresponding class hierarchy graph is shown on Figure 3.1.

Listing 3.1: C# representation of type hierarchy

interface IFoo { }

interface IBar : IFoo { }

class A { }

class B : A, IFoo { }

class C1 : B { }

class C2 : B { }

����

����

�

�

��	
��
�����

�� ��

Figure 3.1: Class hierarchy graph

CHAPTER 3. STATIC PROGRAM ANALYSIS 10

3.2 Intraprocedural analysis

Control-flow and data-flow analyses form the foundation for many advanced
static analyses. Both analyses are usually carried out on intermediate code
representation (such as ECMA 335 Common Intermediate Language, Java
byte code, GCC’s GIMPLE or the Jimple representation of Java code).
While it is possible to implement both of them on a higher-level represen-
tation, such as abstract syntax trees, it is often not beneficial because the
analyses would have to deal with all the constructs of the source language.
Implementations of the analyses on higher-level representation are mostly
used by refactoring tools or tools for checking coding conventions that need
access to details that would be lost by conversion to the intermediate rep-
resentation.

We will first introduce concepts of these analyses on single method scope
and the next section will explain how to modify them and use them for
interprocedural analysis.

3.2.1 Control-flow

Control flow analysis is a method of analyzing a single method and building
its control flow graph.

To define a control-flow graph a basic block (also called elementary block)
construct has to be introduced. A basic block is an ordered block of state-
ments that are always executed sequentially, none of the statements is target
of a branch and none of the statements, except for the last one, is a branch
statement.

A control-flow graph is a directed graph G(V,E, entrypoint), where all
vertices v ∈ V are statements of the method and entrypoint ∈ V defines
the entry statement of the method. There is an edge e ∈ E between two
statements v1, v2 ∈ V if a control can flow from v1 to v2 (e.g. v2 is a
possible target of the branch statement in v1 or v2 is a sequentially executed
statement). It is often beneficial to use storage representation where each
vertex in the control-flow graph is a basic block since the control-flow within
individual statements of basic blocks is always sequential, so the basic block
graph is more compact. The resulting graphs are isomorphic.

Constructing a control-flow graph for a single function is performed
by traversing from entrypoint through all the statements sequentially and
marking any statement that is a target of a branch or that itself is a branch
statement. These marks then divide the function into several basic blocks
that can be connected by making edges from the branch statements to the
target blocks.

Several adjustments to the above algorithm have to be done to accom-
pany the concept of exceptions. There are two common approaches to this

CHAPTER 3. STATIC PROGRAM ANALYSIS 11

problem. The first one builds the control-flow graph with edges that repre-
sent potential exception flows between the blocks [Sinha and Harrold, 2000].
The other approach builds a separate control flow graph for normal flow and
exception flow, which seems to be a good enough approach for most static
analyses and code patterns [Jang-wu and Byeong-mo, 2004].

3.2.2 Data-flow

Data-flow analysis derives information about the dynamic behavior of a
program by only examining the static code. It gathers information about
possible set of values calculated at various program points. The control-flow
graph is utilized for determining where to propagate the values between
different program points.

There are several data-flow analyses that compute various program prop-
erties, such as the liveness analysis or reaching definitions analysis. All of
the data-flow analyses have some common properties and can be modeled
and computed using the same basic framework that will be presented in this
section.

Each data-flow analysis has its defined problem domain, which is re-
quired to be finite in order to ensure that the analysis can be computed. It
generates a symbolic in-state and out-state for each statement in the control
flow graph. The states are defined within the problem domain. The in-state
represents the state before the statement is executed and the out-state rep-
resents the state after the statement is executed. Flow equations are defined
that transfer an in-state into an out-state, or vice-versa, based on the state-
ment. An initial in-state is defined for the method entrypoint, which we
will refer to as an initial guess (conversely an initial out-state is defined for
method exitpoint(s) if the control-flow graph is traversed backwards).

We will first demonstrate how such analysis may look and what results
will be produced and then generic framework will be presented that can be
used for specifying and solving various data-flow problems.

Example Liveness analysis is one of the simplest data-flow analyses. The
purpose of this analysis is to determine which variables are referenced beyond
a particular program point. These variables are considered live and form
a subset of all the variables used in a given method. Motivation for this
particular analysis is that the information is useful for register allocation
in compilers, where the variables must be assigned to a limited number of
registers. A register can be reused whenever it is known that the variable
stored in it is not live beyond the particular program point.

Given the program in Figure 3.2 we can calculate the live variables at
each program point as shown in Figure 3.3. The out column in that table
specifies the live variables after a given program point and the in column
shows the live variables before the statement at the program point. The

CHAPTER 3. STATIC PROGRAM ANALYSIS 12

��������

������������

	��
���
����

����������
��

��������������������

����������

Figure 3.2: Sample method used for demonstration of liveness analysis

particular method used to calculate the values will be explained later in this
chapter.

The problem domain for liveness analysis are all the variables in the
method, thus |variables| × |CFG vertices| × 2 values are computed. The
control-flow graph is traversed backwards and the initial guess is empty set
(ie. no variables are live beyond the method exitpoint). Flow function is
shown in Listing 3.2.

Listing 3.2: Flow equations for liveness analysis

LIVEin[s] = USE[s] ∪ (LIVEout[s] \ DEF[s])
LIVEout[s] =

⋃
p∈succ[s]

LIVEin[p]

LIVEout[exitpoint] = ∅ - Initial guess

DEF[s] - Set of variables that are defined in statement s
(ie. a value is assigned to the variable)

USE[s] - Set of variables that are used in statement s
(ie. a value is read from the variable)

CHAPTER 3. STATIC PROGRAM ANALYSIS 13

use def out in

6) c c
5) a ac ac
4) b a ac bc
3) bc c bc bc
2) a b bc ac
1) a ac c

Figure 3.3: Output of liveness analysis for the sample method

Example Reaching definitions is a data-flow analysis which statically de-
termines which definitions may reach a given point in the code. A definition
is represented by a statement that defines a variable (it is assumed that
each statement can define only one variable). The domain of values for the
analysis is thus a set of statements of the analyzed method. In other words,
each computed in- and out- state is a set of definition statements whose
definition can reach the statement associated with the respective in- or out-
state. Flow function for reaching definitions is shown in Listing 3.3.

The results of the analysis can be used for loop invariant motion (ie.
moving code out of loops if it doesn’t depend on variables defined inside
the loop) or for computing the use-def chains and def-use chains. It is a
canonical example of forward data-flow analysis.

Listing 3.3: Flow equations for reaching definitions

REACHin[s] =
⋃

p∈pred[s]
REACHout[p]

REACHout[s] = GEN[s] ∪ (REACHin[s] \ KILL[s])
GEN[s : y ← f(x1, · · · , xn)] = {s}
KILL[s : y ← f(x1, · · · , xn)] = DEFS[y]− {s}
DEFS[y] - Set of all definition statements that assign to the variable y

Computation of the data-flow analyses

Flow equations together with the control-flow graph form a set of equa-
tions, where the two flow equations correspond to each control-flow graph
vertex. For most data-flow analyses one of the flow equations is in form
IN[S] =

⋃
p∈pred[S] OUT[p] or OUT[S] =

⋃
p∈succ[S] IN[p], the other is re-

ferred to as flow function (also transfer function). The first form is used by
forward data-flow analyses (such as Reaching definitions), which are com-
puted by traversing the control-flow graph from entrypoint towards exit-
point(s). The second form is used by backward data-flow analyses (such as
Liveness analysis), which are computed by traversing the control-flow graph
from exitpoint(s) towards the entrypoint.

CHAPTER 3. STATIC PROGRAM ANALYSIS 14

For the rest of this section we will assume that the data-flow analysis is
either forward or backward. Other types of analyses exist, which are neither
forward nor backward, such as partial redundancy elimination, but they are
uncommon. Moreover we will assume that all the algorithms that work for
forward analysis can also be applied for backward analysis by substituting
entrypoint for exitpoint(s), in-states for out-states, successors for predeces-
sors in control-flow graph and vice-versa. The following text will cover only
forward data-flow analysis and the principles for backward analysis can be
trivially derived.

Computation of the data-flow analyses is straightforward for basic blocks
in the control-flow graph. One just has to iterate over the statements and
propagate the in- and out-states through the flow function. Likewise it is
straightforward to compute the analysis for control-flow graphs that don’t
contain cycles, it is sufficient to traverse the graph in topological order. The
complication is how to compute the information for loops and other forms
of branches in control flow.

It was established that in order to define a specific data-flow analysis we
have to define its problem domain, the direction of traversal of the control-
flow graph, flow function, initial guess and a merge function. The next
section will try to formalize these building blocks a bit and show how to
compute the in- and out- states efficiently and how to deal with the problem
of loops in the control-flow graph.

Lattice framework

Lattice framework (also referred to as Monotone framework) aims to provide
a formal theoretical model that describes all the data-flow analyses. It then
exploits the lattice theory to achieve various goals, such as defining the
theoretical computational complexity. Only basics are explained in this
thesis, for a full explanation we refer to Nielson et al. [1999], Muchnick
[1997] and Aho et al. [1986].

Definition 3. A partially ordered set is a structure L = (S,v), where S is a
set and v is a binary relation that is reflexive, transitive and anti-symmetric.

Definition 4. A lattice is a partially ordered set in which any two elements
have an unique supremum (elements’ least upper bound, referred to as join
or x t y) and unique infimum (greatest lower bound, referred to as meet or
xu y). Furthermore, a bounded lattice must have an unique largest element
> = tS and unique smallest element ⊥ = uS.

Definition 5. Every finite set A defines a powerset lattice (2A,⊆), where
⊥ = ∅, > = A, x t y = x ∪ y, x u y = x ∩ y. The height of such a lattice is
the longest path from ⊥ to >, thus |A|.

CHAPTER 3. STATIC PROGRAM ANALYSIS 15

The problem domain is organized into a lattice. Each element of the
lattice corresponds to one possible value of an in- or out-state, also referred
to as flow value. The value ⊥ represents the “worst-case” information (eg.
the universal set), > represents the “best-case” information (eg. the empty
set). If x < y then x is a conservative approximation of y. Flow function
F (statement, v) : v → v′ maps the program behavior onto the lattice V for
v, v′ ∈ V . The merge function is defined using the lattice operators as either
meet or join.

Complex problem domains can be described by an n-tuple of lattices.
Product of the lattices in the n-tuple also forms a lattice. An example is
shown in Figure 3.6.

At each program point we strive to compute the flow values by con-
sidering all the paths leading from the entrypoint to a particular program
point and then merging these values together. This concept is called meet-
over-all-paths (MOP). This is impossible to compute for loops, where the
number of paths leading to a program point is infinite. The solution is to
compute the merges early at merge point by computing the maximum fixed
point (MFP). Computing the flow values at merge points is only legal if the
flow function F is monotone. It is then provable that flow values computed
have the following relation: MFP ≤MOP ≤ ideal solution. Furthermore,
if the flow function F distributes over the merge operator (meet or join)
then solutions computed by MFP and MOP are equivalent.

Example Given the example of the liveness analysis we can see that the
problem domain is a set of all the variables that can occur at each program
point. If the set of variables was a, b, c then the corresponding lattice would
look like that in Figure 3.5.

Computing the fixed-point

Computing the in- and out-states uses a simple idea that it is only necessary
to recompute the out-state if the in-state has changed. The in-state can only
change if out-state of any predecessors has changed, or in other words, if the
out-state has changed then any successors will have to be recomputed. The
generic algorithm for computing the data-flow analysis exploits this fact.
Initially all the in-states are initialized to ∅, except for the one corresponding
to the entrypoint, which is initialized to the initial guess. A work list is used
to keep a track of all vertices in a control-flow graph for which the in- and
out-states have to be recomputed. The work list is initialized with the
entrypoint vertex at first. The work list is then processed until it is empty.
In each iteration one out-state is computed and all the successors are added
to the list for recomputing if the out-state differs from the one computed
earlier or if it is the first computed out-state for the particular vertex.

CHAPTER 3. STATIC PROGRAM ANALYSIS 16

Trivial and useless answer

Safe answers

Computed fixed-point answer

True answer

Unsafe answers

Figure 3.4: Lattice points as answers [Schwartzbach, 2009]

�������

����� ����� �����

��� ��� ���

��

Figure 3.5: Subset lattice for a set of three variables

CHAPTER 3. STATIC PROGRAM ANALYSIS 17

��

���

(a) X

��

���

(b) Y

�����

������ ������

�������

(c) X × Y

Figure 3.6: Product of two lattices (〈x1, y1〉 ≤ 〈x2, y2〉 iff x1 ≤ x2 and
y1 ≤ y2)

Algorithm 1: Computing data-flow analysis using work-list

for all v ∈ V ertices do
in[v]← ∅
out[v]← ∅

end for
in[entry vertex] = initial guess
worklist = {entry vertex}
while worklist 6= ∅ do

v ← deque(worklist)
out′ ← out[v]
in[v]← ∩out[p] for all p ∈ predecessor(v)
out[v]← Transfer(in[v], v)
if out[v] 6= out′ then

for all s ∈ successors(v) do
if s /∈ worklist then
enqueue(worklist, s)

end if
end for

end if
end while

CHAPTER 3. STATIC PROGRAM ANALYSIS 18

Classification

May-analysis identifies possibilities and gathers information that answers
whether a specific condition may happen in some code path. It’s usually
implemented with an initial guess being empty set, a merge function that
produces union of the sets (ie. join) and a flow function that adds all pos-
sibilities to the set and removes only those possibilities that are guaranteed
not to be false.

Must-analysis provides a guarantee and gathers information that an-
swers whether a specific condition must happen in all code paths. It’s usu-
ally implemented with an initial guess being empty set, a merge function
that produces intersection of the sets (ie. meet) and a flow function that
adds only those possibilities that are guaranteed to be true and removes any
possibilities that may not happen.

Path-sensitive analyses use branch conditions and assume that the con-
dition is true on the path if the branch is taken and analogously it is assumed
that the condition is false on the path if the branch is not taken. The al-
gorithm for computing the path-sensitive analyses is slightly different from
the one presented here and is not covered by this paper.

3.3 Interprocedural analysis

Modern programming languages allow structuring the program code into
methods (procedures or functions) that call each other and separate the func-
tionality of the program into isolated chunks. Thus intraprocedural analysis
is often not satisfactory for any complex program analysis and serves only
as a building block for interprocedural analysis that analyses the program
globally.

While the basic algorithm principles are similar for intraprocedural and
interprocedural analysis the explored state space is much larger and thus
most of the algorithms for interprocedural analyses are about making com-
promises between accuracy and required computational time.

Classification

Flow-sensitive analyses compute one answer for every program point.
It requires intraprocedural data-flow analysis or similar technique. Flow-
insensitive analysis ignores control-flow and computes one answer for every
method. Flow-insensitive analysis is less accurate than the flow-sensitive
one, but it can be computed in linear time. There are problems that can
be answered adequately with a flow-insensitive analysis, such as whether
variable x can be modified by a given method.

CHAPTER 3. STATIC PROGRAM ANALYSIS 19

����������

���	��
���
����	���

����

����������

����

(a) Context-sensitive

����������

���	��
���
����	���

�������

����������

�������

(b) Context-insensitive

Figure 3.7: Difference between context-sensitive and context-insensitive
analysis. Context-sensitive analysis provides different answer for a method
depending on the context it is called in. Context-insensitive analysis gives
a same summary answer for a method regardless of the specific context it
is called in. The summary answer is true for all possible calling contexts of
the method.

Context-sensitive analyses distinguishes between different call sites of
methods. Computing a context-sensitive analysis efficiently is still subject
of current research and there are various methods to do it. The simplest
approach is to reanalyze callee for each caller, which is often very expen-
sive. Another approach is to compute a generic intraprocedural analysis for
each method and then specialize the computed summary for each call site
[Gulwani and Tiwari, 2007]. Yet another technique that is often used are k-
context-sensitive algorithms [Shivers, 1991, Might, 2007], which distinguish
call sites up to k levels deep in the call graph and then rerun the callee
analysis for each different call site chain. Figure 3.7 shows an example of
values gathered by context-sensitive and context-insensitive analyses.

Path-sensitive interprocedural analysis computes one answer for each
possible execution path. This is approach taken by model checkers and it is
extremely expensive both in terms of memory and computational resources.
While many techniques were developed to reduce the searched state space
the path-sensitive analysis is still not practical for whole program analysis.

CHAPTER 3. STATIC PROGRAM ANALYSIS 20

Top-down and bottom-up Similarly to forward and backward intrapro-
cedural data-flow analysis the graph in interprocedural analysis can be pro-
cessed in several orders. The bottom-up order starts at the leaf methods and
summarizes effects of called methods for callers. Conversely the top-down
order starts at the root methods and summarizes effects of caller for callees.

3.3.1 Call graph

Static call graph (also referred to as Procedure Call Graph or PCG) is a
directed graph that represents calling relationships between methods in a
computer program. For a program with methods (m1...mn) the static call
graph is defined as G = (V, S,E, entrypoint), where V = (m1...mn), S is set
of call site labels (ie. labels of program points where a call is performed),
E ⊆ V × V × S and entrypoint ∈ V being the program entrypoint.

Construction of a call graph is trivial for languages that don’t feature
dynamic dispatch (ie. virtual methods in object oriented languages, function
pointers or other forms of indirect calls). For languages with dynamic dis-
patch, such as Java or C#, computing a static call graph precisely requires
alias analysis results. Conversely, computing precise aliasing requires a call
graph. To solve this problem both alias analysis and call graph construction
have to be performed simultaneously.

An over-approximated call graph can be computed trivially even for
languages with dynamic dispatch by employing various techniques, such
as resolving virtual method calls using the class hierarchy graph based on
declared variable type. We will refer to this over-approximation as CHA
call graph. A simple extension of this approach is the Rapid-Type Analysis
[Bacon, 1997], where the CHA call graph is reduced by using the fact that
an instance method cannot be called unless the type is instantiated in the
program.

3.3.2 Data-flow

There are several methods for computing data-flow analyses on interproce-
dural level. The most fundamental ones will be explored in this section, but
unlike intraprocedural analysis there is no single canonical algorithm.

Control-flow super graph

Control-flow super graph is constructed by combining control-flow graphs of
all the methods into one huge graph by adding edges between call site and
method entrypoint and exitpoint(s). The advantage of this representation
is that intraprocedural data-flow analysis can be used unmodified on the
super graph. It’s not very practical though, because the performance of
the work-list data-flow computation dependents directly on the number of
cycles in the graph and each call site adds one cycle to the super graph.

CHAPTER 3. STATIC PROGRAM ANALYSIS 21

���

���

�����

���	�

���	�
 ������
��

������

Figure 3.8: Example of a control-flow super graph

Also the super graph smears information from different contexts and thus
such data-flow analysis would be context-insensitive.

Invocation graph

A brute-force approach for computing interprocedural data-flow analysis
is to use an invocation graph (Figure 3.9), where a distinct path exists
for each possible call chain. It is inherently context-sensitive and also very
precise, but due to the nature of the invocation graph it is also exponentially
expensive in relation to program size and it is problematic to compute the
analysis for recursive call chains.

Static call graph

Interprocedural analysis can be computed directly on the static call graph
by decoupling the intraprocedural part from the interprocedural part. The
work-list algorithm that is used for computing the intraprocedural analysis is
reused for traversing the static call graph. At each vertex an intraprocedural
analysis is performed to compute a method summary, which is then merged
back into the caller’s symbolic state (Figure 3.10).

The basic algorithm for computing the data-flow analysis on a static
call graph is outlined in Algorithm 2. We show an iterative algorithm for

CHAPTER 3. STATIC PROGRAM ANALYSIS 22

main() { foo(4); foo(5); }
foo(x) { bar(x); }
bar(x) { ... }

���

���

����

���

���

Figure 3.9: Example of an invocation graph

foo()

{

 ...

 bar();

 ...

}

barin

barout

cumulative updates

backward binding

Figure 3.10: Updates in an interprocedural analysis on static call graph.
The calling context summary, represented by barin is union of all possible
in-states at all call sites of bar. The method summary, represented by barout,
is computed by intraprocedural analysis of bar with the initial guess barin.
It is merged back into the out-state at each call site of bar.

CHAPTER 3. STATIC PROGRAM ANALYSIS 23

simplicity, in practice the work-list algorithm is used. The flow function in
the intraprocedural analysis has to be modified to account for calls by lazily
reevaluating them using the values computed on the static call graph. The
initial guess for the intraprocedural analysis is substituted with union of all
in-states leading to the called method.

Algorithm 2: Computing data-flow analysis on PCG

repeat
for all vertices p ∈ PCG do
{Perform intraprocedural analysis, in this case a flow-insensitive one}
repeat

for all vertices n ∈ p.CFG do
if statement n is a call to m then

Compute nout using mout and nin

else
nout ← F (nin)

end if
end for

until for each vertex n ∈ p.CFG, nin and nout converge
{Construct the method summary}
pout ← merge of all out flow values from exitpoints of p
{Update the in-state for all called methods}
for all methods m called by p do

min ← min t nin

end for
end for

until for each vertex p ∈ PCG, pin and pout converge

Static call graph with context-sensitivity

The algorithm we presented in previous section can be modified to provide
context-sensitivity [Chatterjee et al., 1999, Cheng and Hwu, 2000]. Instead
of computing a method summary based on a specified initial guess we con-
struct a context independent summary function (CISF). The intraprocedural
analysis computes a symbolic summary with unknown initial guess that can
be transferred by the CISF for a specific context it is called in.

3.3.3 Alias analysis

Languages that support pointers or references introduce a complication for
static analysis. Two (or more) variables may refer to the same memory
location at the same time. A pessimistic assumption that two variables may
always point to the same location is sound, but often hinders the particular

CHAPTER 3. STATIC PROGRAM ANALYSIS 24

main() { foo(4); foo(5); }
foo(x) { bar(x); }
bar(x) { ... }

����

���

���

Figure 3.11: Example of a procedure call graph

analysis to the point that it is ineffective. A slightly better assumption that
can be made for many languages is that two variables may alias if they are
declared to be the same type or if they can be casted to a common parent
type or interface.

Additional complication are objects created on the heap. There is a
potentially unbounded number of them and so in order to be able to reason
about them we have to represent them using a bounded approximation. One
such approximation is to use the allocation site (ie. program point of the
allocation, possibly together with call site for context-sensitive algorithms).

Alias analysis is a static analysis that computes information about pos-
sible aliases for variables, which in effect helps other analyses make less
conservative decisions.

The best known flow-based alias analyses are described by Andersen
[1994] and Steensgaard [1996], which are briefly described below.

Representation

There are several commonly used representations for the aliasing informa-
tion. The following code written in C notation will be used as an example:
q = &p; p = &i; r = &i;.

• Complete alias pairs [Landi and Ryder, 1992] store all alias pairs ex-
plicitly. Example: 〈∗q, p〉, 〈∗p, i〉, 〈∗r, i〉, 〈∗ ∗ q, p〉, 〈∗ ∗ q, i〉, 〈∗p, ∗r〉, 〈∗ ∗
q, ∗r〉
• Compact alias pairs [Choi et al., 1993] store only basic aliasing pairs.

The complete aliasing pairs are derived using dereferencing, transitiv-
ity and commutativity. Example: 〈∗q, p〉, 〈∗p, i〉, 〈∗r, i〉

CHAPTER 3. STATIC PROGRAM ANALYSIS 25

6

-

�� �
Steensgard ’96�� �
Andersen ’94

�� �
Burke ’95
�� �
Choi ’93

�� �
Emami ’94�� �
Wilson ’95

Flow-sensitivity

C
on

te
x
t-

se
n

si
ti

v
it

y

Figure 3.12: Overview of various alias analyses

• Points-to relations [Emami, 1993] indicate that one variable points to
another. Example: (q, p), (p, i), (r, i)

Steensgaard’s analysis

Steensgaard alias analysis has the following characteristics:

• The algorithm is context-insensitive and flow-insensitive.
• One points-to set is computed per pointer variable (eg. method ar-

gument, local variable, static field or instance field) over the entire
program.
• Pointer assignment is represented by unification constraints (p = q

implies points-to(p) = points-to(q)).
• Fast union-find data structure is used for implementation.
• Solution is computed in almost linear time in terms of program size.
• Imprecision stems from merging points-to sets.

The general outline of the algorithm is the following:

• Find all pointer assignment statements in the program.
• Form points-to set {p} for each pointer variable p.
• Examine each assignment statement (eg. explicit assignment or im-

plicit assignment during parameter passing), in an arbitrary order, and
merge points-to sets for the involved variables.

Andersen’s analysis

Andersen’s analysis offers more precision than Steensgard’s analysis. It
shares the context- and flow-insensitiveness characteristic. Pointer assign-
ment is represented by inclusion constraints (p = q implies points-to(p) ⊆

CHAPTER 3. STATIC PROGRAM ANALYSIS 26

points-to(q)). The computed points-to graph is larger than Steensgaard’s,
but more precise. The analysis has in the worst case cubic complexity in
terms of program size.

FA analysis

FA alias analysis is very similar to the Steensgaard’s analysis. It is also
computed using the union-find data structure, but compared to the Steens-
gaard’s analysis it distinguishes between individual structure fields. The
importance of the FA analysis lies in the fact, shown by Milanova et al.
[2001], that even though the analysis is relatively imprecise it yields suffi-
ciently precise results for constructing call graphs of programs containing
function pointers.

In fact what I would like to see
is thousands of computer scien-
tists let loose to do whatever
they want. That’s what really
advances the field.

Donald Knuth 4
Related works

4.1 Run-time deadlock detection

The classic approach to deadlock detection in object-oriented programs is
run-time detection with the GoodLock algorithm [Havelund, 2000]. The
algorithm works by building a lock order graph by intercepting the locking
calls of a running program. The resulting graph is examined for a presence
of cycles. The original algorithm detects only deadlocks caused by two
resources; a variant called generalized GoodLock [Agarwal et al., 2005, 2006]
extends the algorithm to handle an arbitrary number of resources. Most run-
time algorithms are only variations of the GoodLock algorithm that improve
upon it by reducing false positives and providing additional information to
track a source of the deadlocks.

4.2 Data-flow analyses

Using static program analysis to find deadlocks in programs isn’t a novel
approach either. Several techniques have been developed [Artho and Biere,
2001, von Praun, 2004, Knizhnik and Artho, 2011] and each of them has its
own benefits and drawbacks. In the context of object-oriented languages,
most of the work was focused on Java.

To the best of our knowledge, the Jlint static checker [Knizhnik and
Artho, 2011] is the first tool to use the lock order graph. The original imple-
mentation of the tool considers only synchronized methods and it doesn’t
model synchronized blocks (equivalent of lock blocks in C#). Artho and
Biere [Artho and Biere, 2001] extended the tool to support synchronized
blocks. The Jlint analysis is very simplistic and detects only a small subset
of potentials deadlocks. The main drawbacks include: 1) fields and local
variables are considered to be unaliased, 2) nested synchronized blocks are
not tracked across class boundaries, and 3) inheritance is not fully consid-
ered.

A part of the original Jlint tool was ported to .NET Framework 1.0 as
CSLint [Knizhnik, 2011]. It was even more limited than the original Java

27

CHAPTER 4. RELATED WORKS 28

tool. Several ports to .NET Framework 2.0 were later introduced, which
added a partial support for generics, but the limitations of the original Jlint
tool remained.

Christopher von Praun has written a PhD thesis [von Praun, 2004] dedi-
cated to finding multi-threading problems, such as race conditions, atomicity
violations and deadlocks, in Java programs. His work has provided signifi-
cant contribution to further research of static analysis of parallel programs.
One of the key ideas suggested by the thesis was that alias analysis is a key
component of the static deadlock detection techniques.

A sophisticated interprocedural data-flow analysis is described by Williams
[2005] that builds a lock order graph. The analysis is targeted at verify-
ing program libraries as opposed to whole programs. Contrary to Jlint the
analysis correctly takes inheritance into account and the interprocedural ap-
proach provides better value tracking and also properly treats the reentrancy
of locks.

Naik has co-written a significant number of research papers with regard
to static analysis of concurrent programs [Naik et al., 2006, Naik and Pals-
berg, 2008, Naik et al., 2009]. The effort has resulted in development of
the JChord tool [Naik and Rabkin]. The tool uses an innovative combina-
tion of static analyses (k-CFA call graph and alias analysis, thread escape
analysis, may happen in parallel analysis) to search for data races and dead-
locks. It attacks the deadlock detection problem by scanning each tuple
(ta, l

1
a, l

2
a, tb, l

1
b , l

2
b), where ta and tb are threads and l1a, l2a, l1b and l2b are locks,

for satisfying six deadlock conditions:

• reachability
Is it possible to find a code path, where lock l1a is taken and then lock
l2a is acquired in thread ta (and equivalently for l1b , l2b and tb)?
• aliasing

Can lock l1a be the same lock as l2b (and equivalently for l1b and l2a)?
• escaping

Can lock l1a be accessible from more than one thread (and similarly for
l2a, l1b and l2b)?
• parallel

Can different threads ta and tb simultaneously reach l2a and l2b?
• non-reentrancy
• no guard lock

The first four conditions are verified soundly, while the last two are approx-
imated. The k-CFA analysis is run iteratively with increasing k context-
sensitivity for as long as the number of reports decreases. This significantly
reduces the number of false positives while the analysis remains computa-
tionally feasible. A shortcoming of the analysis is that it cannot detect
deadlocks caused by three or more locks waiting in a circular chain.

CHAPTER 4. RELATED WORKS 29

4.3 Model checking

Several groups have taken a model-checking approach to finding deadlocks
in Java programs. The best known tool is Java Pathfinder [Havelund, 1999,
Brat et al., 2000] that translates Java into Promela language, which is then
verified using the SPIN model checker. The tool is very precise at the
expense of analysis time.

A model checking for Mono, an open-source .NET Framework imple-
mentation, was implemented in the MoonWalker tool [Aan De Brugh et al.,
2009]. The tool analyzes .NET byte code and interprets it along all possible
code paths. This makes it unsuitable for use on large programs. There were
further problems with the implementation itself, most notably: 1) the tool
is tied closely to the Mono run-time due to dependency on the specific Base
Class Library implementation and its internals, and 2) bugs in the type
handling code prevent it from working even on the simplest programs1.

The common problem with the model checking approach is that it is
not scalable to large programs. Various techniques have been developed to
reduce the search space, such as over-abstracting the model or combining
it with data-flow analysis to identify places where additional precision is
needed [Brown et al., 2007].

4.4 Petri nets

Petri Nets have a large body of research, both theoretical and practical,
sup-porting their use for concurrent system analysis. Bateman and Pouarz
have presented a paper [Bateman and Pouarz, 2002] that examined how to
transform Java concurrency to Petri Net representation. The Petri Nets offer
very flexible representation that allows modeling complex synchronization
primitives such as Semaphore, ReaderWriterLock or even unbalanced locks
across multiple methods. However, they do not inherently allow modeling
of reentrant locks. While many deadlock preserving reductions exist that
reduce the search space, finding a deadlock in a Petri Net is still a problem
with exponential complexity.

4.5 Companion tools for testing

A new class of tools has recently appeared that uses the results of imprecise
static or dynamic program analyses. The imprecise analysis is run first
on the program to identify potential concurrency bugs. In a second phase
the reports from the imprecise analysis are used to explicitly control the
underlying scheduler of the concurrent program to accurately and quickly

1For example, the type handling code doesn’t keep track of type of delegates, thus it
incorrectly emulates a code such as if (delegateVariable is ThreadStart) { ... }.

CHAPTER 4. RELATED WORKS 30

reproduce real concurrency bugs, if present, with high precision. Prominent
examples of these tools are CalFuzzer [Joshi et al., 2009] for Java, CHESS
[Musuvathi et al., 2007] for Win32 and .NET applications, and TypeMock
Racer [TypeMock Ltd., 2011] for .NET.

Essentially, all models are
wrong, but some are useful.

George Box 5
Design

5.1 Goals

The following goals and limitations are targeted by the analysis:

• Only safe and verifiable code should be analyzed. Unsafe code is
largely used for interoperability with native libraries and thus its anal-
ysis wouldn’t significantly contribute to the accuracy, if at all. The
tool should be able to cope with unsafe code and skip over it if en-
countered.
• Dynamically generated code will not be analyzed.
• The whole program will be analyzed. Other works have investigated

the use of program verification of software libraries. It would be an
advantage if the chosen algorithm could later be extended to handle
this scenario as well, but it is not a target of the prototype.
• The analysis should scale to applications as large as 200,000 lines of

code.
• Locks managed by Monitor.Enter, Monitor.TryEnter and Monitor.Exit

methods will be considered by the analysis. Other locking primitives
are considered out of scope for the prototype.
• It is assumed that locks are balanced and that for each Monitor.Enter

and Monitor.TryEnter call there is a corresponding Monitor.Exit

call and that the exit calls are made in reverse order of the enter calls.

5.2 Algorithm overview

The chosen algorithm is based on paper by Williams [2005]. A high-level
overview of the algorithm is given below and the specifics of applying the
analysis to .NET code are discussed.

Only two of the conditions necessary for deadlock to occur, namely lock
order inversion and no guard lock, are verified.

First a lock order graph of the program is constructed using an inter-
procedural data-flow analysis. The analysis is flow-sensitive and context-

31

CHAPTER 5. DESIGN 32

sensitive. At each program point a symbolic state is computed that models
the execution state along with an associated lock order graph and root set.
The symbolic state at the end of a method is used as a method summary.
The work list algorithm is used to compute a fixed point over all methods
in the program. Thread entrypoints are identified in the call graph and
method summaries of the entrypoints are merged into a single lock order
graph that is output of the analysis.

Context-sensitivity is provided by computing the intraprocedural anal-
ysis with a symbolic representation of method arguments, which are then
substituted for the actual arguments at each call site.

Each vertex of the lock order graph represents a set of objects that may
be aliased. An edge represents nested locking of objects along some code
path.

The original analysis uses types as an approximation for the may-alias
sets and we follow suit.

Value flow through fields is not considered and can be computed using
a separate analysis for a better precision.

5.3 Algorithm details

5.3.1 Code representation

The analysis is executed directly on top of the intermediate language byte
code instead of first translating the code to higher-level abstraction such
as three-address code or abstract syntax tree1. While this makes the anal-
ysis faster it also makes it more complicated and introduces the following
challenges:

• In addition to modeling local variables the evaluation stack has to be
modeled as well.
• The analysis as described by Williams doesn’t have to account for

separate Monitor.Enter and Monitor.Exit calls. Instead, it deals
with the high-level synchronized (object) code blocks.
• The new lock (object) construct as implemented in C# 4 causes

the data-flow analysis to join on code paths where the stacks of cur-
rently acquired locks have different depth (eg. the code path where if

(acquired) is taken and the one where it is not). Since our analysis
is path-insensitive we cannot infer that one of the code paths is never
taken. We account for it by joining the stacks only up to all elements
that are common to both stacks.

The data-flow rules presented later in this section reference the instruc-
tions by their canonical name. Macro instructions, such as Ldarg 0, are not

1Description of different code representations can be found in Aho et al. [1986] and
Muchnick [1997].

CHAPTER 5. DESIGN 33

T ∈ Type
programPoint ∈ ProgramPoint⊥

o = 〈 programPoint, T 〉 ∈ SymbolicObject = ProgramPoint ×
Type

lockGraph ∈ Graph = directed-graph-of
SymbolicObjects

roots ∈ Roots = set-of SymbolicObjects
wait ∈ Wait = set-of SymbolicObjects

locals ∈ Locals = LocalVariable →
SymbolicObject

stack ∈ Stack = stack-of (SymbolicObject |
null)

arguments ∈ Arguments = Argument →
SymbolicObject

s = 〈 lockGraph, roots,
wait, locks, locals, stack,

arguments 〉

∈ State = Graph × Roots × Wait ×
list-of SymbolicObjects × Locals ×
Stack × Arguments

Figure 5.1: Type domains and symbolic state definition

included for bravity.

5.3.2 Symbolic state

The symbolic state (Figure 5.1) is 7-tuple consisting of:

• Current lock-order graph
• Root set of the lock-order graph
• Set of objects that have had Monitor.Wait called on them without an

enclosing lock held in the current method
• Locks that are currently held in the order in which they were obtained,

including re-entered locks
• Map of local variables to their symbolic object values
• Current evaluation stack in the method
• Map of method argument variables to their symbolic object values

Since the state is composed of finite sets and finite graphs, it is possible
to represent it as a lattice composed from individual power-set lattices. The
join operation is defined accordingly in Listing 5.1 as the join of individual
sets in the tuple. The initial symbolic state for each method is defined in
5.2.

Symbolic object model

Each symbolic heap object represents the set of objects created at a given
program point and their type.

CHAPTER 5. DESIGN 34

Listing 5.1: Join function for state

s1 t s2 returns State s′

s′.g ← s1.g ∪ s2.g
s′.roots ← s1.roots ∪ s2.roots
s′.wait ← s1.wait ∪ s2.wait
s′.locks ← longest common sequence of s1.locks and s2.locks
s′.locals ← s1.locals t s2.locals
s′.stack ← s1.stack t s2.stack
s′.arguments ← s1.arguments t s2.arguments

locals1 t locals2 returns Locals locals′

∀ v ∈{v′|v′ ∈ locals1 ∨ v′ ∈ locals2}
locals′ ← locals′ ∪ (locals1[v] t locals2[v])

arguments1 t arguments2 returns Arguments arguments′

∀ v ∈{v′|v′ ∈ arguments1 ∨ v′ ∈ arguments2}
arguments′ ← arguments′ ∪ (arguments1[v] t arguments2[v])

stack1 t stack2 returns Stack stack′

/* all stacks have equivalent depth */

while (!stack_empty(stack1))
v1 ← stack1.pop()
v2 ← stack2.pop()
if (v1 == null) stack′.push(v2)
else stack′.push(v1 t v2)

stack′.reverse()

o1 t o2 returns SymbolicObject o′

if (o1 == o2) o′ ← o1
else o′ ← 〈 program_point(join_point(v)), T1t T2 〉

T1 t T2 returns lowest common superclass of T1 and T2

lockGraph1 t lockGraph2 returns Graph lockGraph′

/* equivalent SymbolicObject values are collapsed */

vertices(lockGraph′) ← vertices(lockGraph1) ∪ vertices(lockGraph2)

/* equivalent SymbolicObject pairs are collapsed */

edges(lockGraph′) ← edges(lockGraph1) ∪ edges(lockGraph2)

Listing 5.2: Initial symbolic state for method

initial_state(F) returns State s0
s0 ← empty State

∀ p ∈ F.arguments
o ← 〈 entrypoint(F), typeof(p) 〉
s.arguments[p] ← o

CHAPTER 5. DESIGN 35

Lock stack model

The analysis has to keep track of what locks are currently acquired in the
method. This is done using the locks stack. Each entry in the stack refers to
a symbolic object that Monitor.Enter or Monitor.TryEnter method was
called on. Re-entered locks are not recorded to the lock graph, but they are
tracked in the locks stack to allow for proper reference counting.

We define top lock(locks) as the last entered lock that wasn’t already
on the locks stack.

Stack model

The .NET virtual machine can store different data types on the evaluation
stack, such as 32-/64-bit/native integers, floating point numbers, managed
pointers, transient pointers and object references.

Integers and floating point numbers are largely irrelevant to our analysis.
It is impossible to lock on value types, so an explicit boxing is necessary
before these values are used. We do not model effect of such a boxing, but
it is possible to enhance the analysis to account for it by handling the box

instruction. We haven’t observed any code that would use such construct
although it is theoretically possible.

Managed pointers are primarily used for passing parameters by indirect
reference (the ref or out keywords in C#). We do not model these stack
values for simplicity. However, it was observed that at least one place in
the Base Class Library calls Monitor.Enter on a method parameter that is
passed by reference, and thus it is desirable to extend the analysis to support
these stack values in the future.

Transient pointers are used for referencing unmanaged memory and as
such are of no interest to us.

Finally, object references are modeled as symbolic object references on
our stack.

The null meta-symbol is used for unknown stack entry, which could be
either one of the unsupported data types listed above or object reference
resulting from an unhandled instruction.

5.3.3 Flow function

The data-flow rules that compose the flow function are the following:

• Basic value flow through stack, local variables and argument variables
is described in Listing 5.3.
• Loading of values from fields, static fields and array elements is de-

scribed in Listing 5.4.
• Method calls, creation of new objects and creation of new arrays are

described in Listing 5.5.

CHAPTER 5. DESIGN 36

• For all unhandled instructions the evaluation stack is modified accord-
ingly. First the correct number of elements is popped from the stack
and then the correct number of null meta-elements is pushed on the
stack.

The Monitor methods are intercepted when handling the Call instruc-
tion and handled by the helper methods in Listing 5.6.

Method calls are resolved using a pre-built call graph (eg. CHA call
graph) and their summary state is merged into the caller call graph when
handling the call instructions. The formal method parameters are mapped
to the actual parameters, which increases precision. Return value from the
summary state is currently not used, but it could serve to improve the
precision as well.

5.3.4 Identifying thread entrypoints

In order to compose the resulting lock order graph and root set for the whole
program we merge the individual lock order graphs and root sets of thread
entrypoints. We consider the following methods as thread entrypoints:

• The main assembly entrypoint (eg. the Main method).
• Any method that was assigned to a delegate of one of the following

types:

– System.Threading.ThreadStart

– System.Threading.ParameterizedThreadStart

– System.Threading.WaitCallback

– System.Threading.TimerCallback

5.3.5 Post-processing

The original analysis as specified by Williams [2005] specifies an additional
post-processing step (Listing 5.7) of adding edges between all possible sub-
classes of locked objects. This is necessary to keep the analysis sound due to
the simple may-alias approximation. We omit implementation of this step
because it introduces additional false positives. Omission of this additional
step was suggested by Williams as one of the unsound heuristics that reduces
the number of false positives significantly:

“This heuristic has some intuitive merit because it restricts at-
tention to code that operates on a specific type, rather than a
more general type. For example, it considers the effects of all
synchronized methods of a given class, but it eliminates the as-
sumption that all objects could be aliased with a field of type
Object that may be locked elsewhere.”

CHAPTER 5. DESIGN 37

Listing 5.3: Data-flow rules for local variable handling

Ldarg Argument
/* Load method argument onto stack. */

o ← s.arguments[Argument]
s.stack.push(o);

Starg Argument
/* Pops the top value from the stack and stores it in argument slot

for argument Argument. */

o ← s.stack.pop()
s.arguments[Argument] ← o

Ldloc LocalV ariable
/* Loads the local variable onto stack. */

o ← s.locals[LocalV ariable]
s.stack.push(o)

Stloc LocalV ariable
/* Pops a value from the stack and stores it in local variable. */

o ← s.stack.pop()
s.locals[LocalV ariable] ← o

Dup

/* Duplicates the value on the top of the stack. */

o ← s.stack.pop()
s.stack.push(o)
s.stack.push(o)

Isinst T
/* Tests if an object reference is an instance of T, returning

either a null reference or an instance of that class or

interface. */

Castclass T
/* Casts an object to a new object of type T. */

o ← s.stack.pop()
if (o == null)

s.stack.push(o)
else

s.stack.push(〈 o.programPoint, T 〉)

CHAPTER 5. DESIGN 38

Listing 5.4: Data-flow rules for other variable loading

Ldfld F
/* Pushes the value of a field F in a specified object o1 onto the

stack. */

o1 ← s.stack.pop()
o ← 〈 program_point(stmt), declared_type(T) 〉
s.stack.push(o)

Ldsfld F
/* Push the value of field F on the stack. */

o ← 〈 program_point(stmt), declared_type(T) 〉
s.stack.push(o)

Ldelem_Ref T
/* Loads the element with an object reference at index onto the top

of the stack as type T. */

index ← s.stack.pop()
o1 ← s.stack.pop()
o ← 〈 program_point(stmt), element_type(o1) 〉
s.stack.push(o)

Listing 5.7: Post processing

post_process(s1, ..., sn) returns Graph g
g ← empty Graph

∀i ∈ [1, n] :
∀ edges(o1 → o2) ∈ si.lockGraph:
/* add edges between all possible subclasses of locked objects.

*/

/* all heap objects now have bottom program point pp⊥. */

∀ subclasses T1 of o1.T, ∀ subclasses T2 of o2.T:
oT1 ← 〈pp⊥, T1〉
oT2 ← 〈pp⊥, T2〉
g ← g ∪ oT1 ∪ oT2∪ edge(oT1 → oT2)

CHAPTER 5. DESIGN 39

Listing 5.5: Data-flow rules for calls and object creation

Newobj F
/* Allocates an uninitialized object or value type and calls the

constructor method. */

Calli F
/* Calls the method pointed to with arguments described by the

calling convention. */

Call F
/* Call the method F */

Callvirt F
/* Calls a specific method associated with o. */

/* intercept Monitor calls */

if (opcode == Call)

if (F == Monitor.Enter || F == Monitor.TryEnter)

enter_lock(s, first_parameter(s, F))

else if (F == Monitor.Exit)

exit_lock(s, first_parameter(s, F))

else if (F == Monitor.Wait)

wait_on_lock(s, first_parameter(s, F))

/* pop indirect address for calli */

if (opcode == Calli)

s.stack.pop();

/* pop method arguments */

∀ p ∈ F.arguments
s.stack.pop();

if (!is_static(F))

o ← s.stack.pop();
else

o ← null;

∀ Fv ∈ versions of F in subclasses of o
sm ← method_summary(Fv)

sm ← rename_from_callee_to_caller_context(sm, state, Fv)

/* connect the two graphs, including roots */

if (empty(s.locks))
s.roots ← s.roots ∪ sm.roots
s.wait ← s.wait ∪ sm.wait

else

∀ root ∈ sm.roots
s.lockGraph ← s.lockGraph ∪ edge(top_lock(s.locks) → root)
∀ w ∈ sm.wait
s.lockGraph ← s.lockGraph ∪ w ∪ edge(top_lock(s.locks) → w)

/* push return value */

if (return_type(F) != void)

o ← 〈 program_point(stmt), return_type(F) 〉
s.stack.push(o);

Newarr T
/* Creates a new array with elements of type T. */

s.stack.pop()
o ← 〈 program_point(stmt), T 〉
s.stack.push(o)

CHAPTER 5. DESIGN 40

Listing 5.6: Helper methods

enter_lock(s, o)
if (o /∈ s.locks)
if (empty(s.locks))
s.lockGraph ← s.lockGraph ∪ o
s.roots ← s.roots ∪ o

else

s.lockGraph ← s.lockGraph ∪ o ∪ edge(top_lock(s.locks) → o)
s.locks.push(o)

exit_lock(s, o)
/* locks are balanced */

s.locks.pop()

wait_on_lock(s, o)
if (empty(s.locks))
s.wait ← s.wait ∪ o

else

/* wait releases and then reacquires, which can introduce new lock

ordering */

s.lockGraph ← s.lockGraph ∪ o ∪ edge(top_lock(s.locks) → o)

rename_from_callee_to_caller_context(scaller, scallee, Fv) returns State s′

s′ ← scaller
stack ← scaller.stack

/* create a map for formal arguments to their actual values */

∀a ∈ reverse(Fv.arguments)
map〈entrypoint(Fv),typeof(a)〉 ← stack.pop()

∀o ∈ scallee.lockGraph
if (∃mapo) o′ ← mapo
else o′ ← 〈pp⊥, o.T〉
if (o′ ∈ scaller.locks) s′.lockGraph, s′.roots ← splice_out_vertex(s′.

lockGraph, s′.roots, o)
else s′.lockGraph, s′.roots ← replace_vertex(s′.lockGraph, s′.roots,

o, o′)
s′.wait← ∅
∀o ∈ scallee.wait
if (∃mapo) s′.wait← s′.wait ∪mapo
else s′.wait← 〈pp⊥, o.T〉

splice_out_vertex(g, roots, o) returns Graph g′, Roots roots′

g′ ← g \ o
∀ g.edges(src→ o) s.t. o 6= src
∀ g.edges(o→ dst) s.t. o 6= dst
g′ ← g′ ∪ edge(src→ dst)

roots′ ← roots \ o
if (o ∈ roots)
∀ g.edges(o→ dst) s.t. o 6= dst
roots′ ← roots′ ∪ dst

replace_vertex(g, roots, oold, onew) returns Graph g′, Roots roots′

g′ ← (g \ oold) ∪ onew

∀ edges(src→ oold) ∈ g : g′ ← g′ ∪ edge(src→ onew)

∀ edges(oold → dst) ∈ g : g′ ← g′ ∪ edge(onew → dst)
if (oold ∈ roots) roots′ ← (roots \ oold) ∪ onew

else roots′ ← roots

6
Implementation

The high-level architecture of the tool is shown on Figure 6.1.
Mono.Cecil [Evain, 2011] library is used for manipulation of the pro-

gram assemblies and their low-level structure and code in the intermediate
language.

QuickGraph [de Halleux, 2011] library is used for manipulation of graphs.
The library provides data structures for representing graphs and implements
a wide variety of standard graph algorithms that operate on these data
structures.

A library of common static analysis techniques is built on top of Mono.Cecil
and QuickGraph libraries. It supplies a reusable implementation of class hi-
erarchy extraction, control-flow analysis, data-flow analysis and call graph
extraction.

On top of the static analysis library the LovePrototype tool is built that
constructs a call graph and then extracts the lock order graph using inter-
procedural data-flow analysis. The output of the tool is a lock order graph
written to a file in GML (graph markup language) format.

Lock Graph Analyzer tool is provided for analysis of the lock order graph.
It takes the GML file as an input and searches the lock order graph for po-
tential deadlocks and reports each of them into a separate DOT file. The
DOT file contains the graph representing the lock order violation and ac-
companying information. It can be rendered using the GraphViz [Research,
2011] or MSAGL [Nachmanson and Powers, 2011] tools.

Additionally, several tools were developed to aid visualizing the graphs
that are used during the analysis. Namely the GraphInspector library, which
provides a quick way of visually browsing through a graph by navigating
through successors and predecessors of a highlighted vertex, and the Gml-
ToSea tool, which converts the standard GML format to an input suitable
for the Walrus tool [CAIDA, 2005].

41

CHAPTER 6. IMPLEMENTATION 42

�����������	
�

��
�������	��

���������������	���

����������

���

���������	
�����

���������
����	
�

����
�����	
�

������������
����	
�

����������������

������������������������������	
�

������������
�	���
��������
�����������

������������	���

���������������

����������� ���
���������

Figure 6.1: High-level architecture of the tool

CHAPTER 6. IMPLEMENTATION 43

6.1 Static analysis library

Control-flow graph can be constructed using the ControlFlowGraph object.
The construction of the graph follows the algorithm described in Section 3.
Exception flow is separated from the normal flow except for finally blocks,
which are considered a part of the normal flow.

Data-flow analysis is implemented using a DataFlowProblem abstract
class, which specifies the rules for data-flow analysis, such as a flow func-
tion, the initial state and the merge operator. The solution to the abstract
problem can be computed using WorkListSolver, which takes a problem
description and a control-flow graph as parameters and uses the work-list
algorithm to compute the solution as either a summary state or in- and out-
states for individual basic blocks. Initially, the work-list is populated with
all vertices of the control-flow graph. A depth-first search is used to sort the
vertices in order to minimize recomputation. Vertices that are not part any
cycle are consequently sorted in topological order. The solver operates on
regular vertices of the control-flow graph and doesn’t traverse the exception
handlers.

An abstract call graph concept is implemented. The abstraction allows
switching between different call graph extraction algorithms as appropriate
for the specific task without requiring a change to the call graph consumer.

A ChaCallGraphBuilder call graph builder implements the simple class-
hierarchy based call graph extraction algorithm as described in Chapter 2.
All reachable methods from a single entrypoint are analyzed and added
to the call graph. Virtual method calls are resolved using the declared
variable type and class hierarchy graph. Delegates are resolved by matching
the delegate type. For example, each new EventHandler(FunctionX) call
contributes an edge between EventHandler.Invoke and FunctionX.

6.2 LovePrototype tool

The LovePrototype tool implements the design specified in Chapter 5. It
uses the Static Analysis library for performing the intraprocedural data-flow
computations and implements the interprocedural data-flow analysis using
a work-list approach.

Additionally, the symbolic object aliasing behavior has several quirks
that should be noted:

• Fields and static fields marked as readonly are treated as unaliased.
While this is unsound assumption it covers the most common locking
pattern, where a readonly field is initialized with new object() and
locked on.
• Additional command line option --noaliasing is available that forces

all fields to be treated as unaliased. This emulates the behavior of

CHAPTER 6. IMPLEMENTATION 44

Figure 6.2: Computed rooted CHA call graph of a simple C# test case
program with three methods, as visualized by Walrus. The graph contains
7,177 vertices (methods) and 34,692 edges (calls), most of which come from
the referenced Base Class Library. Moderately sized programs often have
more than 100,000 vertices and 950,000 edges in the call graph, which is
hard to visualize.

CHAPTER 6. IMPLEMENTATION 45

CSLint [Knizhnik, 2011].
• Symbolic objects that represent method arguments keep reference to

the original parameter they represent and thus two arguments of the
same type are represented by distinct symbolic objects unlike the de-
scription in Chapter 5.

Command line option --ignoresystemnamespace is provided to sup-
press the analysis of all methods in the System namespace. This call graph
is still built from all referenced classes and libraries and it is traversed even
for methods belonging to the System namespace, locks are however not
tracked.

Output of the tool is the call graph and lock graph in GML graph format
with marked vertices that belong to the root set.

Figure 6.3: Computed lock graph of a simple C# test case program with
three methods, as visualized by Walrus. Tree edges are displayed in yellow
and non-tree edges in gray.

6.3 Lock Graph Analyzer

The lock graph analyzer tool loads the lock order graph from the GML file
produced by LovePrototype tool. It then uses depth-first search to classify
all the graph edges as tree edges, back edges and forward / cross edges.

Back edges signify cycles in the graph. The tool searches specifically
only for simple cycles with two edges. Thus lock order violations between
more than two will not be found by this tool. These violations are rarely

CHAPTER 6. IMPLEMENTATION 46

���������	�
��
���	�����������

���������	�
��
���	������������

��������������	�����������
��������������	����������

��������������	���!�������
��������������	���!������

���������	�
��
���	������������

��������������	���!������
��������������	���!�������

���������	�
��
���	������������

��������������	����������
��������������	�����������

Figure 6.4: Sample output of the Lock Graph Analyzer tool

seen in practice and it would be trivial to extend the tool to find those cycles
as well, however these cycles are often false positives caused by imprecise
lock order graph construction.

Once a simple cycle is found all paths from the root locks (ie. locks that
are roots of the lock order hierarchy in at least one thread) to the cycle edges
are examined. These paths are built from the tree edges and forward / cross
edges leading to the cycle, which implies that no other cycle is formed along
these paths.

Dominance sets are computed for each vertex of the paths. If there is
a common dominator between all vertices of the cycle, the dominator is
considered a guard lock and the simple cycle is not considered to cause a
deadlock.

Otherwise, the simple cycle is written to a DOT file for further exami-
nation by the programmer. The vertices correspond to the symbolic objects
and edges are marked with the program point where the corresponding ob-
jects were acquired.

Program testing can be used to
show the presence of bugs, but
never to show their absence!

Edsger Dijkstra 7
Testing and experimental results

Our benchmark consists of 12 simple test cases that cover common C# lock
patterns and one larger commercial application. The analysis was run on
1.3 GHz Intel Pentium SU4100 ULV processor with 5 GB of RAM.

7.1 Test cases

We have developed 12 simple test cases that represent the common code
patterns and serve as verification for the tool:

• Locking on static field (LockOnStaticField.cs)
• Locking on instance field (LockOnField.cs)
• Locking on this reference (LockOnThis.cs)
• Locking on typeof(Type) (LockOnType.cs)
• Nested locks with no guard lock (NoGuardLock.cs)
• Nested locks with guard lock (GuardLock.cs)
• Thread creation using ThreadPool.QueueUserWorkItem (ThreadPool.cs)
• Thread creation using new Thread(ThreadStart f) (Basic2.cs)
• Thread creation using new Thread(ParametrizedThreadStart f) (

ParametrizedThreadStart.cs)
• Nested locks across several functions (CallStack.cs)
• Nested locks across several functions refernced by delegates (Dele-

gate.cs)
• Reentrancy of locks (DoubleEnter.cs)

All these test cases were compiled with C# 4.0 compiler and targeted for
the .NET Framework 4.0.30319 runtime.

Additionally we use eM Client 1.0.2039 as a test case representing a larger
commercial application. The code base consists of 44,928 lines of code and
heavily uses multi-threading for asynchronous processing. We deliberately
use an older version of the application because it was later modified to
be analyzable by our unpublished CSLint fork. Additionally, most of the
deadlocks present in the older version were already analyzed and are well
understood, which significantly helps with the interpretation of the results.

47

CHAPTER 7. TESTING AND EXPERIMENTAL RESULTS 48

Since we do a whole program analysis and the Base Class Library is
referenced by every application, it is also implicitly included in each analysis
conducted with the tool (unless the --ignoresystemnamespace option is
used).

7.2 Results

We ran the tool with default options on the 12 simple test cases first.
Analyzing each test case has taken roughly 7 seconds. The results are
summarized in Figure 7.1. All expected deadlock causing patterns were
identified in the test cases. Additionally 7 or 9 false positives, depend-
ing on a specific test case, are generated for the Base Class Library code.
These false positives are results of impossible aliasing relationship of objects
with type System.Object. Finally, one suspicious deadlock causing pat-
tern (Figure 7.4) is identified in the Base Class Library, that appears for
all the test cases. The affected code is a part of .NET Remoting stack
(System.Runtime.Remoting namespace) which is not publically exposed
and thus not documented. We were unable to confirm or deny if the specific
pattern can lead to a deadlock in practice or not.

Test case Deadlock causing patterns
Reported Confirmed Expected

Basic2 11 1 1
CallStack 11 1 1
Delegate 11 1 1
DoubleEnter 11 1 1
GuardLock 10 0 0
LockOnField 9 1 1
LockOnStaticField 11 1 1
LockOnThis 9 1 1
LockOnType 9 1 1
NoGuardLock 11 1 1
ParametrizedThreadStart 11 1 1
ThreadPool 9 1 1

Figure 7.1: Results for simple test cases

Next, we ran the tool with the --ignoresystemnamespace parameter on
the same 12 simple test cases and also on eM Client. Results are summarized
in Figure 7.2. For the 12 simple test cases the analysis runs in about 4
seconds and all the reports correspond to the expected deadlocks.

Analysis of eM Client took 2 minutes 40 seconds. Among the six reported
deadlock patterns, only one corresponds to a real deadlock.

CHAPTER 7. TESTING AND EXPERIMENTAL RESULTS 49

This deadlock pattern actually covers several possible deadlocks, which
are incorrectly smeared into a single one due to overly pessimistic assumption
about System.Object aliasing. We keep at most one edge between any two
symbolic objects in the lock order graph and store the callee and caller
method names along with the edge. This results in a report that isn’t very
intuitive for further analysis since the provided context is insufficient for
throughout manual analysis.

Three other reports were caused by overly pessimistic assumption about
the delegate resolution. The rest of the reports were result of a pessimistic
assumptions about variable aliasing.

Test case Deadlock causing patterns
Reported Confirmed Expected

Basic2 1 1 1
CallStack 1 1 1
Delegate 1 1 1
DoubleEnter 1 1 1
GuardLock 0 0 0
LockOnField 1 1 1
LockOnStaticField 1 1 1
LockOnThis 1 1 1
LockOnType 1 1 1
NoGuardLock 1 1 1
ParametrizedThreadStart 1 1 1
ThreadPool 1 1 1
eM Client 40 4 -

Figure 7.2: Results for test cases when analyzed with the
--ignoresystemnamespace parameter

Finally, we ran the tool with --ignoresystemnamespace and --noaliasing

parameters. The results are summarized in Figure 7.3. For the 12 simple
test cases the results were identical to previous run.

The analysis of eM Client took 2 minutes and 56 seconds and 40 reports
were generated. Four of these reports were verified to be valid deadlock
patterns that can actually lead to deadlock at run-time. The rest of the
reports were false positives. Majority of the false positives were results of
an overly pessimistic assumption about delegate resolution.

CHAPTER 7. TESTING AND EXPERIMENTAL RESULTS 50

Test case Deadlock causing patterns
Reported Confirmed Expected

Basic2 1 1 1
CallStack 1 1 1
Delegate 1 1 1
DoubleEnter 1 1 1
GuardLock 0 0 0
LockOnField 1 1 1
LockOnStaticField 1 1 1
LockOnThis 1 1 1
LockOnType 1 1 1
NoGuardLock 1 1 1
ParametrizedThreadStart 1 1 1
ThreadPool 1 1 1
eM Client 6 1 -

Figure 7.3: Results for test cases when analyzed with
--ignoresystemnamespace and --noalias parameters

CHAPTER 7. TESTING AND EXPERIMENTAL RESULTS 51

���������	
��
��
�

�
�������
����
���������
��

���������	
��
��
�

���������	
��
��
���
������������������
�����	
��
��
���
������

�
��
��
�
�

�
��
�����
���
��
���
�����
�

�
��
��!��������
�"�

�
��
�#���
��$
%��!�����

�
��
�&���
�

��
�����'���
���
���
��
�����

�
��
���
�������
�
�'����

���

�
��
���
������(
��
��
�)*+
��&����

&���
%��&�
��
�
��
�)*+
��&����

�
��
��,
���
�
����
#��!
����(
�)*+
������

�
��
��
�
����
����

Figure 7.4: Suspicious locking pattern in Base Class Library

Map out your future – but do it
in pencil.

Jon Bon Jovi 8
Future work

8.1 Improving precision

8.1.1 Alias analysis

As we have observed, the greatest source of false positives is the lack of
may-alias analysis. Adding an alias analysis would resolve two important
problems – precision of call graph and precision of symbolic objects repre-
senting fields.

Testing has shown that the very conservative over-approximation of the
call graph makes the analysis not only imprecise, but also slow. The largest
source of this imprecision are function pointers. As shown by Milanova et al.
[2001] the FA alias analysis should be precise enough for the resolution of
function pointers.

The same alias analysis can be reused to represent symbolic objects using
may-alias sets properly. It was shown by Deshmukh et al. [2009] how the
basic approach we use can be extended to utilize the results of alias analysis.

8.1.2 Exception flow

The tool we have implemented currently doesn’t consider the exception han-
dlers in the control-flow graph and thus it cannot find and lock order viola-
tion caused in the exceptional code paths.

There are two possible ways how to resolve this problem: 1) Extend the
data-flow analysis solver to consider the exception handler blocks, 2) Extend
the control-flow graph builder to add edges to the exception handlers.

The second approach may be easier to implement since Grunwald and
Srbecky [2011] have already built an implementation of the necessary code
while this thesis was being written.

8.1.3 Evaluation stack

As we have already noted in Chapter 5, the chosen model of evaluation stack
is oversimplified and doesn’t accurately track the indirect addresses pushed

52

CHAPTER 8. FUTURE WORK 53

onto the stack that are later used for passing parameters by reference.
We have built the tool in a way that allows the evaluation stack model

to be extended to account for other data types than the null meta-symbol
and references to symbolic objects.

8.1.4 .override keyword

Our implementation of the Class Hierarchy Graph doesn’t account for the
.override keyword which allows overriding method in a subclass using a
different name.

This is trivial to fix, but it wasn’t considered a priority since the C#
compiler can’t produce intermediate code with this keyword.

8.2 Extending scope

8.2.1 Lock order violation with three or more objects

The lock analyzer tool can be extended to report simple cycles with more
than two vertices, as stated in Chapter 5.

8.2.2 Unbalanced Monitor.Enter and Monitor.Exit calls

It is possible to extend the analysis to include support for unbalanced num-
ber of Monitor.Enter and Monitor.Exit calls within a single method. This
could be beneficial for programs that implement custom lock types that in-
ternally use Monitor calls.

The lock state computed for each method contains the information about
which locks are still held when the function returns. These locks can be
aggregated into the caller’s lock state when merging the callee and caller
lock states. It is however possible that different targets of the call site would
contribute different held locks and it is non-trivial to solve this problem.

Similarly, it would be necessary to record which locks Monitor.Exit was
called on that were not currently held by the method. This would have to be
recorded in a set in the symbolic state. When merging callee’s symbolic state
wiht the caller’s, the locks would have to be removed from the lock state of
the caller, which may once again be problematic for non-trivial cases.

8.2.3 Handling of Synchronization attribute

The Synchronization attribute together with the ContextBoundObject

type provides a means for run-time interception of method calls that trans-
parently adds synchronization around each method call. The underlying
synchronization is performed using the Monitor.Enter and Monitor.Exit

calls.

CHAPTER 8. FUTURE WORK 54

It it possible to extend the analysis to look for the Synchronization

attribute and account for it when computing method summary by applying
the hidden Monitor.Enter and Monitor.Exit calls to the lock state.

8.3 Presentation of results

8.3.1 Better counter-examples

It would be beneficial to provide better counter-examples for the violations
found by the LovePrototype tool. One possible improvement would be the
inclusion of a full method call chain leading to the potential deadlock. It is
possible to track this information when building the lock order graph, but
it causes rapidly higher memory usage. A better approach would be to use
the call graph and recompute a possible code path only when a lock order
violation is found.

8.3.2 Report file names and line numbers

We currently provide method name and IL code offset in the lock order
violation report. The Mono.Cecil library allows extraction of source code
file name and line numbers if the accompanying debug symbols are present.
It would be beneficial to use this information in the reports.

9
Conclusion

Examining programs using static code analysis requires choosing the correct
static code analysis techniques and selecting a correct representation of the
information we want to gather. In our case we used an interprocedural data-
flow analysis on CHA call graph to compute the lock order graph. Then we
extracted possible deadlock causing patterns from the lock order graph.

The current research in static program analysis of object-oriented lan-
guages is focused primarily on Java. Application of the existing principles
on C# and other .NET Framework languages was thus far limited to only
handful of tools that mostly originated as a part of work in Microsoft Re-
search.

We have developed a framework that simplifies the implementation of
static program analyses on .NET code and that can serve as a basis for other
research work in the area of static analysis of .NET programs.

We have further demonstrated the use of the framework for finding dead-
locks in .NET programs. To our best knowledge this is the first documented
implementation of interprocedural data-flow analysis of .NET code. While
.NET presents more challenges than Java, such as function pointers, most
off-the-shelf analyses performed on Java code could be adapted to work on
.NET as well.

The experimental results obtained from the deadlock analysis tool showed
that even analyzing larger programs can be done in very reasonable time.
It was also shown that the tool can find actual deadlocks in a production
code. The number of false positives was relatively high and we described
several approaches to attack the problem that are worth pursuing in future,
such as implementation of alias analysis.

While we were working on our tool and framework, another team of
developers started development of the ILSpy tool [Grunwald and Srbecky,
2011], a decompiler and analyzer for .NET assemblies. This has resulted in
the development of another static analysis library, which also works on top
of the Mono.Cecil library. While the focus of this library is slightly different
from ours there is some common overlap. Significant work was devoted to
implementation of intermediate code representations that operate at higher

55

CHAPTER 9. CONCLUSION 56

level of abstraction than Common Intermediate Language. This includes
abstractions similar to three-address code, SSA and abstract syntax trees.
This work can play significant role when designing and implementing further
static analyses of .NET code.

Bibliography

N. H. Aan De Brugh, V. Y. Nguyen, and T. C. Ruys. MoonWalker: Verifi-
cation of .NET programs. In Proceedings of the 15th International Con-
ference on Tools and Algorithms for the Construction and Analysis of
Systems: Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2009,, TACAS ’09, pages 170–173, Berlin,
Heidelberg, 2009. Springer-Verlag. ISBN 978-3-642-00767-5.

R. Agarwal, L. Wang, and S. D. Stoller. Detecting potential deadlocks with
static analysis and runtime monitoring. Technical Report DAR-05-25,
Computer Science Department, SUNY at Stony Brook, Sept. 2005.

R. Agarwal, L. Wang, and S. D. Stoller. Detecting potential deadlocks with
static analysis and runtime monitoring. In Proceedings of the Parallel
and Distributed Systems: Testing and Debugging (PADTAD) Track of
the 2005 Haifa Verification Conference, volume 3875 of Lecture Notes in
Computer Science, pages 191–207. Springer-Verlag, Nov. 2006.

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: principles, techniques,
and tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1986. ISBN 0-201-10088-6.

J. Albahari. Threading in C#. O’Reilly Media, Inc., 2006.

L. O. Andersen. Program Analysis and Specialization for the C Programming
Language. PhD thesis, University of Copenhagen, 1994.

C. Artho and A. Biere. Applying static analysis to large-scale, multithreaded
Java programs. In Proc. 13th ASWEC, pages 68–75, Canberra, Australia,
2001. IEEE Computer Society Press.

D. F. Bacon. Fast and effective optimization of statically typed object-
oriented languages. PhD thesis, 1997. AAI9828589.

A. J. Bateman and T. Pouarz. Extracting a petri net representation of Java
concurrency, May 2002.

G. Brat, K. Havelund, S. Park, and W. Visser. Java pathfinder - second
generation of a java model checker. In In Proceedings of the Workshop on
Advances in Verification, 2000.

A. Brown, J. C. Browne, and C. Lin. Early results with precision abstraction:
Using data-flow analysis to improve the scalability of model checking. In
IPDPS, pages 1–5, 2007.

CAIDA. Walrus, graph visualization tool, 2005. URL http://www.caida.

org/tools/visualization/walrus/.

57

BIBLIOGRAPHY 58

R. Chatterjee, B. G. Ryder, and W. A. Landi. Relevant context inference.
In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, POPL ’99, pages 133–146, New York,
NY, USA, 1999. ACM. ISBN 1-58113-095-3.

B.-C. Cheng and W.-M. W. Hwu. Modular interprocedural pointer analysis
using access paths: design, implementation, and evaluation. In Proceed-
ings of the ACM SIGPLAN 2000 conference on Programming language
design and implementation, PLDI ’00, pages 57–69, New York, NY, USA,
2000. ACM. ISBN 1-58113-199-2.

J.-D. Choi, M. Burke, and P. Carini. Efficient flow-sensitive interprocedural
computation of pointer-induced aliases and side effects. In Proceedings of
the 20th ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, POPL ’93, pages 232–245, New York, NY, USA, 1993.
ACM. ISBN 0-89791-560-7.

E. G. Coffman, M. Elphick, and A. Shoshani. System deadlocks. ACM
Comput. Surv., 3:67–78, June 1971. ISSN 0360-0300.

J. de Halleux. Quickgraph, 2011. URL http://quickgraph.codeplex.

com/.

J. Deshmukh, E. A. Emerson, and S. Sankaranarayanan. Symbolic deadlock
analysis in concurrent libraries and their clients. In Proceedings of the
2009 IEEE/ACM International Conference on Automated Software En-
gineering, ASE ’09, pages 480–491, Washington, DC, USA, 2009. IEEE
Computer Society. ISBN 978-0-7695-3891-4.

ECMA International. Standard ECMA-335 - Common Language Infrastruc-
ture (CLI). ECMA, 4 edition, June 2006.

M. Emami. A practical inter-procedural alias analysis for an optimizing/par-
alleling C compiler. Master’s thesis, School of Computer Science, McGill
University, 1993.

J.-B. Evain. Mono.Cecil, 2011. URL https://github.com/jbevain/cecil.

D. Grunwald and D. Srbecky. ILSpy, open-source .NET assembly browser
and decompiler, 2011. URL http://www.ilspy.net/.

S. Gulwani and A. Tiwari. Computing procedure summaries for interproce-
dural analysis. In R. De Nicola, editor, European Symp. on Programming,
ESOP 2007, volume 4421 of LNCS, pages 253–267, 2007.

K. Havelund. Java PathFinder, A Translator from Java to Promela. In
SPIN, 1999.

BIBLIOGRAPHY 59

K. Havelund. Using runtime analysis to guide model checking of Java pro-
grams. In Proceedings of the 7th International SPIN Workshop on SPIN
Model Checking and Software Verification, pages 245–264, London, UK,
2000. Springer-Verlag. ISBN 3-540-41030-9.

C. Hewitt, P. Bishop, and R. Steiger. A universal modular ACTOR formal-
ism for artificial intelligence. In Proceedings of the 3rd international joint
conference on Artificial intelligence, pages 235–245, San Francisco, CA,
USA, 1973. Morgan Kaufmann Publishers Inc.

J. Jang-wu and C. Byeong-mo. Constructing control flow graph for Java by
decoupling exception flow from normal flow, 2004.

P. Joshi, M. Naik, C.-S. Park, and K. Sen. Calfuzzer: An extensible ac-
tive testing framework for concurrent programs. In Proceedings of the
21st International Conference on Computer Aided Verification, CAV ’09,
pages 675–681, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-
642-02657-7.

K. Knizhnik. CSLint, 2011. URL http://www.garret.ru/csharp.html.

K. Knizhnik and C. Artho. Jlint, 2011. URL http://jlint.sourceforge.

net/.

W. Landi and B. G. Ryder. A safe approximate algorithm for interpro-
cedural aliasing. In Proceedings of the ACM SIGPLAN 1992 conference
on Programming language design and implementation, PLDI ’92, pages
235–248, New York, NY, USA, 1992. ACM. ISBN 0-89791-475-9.

M. Might. Environment Analysis of Higher-Order Languages. PhD thesis,
Georgia Institute of Technology, June 2007.

A. Milanova, A. Rountev, and B. G. Ryder. Precise call graph construction
in the presence of function pointers. Technical report, In Proceedings of
the Second IEEE International Workshop on Source Code Analysis and
Manipulation, 2001.

S. S. Muchnick. Advanced compiler design and implementation. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1997. ISBN 1-55860-
320-4.

M. Musuvathi, S. Qadeer, and T. Ball. Chess: A systematic testing tool for
concurrent software, 2007.

L. Nachmanson and L. Powers. Microsoft automatic graph layout li-
brary (MSAGL), 2011. URL http://research.microsoft.com/en-us/

projects/msagl.

BIBLIOGRAPHY 60

M. Naik and J. Palsberg. A type system equivalent to a model checker.
ACM Trans. Program. Lang. Syst., 30(5), 2008.

M. Naik and A. Rabkin. jchord - a static and dynamic program analysis
platform for Java. URL http://code.google.com/p/jchord/.

M. Naik, A. Aiken, and J. Whaley. Effective static race detection for java.
In PLDI, pages 308–319, 2006.

M. Naik, C.-S. Park, K. Sen, and D. Gay. Effective static deadlock de-
tection. In Proceedings of the 31st International Conference on Software
Engineering, ICSE ’09, pages 386–396, Washington, DC, USA, 2009. IEEE
Computer Society. ISBN 978-1-4244-3453-4.

F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analy-
sis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999. ISBN
3540654100.

P. Permandla, M. Roberson, and C. Boyapati. A type system for preventing
data races and deadlocks in the Java virtual machine language. SIGPLAN
Not., 42:10–, June 2007. ISSN 0362-1340.

A. L. Research. GraphViz, open source graph visualization software, 2011.
URL http://www.graphviz.org/.

H. G. Rice. Classes of recursively enumerable sets and their decision prob-
lems. Trans. Amer. Math. Soc., 74:358–366, 1953.

M. I. Schwartzbach. Lattice theory, control flow graphs, dataflow analysis.
Computer Science, University of Aarhus, 2009.

O. Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis,
Carnegie Mellon University, May 1991.

S. Sinha and M. J. Harrold. Analysis and testing of programs with exception
handling constructs. IEEE Trans. Softw. Eng., 26:849–871, September
2000. ISSN 0098-5589.

B. Steensgaard. Points-to analysis in almost linear time. In Proceedings
of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, POPL ’96, pages 32–41, New York, NY, USA, 1996.
ACM. ISBN 0-89791-769-3.

TypeMock Ltd. TypeMock Racer, 2011. URL http://www.typemock.com/

typemock-racer-product/.

C. von Praun. Detecting Synchronization Defects in Multi-Threaded Object-
Oriented Programs. PhD thesis, Swiss Federal Institute of Technology,
Zurich, 2004.

BIBLIOGRAPHY 61

A. L. Williams. Static detection of deadlock for Java libraries. In Master’s
thesis, MIT Dept. of EECS, 2005.

A
CD contents

Data

Lock order graphs and call graphs presented in the

"Testing and experimental results" chapter

Reports

Weekly reports of the work progress

Software\NoDeadlock.Net\GmlParser

Parser for graph markup language (GML)

Software\NoDeadlock.Net\GmlToSea

Convertor from GML to SEA graph format

Software\NoDeadlock.Net\GraphInspector

Library implementing GUI inspector for graphs

Software\NoDeadlock.Net\LockGraphAnalyzer

Tool for analyzing lock order graphs

Software\NoDeadlock.Net\LovePrototype

Tool for generating lock order graphs from .NET

applications

Software\NoDeadlock.Net\Mono.Cecil

Mono.Cecil library

Software\NoDeadlock.Net\QuickGraph

QuickGraph library

Software\NoDeadlock.Net\StaticAnalysis

Library implementing static analysis framework

Software\Tests

Test cases for verifying the functionality of the tools

Thesis

Thesis text

62

