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Abstrakt
Pro autonomńı roboty nasazené v neznámemém prostřed́ı je výhodné odhadovat prostup-
nost okolńıho terénu, jelikož správné odhadnut́ı prostupnosti může pomoci k naplánováńı
lepš́ı cesty vedoućı skrz terén. Tvorba modelu pro odhad prostupnosti pro každý dos-
tupný robot je náročná, a proto je vhodné se pokusit znalosti sd́ılet mezi r̊uznými roboty.
Avšak ve skupině heterogenńıch robot̊u nemůže být informace o prostupnosti sd́ılena
př́ımo mezi jednotlivými roboty, protože členové skupiny mohou být vybaveni r̊uznými
sensory, nebo jejich tělo může mı́t r̊uznou stavbu, a proto vńımaj́ı prostřed́ı rozd́ılně. V
této práci navrhujeme postup použ́ıvaj́ıćı přenos informaćı, který zajist́ı přeneseńı modelu
pro odhadováńı prostupnosti terénu mezi heterogenńımi roboty. Pro každý typ robotu
je vytvořen samostatný model pro odhadováńı prostupnosti za pomoci konvolučńı neu-
ronové śıtě, která odhaduje složitost prostupu terénem d́ıky pozorováńı z exteroceptivńıch
senzor̊u. Předtrénované konvolučńı neuronové śıtě odhaduj́ıćı prostupnost jsou přeneseny
z robotu poskytuj́ıćıho znalosti na robot, který daľśı znalosti potřebuje. Poté, co je neu-
ronová śı̌t přenesena, nastane opětovné trénováńı śıtě z dat nasb́ıraných robotem, který
śı̌t obdržel, což zajist́ı přizp̊usobeńı skutečnostem v ćılové oblasti své práce. Navržená
metoda je otestována za pomoci heterogenńıch robot̊u, s kterými byly provedeny experi-
menty pro ověřeńı funkce navrženého postupu pro přenášeńı znalost́ı o složitosti prostupu
terénem.

Kĺıčová slova: heterogenńı roboty, přenos informaćı, odhad prostupnosti, neuronové
śıtě
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Abstract
For autonomous robots deployed in unknown environments, it is beneficial to reason
about their traversability over the surrounding terrain, which can improve robots’ future
path-planning decisions. Creating a model assessing traversability for each robot is a
challenging task, thus making it desirable to exchange the knowledge about traversabil-
ity between various robots. However, in a team of heterogeneous robots, the models
assessing traversability cannot be shared directly among the members, as robots can
possess different morphology or sensory equipment and experience the terrain differently.
In this thesis, we propose an approach using transfer learning capable of transferring mod-
els assessing traversability between heterogeneous robots. The individual traversability
assessment models used by the particular robots are created using convolutional neu-
ral networks that assess the difficulty of traversal through terrain from observations of
exteroceptive sensors. Pre-trained convolutional neural networks capable of assessing
traversability are transferred between the robot from the source domain to the robot in
the target domain to propagate the knowledge among heterogeneous robots. After trans-
ferring the neural network between the robots, the network is retrained again using data
available in the target domain to be accommodated to the different tasks. Using real het-
erogeneous robots, we conducted experiments validating the feasibility of the proposed
knowledge transfer approach.

Keywords: heterogeneous robots, transfer learning, traversability assessment, neural
networks
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Chapter 1

Introduction

For mobile robots, the correctly assessed traversability of the surrounding terrain allows for
more informed path planning decisions and enables avoidance of hard-to-traverse terrains,
which can cause harm to the body of the robot. Besides the terrain itself, the traversability
assessment can depend on the robotic platform. E.g., a smaller-legged robot can consider
taller grass more challenging to traverse than paved surfaces as its legs can be slowed down
by the grass. In contrast, a larger robot can press the taller grass down with its long legs,
thus making the traversal of grassy terrain comparable with hardpacked surfaces. In addition
to the problem of mobile robot interaction with the terrain is high dimensional as the envi-
ronment and action space of deployed platforms. The complexity makes it difficult to create
a hand-crafted function or precise plans to tackle the problems. Thus, training the model to
assess traversability from the robot’s experience with the surrounding terrain is necessary.

Our work is motivated by deployments in mobile robot exploration, where it is desirable
to navigate through the surroundings as quickly as possible. To accomplish the quick explo-
ration, we strive to deploy all available robotic hardware to parallelize the task as much as
possible. However, not all robots in the created exploration team possess the same build and
sensory equipment, which can make the assessed traversability models directly unshareable
among all the members. Such a team comprising various robotic platforms is considered het-
erogeneous. Hence, even though the deployed robots would greatly benefit from the ability
to assess traversability, the heterogeneous platforms likely require various cost assessment ap-
proaches. The cost variance between heterogeneous robots induces the problem of creating
a standalone traversability assessment model for each platform in the team, which depends
on acquiring sufficient experience for each robot. Besides, in a homogenous team, where
all utilized platforms are identical, wear and tear during the deployment can create hetero-
geneities in the previously homogenous team. The aforementioned problems signal the need
for a knowledge transfer approach, which would remove the urge for manual fine-tuning, or
the creation of an entirely new traversability assessment model from scratch.

In this thesis, we present an approach for transfer learning of terrain traversability assess-
ment between heterogeneous robotic platforms. The herein studied transfer learning belongs
to a group of machine learning principles and aims to improve the performance in the target
domain by the experience in the source domain1. Our adaptation of the transfer learning
to the robotic domain is illustrated in Figure 1, where the transfer helps to train the cost
assessment model faster as we assume that the basic knowledge for cost assessment corre-
sponds among heterogeneous platforms. Models assessing terrain traversability are created
and trained for each robotic platform. The traversability assessment model comprises a re-
gressor in the form of an artificial neural network. A possibly colored elevation map from
exteroceptive sensors enters the neural network for training purposes. The neural network
then creates assessments of continuous scores describing the difficulty of given terrain’s indi-
vidual segments. We transfer the already trained traversability assessment models between
the heterogeneous robots to achieve better cost predictions and reduce the size of the train-
ing datasets needed to train the traversability assessment model on each robotic platform.

1Source domain (teacher) denotes the entity providing knowledge to the individual in the target domain
(student).
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1. Introduction

During the transfer, the neural network of the source model is used as the initial setting of
the model in the target domain as it is further trained using collected data. Besides, we ad-
dress the potentially mismatched dimensions of exteroceptive sensors’ observations by adding
a convolutional layer to accommodate the transferred model in the target domain.
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Figure 1: An overview of knowledge transfer between heterogeneous robots. Assuming that
the cost assessment model for the teacher is available, the teacher’s model is transferred to
the student and modified to accept the student’s observation format indicated by the different
colormaps. Finally, the transferred model continues its learning using student’s observations
to be informed about student’s experience.

The approach is experimentally evaluated in real scenarios with different robotic platforms.
First, the approach is tested on a real hexapod walking robot with heterogeneous terrain expe-
rience simulated by various traversability assessment methods. Next, our experiments utilize
robots with different morphology, where the method’s capabilities are thoroughly tested.

The rest of the thesis is organized as follows. First, the related works of traversability
assessment, machine learning principles with the focus on transfer learning, and neural net-
works are reviewed in Chapter 2. Chapter 3 describes the Scarab II and Spot robots utilized
in the experimental evaluation. In Chapter 4, the problem of traversability transfer between
heterogenous robots is presented, and Chapter 5 describes the proposed approach for the
transfer of traversability assessment experience. The results of experiments that evaluate the
proposed approach are shown in Chapter 6, and Chapter 7 concludes the thesis.
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Chapter 2

Related work

This chapter covers the state-of-the-art research conducted on traversability assessment and
machine learning topics. The topic of traversability assessment is covered in Section 2.1. The
following Section 2.2 presents various machine learning principles that are relevant to the
subject of knowledge transfer. In Section 2.3, we examine neural networks with a focus on
their transfer between models.

2.1 Traversability assessment

The main aim of traversability assessment is to support better path planning decisions, such
as avoiding impassable terrain or optimizing the path for the specific needs of the robot.
The traversability over single terrain may greatly vary between different robotic platforms,
such as wheeled and legged ground vehicles. Moreover, robotic platforms can have differ-
ent experiences when encountering the same terrain because of changed internal states such
as remaining battery capacity, reduced torques, or damage received during the deployment.
Correct estimation of traversability is essential for applications where the robot encounters
different terrains requiring the robot to adapt to various and often dangerous environments.
Such fields could be represented by extra-terrestrial exploration [1–3], search and rescue mis-
sions [4], and agriculture or off-road driving [5].

In [6] and [7] the authors provide a thorough overview of traversability assessment meth-
ods of mobile robots. However, we aim to review recent research focusing on neural network
approaches. Traversability can be classified either in discrete classes, or as a continuous score,
and the information can be collected using proprioceptive, or exteroceptive sensors. Extero-
ceptive sensing can utilize geometry or appearance methods based on the sensory equipment
present on the robot, while the proprioceptive methods utilize sensors measuring the robot’s
internal properties.

The most straightforward solution to traversability assessment is using a binary classifier.
It provides the necessary interface to describe the most crucial terrain property, whether the
robot can traverse the terrain at all. For example, in [8], the terrain’s height variation is
utilized to decide about the possibility of the robot’s terrain traversal.

The distinction of traversability into more classes is studied in [9]. The authors propose a
visual classification method according to predefined terrain types such as asphalt, gravel, and
grass. The selection of appropriate behavior according to the terrain type helps the robotic
platform to efficiently traverse the terrain, which is shown in [10], where the authors adjust
the walking pattern (gait) of multi-legged walkers according to the perceived terrain (e.g.,
faster gait on asphalt, slower and higher swinging gait on grass). The data needed to create
the terrain classification can be obtained using either exteroceptive [11, 12] or proprioceptive
sensing [13, 14]. Proprioceptive sensing utilizes measurements of the internal states of the
robotic platform. In the field of ground vehicles, the measurements often involve battery
state, and vibrations endured by the platform [13]. In [15] authors take advantage of measured
immediate power consumption to compute the cost of transport over terrain. The calculated
cost then helps to select the optimal locomotion primitive.

The proprioceptive sensing creates requirements on the endurance of the robotic platform
because to measure its states, and the robot has to be capable of enduring them. The
requirements on the endurance of the platform are reduced in [16] with the help of simulation,

3



2.1Traversability assessment

which brings with itself a new set of challenges. In addition to the requirements on the body’s
endurance, the proprioceptive sensing on its own is not capable of providing information
about future terrain. The predictions about future terrain can be obtained using exteroceptive
sensing [11], which accomplishes estimation of terrain traversability for the terrain robot might
consider traversing. Such assessments can allow the vehicle to make more informed decisions
in path planning.

The approaches to exteroceptive perception can be further divided into geometry, and
appearance-based traversability analysis [6] and often use equipment such as LiDARs and
RGB-d cameras. The authors of [2] examine the 3D information about geometry using sta-
tistical processing by dividing the obtained map into individual grid cells. The properties of
cells in an area, such as minimal and maximal height, the variance of height, and slope, are
utilized to evaluate various probabilistic functions which yield a traversability score. When
considering the statistical processing, it is beneficial to model the uncertainty and error of
the traversability assessment because deterministic models do not generalize well due to er-
rors induced by inaccurate sensory measurements. The certainty of terrain perception can
be modeled by computing the number of points present in a cell and their uniformity [17].
Besides, when studying the geometry of traversed terrain, it is helpful to observe more signif-
icant features like negative gaps or edges [18]. During the examination of the geometry of the
terrain, simulations aid the model to achieve better results, as shown in [19], where generated
height map is utilized to create the traversability assessment models. Besides, the difference
in perceived traversability can arise when approaching a height map cell from various direc-
tions. E.g., a wheeled robot with limited power can consider a sloped cell untraversable when
ascending. At the same time, the descent is accomplished with ease.

The appearance-based traversability analysis can be carried out by image-processing and
classification methods. In [20], the authors propose a method to classify terrain using the
visual descriptor Speeded Up Robust Features in addition to Bag of Visual Words. In [21],
the semi-supervised approach utilizes Generative Adversarial Networks (GANs) [22] to assess
the traversability. The authors create a network where they need to provide more positive
examples than negative ones as such a dataset should be easier to obtain. Positive (traversable)
samples are safer to collect since the robotic platform does not have to experience untraversable
terrain. Architectures of neural networks achieving predictions about traversability on future
paths are presented in [23] which create virtual images from the images captured along the
already traversed path. The constructed virtual images are presented to GANs introduced
in [21] to predict the traversability along the estimated path. In [3], a fully convolutional
neural network that replicated the VGGnet [24] architecture is utilized to locate the best
possible place for the rover to land by classifying multiple terrain types and has been used for
the Mars rover mission.

It can be beneficial to combine multiple traversability assessment approaches to leverage
the accuracy of traversability assessment. The most apparent combination is between geom-
etry and appearance-based methods. Such fusion of approaches was already studied in [25]
where independent traversability maps are created by LiDAR and 2D camera and later fused
using Bayesian rule. If the aforementioned techniques are not sufficient additional sensors
such as humidity, precipitation, or temperature sensors might be employed to provide some
complementary information about the environment, such as in [26], where an UGV utilizes
various sensors to detect water surfaces better.

We aim to assess the traversability using geometry and an appearance-based approach and
collect the ground truth data from the proprioceptive sensors. The traversability assessment is
carried out using convolutional neural networks. Thus, the topic of neural networks is further
studied in Section 2.3.
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2.2Machine learning principles

2.2 Machine learning principles

Several problems have to be addressed when developing machine learning algorithms to be de-
ployed on robotic platforms. First and foremost, robotic experiments testing machine learning
approaches require financial resources as the robotic hardware has to be obtained and main-
tained. Additionally, machine learning algorithms deployed on robotic platforms have to be
able to handle large datasets and perform actions in high dimensional action space, e.g., in
case of legged robots, each joint increases the number of Degrees of freedom (DOF) corre-
spondingly. Described issues can not always be solved using simulators, as their results can
vary in experiments carried out in the natural environment.

In this section, we review information about incremental and transfer learning, focusing
on traversability assessment as those approaches aim to reduce the influence of presented
challenges during robotic deployments. Incremental learning is a machine learning approach
that utilizes an incoming stream of data points to enhance the performance of an algorithm and
is often called online learning. Incremental learning’s primary goal is to produce immediate
results. It is helpful in scenarios where the initial data available is scarce or non-existent
and frequent attempts at improvement are desirable. The artificial neural networks, decision
trees, and support vector machines are the main approaches that can be adjusted to carry out
incremental learning tasks. Additionally, the challenges mentioned above make robotics a field
suitable for online learning. The robot should quickly achieve satisfactory results on crucial
tasks such as traversability assessment to protect its hardware. An example of incremental
learning’s deployment in robotics is shown in [27] where the authors utilize Fast Incremental
Gaussian Mixture Network to accomplish improved traversability assessment on a ground
robot from an aerial scan.

Reinforcement learning builds upon incremental learning and aims to improve performance
on a given task by repeatedly attempting to solve the problem [28] by maximizing a given
reward function. The reward function is the main distinction from other incremental learning
approaches. Reinforcement learning can reduce the amount of training data or remove the
need for manual fine-tuning of the controller. For successful reinforcement of knowledge, it is
necessary to define an appropriate reward function that incentivizes the robot to take a path
leading to a solution to the task.

In addition to incremental learning, transfer learning is another method of improving
assessments by sharing experiences between different units in a team. Transfer learning is
defined as a machine learning approach to improve the knowledge in the target domain by the
transfer from the source domain [29]. Usage of transfer learning aims to improve performance
in the target domain by utilizing knowledge from the source domain. In [30] the authors
reduce the size of the dataset in the target domain necessary to train the convolutional neural
network, thus shortening the training time of the neural network.

In [16] authors deploy reinforcement and transfer learning to improve the traversability
over challenging terrain of a four-legged robot by training a motion policy. The policy is
trained in simulation and then transferred to a real robot. The training is split into two
parts. First, the controller is presented with labeled data; thus, reinforcement learning allows
the policy to achieve high performance quickly. Moreover, the controller is deployed in a
simulator having the same sensing capabilities as in a real environment. To address the
differences between simulation and real-world, contact and slippage values are estimated from
the past measurements rather than provided by models, as the models of contact and slippage
are often inaccurate.

The costly data collection, and various tasks and builds of the robots make robotics an
interesting field for the deployment of transfer learning. Although testing only in simulators,
authors, in [31] utilize transfer learning to propagate experience in different scenarios of robotic
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2.3Neural networks

soccer, where they propose a solution to transferring neural networks between tasks with
different inputs and action spaces. In [32] humanoid robots observe human gestures and
motions to replicate them later. Another utilization of transfer learning is demonstrated
in [33], where a robotic arm is trained to reach a destination of a colored block. The transfer
is carried out between robotic arms with different amount of joints.

Although both incremental and transfer learning improves performance in robotic do-
mains, incremental learning is more useful in scenarios where it is desirable to improve perfor-
mance on a single task and setup. In contrast, transfer learning aims to share knowledge be-
tween varying problems. Thus, transfer learning is suited for the different robots encountered
in robotic teams, while incremental learning is ideal for tweaking individual tasks. However,
in comparison with transfer learning, incremental learning induces higher requirements on the
build of the robotic platform because incremental learning procedures generate improvements
using trials and errors [34]. Thus, the topic of robot safety discussed in [35] should be consid-
ered. Nonetheless, when using transfer learning, a problem called negative transfer can arise.
Negative transfer occurs if the knowledge from the source domain hinders the performance in
the target domain.

In [36] we show a transfer learning approach, which utilizes a traversability assessment
model predicting the cost of the observed terrain and certainty of the cost prediction. The
transfer is achieved by first transferring the traversability assessment model between the robots
and then comparing certainties of the predictions of the transferred and directly trained model,
choosing the cost prediction with higher certainty. This thesis builds on the cost regressor
proposed in our previous work. However, instead of combining assessments of traversability
models, a layer is possibly added to the regressor during the transfer, and additional retraining
is employed to accommodate the transferred traversability assessment model in the target
domain.

2.3 Neural networks

This section provides a background on neural networks within the context of transfer learning.
Deep learning is a category of machine learning principles that aims to grasp non-trivial
internal properties of raw input data. It is closely linked with artificial neural networks that
imitate the layers of neurons in the human brain. Neurons in artificial neural networks are
represented by simple mathematical operations such as addition or multiplication. The rise of
computational resources has allowed for the development of neural networks in recent decades
as they consist of many parameters. The development led to many deployments of neural
networks in fields such as natural language processing [37] and semantic segmentation [38].

As the typical neural networks consist of various types of layers, we aim to present a brief
description of the functions of individual layers to understand the proposed neural network
architecture. The weights of the individual layers are parameters that influence the outcome
of each layer and, in most cases, are updated during the training of the neural network, the
exception being, e.g., the batch normalization layer. The channels of the input matrix can
be likened to the color channels of an image, but in neural networks, they can fulfill much
broader needs.

Convolutional layer utilizes a matrix sliding over the input matrix of the layer. For each
desired position of the sliding matrix called convolutional kernel on the input matrix, the
sliding matrix is piece-wise multiplied with the elements in the underlying submatrix of
the input matrix. The resulting matrix is then summed into one element. The elements
from all desired positions of the convolutional kernel construct the output matrix. The
convolutional layer weights are the individual elements of the convolutional kernel.
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2.3Neural networks

Maxpool layer moves a sliding window over the input matrix and fills the resulting matrix
with the maximal element present in the sliding window.

Fully-connected layer shown in Figure 2 consists of connections between all input and
output elements, where each connection is weighted to determine the influence between
input and output.

Dropout layer helps to prevent overfitting when training deeper neural networks. The
dropout layer selects inputs to be set to 0 with the selected rate and scales the remaining
ones to match the sum of unchanged inputs.

Global average pooling layer computes an average for each input channel, thus acting as
a flattening layer.

Batch normalization achieves the zero mean and the standard deviation of 1, which pre-
vents overfitting, helping to create deeper networks.

Activation functions are utilized in neural networks to induce nonlinearities necessary for
the network to be susceptible to more difficult tasks than linear regression. Often come
in the form of tanh or sigmoid function; however, in our work, we employed Parametrized
Rectified Unit (PReLU) given by the following equation

f(x) = max(ax, x), (1)

where a is a learnable parameter during the training.

Figure 2: Fully connected layers of the neural network, where each neuron is represented by a
dot of a layer pictured as vertically stacked neurons, are connected to all neurons of another
layer.

Many of the constructed neural network architectures utilize convolutional layers, thus
giving them the name of convolutional neural networks. The initialization of the weights
is a crucial aspect when training the neural network, which might boost or slow down the
training process. During the training of the network from scratch, initialization schemes, such
as [39] are utilized, where the initialization function is created to cooperate with the activation
function. However, a huge dataset is usually needed to train a network from scratch fully.
Thus, the transfer of weights from similar tasks trained on a more extensive dataset can help
achieve satisfying results with a smaller dataset [30]. After transferring weights between tasks,
it is usually desirable to fine-tune the weights to better suit the needs of the task in the target
domain.

There are various techniques when approaching the fine-tuning step. In the classification
realm, the networks often comprise of feature extractor, which includes various convolutional
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2.3Neural networks

and max-pooling layers and classifiers consisting of fully-connected and output layers. In [40]
the last fully-connected layer is reinitialized to comply with the possibly different classes in the
target domain. If the source and target tasks vary greatly, an entire redesign of the classifier’s
architecture is employed [41]. This way, just the feature extractor remains transferred from
the source model.

During fine-tuning, selected layers of the neural network can be frozen, denoting that their
weights are not updated [42]. Freezing the layers of the feature extractor allows us to fine-tune
just the classifier when the wanted features are similar. When it is perceived that the feature
extractor should be retweaked, it is beneficial to sequentially unfreeze the layers starting with
the layer nearest to the classifier. Sequencing the unfreezing ensures that the layers extracting
higher-level features are fine-tuned first, as it is more likely for the lower-level features to be
shared between tasks.

The learning rate of the neural network is a factor that describes how much the network
will accept the changes proposed by the gradient during the training. Thus, when fine-tuning,
the learning rate is set lower, in case just slight corrections in weights are desired [41].

Due to the similarity to image processing, convolutional networks are utilized in the field
of traversability assessment as described in Section 2.1, where the networks help to predict
the traversability using exteroceptive sensors. Our focus is to implement and find the best
possible setting for weight transfer. We assume that the transferred knowledge will boost the
performance during traversability assessment for heterogeneous robots.
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Chapter 3

Robotic platforms

Our experiments are carried out in real-world scenarios. Thus, the utilized heterogeneous
robotic hardware is overviewed. We examine the build and equipment of the small hexapod
robot Scarab II in Section 3.1, and the quadruped walker Spot in Section 3.2.

3.1 Scarab II
The Slow-Crawling Autonomous Reconnaissance All-terrain Bot [43] (Scarab II) shown in
Figure 3 is a small hexapod walking robot utilized in our experiments. The miniature robot
is suitable for experiments in confined areas where the larger robotic platforms would not fit.

Figure 3: Scarab II robot

The hexapod allows for single-manned deployment in the environment as the body, in-
cluding the battery pack, weighs 4.8 kg and it occupies a circle of 55 cm in diameter. The
diameter encompasses all possible foothold positions as the position of the legs changes during
the deployment. The robot’s body is manufactured by 3D printing using the PETG filament
to allow for the eventual need for rapid prototyping as each experiment requires different
equipment present.

The Scarab II possesses six legs, each of which consists of three joints whose motion is
provided by Dynamixel XM430-W210-R servos and the rest of the structure of the leg is 3D
printed. The legs of the hexapod result in 18 DOF. The tips of the legs are ended with end
caps 3D printed from the flexible filament to avoid the contact of rigid PETG with smooth
ground surfaces such as linoleum and ceramic tiles. The flexible end caps reduce the slippage
on hard surfaces and allow for better traversability of slopped terrains. The robot utilizes an
adaptive tripod gait [44] (walking pattern) to propel its body forward. The description of the
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3.2 Spot

tripod gait in comparison with the alternative pentapod gait is presented in Figure 4. The
tripod gait was selected as it allows for faster locomotion of the Scarab II than other types of
gait, such as the reviewed pentapod.

Tripod Pentapod

Figure 4: Comparison of tripod (left) and pentapod (right) gait. The tripod gait lifts three
legs during the swing phase, denoted by the dashed lines marking the new locations of the
legs. The configuration of the moving legs, as presented, allows the robot to remain statically
stable during the motion of the whole body. The pentapod gait lifts at most one leg of the
ground, leaving the remaining five in contact with the surface. Hence, the pentapod gait
results in a slower traversal yet more stable body, suitable for the most challenging paths
through the terrain.

The raised structure in the front of the robot’s body, resembling the head of the robot,
carries an assembly of Intel RealSense Tracking Camera T265 and RGB-d Intel RealSense
Depth Camera D435, which collect information about surrounding terrain. The robot is
equipped with an onboard Intel NUC computer with Intel Core i7-11071OU Processor with
frequency up to 4.70 GHz, and the whole robot is powered by two three-cell Li-Po 12 V,
5200 mAh batteries providing the robot with enough power to operate for roughly 1.5 h.

3.2 Spot
The Spot 5 is a four-legged robot resembling a dog developed by Boston Dynamics and is
aimed at industrial customers. As industrial usage suggests, the Spot possesses a more durable
body than the Scarab II. The Spot is 1.1 m long and 0.5 m wide and 0.6 m tall when standing.
The total weight of Spot is 31.7 kg and is capable of carrying an additional payload of 14 kg.

Spot’s four legs are actuated using 3 brushless motors, allowing 12 DOF combined. In
contrast to the Scarab II, the actuator of the joint, equivalent to the knee of a dog, is located
inside the body. Thus, the leg’s weight is reduced, which results in a broader range of motions
possible with the leg. The design of the Spot and its legs is capable of maximal forward
velocity of 1.6 m · s−1, traversing slopes of up to 30◦ and ascending or descending most typical
stairways. Like the Scarab II, the Spot’s legs are ended with a rubber surface improving its
traction on slippery terrain. During our experiments, we utilized the crawl gait for the Spot,
where three feet always touch the ground, and one foot moves to a new foothold. The selection
of such a slower crawl gait accomplishes safer navigation of challenging uneven terrain and
assures the stable position of the robot.

The body of the Spot is equipped with five grayscale and depth recording Intel RealSense
Depth D435 Cameras providing vision in all directions of a possible movement helping the
controller decide about the occupancy of surrounding areas to assure obstacle avoidance.
However, to build the environment model, we have used an Ouster OS0-128 lidar located on
the attached payload to the robot. The raw data from the Ouster lidar is processed using
Nvidia Jetson AGX Xavier, and the additional computations are carried out on an Intel Nuc
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3.2 Spot

Figure 5: Spot robot with additional payload.

computer with Intel Core i7-11071OU Processor located in the payload. The Spot’s 58.8 V,
10 289 mAh batteries allow for roughly 1.5 h of walking time.
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Chapter 4

Problem Statement

In this thesis, we address the traversability transfer learning, which is defined as follows. Let
the various robots Ri perceive diverse terrains Ty during operational usage. Furthermore, let
us assume that the properties of the terrain change. Thus, the terrains and their observations
are not equal T1 6= T2. As the terrains T observed by the robots are diverse, we describe the
robot’s experience with its traversability over the terrain Ty by the cost C, which expresses
the robot’s traversal experience with the terrain.

Let the environment be modeled as a 2.5D grid W ⊂ R2 with cells υ, where the size of the
individual cell w is chosen to correspond with the size of the robot’s body. Center of robot’s
footprint υrobot is discretised to be postioned onto the grid W. Robot’s paths ψ consist of
a sequence of neighboring cells υ1, . . . , υn visited by the robot and the collected costs C can
be utilized to facilitate better path-planning decisions by finding a path with the minimal
expected cost

ψ∗ = argminψ∈Ψ(υ,υ′)

∑
υi∈ψ

Cυi (2)

where Ψ is a set of all paths leading from υ to υ′. To enable path-planning on unvisited
parts of the environment, it is needed to create a model r capable of assessing the cost Ci on
previously untraversed parts of the terrains Ti observed using exteroceptive sensors

r(Ti)→ Ci. (3)

Since the mobile robot traversability is considered too complex to assess directly from terrain
appearance or geometry using a handcrafted function, the relation between measurements
from proprioceptive sensors, which primarily help with the computation of cost C, and exte-
roceptive sensors providing the observations of the surrounding environment is learned from
the collected terrain observations Ti accompanied by the cost measurements Ci. The costs are
computed using proprioceptive sensors because of their ability to measure the external envi-
ronment’s direct influence on the robot’s body. Hence, the goal is to find the most probable
cost Ci given a terrain observation from a exteroceptive sensor Ti. The model is created using
the collected dataset Dt and aims to minimize the Root mean square error (RMSE) between
cost assessments on collected terrain observations Ti and the measured costs Ci

min

√√√√ 1

n

n∑
i=1

(r(Ti)−D(Ti))2, (4)

where D(Ti) returns the cost Ci measured by the robot.

Motivated by the creation of cost assessment model r to achieve better path-planning
decisions, the robot R captures its observations of surrounding terrain Ti and assigns a value
of traversal experience Ci with observed terrain into the dataset DR

T . The utilized sensory
equipment greatly influences the terrain observations T on the robotic platform R, i.e., some
robotic platforms employ only a depth camera, while others support the depth images by
information from a colored camera. Besides, each robotic platform possesses different mor-
phology, which results in various perceptions of the surrounding terrain T . Thus, different
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4. Problem Statement

equations for the computations of cost C are utilized on each robotic platform, e.g., in the
case of a small robot, it is more suitable to compare desired with achieved velocity, as the
robot often gets stuck in taller grass. Whereas a bigger-legged robot would benefit more from
costs C computed from the stability of the robot’s body since tall grass does not slow down
the locomotion of such a robot. The difference in morphology and cost computation methods
highlights the need for various proprioceptive sensors measuring variables needed to calculate
the perceived cost C. The robot stores information about observed and traversed terrain into
a 2.5D grid W. Observation Ti is positioned on the grid, and the maximal collected elevation
is assigned as the 0.5 dimension. Furthermore, such a grid can be colored according to the
viewed color when RGB cameras are present on the robot.

The larger deployments of robotic teams often involve heterogeneous robotic platforms,
which possess different capabilities. Such behavior takes shape when two robotic platforms
R1, R2 traverse through the same part of terrain Tj , however, their cost measurements are not
equal Cj1 6= Cj2. We assume that an improvement of the predictions of perceived terrains
by the model r can be achieved using already trained models from the different robotic
platforms, as the robots could exchange information about terrain previously unobserved
by them. The goal is to improve the performance by transfering the cost assessment model r1

from platform R1 to robot R2. Successful accommodation of model r1 on platform R2 would
improve cost assessments on newly observed terrains relatively soon after the beginning of
learning, assuming the learning time to be finite. Thus, after the model r1 is transfered from
platform R1 to platform R2, it is essential to again retrain the transferred model to satisfy
the optimization criterion 4, where model r1 is utilzed and dataset D collected on platform
R2.

Hence, the goal of the transfer is to improve the prediction the following should be satisfied
to achive successful transfer

|rt1(Tn)− Cn| < |r2(Tn)− Cn|, (5)

where Tn is a new terrain observation, Cn is cost measured during the traversal of such part
of terrain and rt1, r2 are the utilized cost assessment models.
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Chapter 5

Method

The chapter outlines the steps to transfer the knowledge of traversability between hetero-
geneous robotic platforms. The predictors of cost are trained on datasets collected during a
robot’s terrain traversal. The datasets carry information about the robot’s experience with
the surrounding environment, and the topic addressed in Section 5.1. Section 5.2 describes
the creation of a cost assessment model to elevate the direct experience with perceived terrain
to the surrounding terrain. Finally, the approach to the transfer of cost assessment model is
shown in Section 5.3.

5.1 Dataset collection
During each data-collection run robot first stores the information from its interaction with the
surrounding terrain traversed during human-operated deployment collected by the particular
robot’s extero- and proprioceptive sensors. As our robotic systems are built upon the mid-
dleware Robot Operating System (ROS) [45], the utilized robots can collect and replay
measurements from sensors mounted on every robotic platform. We utilized this feature to
store the required measurements into .bag files. The storage into separate files enables us to
process the measurements individually, which reduces the difficulty of the robot’s deployments.

The recorded .bag files are then replayed and a map of the surrounding environment [46]
from the observations collected during deployment is created. The grid map of the surrounding
environment consists of cells describing an area with the edge size of 7.5 cm, which corresponds
with the leg of the smallest robot, and each cell contains properties of the observed terrain
based on the carried exteroceptive sensors. Both the Spot and Scarab II store the maximal
perceived elevation of each observed cell. The Scarab II’s camera is capable of collecting
colored data. Thus, additionally a and b features of the lab color space are recorded for
the observed cells. The l feature expressing lighting of the observed terrain is not utilized as
it reduces the influence of varying lighting of the observed terrain. Along with the observa-
tions of the environment, the hdf5 [47] file contains information about the robot’s trajectory
accompanied by the calculated cost, which was computed using one of the following cost com-
putation methods, where the Scarab II utilizes the Velocity, Slope and Difference methods.
In contrast, the Angle method is employed by the Spot:

Velocity cv - utilizes relative slowdown compared to the commanded velocity. The distance d
covered in a fixed timeframe t results in achieved velocity v. The speed v can differ from
the commanded velocity vcmd by either being lower due to difficulties with some terrain
properties such as tall grass. The ratio of achieved speed v and commanded velocity
vcmd expresses the cost ctmp which is to be adjusted. The computation is sumarized by
the following equation

cv =
v

vcmd
=

d
t

vcmd
. (6)

Slope cs - the slope cost model first computes the angular distance in degrees from the
leveled plane θ, and the resulting cost cs is equal to the distance from the straight pose
in degrees offset by 1 as on flat terrain robot has to make an effort to propel its mass
forward. The equation

cs = 1 +
θ

2π
· 360◦ (7)

14



5.2 Cost assessment model

results in the desired cost calculation.

Difference cd - similarly, the slope cost model prepares the angular distance in degrees γ.
However, the difference cost model computes the maximal angular distance of subse-
quent, thus articulating changes in the terrain’s slope. Note that the robot’s tilt is
observed on both axis corresponding to the leveled plane when the robot is laid on flat
ground. The difference cost model utilizes following equation

cd = 1 +
γ

2π
· 360◦. (8)

Furthermore maximal cost cmax = 10 is utilized in addition to tanh function to shift the
distribution of introduced costmodels cm,m ∈ {v, s, d} closer to origin. The equation

cam = cmax · tanh
cm
cmax

(9)

is used to compute adjusted cost cam for all Scarab II’s cost assessment methods. The Equa-
tion 9 helps to remove high values of cost, which in case of velocity computation method cv
occur when the robot gets stuck. The cost assessment methods are created to return strictly
positive values of cost because the non positive perceived costs would result in infinite paths
being the most advantageous. Thus, causing the robot not to reach its goal as wandering
through terrain would be more favorable for him.

Angle ca - the cost for Spot robot is computed as the absolute angle α of the two opposing
legs from the flat surface e.g. the left front and right rear leg are considered opposing.
The Spot’s cost model is expressed as

α = 1 + | tan
dz
dxy
|, (10)

where dz denotes the difference in elevation of both legs ad dxy the distance of the legs
on a XY plane.

5.2 Cost assessment model
The cost assessment model similar to the utilized in [36] is presented with w × w segments
of the terrain observations T , where w is the number of cells of the observation window’s
width, which is selected so that at minimum, the entire robot’s footprint is covered. The
segment of terrain observation T includes possibly colored elevation grid based on the carried
sensory equipment. The regressor r is constructed using neural networks, which are utilized
to produce the desired predictions, as the task of cost assessment shares similarities with
image processing. The architecture of the regressor is depicted in Figure 6 and is created
using TensorFlow library [48], which provides the implementation of neural network layers.
During the training, the neural network is presented with a set of terrain observations and
corresponding perceived costs and is repeatedly asked to estimate the cost of the presented
observations. To update the neural network’s weights we utilized the Adam optimizer. The
mean absolute percentage error of the estimation is used as loss Λ to be minimized during the
training, and is specified by equation

Λ = 100|yt − yp
yt

|, (11)

where yt is the expected output of the neural network and yp the predicted.
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Figure 6: Architecture of the regressor, where n is the number of terrain observation’s channels
entering the neural network and width of observation window is w = 8.

5.3 Knowledge transfer
During the transfer of knowledge, which is visualized in Figure 7 the student receives the
teachers cost assessment model in the form of the regressor. However, the teacher’s model
can be trained using differently shaped terrain observations. The width w of the input window
can be prepared separately as we choose the width w accordingly to the robot receiving the
model. Nonetheless, the observations of teacher and student can differ in the number of
perceived channels caused by varying sensory equipment between the robots, which cannot
be altered. A convolutional layer is added preceding the regressor if the shapes of the input
data differ to accommodate the transferred regressor to the student’s perceived data. We
examine a varying number of input channels n. Thus, the convolutional layer consists of
1× 1 convolutional kernel with the input and output channels corresponding to the perceived
number of channels and the number of transferred regressor’s input channels. Such a layer
should be capable of grasping the relations between the inputs with various channels. After
the convolutional layer is added, the newly obtained model is retrained using the dataset
collected by the student to achieve better performance as the costs of teacher and student
are assumed to be heterogeneous. Besides, during the retraining of the regressor, a specified
number of layers l can be frozen, meaning the weights of those layers are not changed since
it is assumed that the initial layers extract more general features, which are primarily similar
between various data.

Predicted
cost 

Terrain
observation

Layers to
freeze 

Transferred
regressor 

Input
reshape

Figure 7: Setup used during the transfer of knowledge, l being frozen layers during the training.
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Chapter 6

Results

This chapter reports on the experiments conducted to evaluate the proposed knowledge trans-
fer method. The results of knowledge transfer between homogeneous robots with varying cost
assessment models are demonstrated in Section 6.1. Such a scenario allows us to simulate
the heterogeneities in the perception of cost while deploying only the small hexapod walker,
which helps to verify the feasibility of the proposed method easier. The Section 6.2 depicts
the transfer between fully heterogeneous robots.

6.1 Various cost assessment methods

The feasibility of the proposed method is first verified in a scenario where various cost assess-
ment methods are utilized to simulate the difference in perception of heterogeneous robots.
Scarab II collected the datasets in the Bull Rock cave near Brno, Czech Republic, as described
in [36]. The datasets were collected in various parts of the cave system, which is shown in
Figure 8, presenting various terrains to the traversing robot.

(a) Chiffon (b) Hall (c) Room

Figure 8: Different terrains of the Bull Rock Cave used in the evaluation of the proposed
method.

Five scenarios are presented to test the transfer learning approach for each pair of cost
assessment methods. The scenarios are prepared by randomly choosing five datasets from
the collected dataset pool as testing data for the direct and transferred model. The testing
datasets are removed from the datasets available to train the teacher’s and the student’s cost
assessment models. From the remaining datasets, 12 are randomly drawn for the teacher and
5 for the student to create training datasets for their cost assessment models. All regressors
are trained for 300 epochs during the training, and the width of the observation window is
w = 8. Note that the teacher’s and student’s regressors can be trained using datasets collected
in similar cave parts.

The results of the experiment are presented in Table 1 and show that the transfer of
the model from the teacher to the student lowered the RMSE of predictions on the testing
datasets. Freezing the initial four layers improved the assessment of cost. However, when
eight layers are frozen, the RMSE did not as much as with the l = 4 frozen layers. The worse
behavior of l = 8 frozen layers is probably caused by the fact that the additional frozen layers
articulate the differences in cost perception.

In Table 2 the transfer from cv to cs is chosen to examine the influence of training for
higher amount of epochs. Same randomly generated transfer scenarios are utilized as in
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6.1Transfer between slope cs and velocity cv cost assessment method

Table 1: Mean (std) of RMSE for 5 randomly generated scenarios for each pair of cost
asssessment methods. The columns of the table mark the performance of the utilized re-
gressors, where the number signals the number of frozen layers l during the retraining of the
transferred model.

Scenario Direct Transfer 0 Transfer 4 Transfer 8

cd → cs 2.93 (1.47) 2.42 (0.53) 2.22 (0.20) 3.37 (2.43)
cd → cv 2.42 (0.99) 1.59 (0.45) 1.63 (0.52) 1.63 (0.51)
cs → cd 2.80 (1.18) 1.40 (0.17) 1.42 (0.27) 1.40 (0.24)
cs → cv 1.84 (0.42) 1.53 (0.33) 1.54 (0.38) 1.68 (0.35)
cv → cd 2.68 (1.32) 1.55 (0.20) 1.75 (0.51) 1.78 (1.00)
cv → cs 3.76 (1.55) 2.23 (0.38) 2.08 (0.22) 2.55 (0.90)

Overall 2.74 (1.15) 1.79 (0.34) 1.77 (0.35) 2.07 (0.90)

Table 1. However, the cost assessment models are trained for 600 epochs and compared with
the performance of regressors trained for 300 epochs. The results show that only the direct
student’s model has improved thanks to the increased number of epochs. The RMSE of the
transferred model slightly increased during the prolonged training, caused by the overfitting
of training data. Overall the results suggest that the transfer helps to reduce the necessary
number of training epochs by utilizing an already trained model as initialization of the training.

Table 2: Comparison of RMSE’s mean (std) between 300 and 600 epochs of cv → cs transfer

Epochs Direct Transfer 0 Transfer 4 Transfer 8

300 3.76 (1.55) 2.23 (0.38) 2.08 (0.22) 2.55 (0.90)
600 2.39 (0.45) 2.29 (0.32) 2.18 (0.34) 2.26 (0.29)

6.1.1 Transfer between slope cs and velocity cv cost assessment method

To better understand the knowledge transfer, we examine the transfer between student’s slope
cs and teacher’s velocity cv cost assessment method in detail as those methods compute cost
using dissimilar approaches. The robot is deployed in parts of the cave denoted as Hall,
Room, Chiffon and Stones. In Hall and Room, the robot perceives a hardpacked surface,
while the terrain in Chiffon presents the robot with a slightly sandy surface making the
robot’s locomotion harder. Finally, a stony terrain is located in the part of the cave called
Stones where the robot makes use of its legs. The student’s dataset is trained using one roll-
out in all aforementioned terrain types. The teacher is trained on more roll-outs in specified
terrains with the addition of a part called Hall2, which is similar terrain to Hall but located
in a different part of the cave. The student’s dataset is overall a third size of the teacher’s,
and hence is ideal to showcase the transfer of knowledge as there is a lot of information to be
received by the student.

Both teacher’s and student’s direct baseline cost assessment models were trained for 300
epochs. After the teacher’s model was transferred to the student, it was tweaked using 300
epochs and l = 0 frozen layers to create the transferred model. The summary of the training
carried out on the student’s platform for 300 epochs is present in Figure 9a where an initial
boost during the training of the transferred model is visible. The decrement of cost during the
tweaking of the transferred model stops when the training is prolonged in comparison with
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Figure 9: Progress of the cost assessmnet model’s neural network training.

the direct model trained for 1000 epochs 9b. However, the transferred model still produces
better losses than the direct model. The transferred and student’s cost assessment models are
tested using a dataset not used during the student’s model training. The RMSE of regressors’
predictions against the collected ground truth was 3.04 for the student’s direct regressor and
2.09 for the transferred model from the teacher, resulting in improvement by 31.25 %. The
improvement in RMSE suggests that the transferred model produces better cost assessment
predictions.
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Figure 10: Predicted costs by student’s and transfered neural network to be compared with
Ground truth after training for 300 epochs.

As a demonstration, a single traversal in the Hall2 part of the cave and resulting predic-
tions are examined. Figure 10 shows the predicted costs by the student’s direct and transferred
model to be compared with the collected ground truth. Both direct and transferred models
produce slightly noisy estimates, which can be expected since the perceived ground truth is
also noisy. However, the transferred model matches the ground truth’s overall difficulty more
closely.
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6.2Transfer between Scarab II and Spot

In Figure 11 the cost prediction for the full observed maps by exteroceptive sensors is
shown. However, the ground truth for the whole view range of the robot is not present as
the robot traversed just a single path through the terrain. Thus, only manual evaluation was
utilized to verify the feasibility of the assessments for future path planning. The difference
in assessment is visible as the transfer model suggests a higher cost in locations where the
elevation of the height map changes compared to the student’s model, which suggests that
the transferred model produces better assessments than the direct model.
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Figure 11: Cost assessments from exteroceptive sensors after training for 300 epochs and the
perceived height map, where the path of the robot is marked using red color.

6.2 Transfer between Scarab II and Spot

To complete the collection of datasets for transfer learning between Scarab II and Spot, we
gathered datasets using the Spot robot. The Spot’s datasets were added to the Scarab II’s
collection from the Bull Rock Cave to create a setup for the possible utilization of the knowl-
edge transfer. The Spot robot was deployed indoors and outdoors at the Czech Technical
University campus at Karlovo náměst́ı. Indoors shown in Figure 5 the Spot moved through
the halls of the building, and we modified the surfaces by partly covering them with artificial
grass and spikes in the form of soundproofing material. Figure 12 captured the robot collect-
ing a dataset outdoors, where the robot traversed various surfaces such as hard-packed soil,
cobbles, and sloped grass. The Spot robot found all presented terrains relatively easy to tra-
verse because the most challenging terrains were omitted for the robot’s safety. Additionally,
the Spot’s datasets are, in general, longer than Scarab II’s as the robot is capable of faster
movement. Thus, it is sufficient to use fewer datasets to train the cost assessment model.
To test the presented method in heterogeneous scenarios, we examine the performance when
transferring from Spot to Scarab II in Table 3 and the opposite direction in Table 4.

The transfer from Spot to Scarab II described in Table 3 is achieved using observation
windows with a width of w = 8 cells, which is suitable for the smaller hexapod walker. Each
transfer scenario comprising Spot and one of the hexapod’s cost models is evaluated using
the mean and std of RMSE on five evaluation setups. For each evaluation setup, 5 datasets
are randomly chosen to train the Spot’s teacher model. The Scarab II embodying the student
receives randomly chosen 6 datasets, and the trained cost assessment models are tested on
5 randomly chosen datasets, which are different from the student’s training datasets. The
regressors of the cost assessment models are trained for 300 epochs for both Scarab II and
Spot.

The Scarabi II can observe the surrounding environment using a colored height map,
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6.2Transfer between Scarab II and Spot

Figure 12: Spot during dataset collection.

while the Spot perceives just the height map. Thus, in each transfer scenario, we consider
the student’s model to be capable of receiving input with both n = 1, 3 number of channels.
When using the 3 channel version which percieves both the elevation and the a and b channels
of the lab color space, a convolutional layer is added to accommodate the teacher’s model
created by Spot having one input channel.

Table 3: Mean (std) of RMSE for knowledge transfer from Spot to Scarab II. The Transfer x
signals the number of frozen layers is l = x during the retraining of the regressor. The height
map and color define the number of input channels as n = 1 for the resulting model perceiving
just height map and n = 3 for the height map + color. The regressors are trained for 300
epochs for both Scarab II and Spot.

Height map Height map + color

Scenario
Direct Transfer Transfer Direct Transfer Transfer

0 4 0 4

Spot → cd 1.92 (1.27) 1.25 (0.15) 1.26 (0.14) 1.65 (0.66) 1.33 (0.18) 1.34 (0.21)
Spot → cs 2.93 (0.88) 1.91 (0.48) 1.70 (0.13) 2.67 (1.44) 1.70 (0.13) 1.70 (0.18)
Spot → cv 2.72 (0.99) 1.79 (0.65) 1.67 (0.54) 2.24 (1.02) 2.93 (2.11) 1.88 (0.67)

Overall 2.52 (1.05) 1.65 (0.43) 1.54 (0.27) 2.19 (1.04) 1.98 (0.80) 1.64 (0.35)

The results in Table 3 show the performance of the trained models. The mean of RMSE for
all transferred models is overall better than the direct model trained using just the student’s
training data. However, the performance of the transferred model has not improved when
modifying the teacher’s model to accept the colored height map collected by the Scarab II,
although the direct model has improved when using n = 3 input channels. In the authors’
opinion, the likely cause is that the added convolutional layer could not sufficiently modify the
input observation to achieve good performance in combination with the underlying transferred
model.

To examine the transfer from Scarab II to Spot, we created transfer scenarios where each
hexapod’s cost assessment method was transferred to Spot. The size of observations is set
to w = 16 cells as the Spot’s body is larger than the hexapod’s. Each transfer scenario
consists of 5 evaluation setups with 5 datasets for the teacher’s Scarab II model training, 1
Spot’s dataset for the student’s model training, and 3 datasets to test the resulting models.
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6.2Transfer between Spot and cs

The student’s model can make decent predictions with a single training dataset as the Spot’s
collected datasets are greater than the Scarab II’s and involve multiple types of terrain. The
regressors’ neural networks are trained for 100 epochs for both Scarab II and Spot. To utilize
Scarab II’s model with the three input channels created to assess the colored height map, we
added a convolutional layer during the transfer of the model to the Spot.

In Table 4 the results show the improvement in the mean of RMSE achieved when utilizing
the transfer learning. The transfer of Scarab II’s model perceiving color has achieved the best
performance on the testing dataset. The authors suppose that the added convolutional layer
and increased number of channels help the model to better grasp the underlying structure
of the terrains’ traversal properties. Note that only one direct model is created for both the
Height map and Height map + color scenario in each trail since both scenarios possess the
same number of input channels n. Thus the direct models are the same.

Table 4: Mean (std) of RMSE for knowledge transfer from Scarab II to Spot. The Transfer x
signals the number of frozen layers is l = x during the retraining of the regressor. The
height map and color define the number of input channels as n = 1 for the underlying model
transferred from the Scarab II perceiving just the height map and n = 3 for the height map
+ color. The regressors are trained for 100 epochs for both Scarab II and Spot.

Height map Height map + color
Scenario Direct Transfer 0 Transfer 4 Transfer 0 Transfer 4

cd → Spot 2.14 (2.32) 0.57 (0.44) 0.65 (0.35) 0.60 (0.08) 0.92 (0.38)
cs → Spot 0.99 (0.76) 0.26 (0.18) 0.32 (0.23) 0.85 (0.18) 0.66 (0.07)
cv → Spot 0.84 (0.43) 2.14 (2.97) 1.48 (1.96) 0.60 (0.13) 0.60 (0.17)

Overall 1.32 (1.17) 0.99 (1.20) 0.82 (0.85) 0.68 (0.13) 0.73 (0.21)

6.2.1 Transfer between Spot and cs

In this subsection, we created a scenario to show a more detailed overview of the knowledge
transfer between the Spot and the Scarab II robot. The Scarab II utilizes the slope cost
computation method cs, and the width of the observation window is set to w = 8. The Spot’s
teacher cost assessment model is trained using all datasets collected, while the Scarab II’s
model is trained mainly on datasets from the Hall and the Chiffon part of the cave. The
direct and transferred regressors are tested using datasets from the Room area of the cave.
The regressors are trained for 300 epochs for both Scarab II and Spot, and the student’s direct
model achieved an RMSE of 4.4, while the transferred and retweaked model had shown an
RMSE of 1.86.

The progress of the regressors’ training after a prolonged training for 1000 epochs is
depicted in Figure 13a. The initial boost received thanks to the transfer is present during
the initial epochs of the training. After training for more than 400 epochs, the improvement
in loss stops, and the models achieve almost similar loss until the end of the training. The
RMSEs after training for 1000 epochs on the testing datasets are 2.05 and 2.01 for the direct
and transferred model, respectively, favoring the transferred model, suggesting both models
are somewhat overfitted to the training data after such prolonged training. Figure 13b shows
the measured and predicted costs on a single dataset where we can observe the improvement
achieved by the transferred model. However, even the transferred model cannot closely follow
the oscillations of the ground truth perceived during the traversal through the terrain.

Figure 14 illustrates the cost assessments on all observed surfaces and the height map with
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Figure 13: Cost assessment model’ results after transfer between heterogeneous robots.

a marked path of the robot during the collection of the dataset in Room part of the cave.
However, we present only a manual evaluation of the predictions since the robot traversed
only a tiny part of the observed environment. The transferred model assigns a higher cost
to the terrain edge, while the student’s model underestimates the traversal difficulty. Addi-
tionally, the transferred model suggests a more challenging cost in all areas of the observed
environment, which likely resembles the actual perceived cost more closely. Thus, the transfer
can presumably correct the predictions of the student’s direct model.
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Figure 14: Cost assessments from exteroceptive sensors after training for 300 epochs and the
perceived height map. The path of the robot is marked using red color.

23



Chapter 7

Conclusion

This thesis presented a transfer learning approach capable of sharing traversability assess-
ment models between heterogeneous robots. We construct a cost assessment model comprising
a neural network regressor for each robot, which can assess traversability from a given terrain
observation. The created cost assessment model is transferred from the teacher to the student
to achieve the desired transfer between the heterogeneous robots and thus facilitate faster
training of the traversability assessment model. During the transfer, a convolutional layer
is possibly added to make the transferred model prepared for the number of channels per-
ceived by the student’s exteroceptive sensors. The transferred model is then further trained
using the student’s collected data with possibly freezing some of the neural network’s layers.
A dataset to evaluate the proposed method is created using data collected by the hexapod
walker Scarab II and quadruped robot Spot, which differ in morphology.

The method is first tested on a scenario with various cost assessment models used by
the Scarab II robot simulating the differences in traversability perception. We examine the
possible improvements using different numbers of frozen layers during the retraining of the
transferred model. The best results were achieved with 0 and 4 frozen layers, and the trans-
ferred neural networks outperformed those directly trained just on the student’s dataset. The
method’s performance on a fully heterogeneous setup is tested by transferring knowledge
between the Spot and the Scarab II. As the utilized platforms possess heterogeneous sens-
ing capabilities, a convolutional layer is added to the created networks to accommodate the
model’s need for each robot’s perception. The performance of transferred models with an ad-
ditional convolutional layer is compared against the transfer setup without added layer. The
networks with added convolutional layer performed better when transferring knowledge from
Scarab II to Spot as they could utilize all information available more efficiently. However,
both approaches outperformed the direct baseline training using just the student’s dataset.
We conclude that it is feasible to improve the assessment of traversability using the transfer
of knowledge in the case of fully heterogeneous robots.
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