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Abstract
Verification and Validation remains a critical and costly process in the field of
aerospace. The current state-of-the-art relies on linear analysis and Monte-Carlo
to identify worst case behavior and the existence of unsafe trajectories in the
model. These methods remain applicable only to aircraft models with linear
feedback. In practice, aircraft dynamics are seldom linear. This is due to inherent
aerodynamic nonlinearities and actuators with rate/deflection saturation that
do not follow the first order model. In that sense, adaptive control remains
promising since it can, by design, reject exogenous disturbances and alleviate
shortcomings with modeling accuracy. However, the added complexity makes
it impossible to numerically validate using traditional methods. New state-
of-the-art tools are required. This thesis utilizes occupation measures and
LMI relaxations (called the moment sums of squares or Lasserre hierarchy) on
nonlinear aircraft models with nonlinear feedback and piecewise constraints.
This framework can be used in conjunction with Lyapunov analysis to impose
strict transient/terminal performance guarantees on the closed-loop. This thesis
provides the flight controls community with a powerful set of tools that can build
confidence in using nonlinear controllers to reduce fatalities and loss-of-control
events.

vii





Abstrakt
Validace a verifikace zákonu̇ řízení zu̇stává na poli leteckého a kosmického
pru̇myslu nadále kritickým a nákladným procesem. Nejmodernější postupy se
při identifikaci nejhorších scénářu̇ a existence riskantních trajektorií v rámci
modelu spoléhají na lineární analýzy a Monte-Carlo metody. Tyto metody lze
použít pouze pro modely letounu̇ s lineární zpětnou vazbou. V praxi je však
dynamika letounu jen zřídkakdy lineární. Du̇vodem jsou základní aerodynamické
nelinearity a a saturace akčních členu̇. V tomto smyslu představuje adaptivní
řízení slibnou metodu, jelikož již z principu vylučuje vnější vlivy a zmírňuje
nedostatky v rámci přesností modelu. Větší komplexita však znemožňuje
numerické ověření pomocí tradičních metod. Jsou vyžadovány nové a moderní
nástroje. Tato diplomová práce využívá okupační míry a relaxace LMI (nazývané
momentové součty čtvercu̇ nebo Lasserrova hierarchie) na nelineárních modelech
letounu̇ s nelineární zpětnou vazbou a částečnými omezeními. Tento rámec lze
ve spojení s Ljapunovovou analýzou použít k zavedení záruk stability a kvality
řízení. Tato práce poskytuje komunitě zabývající se řízením letounu̇ výkonnou
sadu nástroju̇, které mohou zvyšovat jistotu při používání nelineárního řízení a
redukovat tak počet obětí a situace ztráty kontroly nad řízením.
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List of Symbols
The following list specifies the most important symbols used in this doctoral
thesis. Symbols excluded from this list are defined later in the text. Note that
some symbols might have multiple meanings depending to the context.

Uppercase Latin letters
A system matrix
Ar reference system matrix
B system input matrix
Br reference system input matrix
C system output matrix
Cr reference system output matrix
D normalizing matrix
I identity matrix
K1 state feedback gain matrix
K2 state feedforward gain matrix
M measures of a cone
M+ positive measures of a cone
R+ set of real positive numbers
R set of real numbers
S wing area

[
ft2]

T total thrust [lbs]
VT total velocity [ft/s]

V(x(t)) Lyapunov candidate function of state vector x(t)
Ŵ(t) weight update law vector field
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Ŵi(t) ith element of weight update law vector field Ŵ(t)
P positive-definite solution matrix for Lyapunov equality
Q positive-definite tuning matrix for Lyapunov equality

Lowercase Latin letters
divf divergence operator of vector field f

f(x(t)) vector field of the state vector x(t)
f(x(t)) scalar function of the state vector x(t)

g gravitational constant
[
ft/s2]

k bounded uncertain parameter
m mass [slugs]
p(t) roll rate [deg/s]
q(t) pitch rate [deg/s]
q̄ dynamic pressure

[
lbs/ft2]

r(t) yaw rate [deg/s]
t time [sec]
4t sampling time step size [sec]

u(t) system control input vector
u(t) control scalar
x(t) system state vector
xp(t) system state vector for aircraft longitudinal dynamics
xq(t) system state vector for aircraft lateral dynamics
x(t) state scalar
xr(t) system reference vector
y(t) system output or state vector, depending on the context
y(t) state or output scalar, depending on context
z(t) unmodeled dynamics system state vector
z(t) unmodeled state system scalar

Uppercase Greek letters
Γ adaptation learning rate matrix

Φ
(
x(t)

)
known basis function of the state vector x(t)

Φ
(
x(t)

)
x partial derivative known basis function of the state vector xp(t) with

respect to state vector x(t)
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Lowercase Greek letters
α(t) angle of attack
β(t) sideslip angle
δa(t) aileron deflection angles
δa(t) elevator deflection angles
δr(t) rudder deflection angles
ε small positive constant
γ bounded uncertain parameter

λmax(M) the largest eigenvalue of matrix M
λmin(M) the smallest eigenvalue of matrix M

µ0 initial measure
µ occupation measure
µT terminal measure
φ(t) roll angle
θ(t) pitch angle
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1
Introduction

Verification and Validation (V&V) of the flight control system remains a critical
and costly process in aerospace. An error in the flight control software that
makes it beyond the testing phase can result in astronomical costs to correct.
Loss-Of-Control (LOC) event contribute to 35 percent of fatalities and 22
percent of accidents in commercial aviation [1]. Currently, flight control law
development, combined with software implementation and flight testing, now
comprise up to 60 percent of the development costs for a modern aircraft [2].

Traditional V&V for flight control laws typically involves Monte-Carlo. This
technique involves numerical step integration and random sampling of a hi-
fidelity closed-loop model to determine quality properties of the aircraft such
as Probability-Loss-Of-Control (PLOC). These events are simulated as they
would occur naturally, for each initial condition. Since the number of samples
required versus probability of an event happening are inversely proportional,
these simulations are prohibitively costly for medium to large scale systems.
NASA has developed RASCLE, which combines Monte-Carlo simulation and
search tools to only identify the worst case behavior of the plant [3].

For aircraft, there are two types of nonlinearities:

1. Aerodynamic nonlinearities at high angles of attack;

2. Rate and magnitude saturations in the control surfaces of the aircraft.

These nonlinearities can be strongly present, especially near the boundary
of the flight envelope for the aircraft. They can be invoked by weather, wind or
turbulence, changes to the dynamics of the aircraft, or extreme maneuvers.

Even with hi-fidelity modeling and extensive V&V testing, it is entirely
possible for an aircraft LOC event to circumvent detection. For example, LOC
caused by the falling-leaf mode on the F/A-18 led to crashes and a complete
rewriting of its baseline control laws [4].
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CHAPTER 1. INTRODUCTION

Modern control design methods typically involve Lyapunov stability analysis
[3]. From a certification perspective, a weakness to this approach is the
requirement for a polynomial representation of the plant. This stability analysis
usually represents worst case behavior in the aircraft dynamics. Furthermore,
Lyapunov analysis can only provide information about the long-range behavior
of the learning algorithm. For non-autonomous systems, which are very common
in aerospace, the best guarantee is infinite time convergence. From a real-world
perspective, it is of more importance to show the nominal system and flight
control law converge in finite time.

The increased demand for added functionality from the flight controller has
increased its overall size, complexity, and cost to certify. Although traditional
methods, such as Monte-Carlo, have consistently produced sufficiently safe and
reliable flight control laws, they will be insufficient for V&V of future intelligent
systems [5]. Other methods, such as planned test automation, have been proven
to reduce test hours but may not do so effectively for newer flight control system
requirements.

The current state-of-the-art is using sum-of-squares (SOS) hierarchies with
available off-the-shelf-software for V&V. A good implementation is described
in [4, 6] where the authors focus on SOS Lyapunov functions to approximate
the Region Of Attraction (ROA) of polynomial aircraft models and their linear
control laws. A drawback to this approach is that there exists no means of
guaranteeing control law convergence in finite time nor V&V of aircraft with
nonlinear controllers and/or actuator dynamics.

Model reference adaptive control (or MRAC for short) arises from the fact
that, without exception, every physical dynamical system is subject to exogenous
disturbances and/or inherent system uncertainties. These phenomena can arise
from exogenous forces such as wind and turbulences, or system uncertainties
inherited by idealized assumptions, linearization, and/or degraded modes of
operation. From a classical controls point of view, there remains a persistent
trade-off between modeling uncertainty and the performance of the controller.
MRAC bypasses that completely by matching the true nonlinear system to its
idealized reference model.

The origins of MRAC can be traced back to [7, 8]. It has since expanded
to include additional control modifications that either address uncertain
dynamical systems with specific structures or improve robustness and/or tracking
performance. See also books [9, 10, 11, 12, 13, 14, 15, 16] and relatively recent
surveys [17, 18, 19, 20] that outline the current state-of-the-art. Although the
architecture of these controllers can vary, each MRAC is made up of two basic
components: a reference system and a parameter adjustment mechanism.

The reference model is designed a priori. In other words, the reference model
represents the ideal linearized system we wish to follow. This desired closed
loop system is then compared to the true nonlinear model. This comparison

2
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drives the parameter adjustment mechanism in real time. Depending on the
structure of the uncertainties, the MRAC can drive the nonlinear system to
the trajectories of the reference model asymptotically, or at least remains in a
defined a priori bound.

One of the earliest of adaptive control in flight testing was the NASA X-15
[21]. NASA has also implemented a neural net intelligent flight control system
on a modified F-15 aircraft [22] and the X-36 tailless fighter [23]. The US Air
Force and Boeing have implemented a direct adaptive controller on the Joint
Direct Attack Munitions (JDAM) [24]. More recently, NASA has implemented
adaptive control for its Space Launch System [25].

There exist several challenges in development of MRAC for aerospace which
are discussed extensively in [3, 26]. For example, it is well known that adaptive
control subject to unmodeled dynamics can lead to instability [27].

As such, there exists formal no procedure for V&V of MRAC by the Federal
Aviation Administration for national air and space. New state-of-the-art tools
are required for V&V of adaptive controllers prior to flight testing.

The concept of using optimization techniques for synthesis of adaptive
control is relatively recent. Linear Matrix Inequalities (LMIs) have been used
compute find allowable bandwidths for MRAC with the presence of actuator
dynamics [28]. The results yield conservative bounds of convex Lyapunov-like
functionals with uncertain parameters, and cannot deal with nonlinearities such
as actuator rate/angle saturation. The convergence guarantees provided by
these solutions at best remain asymptotic.

1.1 Thesis Contributions
The scope of this work is to utilize occupation measures and LMI relaxations
(called the moment SOS or Lasserre hierarchy) for verification and validation of
polynomial aircraft models with adaptive control laws. This can be achieved with
off-the-shelf-software (such as Gloptipoly 3 [29]) and SDP solvers (MOSEK [30]
or SeDuMi [31]). The main advantage is a guaranteed finite time convergence
for non-autonomous systems. This is a significant improvement over Barbalat’s
Lemma [32], which informs us about the long range stability of a non-autonomous
closed-loop system.

By doing so, we can directly optimize over admissible trajectories to ensure
properties such as safety (all trajectories starting from a set of initial conditions
never reach a set of bad states), avoidance (at least one trajectory starting
from initial conditions will never reach a set of bad states), eventuality (at
least one trajectory starting from a set of initial conditions will reach a set of
good states in finite time), reachability (at least one trajectory starting from
a set of initial conditions will reach a set of good states in finite time), and
robustness (all trajectories from a set of initial conditions guarantee acceptable

3



CHAPTER 1. INTRODUCTION

performance subject to disturbances and/or unmodeled dynamics). This is
achieved by representing the complete closed-loop system as a polynomial
dynamical optimization problem. From there we can write it as its equivalent
infinite dimensional LP problem of measures. Lastly, we relax the LP problem
of measures and solve using truncated moment LMI sequences.

With our framework, the solutions provided in the proceeding sections are
primal since we are optimizing over admissible trajectories. The Lyapunov
certificate achieved in the MRAC design is also readily available. We also make
direct comparisons to solutions obtained using traditional Monte-Carlo methods.
The content and the contributions of each chapter are outlined below:

• chapter 3 presents V&V problem of a polynomial of the longitudinal
dynamics of an F-16 fighter aircraft complete with MRAC. We first
present the problem as a polynomial dynamical optimization problem
and then discuss the steps necessary to convert it into a feasible moment
SOS relaxations problem. Three cases with piecewise disturbances are
considered. Since the reference dynamics penalizes the problem with
additional states, we approximate the reference dynamics using piecewise
polynomials that depend on time.

• chapter 4 introduces a novel method approximating the reference
trajectory in MRAC by exploiting sparsity for Ordinary Differential
Equations (ODEs). We then validate a lateral F-16 polynomial model
with MRAC with piecewise disturbance at large roll angle. The main
contribution of this paper is the validation of a nonlinear controller with
a large number of states.

• chapter 5 considers the V&V problem of model reference adaptive control
in the presence of unmodeled flexible dynamics. Since unmodeled dynamics
can adversely affect the closed-loop stability with MRAC, they cannot
be safely neglected. However, uncertain parameters have an explicit
representation in the space of occupation measures. In other words, In
our example, an F-16 with linear/polynomial longitudinal dynamics and
MRAC is considered with uncertain parameters coupling its longitudinal
dynamics to its aeroelastic modes. In our results, we show that there exist
sufficiently small parameters that do not incite unsafe trajectories.

• chapter 6 presents a problem of uncertain higher order actuator dynamics
in adaptive control. It is well known that MRAC with the presence
degraded actuator performance can lead to closed-loop instability and
control departure. An F-16 longitudinal model is considered with higher
order actuator dynamics containing uncertain parameters. These uncertain
parameters are expressed explicitly in the space of occupation measures.

4
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Then we show that the MRAC can tolerate small uncertainties in the
damping and natural frequency of the actuator.
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2
Theoretical preliminaries

We begin by briefly stating the standard notation where R denotes the set of
real numbers, Rn denotes the set of n× 1 column vectors, Rn×m denotes the set
of n×m real matrices, R+ denotes the set of positive real numbers, ‖·‖2 denotes
the Euclidean norm, λmin(A) (respectively, λmax(A)) denotes the minimum
(respectively, maximum) eigenvalue of a real and square matrix A ∈ Rn×m. We
also use the following definitions taken from [33]. If X is a compact subset of Rn,
C (X) denotes the space of continuous functions on X and M (x) (respectively,
M+(X)) denotes the cone of (respectively, non-negative) measures. Since any
measure µ ∈M (X) can be viewed as an element of the dual space C (X), the
duality pairing of µ on a test function v ∈ C (x) is∫

X

v(z)µ(z). (2.1)

For any measure µ ∈M+(X), we denote its support as spt(µ). A probability
measure is a non-negative measure whose integral is exactly one.

2.1 Polynomial Dynamical Optimization
Consider the nonlinear ordinary differential equation (ODE)

ẋ(t) = f(t,x(t)) (2.2)

for all t ∈ [0, T ] and given terminal time T > 0, where x : [0, T ]→ Rn is a time
dependent state vector, and vector field f : [0, T ]× Rn → Rn is a smooth map.

7
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Consider now the following polynomial dynamical optimization problem

J = inf
hT , h

hT (T,x(T )) +
∫ T

0
h(t,x(t))dt

s.t. ẋ(t) = f(t,x(t)), x(t) ∈ X, t ∈ [0, T ]
x(0) ∈ X0, x(T ) ∈ XT

(2.3)

with given polynomial dynamics f ∈ R[t,x]n and costs h, hT ∈ R[t,x], and state
trajectories x(t) constrained in the compact basic semialgebraic set X = {x ∈
Rn : pk(x) ≥ 0, k = 1, . . . , nX} for given polynomials pk ∈ R[x]. Finally, the
initial and terminal states are constrained in the compact basic semialgebraic
sets X0 = {x ∈ Rn : p0k(x) ≥ 0, k = 1, . . . , n0}, and XT = {x ∈ Rn :
pTk(x) ≥ 0, k = 1, . . . , nT } ⊂ X for given polynomials p0k, pTk ∈ R[x].

The evolution of a family of trajectories solving (2.2) is formalized as follows:
First consider one admissible trajectory x on t ∈ [0, T ], we define its occupation
measure (denoted µ(·|x)) ∈M+([0, T ]×X) as

µ(A×B|x) ,
∫ T

0
IA×B(t,x(t))dt (2.4)

for all subsets A×B in the Borel σ-algebra of [0, T ]×X, where IA×B(·) is the
indicator function on a set A×B and is defined as the following: The indicator
function of a set A is the function x 7→ IA(x) such that IA(x) = 1 when
x(t) ∈ A and IA(x) = 0 when x(t) /∈ A. The quantity µ(A×B|x) corresponds
to the amount of time the graph (for example, as illustrated in Fig. 2.1) of
its trajectory, (t,x(t)), spends in A×B. Similarly, the initial measure can be
defined as

µ0(A×B) , IA×B(0,x(0)) (2.5)

and its terminal measure

µT (A×B) , IA×B(T,x(T )). (2.6)

Although the cost function in (2.3) can potentially be nonlinear, it becomes
linear when it is formulated with occupation measures. In fact, a similar analog
holds true for the dynamics of the system. In other words, the occupation
measure associated with an admissible pair satisfy a linear equation over
measures [33]. Conversely, all supported measures correspond to the solutions
of (2.3).

8
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A

x(t)

x(0) t1

t2
t3

t4

x(T )

Figure 2.1: Occupation Measure µ([0, T ]×A|x) = (t2 − t1) + (t4 − t3)

The nonconvex optimization problem (2.3) can be expressed as a convex
infinite dimensional LP problem of measures

J∞ = inf
∫
hT (T,x(T ))dµT +

∫
h(t,x(t))dµ

s.t. ∂µ

∂t
+ divfµ+ µT = µ0∫
µ0 = 1

(2.7)

where div is the divergence operator and the infimum is with respect to the
occupation measure µ ∈M+([0, T ]×X), terminal measure µT ∈M+({T}×XT ),
and terminal time T > 0. It may happen that minimum in (2.7) is strictly less
than the infimum in (2.3), so we make the following critical assumption:

Assumption 2.1.1. There is no relaxation gap between (2.7) and (2.3). In
other words, J∞ = J .

Since we assume X0, X, and XT are compact, the infinite dimensional
LP problem 2.7 can be approximated as the finite dimensional moment LMI
relaxations problem

Jd = inf
3∑
i=1

∑
α

ciαyiα

s.t.
3∑
i=1

∑
α

aijαyiα = bj , j = 1, . . . ,m

M(yi) ≥ 0, M(pik yi) ≥ 0, i = 1, . . . , 3, k = 1, . . . , ni,

(2.8)

where the three moment sequences yiα, i = 1, . . . , 3 correspond to the
initial, terminal, and occupation measures, respectively,. The constraints∑3
i=1
∑
α aijαyiα = bj , j = 1, . . . ,m model the linear transport equations on

the moments of the measures. Moment matrix M(yi) is positive semidefinite
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symmetric and linear in y. Symmetric matrices M(pik yi) are also positive
semidefinite and linear in y. They are called the localizing matrices. They ensure
that the moments correspond to measures with the appropriate supports. The
LMI constraints of this problem are truncated, or relaxed versions of the infinite
dimensional problem LMI constraints 2.7, using Lasserre’s LMI hierarchy [34].
When relaxation order d ∈ N tends to infinity, it holds that Jd ≤ Jd+1 ≤ J∞
and limd→∞ Jd = J∞.

2.2 Piecewise Polynomial Dynamical Optimization
In this section we extend the results from section 2.1 to a case where the dynamics
of the polynomial from (2.3) are piecewise [35]. Consider the following dynamical
optimization problem with piecewise polynomial differential constraints

J = inf
hT , h

hT (T,x(T )) +
∫ T

0
h(t,x(t))dt

s.t. ẋ(t) = fj(t,x(t)), x(t) ∈ Xj , j = 1, . . . , N
x(0) ∈ X0, x(T ) ∈ XT , t ∈ [0, T ],

(2.9)

with given polynomial dynamics fj ∈ R[t,x]n, j = 1, . . . , N and costs h, hT ∈
R[t,x], and state trajectory x(t) constrained in compact basic semialgebraic
sets Xj . We assume that the state space partitioning sets, or cells Xj , are such
that all of their respective intersections have zero Lebesgue measure, and they
belong to a given compact semialgebraic set X. Initial and terminal states are
constrained in a given compact basic semialgebraic sets X0 and XT .

We then extend the LP problem framework to several measures µj , one
supported on each cell Xj , so that the global occupation measure is

µ =
N∑
j=1

µj . (2.10)

The new measure LP problem reads as

J∞ = inf
∫
hT (T,x(T ))dµT +

N∑
j=1

∫
h(t,x(t))dµj

s.t.
N∑
j=1

(
∂µj
∂t

+ divfjµj

)
+ µT = µ0∫

µ0 = 1,

(2.11)

and it can be solved numerically with the hierarchy of LMI relaxations as shown
in section 2.1.
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2.3 Piecewise Polynomial Dynamical Optimization
with Parsimony

The nonconvex optimization problem (2.9) can be approximated as a generic
convex infinite dimensional LP problem of measures using parsimony

J∞ = inf
∫
hT (T,x(T ))dµT +

∫
h(t,x(t))dµ

s.t.
(
∂µ

∂t
+ divfjµj

)
+ µT = µ0(

∂ν

∂t
+ divfkνk

)
+ νT = ν0

N∑
j=1

πt,y#µj =
M∑
k=1

πt,y#νk∫
µ0 = 1,

∫
ν0 = 1,

(2.12)

where div is the divergence operator and the infimum is with respect to the
occupation measure µ, ν ∈M+([0, T ]×X), initial measure µ0, ν0 ∈M+({0}×
X0), terminal measure µT , νT ∈M+({T} ×XT ), terminal time T > 0. Each
measure µj (resp. νk) supported on their respective cell Xj (respectively, Vk)
so that the global occupation measure becomes

µ =
N∑
j=1

µj , ν =
M∑
k=1

νk,

with marginal πt,y#µ (respectively, πt,y#ν) of measure µ (respectively, ν) with
respect to variables t, y. As noted in [36], this approach allows flexibility
with the computational limit caused by the largest moment SDP block. With
appropriate partitioning strategies, we can solve problems with medium to large
number of states.

2.4 Standard Model Reference Adaptive Control
We now briefly state the standard model reference control problem. Consider
the uncertain dynamical system given by

ẋ(t) = Ax(t) +B
(
u(t) + ∆(x(t))

)
, x(0) = x0, (2.13)

where x(t) ∈ Rn is is the state vector available for feedback, u(t) ∈ Rm is
the control input restricted to the class of admissible controls consisting of

11
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measurable functions, A ∈ Rn×n is a known system matrix, B ∈ Rn×m is
a known input matrix, and ∆(x(t)) : Rn → Rm. For well-posedness of the
problem, we also assume the pair (A,B) is controllable.
Assumption 2.4.1. It is assumed that each individual component ∆i(x(t)) of
∆(x(t)) is a linear combination of N known locally Lipschitz continuous basis
functions Φ

(
x(t)

)
. In other words,

∆(x(t)) = WTΦ
(
x(t)

)
(2.14)

where W ∈ RN×m is an unknown but bounded weight matrix and Φ
(
x(t)

)
=[

Φ
(
x(t)

)
1 . . . Φ

(
x(t)

)
N

]
is a known basis function.

We are interested in the design of a combined nominal and adaptive feedback
control law

u(t) = un(t) + ua(t) (2.15)
that asymptotically tracks the reference state vector xr(t) ∈ Rn of the desired
closed-loop reference model

ẋr(t) = Arxr(t) +Brc(t) (2.16)

where Ar ∈ Rn×n is Hurwitz, Br ∈ Rn×m is the command input matrix,
c(t) ∈ Rm is a given piecewise continuous bounded command signal.
Assumption 2.4.2. There exists an unknown matrix K1 ∈ Rm×n and known
matrix K2 ∈ Rm×m such that Ar = A −BK1 and Br = BK2 hold.

Now subjecting (2.13) to Assumptions 2.4.1 and 2.4.2 yields

ẋ(t) = Arx(t) +Brc(t) +B
(
ua(t) + WTΦ

(
x(t)

))
+Brc(t) (2.17)

where W remains unknown. Our adaptive feedback law is chosen to dominated
the system matched uncertainties such that

ua(t) = ŴT (t)Φ
(
x(t)

)
(2.18)

where Ŵ(t) ∈ RN×m follows the weight update law
˙̂W(t) = Γ

(
Φ
(
x(t)

)
eT (t)PB + ˙̂Wm(t)

)
(2.19)

with error dynamics e(t) = x(t) − xr(t), learning rate Γ ∈ RN×N adaptive
control modification term ˙̂Wm(t) (for example, the error modifcation [37] or
adaptive loop recovery [38]), and unique positive definite P ∈ Rn×n that satisfies
the Lyapunov equality

ATr P + PAr +Q = 0, Q ≥ 0. (2.20)

It is well known for any Q ≥ 0 that Ŵ(t) remains bounded and limt→∞ e(t) = 0.
Theorems that highlight the boundedness and closed-loop stability of this
configuration can be found in [32].
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3
F-16 Longitudinal

Dynamics with MRAC

3.1 INTRODUCTION
Traditional V&V methods are costly and inefficient. A popular method is
Monte-Carlo, which is widely used in V&V because it is very robust. However,
it becomes intractable when there are large uncertainties in the state space or
when more sophisticated control laws are used. It is presumed that traditional
V&V methods, such as Monte-Carlo, will be insufficient for intelligent systems
[5].

Using moment SOS hierarchies with available off-the-shelf-software is a
state of the art technique for V&V, see e.g. [4, 6] where the authors focus on
polynomial dynamical models and polynomial SOS Lyapunov functions. More
recently, this V&V methodology is used for assessing robust stability of space
launcher control laws within the SAFE-V project [40]. However, these V&V
techniques have been thus far limited to cases where there are a small number
of states and/or simple controllers.

MRAC has been researched extensively by the aerospace community for
the last five decades. Examples of successful flight testing include the X-36
Tailless fighter [23] and the JDAM guided munitions [24]. One of the main
benefits of adaptive controllers is their capability of handling adverse conditions
and/or inherent uncertainty in the aircraft dynamics. The main barrier to the

Content of this chapter appeared in the Proceedings of the 58th IEEE Conference on
Decision and Control [39].
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application of adaptive controllers is that there exists no formal procedure by
the Federal Aviation Administration (FAA) to validate MRACs for national
air and space [3]. One research direction is extending Monte-Carlo methods to
adaptive control systems. The current state of the art is to search for “worst
case” operating points within the flight envelope. However, there is little room
for uncertainty and complexity without leaving large areas of the state space
unexplored or rendering the V&V problem intractable.

Our main goal is to validate existing MRAC and state feedback architecture
for a nonlinear aircraft model in the presence of uncertainties using off-the-shelf-
software. In particular, we are interested in qualitative properties such as safety
(all trajectories starting from a set of initial conditions never reach a set of bad
states), avoidance (at least one trajectory starting from initial conditions will
never reach a set of bad states), eventuality (at least one trajectory starting
from a set of initial conditions will reach a set of good states in finite time),
reachability (at least one trajectory starting from a set of initial conditions
will reach a set of good states in finite time), and robustness (all trajectories
from a set of initial conditions guarantee acceptable performance subject to
disturbances and/or unmodeled dynamics).

As sketched in chapter 2, the procedure follows directly from [40], see also
[33] for a broader perspective. We first rephrase our validation problem as a
robustness analysis problem and then as a nonconvex nonlinear optimization
problem over admissible trajectories. Then the problem is expressed equivalently
as an infinite dimensional linear programming (LP) problem by introducing
occupation measures supported over admissible trajectories. We finally relax the
infinite dimensional LP problem of measures to a finite dimensional linear matrix
inequality (LMI) problem of moments. The solutions to our V&V problem are
primal in the sense that we optimize directly over the system trajectories. The
well-established Lyapunov certificates can also be retrieved from the dual SOS
LP problem.

The main contributions of this chapter are as follows:

• We start with the familiar longitudinal polynomial F-16 model completed
with the closed-loop dynamics of the MRAC augmentation obtained
by solving directly the Lyapunov equation. Then the existing control
architecture is simplified by relaxing MRAC control law. The absolute
value contained within the adaptation law is replaced with a quadratic
function. Additionally, the total number of adaptive states is reduced to
one. This is considered desirable for practical implementation. We also
demonstrate the validity of this approach with our V&V framework.

• Then we use our V&V framework to provide numerical certificates for
various flight conditions of interest in section 3.3, which include: Reduced
control effectiveness, matched uncertainties, and adverse changes in the

14
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flight dynamics. Disturbances and nonlinearities that are otherwise
difficult to model can be addressed explicitly. For comparison, numerical
certificates are given for an existing baseline LQR controller without the
MRAC augmentation.

• For comparison, Monte-Carlo analysis is also done for all of our flight
conditions of interest. We also provide an example where a region of
instability caused by certain combinations of parameters may not be
detected if the state space is not sufficiently explored with simulation. We
also show how our V&V framework can detect these unsafe trajectories
without additional computation time.

• Our new V&V framework reduces a complicated control law validation
problem to numerically solving a simple moment LMI relaxations problem
which is solvable directly with off-the-shelf-software (namely, Gloptipoly
3 for MATLAB [29]) and a SDP solver (such as MOSEK [30] or SeDuMi
[31]).

The V&V framework developed in [4] and [6] is restrictive. It can only be used
to solve problems that contain autonomous polynomial systems. Convergence
in finite time also cannot be guaranteed. Conversely, the use of moments in our
V&V framework enables us to deal with systems that have non-autonomous
piecewise polynomials. We can further show in our numerical examples that all
states, including the reference system tracking errors, converge to the origin
in finite time. This result is significantly better than existing asymptotic
guarantees provided by using Barbalat’s Lemma, which describes the stability
of non-autonomous ODEs, for the closed-loop system [32].

The organization of this chapter is as follows: section 3.2 discusses the
nonlinear polynomial F-16 model we developed for purposes of validation and
the control system architecture, and section 3.3 contains the main numerical
results. Lastly, section 3.4 contains our conclusions with a small discussion on
future results.

3.2 F-16 SHORT PERIOD DYNAMICS
The various parameters used for implementing the longitudinal F-16 aircraft
can be found in Table 3.1:
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Table 3.1: Properties of the Aircraft Model

Parameter Values
Mass m 636.94 slugs
Wing area S 300.0 ft2

Mean aerodynamic chord c̄ 11.32 ft
Reference center of gravity location ∆ 0.35c̄ ft
Thrust T 8000 lbf
Total velocity VT 502 ft

s
Dynamic Pressure q̄ at 0 ft 299.0027 ft
Gravitational pull of the Earth g 32.17 ft

s2

Pitch-axis moment of inertia Jy 55814 slug · ft2

For an F-16 traveling at wings-level steady-state flight, the longitudinal
short period mode [41], with elevator input δe(t) ∈ R, can be expressed as

α̇(t) =
(
1 + q̄Sc̄

2mV 2
T

(Czq(α(t))cos(α(t))

− Cxq(α(t))sin(α(t))
)
q(t)

+ q̄S

mVT

(
Cz(α(t), δe(t), β(t))cos(α(t))

− Cx(α(t), δe(t))sin(α(t))
)

− T

mVT
sin(α(t)) + g

VT
cos(θ(t)− α(t))

q̇(t) = q̄Sc̄

2JyVT
(
c̄Cmq(α(t)) + ∆Czq(α(t))

)
q(t)

+ q̄Sc̄

Jy

(
Cm(α(t), δe(t)) + ∆

c̄
Cz(α(t), δe(t), β(t))

)

(3.1)

where α(t) is the angle of attack, q(t) is the pitchrate, θ(t) is the pitch angle,
and β(t) is the sideslip. We assume that the roll rate and yaw rate of the aircraft
are minimal. We also assume that for small angles (θ(t) ≈ 0) the velocity of the
aircraft remains constant and that the axis of thrust coming from the engine is
fixed.

The aerodynamic coefficients Czq(α(t)), Cxq(α(t)), Cx(α(t), δe(t)), Cmq(α(t)),
Cm(α(t), δe(t)), and Cz(α(t), δe(t), β(t)) are approximated by their polynomials
using aerodynamic data taken from [42].

The vehicle angle of attack was selected to represent the system controlled
output y(t) = α(t). Thus, the control goal is to asymptotically track any bounded
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set point command c(t) = αcmd(t), in the presence of system uncertainties. Let

ey(t) = α(t)− c(t) (3.2)

be the system output tracking error. Augmenting (3.1) with the integrated
output tracking error

ėy,int(t) = ey(t) = α(t)− c(t) (3.3)

yields the extended closed-loop dynamics.

3.2.1 Model Reference Adaptive Control with Adaptive Loop
Recovery

We make substantial use of adaptive control framework in this subsection,
and the unfamiliar reader may wish to consult [43, 38]. Consider augmented
longitudinal flight model (3.1) to (3.3) in the form of

ẋ(t) = Ax(t) +BΛ(u(t) + ∆(x(t)))
+ g(x(t), δe(t), β(t)) +Brc(t), x(0) = x0 (3.4)

where x(t) =
[
ey,int(t) α(t) q(t)

]
, u(t) = δe(t), A ∈ R3×3 is known, B ∈

R3×1 is known, Λ ∈ R+ is an unknown control effectiveness, Br ∈ R3×1 is a
known command input matrix, c(t) is a given piecewise continuous bounded
command, g(x(t), δe(t), β(t)) ∈ R3×1 contains all the higher order polynomials,
and ∆(x(t)) ∈ R represents additional unknown matched disturbances.

Next, consider the reference system capturing the desired, ideal closed-loop
dynamical performance given by

ẋr(t) = Arxr(t) +Brc(t), xr(0) = xr0, (3.5)

where xr(t) ∈ R3 is the reference state vector and Ar ∈ R3×3 is the reference
system matrix (we shall assume that it is Hurwitz).

The objective of the model reference adaptive control problem is to
construct an adaptive feedback control law u(t) such that the state vector
x(t) asymptotically follows the reference state vector xr(t). Now consider the
augmented adaptive feedback control law given by

u(t) = un(t) + ua(t), (3.6)

where un(t) ∈ R is control signal generated by the nominal feedback control law
and ua(t) ∈ R is related to the adaptive feedback control law. Additionally, let
the nominal feedback control law be given by

un(t) = −K1x(t), (3.7)
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where K1 ∈ R1×3 is the nominal feedback gain such that Ar = A−BK1. Next,
let the adaptive feedback control law be given by

ua(t) = −ŴT (t)Φ
(
x(t)

)
, (3.8)

where Φ
(
x(t)

)
∈ R3×1 is a known basis function and Ŵ(t) ∈ R3×1 is the

estimate of W (t) satisfying the weight update law

˙̂W(t) = Γ
(
Φ
(
x(t)

)
eT (t)PB + κwΦ

(
x(t)

)
xΦ
(
x(t)

)T
x Ŵ(t)

− ke|eT (t)PB|Ŵ(t)
)
, (3.9)

where Γ ∈ R3×3 is a positive definite learning rate matrix, ke > 0 is the e
modification gain, kw >> 1 is the adaptive loop recovery gain, e(t) , x(t)−xr(t)
is the system error state vector, Φ

(
x(t)

)
x = ∂

∂xΦ(x) ∈ R3×1, and positive
definite P ∈ R3×3 is the unique solution to the Lyapunov equation

0 = ATr P + PAr +Q, (3.10)

where Q ∈ R3×3 is positive definite and can viewed as an additional learning
rate. Note that because Ar is Hurwitz, it follows from the converse Lyapunov
theory [32] that there exists a unique P satisfying (3.10) for a given R.

This controller is the same as described in chapter 2 with the inclusion
of an unmatched uncertainty. Theorems that highlight the boundedness of
the closed-loop system errors e(t) and W̃ ,W − Ŵ(t), for the adaptive loop
recovery and error modification, can be found in [38, 37]. In practice, Lyapunov
analysis only informs us about the ultimate stability of the closed-loop system
[3]. For non-autonomous systems in particular, the theoretical performance
of the MRAC provided by the Lyapunov analysis is strictly asymptotic. This
proof usually employs Barbalat’s Lemma with the prerequisite assumptions
[32]. It is interesting to note that, for our main results in section 3.3, all states
converge to the origin in finite time.

Reference matrix Ar and the corresponding baseline LQR feedback gains
K1 =

[
−10.0000 −10.8756 −6.0565

]
were taken from [44]. To reduce the

number of constraints for the optimization problem, we simplify the absolute
value function in (3.9) such that

˙̂W(t) = Γ
(
Φ
(
x(t)

)
eT (t)PB + κwΦ

(
x(t)

)
xΦ
(
xT (t)

)
xŴ(t)

− ke
[
eT (t)PB

]2 Ŵ(t)
)
. (3.11)

We will demonstrate the validity of this approach in section 3.3. To help
visualize the longitudinal controller, a block diagram is provided in Fig. 3.1.
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∫Nonlinear F-16 Short Period

−K1

ẋr(t) = Arxr(t) +Brr(t)

˙̂
W (t) = Γ

(
Φ
(
x(t)

)
eT (t)PB + κwΦ

(
x(t)

)
xΦ
(
x(t)

)T
x Ŵ (t)

− ke
[
eT (t)PB

]2
Ŵ (t)

)ua(t) = −ŴT (t)Φ
(
x(t)

)

x(t)

+

e(t)

un(t)
+

Ŵ (t)

ua(t)

+

α(t) +

q(t)
u(t)

r(t) −

xr(t) −
ẋr(t) = Arxr(t) +Brr(t)

Figure 3.1: Longitudinal MRAC Block Diagram

3.3 NUMERICAL EXAMPLES
We now present the main numerical results. For the numerical examples
used throughout this section, we use the same MRAC configuration with
Q = diag(

[
0.1 100 100

]
), Γ = diag(

[
0 2000 0

]
), ke = 0.001, and kw = 12.

For sake of convenience, we also assume Ŵ (0) = 03×1.
All states, including the time domain, must be normalized on the interval[

−1 1
]
. For this we use normalizing matrix D = diag(

[ 1
10

1
30

1
50

1
30
]
)

and given terminal time T . We write all of normalized our state equations,
complete with our augmented feedback (3.6) and weight update laws (3.11), in
the compact form

ẋopt(t) = TDf
(
t,D−1xopt(t),Λ(u(t) + ∆(x(t))), β(t)

)
, (3.12)

where xopt(t) =
[
ey,int(t) α(t) q(t) ŴT (t)

]
. We can interpret (3.12) as the

collection of all admissible trajectories we wish to optimize over.
Our objective is to find the initial state maximizing the norm of the terminal

state. A concave quadratic term J = −[c(t)− α(T )]2 is used. If we can certify
that for every chosen initial state xopt(0) ∈ X0, where X0 is the box X0 ,[
−ε, ε

]
×
[
−10, 10

]
π

180 ×
[
−10, 10

]
π

180 ×
[
−ε, ε

]
, ε << 1, such that all

trajectories remain bounded in the box X ,
[
−10, 10

]
π

180 ×
[
−30, 30

]
π

180 ×[
−50, 50

]
π

180 ×
[
−30, 30

]
, until they reach final state belonging to a set

XT , {J ≤ 3 · 10−3} ⊂ X, then the control law is validated. The choice of
initial conditions represent reasonable maneuvers of the aircraft.

Three cases are considered for control validation:

• c(t) = 0, Λ = 1, ∆(x(t)) = 0, β(t) = 0
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• c(t) = 0, Λ = 0.4, ∆(x(t)) = d(α(t)), β(t) = 0

• c(t) = 5, Λ = 0.4, ∆(x(t)) = 0, β(t) = 15α(t) + 0.1

where ∆(x(t)) ∈ R can be viewed as unknown nonlinearities in the aerodynamic
Z-force and pitching moments, and β(t) is the sideslip.

We evaluate each case using LQR feedback with and without (ua(t) = 0) the
MRAC augmentation. The main results are compared with upper bounds for J
obtained directly using Monte-Carlo on the same F-16 polynomial mode. For
the setup, we used Newton’s Method (step time 0.0001 s) and evenly spaced
initial conditions for the nested loops.

3.3.1 First Case
For this case, we use command signal c(t) = 0, reference signal xr(t) = 03×1,
final time T = 10, and the control effectiveness Λ = 1. Under normal flight
conditions we also assume ∆(x(t)) = 0, β(t) = 0. The polynomial dynamical
optimization problem (2.3) becomes

J = inf
α(T )

− [c(t)− α(T )]2

s.t. ẋopt(t) = TDf
(
t,D−1xopt(t), u(t)

)
xopt(t) ∈ X, t ∈ [0, 1]
xr(t) = 03×1

xopt(0) ∈ X0, xopt(T ) ∈ XT ,

(3.13)

with given polynomial dynamics f ∈ R[t, x]. The primal problem on measures
(2.7) and finite dimensional moment LMI relaxations problem are modified
accordingly.

Fig. 3.2 compares the simulations of the LQR with and without the MRAC
augmentation. The maximum upper bounds were obtained by taking the
maximum absolute value of all the trajectories at α(10). For the LQR with and
without MRAC, they were determined as J = 2.37× 10−6 and J = 3.92× 10−16,
respectively,.

With Gloptipoly 3 and the SDP solver MOSEK, we obtained the following
sequence of upper bounds in Table 3.2 using the cost function from (3.13). Both
control laws are validated since all initial conditions reach the pre-specified set
within finite time.

3.3.2 Second Case
For this case, we use command signal c(t) = 0, reference signal xr(t) = 03×1,
final time T = 10, and the reduced control effectiveness Λ = 0.4. We also let
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β(t) = 0 and ∆(x(t)) = d(α(t)) is a step function centered at α(t) = 0 with the
width |α(t)| ≤ 0.0233.

To include the disturbance, we reformulate the optimization problem with the
system dynamics defined as locally affine functions in three cells Xj , j = 1, 2, 3
corresponding respectively, to the regimes of the disturbance X1 , {xopt(t) ∈
R4 : |α(t)| ≤ 0.0233}, ẋopt(t) = TDf1

(
t,D−1xopt(t),Λ(u(t) + 1)

)
, X2 ,

{xopt(t) ∈ R4 : α(t) ≤ −0.0233}, ẋopt(t) = TDf2
(
t,D−1xopt(t),Λu(t)

)
, and

X3 , {xopt(t) ∈ R4 : α(t) ≥ 0.0233}, ẋopt(t) = TDf3
(
t,D−1xopt(t),Λu(t)

)
.

The polynomial dynamical optimization problem (2.3) becomes

J = inf
α(T )

− [c(t)− α(T )]2

s.t. ẋopt(t) = TDfj
(
t,D−1xopt(t),

Λ(u(t) + d(α(t)))
)

xopt(t) ∈ Xj , j = 1, . . . , 3, t ∈ [0, 1]
xr(t) = 03×1

xopt(0) ∈ X0, xopt(T ) ∈ XT ,

(3.14)

with given polynomial dynamics fj ∈ R[t, x]. The primal problem on measures
(2.7) and the finite dimensional moment LMI relaxations problem are modified
accordingly.

Numerical simulations can be found in Fig. 3.3. The maximum upper
bounds were found by taking the maximum absolute value of all the trajectories
at α(10). For the LQR with and without MRAC, they were determined as
J = 1.50× 10−3 and J = 1.64× 10−16, respectively,.

We obtained the following sequence of monotonically decreasing upper
bounds Jd, d = 1, . . . , 5 in Table 3.3. The LQR with MRAC achieves a
consistent lower maximum bound and reaches the set by the fourth relaxation
order.

3.3.3 Third Case
For the final case we use final time T = 30 and the reduced control effectiveness
Λ = 0.4. We also assume ∆(x(t)) = 0. For command signal c(t) = 5, we have
to build a reference signal xr(t). Since the dynamics of xr(t) are purely linear,
we can approximate their states via piecewise polynomials over a partitioned
time domain. We also include sideslip buildup β(t) = 15α(t) + 0.1 as it appears
in Cz(α(t), δe(t), β(t)).

To include the reference trajectory dynamics xr(t), we reformulate the
optimization problem with the system dynamics defined as locally affine
functions in three cells Xj , j = 1, 2, 3 corresponding to the first time
partition X1 , {t ∈ R : 0 ≤ t ≤ 3},xr(t) = P1(t), with trajectories
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Table 3.2: Gloptipoly 3 + MOSEK Upper Bounds for Case 1
LQR LQR + MRAC

Rel Ord Upper Bnd J CPU [s] Upper Bnd J CPU [s]

1 2.74 × 10−1 2.54 2.74 × 10−1 2.29
2 1.59 × 10−1 2.13 7.61 × 10−2 7.06
3 6.67 × 10−5 6.71 3.25 × 10−5 5.31 × 101

4 3.72 × 10−6 2.34 × 101 4.96 × 10−6 3.53 × 102

5 1.25 × 10−6 1.01 × 102 1.47 × 10−6 2.58 × 103

ẋopt(t) = TDf1
(
t,D−1xopt(t),Λu(t), β(t)

)
, the second time partition X2 ,

{t ∈ R : 3 ≤ t ≤ 9},xr(t) = P2(t), ẋopt(t) = TDf2
(
t,D−1xopt(t),Λu(t), β(t)

)
,

and the final time partition X3 , {t ∈ R : 9 ≤ t ≤ T},xr(t) = P3(t), ẋopt(t) =
TDf3

(
t,D−1xopt(t),Λu(t), β(t)

)
. The polynomial dynamical optimization

problem (2.3) becomes

J = inf
α(T )

− [c(t)− α(T )]2

s.t. ẋopt(t) = TDfj
(
t,D−1xopt(t),Λu(t), β(t)

)
xopt(t) ∈ Xj , j = 1, . . . , 3, t ∈ [0, 1]
xr(t) = Pj(t)
xopt(0) ∈ X0, xopt(T ) ∈ XT ,

(3.15)

with given polynomial dynamics fj ∈ R[t, x]. The primal problem on measures
(2.7) and the finite dimensional moment LMI relaxations problem are modified
accordingly.

Numerical simulations can be found in Fig. 3.3. The maximum upper bounds
were found by taking the maximum absolute value of all the trajectories at α(30).
Some of the trajectories of the standalone LQR were omitted, because they
were unstable. In particular, the trajectories beginning with large combinations
of α(0) and q(0) values are unbounded. The upper bound for the LQR without
MRAC is J =∞, and with the MRAC it is J = 5.18× 10−15.

We obtained the following sequence of monotonically decreasing upper
bounds Jd, d = 1, . . . , 5 in Table 3.4. The standalone LQR upper bound remains
large. Conversely, the LQR with MRAC upper bound obtains a sufficiently
small value by the fourth relaxation order.

3.4 CONCLUSIONS AND FUTURE WORKS
In this chapter, we validated both LQR and MRAC control laws using moment
LMI relaxations and off-the-shelf-software. An F-16 polynomial model was
implemented to ensure that the MRAC model matches the LMI framework.
We took steps to simplify the MRAC architecture for practical implementation.

22



3.4. CONCLUSIONS AND FUTURE WORKS

0 2 4 6 8 10
−10

−5

0

5

10

e y
,i

n
t(
t

)
LQR

0 2 4 6 8 10

−10

0

10

α
(t

)

0 2 4 6 8 10
−50

0

50

t [sec]

q
(t

)

0 2 4 6 8 10
−10

−5

0

5

10

LQR + MRAC

0 2 4 6 8 10

−10

0

10

0 2 4 6 8 10
−50

0

50

t [sec]

0 1 2 3 4 5 6 7 8 9 10

−20

0

20

t [sec]

Ŵ
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Figure 3.2: Numerical Results for Case 1

Table 3.3: Gloptipoly 3 + MOSEK Upper Bounds for Case 2
LQR LQR + MRAC

Rel Ord Upper Bnd J CPU [s] Upper Bnd J CPU [s]

1 6.26 × 10−2 2.80 2.74 × 10−1 2.53
2 7.44 × 10−3 3.51 4.52 × 10−3 1.91 × 101

3 4.05 × 10−3 1.96 × 101 8.02 × 10−4 2.05 × 102

4 3.74 × 10−3 2.64 × 101 7.24 × 10−4 1.31 × 103

5 3.61 × 10−3 6.41 × 102 7.04 × 10−4 9.74 × 103

Then the entire system (the polynomial F-16 model complete with the LQR
with and without the MRAC augmentation) was then validated under various
flight conditions of interest. These results were compared with those obtained
numerically using Monte-Carlo. The main challenge was adapting these control
laws to our V&V framework. Derivative-free model reference adaptive control
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Figure 3.3: Numerical Results for Case 2

Table 3.4: Gloptipoly 3 + MOSEK Upper Bounds for Case 3
LQR LQR + MRAC

Rel Ord Upper Bnd J CPU [s] Upper Bnd J CPU [s]

1 3.73 × 10−1 1.65 3.73 × 10−1 7.57
2 1.97 × 10−1 1.54 2.14 × 10−1 1.07 × 102

3 1.90 × 10−1 5.39 1.91 × 10−1 9.24 × 102

4 1.90 × 10−1 2.48 × 101 2.59 × 10−2 1.05 × 104

5 1.90 × 10−1 9.81 × 101 2.98 × 10−3 5.39 × 104

(DF-MRAC) could yield promising results as it does not impose additional
states on the dynamics. Another topic of interest is validating adaptive control
laws in the presence of actuator dynamics. Their sparsity can be exploited.
We also wish to consider other types of nonlinear control laws have similar
properties.
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Figure 3.4: Numerical Results for Case 3
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4
F-16 Lateral Dynamics

with MRAC

4.1 INTRODUCTION
This chapter considers V&V of a lateral F-16 dutch-roll polynomial model with
reduced control effectiveness at large roll angles. A closed-loop model is derived
using the standard LQR + MRAC augmentation. The controller is simplified
by building the adaptive feedback around the aileron channel.

Like our work in chapter 3, we wish to close the numerical gap by validating
closed-loop models with MRAC controllers using our V&V framework. We
also use new theoretical framework provided by [36] where the complexity of
solving the LMI relaxations is reduced by exploiting sparsity of ODEs. With
this approach, we can solve aerospace models of medium-to-large scale.

For the LQR + MRAC augmentation problem is solved by exploiting sparsity
[36] for ODEs. This is done by approximating the reference trajectories with a
given roll angle command signal. This procedure reduces the size of the largest
SDP block. Compared to chapter 3, we double the amount of states (from 4
states to 9 total) that can be validated.

Our V&V framework is used to certify the closed-loop model subject to
normal and reduced control effectiveness. We compare the baseline LQR closed-
loop model to the same model using the LQR + MRAC augmentation. Likewise,
we certify the same closed-loop model using Monte-Carlo methods.

Content of this chapter appeared in the Proceedings Proceedings of the 2020 American
Control Conference [45].
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∆(xq(t),u(t)) =
[

(1−4.26β2(t))(9.00× 10−7δa(t)−6.00× 10−7δa(t)+1× 10−3δa(t))
(1−4.26β2(t))(3.63× 10−4δr(t)+2.42× 10−4δr(t)+1× 10−3δr(t))

+7.50× 10−2(−1.25× 10−1+7.85× 10−2p(t)−1.37× 10−3p2(t))(5.24× 10−2r(t)+1)
+4.50× 10−1(−1.25× 10−1+7.85× 10−2p(t)−1.37× 10−3p2(t))(5.24× 10−2r(t)+1)

]
(4.4)

The organization of this chapter is as follows: section 4.2 discusses the
nonlinear closed-loop F-16 polynomial model and the MRAC augmentation,
section 4.3 contains our main numerical results, and section 4.4 contains a small
discussion of our conclusions and future results.

4.2 F-16 DUTCH-ROLL DYNAMICS
The trimmed nonlinear dutch-roll dynamics of an F-16 traveling at 502 ft/s and
α = 2.11 deg is given by

ẋq(t) = Axq(t) +BΛ
(
u(t)

+ ∆(xq(t),u(t))
)
, xq(0) = xq0

y(t) = Cxq(t),
(4.1)

where

A =


−0.3220 0.0640 0.0364 −0.9917

0 0 1 0.0393
−30.6490 0 −3.6784 −0.6646

8.3595 0 −0.0254 −0.4764

 , (4.2)

B =


0 0
0 0

−0.7331 0.1315
−0.0319 −0.0620

 , C =
[
1 0 0 0
0 1 0 0

]
, (4.3)

xq(t) =
[
β(t) φ(t) p(t) r(t)

]
∈ R4 is the lateral state vector, u(t) =[

δa(t) δr(t)
]
∈ R2 are the measurable control inputs, y(t) ∈ R2 is the output,

Λ = λI2×2, λ ∈ R+ is the control effectiveness, and ∆(xq(t),u(t)) ∈ R2[x],
found below in (4.4), contains unknown higher order dynamics which include
dead-zone and loss-of-control effectiveness for large β(t). The open-loop flight
model, coefficients, and the nonlinearities were taken from [44]. The higher order
terms in ∆(xq(t),u(t)) were derived by taking the Taylor series of hyperbolic
functions. In the proceeding subsection we discuss the derivation of the nominal
and adaptive control law used in the closed-loop model.
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4.2.1 Closed-Loop Configuration
Consider the lateral dynamics in the form of (4.1). Our control objective is to
asymptotically track the reference trajectory

ẋr(t) = Arxr(t) +Brc(t), xr(0) = xr0

yr(t) = Cxr(t)
(4.5)

where c(t) =
[
βcmd φcmd

]
∈ R2 are the given piecewise continuous bounded

yaw/roll command signals, and xr(t) ∈ R4 is the reference state vector. Nominal
controller gains

K1 =
[

10.6901 −9.5824 −2.0328 −6.1944
−0.3982 −0.2043 −0.4170 −27.0142

]
,

K2 =
[
−2.9031 −9.9924
156.5907 −2.4300

]
,

were derived using the LQR-method [46] such that Ar = A−BK1 is Hurwitz,
Br = BK2, and the DC gain between the command signals c(t) and output
y(t) is unity as t→∞. Now consider the combined nominal/adaptive feedback
law

u(t) = un(t) + ua(t), (4.6)

with baseline nominal control law un(t) = K1xq(t) +K2c(t) ∈ R2 and adaptive
control law ua(t) = −ŴT (t)Φ

(
x(t)

)
. Basis function Φ

(
xq(t)

)
i

= (1 + exq,i)−1,
i = 1, . . . , 4 is known and Ŵ(t) ∈ R1 satisfies the weight update law

˙̂W(t) =


ε

300
ε

ε


︸ ︷︷ ︸

Γ

Φ
(
xq(t)

)
eT (t)P


0 0
0 0

−0.7331 0
−0.0319 0


︸ ︷︷ ︸

Bail

,

Ŵ(0) = Ŵ0 (4.7)

where ε << 1, e(t) = xq(t)− xr(t), and positive definite symmetric P ∈ R4×4

is the unique solution to the Lyapunov equation

0 = ATr P + PAr + 100I4×4. (4.8)

Theorems that highlight the boundedness and performance of this configuration
can be found in [47].

States containing small gain ε are removed in this configuration because
they contribute little to the feedback. There is only adaptive feedback through
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the aileron channel in (4.6) and (4.7). This is done to reduce the total number
of states in the system. We will demonstrate the validity of our approach in
the proceeding section.

We can now write the closed-loop model with (4.1) and (4.5) to (4.7) in
their compact form

ẋ(t) = f
(
t,x(t),Λu(t)

)
, (4.9)

where x(t) =
[
xq(t) Ŵ(t) xr(t)

]
∈ R9. The unused rudder states in the

weight update law (4.7) are discarded. A block diagram of the complete closed-
loop model is provided in Fig. 4.1.

K2 ẋq(t) = Axq(t) +BΛ
(
u(t) + ∆(xq(t),u(t))

)

K1

ẋr(t) = Arxr(t) +Brc(t)

˙̂W(t) = ΓΦ
(
xq(t)

)
eT (t)PBailua(t) = −ŴT (t)Φ

(
xq(t)

)

xq(t)

+

+ u(t)

e(t)

+

Ŵ(t)

ua(t)

+

+
c(t)

xr(t) −
ẋr(t) = Arxr(t) +Brc(t)

Figure 4.1: Dutch-Roll Closed-Loop Configuration

4.3 MAIN NUMERICAL RESULTS
We wish to validate our existing closed loop polynomial aircraft model (4.9)
by finding the initial state that maximizes of the norm of the concave cost
function J = −‖c(t)− y(T )‖22 with given terminal time T = 10 s and c(t) =[
0 +10

]
π

180 . If we can show that for every chosen initial state

x(0) ∈ X0 ,
[
−10 10

]4 π

180 ×
[
−0.001 0.001

]
×
[
−0.001 0.001

]4 π

180

that all trajectories remain bounded in

x(t) ∈ X ,
[
−30 30

]8 π

180 ×
[
−80 80

]
until they reach the final state belonging to a set x(T ) ∈ {J ≤ 3× 10−3}, then
the control law is validated.
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The main results of this section rely heavily on theoretical background
discussed extensively in [33, 39, 35]. The procedure consists of writing our
validation problem as a piecewise polynomial dynamical optimization problem

J = inf
hT , h

hT (T,x(T )) +
∫ T

0
h(t,x(t))dt

s.t. ẋ(t) = fj(t,x(t)), j = 1, 2,
x(t) ∈ Xj , x(0) ∈ X0, x(T ) ∈ XT , t ∈ [0, T ]

(4.10)

with given polynomial dynamics f ∈ R[t, x] and costs h, hT ∈ R[t, x], and state
trajectories x(t) constrained in the compact basic semialgebraic sets X, X0,
and XT .

We then write (4.10) as its infinite-dimensional measure-LP problem

J∞ = inf
µT , µ

∫
hT (T,x(T ))dµT +

∫
h(t,x(t))dµ

s.t. ∂µ

∂t
+ divfjµj + µT = µ0∫
µ0 = 1

(4.11)

where div is the divergence operator and the infimum is with respect to the
occupation measure µ ∈M+([0, T ]×X), terminal measure µT ∈M+({T}×XT ),
and terminal time T > 0. This infinite dimensional problem of measures can
be relaxed to a finite moment LMI problem of truncated sequences sequences,
using Lasserre’s LMI hierarchy [34]. When relaxation order d ∈ N tends to
infinity, it holds that Jd ≤ Jd+1 ≤ J∞ and limd→∞ Jd = J∞.

A piecewise disturbance is also included where the aircraft experiences
reduced control effectiveness at large roll angles. To include the disturbance,
we reformulate the optimization problem with the system dynamics defined as
locally affine functions in two cells Xj , j = 1, 2 corresponding respectively, to
the regimes of the disturbance

X1 , {x(t) ∈ R7 : |φ| ≤ φmax}, λ = 1
X2 , {x(t) ∈ R7 : |φ| ≥ φmax}, λ = 0.2

(4.12)

such that φmax ∈ R+.
For our main results, we consider two cases: φmax = 1 and φmax = 3.14× 10−1.

We first consider (4.9) without the MRAC augmentation (ua(t) = 0) for both
cases. Then in section 4.3.1 we discuss our main contribution for implementing
(4.9) with the MRAC augmentation by reducing the total number of states using
parsimony. Lastly, the results for (4.9) with adaptive feedback are presented in
section 4.3.3 and compared against the baseline control law from section 4.3.1
for both cases.
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If (4.10) can be written in the form of (4.11), it can be solved directly using
off-the-shelf-software. In our examples, we used GloptiPoly 3 [29] and MOSEK
[30] to solve a hierarchy of moment LMI relaxations. Additional steps must be
taken to reduce numerical problems. In (4.9), we employ a normalizing matrix
D = diag[a1, . . . , a9], a1, . . . , a9 ∈ R+ such that

ẋ(t) = TDfj
(
t,D−1x(t),Λu(t)

)
. (4.13)

and all trajectories, including the time domain, are normalized within the
interval

[
−1 1

]
.

Our numerical results can all be found in Tables 4.1 and 4.2. Then the results
obtained with our framework are compared against Monte-Carlo. The Monte-
Carlo simulations in Figs. 4.3 and 4.4 were built by using Newton’s Method
(tstep = 0.001 s) and nested for-loops with evenly spaced initial conditions.
The green lines denote the desired closed-loop performance. The numerical
maximum upper bounds found in Table 4.3 were obtained by searching for the
largest J generated by every initial condition.

4.3.1 Baseline Controller Problem
The baseline controller configuration can be obtained by setting Γ = 0 and
ua(t) = 0. The closed-loop model does not depend on the error dynamics e(t)
in this form, so we also negate the reference dynamics (4.5). Given (4.9), the
polynomial dynamical optimization problem becomes

J = inf
y(T )

− ‖c(t)− y(T )‖22

s.t. ẋ(t) = TDfj
(
t,D−1x(t),Λju(t)

)
x(t) ∈ Xj , t ∈ [0, 1], j = 1, 2
x(0) ∈ X0, x(T ) ∈ XT ,

(4.14)

and its measure LP

J∞ = inf
µT

−
∫
‖c(t)− y(T )‖22 µT

s.t. ∂µj
∂t

+ divfjµj + µT = µ0∫
µ0 = 1.

(4.15)

The moment LMI relaxations problem can now be obtained directly from (4.15).
As shown in the Monte-Carlo simulations Figs. 4.3 and 4.4 and Table 4.3,

there is no degradation in tracking performance when φmax = 1. When
φmax = 3.14× 10−1, trajectory overshoot is heavily penalized. Only 2% of the
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trajectories fail to achieve proper tracking performance in Fig. 4.4. Insufficient
sampling of the state-space in the Monte-Carlo simulations could result these
trajectories remaining undetected.

On the other hand, our framework can extract directly the unsafe trajectories.
Tables 4.1 and 4.2 contains the Gloptipoly 3 + MOSEK results for both cases.
For φmax = 1, the baseline controller achieves our desired terminal cost. This
is not reflected for φmax = 3.14× 10−1, which produces a significantly larger
upper bound. This indicates a loss in tracking performance.

4.3.2 Exploiting Sparsity for ODEs
Consider the polynomial dynamics in the form of

ẋ1(t) = f1
(
t,x1(t),y(t)

)
ẋ2(t) = f2

(
t,x2(t)

)
, y(t) = C2x2(t)

(4.16)

where x1(t), x2(t) ∈ Rn, y(t) ∈ Rm, and m < n. The dynamics of f2(·) are
autonomous and serves as a control input for f1(·). In this configuration, (4.16)
can be approximated using the sparse measure LP

J∞ = inf
µT

∫
hT (T,x(T ))dµT +

∫
h(t,x(t))dµ

s.t.
(
∂µ

∂t
+ divf1µ

)
+ µT = µ0(

∂ν

∂t
+ divf2ν

)
+ νT = ν0

πt,y#µ = πt,y#ν∫
µ0 = 1,

∫
ν0 = 1,

(4.17)

with marginal πt,y#µ respectively, πt,y#ν of measure µ respectively, ν with
respect to variables t, y. This form was first derived in [36] and is useful
for applications where there are a large number of states in (4.10) (the new
maximum problem size is 1+n+m variables versus 1+2n). The main advantage
of this approach is that the complexity of the problem depends on the size of
the largest SDP block. This effectively allows us to use our framework to solve
much larger problems.

For our case, the derivation of the MRAC closed-loop validation problem
with sparsity begins by looking at the desired closed-response of (4.5) in Fig. 4.2.
With the given command signal, we can try approximating the error dynamics
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using

ê(t) =


β(t)− βss
φ(t)− φr(t)
p(t)− pr(t)
r(t)− rss

 ≈ e(t) (4.18)

where βss = limt→∞ βr(t) and rss = limt→∞ rr(t).
Since xr(t) is both linear and autonomous, we can go directly to (4.17) by

using (4.9), piecewise polynomial dynamical optimization [35] with respect to
global occupation measure µ

µ = µ1 + µ2, (4.19)

and the approximated error dynamics (4.18). The main takeaway of using
(4.18) is that we reduce the total number of equality constraints in (4.17) and
further simplify the problem. We are now ready to write the MRAC closed-loop
problem.
4.3.3 MRAC Controller Problem
Given (4.17) and the polynomial dynamical optimization problem

J = inf
y(T )

− ‖c(t)− y(T )‖22

s.t. ẋ(t) = TDfj
(
t,D−1x(t),Λju(t)

)
ẋr(t) = Arxr(t) +Brc(t) = fr

(
xr(t), c(t)

)
x(t) ∈ Xj , xr(t) ∈ Xr, t ∈ [0, 1], j = 1, 2
x(0) ∈ X0, x(T ) ∈ XT ,

xr(0) ∈ Xr0. xr(T ) ∈ XrT

(4.20)

the new measure-LP for the closed-loop model with MRAC becomes

J∞ = inf
y(T )

− ‖c(t)− y(T )‖22

s.t.
(
∂µj
∂t

+ divfjµj
)

+ µT = µ0, j = 1, 2(
∂ν

∂t
+ divfrν

)
+ νT = ν0

πt,y#µ1 + πt,y#µ2 = πt,y#ν∫
µ0 = 1,

∫
ν0 = 1,

(4.21)

where x(t) =
[
xq(t), Ŵ(t), xr(t)

]
. We also have marginal πt,y#µ

respectively, πt,y#ν of measure µ respectively, ν with respect to variables
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Figure 4.2: Reference Trajectory xr(t) Given c(t)

t, y. With the moment equality constraints and the appropriate supports, the
moment LMI relaxation problem of (4.21) provides a useful upper bound for
the cost function J given in (4.20).

For both values of φmax, good tracking performance was achieved for our
LQR + MRAC configuration. This is reflected in our Monte-Carlo simulations
Figs. 4.3 and 4.4 and Table 4.3. Likewise, desirable upper bounds are achieved
in our Gloptipoly 3 + MOSEK results Tables 4.1 and 4.2. The main takeaway is
that even a simple LQR + MRAC closed-loop configuration can reject exogenous
disturbances and initial condition mismatches.

It is also possible to achieve improved transient performance using MRAC
modifications, such as the error modification [37] or adaptive loop recovery [38],
and are discussed extensively in chapter 3.
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Figure 4.3: F-16 Monte-Carlo with safe trajectories (φmax = 1)

Table 4.1: Gloptipoly 3 + MOSEK Upper Bounds (φmax = 1)
LQR LQR + MRAC

Rel Ord Upper Bnd J CPU [s] Upper Bnd J CPU [s]

1 2.59 2.33 2.36 × 10−1 3.24 × 101

2 9.78 × 10−2 2.05 6.41 × 10−4 1.22 × 103

3 1.44 × 10−3 1.33 × 101 1.40 × 10−5 2.65 × 105

4 2.81 × 10−5 1.17 × 102 - -

4.4 CONCLUSIONS AND FUTURE WORKS
We considered a nonlinear dutch-roll F-16 closed-loop model complete with a
baseline LQR and MRAC augmentation. To reduce the size of the problem,
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Figure 4.4: F-16 Monte-Carlo with unsafe trajectories in baseline LQR
(φmax = 3.14× 10−1)

we exploited sparsity in our framework. These models were then validated
using moment LMI relaxations and existing off-the-shelf software. We compared
the performance of the closed-loop model baseline LQR controller to the same
model with the MRAC. These results were then compared with upper bounds
obtained using Monte-Carlo simulations. For future work, we wish to use our
framework to consider aircraft models with unknown flexible dynamics.
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Table 4.2: Gloptipoly 3 + MOSEK Upper Bounds (φmax = 3.14× 10−1)
LQR LQR + MRAC

Rel Ord Upper Bnd J CPU [s] Upper Bnd J CPU [s]

1 2.59 1.43 2.29 × 10−1 2.20 × 101

2 6.58 × 10−1 1.53 6.47 × 10−4 1.25 × 103

3 4.68 × 10−1 9.62 1.52 × 10−5 2.21 × 105

4 4.59 × 10−1 8.25 × 101 - -

Table 4.3: Monte-Carlo Upper Bounds for section 4.3
Upper Bound Upper Bound

φmax J (LQR) J (LQR + MRAC) CPU [s]

1 1.87 × 10−10 5.07 × 10−7 1.18 × 101

3.14 × 10−1 4.46 × 10−1 5.07 × 10−7 1.20 × 101
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5
Flexible Aircraft with

MRAC

5.1 Introduction
It is well established that MRAC is susceptible to closed-loop instability in the
presence of system uncertainties and unmodeled dynamics [27]. To address this
phenomenon, the authors of [48, 49, 50, 51, 52] proposed the use of “intelligent
adaptive control”. See also [53, 54, 55] where the authors propose an MRAC
which can maintain closed-loop stability in the presence of uncertain parameters
and unmodeled dynamics with respect to a set of initial conditions or under
the assumption of persistency of excitation. Recently, the authors of [56, 57,
58, 59, 60] utilized an MRAC modification that permitted closed-loop stability
in the presence of large uncertainties.

Since MRAC cannot tolerate the presence large system uncertainties, they
cannot be safely neglected in the design phase. For example, the coupling
between the static and flexible modes in an aircraft is very difficult to model
precisely and can lead to instability with MRAC. Model identification of the
static and flexible modes is usually carried out separately through wind tunnel
and vibration testing. The rest must be achieved by extensive simulation and
flight testing.

To illustrate this problem, an F-16 model with unmodeled flexible dynamics
and LQR + MRAC is considered. This procedure is similar to that in chapter 3.
The closed-loop performance requirements can be expressed as a V&V problem

Contents of this chapter were submitted for publication to International Journal of Control
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of polynomial dynamical optimization. These uncertain, bounded parameters
in the unmodeled dynamics can be written explicitly in the space of occupation
measures and do not require improved modeling accuracy. To reduce issues with
scaling, exploiting parsimony for ODEs in introduced to partition the dynamics.
Then the V&V problem is solved with our framework.

In chapter 3 we used polynomials to approximate the reference trajectory.
This required partitioning the dynamics over several intervals in the time domain.
For chapter 4, using parsimony approximating the reference was introduced for
the first time. As far as we know, this is the first time that a fully integrated
V&V framework is proposed for aircraft with flexible dynamics and MRAC.

Monte-Carlo simulations scale very poorly with the number of these uncertain
parameters in the unmodeled system. If the state-space is not sufficiently
explored for all uncertain parameters, there is good chance the simulations
will not reveal unexplored, unsafe trajectories. This point is illustrated in a
side-by-side comparison is made between the Monte-Carlo simulations and our
framework for the F-16.

In the numerical examples, the ability for the LQR + MRAC to maintain
acceptable command following in the presence of uncertain, unmodeled flexible
dynamics is reflected in a cost function. If the uncertain parameters in the
flexible dynamics are sufficiently small, it follows that the upper bound of this
cost function is sufficiently small. Conversely, a cost function with a large upper
bound is indicative of large unmodeled dynamics and unsafe trajectories.

Unlike the results of [53, 54, 55], we do not rely on a set of initial conditions or
persistency of excitation. Compared to [56, 57, 58, 59, 60], control modifications
are not used to address the unmodeled dynamics. Instead, it is demonstrated
numerically that the upper tolerances of simple MRAC configuration using our
V&V framework. This is achieved by exploiting parsimony for ODEs similar to
our results in chapter 4. Any uncertain parameters or initial condition mismatch
can be addressed explicitly with our framework.

The organization of this chapter is as follows: section 5.2 illustrates our main
contribution by using a simple example, section 5.3 considers a closed-loop linear
F-16 model coupled with uncertain flexible dynamics and MRAC, section 5.4
considers the model from chapter 3 coupled with uncertain flexible dynamics,
and section 5.5 contains a small discussion of our conclusions and future work.

5.2 Illustrative Simple Example
The proceeding problem draws directly the theoretical contributions provided
in [34]. See also chapter 3 for a practical example. The procedure for validating
our uncertain models is illustrated in the simple example below. Consider the
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closed-loop linear parameter varying (LPV) system in the form of

[
ẋ(t)
ż(t)

]
=


0 −1 + k 0 0 0

1 + k −5 0 0 0
0 0.1 −10 0.1 0
0 0 0.1 −1 −0.1
0 0 0 1 −1


[
x(t)
z(t)

]
= f(t,x(t), z(t), k),

x(0) = x0,
z(0) = z0,

(5.1)

where x(t) =
[
x1(t) x2(t)

]
∈ R2, z(t) =

[
z1(t) z2(t) z3(t)

]
∈ R3, and

parameter k ∈
[
−kmax kmax

]
, kmax ∈ R+ is uncertain. Now suppose that

(5.1) is a closed loop model of some dynamical system such that the state
trajectory of x1(T ) reaches a smaller subset in finite time. In other words, we
want find the initial state maximizing the norm of the terminal state with the
concave quadratic term J = infx1(T )−x1(T )2 and given terminal time T = 10.
There are also the initial constraints

x(0) ∈
[
−0.1 0.1

]2
, X0,

z(0) ∈
[
−0.1 0.1

]3
, Z0,

the trajectory constraints

x(t) ∈
[
−1 1

]2
, X,

z(t) ∈
[
−1 1

]3
, Z,

and the terminal constraints

x(T ) ∈
[
−1 1

]2
, XT ,

z(T ) ∈
[
−1 1

]3
, ZT .

This overall problem description can be collectively written as the polynomial
dynamical optimization problem

J = inf
x1(T )

− x1(T )2

s.t.
[
ẋ(t)
ż(t)

]
= f(t,x(t), z(t), k),

x(0) ∈ X0, x(t) ∈ X, x(T ) ∈ XT ,
z(0) ∈ Z0, z(t) ∈ Z, z(T ) ∈ ZT ,
t ∈
[
0, T

]
, k ∈

[
−kmax kmax

]
.

(5.2)
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Table 5.1: Gloptipoly 3 + MOSEK Upper Bounds for section 5.2
kmax = 0.1 kmax = 0.5 kmax = 5

Rel Ord Upper Bnd J CPU [s] Upper Bnd J CPU [s] Upper Bnd J CPU [s]

1 1.41 × 10−2 2.18 1.71 × 10−2 2.17 1 2.08
2 8.03 × 10−4 5.13 1.44 × 10−3 5.46 1 4.68
3 2.84 × 10−4 1.22 × 102 8.39 × 10−4 1.08 × 102 1 1.25 × 102

4 2.67 × 10−4 2.13 × 103 8.30 × 10−4 2.88 × 103 1 3.90 × 103
5 - - - - - -

and is equivalent to the problem in the infinite-dimensional space of measures

J∞ = inf
µT

−
∫
x1(T )2dµT

s.t. ∂µ

∂t
+ divfµ(t,x, z, k) + µT = µ0∫
µ0 = 1

(5.3)

where div is the divergence operator and the infimum is with respect to the
occupation measure µ ∈M+([0, T ]×X), terminal measure µT ∈M+({T}×XT ),
and terminal time T > 0. This is for all measures supported on [0, T ]×X × Z,
{0}×X0×Z0, and {T}×XT ×ZT respectively. As discussed in [29], (5.3) can
be solved using a hierarchy of LMI relaxations.

The main takeaway here is that an abstract problem of measures can be
manipulated by its corresponding moments generated by a finite number of
truncated sequences. To avoid large magnitude semi-definite constraints in the
final problem, a normalizing matrix D = diag(a1, . . . , a5), a1, . . . , a5 ∈ R+ is
employed such that all trajectories, including the time domain, are constrained
on the interval

[
−1 1

]
.

The procedure for expressing the validation problem in Gloptipoly 3 is no
different. The script in appendix A can be used to solve the the polynomial
dynamical optimization problem (5.2) with our framework using [30] as our
main SDP solver. The computed upper bounds without parsimony can be found
in Table 5.1. As kmax is increased, it is expected that the upper bound J will
grow with it. Since the computational time scales exponentially with the size
of the largest moment SDP block, this problem cannot be solved beyond the
fourth relaxation order. This procedure is analogous to searching the worst case
eigenvalues λmax = max(re(eig(A(k)))), which can be found in Table 5.2. The
resulting script that solves the validation problem in section 5.2, with some
scaling strategies to improve numerical behavior, can be found in appendix A.
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Table 5.2: Largest Eigenvalues for section 5.2
kmax λmax

0.1 −2.07 × 10−1

0.5 −1.55 × 10−1
5 3

5.2.1 Exploiting Parsimony for ODEs
The results of section 5.2 will now be repeated by exploiting parsimony for
ODEs. The main advantage to this approach is that it reduces the size of
the largest SDP block. Consequently, our framework can be used to validate
problems that are larger in size. First, (5.1) can be rewritten as

ẋ(t) = f1(t,x(t), k), y(t) = x2(t) (5.4)
ż(t) = f2(t, z(t), y(t)), (5.5)

where dynamics f1(·) ∈ R
[
t x(t) k

]
are autonomous and y(t) = x2(t) ∈ R

can be interpreted as a control input to f2(·) ∈ R
[
t z(t) y(t)

]
. Using the same

polynomial dynamical optimization problem (5.2) and partitioned dynamics
(5.5), the problem of measures can be written as

J∞ = inf
µT

−
∫
x1(T )2dµT

s.t. ∂µ

∂t
+ divf1µ(t,x, k) + µT = µ0

∂ν

∂t
+ divf2ν(t, z, y) + νT = ν0

πt,y#µ = πt,y#ν∫
µ0 = 1,

∫
ν0 = 1,

(5.6)

with marginal πt,y#µ, respectively, πt,y#ν, of measure µ, respectively, ν, with
respect to variables t, y. The moment LMI relaxation problem is modified
accordingly. The results can be found in Table 5.3. As illustrated, similar upper
bounds can be achieved. Since the size of the largest moment SDP block is
reduced in this configuration, the problem size can be solved up to the fifth
relaxation order. The overall maximum problem size is reduced by 2. This
property will be exploited to solve problems with a large number of states in
the proceeding sections.

The theoretical background for these results were first noted in [36]. In
the proceeding section, this methodology for exploiting parsimony for ODEs
is unchanged. If our problem can be written in the form similar to (5.5) and
(5.6), then it is possible to proceed by solving our V&V problem in Gloptipoly
3 using our framework.
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Table 5.3: Gloptipoly 3 + MOSEK Upper Bounds for section 5.2.1
kmax = 0.1 kmax = 0.5 kmax = 5

Rel Ord Upper Bnd J CPU [s] Upper Bnd J CPU [s] Upper Bnd J CPU [s]

1 1.41 × 10−2 1.64 1.71 × 10−2 5.32 × 10−1 1 4.00 × 10−1

2 8.03 × 10−4 1.10 1.44 × 10−3 9.17 × 10−1 1 8.29 × 10−1

3 2.87 × 10−4 2.86 8.38 × 10−4 2.61 1 2.49
4 2.67 × 10−4 9.58 8.31 × 10−4 1.01 × 101 1 8.64
5 2.67 × 10−4 4.50 × 101 8.30 × 10−4 4.88 × 101 1 5.04 × 101

5.3 Flexible Dynamics for a F-16 Linear Model
Our objective is to validate a linear F-16 short period aircraft model augmented
with adaptive feedback, uncertain parameters, and flexible dynamics using our
V&V framework. The procedure for implementing our framework is rather
straight forward. In section 5.3.1 we discuss the simplified uncertain aeroelastic
model and its closed loop configuration. Although the rigid body and flexible
modes are well-defined, their coupling is not. For the coupling uncertain,
bounded parameters k1, k2, k3 ∈

[
−kmax kmax

]
, kmax ∈ R+ are used. After

writing the problem in its compact form, control law validation problem is
explicitly stated in section 5.3.2. The problem is then partitioned by exploiting
parsimony for ODEs. The number of uncertain parameters are gradually
increased. Finally, the model and its uncertainties are addressed explicitly using
our framework and then validated under adverse flight conditions. In total,
there are three cases:

1. k1 is uncertain, k2 and k3 are known;

2. k1 and k3 are uncertain, k2 is known;

3. k1, k2, and k3 are uncertain.
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5.3.1 Closed-Loop Configuration
Consider the short-period dynamics of a linear F-16 aircraft coupled with flexible
dynamics

ẋp(t) =
[
−1.0189 +0.9051
+0.8223 −1.0774

]
︸ ︷︷ ︸

Ap

xp(t) +
[
−0.0022
−0.1756

]
︸ ︷︷ ︸

Bp

0.7︸︷︷︸
Λ

(
u(t) + δ(xp(t))

)
(5.7)

+
[
−0.0022k1 0
−0.1756k1 0

]
︸ ︷︷ ︸

BpH(k1)T

z(t), xp(0) = xp0 (5.8)

ż(t) =
[
−0.5 6.3
−6.3 −0.5

]
︸ ︷︷ ︸

F

z(t) +
[
k3
k2

]
︸︷︷︸

G(k2,k3)T

xp(t), z(0) = z0 (5.9)

where xp(t) =
[
α(t) q(t)

]
∈ R2 are the short period dynamics, α(t) is the

angle of attack, q(t) is the pitch-rate, z(t) =
[
z1(t) z2(t)

]
∈ R2 are states

related to the modal form of a considered dominant aeroelastic mode. Matrix
F represents a 5.2 Hz first bending mode of the aircraft [61]. There is also
measurable control input u(t) ∈ R, control effectiveness Λ ∈ R+, the in state
uncertainty

δ(xp(t)) =
[
−0.0468 −0.0982

]︸ ︷︷ ︸
Kpert

xp(t), (5.10)

and uncertain parameters representing the coupling of the rigid body and flexible
dynamics k1, k2, k3 ∈

[
−kmax kmax

]
.

Our control objective is design a control law u(t) to reject the in state
disturbance (5.10) and asymptotically track the reference trajectory xr(t) =[
αr(t) qr(t)

]
generated by the dynamics

ẋr(t) = Arxr(t) +Brc(t) (5.11)

where c(t) ∈ R is a bounded command signal. The desired closed loop dynamics
are derived using the nominal feedback control law [62]

un(t) =
[
−4.7432 2.3163

]︸ ︷︷ ︸
K1

xp(t)− 4.3396︸ ︷︷ ︸
K2

c(t), (5.12)

such that Ar = Ap − B1 is Hurwitz and Br = BpK2. To reject exogenous
disturbance and improve tracking performance an the adaptive feedback control
law

ua(t) = −Ŵ(t)TΦ(xp(t)) (5.13)
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is also included with basis function Φi(xp(t)) = (1 + expi)−1 and Ŵ(t) ∈ R2

satisfies the weight update law

˙̂W(t) =
[
ε

100

]
︸ ︷︷ ︸

Γ

(
Φ
(
xp(t)

)
eT (t)PBp + 5(eT (t)PBp)2Ŵ(t)︸ ︷︷ ︸

˙̂Wm(t)

)
, Ŵ(0) = Ŵ0

(5.14)
where ε << 1, error dynamics e(t) = xp(t) − xr(t), ˙̂Wm(t) is the error
modification [37], and positive definite symmetric P ∈ R2×2 is the unique
solution to the Lyapunov equation

0 = ATr P + PAr + 10I2×2. (5.15)

The combined nominal/adaptive feedback control law can be written as

u(t) = un(t) + ua(t) (5.16)

which was used in (5.8). In practice, Lyapunov analysis only informs us about
the ultimate stability of the closed-loop system if the unmodeled dynamics
are neglected. There at least exists a Lyapunov candidate function such that
the longitudinal dynamics (5.8) subject to the control and weight update law
(5.14) and (5.16) has the property limt→∞ e(t) = 0. Consequently, learning
rates of (5.14) were tuned to reject disturbances and achieve tracking without
the flexible dynamics.

It is of practical interest to know if the MRAC can tolerate unmodeled
dynamics and uncertain parameters of a certain magnitude. In proceeding
section it is shown numerically when the unmodeled dynamics with uncertain
parameters can be neglected without using control modifications. These achieved
upper bounds are significantly less conservative than norm approximations found
in the Lyapunov analysis.

To set up the problem for our V&V framework, the compact form of the
closed-loop model can now be written by combining (5.8), (5.9), (5.11),(5.14),
and (5.16) to get

ẋ1(t) = f1(t,x1(t), c(t)), y1(t) = αr(t), x1(0) = x10

ẋ2(t) = f2(t,x2(t), y1(t), y3(t), k1), y2(t) = xp(t), x2(0) = x20

ẋ3(t) = f3(t,x3(t),y2(t), k2, k3), y3(t) = z1(t), x3(0) = x30

(5.17)

where x1(t) = xr(t) ∈ R2, x2(t) =
[
xp(t), Ŵ(t)

]
∈ R3, x3(t) = z(t) ∈ R2,

and y2(t) ∈ R2.

5.3.2 Validation Problem & Main Results
We want to validate our closed-loop model in its compact form (5.17) by finding
the initial state that maximizes the norm of the concave cost function of the
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error dynamics J = −‖e(T )‖22 with given command signal c(t) = 0.1 and
terminal time T = 20. If it can be shown that for every chosen initial state

x1(0) ∈
[
−0.2 0.2

]2
, X10

x2(0) ∈
[
−0.2 0.2

]2 × [−1× 10−6, 1× 10−6] , X20

x3(0) ∈
[
−0.2 0.2

]2
, X30

all trajectories remain bounded in the box

x1(t) ∈
[
−1 1

]2
, X1

x2(t) ∈
[
−1 1

]2 × [−5, 5
]
, X2

x3(t) ∈
[
−1 1

]2
, X3

until they reach the final state belonging to the set e(T ) ∈ {J ≤ 3× 10−3} ,
X1T , then the control law is validated. The overall description can be expressed
by its polynomial dynamical optimization problem

J = inf
e(T )

− ‖e(T )‖22

s.t. ẋ1(t) = f1(t,x1(t), c(t))
ẋ2(t) = f2(t,x2(t), y1(t), y3(t), k1)
ẋ3(t) = f3(t,x3(t),y2(t), k2, k3)
x1(0) ∈ X10, x1(t) ∈ X1, x1(T ) ∈ X1T ,
x2(0) ∈ X20, x2(t) ∈ X2, x2(T ) ∈ X2,
x3(0) ∈ X30, x3(t) ∈ X3, x3(T ) ∈ X3,

t ∈
[
0, T

]
, u ∈

[
−kmax kmax

]
.

(5.18)
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Its approximation in the space of infinite dimensional measures using parsimony
can be written as

J∞ = inf
µT

−
∫
‖e(T )‖22 dµT

s.t. ∂µ

∂t
+ divf1µ(t,x1) + µT = µ0

∂ν

∂t
+ divf2ν(t,x2, y1, y3, k1) + νT = ν0

∂ξ

∂t
+ divf3ξ(t,x3,y2, k2, k3) + ξT = ξ0

πt,y1,#µ = πt,y1,#ν

πt,y2,y3,#µ = πt,y2,y3,#ξ∫
µ0 = 1,

∫
ν0 = 1,

∫
ξ0 = 1

(5.19)

and its respective moment LMI relaxations problem is modified accordingly.
The same marginals of their respective measures from section 5.3 are also used.
In total the overall size of the problem is reduced by 5 variables using parsimony.
and its respective moment LMI relaxations problem is modified accordingly.
The marginal πt,y1,#µ, respectively, πt,y1,#ν, on measure µ, respectively, ν, are
with respect to variables t, y1. There is also marginal πt,y2,y3,#µ, respectively,
πt,y2,y3,#ξ, on measure µ, respectively, ξ, with respect to variables t, y2, andy3.
Similar to chapter 4, partitioning the dynamics and approximating the reference
trajectory chapter 4 allows using a command signal without using piecewise
approximations chapter 3. In total the problem is reduced by 4 variables using
parsimony.

The main results can be found below. In Table 5.4 an uncertain k1 ∈[
−kmax kmax

]
is considered with fixed k2 = −0.1, k3 = 0.1. Similar upper

bounds were achieved for all values of kmax, which indicates tolerance from the
MRAC in the presence of unmodeled flexible dynamics. Likewise, in Table 5.5
let k1, k3 ∈

[
−kmax kmax

]
and fix k2 = −0.1. Lastly, in Table 5.6 there is

also k1, k3, k2 ∈
[
−kmax kmax

]
. The upper bounds achieved are larger than

those obtained for the one uncertain parameter case. At kmax = 10, the upper
bound violates the terminal constraint which indicates the presence of unstable
trajectories for two or three uncertain parameters.

The simulation results using Monte-Carlo can be found in Table 5.7 and
Figs. 5.1 to 5.9. These simulations were obtained using evenly spaced initial
conditions and Newton’s Method. Red lines in the plot represent the desired
closed loop performance. The maximum costs were obtained by finding the
worst case trajectories in the simulation. In Figs. 5.6 and 5.9 and Table 5.7,
the system becomes unstable for kmax = 10. This reflects our results obtained
in Table 5.6. As shown in Table 5.7, increasing the number of uncertainties
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Table 5.4: Gloptipoly 3 + MOSEK LQR + MRAC Upper Bounds for section 5.3
- Uncertain k1 (k2, k3 = −0.1)

kmax = 0.1 kmax = 1 kmax = 10

Rel Ord Upper Bnd J CPU [s] Upper Bnd J CPU [s] Upper Bnd J CPU [s]

1 1.96 × 10−1 2.24 2.04 × 10−1 7.34 × 10−1 3.19 × 10−1 6.13 × 10−1

2 8.14 × 10−4 4.80 9.46 × 10−4 5.03 7.29 × 10−3 4.15
3 2.01 × 10−4 1.14 × 102 1.76 × 10−4 1.18 × 102 7.04 × 10−4 1.09 × 102

Table 5.5: Gloptipoly 3 + MOSEK LQR + MRAC Upper Bounds for section 5.3
- Uncertain k1, k3 (k2 = −0.1)

kmax = 0.1 kmax = 1 kmax = 10

Rel Ord Upper Bnd J CPU [s] Upper Bnd J CPU [s] Upper Bnd J CPU [s]

1 3.19 × 10−1 1.90 2.08 × 10−1 1.40 1.24 6.83 × 10−1

2 7.29 × 10−3 7.54 1.09 × 10−3 7.73 1.24 5.57
3 7.04 × 10−4 1.62 × 102 1.09 × 10−3 1.41 × 102 1.24 1.25 × 102

becomes costly. Conversely, you also risk missing unsafe trajectories if your
parameter spacing is too sparse. In juxtaposition, similar upper bounds can be
achieved using our framework with equivalent or less computation time.

5.4 Flexible Dynamics for an F-16 Polynomial
Model

A nonlinear polynomial short period F-16 aircraft model augmented with
adaptive feedback and in the presence of flexible dynamics is now considered.

Table 5.6: Gloptipoly 3 + MOSEK LQR + MRAC Upper Bounds for section 5.3
- Uncertain k1, k3, k2

kmax = 0.1 kmax = 1 kmax = 10

Rel Ord Upper Bnd J CPU [s] Upper Bnd J CPU [s] Upper Bnd J CPU [s]

1 1.96 × 10−1 1.75 2.14 × 10−1 9.82 × 10−1 1.24 8.14 × 10−1

2 7.49 × 10−4 8.72 1.93 × 10−3 9.17 1.24 8.89
3 1.03 × 10−4 2.55 × 102 3.10 × 10−4 2.18 × 102 1.24 2.97 × 102

Table 5.7: Monte-Carlo Upper Bounds for section 5.3
Uncertain κ Uncertain κ, ζ Uncertain κ, η, ζ

kmax Upper Bnd J CPU [s] Upper Bnd J CPU [s] Upper Bnd J CPU [s]

0.1 3.75 × 10−8 4.09 × 101 3.75 × 10−8 1.76 × 102 3.75 × 10−8 8.81 × 102

1 4.00 × 10−8 4.08 × 101 4.36 × 10−8 4.99 × 102 5.40 × 10−8 9.21 × 102

10 7.70 × 10−8 4.06 × 101 6.82 × 10−1 2.58 × 102 1.13 8.77 × 102
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Figure 5.1: Monte-Carlo Worst Case for section 5.3 - Uncertain k1 - (k1 = 0.1,
k2 = −0.1, k3 = −0.1)

The model itself and its feedback were used previously in chapter 3. The
same flexible dynamics from (5.9) and the uncertain parameters k1, k2, k3 ∈[
−kmax kmax

]
, kmax ∈ R+ are used. The procedure remains similar. After

problem is presented in its compact form, it is written as a polynomial dynamical
optimization problem, and then as its approximated partitioned form in the space
of infinite measures using parsimony. Lastly, the model and its uncertainties
are addressed explicitly using our framework and then validated under adverse
flight conditions. In total, there are two cases:

1. k1 is uncertain, k2 and k3 are known;

2. k1 and k3 are uncertain, k2 is known.
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Figure 5.2: Monte-Carlo Worst Case for section 5.3 - Uncertain k1 - (k1 = 1,
k2 = −0.1, k3 = −0.1)

5.4.1 Closed-Loop Configuration
Now consider a polynomial F-16 model with flexible dynamics

ėα(t) = α(t)− c(t) (5.20)
ẋp(t) = fp(t,xp(t),Λu(t)) +BpH(k1)T z(t) (5.21)

ż(t) = Fz(t) +G(k2, k3)Txp(t) (5.22)

where xp(t) =
[
α(t), q(t)

]
and polynomial fp(t,x(t),Λu(t)) ∈ R2 [t, xp

]
are taken from chapter 3. The same matrices from section 5.3.1 Bp, F ,
H(k1), and G(k2, k3) were used. The same uncertain parameter k1, k2, k3 ∈[
−kmax kmax

]
and reduced control effectiveness Λ = 0.7 were also used.

Our control objective is similar. We want to asymptotically track the
reference dynamics (5.11) and command signal c(t). With the augmented angle
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Figure 5.3: Monte-Carlo Worst Case for section 5.3 - Uncertain k1 - (k1 = 10,
k2 = −0.1, k3 = −0.1)

of attack tracking dynamics (5.20), the new nominal control law becomes

un(t) = −
[
−10.0000 −10.8756 −6.0565

]︸ ︷︷ ︸
K

xp(t) (5.23)

and was obtained using the LQR method [46]. Likewise, Ar = Ap − BpK is
Hurwitz, Bp =

[
0 Bp

]T and Br =
[
−1 0 0

]T for (5.11). A similar adaptive
feedback law ua(t) = Ŵ(t)TΦ(xp(t)) is also used

˙̂W(t) =

ε ε
100


︸ ︷︷ ︸

Γ

(
Φ(xp(t))e(T )TPB), Ŵ(0) = Ŵ0 (5.24)
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Figure 5.4: Monte-Carlo Worst Case for section 5.3 - Uncertain k1, k3 - (k1 = 0.1,
k2 = −0.1, k3 = 0.1)

where positive definite P is the unique solution to the Lyapunov equality

0 = ATr P + PAr +

100
10

0.1


︸ ︷︷ ︸

Q

. (5.25)

Like before the MRAC is tuned for the longitudinal dynamics (5.21) while
neglecting the unmodeled dynamics. The polynomial uncertainties from the
dimensionless coefficients do not satisfy the matching condition. Combined with
the unmodeled dynamics, the ultimate stability properties of the MRAC cannot
be derived using Lyapunov. In the proceeding section, it is shown numerically
that the MRAC can tolerate both. With the combined nominal/adaptive control
law u(t) = un(t) + ua(t) the new closed loop dynamics (5.20), (5.21), (5.22),
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Figure 5.5: Monte-Carlo Worst Case for section 5.3 - Uncertain k1, k3 - (k1 = 1,
k2 = −0.1, k3 = −1)

and (5.24) can now be written in their compact form

ẋ1(t) = f1(t,x1(t), c(t)), y1(t) = αr(t), x1(0) = x10

ẋ2(t) = f2(t,x2(t), y1(t), y3(t), k1), y2(t) = xp(t), x2(0) = x20

ẋ3(t) = f3(t,x3(t),y2(t), k2, k3), y3(t) = z1(t), x3(0) = x30

(5.26)

where x1(t) = xr(t) ∈ R2, x2(t) =
[
eα(t), xp(t), Ŵ(t)

]
∈ R3, x3(t) =

z(t) ∈ R2, and y2(t) ∈ R2.

5.4.2 Validation Problem & Main Results
We want to validate our closed-loop model in its compact form (5.26) by finding
the initial state that maximizes the norm of the concave cost function of the
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Figure 5.6: Monte-Carlo Worst Case for section 5.3 - Uncertain k1, k3 - (k1 = 10,
k2 = −0.1, k3 = −10)

tracking error J = −(α(T ) − c(t))2 with given command signal c(t) = 10 π
180

and terminal time T = 10. If we can show that for every chosen initial state

x1(0) ∈
[
−1× 10−6, 1× 10−6]3 π

180 , X10

x2(0) ∈
[
−5, 5

]3 π

180 ×
[
−1× 10−6, 1× 10−6] , X20

x3(0) ∈
[
−0.01, 0.01

]2
, X30
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Figure 5.7: Monte-Carlo Worst Case for section 5.3 - Uncertain k1, k2, k3 -
(k1 = 0.1, k2 = −0.1, k3 = −0.1)

all trajectories remain bounded in the box

x1(t) ∈
[
−30, 30

]2 π

180 ×
[
−60, 60

] π

180 , X1

x2(t) ∈
[
−30, 30

]2 π

180 ×
[
−60, 60

] π

180 ×
[
−5, 5

]
, X2

x3(t) ∈
[
−3, 3

]2
, X3

until they reach the final state belonging to the set α(T ) ∈ {J ≤ 3× 10−3} ,
X1T , then the control law is validated. This general description can be expressed
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Figure 5.8: Monte-Carlo Worst Case for section 5.3 - Uncertain k1, k2, k3 -
(k1 = 1, k2 = −1, k3 = −1)

by its polynomial dynamical optimization problem

J = inf
α(T )

− (α(T )− c(t))2

s.t. ẋ1(t) = f1(t,x1(t), c(t))
ẋ2(t) = f2(t,x2(t), y1(t), y3(t), k1)
ẋ3(t) = f3(t,x3(t),y2(t), k2, k3)
x1(0) ∈ X10, x1(t) ∈ X1, x1(T ) ∈ X1T ,
x2(0) ∈ X20, x2(t) ∈ X2, x2(T ) ∈ X2,
x3(0) ∈ X30, x3(t) ∈ X3, x3(T ) ∈ X3,

t ∈
[
0, T

]
, u ∈

[
−kmax kmax

]
.

(5.27)
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Figure 5.9: Monte-Carlo Worst Case for section 5.3 - Uncertain k1, k2, k3 -
(k1 = 10, k2 = −10, k3 = −10)

Its approximation in the space of infinite dimensional measures using parsimony
can be written as

J∞ = inf
µT

−
∫

(α(T )− c(t))2dµT

s.t. ∂µ

∂t
+ divf1µ(t,x1) + µT = µ0

∂ν

∂t
+ divf2ν(t,x2, y1, y3, k1) + νT = ν0

∂ξ

∂t
+ divf3ξ(t,x3,y2, k2, k3) + ξT = ξ0

πt,y1,#µ = πt,y1,#ν

πt,y2,y3,#µ = πt,y2,y3,#ξ∫
µ0 = 1,

∫
ν0 = 1,

∫
ξ0 = 1

(5.28)
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5.5. CONCLUSION

Table 5.8: Gloptipoly 3 +MOSEK LQR Upper Bounds for section 5.4 - Unknown
k1 (k2 = −0.1 k3 = 0.1)

kmax = 0.1 kmax = 1 kmax = 200

Rel Ord Upper Bnd J CPU [s] Upper Bnd J CPU [s] Upper Bnd J CPU [s]

1 1.78 1.25 × 101 1.78 9.56 1.78 9.32
2 1.72 × 10−4 5.22 × 102 1.60 × 10−4 5.52 × 102 9.78 × 10−4 6.92 × 102

3 1.00 × 10−5 1.74 × 104 1.03 × 10−5 1.80 × 104 1.06 × 10−5 1.81 × 104

Table 5.9: Gloptipoly 3 + MOSEK LQR + MRAC Upper Bounds for section 5.4
- Uncertain k1, k3 (k2 = −0.1)

kmax = 0.1 kmax = 1 kmax = 200

Rel Ord Upper Bnd J CPU [s] Upper Bnd J CPU [s] Upper Bnd J CPU [s]

1 1.42 1.13 × 101 1.42 8.77 9.07 × 10−1 1.17 × 101

2 9.23 × 10−4 7.98 × 102 9.29 × 10−4 7.45 × 102 9.07 × 10−1 4.68 × 102

3 1.51 × 10−5 1.82 × 104 1.52 × 10−5 1.59 × 104 6.42 × 10−1 1.73 × 104

Like the results in chapter 4, main advantage of this parsimony approach
The upper bounds for the F-16 polynomial model, coupled flexible dynamics,

and combined LQR + MRAC control law can all be found in Tables 5.8 and 5.9.
The upper bounds obtained using Monte-Carlo can be found in Table 5.10. The
figures for the worst case Monte-Carlo can be found in Figs. 5.10 to 5.15. The
procedure for finding the maximum upper bound is the same as in section 5.3.

The increased damping inherent from the polynomial model allows for more
uncertainty in the unmodeled dynamics. The only case where where the LQR +
MRAC cannot tolerate the unmodeled dynamics is when k1 = 200, k3 = −200.

5.5 Conclusion
We validated both a linear and polynomial F-16 model coupled with uncertain
flexible dynamics and MRAC using our V&V framework. The state dynamics
were approximated and partitioned by exploiting parsimony for ODEs. These
results were compared to the upper bounds obtained using traditional Monte-
Carlo simulation. This approach allows engineers to address explicitly MRAC

Table 5.10: F-16 Polynomial Monte-Carlo Upper Bounds for section 5.4
Uncertain k1 Uncertain k1, k3

kmax Upper Bnd J CPU [s] Upper Bnd J CPU [s]

0.1 2.61 × 10−8 4.82 × 101 2.61 × 10−8 1.82 × 103

1 2.62 × 10−8 4.54 × 101 2.70 × 10−8 2.35 × 103

200 2.86 × 10−8 4.54 × 101 1.70 × 10−11 7.23 × 103
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Figure 5.10: F-16 Polynomial Monte-Carlo Worst Case for section 5.4 - Uncertain
k1 - (k1 = −1, k2 = −0.1, k3 = 0.1)

interacting with unmodeled dynamics without using costly Monte-Carlo
simulations or complex controller modifications. In the future, we hope to
use this same framework for validation of a full nonlinear F-16 model complete
with MRAC and in-state uncertainties.

60



5.5. CONCLUSION

0 1 2 3 4 5 6 7 8 9 10
−20

−10

0

e
α

(t
),
e
α

r
(t

)
[d

eg
]

0 2 4 6 8 10
−5

0

5

10

α
(t

),
α

r(
t

)
[d

eg
]

0 2 4 6 8 10

−10

0

10

20
q

(t
),
q

r(
t

)
[d

eg
/

s]

0 2 4 6 8 10
−2

−1

0

1

2 ·10−2

t [sec]

z
1

(t
)

[r
ad

]

0 2 4 6 8 10
−2

−1

0

1

2 ·10−2

t [sec]

z
2

(t
)

[r
ad
/

s]

0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

t [sec]

Ŵ
(t

)

Figure 5.11: F-16 Polynomial Monte-Carlo Worst Case for section 5.4 - Uncertain
k1 - (k1 = −10, k2 = −0.1, k3 = 0.1)
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Figure 5.12: F-16 Polynomial Monte-Carlo Worst Case for section 5.4 - Uncertain
k1 - (k1 = 200, k2 = −0.1, k3 = 0.1)
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Figure 5.13: F-16 Polynomial Monte-Carlo Worst Case for section 5.4 - Uncertain
k1, k3 - (k1 = −1, k2 = −0.1, k3 = −1)
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Figure 5.14: F-16 Polynomial Monte-Carlo Worst Case for section 5.4 - Uncertain
k1, k3 - (k1 = 10, k2 = −0.1, k3 = 10)
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Figure 5.15: F-16 Polynomial Monte-Carlo Worst Case for section 5.4 - Uncertain
k1, k3 - (k1 = 200, k2 = −0.1, k3 = −200)
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6
Aircraft with Uncertain
Actuator Dynamics and

MRAC

6.1 Introduction
As discussed in chapter 5, the main challenge in the design of adaptive control
laws is addressing system stability and acceptable command following in the
presence of uncertain, unmodeled actuator dynamics. In particular, degraded
actuator performance can lead to poor tracking and even instability [21]. In
real world applications, actuators seldom follow a first order model and their
dynamics cannot be safely neglected, as they can limit achievable stability of
model reference adaptive control (MRAC). Therefore, it remains imperative
that there exists a way to ensure safe interaction between the higher order
actuator and the MRAC in the design phase.

Current literature attempts to address this by using MRAC control
modifications. See [63, 64] where the authors consider a pseudo control hedging
modification to include actuator dynamics in the design phase of MRAC. The
authors of [65, 28] revisit pseudo-control hedging with a novel Lyapunov LMI
method to ensure ideal bounded reference trajectories for a range of admissible
bandwidths, natural frequency, and damping inherent in the actuator dynamics.

Content of this chapter were accepted for publication to the Proceedings of the AIAA
Guidance, Navigation, and Control Conference 2021 (Invited Session)
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As discussed mainly in [28], the relationship between the damping and
natural frequency can be bilinear. In other words, any variation in the damping
can adversely affect the range of admissible natural frequencies required to
maintain closed-loop stability for higher order actuators and vice-versa. There
is also a relationship between the MRAC learning rate and the closed-loop
stability. Consequently, traditional Monte-Carlo methods can become costly for
systems with these parameter uncertainties inherent in their dynamics. Every
combination of these parameters must be simulated, and there remains risk of
state-space explosion or unexplored, unsafe trajectories for medium and large
scale systems.

In this chapter, we focus on V&V of an F-16 longitudinal model with
MRAC and uncertain third order elevator dynamics with deflection saturation.
The elevator contains bounded uncertainties inherent in its damping and
natural frequency. This approach is similar to that in chapter 5. Since
uncertain parameters have an explicit representation in the space of occupation
measures, we can identify numerically the worst case behavior caused by inherent
uncertainties in damping and natural frequencies coming from the actuator.
To avoid scaling problems, we exploit sparsity for ODEs to partition out the
dynamics into a class of smaller systems that serve as control inputs for each
other. In total, we are able to validate medium and large scale systems (up to
11 states) by using this approach.

Two examples are considered where the MRAC tolerates uncertainty in the
natural frequency and damping, and one example where it obviously fails. Then,
we compare our main results to those achieved using Monte-Carlo simulations
and a search algorithm. The search algorithm locates the worst case damping
and natural frequency behavior from the actuator.

Unlike the results of [63, 65, 28], we do not use the the pseudo control
hedging modification to address actuator bandwidth uncertainty. Furthermore,
none of the prior results take into account angle deflection saturation of the
actuator. The results in [4, 6] provide only ultimate stability for aircraft models
with linear feedback. The results in chapters 3 and 4 do not take into account
uncertainties with a polynomial structure. In other words, our framework
guarantees finite-time convergence for non-autonomous systems with piecewise
dynamics. This is solution better than the solution provided by Barbalat’s
lemma [32] provided by the readily available Lyapunov certificate.

The organization of this work is as follows: section 6.2 discusses the short
period of the F-16 with third order actuator dynamics, section 6.3 discusses our
main results, and section 6.4 gives our main conclusions and suggestions for
future research.
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6.2. F-16 SHORT PERIOD WITH ACTUATOR DYNAMICS

6.2 F-16 Short Period with Actuator Dynamics
The short-period mode of an F-16 aircraft can be expressed by the dynamics

ẋp(t) = Axp(t) +Bv(t), xp(0) = xp0 (6.1)

where xp(t) =
[
α(t) q(t)

]
are the short period dynamics, α(t) ∈ R is the angle

of attack, q(t) ∈ R is the pitchrate,

A =
[
−1.0189 +0.9051
+0.8223 −1.0774

]
, B =

[
−0.0022
−0.1756

]
are the open loop short period dynamics. Elevator actuator output v(t) ∈ R is
described the third order unmodeled actuator dynamics

ẋc(t) = (F + L(k1, k2)) xc(t) +Gu(t) (6.2)
v(t) = Hxc(t), v(0) = v0 (6.3)

where u(t) ∈ R is a measurable control input,

F =

 0 1 0
0 0 1
−aω2

n ω2
n + 2ζωna; 2ζωn + a

 , G =

0
0
1

 , H =

aω2
n

0
0

 ,
ζ, ωn, a ∈ R+ are the damping, natural frequency, and gain respectively,.
Matrix

L =

 0 1 0
0 0 1
−ak2

1 k2
1 + 2k2k1a; 2k2k1 + a


contains inherent uncertainties within damping and natural frequency of the
actuator dynamics described by bounded parameters k1, k2 ∈

[
−kmax kmax

]
,

kmax ∈ R+. We assume that resulting matrix (F + L) is Hurwitz, the DC
gain between the control input u(t) and actuator output v(t) is unity, and pair
(A,B) is controllable.

6.2.1 Model Reference Adaptive Control
Given a measurable command signal c(t), we want to design a control law

u(t) = un(t) + ua(t) (6.4)

such that the combined nominal un(t) and adaptive control ua(t) laws allow
(6.1) to asymptotically track reference model

ẋr(t) = Arxr(t) +Brc(t), xr(0) = xr0 (6.5)
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where xr(t) =
[
αr qr

]
and the error dynamics

e(t) = xp(t)− xr(t) (6.6)

satisfies limt→∞ e(t) = 0. Matrices Ar = (A−BK1) and Br = BK2 are from
the nominal controller

u(t) = K1xp(t) +K2c(t) (6.7)

with feedback/feedforward gains

K1 =
[
+4.7432 −2.3163

]
, K2 =

[
−4.3396

]
obtained using the LQR method [62, 46]. We assume that there exists a feedback
matrix K1 such that matrix Ar is Hurwtiz.

The adaptive controller

ua(t) = −ŴT (t)Φ
(
xp(t)

)
, (6.8)

with the given basis function Φi(xp(t)) = (1 + expi)−1, i = 1, 2 and weight
estimate Ŵ(t), satisfies the update law

˙̂W(t) = ΓΦ
(
xp(t)

)
eT (t)PBp, Ŵ(0) = Ŵ0 (6.9)

where Γ = diag
([
ε 10

])
, ε << 1 is the learning rate and positive definite matrix

P is generated by the Lyapunov equality

0 = ATr P + PAr + I2×2. (6.10)

Theorems that highlight the boundedness and long range stability of MRAC are
discussed extensively in [47, 32]. For some discussion on control modifications,
refer to [37]. For papers that discuss using these control modifications, refer to
chapters 3 and 4.

6.3 Main Results
We wish to validate our existing closed loop polynomial aircraft model (6.1)
with actuator dynamics (6.3) by finding the initial state that maximizes of the
norm of the concave cost function J = −‖ê(T )‖22 where

ê(t) =
[
α(t)− αr(t)
q(t)− qss(t)

]
≈ e(t)
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approximates the error dynamics and qss = limt→∞ qr(t) . We also have given
terminal time T = 25 s, c(t) = 0.1 and actuator constants

a = 5, ωn = 20, ζ = 0.1,

which are all guaranteed feasible solutions from [28]. If we can show that for
every chosen initial state[
xp(0) xc(0) xr(0) Ŵ(0)

]︸ ︷︷ ︸
x(0)

∈ X0 ,
[
−0.2 0.2

]2 × [−1× 10−6 1× 10−6]6
that all trajectories remain bounded in the box[

xp(t) xc(t) xr(t) Ŵ(t)
]︸ ︷︷ ︸

x(t)

∈ X ,
[
−2 2

]7 × [−3 3
]

until they reach the terminal cost target ê(T ) ∈ {J ≤ 4× 10−3}, then our
control law is validated. For our main results, we consider a 1% and 10%
increase in the uncertainty the elevator dynamics by increasing kmax. We also
include an example where the MRAC fails due to severe degraded actuator
performance invoked by a 5000% increase in the dynamic uncertainty.

To include saturation in the elevator deflection, we partition the dynamics
using locally affine functions in three cells Xj , j = 1, . . . , 3 corresponding to
linear, upper saturation, lower regimes

X1 , {x(t) ∈ R8 : |v(t)| ≤ θmax}, v(t) = Hxc(t) (6.11)
X2 , {x(t) ∈ R8 : v(t) ≥ θmax}, v(t) = θmax (6.12)
X3 , {x(t) ∈ R8 : v(t) ≤ −θmax}, v(t) = −θmax (6.13)

where θmax = 25π
180 .

With the combined short period dynamics (6.1), actuator dynamics, in-state
actuator uncertainties k1 and k2, and controller dynamics all partitioned into
the saturation regimes, we can write (2.9) as

J = inf
ê(T )

− ‖ê(T )‖22

s.t. ẋp(t) = fp(t,xp(t), v(t)),
ẋr(t) = fr(t,xr(t)),[

ẋc(t)
˙̂W(t)

]
= fj(t,xc(t),xp(t),Ŵ(t), αr, k1, k2),

x(t) ∈ Xj , k1, k2 ∈
[
−kmax kmax

]
, j = 1, . . . , 3

x(0) ∈ X0, x(t) ∈ XT , t ∈ [0, T ],

(6.14)
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and the measure LP of parsimony (2.12) as

J∞ = inf
µT

−
∫
‖ê(T )‖22 dµT

s.t. ∂µ

∂t
+ divfpµ(t,xp, v) + µT = µ0

∂ν

∂t
+ divfrν(t,xr) + νT = ν0

∂ξ

∂t
+ divfjξ(t,xc,Ŵ,xp, αr, k1, k2) + ξT = ξ0

πt,xp,v#µ = πt,xp,v#ν

πt,xr#ν =
3∑
j=1

πt,xr#ξ∫
µ0 = 1,

∫
ν0 = 1,

∫
ξ0 = 1

(6.15)

with respect to each occupation measure µ, ν, ξ. Marginal πt,xp,v#µ
(respectively, πt,xp,v#ν) of measure µ (respectively, ν) with respect to variables
t, xp, and v. Marginal πt,xr#µ (respectively, πt,xr#ξ) of measure µ (respectively,
ξ) with respect to variables t, xr. As discussed in chapter 2 we use this strategy
to address scaling issues inherited from the problem. With this approach, we can
reduce the overall size of the problem by 3 variables. As discussed in chapters 3
to 5, we also employ some basic scaling strategies so that all dynamics are
normalized on the interval

[
−1 1

]
.

The Monte-Carlo use a fixed time step and evenly distributed initial
conditions to simulate the trajectories. For every simulation, we also use
a search algorithm to find the matrix L(k1, k2) that maximizes the terminal
cost J . The worst case Monte-Carlo simulations and upper bounds are given in
Figs. 6.1 to 6.3 and Table 6.2, respectively,. Worst case parameters for natural
frequency and damping are also shown in the captions.

As shown in Table 6.1, the upper bounds obtained using our framework
(Gloptipoly 3 + MOSEK) show the MRAC can tolerate a 0.1% and 10%
uncertainty in damping and natural frequency. At kmax = 50, the actuator
performance degrades significantly and tracking is lost. We can also extract the
time spent in the saturation regime, by extracting the mass of each occupation
measure [40].

6.4 Conclusion
We validated a short period F-16 model with MRAC and a higher order elevator
dynamics. The elevator contained parameter uncertainties and deflection
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Figure 6.1: F-16 Monte-Carlo (kmax = 0.01, k1 = −0.01, k2 = 0.01)

kmax = 0.01 kmax = 0.1 kmax = 50

Rel Ord Upper Bnd J CPU [s] Upper Bnd J CPU [s] Upper Bnd J CPU [s]

1 3.00 × 10−2 2.81 3.10 × 10−2 3.59 1.13 3.82
2 9.78 × 10−3 3.17 × 102 9.66 × 10−3 3.36 × 102 1.03 × 10−1 4.34 × 102

3 1.98 × 10−3 1.38 × 105 2.91 × 10−3 1.15 × 105 2.86 × 10−2 1.20 × 105

Table 6.1: Gloptipoly 3 + MOSEK Upper Bounds for section 6.3

saturation. We compared the results using our framework with those obtained
using Monte-Carlo and a search algorithm. We also showed an example where
the MRAC obviously fails due to poor performance from the elevator. For
future results, we wish to find new ways to partition the dynamical problem to
solve even larger scale systems and use region of attraction framework to find
the numerical upper bounds for the uncertain parameters.
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Figure 6.2: F-16 Monte-Carlo (kmax = 0.1, k1 = −0.1, k2 = 0.1)

Upper Bound CPU
kmax J (LQR + MRAC) Time [s]

0.01 3.13 × 10−5 7.74 × 101

0.1 3.13 × 10−5 7.96 × 101

50 2.27 × 10−2 7.43 × 101

Table 6.2: Monte-Carlo Upper Bounds for section 6.3
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Figure 6.3: F-16 Monte-Carlo (kmax = 50, k1 = −50, k2 = 0)
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7
Final conclusion

This chapter summarizes the main contributions of this thesis and discusses
some potential future research directions.

7.1 Contributions
This thesis employed moment SOS hierarchies (in particular, Gloptipoly 3 with
a SDP solver such as SeDuMi or MOSEK) for V&V of aerospace problems with
adaptive control laws such as MRAC. Generating the numerical certificates
for the polynomial aircraft model with adaptive feedback relies on using our
framework. The main contributions of this thesis are outlined below:

1. This thesis proposes the use of advanced algorithms and our framework
for V&V of polynomial aircraft models with nonlinear control laws such
as MRAC. This serves as an alternative to traditional methods that
are insufficient for adaptive control, such as Monte-Carlo, or infinite
time convergence of non-piecewise polynomial systems. Specifically our
framework was used to validate both longitudinal and lateral F-16 plants
with MRAC. The numerical certificates we produce guarantee boundedness
of all trajectories and convergence in finite time.

2. The computational cost for solving these polynomial dynamical optimiza-
tion problems using our framework depends on size of the closed-loop
system and the largest moment SDP block it generates. MRAC, at the
very least, doubles the number of states we need to optimize over. By
exploiting sparsity of ODEs, we are able to solve moderate to large scale
systems (of up to 9 states depending on the problem) that are otherwise
numerically intractable. In particular, we used our framework to solve a
lateral F-16 plant with piecewise disturbances and MRAC feedback.
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3. Unmodeled dynamics have an adverse affect on a closed-loop system with
MRAC. Specifically, it is well established MRAC with the presence of
unmodeled dynamics can lead to instability. Since bounded uncertain
parameters have explicit representation in the space of occupation
measures, we can guarantee the MRAC can tolerate at least sufficiently
small unmodeled dynamics within the dynamical system. We solved for
a longitudinal polynomial F-16 plant with known flexible dynamics but
uncertain coupling. This approach was also applied to a longitudinal
F-16 plant with MRAC and actuator dynamics that contain uncertain
parameters.

7.2 Future Research
There are some interesting directions to take this research in the future:

1. Exploiting sparsity for ODEs using parsimony for MRAC relies on
approximating the reference trajectory. Although we can write this off
as initial condition mismatch, it would be interesting ways to find other
ways to divide up the flight control problem using state estimators and
observer based MRAC. The end goal would be generating a numerical
certificate for a full polynomial aircraft model with longitudinal/lateral
adaptive feedback. Since MRAC exhibits closed-loop phenomena invoked
by numerical problems, such as initial condition mismatch, traditional
V&V methods such as Monte-Carlo are out of the question.

2. Hi-fidelity models for high performance aircraft (such as hypersonic
vehicles) are typically unavailable to the public. Using our framework to
solve for a polynomial longitudinal hypersonic vehicle model could yield
notable results.

3. Throughout this thesis, our generated numerical certificate are the terminal
costs of our polynomial dynamical optimization problem. We should revisit
the same results using our framework with the region-of-attraction (ROA)
problem.
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Appendix A
Validation Script

% i n p u t s
r = i n p u t ( ’ R e l a x a t i o n o r d e r r = ’ ) ; T = i n p u t ( ’ Terminal time T = ’ ) ;

k i = 0 . 1 ; % u n c e r t a i n parameter u upper bound

TScaled = 1 ; % n o r m a l i z e d time

xmax = 1 ∗ ones ( 2 , 1 ) ; x0max = 0 . 1 ∗ ones ( 2 , 1 ) ;
zmax = 1 ∗ ones ( 3 , 1 ) ; z0max = 0 . 1 ∗ ones ( 3 , 1 ) ;

Dx = d i a g ( 1 . / xmax ) ; Dxinv = i n v (Dx ) ;
Dz = d i a g ( 1 . / zmax ) ; Dzinv = i n v ( Dz ) ;

xmax = Dx ∗ xmax ; x0max = Dx ∗ x0max ; % n o r m a l i z e a l l s t a t e s
zmax = Dz ∗ zmax ; z0max = Dz ∗ z0max ;

mpol ( ’ x1 ’ , 2 ) ; mpol ( ’ z1 ’ , 3 ) ; mpol ( ’ k1 ’ , 1 ) ; % dynamics

mpol ( ’ x0 ’ , 2 ) ; mpol ( ’ z0 ’ , 3 ) ; mpol ( ’ k0 ’ , 1 ) ; % i n i t i a l
mpol ( ’ xT ’ , 2 ) ; mpol ( ’ zT ’ , 3 ) ; mpol ( ’ kT ’ , 1 ) ; % t e r m i n a l

mpol ( ’ t1 ’ , 1 ) ; % measures depend on time

m1 = meas ( [ x1 ; z1 ; k1 ; t1 ] ) ; % o c c u p a t i o n measures

m0 = meas ( [ x0 ; z0 ; k0 ] ) ; mT = meas ( [ xT ; zT ; kT ] ) ; %i n i t i a l / t e r m i n a l measures

% dynamics
x = Dxinv ∗ x1 ; z = Dzinv ∗ z1 ; u = k1 ; t = t1 ;

A = [ 0 −1+u 0 0 0 ; 1+u −5 0 0 0 ; 0 0 . 1 −10 0 . 1 0 ; 0 0 0 . 1 −1 −0.1; 0 0 0 1 −1];

f 1 = T ∗ b l k d i a g (Dx , Dz ) ∗ A ∗ [ x ; z ] ;

d = 2∗ r ; % o r d e r o f r e l a x a t i o n

p1 = genpow ( 8 , d ) ; p1 = p1 ( : , 2 : end ) ; % powers

g1 = mmon ( [ x1 ; z1 ; k1 ; t1 ] , d ) ; % b k i l d t e s t f u n c t i o n s

y10 = ones ( s i z e ( p1 , 1 ) , 1 ) ∗ [ x0 ; z0 ; k0 ; 0 ] ’ ; % unknown moments o f i n i t i a l measure
y10 = mom( prod ( ( y10 . ^ p1 ) ’ ) ’ ) ;

y1T = ones ( s i z e ( p1 , 1 ) , 1 ) ∗ [ xT ; zT ; kT ; TScaled ] ’ ; % unknown moments o f t e r m i n a l measure
y1T = mom( prod ( ( y1T . ^ p1 ) ’ ) ’ ) ;

c o s t = mom(xT ’ ∗ xT ) ; % i n p u t LMI moment problem

A1y = mom( d i f f ( g1 , [ x1 ; z1 ] ) ∗ f 1 ) + mom( d i f f ( g1 , t1 ) ) ; % l i n e a r regime

% bounds on s t a t e s
X0 = [ x0 . ^ 2 <= x0max . ^ 2 ; z0 . ^ 2 <= z0max . ^ 2 ] ;
XT = [ xT . ^ 2 <= xmax . ^ 2 ; zT . ^ 2 <= zmax . ^ 2 ] ;
B = [ x1 . ^ 2 <= xmax . ^ 2 ; z1 . ^ 2 <= zmax . ^ 2 ] ;
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% bounds on time v a r i a b l e s [ n o r m a l i z e d ]
Tlim = [ t1 >= 0 , t1 <= TScaled ] ;

% bounds on u n c e r t a i n parameter
K0 = k0 . ^ 2 <= k i . ^ 2 ; KT = kT . ^ 2 <= k i . ^ 2 ; K = k1 . ^ 2 <= k i . ^ 2 ;

t i c % t i m e r
P = msdp (max( c o s t ) , . . .

mass (m0) == 1 , . . .
A1y − y1T + y10 == 0 , . . .
X0 , XT, B, K, K0 , KT, Tlim ) ;

% s o l v e LMI moment problem
[ s t a t u s , o b j ] = msol (P ) ;
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