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Abstract

This work explores two different approaches in the helicopter system (HUMUSOFT

CE-150) identification. The obtained mathematical model of the helicopter is used for

the control synthesis of PD, PID, LQG and MPC. The performances of controllers are

mutually compared through the step responses with the standard amplitudes. The real

time interconnection of the virtual reality helicopter model with the real helicopter system

enhances the flight impression. The robustness of the control design is checked by the

reaction of the system during the flight to the outside disturbances.
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Chapter 1

Introduction

The main goal of this work is identification and control of a helicopter model CE 150

(further referred to as helicopter or system) provided by HUMUSOFT s.r.o.

http://www.humusoft.cz/models/ce150.htm.

The helicopter is connected to a personal computer and it is placed in laboratory K26

at the departement of control engineering, electrotechnical faculty of Czech technical

university in Prague.

The helicopter CE 150 corresponds to a classical propeller configuration and it is

shown on the figure 1.1.

Figure 1.1: The helicopter CE 150

The helicopter is fixed to a rod therefore its motion is restricted to azimuth and

1
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2 CHAPTER 1. INTRODUCTION

elevation angle.

At the steady state conditions the axis of the main propeller is parallel to local vertical

and the axis of the tail propeller is parallel to local horisontal.

The steady state is defined by the center of mass of the helicopter. The center of mass

is adjustable by the positioning of the cummulated weight in the lead box along the tail

of the helicopter.

The angular velocities of the motors are adjustable by the input potential differences

applied to the main and tail motors.

The conversion of the angular velocities of the motors to thrust force exerted by the

propellers is non-linear. Thus the helicopter CE 150 from the point of view of theory of

dynamical systems is non-linear Multiple Input Multiple Output (MIMO) system with

two degrees of freedom (2 DOF).

To design a good control of the system it is necessary to know the mathematical

model of the system. To obtain the mathematical model we start with the theoretical

analysis of the system. The identification of the system is based on the mathematical

model obtained. The quality of the mathematical model is checked by comparison of the

transient responses of the system and model to standart signals - unit steps.

After the evaluation of all the unknown parameters we can proceed with the control

synthesis. We base the control synthesis on the linearised model. We design a set of

proportional-derivative PD and proportional-integrative-derivative PID controllers. Dur-

ing the analysis, identification and PD-PID control design we assume that the system

and the data obtained is continuous in time.

The further control design requires discretising the mathematical model obtained.

Before we design LQG controller (linear regulator with quadratic criterion assuming the

Gausian noise distribution) we will need to design a Kalman estimator of the state vari-

ables of the system that we are not able to measure.

We use the virtual reality (VR) toolbox in MATLAB for the virtual environment

design. We will try to interconnect the virtual environment and the real system such

that the information about the landscape is passed to the helicopter and the scanned

data obtained from the helicopter CE 150 is fed back to the virtual environment in real

time.

To ensure the minimal height of the flight above the known virtual terrain we will try

to design MPC controller.

The robustness of the control design is checked by the exposing the helicopter model

to the typical atmospheric irregularities such as wind gusts etc.



Chapter 2

System Analysis

This chapter sums up the main physical formulas of the individual subsystems, finds out

continuous state-space representation of the system and derives the continuous transfer

function of the system.

2.1 Inputs and outputs

The MIMO system of the helicopter has following input and output signals.

Symbol Description

UM the input voltage applied on the main motor

UT the input voltage applied on the tail motor

UB the input voltage applied on the motor shifting the mass point

ψ elevation angle measured from the local horizontal - clockwise negative

φ azimuth angle measured from the central position - clockwise positive

2.2 Subsystem description

The helicopter as a system can be divided into three subsystems - motors, propellers

and mechanical parts.

Motors convert the applied input voltages into angular speeds.

Propellers transform the angular speeds applied by motors into a force.

Mechanical parts of the helicopter are joints and the construction.

3



4 CHAPTER 2. SYSTEM ANALYSIS

The logical line of the interconnection of all subsystems of the helicopter is represented

on Fig. 2.1.

Figure 2.1: The interconnection of all subsystems of the helicopter

2.2.1 Working point as a static equilibrium

The helicopter is in the static equilibrium when its azimuth and elevation angles are

constant and its motors are spinning at a constant angular velocities.

The input signals necessary to set the helicopter in the equilibrium state are defining

its Working Point (WP).

The Fig. 2.2 shows the helicopter, simplified by a lever, tilted from its static equilib-

rium position.

Figure 2.2: Tilted lever
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We assume that the center of gravity is accumulated at effective distance l from the

suspension point. The moment Mg caused by the gravity force acting on the helicopter

is:

Mg = l · Fg · cosψ

Mg moment caused by the gravity force acting on the helicopter

l effective distance

Fg gravity force

We assume that for small elevation angle ψ the Mg is directly proportional to the

actual possition of the mass point of the helicopter which linearly depends on the UB

voltage.

Mg = kB · UB (2.1)

kB constant transfer ratio kB ∈ R

We will examine the static equilibrium and the working point closer at the end of this

section.
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2.2.2 Motors

Motor consists of a stator and a rotor Fig. 2.3. The stator is steady whereas the rotor

spins according to the applied voltage.

Figure 2.3: Servo motor - illustrative figure

We characterize the rotor as a mass with certain moment of inertia J spinning at

angular frequency ω overcomming an internal friction B. If we neglect the induction

of the rotor windings we can assume that the torque generated by the motor linearly

depends on the input voltage applied to the motor.

kM · UM = JM · ω̇M +BM · ωM (2.2)

kT · UT = JT · ω̇T +BT · ωT (2.3)

k proportionality constant

U the input voltage

J the moment of inertia

B the linear friction

ω the angular speed - the state variable of the helicopter

subscript M related to or generated by main motor (or propeller)

subscript T related to or generated by tail motor (or propeller)

The torque produced by motors is transformed to thrust via propellers.
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2.2.3 Propellers

The torque generated by the main propeller is lifting up the helicopter while the tail

propeller is ballancing the rotational torque produced by the main propeller and prevents

the helicopter from spinning around.

Figure 2.4: Propeller - illustrative figure

The transfer characteristic of the angular speed of the motor and the torque generated

by a propeller depends on the geometry of the propeller. In our case both propellers have

got a fixed geometry with approximately quadratic characteristics. We will assume that

each propeller has got the same characteristics in clockwise and anticlockwise directions.

MV M = k2V M · ω2
M + k1V M · ωM (2.4)

MV T = k2V T · ω2
T + k1V T · ωT (2.5)

MH M = k2H M · ω2
M + k1H M · ωM (2.6)

MH T = k2H T · ω2
T + k1H T · ωT (2.7)

M torques generated by the propellers [N.m]

k2, k1 proportionality constants [kg.m.s−1] and [kg.m]

subscript H acting around the horizontal axis of rotation

subscript V acting around the vertical axis of rotation

Each propeller influences both - azimuth and elevation angle of the helicopter. This

property is called cross coupling between main and tail propellers and it is caused by the

tilting of the spatulas (in our case constant). Putting this quality into formulas:

MV = MV M +MV T (2.8)

MH = MH M +MH T −Mg (2.9)

M H , M V net torques produced by both propellers around both axes

Mg moment caused by the gravity force acting on the helicopter
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2.2.4 Mechanical parts

The dynamics of mechanical system of the helicopter is defined by the moment of

inertia J and the friction B in both axes of rotation. Interesting fact to notice is that

moment of inertia J depends on the center of gravity. Therefore it would have been

correct to write J (UB), but we skip this notation assuming that the moment of inertia

will be constant for a specific working point.

MH = JH · ω̇H +BH · ωH (2.10)

MV = JV · ω̇V +BV · ωV (2.11)

To make the system of the equations complete we will introduce two more equations

defining the elevation and azimuth angles.

ψ̇ = ωH (2.12)

φ̇ = ωV (2.13)

2.2.5 The subsystem interconnection

We rearange obtained state equations such that all the derivatives of states are on the

left hand sides of the equations. Rearanging (2.2) and (2.3) :

ω̇M = −
BM

JM

· ωM +
kM

JM

· UM (2.14)

ω̇T = −
BT

JT

· ωT +
kT

JT

· UT (2.15)

Substituting (2.4) and (2.5) into (2.8) (the same with (2.1),(2.6), (2.7) and (2.9))and

rearanging:

ω̇V =
1

JV

(

k2V M · ω2
M + k1V M · ωM

)

+
1

JV

(

k2V T · ω2
T + k1V T · ωT

)

−

−
BV

JV

· ωV (2.16)

ω̇H =
1

JH

(

k2H M · ω2
M + k1H M · ωM

)

+
1

JH

(

k2H T · ω2
T + k1H T · ωT

)

−

−
BH

JH

· ωH −
kB

JH

· UB (2.17)

The state equations we have obtained are due to quadratic factors in (2.16) and (2.17)

non-linear. One of the most common strategies how to obtain a state-space matrices of

the non-linear system is to linearise it in a fixed working point.
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2.2.6 The working point selection

We have already mentioned that the main requirement on the working point is that

helicopter keeps its elevation angle and the azimuth angle constant while both motors are

spinning around. If we assume that the center of gravity of the helicopter is fixed, i.e.:

UB 0 = const (2.18)

then the moments of inertia in the horizontal and vertical directions are also constant.

Therefore the equilibrium conditions are:

ωM = ωM 0 = const

ωT = ωT 0 = const

ωV = 0

ωH = 0

ψ = ψ0 = const

φ = φ0 = const

and all derivatives of states are equal to zero.

ω̇M = ω̇T = ω̇V = ω̇H = ψ̇ = φ̇ = 0

To evaluate angular speeds of motors we substitute the equilibrium conditions into (2.16)

and (2.17) obtaining:

0 = k2V M · ω2
M 0 + k1V M · ωM 0 + k2V T · ω2

T 0 + k1V T · ωT 0

kB · UB 0 = k2H M · ω2
M 0 + k1H M · ωM 0 + k2H T · ω2

T 0 + k1H T · ωT 0

Assuming that for the higher rotation rates all ω2
0 >> ω0 we can write:

k2V M · ω2
M 0 = −k2V T · ω2

T 0

kB · UB 0 = k2H M · ω2
M 0 + k2H T · ω2

T 0

After substituting and rearanging, we obtain linear dependence of the spinning rate

of the main and tail propeller:

ωM 0 =

√

−
k2V T

k2V M

· ωT 0 (2.19)

ωM 0 =

√

k2V T · kB

k2V Tk2H M − k2H Tk2V M

·
√

UB 0

ωT 0 =

√

k2V T · kB

k2V Tk2H M − k2H Tk2V M

·

√

−
k2V M

k2V T

·
√

UB 0
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From the last two equations we can conclude that the relationship between the angular

speeds of the main and tail motors (propellers) and the center of mass is quadratic.

The angular speeds of motors at equilibrium are defining equilibrium input voltages:

UM 0 =
BM

kM

· ωM 0 UT 0 =
BT

kT

· ωT 0 (2.20)

Evaluating equilibrium input voltages applied to tail motor in terms of main motor:

UT 0 =

BT

kT

BM

kM

·

√

−
k2V M

k2V T

· UM 0 (2.21)

This equation proves the linear relationship between the input voltages applied to

the system in various working points. The equations (2.21) and (2.19) will enable us to

evaluate the transfer constants kM and kT of the motors if we knew the frictions in the

motors B M and B T .

2.3 Linearization

2.3.1 The linearization of the state equations

We will obtain the linearized model by finding the first complete differential of non-

linear model in the equilibrium position.

The complete differentials of the (2.14) and (2.15) are:

ω̇M 0 − ∂ω̇M = −
BM

JM

·
(

ωM 0 − ∂ωM

)

+
kM

JM

·
(

UM 0 − ∂UM

)

ω̇T 0 − ∂ω̇T = −
BT

JT

·
(

ωT 0 − ∂ωT

)

+
kT

JT

·
(

UT 0 − ∂UT

)

The complete differentials of the (2.16) and (2.17) are:

0 − ∂ω̇V =
1

JV

(

2k2V M · ωM 0 + k1V M

)(

ωM 0 − ∂ωM

)

+

+
1

JV

(

2k2V T · ωT 0 + k1V T

)(

ωT 0 − ∂ωT

)

−

−
BV

JV

(

0 − ∂ωV

)

0 − ∂ω̇H =
1

JH

(

2k2H M · ωM 0 + k1H M

)(

ωM 0 − ∂ωM

)

+

+
1

JH

(

2k2H T · ωT 0 + k1H T

)(

ωT 0 − ∂ωT

)

−

−
BH

JH

(

0 − ∂ωH

)

−
kB

JH

(

UB 0 − ∂UB

)
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Finally the complete differentials of the (2.12) and (2.13) are:

ψ̇0 − ∂ψ = 0 − ∂ωH

φ̇0 − ∂φ = 0 − ∂ωV

Now we substract out the equilibrium solution (assumimg the deviation ∂UB = 0).

From now on we skip the ∂ notation assuming all state variables are refering to deviations

from the equilibrium, thus:

ω̇M = −
BM

JM

· ωM +
kM

JM

· UM (2.22)

ω̇T = −
BT

JT

· ωT +
kT

JT

· UT (2.23)

ω̇V =
1

JV

(

2k2V M · ωM 0 + k1V M

)

ωM +
1

JV

(

2k2V T · ωT 0 + k1V T

)

ωT −

−
BV

JV

· ωV (2.24)

ω̇H =
1

JH

(

2k2H M · ωM 0 + k1H M

)

ωM +
1

JH

(

2k2H T · ωT 0 + k1H T

)

ωT −

−
BH

JH

· ωH (2.25)

ψ̇ = ωH (2.26)

φ̇ = ωV (2.27)

Now we are ready to construct a continuous in time state-space model of the system.
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2.4 State space model

2.4.1 State space matrices

We construct of the state space description of the system from the (2.22), (2.23),

(2.24) and (2.25). To keep the transparency of the system analysis we introduce few

substitutions:

pM =
BM

JM

pT =
BT

JT

pV =
BV

JV

pH =
BH

JH

(2.28)

ρV M =
1

JV

(

2k2V M · ωM 0 + k1V M

)

ρV T =
1

JV

(

2k2V T · ωT 0 + k1V T

)

ρH M =
1

JH

(

2k2H M · ωM 0 + k1H M

)

ρH T =
1

JH

(

2k2H T · ωT 0 + k1H T

)

We define input, output and state vector:

u =
(

UM UT

)T

(2.29)

y =
(

ψ φ
)T

(2.30)

x =
(

ωM ωT ωV ωH ψ φ
)T

(2.31)

The matrix form we obtain is:

ẋ = Ax + Bu

y = Cx + Du

Where matrices A,B,C and D are representing state space model of the system:

A =

























−pM 0 0 0 0 0

0 −pT 0 0 0 0

ρV M ρV T −pV 0 0 0

ρH M ρH T 0 −pH 0 0

0 0 0 1 0 0

0 0 1 0 0 0

























B =

























kM

JM
0

0 kT

JT

0 0

0 0

0 0

0 0

























(2.32)

C =

(

0 0 0 0 1 0

0 0 0 0 0 1

)

D =

(

0 0

0 0

)
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Performing the Laplace transformation

sX(s) − x(0) = A · X(s) + B · U(s) (2.33)

Y (s) = C · X(s) + D · U(s)

Where

x(0) =
(

ωM 0 ωT 0 0 0 ψ0 φ0

)T

(2.34)

X Laplace tramsformation of a state vector of the system

x(0) state vector defining equilibrium of the system

U Laplace tramsformation of an input vector of the system

Y Laplace tramsformation of an output vector of the system

The Fig. 2.5 illustrates the role of each matrix. We see that the matrix A is a feedback

matrix also called a system matrix, matrix B is an input matrix, matrix C is an output

matrix and matrix D is a direct transmission matrix.

Figure 2.5: The state space model
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2.4.2 From the state space description to the transfer matrix

We will base out transfer matrix derivation on the fact of zero initial conditions:

x(0) = 0 (2.35)

Thus the equation (2.33) will change into:

sX(s) = A · X(s) + B · U(s) (2.36)

Y (s) = C · X(s) + D · U(s) (2.37)

Evaluating X(s) from the (2.36) :

X(s) =
(

sI − A
)

−1
B · U(s)

We obatain the transfer matrix by substituting obtained X(s) into output equation

(2.37) and rearanging:

G(s) =
Y (s)

U(s)
= C

(

sI − A
)

−1
B + D

To balance the assumption (2.35) we will need to set the system into the equilibrium

position externally Fig. 2.6.

Figure 2.6: The modified state space model for the zero initial conditions

Where the input and output vectors are

Ǔ(s) = U(s) + u(0) Y̌ (s) = Y (s) + y(0) (2.38)

and

u(0) = (UM 0 UT 0)
T

y(0) = (ψ0 φ0)
T (2.39)

u(0) the necessary constant input vector to keep the system in equilibrium

y(0) the constant output vector when the system is in equilibrium
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Before we evaluate the transfer matrix let us introduce following substitutions:

κH M = ρH M

kM

JM

κH T = ρH T

kT

JT

κV M = ρV M

kM

JM

κV T = ρV T

kT

JT

(2.40)

The transfer matrix of the helicopter model is:

G(s) =

(

GHM GHT

GV M GV T

)

=

(

κH M

s(s+pH)(s+pM )
κH T

s(s+pH)(s+pT )

κV M

s(s+pV )(s+pM )
κV T

s(s+pV )(s+pT )

)

(2.41)

We see that each of the partial transfer functions GHM , GHT , GV M and GV T are of

the third order and have the same form:

G(s) =
κ

s(s+ a)(s+ b)
(2.42)

Assuming the system (2.42) is asymptotically stable we expect it to perform following

responses:

Figure 2.7: The impulse and step response of the system G(s)

Due to the friction BH and BV the helicopter will get to rest if desturbed by short

pulse. If the constant torque is applied to the horizontal or vertical axis of rotation the

helicopter will turn around with constant angular speed.

The following chapter will examin the step responses of G(s) closer.



16 CHAPTER 2. SYSTEM ANALYSIS



Chapter 3

Identification methods

This chapter will introduce strategies and methods necesary for the system identifica-

tion. We start with investigation of the static characteristics where we discuss a method

for equilibrium estimation and a method for estimation of the steady spinning rate of the

motors.

We continue with dynamic characteristics investigation. Close look to the step re-

sponses of the system enables us to find transfer matrix G(s) of the system. At the end

of this chapter we will combine the data obtained from static and dynamic characteris-

tics to evaluate all the necessary parameters for the continuous state space model of the

system.

3.1 Static characteristics

3.1.1 Strategies for static experiments

We start the system identification with finding out all the operation ranges of input

voltages and output angles. Hence we find the scaling constants between the output units

and radians to scale the outputs.

Measuring characteristics of the system in equilibrium positions for various positions

of the center of gravity will enable us to select the working points in which we will

investigate the dynamic responses of the system.

We will also need to measure the steady state spinning rate of motors and propellers.

This experiment, together with results from the dynamic repsponses will enable us to

estimate parameters of the continuous state space model of the system.

17



18 CHAPTER 3. IDENTIFICATION METHODS

3.1.2 Equilibria

For the fixed position of the center of gravity of the helicopter defined by (2.18) we

find the equilibrium input vector (2.39). We repeat this measurement for the whole range

of the center of gravity positions - UB.

The measured relationship between the input voltage applied on the main motor and

the input voltage applied on the tail motor we expect to be linear according to (2.21).

We select the working points such that they are as far as possible from each other but

still lying in the linear region.

3.1.3 Steady state spinning rate of motors

The experiment for the steady state spinning rate of motors will require a special

apparatus because the angular frequencies of the motors are not measured and provided

for user. This experiment is crucial for the evaluation of the proportionality constants of

motors kM and kT (see (2.2) and (2.3)).

We will measure the dependence of the angular frequency of motor with propeller on

the applied voltage. To see the expected relationship clearly we need to rearange the

(2.20) into folowing form:

ωM 0 =
kM

BM

· UM 0 ωT 0 =
kT

BT

· UT 0 (3.1)

From (3.1) we see that the expected relationship is linear with slopes defining the kM

BM

and kT

BT
ratios.

The parameters we are looking for are BM

kM
and BT

kT
therefore we will have to take

inverted values of the estimated slopes:

BM

kM

=
∂UM 0

∂ωM 0

BT

kT

=
∂UT 0

∂ωT 0
(3.2)

which are in fact slopes of the former functions (2.2) and (2.3).
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3.2 Dynamic characteristics

3.2.1 Strategies for the evaluation of dynamic responses

To identify the system we have chosen to start with the simplest and the most evident

responses and than proceed to more complicated ones. The simplicity has to be conserved

through whole identification to make it transparent and easy to follow.

Linearised model is approximating the behavior of the non-linear model near to the

working point, therefore we begin with identifying the range of amplitudes of input signal

that are exciting the system enough but not too much.

When all this is done we are ready to analyze the step responses of the system Fig. 3.1.

Figure 3.1: Motors dynamics identification strategy

We continue with identification of the systems dynamics around the vertical axis of

rotation therefore we fix the helicopter in elevation.

To separate the transient response of the tail motor and mechanical part of the system

we hold the helicopter untill the spinning rate of the tail motor is constant (clearly hear-

able). At this moment the torque applied around the vertical axis of rotation is constant

and after releasing the helicopter we read pure transient response of the mechanics.

We do the same experiment without holding the model to identify the overall dynamics

around the vertical axis of rotation. The tail motors dynamics can be extracted from

previous two experiments.

The identification of the dynamics of both motors is therefore done indirectly through

the dynamics mechanical parts of the system.
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Knowing the transient response of the mechanics around the vertical axis of rotation

and measuring the step responses of main motor we can find main motor dynamics.

Now we are ready to identify the systems behaviour around the horizontal axis of

rotation therefore we fix the helicopter in azimuth.

We measure the step responses of the system around the horizontal axis of rotation.

Knowing the main motor dynamics we can extract the dynamics of mechanics from this

measurement.

The influence of the tail motor around the horizontal axis of rotation is very small

and not measurable in linear region. Therefore we will neglect it during the identification

considering the proportional factor to be small constant (nearly zero).

To the rest of the working points we take the information of motors’ dynamics and

identify only the dynamics of the mechanical parts of the system (which are mass point

dependent).

Figure 3.2: Identification strategy for the rest of working points

It is important to notice that the error, in this strategy, is cumulative therefore the

better the identification of the motors at the beginning the better the overall system

identification.

3.2.2 The first algorithm for step response evaluation

We will investigate the separation of the dynamics of motor and mechanics closer in

general form. The biggest advantage of the algorithm we are going to describe now is
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that it does not need any a priori information about the system. Therefore it is good to

start the system identification with this algorithm to obtain some useful parameters and

ratios for the further investigation.

Let us consider a stable system with the transfer function in the form (2.42):

G(s) =
κ

s(s+ a)(s+ b)
=

κ
b

a− b

(

1

s+ a
−

1

s+ b

)

+
κ
b

s(s+ a)
= H(s) + F (s)

a, b, c, d ∈ R+ . . . are constants

where H(s) =
κ
b

a− b

(

1

s+ a
−

1

s+ b

)

and F (s) =
κ
b

s(s+ a)

The step response of the G(s) is:

g(t) = g̃(t)+ ĝ(t) =
κ

(a− b)(ab)2

(

a2 · exp(−b.t)− b2 · exp(−a.t)
)

+
κ

ab
t−

κ(a+ b)

(ab)2
(3.3)

where homogenious solution and particular solution are represented by:

g̃(t) =
κ

(a− b)(ab)2

(

a2 · exp(−b.t) − b2 · exp(−a.t)
)

and ĝ(t) =
κ

ab
t−

κ(a+ b)

(ab)2

The step response of the F(s) is:

f(t) = f̃(t) + f̂(t) =
κ

a2b
exp(−at) +

κ

ab
t−

κ

a2b

where homogenious solution and particular solution are represented by:

f̃(t) =
κ

a2b
exp(−at) and f̂(t) =

κ

ab
t−

κ

a2b
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The particular solutions ĝ(t) and f̂(t) can be formally rewritten into the form:

f̂(t) =
κ

ab
t−

κ

a2b
= m

(

t−
1

a

)

= m · t+ f̂(0) (3.4)

ĝ(t) =
κ

ab
t−

κ(a + b)

(ab)2
= m

(

t−
(1

a
+

1

b

)

)

= m · t+ ĝ(0) (3.5)

where

m =
κ

ab
∴ κ = abm (3.6)

f̂(0) = −
m

a
∴ a = −

m

f̂(0)
(3.7)

ĝ(0) = −m
(1

a
+

1

b

)

∴ b =
m.a

a.ĝ(0) −m
=

m

f̂(0) − ĝ(0)
(3.8)

From the equations (3.4) and (3.5) it is evident that the f̂(t) and ĝ(t) must be parallel

as it is shown on the Fig. 3.3 because both of them have the same slope m.

Figure 3.3: The dynamics separation identification algorithm
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3.2.3 The limits of the first algorithm

The first algorithm that we have described is based on the assumption that the ex-

periment will last long enough for transient responses to fade out. If this condition is not

full filled we obtain wrong results. The Fig. 3.4 shows that the particular solutions ĝ(t)

and f̂(t) are not parallel any more if the experiment time is short.

Figure 3.4: Short time step response experiment - wrong results

If we denote the time of experiment T and

f̂(tof ) = 0 ĝ(tog) = 0

then the first algorithm is trustworthy if

T > 3 · tof T > 3 · tog

T the time of the experiment

If this condition is not full filled we have to rely on the information we have already

obtained from pravious measurements and try the second algorithm for the step response

evaluation.
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3.2.4 The second algorithm for step response evaluation

The development of the second algorithm for step response evaluation is motivated

by the fact that the helicopter has edge stoppers at both ends of each axis of rotation

which are preventing it from spinning around. Thus the longest time for the experiment

is defined by the time needed for the helicopter to move from one end to another.

Knowing that f(t) response is faster than g(t) we can estimate constants m and a

from the first algorithm and use them to find b and κ in the algorithm we are going to

describe now.

The time requirements of the second algorithm are following:

T > tog Ts → 0

T the time of the experiment

Ts the sampling time

From the (3.3) using the substitution (3.6) we derive:

g(m, a, b, t) =
m

ab(a− b)

(

a2 · exp(−b.t) − b2 · exp(−a.t)
)

+mt−
m(a + b)

ab

If we know parameters m and a we can estimate the parameter using the measured

gM(t) and the function:

g(m, a,
1

t
, t) =

mt

a(a− 1
t
)

(

a2 · exp(−1) −
1

t2
· exp(−a.t)

)

+mt−
mt(a + 1

t
)

a
(3.9)

Let us define artificial z(t) function:

z(t) = |gM(t) − g(m, a,
1

t
, t)|

Then the parametera b is found from:

b =
1

min(z(t))
(3.10)

and parameter κ from the equation (3.6)
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The Fig. 3.5 shows the use of the z(t) function.

Figure 3.5: z(t) function

3.2.5 The limits of the second algorithm

The second algorithm that we have described is based on the equation (3.9) and the

domain of g(m, a, 1
t
, t) function is defined as:

t > 0

a 6= 0

b 6= 0

a 6=
1

t

It is also important to notice that the z function has got always two local minimas

Fig. 3.5. The first one is neer to the origin and the second one characterises the missing

parameter.

We will have to keep in mind these constraints while implementing the z function

algorithm.
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3.2.6 The state space model evaluation

The evaluation of the dynamic respones of the system will enable us to identify the

transfer matrix of the system (2.41) with parameters:

pM , pT , pV , pH , κH M , κH T , κV M , κV T

Before we start with evaluation of the missing constants let us recall equations (3.2):

BM

kM

=
∂UM 0

∂ωM 0

BT

kT

=
∂UT 0

∂ωT 0

and the substitutions we made (2.28):

pM =
BM

JM

pT =
BT

JT

From these equations we can extract the constants of motors:

kM

JM

=
pM

BM

kM

and
kT

JT

=
pT

BT

kT

(3.11)

The ρ parameters of the state space model are evaluated from the substitution into

rearanged (2.40)

ρV M =
κV M

kM

JM

ρH M =
κH M

kM

JM

ρV T =
κV T

kT

JT

ρH T =
κH T

kT

JT

(3.12)



Chapter 4

System Identification

4.1 Static characteristics

4.1.1 Ranges and the conversion of units

Our initial experiment is to identify the limits of the azimuth and the elevation angles

and the limits of the input voltages applied.

After identifying the operation ranges we proceed with identifying the conversion

constants because we would like to obtain the azimuth and elevation angles in radians

and input voltages in volts (not in the MATLAB units [MU] and [MP]).

Table 4.1: The input and output vector ranges and conversion constants

quantity from [MU] to [MU] conversion constant [V]/[MU]

UM -1 1 12/1

UT -1 1 6/1

UB -0.9 -0.8 1

quantity from [MP] to [MP] conversion constant [rad]/[MP]

φ 0 365 π
256

ψ 0 135 π
256

We decided to convert all physical quantities into the Matlab units to make the

identification results compatible with the control synhesis.

27
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4.1.2 Static equilibria characteristics

We proceed with measurement of static equilibria. Each equilibrium is measured for the

constant time interval t = 60sec and the main criterion is that the helicopter moves not

more than ±10◦.

Figure 4.1: Static characteristics - equilibria measurement

Using the linear interpolation we approximate the slope from equation (2.21) of the

equilibrium characteristics Fig. 4.1:

∂UT 0

∂UM 0

=

BT

kT

BM

kM

·

√

−
k2V M

k2V T

= −0.343[−] (4.1)

We have selected three working points which lie in the linear region, marked with red

circles Fig. 4.1.
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4.1.3 Steady state spinning rate of motors

To measure the steady state spinning rate of motors we need an apparatus that will count

the turns of the propeller without affecting its dynamics. We decided to build a simple

schematics that will be based on slotted opto sensor. The circuit is shown of the Fig. 4.2

Figure 4.2: Schematics for the slotted optosensor interconnection

We have fixed the sensor to ensure standard conditions for all measurements Fig. 4.3.

Figure 4.3: The settings of the experiment

It is worth noticing that the sampling time for this experiment has to be very short.

Thus we have set the sampling time to Ts = 0.1ms.

The data taken from the analog input was noisy but complete. We got rid out of the

noise during the singal post processing.
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The resultant characteristics of the spinning rate of the main motor is on the Fig. 4.4

Figure 4.4: The steady state spinning rate of the main motor

Form the slope of this characteristics we can evaluate the kM

BM
constant using (2.14):

kM

BM

=
∂ωM 0

∂UM 0
= 79.3[rad.s−1.V −1] = 152[revs/MU ]

then the substitution into (3.2) will give us:

BM

kM

= 0.0126[V.s.rad−1] = 0.0066[MU/revs]

The unit revs stands for revolutions.
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The resultant characteristics of the spinning rate of the tail motor is on the Fig. 4.5

Figure 4.5: The steady state spinning rate of the tail motor

Form the slope of this characteristics we can evaluate the kT

BT
constant using (2.15):

kT

BT

=
∂ωT 0

∂UT 0
= −405[rad.s−1.V −1] = −387[revs/MU ]

then the substitution into (3.2) will give us:

BT

kT

= −0.0025[V.s.rad−1] = −0.0026[MU/revs]

The minus sign in the result indicates the oposite spinning direction to the main

motor.
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The interesting result is from the mutual spinning rate characteristics Fig. 4.6

Figure 4.6: The mutual steady state spinning rate characteristics

Form the slope of this characteristics we can evaluate the
√

− k2V T

k2V M
constant using

(2.19):
√

−
k2V T

k2V M

=
∂ωM 0

∂ωT 0
= 1.13[−]

The inverse value is then:
√

−
k2V M

k2V T

= 0.885[−]

Now we are ready to prove the accuracy of our measurement by substituting into (4.1)

∂UT 0

∂UM 0
=

BT

kT

BM

kM

·

√

−
k2V M

k2V T

=
152

−387
· 0.885 = −0.345[−]

We compare the obtained result with the result measured in (4.1) concluding that the

static characteristics measurements have been done accurately.
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4.1.4 Initial conditions

Before we move to identification of the dynamics of the model we briefly sum up the

initial conditions that we have obtained from the static characteristics. The tables 4.2,

4.3 and 4.4 show all non-zero components of inital input and state vectors.

Table 4.2: Input u(0) and state x(0) vectors for the working point 1

quantity in Matlab units in SI units

UM 0 0.68 8.16 [V]

UT 0 -0.24 -1.44 [V]

UB 0 -0.82 -0.82 [V]

ωM 0 98 [revs.s−1] 613 [rad.s−1]

ωT 0 92 [revs.s−1] 577 [rad.s−1]

Table 4.3: Input u(0) and state x(0) vectors for the working point 2

quantity in Matlab units in SI units

UM 0 0.585 7.02 [V]

UT 0 -0.20 -1.20 [V]

UB 0 -0.85 -0.85 [V]

ωM 0 87 [revs.s−1] 545 [rad.s−1]

ωT 0 78 [revs.s−1] 490 [rad.s−1]

Table 4.4: Input u(0) and state x(0) vectors for the working point 3

quantity in Matlab units in SI units

UM 0 0.485 5.82 [V]

UT 0 -0.165 -0.99 [V]

UB 0 -0.88 -0.88 [V]

ωM 0 75 [revs.s−1] 471 [rad.s−1]

ωT 0 64 [revs.s−1] 403 [rad.s−1]

The initial output vector y(0) in all three cases is a zero vector.
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4.2 Dynamic characteristics

We decided to start the identification of the system from the second working point

because it is placed in the middle of the linear region. The following section shows the

procedure of the identification of the second working point and at the end sums up all

the results obtained from identification of all three working points.
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4.2.1 The input signal

The transient responses with initial ’holding’ of the helicopter are measured all with

constant input vector. The amplitude of the input vector are calculated from (4.2) such

that the step jumps are proportional to the torques generated around vertical or horizontal

axis of rotation:
(

αMAX

αMIN

)

=

(

√

1 + perc/100 − 1
√

1 − perc/100 − 1

)

U0 (4.2)

α amplitude of the step jumps (maximal and minimal)

perc percentage jump from the working point (e.g. 10 [%])

U0 the voltage in the working point - either UM 0 or UT 0

This formula has been also used for the signal amplitude calculation during free tran-

sient response measurements.

To systematize the free transient response measurements we decided to excite the

system by the periodic signal with time period long enough for the transient responses

to fade out Fig. 4.7.

Figure 4.7: Input signal for the measurement of dynamic responses

The regions with the zero deviations are necesarry for the system to stabilise in its

working point. Each experiment lasts for ten periods i.e.: T = 400 seconds. This way we

measure the system responses for the several perc [%] jumps from each working point.
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The Fig. 4.8 shows the block interconnection for the system identification with holding.

Figure 4.8: The Simulink scheme for the system identification - holding

The Fig. 4.9 shows the block interconnection for the identification of the system

dynamics in azimuth.

Figure 4.9: The Simulink scheme for the system identification - Azimuth

While fixed azimuth we use the scheme on Fig. 4.9 to identify the coupling dynamics

in elevation.

The Fig. 4.10 shows the block interconnection for the identification of the system

dynamics in elevation.

Figure 4.10: The Simulink scheme for the system identification - Elevation

Keeping fixed elevation we use the scheme on Fig. 4.10 to identify the coupling dy-

namics in azimuth.
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4.2.2 Evaluation of step responses with ’holding’

The experiment of the step responses with ’holding’ the helicopter assumes that the

system is linear so that the superposition principle can be applied. It also assumes

that the torque applied in the measured axis of rotation is constant.

According to the strategy we described in the chapter 3.2.1 we need to make this

measurement very accurately because the identification of motors lies upon the result

from this experiment.

To eliminate the reaction time of the examiner we decided to consider the starting

point of the system response to be the very first deflection point in the direction of the

applied torque.

We start measuring the second working point because it is placed in the middle of

the linear region of the static characteristics Fig. 4.1. We measure the influence of the

tail motor on the dynamics of the system around the vertical axis of rotation keeping the

elevation angle fixed.

We examine the step responses in both directions, clockwise and anti-clockwise, for

various amplitudes of input signal. To unify the obtained data all amplitudes are scaled

to unit step jump Fig. 4.11.

Figure 4.11: The tranzient response around the vertical axis of rotation,

red - model
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We estimated the typical behaviour of the mechanics of the system by calculating

the mean values from all obtained results. The parameters of FV T that we achieve are

summed up in the Tab. 4.5.

Table 4.5: The FV T identification of working point 2

pV
κV T

pT

1.03 10.6

4.2.3 Evaluation of free step responses

We continue with the evaluation of the free step responses of the system. We use the

information obtained from the experiments that we did with ’holding’.

We examine the step responses in clockwise and anti-clockwise directions for various

amplitudes of the input signal and accordingly scale the amplitudes of the output signal

Fig. 4.12.

Figure 4.12: Tail motor identification cyan - holding, blue - free, red -

model
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We estimated the typical dynamics of the system by calculating the mean values from

all obtained results. The parameters of GV T we achieve are summed up in the Tab. 4.6.

Table 4.6: The GV T identification of working point 2

pV pT κV T

1.03 0.28 2.97

This result is surprising, because according to Tab. 4.6, the dynamics of the tail motor

is slower compared to the dynamics of the mechanical parts while we are expecting oposite

result. The observed discrepancy might be caused by the reaction time induced by the

examiner.

The obtained result has proved that the strategy we were using until now must be

reconsidered.

4.2.4 The identification strategy modification

Until now we were trying to identify the dynamics of motors indirectly. This time

we identify the dynamics of motor and propeller directly using the apparatus from the

steady state spinning rate of motors evaluation experiment described in chapter 4.1.3.
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4.2.5 The direct identification of the motors dynamics

The main idea of the direct identification of the motors is based on the equations (2.2)

and (2.3). Let us recall the form of that equations:

Jω̇(t) +Bω(t) = k.U(t) (4.3)

We measure step responses in the linear region of the characteristics Fig. 4.4 and

Fig. 4.5. The input voltage applied is defined by the following equations

u(0) = u0 = const

u(t > 0) = u1 = const

u1 6= u0

The solution to equation (4.3) can be derived using e.g. the method of variation of

constants:

ω(t) = k ·

(

u1

B
+
(u0

J
−
u1

B

)

· exp
(

−
B

J
t
)

)

(4.4)

Substituting t = J
B

into (4.4) and rearranging

ω
( J

B

)

=
( k

B
u1 −

k

J
u0

)

(

1 − e−1
)

+
k

J
u0

ω
( J

B

)

= 0.632
(

ω(∞) − ω(0)
)

+ ω(0) (4.5)

From the (4.5) we find can estimate the time constant of the motor t = J
B

. Then the

corresponding pole is the inverse value of the time constant:

p =
1
J
B

(4.6)

During the steady state spinning rate measurement we were estimating the angular

speed of motor by counting the measured pulses over the steady region. To find the

transient response of the motor we need to approximate an angular speed of motor from

each pulse period. The condition for good results of this experiment is again a very short

sampling time.
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The time constant of the motor is estimated from the time necessary for the ω to reach

63.2% of the difference between the two steady states as it is shown on the Fig. 4.13 and

Fig. 4.14:

Figure 4.13: Main motor step response, red - model

Figure 4.14: Tail motor step response, red - model

Averaging of the obtained parameters and substitution into (3.11) give us Tab. 4.7

Table 4.7: The dynamics of motors

pT
kT

JT
[MU] kT

JT
[SI] pM

kM

JM
[MU] kM

JM
[SI]

2.81 -1087 -1138 4.04 612 320

From the table Tab. 4.7 we conclude that the dynamics of the tail motor is slower

than the dynamics of the main motor.
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4.2.6 The identification of the first working point

The Fig. 4.15 shows step responses of the system and estimated model.

Figure 4.15: Step responses of the system and model(red)

The estimated transfer function in SI units [rad.V −1] is:

G1(s) =

(

GHM1 GHT1

GV M1 GV T1

)

=

(

7.63
s(s+3.02)(s+4.04)

2.17
s(s+3.02)(s+2.81)

1.79
s(s+0.41)(s+4.04)

9.81
s(s+0.41)(s+2.81)

)

and Matlab units [revs.MU−1]:

G1(s) =

(

GHM1 GHT1

GV M1 GV T1

)

=

(

14.6
s(s+3.02)(s+4.04)

4.15
s(s+3.02)(s+2.81)

3.42
s(s+0.41)(s+4.04)

9.36
s(s+0.41)(s+2.81)

)
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4.2.7 The identification of the second working point

The Fig. 4.16 shows step responses of the system and estimated model.

Figure 4.16: Step responses of the system and model(red)

The estimated transfer function in SI units [rad.V −1] is:

G2(s) =

(

GHM2 GHT2

GV M2 GV T2

)

=

(

7.48
s(s+1.19)(s+4.04)

0.01
s(s+1.19)(s+2.81)

2.47
s(s+0.46)(s+4.04)

7.93
s(s+0.46)(s+2.81)

)

and Matlab units [revs.MU−1]:

G2(s) =

(

GHM2 GHT2

GV M2 GV T2

)

=

(

14.3
s(s+1.19)(s+4.04)

0.01
s(s+1.19)(s+2.81)

4.73
s(s+0.46)(s+4.04)

7.57
s(s+0.46)(s+2.81)

)
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4.2.8 The identification of the third working point

The Fig. 4.17 shows steps responses of the system and estimated model.

Figure 4.17: Step responses of the system and model(red)

The estimated transfer function in SI units [rad.V −1]:

G3(s) =

(

GHM3 GHT3

GV M3 GV T3

)

=

(

6.59
s(s+1.24)(s+4.04)

0.01
s(s+1.24)(s+2.81)

1.04
s(s+0.26)(s+4.04)

4.53
s(s+0.26)(s+2.81)

)

and Matlab units [revs.MU−1]:

G3(s) =

(

GHM3 GHT3

GV M3 GV T3

)

=

(

12.6
s(s+1.24)(s+4.04)

0.01
s(s+1.24)(s+2.81)

1.99
s(s+0.26)(s+4.04)

4.33
s(s+0.26)(s+2.81)

)



Chapter 5

Control Synthesis

5.1 Classical Control Theory

Throughall this chapter we assume that the system is controled by negative feedback

as it is shown on the Fig. 5.1

Figure 5.1: The feedback control scheme

45



46 CHAPTER 5. CONTROL SYNTHESIS

5.1.1 Decoupling

To understand the role of the decoupling we need to define an autonomous controller.

Definition 5.1 (autonomous controller): We call MIMO controller autonomous

if each output signal is affected by single control signal. I

It is evident that to obtain an autonomous control we need at least the same amount of

control signals as output signals.

The definition 5.1 implies that the fransfer matrix of the closed loop system F (s)

must be diagonal i.e.:

F (s) =
(

I + G(s).R(s)
)

−1
G(s).R(s) =

(

I + H(s)
)

−1
H(s)

F (s) the closed loop transfer matrix

G(s) the transfer matrix of the system

R(s) the transfer matrix of the controller

H(s) the open loop transfer matrix

I the unity matrix of the corresponding size
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We see that to ensure the diagonality of the closed loop system F (s) the open loop

transfer function H(s) must be diagonal. (we skip the (s) notation)

H =

(

HHM 0

0 HV T

)

=

(

GHM GHT

GV M GV T

)

·

(

RHM RHT

RV M RV T

)

(5.1)

Therefore the adjacent transfer functions of the controller are defined

RHT = −RV T

GHT

GHM

RV M = −RHM

GV M

GV T

(5.2)

In the case of our helicopter we may use the following substitution

SHT =
GHT

GHM

=
κHT

κHM

(s+ pT )

(s+ pM)

SV M =
GV M

GV T

=
κV M

κV T

(s+ pM)

(s+ pT )

Then the (5.2) will gain following form

RHT = −RV T .SHT RV M = −RHM .SV M (5.3)

Substituting (5.2) back to (5.1)

HHT =

(

GHM −
GHT .GV M

GV T

)

· RHM

HV T =

(

GV T −
GHT .GV M

GHM

)

· RV T

Therefore to decouple the cross bond between the main propeller and azimuth angle

we will need to design the controllers RHM and RV T for the transfer functions:

SHM = GHM −
GHT .GV M

GV T

=
κHM − κHT κV M

κV T

s(s+ pH)(s+ pM)
(5.4)

SV T = GV T −
GHT .GV M

GHM

=
κV T − κHT κV M

κHM

s(s+ pV )(s+ pT )
(5.5)

To complete the control design we find the remaining controllers RHT and RV M from

(5.3).
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5.1.2 Frequency methods for PD control design

The frequency design methods are well known and the rigorous derivation of the con-

trol design is described in (John, J., 1996, page 36) or (Franklin, G.F., Powel, J.D.,

Emami-Naeini, A., 2006, page 353).

We decided to design a proportional-derivation ’PD’ controller to speed up the tran-

sient responses of the system. Both SHM and SV T contain pure integrators, therefore

if tests with the helicopter system prove that the system quickly diminishes the steady

state error we will not need to design proportional-integral-derivative PID controllers.

We follow the design procedure to obtain the PD controller with a specific phase

margin (PM). The phase margin is an amount by which the phase of the open loop

system H(jω) exeeds −180◦ when the gain |K.H(jω)| = 1. The phase margin defines

the stability of a closed loop.

We firstly design the pure PD controller of the form:

R∗(s) = rd.s+ rp

Because pure PD controller is not realisable by means of physical elements we design

a lead compensed PD controller adding a first-order pole to the derivative component

rd in order to alleviate the high-frequency amplification of the pure PD control.

R(s) =
rd.s

rd.s

N
+ 1

+ rp

The N is the lead ratio. The role of the lead ratio is clearly seen from the inital value

of the step response of the controller.

u(0) = lim
t→0

r(t) = lim
s→∞

r(s).s.R(s) = lim
s→∞

s

s
R(s) =

= lim
s→∞

rd.s
rd.s

N
+ 1

+ rp = lim
s→∞

s(N + rp) + N
rd
rp

s+ N
rd

= N + rp

We see that the main purpose of the lead ratio is to set a ceiling to the initial peak

value of the control response u(0) with the minimal influence to all other parrameters of

the pure PD controller.

To avoid the overloading of the actuators we usually set the lead ratio N=10.
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We show the design procedure of the PD controller for the phase margin PM = 60◦

for the transfer function SHM of the first working point.

SHM =
13.1

s(s+ 3.02)(s+ 4.04)

The Fig. 5.2 shows the Bode plots for the pure PD design.

Figure 5.2: Pure PD controller design - frequency methods

The obtained controller is in the form:

R∗

HM = 1.06s+ 2.85
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The Fig. 5.3 shows the Bode plots for the lead compensed PD controller (N=20).

Figure 5.3: Lead compensed PD controller design - frequency methods

RHM =
24.2s+ 57

1.06s+ 20

In the same fashion we obtain the PD controller for the SV T with the phase margin

PM = 30◦.

SV T =
8.4

s(s+ 0.41)(s+ 2.81)

The lead compensed transfer function RV T for N=10:

RV T =
4.7s+ 6.9

0.44s+ 10
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The Fig. 5.4 compares the expected and measured step responses of the system.

Figure 5.4: The comparison of the system and model step responses

From the Fig. 5.4 we conclude that the controller diminishes the steady state error

very slowly, therefore we need to design PID controllers.
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5.1.3 Frequency methods for PID control design

We show the design procedure of the proportional-integral-derivative PID controller

for the phase margin PM = 20◦ for the transfer function SV T of the first working point.

The Fig. 5.5 shows the Bode plots for the lead compensed PID controller (N=10).

Figure 5.5: Lead compensed PID controller design - frequency methods

The lead compensed transfer function of the RV T for N=10:

RV T =
5.34s2 + 9.3s+ 1.44

0.49s2 + 10s

The lead compensed transfer function of the RHM for phase margin PM=60 and

N=20:

RHM =
21.9s2 + 51.3s+ 10.9

0.97s2 + 20s
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The Fig. 5.6 shows the step responses of the closed loop system.

Figure 5.6: The comparison of the system and model step responses

If we compare the Fig. 5.6 with Fig. 5.4 we see that the system reacts quickly and

diminishes the steady state error. The interesting fact to notice is that in the both

systems there is no coupling.
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The Fig. 5.7 shows the step responses of the closed loop system with coupling.

Figure 5.7: The comparison of the system and model step responses - cou-

pling

We can see that in the time interval from 10 to 15 seconds both azimuth and elevation

react on the change in elevation. The same phenomenon occures in the time interval from

20 to 25 second where both angles are affected by the change in the azimuth angle.

The Fig. 5.7 has been achieved when we put the RHT and RV M equal to zero.
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5.1.4 Root locus methods for PID control design

The root locus design techniques are also well known and the rigorous design descrip-

tion can be found in (John, J., 1996, page 21) or (Franklin, G.F., Powel, J.D.,

Emami-Naeini, A., 2006, page 230).

During the root locus design we use the rltool in Matlab.

We show the design procedure of the PID controller for the transfer function SHM of

the third working point.

SHM =
12.6

s(s+ 1.24)(s+ 4.04)

We set two design criteria. The first is the settling time has to be less than 5

seconds. The last criterion is the fitst overshot has to be less than 30%.

The Fig. 5.8 shows the resultant pole location.

Figure 5.8: The root locus of the SHM

The obtained transfer function is:

RHM =
9.62(s+ 0.7)(s+ 1.6)

s(s+ 15)
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We apply the same design criteria to find the PD controller for SV T .

SV T =
4.33

s(s+ 0.26)(s+ 2.81)

The Fig. 5.9 shows the resultant pole location.

Figure 5.9: The root locus of the SV T

The obtained transfer function is:

RV T =
17.5(s+ 0.69)

s+ 12
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The Fig. 5.10 shows the step responses of the closed loop system.

Figure 5.10: The comparison of the system and model step responses

If we compare the Fig. 5.10 with Fig. 5.4 we see that the system reacts quickly

and diminishes the steady state error. The first overshot is lower probably because the

identified model has got the greater gain than the real system.
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5.2 Modern Control Theory

5.2.1 The discretization of the continuous system

Until now we assumed that the system is continuous. Newertheless the truth is, that

we scan data discretely with a sampling period Ts = 0.01 seconds. For the Kalman filter

design and following LQG and MPC control design we need to discretize our plant.

We use the zero order hold - Evans discretization method implemented in Matlab as

c2d which is described in the (Havlena, V., Štecha, J., 2000, page 19).

We decided to show the control design procedure on the system set in the second

working point.

A =

























−4.04 0 0 0 0 0

0 −2.81 0 0 0 0

0.003 −0.004 −0.46 0 0 0

0.012 −0.00 0 −1.56 0 0

0 0 0 1 0 0

0 0 1 0 0 0

























B =

























612 0

0 −1087

0 0

0 0

0 0

0 0

























C =

(

0 0 0 0 1 0

0 0 0 0 0 1

)

D =

(

0 0

0 0

)

Substituting into (Ts = 0.01s):

Ad = eATs Bd = eATs

∫ Ts

0

e−AτdτB

we obtain:

Ad =

























0.96 0 0 0 0 0

0 0.97 0 0 0 0

0.00 −0.00 0.99 0 0 0

0.00 −0.00 0 0.98 0 0

0.00 −0.00 0 0.01 0 0

0.00 −0.00 0.01 0 0 0

























Bd =

























5.99 0

0 −10.7

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

























C =

(

0 0 0 0 1 0

0 0 0 0 0 1

)

D =

(

0 0

0 0

)

We see that the discretized system is also asymptotically stable and reachable (all its

unstable modes are detectable).



5.2. MODERN CONTROL THEORY 59

Before we proceed to the Kalman filter design we have to examine the observability

of the system. The system is observable if:

rank















C

C.A
...

C.AN−1















= N

where N is the order of the system.

Substituting into the previous equation we realize that this conditioin is fulfilled and

the obtained discretized system is observable.

5.2.2 Kalman filter design

Lets assume the linearized discrete system:

x(k + 1) = Ad.x(k) + Bd.u(k) + v(k)

y(k) = C.x(k) + D.u(k) + e(k)

where v(k) and e(k) are the disturbance (process noise) and measurement noise respec-

tively, which we assume to be uncorrelated zero-mean Gausian stochastic with constant

power spectral density matrices:

E







[

v(k1)

e(k1)

][

v(k2)

e(k2)

]T






=

[

Q O

O R

]

δ
(

k1 − k2

)

where δ is the Dirac function.

If we restrict ourselves on suboptimal solution, then the Kalman filter has the structure

of an ordinary state estimator or observer:

x̂(k + 1) = Ad.x̂(k) + Bd.u(k) + L.(y − C.x̂)

where x̂ is the estimated state vector and L is a Kalman gain.

The suboptimal solution of L which minimizes

P (k) = E
{

[x(k) − x̂(k)]T [x(k) − x̂(k)]
}

is defined by the steady state solution of the Riccati equation

P (k + 1|k) = AdP (k|k − 1)Ad
T + Q − L(k)CP (k|k − 1)Ad

T

L(k) = AdP (k|k − 1)CT
(

CP (k|k − 1)CT + R
)

−1
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where Q and R represent the cost matrices.

To find the Kalman gain we use the Matlab function kalman with parameters

Q = I

R = I

The Fig. 5.11 shows the interconection of the Kalman filter. For the siplicity we set

D = 0.

Figure 5.11: The Kalman filter Simulink scheme
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The Fig. 5.12 shows the step responses of the closed loop system with PID control.

States are monitored by the Kalman filter. The important fact to mention is that the

Fig. 5.12 shows diflections of the states from the working point.

Figure 5.12: The comparison of the estimated states (blue) and

model(red)

From the Fig. 5.12 we see that the estimated states are quickly convergent. For

the LQG and MPC design we can substitute last two estiamated states directly by the

measured output signal. This substitution will increase the accuracy of the contoller.
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5.2.3 LQG control design

’The name LQG arises from the use of a Linear model, an integral Quadratic cost

function, and Gaussian white noise processes to model disturbance signals and noise.’

(Skogestad, S., Postlethwaite, I., 2003, page 345).

Let us assume linear discrete dynamic system in the form:

x(k + 1) = Ad.x(k) + Bd.u(k) (5.6)

y(k) = C.x(k) + D.u(k)

The LQG control problem is to find out the optimal control u(k) which minimizes:

J =
1

2
xT (N)Q(N)x(N) +

1

2

N−1
∑

k=t0

[

xT (k) uT (k)
]

[

Q(k) O

O R(k)

][

x(k)

u(k)

]

(5.7)

where t0 is the initial time and the N is the final time. Matrices Q and R are

representing cost functions. Minimizing the criterion (5.7) we obtain the Ricatti equation:

P (k) = Q + AT

d
.P (k + 1)M − Ad

T .P (k + 1)Bd.K(k)

where K(k) is the Kalman gain

KT (k) =
(

R + Bd
T P (k + 1)Bd

)

−1
BdP (k + 1)Ad

the optimal control is then equal to

u∗(k) = −KT (k).x(k)

To find out the Kalman gain we use dlgr function implemented in Matlab with the

cost matrices:

Q =
(

diag([ 100 100 1 1 0.01 0.1 ])
)

−2

R = diag([ 1 1 ])
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It is important to notice that the dlgr function will find suboptimal solution, i.e.: the

obtained Kalman gain matrix K and steady state correction matrix S are optimal only

for the final steady state of the system.

S =
(

C(BK − A)−1B
)

−1

We use obtained suboptimal solution to save the computation time, because the opti-

mal gain matrices are time dependent i.e.: they must be calculated at each time instant

k.

The interconnection of the K and S (blue) with the system is shown on the Fig. 5.13

Figure 5.13: The Simulink scheme for the LQG

The Fig. 5.13 shows the Kalman filter enhanced with two last states obtained directly

from measurement.



64 CHAPTER 5. CONTROL SYNTHESIS

The Fig. 5.14 shows the step responses of the closed loop system with LQG control.

Figure 5.14: The comparison of the system and model step responses

As we expect the LQG performace with the PID is better in the sense of minimal

overshot and settling time. The interesting fact to notice is the coupling which is clearly

visible in the time interval from 10 to 15 seconds. The coupling can be gradually dimin-

ished by iterative optimization of the Q and R matrices.

During the time interval from 10 to 20 seconds we see that the LQG slowly diminished

the steady state error in azimuth. This can be further improved by introducing the

integral component into the azimuth control.
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5.2.4 Model Predictive Control (MPC) design

The rigorous derivation of the model predictive control for the SISO systems is well

described in (Roubal, J. et al., 2005, page 55).

We will find a receding horizon control MPC for the discretized system (5.6) that

minimizes:

J =

Tp−1
∑

k=0

{

q[y(k) − w(k)]2 + r[u(k)]2
}

(5.8)

where Tp is the prediction horizon, q and r are cost matrices, w(k) is the reference signal.

The system response to the reference singal is:
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Rewritting into the matrix form:

y = V x(0) + Su = ỹ + Su

where the ỹ represents a system response to the initial condition and Su is a system

response to the control sequence on the horizon Tp.

Substituting into (5.8) and rearanging we obtain the control law:

u∗(k) = −Nx(k) + Mw(k)

where

w(k) =

























u1(k)
...

u1(k + Tp − 1)

u2(k)
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u2(k + Tp − 1)
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We modify the given example Matlab code from(Roubal, J. et al., 2005, page 66)

such that it is applicable for the MIMO helicopter system.

function [M, N, Z, Ab, Bb, Cb, Db] = mympc(Tp, dsys, Q, R)

% MYMPC computes analytical MPC regulator with BUFFER (Ab, Bb, Cb, Db)

% for the discretized system DSYS with 2 inputs and 2 outputs according to

% given prediction horizon Tp(in steps) and weighting matrices Q and R.

%

% USE: [M, N, Z, Ab, Bb, Cb, Db] = mympc(Tp, dsys, Q, R)

[Ad,Bd,Cd,Dd,E,Ts] = dssdata(dsys);

%----- Matrix y~ /x0 for prediction

V = [];

for i = 0 : 1 : Tp-1

V = [V;Cd*Ad^i];

end

%----- Matrix S for prediction

S = zeros(2*Tp);

S(3:4,1:2)=Cd*Bd;

for i = 3 : 2: 2*Tp-2

for j = 1 : 2: i

S(i+2:i+3,j:j+1) = Cd*Ad^((i-j)/2)*Bd;

end

end

%----- Matrices for analytical MPC controller

G = inv(S’*Q*S+R)*S’*Q; % optimality criterion

F = G*V; % optimality criterion

M = [G(:,1:2:2*Tp) G(:,2:2:2*Tp)];

M = M(1:2,:);

N = F(1:2,:);

%----- BUFFER system computation

clear Ab Bb Cb Db Z

on = ones(1,Tp-1);

Ab = diag(on,1);

Bb(Tp,1) = 1;

Cb=eye(Tp);

Db=zeros(Tp,1);

%----- Z matrix for the input signal display

Z=zeros(2,2*Tp);

Z(1,1)=1;

Z(2,Tp+1)=1;

We have chosen the receding horizon length to be equal to Tp = 150 and the cost

matrices:

Q = 40 · I R = I

where I is an identity matrix with appropriate size.
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We substitute the computed matrices into the Simulink scheme Fig. 5.15, the inter-

esting fact to notice is that there are two identical buffers. Their role is to slow down the

input signal according to the prediction horizon and to provide the information about

the signal to the controller.

Figure 5.15: The Simulink scheme for the MPC

The matrix Z selects the signal that arrives to both inputs at each instant of time k.
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The Fig. 5.16 shows the step responses of the closed loop system with coupling.

Figure 5.16: The comparison of the system and model step responses

As we expect the MPC is not causal, i.e.: it react on the change before it comes. The

cyan color corresponds to the signal where MPC starts to ’see’ the comming change. The

green color corresponds to the input signal as it comes. We can also conclude that the

measured step response is more oscilatory than the theoretically expected. This is due

to big ratio of Q and R and uncertainties in the state estimation from the Kalman filter.

The iterative optimization of constants will lead to the improvement of the transient

responses.

The last thing to notice is the coupling. The coupling can be also improved by the

cyclical optimization of constants.



Chapter 6

Virtual Reality

6.1 The design of VR objects

To design the Virtual Reality objects we used the V - Realm builder 2.0 with the

available Object libraries Fig. 6.1.

Figure 6.1: Virtual landscape and helicopter

The main problem to solve is the rotation of the virtual helicopter around two axes.

To overcome the recomputation of rotational motion we construct the invisible object

Axis e.g.: an ordinary cilinder with small diameter, and make the helicopter to be its

child. Because all the transformations of the parent automatically transform to all its

childs the helicoter will move (3D) and rotate in one axis through its parent object Axis.

The rotation around the remaining axes is set directly to the helicopter.
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The landscape - Hills and the background together with DirectionalLight and View-

Point are static objects which enhance the scene.

6.2 Simulation

The interconnection of the VR sink block with the real system is shown on the Fig. 6.2.

Figure 6.2: The interconnection of the VR with the Simulink scheme

The signal expander block is shown on the Fig. 6.3.

Figure 6.3: The internal interconnection of the signal expander

We used the PID controler to enhance the movement of the helicopter.

The parallel simulation of the virtual and real helicopter is available on the link:

http://youtube.com/watch?v=EN6-aKYcfnk

http://youtube.com/watch?v=EN6-aKYcfnk


Chapter 7

Conclusion

The autopilots for the helicopters are already invented therefore the main goal of

this work is to show new approach in the system identification and to apply the control

algorithms (PD, PID, LQG and MPC) to the identified system.

The bighest problem through all the identification process is the decision making.

The decisions taken during this phase are affecting the control synthesis. During the

identification of the system we answered following questions:

• What is the shape of the signal for the system excitation (amplitude, duty cycles)?

• Which positions of the mass point are the best candidates for the working point

selection?

• From which working point to start the system identification?

• In what units shall we keep the obtained results?

• How to process obtained data and how to extraxt the usefull information out of it?

• Which identification algorithm to trust under which conditions?

The highest cost (in terms of time consumption) has a decision to identify the dy-

namics of motors indirectly. Although the developed algorithms for the identification of

motors with and without holding are mathematically elegant, this measurement is reaction

time of the examiner sensitive and therefore not accurate.

During the control synthesis we sum up and compare all the obtained results. We

prove the identification of all three working points to be accurate.
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The working points are selected such that the H∞ robust control design could have

been applied. Unfortunatelly due to the lack of time the voluntary H∞ control synthesis

has not been realised.

Another voluntary control synthesis is MIMO MPC design. We manage to broaden

the SISO MPC algorithm to the MIMO helicopter system. The further generalisation of

the presented approach will lead to the general MIMO MPC design algorithm.

Thanks to inventive attitude of Mr. Vanek we managed to make a video presentation

of the interconnected virtual with real helicopter flight.

The further use of this work is the demonstration of the impressive control results to

new students who are taking the decision of their future specialisation.
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http://www.humusoft.cz/models/ce150.htm

http://dce.felk.cvut.cz/roubal

http://youtube.com/watch?v=EN6-aKYcfnk

73

http://www.humusoft.cz/models/ce150.htm
http://dce.felk.cvut.cz/roubal
http://youtube.com/watch?v=EN6-aKYcfnk


74 BIBLIOGRAPHY



Attachments A

The content of attached CD

The CD with source codes has been attached to this work.

Documentation : contains the source codes of this documentation written in LATEX.

Codes : contains commented Matlab codes that have been used for the system identifi-

cation and control design.

Video : contains the video of the real time control of the helicopter.
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