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Abstrakt

Této praca popisuje metédy detekcie objektov v obrazkoch z optickych dalekohladov,

ktoré sa zobrazuju ako ¢iary. Detekcia je vykonana pomocou vlastného algoritmu a vysledky
si porovnané so znadmym sucasnym technickym rieSenim. Data pouzité na testovanie

pochadzaju z roznych observatérii s roznymi sposobmi zachytavania obrazu a su pouzité

aj simulované déata. Ked'ze sticasné riesenie predpokladé urcité vlastnosti ¢iar, metédy si

porovnané na obrazkoch, kde by mali byt ispesné oba algoritmy. Pre porovnanie rozdiel-

nosti metdéd budu tiez pouzité na obrazkoch, pre ktoré stucasné technické riesenie nie je

navrhnuté.

Abstract

This thesis describes methods of detection of objects in optical telescope images that
manifest themselves as streaks. The detection is done with a custom algorithm and the
results are compared with the known state of the art. The data used for testing comes
from various observatories with different modes of capture, and simulated data is used as
well. As the current state of the art presumes certain qualities of the streaks, methods
are compared on images where they should both perform well. To contrast the methods,
they are also applied to images for which the state of the art is not designed for.
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Chapter 1

Introduction

Images from optical telescopes contain much information that can be processed auto-
matically by computers. The objects that can be found in the images are various: Stars,
galaxies, nebulae, material from our solar system, meteors, various atmospheric processes,
passing aeroplanes or satellites and much much more. A collection of defunct objects in
orbit around Earth called orbital debris (also known as cosmic debris, space junk or space
waste) is of principal interest in this thesis.

Orbital debris includes everything from remnants after rocket carriers, old satellites, frag-
ments from disintegration, erosion, lost equipment to other objects. Since their orbits
overlap with orbits of operational spacecraft, a collision can happen. The first major space
debris collision was on February 10th, 2009, at 16:56 UTC. The deactivated 950 kg Kos-
mos 2251 and an operational 560 kg Iridium 33 collided 800 km over northern Siberia [5].
The relative speed of impact was about 11.7km/s, or approximately 42,120 km/h [3].
Both satellites were destroyed and the collision scattered considerable debris. Numerous
collisions have occurred in the history and operational satellites have to actively avoid
debris for their safety. Debris can also land on Earth. In the year 2000, remnants of
an American rocket landed in farm area close to Cape Town in the Republic of South
Africa [7]. To this date, there was only one reported incident of a human being struck by
space debris: In 1997, a woman in Tulsa, Oklahoma, was hit on the shoulder by a 6-inch
piece of metal, and fortunately, it did not lead to any serious injury [1].

The great majority of debris consists of smaller objects, 1 cm or less, which are difficult
to detect. Their magnitudes vary around ~ 16 mag and lower. Since space debris comes
from man-made objects, the total possible mass of debris is easy to calculate: It does
not exceed the total mass of all spacecraft and rocket bodies that have reached the orbit.
The actual mass of debris will be necessarily less than that, as the orbits of some of these
objects have since decayed. As debris mass tends to be dominated by larger objects, most
of which have long ago been detected, the total mass has remained relatively constant
in spite of the addition of many smaller objects. Using the figure of 8,500 known debris
items from 2008, the total mass is estimated at 5500 tons [9]. The most suitable time for
their capture for observers on Earth is after sunset or before sunrise, when the sunlight
is reflected the most from their surface.



According to the NASA debris FAQ, the number of large debris items over 10 cm is 19000,
between 1 and 10 cm approximately 500,000, and debris items smaller than 1 cm exceed
tens of millions [2].

Based on the distance from the surface of the Earth most of the debris can be sepa-
rated into two major categories: Low Earth Orbit (LEO) and Geostationary Earth Orbit
(GEO) debris. LEO is generally defined as an orbit below an altitude of approximately
2,000 kilometers. It is the most concentrated area for orbital debris. GEO is a circular
orbit 35,786 kilometres above the Earth’s equator. A visualisation of debris density is in
Figure 1.1.

(a) Side view (b) Top view

Figure 1.1: Visualisation of the density of the orbital debris [3].

Prediction and modelling of the trajectories of debris is difficult and is of concern of var-
ious organizations such as USSTRATCOM’s mission Space Surveillance Network (SSN)!
or Europe Space Agency (ESA)? and subject of major conferences as European Confer-
ence on Space Debris (ECSD) organized by European Space Operations Centre (ESOC)?
or Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS)%.
Under good observation conditions LEO objects can be detected in images from optical
telescopes. They show as streaks when length is proportional to their angular speed, as
they reflect light from the Sun. With efficient streak detection algorithms, faint debris
streaks can be found and identified much faster.

Recognition of objects in the images is computationally time-consuming because of the
size of the images, which usually starts at the resolution of 2000 x 2000 pixels. The
pictures are captured by CCD cameras. There are two most common modes of capture
of images: With or without the compensation for sidereal movement of the sky, as in

thttp: //www.stratcom.mil /factsheets/USSTRATCOM _Space_Control_and_Space_Surveillance/
2http://www.esa.int

3http://www.esa.int/About_Us/ESOC

“http:/ /www.amostech.com



Image index #2500 Image index #1 Image index #100

(a) Example of a streak (b) Compensation for the sidereal (¢) No compensation
movement

Figure 1.2: Example of a streak and two modes of capture of images.

Figures 1.2(b) and 1.2(c) respectively. We will be searching for streaks, objects that
are segment-like without exceeding curvature and longer than the motion blur of the
surrounding stars (sometimes we will call them star streaks). One example is in Figure
1.2(a). Both modes of capture may contain streaks. The streaks may also represent other
objects than orbital debris, such as meteors, passing aeroplanes, atmospheric processes,
etc., but the identification, trajectory or property computation of the streak is not the
aim of this thesis.

The images used for detection of the streaks are quite varied and they have different
defects: Additive light reflected of clouds, multiplicative character of light transmission
through clouds, cloud motion, internal light scattering in the telescope, cosmic particles,
hot pixels and dark pixels (Figure 1.3(a)), nonuniform sensitivity (Figure 1.3(b)), dirt on
sensors (Figure 1.3(c)), camera damage (Figure 1.3(d)), image noise and possibly others.
These phenomena should not have a great impact on the performance of a good detector.

Some images are captured by CCD cameras that are composed of multiple segments
and the median intensity level is different for each segment, which causes appearance of
vertical/horizontal lines. An example of such defects is in Figure 1.3(a).

Some telescopes used a mode of capture without compensation for the sidereal movement
(as in Figure 1.2(c)), which results in stars looking like small segments that can be inter-
changed for streaks. If a streak is very short and is in the same direction as this distortion
it is difficult to recognize.

There exist numerous methods of detection of space debris using optical, radar or laser
techniques. They have been discussed at the conference ECSD. A book of abstracts of
these papers can be found in [1].

A standard method for detection of debris works similarly to this: It takes two time-
consecutive images, subtracts them and rotates this difference in angles from 0 to 180
degrees [14]. This rotates the candidate for the streak into a vertical position. Because

3



Median over set of TAOS images Image index #2745

(a) Hot and dark pixels, tile boundaries (b) Nonuniform sensitivity

Median over set of TAOS images

(c) Dirt on the sensor (d) Damage of the CCD sensor

Figure 1.3: Defects that can be found on the source images.



Image index #616, streak is at angle =73 deg
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Figure 1.4: The source image is displayed on the left. On the right is a plot of maximal
median values of intensities for each angle. The candidate for the streak is at the angle
of -73°.

of the use of difference, only the streak should remain in the image and it should be
very outstanding compared to the background, which in ideal case should be zero. In the
direction where the median of column values in the rotated image is the largest we find
the streak. An example can be seen in Figure 1.4.

The use of the image difference makes the algorithm robust with regard to corruptions of
the CCD camera or other stationary defects. The detection is reliable for strong and long
streaks. On the other hand, it has the following disadvantages:

It assumes that in the two images there is no other change besides the streak.

The positions of the stars and other static objects have to be the same.

The exposition takes twice as long.

Image rotation is computationally expensive (time-consuming).

The streak has to be strong/long enough to be captured by the median.

It doesn’t detect where the streak begins and ends, it only gives equation of a line
where the streak is located.

Implementation is simple, but the algorithm is very time-consuming. FPGA technology
can be and was used for improving performance [13].

In this thesis two detection algorithms are going to be described and tested. “The CMP
Algorithm” by Sara and Sustr [10] and the “YanKuro Algorithm” by Yanagisawa et al.
[14], which uses the standard method.



The CMP Algorithm tries to avoid disadvantages of the standard method. It can find
weak streaks in a single image, it is robust to atmospheric or other disturbances, it is
adaptive (input can be a single image or the difference of two time-consecutive images,
with or without sidereal movement). Although its current implementation is still too slow
to be deployed, it can use parallelization to improve performance on multi-threaded CPUs
or on hardware that supports massive parallelization, like the mentioned FPGA.

The purpose of this thesis is to implement and compare these algorithms on the acquired
set of data in Matlab. As the current state of the art presumes certain qualities of the
streaks, the methods are compared on images where they should both perform well. To
contrast the methods, they are also applied on images for which the state of the art is
not designed for. I have created parts of the proposed algorithm, implemented the image
viewing, annotation and detection mechanism and compared the results.



Chapter 2

Detection algorithms

2.1 Assumptions about the data

There are certain assumptions about the data. If they are not fulfilled the algorithms
might give unexpected results:

e There is at most one streak in the image. This assumption is reasonable: The
average density of debris is 10 debris/hour/spherical degree [!1], the acquisition of
images is in interval of ~10 seconds, the size of the field of view is 1.73° x 1.77°
(for source TAOS, see Table 3.1 on page 21), so the density of streaks per image is
~0.084 < 1.

e The mean intensity profile of the streak can be well approximated by a Gaussian
distribution and its standard deviation ¢ is approximately known. The streak in
Figure 2.1 shows that this is a justifiable assumption.

e A streak of angle ¢ with respect to star streaks of length d is significantly longer
than dcos¢. A typical value for d is ~ 32px for TAOS data (see Table 3.1 on
page 21) with exposure time six seconds long.

e Streak is not saturated in the image (in other words, it does not have a flat profile
at the maximal value).

2.2 The proposed algorithm

The principle of the algorithm is to rotate the image so that the streak becomes vertical
as in the standard method mentioned in Section 1. It then solves a set of independent
optimization problems, one per rotated image column. In each column the problem is to
find a minimum-energy contiguous interval of unknown beginning and length. Since we
do not know the angle at which the streak is located, the image must be rotated by all
angles in the range of (—90°, 90°).
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Figure 2.1: Cut-out of a streak from image. The mean value of a row cut approximates
normal distribution with o = 10.1.

The energy function is constructed from the log-likelihood ratio for two classes: back-
ground and streak. The respective probability density functions (p.d.f.) are constructed
over a local image feature called streakiness, not over the input image itself, like for in-
stance in [6]. The streakiness map is computed by the normalized cross-correlation with a
local vertical model called streaklet. Streaklet’s kernel is visualized in Figure 2.2. Streak-
iness is a normalized feature, its range is (—1; 1). The advantage of this approach over
deconvolution methods is its simplicity, fast implementation, stability under a high level
of noise present in optical telescope images, and the suppression of many local artifacts
discussed in Section 1. An example of streakiness map is shown in Figure 2.3. Details on
streakiness computation can be found in [10].

The background probability density function pg(z | ¢; 05(¢)) is obtained by fitting a
beta-distribution mixture model to the streakiness map [10]. The z is a scalar streakiness
value computed for image rotation angle ¢. The 05(¢) are the parameters to be fitted
(they are the beta distribution parameters «, 3, and the mixture coefficients), as detailed
in [10]. Typical probability density functions are shown in Figure 2.4. We can see that it
is necessary to condition the distribution on the rotation angle. The dependence on the
rotation angle is given by the fact that stars appear as streaks oriented at ¢ = 90° in the
input image (cf. Figure 2.3(a)).

The streak probability density function pg(x | ¢; 0s(¢)) is obtained by marginalization
from a posterior distribution constructed from the background distribution and a streak
model [10]. Note that both the background and streak probability density functions are
computed for each rotation angle ¢. Given the background and streak probability density
functions, one defines the log-likelihood ratio as



Streaklet kernel

Example image Example image convolved with the streaklet

5 10 15

Figure 2.2: The streaklet kernel (left) and its normalized correlation response on a syn-
thetic image (center, right).

Image index #6186, streak is at angle —73 deg

(a) Cut-out from input image (b) Cut-out from streakiness map (c¢) Cut-out from likelihood ratio
map

Figure 2.3: An example of a streakiness map and the corresponding likelihood ratio map
after image shearig by the proper angle. The input image is displayed in Figure 1.4.
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Figure 2.4: Typical histogram (red) and the fitted probability distribution pg(x | ¢;0s(¢)
(green). The individual mixture components are in blue. The fitted mixture parameters
are given in plot titles.

ps(x | ¢; 0s(0))
pa(z | ¢; O5(4)) ‘

V(x| ¢; 05(¢),05(¢)) = —log (2.1)

This function is computed per pixel of the rotated image. It will be called the likelithood
ratio map in the subsequent text. From now on we omit the parameters and will write
the likelihood ratio map value as V(z(7,7) | ¢) where z(i,j) is a sample of the random
variable x at pixel (7, 7). An example of the function V(z | ¢) is shown in Figure 2.5.

Given the rotation angle ¢ and the corresponding likelihood ratio map V(x(i,j) | ¢) the
task is to find the minimum of

Vibe,j,8) = > V(x(i,j) | ¢), (2.2)
i=b

over the angles ¢ € (—=90°, 90°), column indices j € I,, and the row index interval
(b,e) € I%, b < e, in which I,, = {1,2,...,n} is the set of likelihood ratio map columns,
and I, = {1,2,...,m} is the set of likelihood ratio map rows. This problem can be
solved very fast, in O(mn) time, by employing its column-wise independence and row-
wise recursive properties, with the help of column-wise cumulative sums and cumulative
maxima. A detailed description is given in [10].

2.2.1 Structure of the algorithm

The actual algorithm does not cycle over all rotation angles ¢ with a uniform step. If the
diagonal length of an image was d then the required angular step would be

180
~~ ﬂ_d‘

A¢ (2.3)

10
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Figure 2.5: The likelihood ratio function V' (z | ¢) (brownish), together with the ps(z | ¢)
(reddish) and pg(z | ¢)(bluish). The abscissa of the plots is x.

For a typical 2000 x 2000 image this gives A¢ ~ 0.0203° requiring almost 9000 image
rotations. Image rotation is computationally quite expensive. In Matlab on the CMP
Grid (see Table 4.1 on page 29 for more information about the CPU), image rotation of
this size (with bicubic interpolation) takes about 5.88 sec, which means the exhaustive
search would need 14.7 hours to complete, even if the streak detection was not taken
into account. As a result, such algorithm would be too slow. We wanted to avoid the
brute-force approach of [13] that used an FPGA board to compute image rotations.

The proposed detection algorithm proceeds in three phases. The entire flow of the algo-
rithm is outlined in Figure 2.7.

In Phase 1, the angular step Ay is set so that the image rotates by at most a single pixel
under the streaklet kernel of height m

2180

Y
T My

A¢>1 —

(2.4)

where we use m; = 40, giving Ay ~ 2.9°, hence 63 initial rotations. In Phase 1 the
image is rotated, the streakiness map is computed, the p.d.f. model is fitted, and the
minimization problem solved per each rotation. The typical profile of

V*(¢) =min  min V(b,e,j, o)

JE€In be€lm,b<e
as a function of ¢ is shown in Figure 2.6.

In Phase 2, the angular resolution is refined by a simplified computation. We use a smaller
angular step

1
Ay = 5 Ay (2.5)

and instead of rotating the input image and computing the streakiness map, we rotate
the streakiness map itself within a small angular interval of (¢ — 2A49, ¢ + 2A,3) with

11
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Figure 2.6: The typical profile of V*(¢) for an image with a faint streak. The angle of
the streak corresponds to the global minimum. The secondary strong local minimum at
¢ = 0 is caused by the chip layout artifact due to an inconsistent zero level for each half
of the chip, as discussed in Section 1.

the step of Ags. Then only the minimization problem per angle needs to be solved. The
per-angle computation in Step 2 is about twice as fast than in Step 1, since the streakiness
and likelihood ratio maps are not needed to be recomputed. The effective resolution after
Step 2 is Ay, which would correspond to 315 rotations in our running example.

Phase 3 then performs local optimization started from all local minima of V'(¢) obtained
from Phase 2. This is done by a local bracketing method with quadratic convergence.
The assumption of this step is that if there is a sufficiently long streak in the image, the
method is sufficient to find some of its short subsegment at the low angular resolution
and then to refine its pose and length starting from the segment. We observed empirically
that this assumptions holds well, typically, there is a short segment of length m, that has
a good response even if the entire streak does not.

The most expensive part of the algorithm is still the image rotation. But it is not necessary
to perform the image rotation to achieve the detection task. A suitable image shearing
suffices. Shearing is about 5x faster and easily parallelizable. This improvement is
described in the next section.

2.2.2 Image shearing

The detection of the streak is done column-wise and because of this the image needs to be
rotated by all angles in the interval (—90°, 90°) to get the streak into a vertical position.
Image rotation with bicubic or even bilinear interpolation is slow, hence image shearing
transformation is used instead as it achieves the same qualitative result. On the CMP
Grid (Table 4.1) a single bilinear rotation of a 2048 x 2048 image takes 3.54 seconds and

12
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Figure 2.7: Outline of the algorithm. Highlighted processes can be easily parallelized.
Small step is the Ayy and big step is the Ay described in the main body of the thesis.
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Figure 2.8: Illustration of the decomposition of the rotation transformation. On the left,
original black rectangle is sheared by S; into the red parallelogram and then transformed
by Ss onto the green rectangle. On the right, the same black rectangle is sheared by S*.

bicubic 5.88 seconds. My implementation of image shearing takes 0.74 seconds, which is
4.8x and 8x faster, respectively.

We will need a transformation that can put a streak into a vertical position. The orig-
inal idea was the following. Rotation matrix R(¢) can be decomposed into two skew
transformations R(¢) = Sa(¢)S1(¢) as follows:

| cosgp sing - 1 0 __|cos¢ sing
R(¢) = {—simﬁ cos¢]’ 82(¢) = {—tangb secgzﬁ}’ Sl(gb)_{ 0 1 } (2.6)

An illustration of the application of the transformations is in Figure 2.8(a).

But this can be simplified further, only to shear transformation

S*(9) = [é ta?ﬂ 7 (2.7)

which preserves the row length as can be seen in Figure 2.8(b). We will call shearing a
transformation with this matrix S*(¢).

Each row is shifted by a value h(i) = tan(¢) - ¢ where ¢ is the shearing angle and i is a
zero-based number of the row, like in Figure 2.9. If the value of h(i) is not an integer,
linear interpolation between neighbouring pixels is used to compute the value.

This approach works well in the interval of angles (—45°; 45°). If ¢ is outside of this interval
(it belongs to (—90°; —45°) or (45°;90°)), the image is first transposed and then sheared
by the angle of ¢ 4+ 45°. Because of this interval restriction, the shear transformation
S*(¢) is implemented as four partial transformations which use normalized homogeneous
coordinates each pertaining to the proper interval:

14
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Figure 2.9: Illustration of image shearing by row shifting.

[tan(¢ +90) —1 m+1
S*<—90°;—45°)(¢> = 1 0 0 ) (2.8)
i 0 0 1
[1 tan(¢) ¢—n
S*<—45°;0°) (¢) =10 1 0 ) (29)
0 0 1
[1 tan(¢) 0
S*<Oo;45o>(¢) - 0 1 O 5 (210)
0o o0 1
[—tan(¢p—90) 1 0
S” (450,000) (9) = —1 0 n+1f, (2.11)
0 0 1

where the input image has size m xn and the sheared image has size m x ¢g. The dimension
q is calculated as
q=[lA-ml|] +n, (2.12)

where [z] is ceiling of z and

tan(¢ +90)  if ¢ € (—90°; 45°),
A =< tan(¢) if ¢ € (—45°;45°), (2.13)
tan(¢ — 90)  if ¢ € (45°;90°).

Image shearing is implemented in function imshear. It returns an image sheared by the
specified angle using the linear interpolation in rows and corresponding transformation
matrix. Since row interpolation is not dependent on other rows of the image, imshear
can be easily parallelized.

Shearing affects the energy profile V*(¢) because it does not preserve the line segment
length. We use a multiplication factor that approximately corrects the change in V*(¢),
since the computation of V*(¢) uses non-linear operations. The factor is

1
max(| cos ¢|, | sin¢|)”

(2.14)

The comparison of the profiles can be seen in Figure 2.10. We can see that the profiles
are almost identical.

15
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Figure 2.10: Energy profiles using rotational (blue) or shearing (green) transformations.

2.2.3 Selecting optimal angle

The optimal angle ¢* in the energy profile of V*(¢) (Figure 2.6) represents the angle in
which the streak is located. But before the angle selection, we must decide if the image
contains a streak or not. The conditions that the energy plot must satisfy have been
found empirically. The minimum of the energy at angle ¢ with neighbouring energies in
interval [ = (¢ — 2°; ¢ + 2°) are thresholded using a multiple of median of V*(¢). If ¢ is
close to the start or to the end of the range of V*(¢) (which is £90°) then values from
the other end of the energy profile are used.

When the energies of interval I satisfy the threshold condition, image is classified as
containing a streak at the angle ¢* = ¢.

The appropriate threshold was found to be 2.1 x median(V*(¢)). The multiplication
constant was found as the minimum of the classification error (see Figure 2.11) on an
independent set of 100 random synthetic streaks which have been generated similarly to
those described in Section 3.3.

Neighbouring values within I are used to prevent the tiling artefacts (Figure 1.3(a)) to
be proclaimed as streaks. Energy profiles of two images are displayed in Figure 2.12.
The first one (#100) is from the taos source which has no streak in it but it contains
a tiling artefact and the second one (#2503) is from odhi and it contains a streak. We
can see that although the taos image has a very distinguished minimum, it is only a very
narrow peak, as the edges of the tiles are very narrow as well. Thus it does not have
many neighbouring values that exceed the threshold. However, this approach is not very
efficient and can be improved as discussed in Section 5.
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Figure 2.11: Learning of the threshold value. The minimum is located at 2.1 with the
error of 25%.
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Figure 2.12: Energy profiles of the two images.
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Figure 2.13: Learning of the threshold value. The minimum is located at 3.6 with the
error of 23%.

2.3 The YanKuro algorithm

The principle of this algorithm was discussed already in Section 1. We will call M*(¢)
the maximal value of column-wise taken median in image rotated by angle ¢. Because
image rotation is slow, shearing has been used instead.

There are several issues that have to be solved before YanKuro can be deployed on tested
data:

e We need to find the decision threshold that can be used for classification and angle
detection.

e And we need to find the equation of the line that corresponds to the found angle
and column.

The decision threshold has been empirically found as 3.6 x median(M*(¢)). The multi-
plicative constant was found as the minimum of the classification error (see Figure 2.13)
on the same independent set of 100 random synthetic streaks as in the case of the CMP
algorithm as discussed in the previous section. A higher value could have been considered
though, because it would make a smaller false negative error.

The detected angle ¢* and column j* can be found as

(0*,7") = argn;axM*(cb,j)- (2.15)

),

Column j* corresponds to this angle in the rotated image. We would like to find the
equation of the line in the original image. We will choose two points Agk and Bgy in the
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column j* and transform their positions to the positions in the original image:

A =8"1(¢)Au, (2.16)
B = S""(¢)Bgx. (2.17)

Matrix S*7!(¢) is the inverse shearing matrix from (2.7). The equation of the line is
created from the points A and B.
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Chapter 3

Data

3.1 Input images

Input images are in standard format FITS. FITS (Flexible Image Transport System)
is an open standard defining a digital file format useful for storage, transmission and
processing of scientific and other images. FITS is the most commonly used digital file
format in astronomy. Its full description can be found in [12].

For the use of image processing it is important to note these characteristics:

e Images are grayscale.

e Range of colors is 16bit (from 0 to 65535).

There are numerous software and libraries to view or work with FITS,! for example ds9.2
In Matlab the following functions are available:

fitsdisp - Display FITS metadata.

fitsinfo - Information about FITS file. This usually involves information like GPS
position of the observer, time and coordinates of the observed area.

fitsread - Read data from FITS file.

fitswrite - Write data to FITS file.

Computer monitor displays support only 8-bit range of gray levels. To view the images
only a range of the data can be used. This is done in a custom function fitsview. It
displays the FITS image along with a histogram. The range of colors can be easily set

! List of various FITS software: http://tdc-www.harvard.edu/astro.software.html
2 ds9 - recommended viewer: http://hea-www.harvard.edu/RD/ds9/site/Home.html
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Table 3.1: Sources of data

g 2
z g
£ | £ IS
AR
8] 5}
S| -
Code name | & Z. Note
taos 1986 | 29 | 2050%x2048 | Data from TAOS Observatory
http://taos.asiaa.sinica.edu.tw
ondrejov 422 5 1027x 1056 | Images from Ondrejov observatory
http://www.asu.cas.cz
odhi 97 72 | 2048x3072 | Capture of asteroid 2012DA14
tadn 143 54 736x1092 | within Gloria Project
tadandor 102 1 1024x1024 | http://live.gloria-project.eu
rme 26 20 | 1024x1024 | Capture of satellite 23613
modra 12 9 1016x 1038 | Images from Modra observatory
http://www.daa.fmph.uniba.sk
simulated | 2000 | 2000 various Artificially simulated streaks
Y 4788 | 2190 — 45.7% of images contains streaks

in the graphical user interface and the image and section of the histogram is updated
automatically. The default display range is 0.5 to 99.5 percentile of the image values.

Since some images have a black border of invalid data, the images are cropped to valid
data only. The extent of the border depends on the data source and must be specified
beforehand. This is the reason why data is classified into different sources in Table 3.1.

3.2 Annotation of data

Eight different sources of data have been used and streaks have been manually annotated.
Table 3.1 summarizes basic information about the data.

Since the data comes from multiple sources, with their own hierarchy and organization,
an indexed list with data information was created for the purposes of the testing of the
algorithms. It is saved in Matlab’s .mat file type in matrix data, whose structure is

e source - code name of the source, as in Table 3.1,
e file - path to the FITS file,

e generated from - path to the FITS file that was used for this image generation
(this is valid only for the simulated data),
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has_streak - true/false,

i1, j1, i2, j2 - coordinates (i,j) of the start and end point of the streak,

phi - angle at which the streak is located,

e ampl - amplitude of the streak, filled in only for the simulated streaks,

e is long - true/false, determines if the streak is longer than 20% of image’s diagonal.
The data was manually annotated except for the images with the simulated streaks. A
graphical tool for the manual annotation is implemented in function annotate. It displays
a given image in the standard Matlab interface (with zoom and other functions) and allows

dragging of a line that represents the streak. Once satisfied with the streak location, its
position is saved into the (i, j) coordinates.

3.3 Simulated streaks

We do not know the exact location of the streaks in the manually annotated images.
Humans have a tendency to extrapolate line patterns to places where they are not located.
To verify if the detection works properly, a custom dataset has been generated. This allows
to estimate the deviation of detected positions from the real streaks.

We suppose that the input image I can be modeled as
I =2+ as, (3.1)

where z is a random variable corresponding to background process (stars, noise, etc.), a is
the streak amplitude and s is a streak function.

The processs of generating the streaks uses the model (3.1) and it works as follows:
1. Choose a background image from a pool of 10 images that do not contain any
streaks.

2. Create a blank “canvas,” a zero-filled matrix of the same size as the background
image.

3. Choose two random points with coordinates (i1, j1) and (i, j2) from uniform distri-
bution.

4. Draw a discrete line between these two points with a pixel intensity
p~ N(A op), (3.2)
where N is the normal distribution with mean amplitude A and deviation o;=10.

5. Apply Gaussian blur to line image with rotationally symmetric matrix of size 9 x 9
with ¢ = 2. The blur does not preserve the amplitude equally well along the line.
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6. Add canvas to the background image (by pixel-wise addition).

An example of such a generated streak is in Figure 3.3.

The amplitude a is one of the set X =1, 2, ..., 9, 10, 20, 30, ..., 90, 100 or 1000. Am-
plitudes of the streaks are chosen in this way to be able to identify what is the success
threshold amplitude for the detector in Section 4.1.

An indexed list of ten different input images that do not contain any streaks and have no
corruptions is created (they are shown in Figure 3.1 and continued in 3.2), ten random
positions are selected and twenty different amplitudes are chosen from X, creating a set
of 2000 simulated streaks.

The background images have been chosen randomly from the available data set which
does not contain any streaks. Unfortunately, one image (index 2650) has a corruption in
it which can mislead the detection algorithm. This fact was noticed too late and this is
why for the testing of the simulated data only the first nine source images are used, thus
the set is composed from 1800 images only.
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Index: 100, File:YANAGISAWA_AII/111021D_txt_Debris_6S_0028.fit Index: 500, File:YANAGISAWA _AII/111021D_txt_Debris_6S_0428.fit

500 1000 1500 2000 500 1000 1500 2000

Index: 1507, File:YANAGISAWA_AIl/111021D_txt_Debris_6S_1435.fit

500 1 OO 1500 2000

Figure 3.1: Background images used for generation of streaks.
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Index: 2051, File:Ondrejov1/Raw/20120325204741-795-RA fits Index: 2123, File:Ondrejov1/Raw/20120325212822-016-RA fits

200 400 600 800 1000 200 400 600 800 1000

Index: 2223, File:Ondrejov2/Raw/20120325203028-763-RA.fits Index: 2324, File:Ondrejov2/Raw/20120325211830-083-RA fits

wor

200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400

Index: 2650, File:2012DA14/Raw/TADandor/201302152037076459.fits

Index: 2467, File:2012DA14/Raw/OdHi/32 fit
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Figure 3.2: Background images used for generation of streaks.
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Figure 3.3: A close-up image of a generated streak. Amplitude varies along the streak,
but does not overcome a maximal value.
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Chapter 4

Testing of the algorithms

Comparison of algorithms can be divided into two categories: Testing of the classification
of images (if there is a streak or not), and detection of the streak position.

The classification is based on thresholding energy profile V*(¢) or median maxima M*(¢)
as discussed in Sections 2.2.3 and 2.3, respectively.

To qualify the streak as properly detected, three criteria have to be met:
e Small angular error e,. The angle of the detected streak is close to the angle of the
annotated streak.

e Small perpendicular error e . It can happen that the detected streak has the same
angle as the annotated streak, but they are in fact only parallel. Therefore we will
measure the error of perpendicular distances of the end-points of detected streak to
the line where the annotated streak lies.

e Small end-point error eg. The end-points of the detected streaks are close to the

end-points of the annotated streak.

We need to define error measurements. For angle error e, it will be

ep = min(|¢1 — da|, 180 — [¢1 — P2]) (4.1)
where ¢; and ¢ are angles of the annotated and detected streak, respectively.
Equation of a line can be expressed as
a111 + asxrs + az = 0, (4.2)
and perpendicular distance of point y = (y1,¥2) to the line characterized by a can be

calculated as

dist(a,y) = (1YL + 4202 & as| (4.3)

2 2
v ai + aj
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The perpendicular error distance of the detected streak with end points y; and ys to the
annotated streak characterized by a is then

et = dist*(a,y;) + dist*(a,ys). (4.4)

The end-point error is

2

ez, = min(|x — ya|[* + [Ix2 = y2*, |lx1 = yal* + [Ix2 — yal ). (4.5)

The minimum is used because we do not know the relative orientation of the line segments
(whether they are concordant or not).

Streaks are said to be close enough and therefore correctly detected if both errors e
and eg are less than 100 pixels and the angular difference e, of these two streaks is less
than 2°.

Since the nature of the algorithms is slightly different, the fair comparison between the
YanKuro and the CMP algorithm is done on images with is_long set to true.

The results of the tests with the CMP algorithm is saved into structure data detected str
with the following fields:

e has_streak - true/false,

i1, j1, i2, j2 - coordinates (i, j) of the start and end point of the streak,

phi - angle of the detected streak,

Vai - profile of the energy V*(¢),

Vai_phi - angles to which the profile values pertain,

time - length of the processing time.

Similarly, for the YanKuro algorithm the results are saved into structure data_detected_yan
with following fields:

e has_streak - true/false,

e a - representation of a line for the detected streak,

phi - angle of the detected streak,

e maxv - profile of the median of maximal values M*(¢),

time - length of the processing time.

The software was tested on two machines: Personal laptop and the computational grid
at CMP, here referenced as the CMP Grid. The summary of information about their
CPUs is in Table 4.1. The computation on the grid was distributed using gsub,! a job
submission mechanism for clusters.

Note: In the following figures, the CMP algorithm is drawn in blue and YanKuro in green.

'https://wikis.nyu.edu/display/NYUHPC/Tutorial+-+Submitting+a+job+using+qsub
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Table 4.1: Computers used for processing, a selected list of information available with
1scpu.

Machine ‘ CMP Grid ‘ Personal laptop
Architecture: x86_64 x86_64
CPU op-mode(s): | 64-bit 64-bit
CPU(s): 8 4
Thread(s) per core: | 1 2
Core(s) per socket: | 8 2
Vendor ID: AuthenticAMD | Genuinelntel
CPU family: 16 6
CPU MHz: 2000.295 782.000
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Figure 4.1: Plot of angular detection success based on amplitude of simulated streak for
the CMP algorithm (blue) and YanKuro algorithm (green).

4.1 Threshold amplitude

Both detection algorithms have been tested for their threshold amplitude a from equa-
tion (3.1). The test is based on detection of streaks in simulated data. Since the Gaussian
blur that is used for streak generation does not preserve the amplitude, the actual image
amplitude is smaller. Figure 4.1 shows the plot of detection success. Each point in the
graph shows how successful the method is in detecting simulated streaks of given am-
plitude. Based on this plot we will distinguish weak and strong simulated streaks. The
breakthrough of detection success seems to be at the amplitude of 20, so we will call
weak streaks those below this amplitude and strong streaks those over or equal to this
amplitude.
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Table 4.2: Results of the classification for the CMP algorithm (blue) and YanKuro (green).
The column “Properly classified” is the sum of true and false positives.

9p] n

2 o | = ¢ €

E | 2 = | -

= 8 8 0 N i) ‘© ) ) o @

s | i E|EE| L2 2|8 ¢85z

Bl lg|l2lala| g g8 & g <
ElElg|2 08|58 5|2 2|8 ¢

Source = < £ c Gl < A A = = O O
modra 12 9 1 5 0] 0 11 7 8 4 1091 | 0.58
odhi 97 72 0 | 59 | 1 7 96 31 72 13 10.99 | 0.32
ondrejov 422 5 0 3 | 14| 42 | 408 | 377 ) 2 1097 0.89
rme 26 20 14 |16 | 0 | 2 12 8 6 4 1046|031
tadandor 102 1 1 1 0 9 101 92 0 0 10.99 | 0.90
tadn 143 | 54 | 32 | 48 | 2 | 19 | 109 | 76 22 6 |0.76 | 0.53
taos 1986 | 29 4 | 21 |23 |331 1959 | 1634 | 25 8 10.99 | 0.82
Py 2788 | 190 | 52 | 153 | 40 | 410 | 2696 | 2225 | 138 | 37 | 0.98 | 0.80
simulated strong | 900 | 900 | 49 | 52 | O 0 851 | 848 | 851 | 848 | 0.95 | 0.94
simulated weak 900 | 900 | 723 | 434 | 0 | O 177 | 466 | 177 | 466 | 0.19 | 0.52
by 1800 | 1800 | 772 | 486 | O | O | 1028 | 1314 | 1028 | 1314 | 0.57 | 0.73

4.2 Classification of images

Table 4.2 contains the results of the classification based on thresholding as discussed in

Sections 2.2.3 and 2.3.

Classification of the CMP algorithm:

e False positives in ondrejov are
caused by vertical waviness of the im-
age from CCD camera.

e False negatives in rme and tadn are
caused by very short streaks.

e False positives in taos are caused by
tiling defect.

e The great number of of false neg-
atives in simulated weak data is
caused by the insufficient amplitude
of streak or artefacts in the back-
grounds that are stronger that these
streaks.

(Classification of the YanKuro algorithm:

e False negatives in modra and odhi are
caused by very short streaks.

e The great number of of false negatives
in simulated weak data is caused by
the insufficient amplitude of streak or
artefacts in the backgrounds that are
stronger that these streaks.
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Table 4.3: Results of the angular detection for the CMP algorithm (blue) and YanKuro
(green). The input samples are only the true positives from Table 4.2.

o] e} ) wn
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© © = =
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0 0 > > g g
< < P o = =
= 5|8 2|8 ¢
< < - - 2 @
Source w0 w0 BL A A A
modra 8 4 4 0 0.50 | 0.00
odhi 72 13 46 0 0.64 | 0.00
ondrejov ) 2 ) 2 1.00 | 1.00
rme 6 4 5 0 0.83 | 0.00
tadandor 0 0 0 0 = =
tadn 22 6 19 4 0.86 | 0.67
taos 25 8 25 2 1.00 | 0.25
¥ 138 37 104 8 0.75 | 0.22
simulated strong | 851 | 848 | 851 | 848 | 1.00 | 1.00
simulated weak 177 | 466 177 | 455 | 1.00 | 0.98
b 1028 | 1314 | 1028 | 1303 | 1.00 | 0.99

4.3 Detection of streaks

Detection based on angle

Table 4.3 contains the results of the angular detection. The threshold for decision is the

angular error ey = 2°.

Angular detection of the CMP algorithm:

e Detection works well except for short
streaks in modra and odhi where the
angular deviation can be quite big.

Angular detection of the YanKuro algo-
rithm:

e Low performance is caused by too low
threshold on these sets of data. There
is no significant peak in modra, odhi
and rme.

Detection based on perpendicular distance

Table 4.4 contains the results of the perpendicular detection. The threshold for decision

is error distance e; = 100 px.
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Table 4.4: Results of the perpendicular distance detection for the CMP algorithm (blue)
and YanKuro (green). The input samples are only the true positives from Table 4.2.
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Source n n oW aB A A
modra 8 4 4 0 0.50 | 0.00
odhi 72 13 72 1 1.00 | 0.08
ondrejov ) % 4 2 0.80 | 1.00
rme 6 4 6 0 1.00 | 0.00

tadandor 0 0 0 0 - -
tadn 22 6 22 4 1.00 | 0.67
taos 25 8 25 1 1.00 | 0.13
2 138 37 | 133 8 0.96 | 0.21
simulated strong | 851 | 848 | 736 | 765 | 0.86 | 0.90
simulated weak 177 | 466 | 113 | 408 | 0.64 | 0.88
)y 1028 | 1314 | 849 | 1173 | 0.83 | 0.89

Perpendicular detection of the CMP algo- | Perpendicular detection of the YanKuro al-
rithm: gorithm:

e Detection has better results than an- e Low performance is similar to the per-
gular detection since it can handle formance in angular detection. This
short streaks more appropriately. is caused by the same reasons — low

threshold value.

Detection based on end-point distance

Table 4.5 contains the results of the end-point distance detection. The threshold for
decision is error distance eg = 100 px. This detection was done only for the CMP algo-
rithm. The low results are caused by imprecise angle detection which leads to non-optimal
interval selection in (2.2), therefore the detected streak is too short.
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Table 4.5: Results of the end-point distance detection. The input samples are only the
true positives from Table 4.2.
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Source N A, A
modra 8 4 | 0.50
odhi 72 70 | 0.97
ondrejov 5 2 10.40
rme 6 5 | 0.83

tadandor 0 0 -
tadn 22 20 | 0.91
taos 25 17 | 0.68
by 138 | 118 | 0.85
simulated strong | 851 | 651 | 0.76
simulated weak 177 | 91 | 0.51
by 1028 | 742 | 0.72

4.4 Time complexity

Graphs of time consumptions of the CMP and YanKuro algorithms are in Figure 4.2. The
spread is caused by the fact that not all processing units used had the same CPU. The
CMP algorithm is approximately twice as fast as YanKuro algorithm.

The complexity for the worst case scenario can be estimated as
CMP: O(Ny - (n+m/2) - m), (4.6)
YanKuro: O(Ny - (n +m/2) - mlogm), (4.7)

where Ny is number of rotations (transformations) of image of size m x n. The term
n + m/2 corresponds to image skewing, mlog(m) is computation of the median M*(¢)
and m is the search for the cumulative maximum in the inference algorithm [10]. If image
is square (m = n), it could be simplified to

CMP: O(Ny - n?), (4.8)
YanKuro: O(Ny - n*logn). (4.9)
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Figure 4.2: Time consumption of the CMP algorithm (blue) with mean=>561 sec, std=305
sec and YanKuro (green) with mean=1010 sec, std=707 sec.
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Chapter 5

Conclusions

I have successfully implemented a fast shearing transformation and angle selection for the
CMP algorithm and reimplemented the YanKuro algorithm. I have created a generator
of simulated streaks and I have created tests for comparison of classification of images
and detection of streaks in the images and proposed the evaluation method.

The CMP algorithm has a 98% success of image classification on real data and 57%
on simulated data, YanKuro has 80% success on real data and 73% on simulated data.
Three detection tests have been used to study the behaviour of the algorithms: Based on
angular error, error in perpendicular distance and end-point distance. The CMP algorithm
does well for the perpendicular distance: It detects 96% of streaks in real data, 83% in
simulated, compared to YanKuro with 21% for real data and 89% for simulated data.
The angular error test is not so much in favor of the CMP algorithm as perpendicular
distance for real data: 75% of streaks have been detected well, but 100% of simulated
streaks are detected. YanKuro has success of 22% on real data and 99% on simulated
data. The end-point distance detection test was done only for the CMP algorithm: there
is 85% detection success for real data and 72% for simulated data.

The CMP algorithm runs about twice as fast as the YanKuro algorithm.

Some of the testing wasn’t done as properly as it could be. The background images
used for generation of simulated streaks contain artefacts that the algorithms can mistake
as streaks, therefore many weak streaks could not be detected. This affects the graph of
threshold amplitudes in Figure 4.1 for the CMP algorithm. The YanKuro algorithm takes
as input the difference of two consecutive images, therefore these artefacts would not be
present there.

This thesis was created for an older version of the CMP Algorithm. The newer version
contains improvements that make the algorithm faster and more precise. It can find the
streak with an arbitrary precision very fast as it uses the gradient method for the search
of the angular position. This also leads to an energy profile with a very deep peak which
is easy to distinguish.

Image preprocessing could be used to identify invalid data where known artefacts are
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located and therefore avoid erroneous results of the algorithm.

For real-world application the CMP algorithm should be implemented in faster environ-
ment, such as the C language instead of a fast prototyping tool like Matlab.
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