
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Search for a static object in a known
environment

Bc. Jan Mikula

Supervisor: RNDr. Miroslav Kulich, Ph.D.
Field of study: Cybernetics and robotics
Subfield: Cybernetics and robotics
January 2021

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

457197Personal ID number:Mikula JanStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

Cybernetics and RoboticsBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Search for a static object in a known environment

Master’s thesis title in Czech:

Hledání statického objektu ve známém prostředí

Guidelines:
1. Get acquainted with state-of-the-art meta-heuristics for the Traveling Deliveryman Problem (TDP).
2. Design and implement a meta-heuristic for the TDP which considers a limited computational time.
3. Compare experimentally properties of the implemented algorithm with state-of-the-art methods. Describe and discuss
the obtained results.
4. Design and realize extensions of the proposed TDP solver for robotic applications.
5. Evaluate experimentally properties of the extended algorithm. Describe and discuss the obtained results.

Bibliography / sources:
[1] Kulich, M.- Miranda-Bront, J. - Přeučil, L.: A meta-heuristic based goal-selection strategy for mobile robot search in an
unknown environment. Computers & Operations Research. vol 84, August 2017, pp. 178-187.
[2] N. Mladenović, D. Urosševicć, and S. Hanafi, Variable neighborhood search for the travelling deliveryman problem,
4OR, pp. 1-17, 2012.
[3] M. M. Silva, A. Subramanian, T. Vidal, and L. S. Ochi, A simple and effective metaheuristic for the Minimum Latency
Problem, European Journal of Operational Research, vol. 221, pp. 513-520, Sept. 2012.
[4] Hoos, H.H., Stützle, T., 1998. Evaluating Las Vegas Algorithms - Pitfalls and Remedies. Proceedings of the Fourteenth
Conference on Uncertainty in Artificial Intelligence , 238–24.

Name and workplace of master’s thesis supervisor:

RNDr. Miroslav Kulich, Ph.D., Intelligent and Mobile Robotics, CIIRC

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 05.01.2021Date of master’s thesis assignment: 15.09.2020

Assignment valid until: 19.02.2022

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
RNDr. Miroslav Kulich, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

iv

Acknowledgements

I want to express my gratitude to my su-
pervisor RNDr. Miroslav Kulich, Ph.D.,
for his invaluable guidance, advice, pa-
tience, and warm approach. I also wish to
thank my family and significant others for
their endless support during my studies.
My other thanks belong to Prof. Marcos
Melo Silva, who kindly provided his code
and datasets, and Ing. Jan Vidašič for
contributing parts of his code and some
advice.

Declaration

I hereby declare that I have completed
this thesis on my own and that all the
used sources are included in the list of ref-
erences, in accordance with the Method-
ological instructions on ethical principles
in the preparation of university theses.

In Prague, January 5th, 2020

Prohlašuji, že jsem předloženou prá-
ci vypracoval samostatně a že jsem
uvedl veškeré použité informační zdroje
v souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze dne 5. 1. 2020

. .

v

Abstract

The mobile search consists of finding one
or several targets in a given environment
by one or several mobile sensors. We as-
sume a single static object secretly placed
inside a known 2D polygonal environment
and aim to find the object by a single
mobile robot as quickly as possible on av-
erage. The robot is equipped with a sensor
of 360◦ view and limited visibility range,
sensing is performed throughout the whole
search, and the robot can recognize the
object once it appears in its field of view.
The core of the problem is planning the
search efficiently. In this thesis, we de-
sign, implement, and evaluate an original
framework for the mobile search. In gen-
eral, the problem is solved by a standard
decoupling approach; nevertheless, both
parts of our solution are innovative. We
propose a novel way to discretize the envi-
ronment utilizing a solution to the related
watchman route problem. We also intro-
duce a general metaheuristic for finding
efficient plans on several discrete models
of the problem. The new metaheuristic,
which considers limited computing time, is
first designed using a general run-time dis-
tribution methodology for the most basic
model — the traveling deliveryman prob-
lem. Evaluated on several sets of standard
benchmark instances used by the opera-
tions research community, it significantly
outperforms the current best approach
from the literature under hard limit set-
tings with limits ranging from 1 to 100
seconds. Still, it provides competitive re-
sults in the traditional sense and with cost
targets corresponding to the best-known
solutions worsened by about 1 %. The
metaheuristic is further extended to bet-
ter model themobile search by considering
non-equal and non-static locations’ infor-
mation gains, an effort needed to turn the

robot and sensing on the way between
locations. Together, the proposed dis-
cretization and metaheuristic produce ef-
ficient mobile search strategies, as shown
by our idealized custom simulations and
experiments in a realistic robotic simula-
tor. In real life, our solution can be used
as an efficient planner for a search and
rescue scenario in which a mobile robot
or other agent searches for victims after
some catastrophic event.

Keywords:

mobile robotics
mobile search
metaheuristics
routing problems
traveling deliveryman problem
watchman route problem

Supervisor:

RNDr. Miroslav Kulich, Ph.D.

IMR - Intelligent Mobile Robotics,
CIIRC, CTU in Prague,
Jugoslávských partyzánů 1580/3,
160 00 Praha 6, Dejvice,
Czech Republic

vi

Abstrakt

Problém mobilního hledání obecně spo-
čívá v nalezení jednoho nebo více cílů v
daném prostředí pomocí jednoho nebo ně-
kolika mobilních senzorů. My předpoklá-
dáme jeden statický objekt, který je, ne-
známo kam, umístěn dovnitř známého 2D
polygonálního prostředí a chceme ho na-
lézt s pomocí jediného mobilního robotu v
průměru co nejrychleji. Robot je vybaven
senzorem s 360◦ rozhledem a omezeným
dosahem viditelnosti, který po celou dobu
hledání snímá okolí. U robotu se předpo-
kládá schopnost rozpoznat objekt zájmu
pokud se vyskytuje v jeho zorném poli.
Jádrem problému je tedy naplánovat co
nejeefektivnější strategii hledání. V této
práci navrhneme a implementujeme novou
metodu pro tento problém a experimen-
tálně ověříme její vlastnosti. V obecné
rovině problém řešíme standardně a to
rozdělením na diskretizaci a optimalizaci.
Obě části našeho řešení jsou nicméně ino-
vativní. Navrhujeme nový způsob, jak dis-
kretizovat prostředí s využitím řešení sou-
visejícího, tzv. hlídačova problému. Zavá-
díme také obecnou metaheuristiku produ-
kující efektivní plány pro několik diskrét-
ních modelů původního problému. Nová
metaheuristika, která bere v úvahu ome-
zený výpočetní čas, je nejprve navržena
pro nejjednodušší model — problém cestu-
jícího doručovatele — a to pomocí obecné
metodiky založené na vyhodnocení dis-
tribuce výpočetního času z mnoha běhů.
Testována na několika sadách standard-
ních instancí používaných komunitou z
operačního výzkumu, naše metaheuristika
výrazně překonává současný nejlepší pří-
stup z literatury v experimentech s ome-
zením na výpočetní čas v rozmezí od 1 do
100 sekund. Dále poskytuje konkurence-
schopné výsledky v tradičním smyslu a v
experimentech s danou cílovou kvalitou ře-

šení, která odpovídá nejlepšímu známému
řešení zhoršenému přibližně o 1 %. Meta-
heuristika je dále rozšířena tak, aby lépe
modelovala problém mobilního hledání, a
to zohledněním úsilí potřebného k otáčení
robota, snímání na cestě mezi lokacemi
a dalších reálných aspektů problému. Na-
vrhovaná diskretizace a metaheuristika
společně produkují efektivní strategie pro
mobilní hledání, jak ukazují naše vlastní
idealizované simulace a také experimenty
v realistickém prostředí robotického simu-
látoru. V reálném životě lze naše řešení
použít například jako efektivní plánovač v
krizovém scénáři, kde mobilní robot nebo
jiný druh agenta hledá oběti po nějaké
katastrofě.

Klíčová slova:

mobilní robotika
mobilní hledání
metaheuristiky
směrovací problémy
problém cestujícího doručovatele
hlídačův problém

Překlad názvu:

Hledání statického objektu ve známém
prostředí

vii

Contents

1 Preliminaries 1

1.1 Introduction 1

1.2 Opening example 5

1.3 Subject background 8

1.3.1 Art gallery problem 8

1.3.2 Routing problems 9

1.3.3 Metaheuristics 9

1.3.4 Run-time distribution 11

1.3.5 Time-to-target plots 12

1.4 Related literature review. 14

2 Problems’ definitions 17

2.1 Mobile search 17

2.1.1 Auxiliary definitions 17

2.1.2 General formulation 19

2.1.3 Practical formulation 20

2.1.4 Expected vs. the worst time . 22

2.2 Traveling deliveryman problem . 23

3 Solution approach 25

3.1 General approach to the search . 25

3.2 Environment discretization 29

3.2.1 Literature: DT, KA, DS 31

3.2.2 Proposed: WR 33

3.2.3 Location filtering 38

3.2.4 Hybrid: WRF-DT-F. 39

3.3 Metaheuristic for the TDP 40

3.3.1 Reference: GILS-RVND. 41

3.3.2 Stopping conditions 42

3.3.3 General schemes 42

3.3.4 Construction 45

3.3.5 Perturbation 47

3.3.6 Local search 47

3.3.7 Local search operators 50

3.3.8 Proposed: Ms-GVNS 53

viii

3.4 TDP extensions 54

3.4.1 ATDP, GSP, AGSP 54

3.4.2 GSP2, AGSP2 57

3.4.3 Replanning 59

4 Computational evaluation 61

4.1 TDP: Ms-GVNS vs. GILS-RVND 61

4.2 Mobile search 71

5 Final remarks 85

5.1 Conclusions 85

5.2 Publication plans 88

A The TDP metaheuristic design 89

A.1 Methodology 89

A.2 Promising neighborhoods 90

A.3 Finding the best variant 93

A.4 The final method 96

B List of abbreviations 97

C Bibliography 99

D CD content 107

ix

Figures

1.1 Opening example: search setup . . 6

1.2 Opening example: execution 7

1.3 Metaheuristics 10

1.4 TTT-plots example 13

2.1 Sets W, Cfree, C 0
free, W 0

vis 18

3.1 Covering: DT, KA, DS 33

3.2 MACS and MCCS 34

3.3 Proposed discretization (WR) . . 37

3.4 2-string operator 50

3.5 Turning angles 56

3.6 Velocity constants’ effect 56

3.7 Weights . 58

4.1 Time-limits: summary plots 63

4.2 TTT-plots: examples 68

4.3 Environments 72

4.4 ROS simulation 78

4.5 Ideal vs. ROS evaluation 79

4.6 The best plans 80

x

Tables

3.1 TDP algorithms: symbols 43

3.2 2-string operator 51

4.1 Time-limits: 200 64

4.2 Time-limits: 500 65

4.3 Time-limits: 1000 66

4.4 Fixed-iters, TTT-plots: 10-200 . 69

4.5 Fixed-iters, TTT-plots: 500 70

4.6 The best times t?exp 74

4.7 Ideal evaluation: all 75

4.8 Ideal evaluation: selection 77

4.9 Extended results: legend 81

4.10 Extended results: WRF-DT-F . 83

4.11 Extended results: AGSP-RP . . 84

A.1 Promising neighborhoods 1 91

A.2 Promising neighborhoods 2 92

A.3 Finding the best metaheuristic . 94

A.4 Strategies’ comparison 95

xi

Algorithms

3.1 Mobile search: mission . . . 26

3.2 Mobile search: simulation . 27

3.3 Discretization 30

3.4 Enforcing reachability 31

3.5 WR: covering 35

3.6 WR: improving 36

3.7 Filtering 38

3.8 GVNS 43

3.9 GRASP 44

3.10 GRASP-GVNS 45

3.11 GRA construction 46

3.12 Perturbation 46

3.13 (R)VND 48

xii

Chapter 1

Preliminaries

1.1 Introduction

Target detection and tracking play a significant role in many robotic applications,
which has led to the design and development of various theoretical approaches
and practical solutions to target-related robotic problems [1]. Mobile search, one
of the target detection problems, consists of finding one or several targets in a
given environment by actively sweeping the environment with one or several
mobile sensors. The moment of finding the target is when it first appears in the
sensor’s field of view, and the target is assumed to be always reliably detected and
recognized once this situation occurs. The core of the problem is at planning the
search efficiently.

This project’s primary goal is to design, implement, and evaluate a framework
capable of producing efficient search strategies for the mobile search problem.
More specifically, we address a variant that assumes a static object of interest
(target) placed in a priory known 2D polygonal environment, whereas the goal
is to find the object by a single mobile robot as quickly as possible on average.
Furthermore, we assume the robot is equipped with a sensor of 360◦ view and
limited visibility radius rV ∈ R+

∞ and that the sensing is performed continuously
throughout the whole search. In real life, the solution to our problem can be used,
e.g., as an efficient planner for a search and rescue scenario in which the mobile
robot searches for victims after some catastrophic event.

1

1. Preliminaries ..
Several papers [2, 3, 4, 5, 6, 7, 8, 9, 10] study similar versions of the problem.

Although the initial assumptions (e.g., about the environment, sensor, time of
sensing), formal definitions, and detailed solution methods differ amongst the
authors, one general approach is shared — a two-stage decomposition of the
problem:..1. the continuous problem is discretized by selecting a set of locations that

completely cover the environment (cover-locations for short), and then..2. their visits’ order is determined such that the expected time to find the target
is minimized.

We follow the scheme as well, and for each stage, we either adopt from the
literature or develop from scratch several solution methods, which are at the end
evaluated on instances of the mobile search, and the best couple (combination)
is proposed as the novel framework for the problem. We call the two stages the
discretization stage (or just the discretization), and the routing stage (or just the
routing), respectively.

In the discretization, we adopt methods based on conforming constrained Delau-
nay triangulation [11], convex partitioning of polygons [12], and dual sampling [13];
and develop a new hybrid method utilizing solutions of the maximum area convex
subset (MACS) problem [14], traveling salesman problem (TSP) [15], and touring
polygons problem (TPP) [16]. Also, we introduce a simple yet powerful filtering
method able to improve sets of cover-locations generated by any of the previously
mentioned methods.

The discrete problem solved as part of the routing stage, is defined on a complete
graph by a set of pre-generated cover-locations and the shortest paths between
them. Assuming sensing of the environment is performed exclusively on the cover-
locations and that all locations have static (not changing as the search progresses)
equal information gain, the problem is formulated as the traveling deliveryman
problem (TDP) [17]. By the information gain of a particular location, we mean
the amount of area newly covered (searched) when visiting that location. It is
important to note that by formulating the mobile search this way, we admit severe
inaccuracies since the assumptions of the TDP are very simplifying and, therefore,
unrealistic. However, the TDP can be extended by many means to model the
mobile search better. For example, the graph search problem (GSP) [18] considers
differing gains of locations by introducing weights to the graph’s nodes. Other
extensions, e.g., to better model the robot’s kinematics or consider sensing on
the way between cover-locations, are introduced in this work. Also, replanning
as the search progresses is proposed as a simple trick to deal with the non-static
character of locations’ gains. Besides the extensions, a significant portion of this
thesis is dedicated to the original TDP, which the operations research community
studied quite well compared to the extensions.

2

....................................... 1.1. Introduction

Suppose a set of customers in a city waiting for their deliveries, and travel
times between each pair of them to be known. The TDP asks for a sequence of
visits such that each customer is served exactly once, and the sum of all waiting
times is minimized. This problem can be viewed as customer-oriented, as the one
who provides the service seeks to satisfy the customers rather than minimizing
own travel expenses [19]. A closely related and well-studied is the TSP, which
aims in the just-mentioned opposite direction, i.e., it is so-called server-oriented.
Both problems are known to be NP-hard for general metric spaces [17], and as
their range of applications is multidisciplinary and wide, they have received much
attention in the operations research literature in past decades (although we must
say that the TSP significantly more than the TDP). For an exhaustive overview
of the TSP and its applications, see [15]; practical applications of TDP that
are traditionally mentioned by operations research authors are, e.g., customer-
centered routing such as pizza-delivery or repairs of appliances [20], data retrieval
in computer networks [21] or emergency logistics [22].

Quite recently, a different side of the scientific spectrum started to take notice
of these problems and seek their efficient solutions; that is - robotics. One example
for all is a multi-goal path planning problem, which is a robotic variant of the TSP
with the edge costs as the length of the shortest paths connecting the locations of
visits [23]. The efficient solution of this problem leads to an algorithm that helps
a mobile robot to effectively build a map of an environment in which it operates
or to patrol an area that is a-priori known to the robot. In fact, many variants
and modifications of the TSP are often considered in robotics, e.g., TSP with
neighborhoods [24], generalized TSP [25], or orienteering problem [26]. The TDP
is no exception to this trend since it also has found its way to robotic problems.
As mentioned previously, the TDP and its generalized version GSP can be used
to formulate the mobile search as shown in [7, 8], for either known or unknown
environment in which the robot operates.

The motivation behind thoroughly studying the TDP in this work is to solve it
in the specific context of mobile robotics, characterized by the need to periodically
replan a route while the robot moves and senses the environment. We aim to
find a solution of the best possible quality while bounding the computational
time by a given hard limit, so that the replanning can be done in a real time
with a fixed frequency. These restrictions are different from those that authors of
related works usually consider. The literature seems to follow two main streams
in solving the TDP. Either the authors seek for an exact algorithm that will solve
the problem to optimality [20, 27, 28], or their approach relies on heuristics and
metaheuristics that are able to find good quality solutions (but not necessarily
optimal) in reasonable computing time [29, 30, 31]. However, the term reasonable
is often not well-specified. Usually, it merely holds that — the faster method, the
better — as long as its average solution quality is comparable to the current state
of the art. Nevertheless, this sort of a simple quality metric is not sufficient to tell
which algorithm presented in the literature returns the best solution after tmax
seconds.

3

1. Preliminaries ..
Our aim w.r.t. the TDP is to systematically design a heuristic method and

experimentally compare it to the current state-of-the-art method using various
metrics. The emphasis is placed on results obtained under the hard time limit
setting since this application scenario models the use in mobile robotics and is
the most often left out by other authors. The considered time limits are in the
range from 1 to 100 seconds. Nevertheless, some efforts are made to show that
our method can compete with state of the art in the traditional sense. To have
such a universally well-performing method, we use a general run-time distribution
(RTD) [32] methodology to design it and tune its parameters. We consider several
general improvement strategies during the design process, and within them, many
combinations of their variable components. The proposed method is the best
among all tested variants.

To summarize — in this work, we present a general solution to the mobile search
problem, where a novel tailored approach to the TDP is integrated. Specifically,
the key contributions are the following:

.We propose a novel way to discretize a 2D polygonal environment based on
computational geometry and combinatorial optimization approaches. The dis-
cretization is shown to provide better results on mobile search instances than
existing methods adapted from the literature.. A new metaheuristic for the TDP, which takes into account limited computing
time, is designed using a general RTD methodology, and time-to-target plots.
The novel method is evaluated on several sets of standard benchmark instances
used by the operations research community. It is shown to significantly
outperform the current best approach from the literature under the hard limit
settings with limits ranging from 1 to 100 seconds and still provide competitive
results in the traditional sense and with cost targets corresponding to the
best-known solutions worsened by about 1%.. The metaheuristic is further extended to better model the mobile search,
which is done by considering non-equal and non-static locations’ information
gains, an effort needed to turn the robot, and sensing on the way between
the cover-locations.. The extended metaheuristic and the novel discretization method is integrated
into a software framework for the mobile search. Designing and implementing
the framework is part of the work as well. We create a simple ideal simulator
for themobile search, which assumes that the robot’s movements are composed
of simple maneuvers: going ahead (in the current direction) with velocity vlin
and turning on the spot with velocity vang. The velocity constants are
estimated based on simulations implemented in Robot Operating System
(ROS) with existing commercial robot. Then, we generate two types of results
from simulating the mobile search. For the first type, we use only our ideal
simulator with tuned velocity constants; for the second type, we replace the

4

..................................... 1.2. Opening example

navigation part of our simulator with more realistic simulations performed
with ROS. The proposed algorithms, i.e., the discretization method and the
routing metaheuristic, are evaluated using these results on several instances
of the mobile search and compared with alternative methods adapted from
the literature.

This diploma thesis project is a free continuation of the subjects studied in our
previous (bachelor’s) thesis [33]. In the previous work, we develop a metaheuristic
for the GSP that improves the results obtained by Kulich et al. [10]. Then we
show that the metaheuristic can be used as part of a solution framework for the
mobile search. This work, on the other hand, provides thorough study of the
mobile search and broad spectrum of related problems. All solution approaches,
methods, results, and even implementations and methodology presented in this
work are either bright new or significantly improved or updated compared to those
of the previous work.

The remainder of this chapter explains the mobile search problem in an accessible
way without formal mathematical definitions, provides a background to some
important chosen topics, and finally reviews related literature. The rest of this
thesis is organized as follows. The main problems, the mobile search and the TDP,
are defined in Chap. 2. Solution approach to both main problems and several
related subproblems is described in Chap. 3. Properties of the proposed solution
methods are evaluated and compared to the literature’s approaches in Chap. 4.
The last Chap. 5 is devoted to concluding remarks and reveals our publication
plans with the work presented in this thesis.

1.2 Opening example

In this section, we yield an initial understanding and some insights into the
main problem we study, the mobile search, in an accessible way without formal
mathematical definitions. The formal definitions are established later in Sec. 2.1.

Let us illustrate the mobile search problem with an example in Fig. 1.1. Here,
the environment is represented by the white space bounded by the square border
and the C-shaped obstacle, both shown in black. The target is some tangible
object that can be localized as a point somewhere in the environment, but its
actual location is unknown and is therefore not shown in the picture. The robot
is equipped with a sensor of 360◦ view and an unlimited visibility range, and
its initial position marked s is at middle-bottom facing up. The objective is to
plan and execute a path which covers the whole environment, i.e., every point of

5

1. Preliminaries ..

s

b a

Figure 1.1: Opening example of the mobile search.

the environment would be seen (at least once) during the execution, to provide
a 100 % guarantee the hidden object is found. However, different such paths may
be differently efficient, as we show next. Back in the picture, there are two options
displayed. The robot can either turn left, follow the red-blue path, and finish in
position a, or it can turn right, track the green-blue path, and settle at position b.
The two options and corresponding paths (routes, trajectories, &c) are further
referred to as the left and the right, respectively. Now the question is — which
option would be a better choice — the left or the right?

Before answering the question, let us give some perspective to the example.
The environment is about 20 × 20 meters large, and the robot can move by a
sequence of simple maneuvers consisting of going ahead (in the current direction)
with velocity 1m/s, and turning on the spot with velocity π rad/s. Furthermore,
allow us to consider a general probabilistic case, where the object of interest is not
hidden at some specific location but instead assumed to appear in a region of the
environment with probability proportional to that region’s area. That being said,
to fully execute one or the other path (note the symmetry), the robot needs 46.5
seconds, and the probability that the object is found before a specific time is
equal to the area of a covered region at that time divided by the area of the whole
environment. Therefore, the probability is ≤ 100 % during the execution and is
exactly 100 % at 46.5 s.

Now we are prepared to see Fig. 1.2, which shows covered portions of the
environment at specific time ticks of the execution for both considered (the left
and the right) paths. After 15 s, the robot searched only 32 % of the environment
for the left, while for the right more impressive 71 %. A similar gap can be observed
right before the end of the executions at 45 s — 62 % and 98 %, respectively. Based
on these remarks, a thoughtful reader might have already rightly guessed that
the right path is the right with respect to our problem. Also, the intuition works

6

..................................... 1.2. Opening example

(a) : Left path, 15 s., 32 % covered. (b) : Left path, 45 s., 62 % covered.

(c) : Right path, 15 s., 71 % covered. (d) : Right path, 45 s., 98 % covered.

Figure 1.2: Execution of the search. A currently seen portions of the environment
are shown in orange, and the covered regions are the union of orange and yellow.
Already traversed parts of the planned paths are dark blue.

in this example. Since the big room (interior of the obstacle) can be seen as a
whole by a single look (from certain positions) and takes nearly half of the entire
environment, one may infer it would be a good idea to cover it first, then do the
rest of the corridors. The right path follows precisely this notion, while the left
seems to ignore it. The left path might be desirable if we assumed the object
was hidden purposely somewhere behind a corner and certainly not in the big
room’s wide-open area. However, no such assumption is in place since all points
of the environment are equally likely to exhibit the object. In other words, the
probability of locating the object at specific coordinates is uniformly distributed
over the environment’s interior. An extension considering other than uniform
probability distribution is possible but not considered in this work.

7

1. Preliminaries ..
To conclude, the right path comprises a much more efficient search strategy

since it covers large portions of space at the earliest.

1.3 Subject background

This section provides necessary backgrounds for some chosen topics addressed by
this thesis and briefly explains a selection of related terms, theory, or methodology.

1.3.1 Art gallery problem

The discretization stage of the decoupled approach to the mobile search is related
to the art gallery problem (AGP) [34], a well-known problem in computational
geometry. It originates from a real-world task of guarding an art gallery with a
minimal number of guards who together behold the whole gallery. Formally, the
gallery is represented as a simple (has no holes and self-intersections) polygon P ,
and the guards by points in its interior. A set G ⊂ P is said to guard P if, for
every p ∈ P there is some guard g ∈ G such that the line segment between p
and g is fully inside P . Chvátal published the first theorem [35] related to AGP
in 1975, and since then, many other related theorems, algorithms, and variants of
the problem were proposed by many authors. The environment’s discretization
that we consider can be viewed as a version of the AGP, where P corresponds to
the environment and is allowed to have holes, and guards are the cover-locations
and have limited visibility radius.

However, unlike the AGP, which seeks any minimal guards set, our problem’s
goal (optimization criterion) is hard to state. It is unclear which properties of a
guard set would always yield good quality solutions to the mobile search. It is
perhaps to ask whether such distinct properties can even exist since combined
optimal solutions to the decoupled problems do not necessarily provide an optimal
solution to the original problem. A better approach than decoupling, and in some
sense the only correct, would be to solve the mobile search complexly as a whole.
Some problems similar to the mobile search, e.g., the watchman route problem [36],
can be tackled wholly, e.g., by utilizing self-organizing maps [37]. However, to the
best of our knowledge, for the mobile search there are no such existing solutions
in the literature, as well it would be too challenging to attempt the first by us at
the moment. In later sections, we discuss this issue in more depth and suggest
some partial solutions that compromise between optimality and tractability. We
discuss more about the watchman route problem and its relation to the mobile
search in Sec. 2.1.4.

8

.................................... 1.3. Subject background

1.3.2 Routing problems

The TSP, the TDP, and its variants mentioned in the introduction belong to a large
general class of combinatorial optimization problems called routing problems [38],
and within it, they are part of a group called vehicle routing problems (VRPs) [39].
VRPs ask for the optimal set of routes for a fleet of vehicles to traverse in order
to deliver to a given set of customers. The city with customers is usually modeled
as a graph G = (V,E), where vertices V correspond to customers, depots, and
other places in the city, and edges E correspond to road connections. VRPs
differ from each other by the graph’s characteristics (e.g., directed/undirected,
complete/incomplete), considered optimization criteria (e.g., min. global trans-
portation cost, min. customers’ waiting times, min. number of vehicles, max.
profit), and various constraints usually imposed by real-life applications (e.g.,
pick-up and delivery, time windows, limited vehicle capacities, number of available
vehicles).

Within VRPs, the TSP and TDP share some common characteristics. Both
are defined on a complete undirected graph (i.e., a fully inter-connected city with
no one-way streets), assume only one available vehicle and no other constraints.
A valid solution to both problems is a permutation of the graph’s vertices. Their
only difference is in the optimization criterion. The TSP minimizes the trans-
portation cost and the TDP customers’ waiting times while assuming both the
cost and travel time are proportional to the traveled distance. The deliveryman
can see the waiting times as a total latency of arrivals to customers, so the TDP is
also called the minimum latency problem (MLP) [30]. However, the classical TDP
is not the only problem that minimizes latency, as all its variants considered in
this work do as well. Therefore, we group them all as minimum latency problems
(MLPs) and use the term TDP only to describe one specific, the classical one.

1.3.3 Metaheuristics

"Metaheuristics, in their original definition, are solution methods that orchestrate
an interaction between local improvement procedures and higher level strategies
to create a process capable of escaping from local optima and performing a robust
search of a solution space. Over time, these methods have also come to include
any procedures that employ strategies for overcoming the trap of local optimality
in complex solution spaces, especially those procedures that utilize one or more
neighborhood structures as a means of defining admissible moves to transition
from one solution to another, or to build or destroy solutions in constructive and
destructive processes." [40]

9

1. Preliminaries ..

Figure 1.3: Metaheuristics and their classification; source: Wikipedia [41].

A graphical overview of metaheuristics that appear all across computer science
and their classification according to several criteria is shown in Fig. 1.3. In this
work, we consider several metaheuristics for the MLPs. They are all based on
general schemes, which can be applied to a wide variety of problems. Here, we
shortly describe the most relevant ones.

Variable neighborhood search (VNS) proposed originally by [42] is a single-start
stochastic metaheuristic based on the idea of improving a single solution temporally
even by some non-improving steps. In its scheme, two phases alternate: a shake
which allows escaping local optimum and a local search phase, which descents
towards one. Additionally, a systematic change of neighborhoods within the search
is applied. General VNS (GVNS) is a variant that uses variable neighborhood
descent (VND) in the local search phase. VND can be seen as a determinis-
tic variant of VNS, which explores a solution space using several neighborhood
structures, usually in a sequential order. Greedy randomized adaptive search
procedure (GRASP), unlike VNS, is a multi-start process developed and estab-
lished within the research community by many authors’ works, e.g., [43, 44, 32].

10

.................................... 1.3. Subject background

Greedy randomized adaptive (GRA) construction heuristic is applied to each restart
to create a new solution, which is then improved by VND, and the best overall
solution is returned at the end. GVNS and GRASP have similarities and also
significant differences. They both use VND as a local search method, and both
are stochastic to be able to escape local optima - but in a different way. While
GVNS randomly perturbates the best current solution (in the shaking phase),
GRASP creates an entirely new one in a randomized fashion and starts the search
from the beginning.

1.3.4 Run-time distribution

Hoos and Stützle [45] point out pitfalls related to stochastic methods evaluation
and introduce a methodology for evaluating a certain class of algorithms called
Las Vegas algorithms. However, the methodology can be extended to consider
improving strategies such as TDP-solving metaheuristics as well. An algorithm A
is said to be Las Vegas algorithm for problem class Π, if (i) whenever for a given
problem instance π ∈ Π it returns a solution, it is guaranteed to be valid, and
(ii) on each given instance the run-time of A is a random variable. The authors
classify three types of possible application scenarios for Las Vegas algorithm A:..1. there are no time limits, i.e., we can afford to run the algorithm as long as

it needs to find a valid (or of sufficient quality for some problems as TDP)
solution;..2. there is a time limit tmax, which can be very small in case of real-time
applications such as robotics;..3. the utility U : R→ [0, 1] of a solution depends on the time t needed to find it.

It is apparent that evaluating the performance of A in these scenarios must be
done using different criteria for each. E.g., in the case of type 1, the mean time
of several runs might suffice to characterize the run-time (rt) behavior roughly,
but it is basically meaningless for type 2, which needs more adequate criteria
such as P (rt ≤ tmax) - the probability of finding a solution within the given
time-limit. Additionally, we can observe that type 1 and 2 are special cases of
the most general type 3, which can only be appropriately characterized by the
run-time distribution function rtd(t) = P (rt ≤ t) or its approximation such as
time-to-target (TTT) plots. The RTD was first used by Feo et al. [32] and further
addressed by other authors [45, 46]. Hoos and Stützle [45] encourage to use the
RTD to characterize the behavior of algorithm A completely and uniquely and
stress out the possible pitfalls (such as imprecision or erroneous conclusions) when
other simpler methodologies are used. In addition, from RTD, other criteria,

11

1. Preliminaries ..
like the mean run-time, its standard deviation, median, percentiles, or success
probabilities P (rt ≤ ti) for arbitrary time-limits ti, can be extracted.

As we mentioned earlier, Hoos and Stützle originally proposed the methodology
for Las Vegas algorithms, which for a given instance, either return a valid solution
in a finite time rt or do not find any (then rt = ∞). However, in the case of
TDP, the best metaheuristics are almost always improving strategies, meaning
they construct a valid solution in the early stage of their run-time and spend the
rest of the time improving it (without the loss of validity). In order to apply the
RTD to improving strategies a solution cost goal cgoal needs to be considered.
The function rtd(t) = P (rt ≤ t) is then seen as the probability that the algorithm
finds a solution with a cost at least as good as cgoal in time rt ≤ t. In other
words, if only a solution X with the cost cost(X) ≤ cgoal is considered valid, then
the TDP-solving algorithm is a Las Vegas algorithm for the TDP. The use of
this technique is recommended in [47] for many problems (including TSP) and
the value of cgoal is often chosen to be 1% worse than the currently best known
solution by the authors.

To wrap up, the single most useful (thanks to its universality) way to characterize
the run-time of stochastic solution methods for the TDP, which is relevant even in
our context of robotics (scenario type 2), seems to exist. The problem is that it is
barely used in the related literature. What is used instead are the best and mean
solution costs and average values of CPU times, which are higher by far (especially
for medium and large instances) from the time limits imposed by the robotic
context (order of units of seconds). Since neither rtd(t) nor P (rt ≤ tmax) is used
to characterize someone’s algorithm, we can conclude that their results can be
relevant only to the solution scenario of type 1, i.e., limit-less computation times,
while for the other two, no valid conclusions can be made. The call for heuristic
methods that solve the TDP and yet perform well in all application scenarios 1-3
is in place. It comes from the experience that the computational time to solve the
problem is often limited, or the usefulness of a solution is dependent on the time
needed to obtain it.

1.3.5 Time-to-target plots

Consider an instance π ∈ ΠO of an optimization problem class ΠO, a set of all
its valid solutions H(π), a cost function cost : H(π) 7→ R+

0 , an optimal solution
cost c? = minX∈H(π) cost(X), and a target1 cost value cgoal ∈ R+

0 : cgoal ≥ c?. We
call algorithm AI for ΠO a Las Vegas improving algorithm, if (i) whenever for a
given π it returns a solution X , it is guaranteed to be valid with cost cost(X) ≤

1Not to be confused with the target (physical object of interest) as in target detection and
related problems.

12

.................................... 1.3. Subject background

time to target (TTT) [s]

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty
 [−

]

0.001 0.01 0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 1.4: An illustration example of TTT-plots for two algorithms.

cgoal, and (ii) for each π ∈ ΠO the run-time rt of AI is a random variable. The
algorithm AI is run nrun times on the fixed instance π. The runs are assumed to
be independent, i.e., the random number generator is initialized with a different
seed every time. The rts of all runs are recorded and saved and then used to
produce a TTT-plot. TTT-plots construction is well-described in [47] and we follow
the same methodology shown by the authors. After finishing the last run, the
recorded rts are sorted in increasing order and the probability pi = (i− 1/2)/nrun
is associated with each i-th sorted rti, for i = 1, . . . , nrun. The meaning of pi
can be understood as follows: pi is the probability that the algorithm finds a
solution at least as good as the target cgoal in at most rti seconds. Finally, a
TTT-plot is constructed by plotting all points (rti, pi). Clearly, the TTT-plot is
an approximation of the cumulative RTD capable of characterizing the run-time
behavior of Las Vegas improving algorithms as we defined them. Additionally,
for practical reasons, we further consider an upper run-time limit tmax for the
given instance. By convention, we assume that whenever the method’s running
time reaches tmax, it stops, and rt = ∞ is recorded. The convention assures,
that an experiment of nrun independent runs will finish in reasonable time, more
specifically, in nruntmax seconds in the worst case. Clearly, the upper bound tmax
must be sufficiently large to obtain valid results.

One obvious drawback of TTT-plots is that whenever two algorithms A1 and A2
are evaluated on the same instance and their TTT-plots are superimposed, it
might not be clear on the first sight, which algorithm performs better and by how
much. To compare the algorithms productively, some adequate metric must be
introduced. Let RT1 and RT2 be random variables representing the time needed
by algorithms A1 and A2 respectively to find a solution as good as the given target
value. Let p12 = P (RT1 ≤ RT2) be the probability, that the random variable RT1
takes a value smaller or equal to RT2. Assuming that both algorithms stop when
(and only if) they find a solution at least as good as the target, we can say that A1
performs better than A2 if p12 > 0.5. An iterative procedure to compute p12
with arbitrary small approximation error for two algorithms following general
cumulative probability distributions is introduced in [48]. Later, Ribeiro and
Rosetti [49] develop a program to compute the approximation of p12 from provided

13

1. Preliminaries ..
TTT-plots of the two algorithms. In this work, we use a computation inspired by
their program. For the theory and related issues, see [48, 50, 49] or the overview
in [47].

For an illustration example of TTT-plots for two algorithms: the blue and the
orange, see Fig. 1.4. The two algorithms solve a particular 50-customer instance
of the TDP given the same target cost, in this case, the optimum. The estimated
probability that they return the optimal solution before time 20ms is about 50 %
for both. Note that the blue is superior for time limits TTT < 20ms, but for less
strict time limits, the probability of returning the optimum in time is higher for
the the orange. The probability that the blue algorithm will return solution of
required quality before the the orange is P (RTblue ≤ RTorange) = 51.9 %.

1.4 Related literature review

The mobile search problem in a 2D polygonal environment is solved in a two-
stage process by Sarmiento et al. [2, 3]. Their formulation assumes an unlimited
visibility range for the robot’s sensor, a discrete sensing only at selected locations,
and a known probability density function characterizing the searched object’s
unknown location. They first transform the continuous problem into a discrete
case by selecting a set of exclusive sensing locations that completely cover the
environment, then determine the order of their visits. The order is determined
by a greedy algorithm that gradually adds a location with a maximal utility
value. The location utility is a ratio of a gain of visiting the location and an effort
needed to visit it. Furthermore, a breadth-first search with heuristic pruning was
introduced as an extension of the greedy algorithm. The extension iteratively
constructs all possible defined length routes, fixes the most promising one, and
starts the next search from this route as a prefix. In [4], the same authors study
a multi-robot variant of the problem, and in [5], they extend it by considering
continuous sensing. For the last variant, they again propose a two-step approach
— first, a set of critical curves is identified and then considered in a simplified
search-path problem where the curves are refined and locally optimized.

Another decomposition of the problem, similar to the previous one, is introduced
in Lv et al. [6]. The environment is split into subregions for which a center position
and its importance evaluation function are established. The center positions are
then visited in an order determined by an improved particle swarm algorithm.

14

.................................. 1.4. Related literature review

Kulich et al. consider search in an unknown environment in [7], a problem
similar to the exploration task. However, they show that search and exploration
objectives are dissimilar and propose a combination of a frontier-based approach
and a modified depth-first search algorithm with pruning and limited branching
to determine the order in which the frontiers are investigated. Later they extend
the work by formulating the search problem as the GSP and introduce a more
sophisticated algorithm based on the GRASP metaheuristic in [8]. Shortly after,
they also discuss a multi-robot version of the problem [9]. In their most recent
work [10], they develop for the multi-version of the GSP a metaheuristic based on
a combination of GRASP and VND.

In the routing stage of solving the mobile search we deal with MLPs and
mostly with the TDP. Two noticeable leading courses are apparent in solving
the TDP in the operations research community. The first one aims to find the
optimal solution to the problem; however, it is limited to small instance sizes
due to infeasible computing times. The second major course, a more relaxed
one, seeks a solution that is only close enough to optimum in exchange for
much lower computational times. Heuristics, often based on some more general
search strategies (metaheuristics), are the core solution methods in this area.
Approximation algorithms, which lie somewhere in the middle, are also known for
the TDP. These methods give approximate solutions, but, unlike heuristics, with
a theoretically proven guarantee of performance.

Early exact algorithms proposed by [51, 52] rely on non-linear integer for-
mulations in which a Lagrangian relaxation is used to derive lower bounds. Fis-
chetti et al. [20] develop integer linear programming (ILP) formulation and new
theoretical results on the matroidal structure of a class of combinatorial problems.
The results are used to derive lower bounds for the TDP and are embedded into
an enumerative algorithm capable of solving 60-vertices instances to optimality.
Some other ILP formulations, as well as mixed integer linear programming (MILP)
formulations, and exact algorithms are proposed in [53, 54, 55, 56, 28]. In the
last mentioned, Naeni and Salehipour develop a MILP model that benefits from
position-based variables. On the set of 70 randomly generated instances of sizes
10-50, they show their model can deliver the largest number of the best solutions in
a shorter time compared to most of the already mentioned models [20, 53, 54, 55].

In addition to TDP-specialized solutions, several ILP formulations and ex-
act algorithms are developed for the time-dependent traveling salesman problem
(TDTSP), a generalization of both the TSP and the TDP. Some of these formula-
tions are proposed in [57, 58, 59, 27, 60, 61, 62]. Overall, the strongest algorithm
is the branch-cut-&-price developed by Abeledo et al. [59, 27], capable of solving
almost all instances from the TSPLIB [63] with up to 107 vertices within the limit
of 48 hours.

15

1. Preliminaries ..
Approximation algorithms for the TDP on a tree or on a general metric

graph are developed in [64, 65, 66, 21, 19, 67, 68, 69, 70, 71, 72]. The researchers
who develop approximation algorithms focus mostly on lowering the approximation
factor or computational complexity of their algorithms; however, computational
results on benchmark instances are usually not present in their works. The lowest
approximation factors in the literature are 3 [72] and 3.59 [67] for the tree and
the general case respectively.

The heuristic approach mostly relies on more general search strategies — meta-
heuristics — especially VNS and GRASP. Salehipour et al. [29] propose a GRASP
that embeds either VND or VNS and evaluate both variants on a set of randomly
generated benchmark instances of sizes in a range from 10 to 1000. Silva et al. [30]
later present a simple and effective metaheuristic called GILS-RVND, which is
based on the combination of GRASP and iterated local search (ILS). It improves
all the results obtained by [29] on their instances and finds new best solutions
for two of TSPLIB [63] instances. Mladenović et al. [31] propose a GVNS, able
to improve the previous results obtained by [29] as well; however, GILS-RVND
still performs slightly better in terms of solution quality. Ban et al. [56] suggest
a metaheuristic algorithm combining tabu search (TS) and VNS and show that
it compares well with the state-of-the-art algorithms [29, 30] in the quality of
obtained solutions. The TS-VNS, however, does not improve the bar set by the
GILS-RVND in the matter of computional time.

To the best of our knowledge, since its publication in 2012 to this day, the
GILS-RVND by Silva et al. has been the one heuristic method providing the
best trade-off between its simplicity, solution quality, and computational time
in the literature. Thanks to its affable characteristics, it more recently has been
chosen by other authors as the base method for their improvement ideas. Rios [73]
propose versions of GILS-RVND for parallel computing in CPU/GPU hybrid
systems. Santana et al. [74] improve GILS-RVND by means of data mining (DM)
techniques. Their new hybrid method, called multi-DM GILS-RVND (MDM-GILS-
RVND), utilizes the frequent itemset mining (FIM) technique to gather segments
of high-quality solutions in the first half of GILS-RVND iterations. In the other
half, the segments are used to construct new initial solutions with every other
restart. MDM-GILS-RVND is shown to perform almost equally as GILS-RVND
on small instances (n ≤ 50), better in terms of computational time on medium
instances (50 < n ≤ 200), and better in both terms of time and solution quality
on large instances (200 < n).

16

Chapter 2

Problems’ definitions

2.1 Mobile search

This section provides a general mathematical definition of the mobile search
problem based on Sarmiento et al. [5] and a more practical formulation based on
Kulich et al. [8]. First, we define some auxiliary structures in Subsec. 2.1.1, then
the mobile search formulations follow in Subsec. 2.1.2 and 2.1.3, respectively, and
finally in Subsec. 2.1.4, we discuss the difference between the mobile search and a
similar problem which minimizes the time of search in the worst case.

2.1.1 Auxiliary definitions

We assume a robot that operates in an environmentW ⊂ R2 that is static, enclosed,
and 2D polygonal, i.e., modeled as an over time non-changing single polygon with
holes (obstacles). The obstacles and an outer border of the environment, denoted
as O = R2 \ W, generate motion and visibility constraints for the robot, i.e., it
can neither go nor see outside of the environment or over the obstacles. The
robot’s configuration q = (x, y, φ) is expressed by 2D coordinates (x, y) ∈ R2 of
its footprint’s center, and its heading φ ∈ [0, 2π). Let C = R2 × SO(1) be the
configuration space (set of all possible configurations), and A(q) ⊂ R2 set of all
points representing the robot determined by given configuration q ∈ C. Then, the
set of collision-free configurations is defined as Cfree = C \ Cobs where Cobs = {q ∈
C |A(q) ∩ O 6= ∅}. We also denote the set of all environment’s points visible by

17

2. Problems’ definitions

(a) : W (b) : Cfree (c) : C 0
free (d) : W 0

vis

Figure 2.1: Sets W, Cfree, C 0
free, and W 0

vis for a circular robot with omnidirectional
sensor and unlimited visibility range (i.e., the same setup as in the opening example 1.2)
displayed in blue color. Only the x and y coordinates are shown for Cfree and C 0

free.
Obstacles O and the robot’s initial footprint A(q0) are displayed in all figures in black
and yellow, respectively.

the robot from given configuration q ∈ C as V(q) ⊂ W. For all q = (x, y, φ) ∈ C
we naturally assume that (x, y) /∈ W implies V(q) = ∅. Let us further assume
some initial configuration q0 ∈ Cfree of the robot, and let C 0

free be the connected
component of Cfree that contains q0. Then, given initial configuration q0, we define
the possibly-visible subset of environment W as

W 0
vis =

⋃
q ∈C 0

free

V(q). (2.1)

For a visual example of W, Cfree, C 0
free, and W 0

vis see Fig. 2.1.

In our formulation of the mobile search, we assume the environment W and
robot’s initial configuration q0 are known, but we have zero information about the
searched object’s location. Regarding the object, although its location p? ∈ W is
a-priory unknown, we must naturally assume

p? ∈ W 0
vis; (2.2)

otherwise, the object might never get into the robot’s field of view. Note that this
assumption is not necessary for environments where W =W 0

vis (see Fig. 1.1 for
an example of such environment). In relation to the assumption, we call W 0

vis the
admissible region for search or just the admissible region.

Furthermore, we define a trajectory τ as a continuous curve of finite length
in the configuration space that is parameterized by time, i.e., τ : [0, tstop] 7→ C,
tstop ∈ R+. Assume a specific time t ≤ tstop and let

Wcov(τ, t) =
⋃

t′ ∈ [0, t]
V(τ(t′)) (2.3)

18

.......................................2.1. Mobile search

be the subset of the environment that has been seen by the robot as it moves along τ
until time t. We say that at time t the trajectory τ has covered the regionWcov(τ, t)
and, in general, we use the term cover to denote that the robot has sensed (seen)
a certain portion of the environment. We call a trajectory τ : [0, tstop] 7→ C,
tstop ∈ R+

. collision-free iff Range(τ) = Cfree, i.e., τ : [0, tstop] 7→ Cfree,. starting at q0 iff τ(0) = q0, and.maximally covering iff it covers the whole admissible region before time tstop,
i.e., Wcov(τ, tstop) =W 0

vis.

2.1.2 General formulation

Consider a known environment W and inside a robot at initial configuration q0
that at time t = 0 starts executing a collision-free trajectory τ : [0, tstop] 7→ Cfree
starting at q0 while searching for a target whose location p? ∈ W 0

vis is unknown.
The target is some tangible static object of interest that is localized (associated
with concrete coordinates) at the moment it is found which is when it first appears
in the robot’s field of view. Let the time at which the robot first sees the object
of interest be described by a random variable T . The probability that the robot
finds the object before any time t is given by the cumulative distribution function
(CDF) of the random variable T , i.e.,

FT (t) =
∫ t

0
fT (t′)dt′ = P (T ≤ t). (2.4)

Since the probability clearly depends on the trajectory followed by the robot, we
define the CDF along a given trajectory τ as

FT | τ (t | τ) =
∫
Wcov(τ, t)

fXY (x, y) dx dy, (2.5)

where fXY (x, y) is the probability density function (PDF) for the object’s location.
Then based on the general relation between CDF and PDF of random variable X
— FX(t) =

∫ t
−∞ fX(t′) dt′ — we can retrieve the fT | τ from FT | τ . Under the

assumption that τ is maximally covering, the expected (mean) [75] time to find
the object can be computed as

E[T | τ] =
∫ tstop

0
t · fT | τ (t | τ) dt. (2.6)

19

2. Problems’ definitions
The objective of the mobile search is finding the maximally covering collision-free

trajectory τ? starting at q0 that minimizes the expected time to find the object,
i.e.,

τ? = arg min
τ

(E[T | τ]). (2.7)

Themobile search is an infinite-dimensional optimization problem whose discretized
version is NP-hard, as shown in [2].

2.1.3 Practical formulation

Note that the previous formulation of the mobile search is general enough to
consider arbitrary PDF for the object’s location and a robot of any shape and
size equipped with a sensor with an arbitrarily shaped field of view. However, to
tackle the problem in any feasible way, we must further concretize it by several
more assumptions.

In some applications, there are reasons to believe that some object’s locations
are more likely than others. For example, if we are searching for keys at our home,
we probably start looking at places where we usually leave them and discard whole
rooms such as the bathroom. However, in our work, we do not consider these
applications and instead we assume that all points of the admissible region are
equally likely to exhibit the object. This assumption known in the literature as
the principle of insufficient reason [76, 77] implies modeling the object’s location
by a uniform PDF. This yields a specific formula for computing the probability of
finding the object prior time t while following trajectory τ :

P (T ≤ t | τ) = FT | τ (t | τ) = a(t | τ)
atotal

= Area(Wcov(τ, t))
Area(W 0

vis)
, (2.8)

where a(t | τ) = Area(Wcov(τ, t)) is the area of a region covered before time t,
and atotal = Area(W 0

vis) is the area of the whole admissible region for search.

In practical robotics, sensing and planning are performed in discrete times t =
(t1 = 0, t2, . . . , tstop); therefore, we can rewrite the equation (2.6) as

E[T | τ] =
|t|∑
k=1

tk · p(tk | τ), (2.9)

where p(tk | τ) is the probability of finding the object of interest at specific time tk.
Here we must revisit our previous statement (from the introduction) that our
variant assumes that the sensing is performed continuously throughout the whole
search. The statement is true in a manner that sensing is not confined to a narrow

20

.......................................2.1. Mobile search

set of restricted sensing locations (such as in [3]) but is performed during the
whole execution of the search independently on the robot’s position. However,
the continuity here is in question since we discretize the sensing in time according
to Eq. 2.9. Therefore, we adjust the statement by declaring that continuous
sensing is approximated by sensing with a high frequency, which is reasonable
since continuous sensing cannot be realized in real-world scenarios anyway.

Applying assumption (2.8) to compute p(tk | τ) leads to the following formula:

p(tk | τ) = anew(tk | τ)
atotal

= Area(Wnew(τ, tk))
Area(W 0

vis)
, (2.10)

where Wnew(τ, tk) =Wcov(τ, tk) \Wcov(τ, tk−1) = V(τ(tk)) \Wcov(τ, tk−1) is the
newly covered region at time tk and Wcov(τ, t0) = ∅.

We further specify the problem by raising assumptions about the robot and its
sensor. The robot’s footprint A(0, 0, 0) is a circle with radius rA ∈ R+

0 (reduced to
a single point for rA = 0) centered at the origin. Regarding the robot’s movement,
traversing any straight line segment fully inside C 0

free and rotating on the spot
are possible (other movements are allowed, but not necessary), which means that
any configuration qi ∈ C 0

free is reachable from any other configuration qj ∈ C 0
free.

Combining the two last assumptions (about the robot’s shape and movement)
implies that Cfree can be computed by offsetting [78] the environment W by
radius −rA to get the x, y coordinates and considering the whole interval [0, 2π)
for the possible headings φ.

Regarding the field of view, the robot is equipped with an omnidirectional
sensor with a limited visibility range rV ∈ R+

∞ (this includes the case where the
range is, in fact, unlimited for rV = ∞), placed in its center, i.e., the sensor’s
coordinates are identical to the robot’s. This yields a recipe for computing the
currently sensed region V(q) of the environment while the robot is at position
(configuration) q = (x, y, φ):

V(q) = C◦(x, y, rV) ∩ Pvis(x, y). (2.11)

Here C◦(x, y, rV) is a circle with radius rV centered at (x, y), and Pvis(x, y) is a
visibility polygon [79] computed inside W with (x, y) as a seed. Visibility polygon
for a given seed is a polygon whose all points are visible from the seed. One
point pi is visible from another point pj iff the segment which connects them
is fully inside W. For examples of visibility polygons see the orange regions in
Fig. 1.2. Let us further note that since our algorithms introduced later work with
objects represented as polygons, i.e., sequences of points, we approximate the
circle C◦(x, y, rV) by a regular polygon with npoly edges that could fit inside the
circle. Most times, we use npoly = 16.

21

2. Problems’ definitions
Finally, for simplification purposes and to neglect possible confusion from W,

Cfree, C 0
free, W 0

vis structures, we consider only such environments and robot’s
radii rA that together produce Cfree with only a single connected component;
therefore, C 0

free = Cfree. Similarly, we consider appropriate pairs of environments
and visibility radii rV , such that the coverage of the whole environment is possible,
i.e., W 0

vis =W.

2.1.4 Expected vs. the worst time

Let us note the difference between minimizing the expected time E[T | τ] as in
the mobile search and minimizing the time it would take to find the object in the
worst case. The latter’s objective is to find the shortest (by means of time; or
length if they are proportional) maximally covering (collision-free, &c) trajectory,
which is a problem known in the literature as the watchman route problem (WRP).
The WRP does not prioritize any parts of the environment, and the rate at which
new areas are covered is unimportant. On the other hand, the mobile search tries
to gain the probability mass of finding the object as quickly as possible. For the
uniform PDF, the best strategy is to cover large portions of the environment at
the earliest, as shown in the opening example (Sec. 1.2). For a given environment,
the optimal strategy w.r.t. the WRP is usually not the best for the mobile search.
For an example of this situation, return to the opening example and Fig. 1.2.
There, both strategies, i.e., the left and the right, are equally good w.r.t. the WRP,
as they are both the same length (seen from the symmetry), but as we argue in
Sec. 1.2, the right strategy, compared to the left, is significantly better for the
mobile search, as it covers the large room early in the execution.

22

............................... 2.2. Traveling deliveryman problem

2.2 Traveling deliveryman problem

In the routing stage of solving the mobile search, we deal with MLPs and mostly
with the TDP as noted in previous sections. The TDP is a combinatorial opti-
mization problem whose definition is much more straightforward than the mobile
search definition.

The traveling deliveryman problem (TDP), also known as the repairman problem,
or the minimum latency problem, is formally described by:

.G = (V,E): a complete undirected graph with N vertices V = {v1, . . . , vN} in
which every pair of distinct ones vi 6= vj is connected by a unique edge ei,j =
(vi, vj) ∈ E.. d : E → R+

0 : a non-negative cost d(i, j) associated with each edge ei,j ∈ E
representing a length of the shortest path (or travel time) from vi to vj . The
costs are assumed symmetrical, i.e., d(i, j) = d(j, i).. s ∈ V : a starting vertex (depot) of the deliveryman; all other vertices
represent the customers.

Let the sequence of vertices X = (x0 = s, x1, . . . , xn), where n = N − 1 is
the number of customers, be a Hamiltonian path in G starting from the depot.
Hamiltonian path is a path in a graph, i.e., sequence of vertices of that graph, that
visits each vertex exactly once. Furthermore, let d(xi, xj) be the cost of an edge
between i-th and j-th vertex in X . The cumulative cost to reach k-th vertex in
the sequence X is defined as

δXk =
k∑
i=1

d(xi−1, xi) . (2.12)

Finally, the total cost of X is defined as

cost(X) =
n∑
k=1

δXk =
n∑
k=1

k∑
i=1

d(xi−1, xi) . (2.13)

The objective of the TDP is to find an optimal path X ∗ that minimizes the cost,
i.e.,

X ? = arg min
X∈H(π)

cost(X), (2.14)

where π = (G, d, s) is an instance of the TDP andH(π) is the set of all Hamiltonian
paths in graph G starting in s. Note that we assume an open variant of the problem,

23

2. Problems’ definitions
i.e., the travel from the last customer back to the depot, is not considered. However,
a Hamiltonian cycle instead of the path is often deemed in the literature. In that
case, the total cost (2.13) would be defined as cost(X) =

(∑n
k=1 δ

X
k

)
+ δXn +

d(xn, x0).

Regarding the mobile search, the cover-locations correspond to TDP customers,
and the edges of the TDP graph represent the shortest paths between the locations.
Lengths of the shortest paths define the costs d, and the initial position of the
robot is represented by the depot s.

24

Chapter 3

Solution approach

3.1 General approach to the search

A general solution to the mobile search problem is described in this section. The
sections coming after are dedicated to specific components of the solution or their
improvements. We use the same notion and symbols as in Chap. 2 wherever
possible. We kindly encourage the reader to review the chapter for some of the
definitions.

The most natural way of applying the mobile search in real-life scenarios such as
search and rescue would be the following. The robot is placed in an environment,
supplied with its complete map, and given the target’s description. The mission is
to sweep the whole environment, find the target and report its location, or report
that the target could not be found. The robot must efficiently plan the search,
recognize the target once it appears in the sensor’s field of view, and have many
other smart or lower-level functions to ensure mission success. Those include, but
are not limited to, localization, navigation, and motion control. Since our focus is
the efficient planning, we consider everything else as given.

From the planner’s perspective, we describe the mobile search mission algo-
rithmically in Alg. 3.1. Here, the inputs are the environment, the robot’s initial
configuration, and some of its features. The output is the searched object’s location
and the total time of the mission. Configuration space structures Cfree, C 0

free, and
the admissible region for search W 0

vis are computed on line 1 of the algorithm. We
consider such combinations of environments and robot’s features that Cfree = C 0

free,

25

3. Solution approach......................................
Algorithm 3.1: Mobile search: mission

Input: W . . . environment, q0 . . . robot’s initial configuration,
rA . . . robot’s radius, rV . . . sensor’s range, f . . . sensing frequency

Output: lobject . . . location of the searched object,
tsearch . . . total time of the search

1 Compute Cfree, C 0
free, W 0

vis structures.
2 lset ← Discretize(W 0

vis, rV , C 0
free).

3 lseq ← Plan(lset, W 0
vis, rV).

4 lobject ← (NaN, NaN), tsearch ← 0, Wcov ← ∅ . initialize
5 while lseq is not empty do
6 Pop the first location lgoal from lseq.
7 Start navigating the robot towards lgoal by the shortest path.
8 repeat
9 Get the currently sensed region V from sensor readings.

10 if the searched object appears in V then
11 Localize the object as lobject.
12 return lobject, tsearch . report success

13 Wcov ←Wcov ∪ V
14 tsearch ← tsearch + f−1

15 until lgoal is reached
16 lseq ← RePlan(lseq, W 0

vis, rV , Wcov) . optional

17 return lobject, tsearch . report failure

W = W 0
vis, which appreciably simplifies the situation as discussed in Sec. 2.1.3.

However, in general, the robot should consider that there may be parts of the
environment that cannot be visited or seen and attempt the search only where
it is possible. The mobile search problem is decomposed into the two stages
consecutively solved on lines 2, 3. First, the admissible region is discretized by
selecting a closed set of locations lset ⊂ C 0

free that cover it entirely; second, they
are ordered into a sequence lseq such that their consecutive visits yield an efficient
search strategy. Since lseq represents the search plan, the search execution is ready
to start.

The outputs and covered region Wcov are initialized1 on line 4. Next, the first
location lgoal is popped (i.e., copied to a temporary variable and then removed) from
the sequence, and then the robot starts following the shortest path towards lgoal
(lines 6, 7). Meanwhile, in a loop (on lines 8-15) running with a fixed frequency f ,
the robot senses the environment (line 9), checks for the target’s presence (lines 10-
12), and updates its structures (lines 13, 14). If the target is detected (line 10),
it is then localized (line 11), and the mission is successfully terminated (line 12).

1NaN stands for not-a-number, i.e., an invalid (or unknown) value.

26

............................... 3.1. General approach to the search

Algorithm 3.2: Mobile search: simulation

Input: W . . . environment, q0 . . . robot’s initial configuration,
rA . . . robot’s radius, rV . . . sensor’s range, f . . . sensing frequency

Output: texp . . . expected time to find the searched object,
τ . . . traversed trajectory, ltrue . . . truly visited sequence of locations

1 Compute Cfree, C 0
free, W 0

vis structures.
2 lset ← Discretize(W 0

vis, rV , C 0
free).

3 lseq ← Plan(lset, W 0
vis, rV).

4 texp ← 0, t← 0, Wcov ← ∅ . initialize
5 while lseq is not empty do
6 Pop the first location lgoal from lseq.
7 Start navigating the robot towards lgoal by the shortest path.
8 repeat
9 Get the current robot’s configuration q = (x, y, φ).

10 Compute circle C◦(x, y, rV) and visibility polygon Pvis(x, y).
11 V ← C◦(x, y, rV) ∩ Pvis(x, y)
12 Wnew ← V \Wcov
13 texp ← texp + t ·Area(Wnew)/Area(W 0

vis)
14 Append (t, q) to the end of τ .
15 Wcov ←Wcov ∪ V
16 t← t+ f−1

17 until lgoal is reached
18 Append lgoal to the end of ltrue.
19 lseq ← RePlan(lseq, W 0

vis, rV , Wcov) . optional

20 return texp, τ , ltrue

If the target remains undetected, the robot continues in the loop until it reaches
the current goal lgoal. Then, optionally, the search plan can be updated (refined)
based on the region Wcov that was covered so far on line 16 of the algorithm.
Alternatively, the refinement can run parallelly with the sensing loop in a separate
thread, and the plans (the current and the refined) can be just merged together
on the line 16. Finally, the whole process (lines 5-16) repeats until the plan is
exhausted. If the mission is not preliminarily interrupted by success, it ends in
failure once the plan is empty, i.e., the whole environment was covered, and the
object was not found.

Although Alg. 3.1 splendidly describes a realistic deployment of the mobile
search in practice, it is not very convenient in regards to designing and tuning the
planning algorithms encapsulated inside methods Discretize, Plan, and RePlan.
The inconveniency rises from the fact that it does not directly return the expected
(mean) time texp = E[T | τ] to find the searched object that those algorithms try to

27

3. Solution approach......................................
minimize. If we wanted to obtain the expected time texp, we would have to execute
lots of identical2 experiments with the object placed randomly in the environment
and then compute the mean of all recorded search times tsearch. However, such
methodology is neither precise, nor practical. Therefore, to simulate the search
and test our algorithms efficiently, we use a different scheme that leans on the
discretized definition (2.9) of the expected time.

The second scheme displayed in Alg. 3.2 has a similar structure to the previous
one, except the search always unfolds until the search plan is exhausted, and
the expected time to find the object is being progressively computed during
the execution (lines 12, 13) and returned at the end. The other outputs of
the algorithm are the trajectory τ traversed by the robot, and the truly visited
sequence of goals ltrue. Note that if the replanning is not considered, then lseq

equals the initial sequence lseq generated on line 3; else, the same does not hold.
In this case, we work with the probability distribution of the object’s location, so
the object of interest does not need to appear in the simulation directly. Also, the
simulation scheme does not consider readings from the sensor but instead directly
computes the ideal version of V based on Eq. (2.11) (lines 9-11). This choice adds
to our simulation’s precision and saves us from implementing a transformation of
sensory data into a polygonal domain.

To conclude, we approach the mobile search according to Alg. 3.2 because we
can directly work with our problem’s optimization criterion as defined in Eq. 2.9.
The approach is equivalent to if we executed the search infinitely times according
to Alg. 3.1 and then computed the mean time of the search. On the other hand,
Alg. 3.1 may serve as instructions on how to use our solution in a real life scenario.

2By identical, we mean all the parameters (including all the random seeds except the one
used for placing the object) of our implementation or the simulator would have to be the same.

28

................................. 3.2. Environment discretization

3.2 Environment discretization

We encapsulate the planning algorithms for the mobile search into three functions:
Discretize, Plan, and RePlan, as mentioned in the previous section. Functions
Discretize and Plan correspond to the two stages of the decomposed problem,
and RePlan is an optional procedure used for refining the plan during the execution.
In this section, we discuss the discretization.

The discretization procedure takes the admissible region for search W 0
vis, the

visibility radius rV , and the collision-free subset of configuration space C 0
free as

inputs and produces a closed set of reachable configurations l = {li}, li ∈ C 0
free.

The resulting set must cover the whole admissible region, i.e.,⋃
li ∈ l

V(li) =W 0
vis, (3.1)

where V(li) is the region sensed from configuration li defined in Eq. (2.11).
As stated in Sec. 2.1.3, we assume that any configuration li ∈ C 0

free is reach-
able from any other configuration lj ∈ C 0

free, the sensed region of the robot is
independent of the robot’s heading, and the robot is circular. Therefore, it is from
now sufficient to see C 0

free and l as sets of reachable locations (2D points) and drop
the third coordinate φ.

We show a general scheme of the discretization procedure in Alg. 3.3. The
scheme is composed of two necessary steps performed by procedures Cover and
Fix, respectively. Procedure Cover generates a specific set of polygons R and
locations l. The sets must satisfy the following:..1. every polygon Ri ∈ R can be paired with a location li ∈ l such that the

location is in its interior or on its border, i.e.,

li ∈ Ri, (3.2)..2. for every pair (Ri, li) all points of Ri are visible and within distance rV
from li, which is equivalent to Ri being a subset of the region sensed from li,
i.e.,

Ri ⊂ V(li), and (3.3)..3. the polygons cover the whole admissible region, i.e.,⋃
Ri ∈R

Ri =W 0
vis. (3.4)

29

3. Solution approach......................................
Algorithm 3.3: General discretization procedure

1 Function Discretize(W 0
vis, rV , C 0

free):
2 R, l← Cover(W 0

vis, rV)
3 R, l← Filter(R, l) . optional
4 R, l← Fix(R, l, C 0

free)
5 l← Improve(R, l) . optional
6 l← FilterVis(l, W 0

vis, rV) . optional
7 return l

Note, that the common properties 3.3, 3.4 of sets R, l are together equivalent to
the single property 3.1 of l.

After Cover, some points li ∈ l may still be unreachable for the robot, as the
procedure does not consider C 0

free. The reachability is enforced later by the other
necessary step of the discretization — the Fix procedure. Procedure Fix modifies
all pairs (Ri, li) such that li and all points of Ri are reachable while not breaking
properties 3.1, 3.3. This is trivial for pairs which already satisfy reachability. For
the other pairs this is not a trivial task in general. We do not in-depth study
these cases but instead use for the task a simple algorithm without any guarantees
regarding properties 3.1, 3.3. The simple Fix procedure shown in Alg. 3.4 seem to
cause zero or insignificant inaccuracies based on our experiments. For each Ri ∈R
it computes an intersection with C 0

free (line 4) and if it’s not empty (line 5), then
the result of the intersection R′i and a new location l′i are added to new setsR′, l′,
respectively (line 10). The new location l′i is the same as li ∈ l, except if li /∈ R′i,
then arbitrary point from R′i is taken instead (lines 6-9).

Besides the two necessary (Cover and Fix), there are other optional steps
in Alg. 3.3: Filter, Improve, and FilterVis. These are meant to improve
setsR, l while preserving all their important properties discussed above. Filtering
procedures, Filter and FilterVis, only reduce the sets (i.e., remove some
unnecessary elements) and do not modify other elements in any way. Reducing
sets R, l speeds up other algorithms that work with them, and also, it may
improve the final solution to the mobile search, which we demonstrate later in
our experiments. Filter and FilterVis work similarly. The only difference is
that Filter reduces based on the polygons from R and FilterVis based on
the sensed regions V = {V(li)}, ∀li ∈ l. Both methods are explained later in
Sec. 3.2.3. Procedure Improve finds better placement of li in Ri according to a
given criterion. It is only allowed to move around locations strictly inside their
corresponding polygons, and it leaves the polygons unchanged.

30

................................. 3.2. Environment discretization

Algorithm 3.4: Reachability enforcing procedure (no guarantees)

1 Function Fix(R, l, C 0
free):

2 Initialize empty sets of polygons R′ and points l′.
3 foreach (Ri, li) ∈R× l do
4 R′i ← Ri ∩ C 0

free
5 if R′i 6= ∅ then
6 if li ∈ R′i then
7 l′i ← li

8 else
9 l′i ← Any point in Ri.

10 Add R′i, l′i to sets R′, l′, respectively.

11 return R′, l′

Regarding the quality of the generated locations, it is hard to say which prop-
erties would always yield good solutions to the mobile search, as discussed in
Sec. 1.3.1. Here, our strategy is to adopt several approaches from the literature
and also design our own, test all variants, and finally select the one which provides
the best results to our original problem. All considered approaches differ primarily
in the Cover procedure, while Fix and the filtering procedures stay the same for
all. Furthermore, our approach relies on the Improve procedure, while methods
adapted from the literature do not consider it. We discuss the literature’s ap-
proaches, i.e., adapted versions of Cover, in the next Subsec. 3.2.1 and introduce
our own, i.e., new Cover + Improve procedures, in Subsec. 3.2.2. The filtering
schemes, i.e., Filter and FilterVis, applicable for all the considered approaches
are described in detail in Subsec. 3.2.3. The last Subsec. 3.2.4 concerns a hybrid
method combining our approach with one of the adapted from literature.

3.2.1 Literature: DT, KA, DS

We consider three implementations of the Cover procedure adapted from the
literature characterized by the same types of inputs W 0

vis, rV and outputs R, l,
whereas the output sets have properties (3.2), (3.3), (3.4), as explained previously.

The first one relies on conforming constrained Delaunay triangulation
(DT) [11] that creates a triangular mesh over the admissible region while con-
strained by several types of conditions, e.g., limiting the size of the triangles or
minimal angle that appear in the mesh. In our case, the triangles correspond to
the set of polygons R, and their centers (of mass) are taken as the locations l.

31

3. Solution approach......................................
They are constrained so that their circumscribed circles have radii smaller or
equal to the visibility radius rV , and since they are convex, all their points are
visible between each other. Therefore, the required conditions are satisfied and
the method can be used.

The second Cover procedure by Kazazakis and Argyros (KA) [12] designed
originally for the AGP with guards that have limited visibility, works similarly to
the first one but is slightly more sophisticated. It first partitions the admissible
region into a set of convex polygons of arbitrary size. The convex polygons are
then sliced into smaller ones, which satisfy the visibility constraint, and for us,
those make the R set. Finally, the guards (locations) are so-called WS-points of
the output polygons. The WS-point of a convex polygon is computed by averaging
coordinates of centers of the polygon’s edges weighted over the edges’ lengths. It
is easy to confirm that this method satisfies the required properties too. For more
details, see the original work.

The third discretizing method is based on the idea of satisfying conditions 3.2, 3.3
in a trivial manner, i.e., li can be an arbitrary point in W 0

vis and Ri = V(li). The
essence of the method is adding polygons V(li) into the admissible region until it
is wholly covered. This is done in a randomized fashion by the dual sampling
(DS) [13] algorithm. The algorithm maintains a region Wuncov that was not
yet covered (starting with Wuncov =W 0

vis) and randomly samples that region by
pairs (li, V(li)) which are always selected among candidates by a sub-procedure.
When choosing a new i-th sample, the sub-procedure first picks an initial random
point l 0

i ∈ Wuncov, and computes V(l 0
i). Then, just the polygon V(l 0

i) is further
sampled by many temporary random points li = {l ki }, l ki ∈ V(l0i): the candidates.
Overall, only the candidate pair l ki , V(l ki) that maximizes the newly covered
region V(l ki)∩Wuncov is picked as the new legitimate i-th sample li, V(li). Finally,
the uncovered region is updated Wuncov ←Wuncov \ V(li) and the whole process
repeats until Wuncov is empty, i.e., the whole admissible region is covered.

For a visual comparison of algorithms DT, KA, and DS, see Fig. 3.1. The meth-
ods solve the same instance of an environment that is about 33× 37 meters large
while assuming visibility radius rV = 5m. Note that for DT and KA the polygons
are disjunct, but for DS, they can overlap. The most apparent difference between
DT and KA is in the density of the mesh.

32

................................. 3.2. Environment discretization

(a) : DT (b) : KA (c) : DS

Figure 3.1: Sets of polygons R and points l produced by different Cover procedures
adapted from the literature. Polygons’ contours are shown in red, and the points are
blue.

3.2.2 Proposed: WR

Our novel approach is motivated by utilizing a solution to the related WRP prob-
lem (WR) (discussed in Sec. 2.1.4). The WRP on the admissible region is solved
(approximately) by decomposition to discretization and optimization similarly as
we approach the whole mobile search. The solution to the WRP is a set of discrete
cover-locations connected by a route whose length is the minimization criterion of
the problem. The cover-locations are not fixed but can change their coordinates
so that the covering condition (3.4) stays satisfied. This way, optimization is
possible. The overall idea is to find the minimizing route represented as a sequence
of locations connected by the shortest paths and declare those locations as our
final set l. The idea is realized by two procedures: Cover, and Improve.

First, let us review procedure Cover. We must generate such pairs (Ri, li) that
regardless of how we move around li inside its polygon Ri, the whole Ri always
stays visible from li. Then, by fixing the polygons in place and allowing locations
to move inside their paired polygons, we can perform optimization as discussed
above and always be sure that the covering condition (3.4) holds. The properties
required above yield that, in addition to condition (3.3), the polygons must also
be convex and, and their farthest points must have maximal distance rV from each
other. To summarize, we look for a set of convex polygons that could fit inside a
circle of radius rV/2 and cover the whole admissible region. To tackle the problem,
we use a modified dual sampling algorithm, which instead of the whole polygons
V(li) works with its subsets that are convex and half the radius. The convex
subsets are created by cutting off parts of V1/2(li) = C◦(xi, yi, rV/2) ∩ Pvis(xi, yi)
(li = (xi, yi)), until the result is a convex polygon. An important question here is
how to select the proper cuts. One strategy is to aim for the maximal area of the
result. This is equivalent to solving maximum area convex subset (MACS) problem.

33

3. Solution approach......................................

(a) : MACS. (b) : MCCS.

Figure 3.2: A star-shaped polygon V and its kernel K are shown in light and
bright blue color, respectively. The MACS of V is outlined in red in the left figure.
The MCCS of V , given the uncovered regionWuncov, is outlined in red in the right figure.
The region Wuncov is the union of black and green, and the intersection V ∩Wuncov is
just black.

Coeurjolly and Chasserythe [14] introduce an algorithm that approximately solves
the problem for star-shaped polygons. Polygon is star-shaped if it has a specific
subset called the kernel K. For every point p ∈ K it applies, that all points of the
original polygon are visible from p. It is easy to verify that polygon of our type,
i.e., V1/2(li), is star-shaped with minimal possible kernel K = {li}. The algorithm
by Coeurjolly and Chasserythe starts with a given star-shaped non-convex polygon.
Then, according to several criteria, it determines a set of promising candidate
cuts that would bring the polygon closer to convexity while preserving the kernel.
Finally, from the candidate cuts, one that results in a maximal-area subset of the
original polygon is selected and executed. This process repeats until a convex
polygon is received. We adopt this procedure in our algorithm to transform V1/2(li)
into a convex polygon. However, instead of maximizing the area of the resulting
polygon, we prefer cuts that maximize intersection with the uncovered region
Wuncov, which is maintained by the upper-level dual sampling algorithm. We call
the result maximally covering convex subset (MCCS) of V1/2(li). Examples of
MACS and MCCS are shown in Fig. 3.2.

Finally, the modified dual sampling algorithm that utilizes MCCSs is shown
in Alg. 3.5. The algorithm has one extra parameter, imax, the number of dual
sampling iterations, i.e., how many samples are considered for each polygon. Based
on preliminary experiments, we use imax = 100. In the algorithm, the output sets
are first initialized as empty, and the admissible region W 0

vis is copied into the
uncovered region Wuncov (lines 2, 3). Then, the main loop (lines 4-16), which runs

34

................................. 3.2. Environment discretization

Algorithm 3.5: Proposed covering procedure (WR).

Parameters : imax . . . number of dual sampling iterations
1 Function Cover(W 0

vis, rV):
2 Initialize empty sets of polygons R and points l.
3 Wuncov ←W 0

vis
4 while Wuncov 6= ∅ do
5 Select a point l0 = (x0, y0) ∈ Wuncov randomly.
6 Compute MCCS R0 of C◦(x0, y0, rV/2) ∩ Pvis(x0, y0).
7 a0 ← Area(R0 ∩Wuncov)
8 Rbest, lbest, abest ← R0, l0, a0
9 for i← 1, . . . , imax do

10 Select a point li = (xi, yi) ∈ R0 randomly.
11 Compute MCCS Ri of C◦(xi, yi, rV/2) ∩ Pvis(xi, yi).
12 ai ← Area(Ri ∩Wuncov)
13 if ai > abest then
14 Rbest, lbest, abest ← Ri, li, ai

15 Add Rbest, lbest to sets R, l, respectively.
16 Wuncov ←Wuncov \ Rbest

17 return R, l

until there is nothing left to cover, starts. Inside the loop, the initial sample l0 is
picked by random from Wuncov, its MCCS R0 is determined, and the area a0 of
the newly covered region is computed (lines 5-7). The initial three entities are
then copied to new variables, which hold the best sample so far (line 8). The inner
fixed iteration loop follows (lines 9-14). The next three lines 10-12 are analogous
to lines 5-7 (hence the name dual sampling), except the random samples are picked
from R0 instead ofWuncov. The best sample is updated in case the current area ai
is larger than the incumbent abest (lines 13, 14). Outside the inner loop, the best
sample is appended to partial solutions R, l, and the uncovered region Wuncov is
updated (lines 15, 16). Finally, when the whole admissible region is covered, the
completed sets R, l are returned (line 16).

An example of resulting sets produced by the WR method is shown in Fig. 3.3a.
The environment and visibility radius are the same as for methods DT, KA, DS
in previous Fig. 3.1. The other subfigures of Fig. 3.3 display the discretization
in different phases of the general scheme, Alg. 3.3. For example, Fig. 3.3b shows
the points and polygons after a call to Fix, i.e., after removing parts of polygons
that are not reachable by the robot and moving the points accordingly. Here, the
considered robot’s radius is rA = 0.4m, and the contours of C 0

free are shown in
black.

35

3. Solution approach......................................
Algorithm 3.6: Proposed improving procedure (WR)

1 Function Improve(R, l):
2 Compute a distance matrix D = (di,j) of the shortest paths between all

pairs of locations li, lj ∈ l.
3 σ ← TSP(D)
4 l′ ← TPPO(σ(R), σ(l))
5 return l′.

After Fix, the discretization might end, and the set of points would be final.
However, as advertized before, the WR method includes an extra optimization
phase encapsulated into the Improve method that we detail next. In the opti-
mization part, we wish to move the cover-locations closer to each other such that
visiting them all takes lesser time. Also, if we consider an environment such as an
office with rooms each having a single entrance, we like to have locations placed
nearby the entrances, as can be seen in the example in Fig. 3.3d. To achieve
this, the WR method fixes in place the polygons generated by Alg. 3.5, then
the polygons are put to a sequence in some reasonable order, and finally, having
the order fixed, the touring polygons problem (TPP) [16] is solved. The TPP
looks for the minimal length cyclic tour that visits all polygons in the sequence.
The optimization is performed by shifting the points inside their corresponding
polygons until the solution converges to the minimal length. Let the sequence of
polygons be (R1, . . . ,Rn). The TPP tour is represented as a sequence of points
(p1, . . . , pn), where the i-th point pi visits i-th polygon Ri, i.e., pi ∈ Ri. The
original problem does not consider any obstacles, so the tour points are joined
with straight line segments. However, in our case where the obstacles are present,
the shortest collision-free paths connect the tour points, and we formally denote
such modified problem as TPP with obstacles (TPPO).

The scheme of the WR Improve method is shown in Alg. 3.6. The ordering σ
is determined by a solution of the TSP with distances as the lengths of the
shortest paths between all pairs of the input locations l (lines 2, 3). For the
TSP, we use Helsgaun’s effective implementation of the Lin-Kernighan heuristic
(LK), called LKH [80], coded as the LKH-3 [81] program available at http:
//webhotel4.ruc.dk/~keld/research/LKH-3/. The TPPO is solved as part of
Vidašič’s diploma thesis [82] studying the TSP with neighborhoods. We use the
author’s solution (algorithm and implementation) to approximately solve the
problem in our WR Improve method (line 4). The output representation of the
TPPO route is then desequenced, i.e., transformed to a set of points, and returned
by Improve as the cover-locations set (line 5). All possible TPPO outputs are
guaranteed to cover the whole admissible region thanks to the properties of the
input polygons R generated by the WR Cover method (Alg. 3.5), as explained
before.

36

http://webhotel4.ruc.dk/~keld/research/LKH-3/
http://webhotel4.ruc.dk/~keld/research/LKH-3/

................................. 3.2. Environment discretization

(a) : After Cover. (b) : After Fix.

(c) : After Improve. (d) : After FilterVis.

Figure 3.3: The proposed approach (WR) to discretization displayed in different
phases of the general procedure introduced in Alg. 3.3.

An example of a solution to the WRP achieved by combining Alg. 3.5 and 3.6
is shown in Fig. 3.3c, in dark blue color. The locations that represent the route
might be returned by the discretization (Alg. 3.3) as final, or one additional step
might be performed — the filtering. An example of filtered locations are shown in
Fig 3.3d, and the next subsection explains the related algorithms.

37

3. Solution approach......................................
Algorithm 3.7: Filtering procedures

1 Function Filter(R, l):
2 Let n = |R| = |l| and sort sets R = (Rk), l = (lk), k = 1, . . . , n in

ascending order according to the polygons’ areas.
3 Create a set of indices j = {1, . . . , n}.
4 Initialize empty sets of polygons R′ and points l′.
5 for i← 1, . . . , n do
6 Runion ←

⋃
j∈j, j 6=iRj

7 if Ri \ Runion = ∅ then
8 Remove i from j.
9 else

10 Add Ri, li to sets R′, l′, respectively.

11 return R′, l′

12 Function FilterVis(l, W 0
vis, rV):

13 Create a new set V = {Vi}, where Vi = C◦(xi, yi, rV) ∩ Pvis(xi, yi) for
each li = (xi, yi) ∈ l.

14 Vunused, l← Filter(V , l)
15 return l

3.2.3 Location filtering

Location filtering systematically removes some locations from set l so that the
remaining are still completely covering. The discretization in Alg. 3.3 considers
two filtering methods: Filter and FilterVis, both detailed in Alg. 3.7. Filter
(lines 1-11) considers both points l and polygonsR as inputs/outputs. FilterVis
(lines 12-15) is just a special case of the previous with pre-defined polygonsR = V
as the regions defined in Eq. (2.11) sensed from the input locations l.

In procedure Filter, the input sets are first sorted in ascending order according
to the polygons’ areas (line 2). Next, a set of the remaining indices j and the
output sets are created and initialized (lines 3, 4). Each polygon Ri (from the
sorted input set) is then investigated in a loop (lines 5-10). Inside the loop, the
union Runion of other remaining polygons is computed (line 6). If the difference
between Ri and Runion is empty, then Ri is redundant and index i can be removed
from j (lines 7, 8). If else, then the i-th polygon and location are added to the
output sets (lines 9, 10), which are returned at the end (line 11).

38

................................. 3.2. Environment discretization

Filtering can be without a difference combined with either one of the considered
methods: DT, KA, DS, WR. We call the methods with filtering DTF, KAF, DSF,
WRF, respectively.

3.2.4 Hybrid: WRF-DT-F

Preliminary tests and visualizations of the output cover-locations have shown that
DTF and WRF might produce the best discretizations with respect to the mobile
search. Here, we introduce a hybrid approach combining both methods’ strengths
that can produce even better results. We call the hybrid method WRF-DT-F,
and it considers two types of cover-locations: first l1 produced by WRF, and
second l2 by DT. These two sets of different types are united into a single set, i.e.,
l = l1 ∪ l2, final filtering by FilterVis is performed, and the ultimate result is
returned.

39

3. Solution approach......................................
3.3 Metaheuristic for the TDP

This section concerns the other major part of the mobile search solution — the
routing — realized by the Plan procedure in the general search scheme, Alg. 3.2.
More specifically, it proposes a metaheuristic for the TDP, the most simplified
version of the main problem. It assumes that the sensing of the environment is
performed exclusively on the cover-locations and that all locations have static equal
information gain. Although these assumptions are not realistic, it is essential to
consider the TDP as a well-studied problem, for which exist benchmark instances
and reference metaheuristics. We extend it to model the mobile search better later
in this work.

An introduction to existing metaheuristics for the TDP and similar problems is
given in Sec 1.3.3. In the process of designing the novel metaheuristic, we focus on
GVNS and GRASP and their main components (e.g., local search, perturbation,
stopping conditions) and create variants that generally differ in the points that
follow...1. General scheme of the method:..a. GVNS,..b. GRASP,..c. a combination of the two, i.e., GRASP that uses GVNS instead of VND

in local search...2. The sequence of neighborhoods used within perturbation (applicable only
to (1a) and (1c))...3. The constructive heuristic (applicable only to (1b) and (1c)):..a. deterministic,..b. randomized with a fixed rate of randomness,..c. randomized with a randomly chosen rate of randomness...4. Stopping condition of the inner heuristic (applicable only to (1c)):..a. stop after a fixed number of iterations jmax,..b. stop after jmax iterations without any further improvement...5. The value of jmax constant (applicable only to (1c))...6. Variant of VND:..a. fixed-sequence basic VND (the classical one),..b. random-sequence basic VND.

40

................................. 3.3. Metaheuristic for the TDP..7. The set of neighborhoods used within VND...8. Order of the neighborhoods (applicable only to (6a)).

Each point on the list is detailed in later subsections. The novel metaheuristic is
to be systematically designed and experimentally evaluated against the current
state-of-the-art method (the reference) using the RTD methodology described in
Sec. 1.3.4 and 1.3.5. The choice of the reference is done and explained in Sec. 3.3.1.
A detailed description of the considered algorithms, their variants, and technical
details in Sec. 3.3.2-3.3.8. We provide a handy overview of symbols that appear in
Sec. 3.3.2-3.3.8 in Table 3.1. The union of symbols in the table and the symbols
defined in Sec. 2.2 creates a full set of special symbols used in the algorithms’
descriptions. Any other symbols denote temporal variables created within the
algorithm.

3.3.1 Reference: GILS-RVND

As our reference - the state-of-the-art method for the TDP - we choose the original
GILS-RVND [30] for its simplicity and the right trade-off between solution quality
and run-time. We purposely leave out the parallel versions proposed by [73]
since we assume single-processor computing. Although it genuinely raises the
bar for the traditional solving of the TDP, we also decide not to consider the
newest improved version MDM-GILS-RVND [74]. The reasons for this decision we
explain next. The MDM improvement over the original is more significant as the
instances go large, e.g., up to 500 or 1000 customers. However, for these instances,
the reported run times (> 500 seconds) are still a lot above the range that our
thesis mainly focuses on (< 100 seconds). Since, in the first half of its iterations,
the MDM version is practically identical to its predecessor, it is reasonable to
assume that on the instance which takes MDM, e.g., 500 seconds to solve, after
100 seconds of run-time, the average quality of the incumbent solution would
be no better than in case of plain GILS-RVND. That being said, we choose the
simpler of the two algorithms while obtaining nearly equivalent comparison with
our method as if we have chosen the more complex one. Also, the MDM extension
to GILS-RVND introduced by [74] is a general one and might be applied only
with minor adjustments to any greedy or semi-greedy restarting heuristic solving
any TSP or TDP variant, where the solution is a Hamiltonian path or cycle. As
future research, we also consider extending our proposed method to the MDM
version. For now, nevertheless, we regard heuristics without DM techniques as
they bring no additional value for scenarios we study.

41

3. Solution approach......................................
3.3.2 Stopping conditions

We consider three general schemes: GVNS (1a), GRASP (1b), and a combination
of the previous two GRASP-GVNS (1c). The schemes accept some common
inputs and return a valid solution. The common inputs have a connection with
the stopping condition of the algorithms and we denote their tuple as in =
(imax, cgoal, tmax), where imax is the number of main-loop iterations, cgoal is the
target solution cost, and tmax is the CPU time limit.

Given the constant imax, the algorithm stops and returns a valid solution after
a fixed number of iterations imax, if not stopped earlier by other criteria. Given
the CPU time limit, the algorithm finishes, at worst, after tmax seconds. Of
course, we can expect the real run-time to be a little higher than tmax, as the time
limit check frequency is finite, and the algorithm always needs to finish certain
operations after the exceedance is detected. However, our algorithms for the TDP
are designed so that the caused delay is negligible for the robotic applications.
We must note that the TDP is solved in a mission planning unit of a robot, which
is not safety-critical. At last, the algorithm can also stop after it has found a
solution with cost smaller or equal to given goal cgoal.

All considered algorithms are expected to run in several different modes de-
pending on the combination of stopping conditions. For instance, when imax is
some positive integer, tmax = ∞, and cgoal < 0, the algorithm will always stop
after the fixed number of iterations imax. This configuration is the most common
in the literature. Some other possibility is, e.g., to set imax =∞, and tmax, cgoal
to some reasonable values, and the algorithm will either stop after it has found a
good enough solution or after the time limit has passed. In this configuration, the
algorithm fits a practical version of Las Vegas improving algorithm with computa-
tional time limit as defined in Sec. 1.3.5. The introduced variability opens a range
of different applications and a possibility to generate several types of results used
to compare the algorithms in various scenarios.

3.3.3 General schemes

The scheme of GVNS is presented in Algorithm 3.8. In the initialization (line 2-3),
an iteration counter i is set to 1, a stopping flag stop is set to false, and an initial
solution is constructed and assigned to X ? variable, which holds the incumbent
(the best overall) solution. The number 1 passed as an argument to the Construct
procedure corresponds to a deterministic greedy construction (3a). The main loop
(lines 4-14) runs until the stop flag is true or the maximum number of iterations

42

................................. 3.3. Metaheuristic for the TDP

Symbol Meaning

imax The number of main-loop iterations.
cgoal Target solution cost.
tmax CPU time limit.
jmax The number of inner-loop iterations.
srcl A size of a Restricted Candidate List (RCL).
R A set of |R| real [0, 1]-interval values { r1, r2, . . . }.
P A sequence of |P| positive integers (p1, p2, . . .).
N A sequence of |N | neighborhoods (N1, N2, . . .).

Table 3.1: Overview of symbols that appear in algorithms related to the TDP.

Algorithm 3.8: General variable neighborhood search (GVNS)

1 Function GVNS(imax, cgoal, tmax, P, N):
2 X ? ← Construct(1)
3 i← 1; stop← false
4 while stop = false and i ≤ imax do . main GVNS loop
5 k ← 1
6 while stop = false and k ≤ |P| do . inner GVNS loop
7 X ← Shake(X ?, pk)
8 X , stop← Improve(X , tmax, cgoal, N)
9 if cost(X) < cost(X ?) then

10 X ? ← X
11 k ← 1
12 else
13 k ← k + 1

14 i← i+ 1

15 return X ?

imax is reached. Next, index k is initialized to one (line 5), and the inner loop
follows (lines 6-13). The algorithm is parameterized by a sequence of positive
integers P = (p1, p2, . . .), which take a role in the perturbation phase (line 7),
where the k-th member of the sequence is passed to the Shake procedure. The
procedure is applied to the incumbent and results in a new current solution X ,
which is improved (line 8) and evaluated (lines 9-13). If the cost of the current
is less than the cost of the incumbent solution, then the current is assigned to
the incumbent, and k is reset back to 1. Else, k is incremented, and the loop
starts over with the next parameter in P. Note the stop flag returned from the
improving procedure (line 8). If it is true, then GVNS quickly comes to an end
and returns the incumbent solution. If not stopped by the flag, the algorithm
performs imax iterations, terminates and returns the incumbent.

43

3. Solution approach......................................
Algorithm 3.9: Greedy randomized adaptive search procedure (GRASP)

1 Function GRASP(imax, cgoal, tmax, R, N):
2 i← 1; stop← false; c? ←∞
3 while stop = false and i ≤ imax do . main GRASP loop
4 α← random value ∈ R
5 srcl ← max(1, bα ·Nc)
6 X ← Construct(srcl)
7 X , stop← Improve(X , tmax, cgoal, N)
8 if cost(X) < c? then
9 X ? ← X

10 c? ← cost(X)

11 i← i+ 1

12 return X ?

The scheme of GRASP is shown in Algorithm 3.9. Most of its parts are
analogous to GVNS, except the construction procedure is included within the
iteration loop (lines 4-6), and the perturbation phase, together with the whole inner
loop, is omitted. In GRASP, a new solution is constructed in each iteration, then
improved and evaluated. The construction is done in a greedy randomized fashion
where the integer parameter srcl controls the level of randomness. Admissible
values for srcl are in a range from 1 to N , where N is the size of the instance. 1
corresponds to a purely greedy solution and N to a totally random solution. srcl
can be either set to some fixed value from the range, or can be constructed as on
lines 4-5 of the GRASP algorithm. The latter option enables srcl to vary in each
iteration.

Both schemes are combined in Algorithm 3.10. Line 7 of Alg. 3.9 is replaced
by lines 4-14 of Alg. 3.8. Some variables are renamed to prevent ambiguity. In
GRASP-GVNS (G+G) a new solution is constructed in each iteration (line 5-6)
as in GRASP, and then it is systematically being perturbed (line 11), improved
(line 12), and evaluated (lines 13-18) as in GVNS. After the whole GVNS procedure
(lines 7-19) ends and returns the current solution X , the final evaluation (lines 20-
22) finishes the current iteration as in GRASP. Within one iteration of G+G,
several GVNS iterations are performed. The number of GVNS iterations is given
by an extra parameter jmax. The line 16 of Alg. 3.10 is optional, and it can be
either omitted (4a), or not (4b). If omitted, then jmax is the exact number of
GVNS iterations. If the line is present, then the GVNS iteration counter j resets
to 1 with each improvement, and the GVNS loop only breaks after jmax iterations
with no observed improvement.

44

................................. 3.3. Metaheuristic for the TDP

Algorithm 3.10: GRASP-GVNS (G+G)

1 Function G+G(imax, cgoal, tmax, jmax, R, P, N):
2 i← 1; stop← false; c? ←∞
3 while stop = false and i ≤ imax do . main GRASP loop
4 α← random value ∈ R
5 srcl ← max(1, bα ·Nc)
6 X ← Construct(srcl)
7 j ← 1
8 while stop = false and j ≤ jmax do . main GVNS loop
9 k ← 1

10 while stop = false and k ≤ |P| do . inner GVNS loop
11 X ′ ← Shake(X , pk)
12 X ′, stop← Improve(X ′, tmax, cgoal, N)
13 if cost(X ′) < cost(X) then
14 X ← X ′

15 k ← 1
16 j ← 1 . only for (4b)
17 else
18 k ← k + 1

19 j ← j + 1

20 if cost(X) < c? then
21 X ? ← X
22 c? ← cost(X)

23 i← i+ 1

24 return X ?

3.3.4 Construction

The Construct procedure implements Greedy Randomized Adaptive (GRA)
construction shown in Algorithm 3.11. First, a partial solution X is initialized
with the depot s and Candidate List (CL) with the remaining vertices (line 2). In
the main loop (lines 3-7), Restricted Candidate List (RCL) is built by considering
only min(srcl, |CL|) nearest CL elements with respect to the last added vertex to
X (line 4). srcl ∈ {1, . . . , N} is an argument passed to the procedure and |CL|
is the cardinality of CL. Finally, a candidate is selected from RCL by random,
appended to the end of X , and removed from CL (lines 5-7). The process repeats
until CL becomes empty, i.e., all vertices are added to X , and then the finished
solution is returned.

45

3. Solution approach......................................
Algorithm 3.11: Greedy randomized adaptive (GRA) construction

1 Function Construct(srcl):
2 x← s; X ← (x); CL← V \ {x}
3 while CL is not empty do
4 Create a set RCL ⊂ CL considering only min(srcl, |CL|) nearest

candidates to x.
5 x← random value ∈ RCL
6 Append x to the end of X .
7 CL← CL \ {x}

8 return X

Algorithm 3.12: Perturbation procedure

1 Function Shake(X , p):
2 p← min(p+ 1, |X |)− 1 . adjust p in case |X | < p

3 Create p+ 1 random subpaths S0,S1, . . . ,Sp of X , where S0 is the one
starting with the depot. This can be done by removing p random
distinct edges from X .

4 Create sequence of indices I = (1, 2, . . . , p) and shuffle it randomly.
5 X ′ ← S0
6 foreach i ∈ I do
7 flip← random Boolean value (true or false)
8 if flip then
9 Append reversed Si to the end of X ′.

10 else
11 Append Si to the end of X ′.

12 return X ′

We consider three variants of the construction procedure in accordance with
Section 1.1, Point (3) on the list: a deterministic (3a), randomized with a fixed
level of randomness (3b), and randomized with a rate of randomness randomly
chosen from a uniform discrete probability distribution (3c). All variants can be
implemented by the Construct(srcl) procedure, where srcl = 1 for (3a), srcl is
fixed in the range from 2 to N for (3b), and srcl is constructed as in lines 4-5 of
Alg. 3.9 for (3c).

46

................................. 3.3. Metaheuristic for the TDP

3.3.5 Perturbation

The basic VNS employs a mechanism that prevents the metaheuristic from getting
stuck in local optima. Mladenović and Hansen [42] call this mechanism shaking or
the shake phase in the original paper where the VNS was introduced. The shaking
is also present in the VNS’s generalized version that we use, and we also refer to
it by the term perturbation. It resembles the work of Silva et al. [30], who use
the perturbation called double-bridge for the TDP. Double-bridge was originally
developed by Martin et al. [83] for the TSP. It removes and re-inserts four edges
from and to the given path such that a new feasible path is generated. The edges
to be removed are chosen randomly, and the way the path is glued back together
is randomized as well. The procedure Shake shown in Algorithm 3.12 generalizes
the mechanism by considering p edges instead of four.

The perturbation used in the shaking of GVNS works as follows. A valid path
X and a positive integer parameter p are passed to the procedure. First, the path
is partitioned by removing p random distinct edges from it (line 3). The subpaths
resulting from this operation are labeled as S0,S1, . . . ,Sp in the order they appear
in X . Next, the first subpath S0 is assigned to a partial solution X ′ (line 5), and
a sequence I of indices from 1 to p is created and randomly shuffled (line 4). The
algorithm then goes through each index i in the randomized sequence (lines 6-11)
and appends either the corresponding Si (line 11) or its reversed version (line 9)
to the end of X ′. The chance of reversing Si before appending it to X ′ is 50%
(line 7). The partial solution X ′ becomes feasible after the last remaining subpath
is appended to it, and at this point, the procedure ends and returns X ′. Note
that Shake(X , 4) corresponds to the original double-bridge.

3.3.6 Local search

The local search in all considered general schemes (Alg. 3.8-3.10) is performed by
a method based on variable neighborhood descent (VND). VND explores a solution
space using several neighborhood structures. Its success relies on the following facts:
a local optimum for one neighborhood structure is not necessarily a local optimum
with respect to another neighborhood structure, and a global optimum is a local
optimum with respect to all considered neighborhood structures. Mjirda et al. [84]
provide an overview of sequential VND variants and their comparison on the
TSP. With respect to their notion, we use basic VND with the best improvement
strategy, a variant that performed the best in combination with the GVNS scheme,
as the authors report.

47

3. Solution approach......................................
Algorithm 3.13:
Variable neighborhood descent (VND) and Randomized VND (RVND)

1 Function Improve(X , tmax, cgoal, N):
2 i← 1; stop← false
3 Shuffle sequence N randomly. . only for RVND (6b)
4 while i ≤ |N | do
5 Denote the i-th neighborhood structure in sequence N as Ni.
6 X ′ ← arg min

X̃ ∈Ni(X)
cost(X̃)

7 if cost(X ′) < cost(X) then
8 X ← X ′

9 i← 1
10 if cost(X) ≤ cgoal then
11 stop← true
12 break

13 Shuffle sequence N randomly. . only for RVND (6b)
14 else
15 i← i+ 1

16 Get the total CPU time t since start.
17 if t ≥ tmax then
18 stop← true
19 break

20 return X , stop

Additionally, the order in which the neighborhoods are considered in VND can
be either fixed (deterministic) (6a) or randomized (6b). The latter, randomized
VND (RVND), randomly selects an available neighborhood to be used in each
iteration. Satyananda and Wahyuningsih [85] compare the performance of VND
and RVND on instances of the capacitated vehicle routing problem. Here, the
selection of operators in random order outperformed the fixed-sequence VND in
a matter of solution quality, however the classical VND usually required lesser
iterations to reach the local optimum. Similar observations report [30] for the
TDP after obtaining some preliminary results. Nevertheless, neither [85] nor [30]
consider real-time application scenarios as we do. In our context, the supremacy
of RVND over VND is not so obvious, especially if the lesser iterations of VND
and the complex search strategies (Alg. 3.8, 3.9, 3.10) are considered. Thus, we
study both variants in this thesis.

48

................................. 3.3. Metaheuristic for the TDP

The pseudo-code of (R)VND is shown in Algorithm 3.13. The method takes as
an input an initial solution, which is about to be modified to improve its quality
and returned in the end. Alternatively, no improvement can be found, and the
same solution as the initial one is returned. The method also checks for the possible
accomplishment of given goals. One of the goals is met, when the total run-time
since the start of the most superior scheme is over the given value tmax. The other
goal is met, when (R)VND finds a solution with cost c such that c ≤ cgoal. If at
least one of these two situations is detected, the method terminates immediately
and returns the best solution found so far together with a flag stop indicating
the accomplishment of the goals. In addition, the procedure is parametrized by
a sequence N = (N1, N2 . . .) of operators also called neighborhood structures.
In general, N ∈ N is an operator, which takes a feasible solution X ∈ H(π) of
an instance π and a tuple of parameters as an input and returns a new feasible
solution X ′ ∈ H(π) as the output. The range of solutions that can possibly be
obtained by applying an operator N on a particular solution X is called the
N -neighborhood of X and is denoted as N (X).

The initialization of Alg. 3.13 is done first. A neighborhood structures counter
i is set to 1, the stop flag is set to false (line 2), and just in case of RVND,
the members of the sequence N are randomly shuffled (line 3). The main loop
follows (lines 4-19). Inside, the best neighbor solution X ′ of neighborhood Ni(X)
is found (line 6). The neighborhood structure Ni is the i-th of the sequence N
and X is the currently best solution. If the cost of X ′ is less then the cost of X
(line 7), then X ′ is assigned to X , counter i is set back to 1 (line 9), and in case
of RVND, the sequence N is again shuffled (line 13). In addition, the cost goal
check is performed (lines 10-12), with the chance of breaking the main loop and
setting the stop flag to true if the goal-accomplishment condition is satisfied. If
the solution improvement condition on line 7 is not satisfied, then the counter i is
raised up by one (line 15), which assures that the next neighborhood structure in
the sequence is selected in the next run of the main loop. At last, the run-time
goal check is performed (lines 16-18). First, the total CPU time t is obtained
(line 16), and then the check is done in analogous way as in case of the cost goal
check (lines 17-18). The total time t can be computed as t = tcurrent− tstart, where
tcurrent is the current CPU time and tstart is the CPU time of the start of the
most superior scheme from which the Improve procedure was called. Depending
on the general scheme considered with the (R)VND, the value of tstart is saved
to memory at the first line of Alg. 3.8, 3.9, or 3.10. The main loop ends after
all available neighborhood structures have been tried, and no more improvement
was obtained, or it can be terminated prematurely by the accomplishments of the
goals.

49

3. Solution approach......................................

x0 x1

xi

xj+1

xj+Y

xi+X+1

xjxi+1

xi+X

xj+Y+1

xn−1

xn

x0 x1

xi

xj+1

xj+Y

xi+X+1

xjxi+1

xi+X

xj+Y+1

xn−1

xn

Figure 3.4: General operator 2-string(X , X, Y , i, j) applied on path X = (xk) for
k = 0, . . . , n, where inequalities 0 < X, 0 < Y , i+X < j, and j + Y < n hold. Edges
(xi, xi+1), (xi+X , xi+X+1), (xj , xj+1), (xj+Y , xj+Y +1) are removed and replaced by
edges (xi, xj+1), (xj+Y , xi+X+1), (xj , xi+1), (xi+X , xj+Y +1). Left: the original path
X , right: the resulting path X ′ obtained by applying the operator on X .

3.3.7 Local search operators

The core of the improvement procedure described in the previous subsection is a
systematic exploration of a solution space using several neighborhood structures
(operators). Here, we consider operators which are often used for solving TSP,
TDP, and other VRPs. The complete set is as follows: 2-opt, 1-point, or-opt2,
or-opt3, or-opt4, or-opt5, 2-point, and 3-point. Operator 2-opt takes two
non-adjacent edges from path X and replaces them by two new edges in order
to obtain a new feasible path X ′. All the other operators, unlike 2-opt, can be
defined as a special case of more general operator that we call 2-string. The
definition of 2-string comes next. Let Y be a set of all tuples (X , X, Y, i, j) such
that X ∈ H(π), X ∈ {0, 1, . . . , n − 1}, Y ∈ {γ ∈ {0, 1, . . . , n − 1} : X + γ ≤ n},
i ∈ {0, 1, . . . , n −X}, and j ∈ {γ ∈ {0, 1, . . . , n − Y } : γ − i ≥ X ∨ i− γ ≥ Y }.
Then we define operator 2-string as a relation 2-string : Y 7→ H(π) which
takes a string of vertices of size X that come after i-th vertex of X and a string
of vertices of size Y that come after j-th vertex of X and interchanges them to
create a new path X ′ ∈ H(π). With this definition of 2-string, we can define
other operators as the latter with fixed X and Y to some values specific for each
operator. For the fixed values of X and Y for all the operators except 2-opt see
Tab. 3.2.

The computational complexity of exploring the whole neighborhood N (X) for
N ∈ N needs to be addressed as it is the core step of the improving procedure
(see Alg. 3.13, line 6). Note, that all considered operators take two arguments (i

50

................................. 3.3. Metaheuristic for the TDP

1-point or-opt2 or-opt3 or-opt4 or-opt5 2-point 3-point

X = 0 0 0 0 0 1 1
Y = 1 2 3 4 5 1 2

Table 3.2: All operators except 2-opt can be defined as 2-string with fixed values
of X and Y .

and j) and all variations of the parameters need to be tried when exploring N (X).
Therefore, the computational complexity of exploring the whole neighborhood
must be O(n2+k). Here, k is the number of necessary cycles over the vertices to
compute the improvement obtained by applying the operator on X with given
parameters i and j. For the TSP, the improvement computation is straightforward
without any cycle, therefore k = 0 and the whole neighborhood can be explored
in O(n2). Mladenović et al. [31] show, that the same holds for the TDP, if
some additional structures are considered and a pre-processing step is performed.
They derive the improvement for 2-opt and some other operators. For 2-opt,
we use their result, slightly modified. Let X = (x0, x1, . . . , xi, xi+1, . . . , xj , xj+1,
. . . , xn), and X ′ = (x0, x1, . . . , xi, xj , . . . , xi+1, xj+1, . . . , xn) be the original and
2-opted path respectively. Then the obtained improvement ∆2-opt(X , i, j) =
cost(X ′)− cost(X) can be expressed as

∆2-opt(X , i, j) = 2FXi − 2FXn + 2LXj+1 + (δXi + δXj + dXi|j)(j − i)

+ (dXi|j + dXi+1|j+1 − d
X
i|i+1 − d

X
j|j+1)(n− j),

(3.5)

where δXk defined in Eq. (2.12),

FXk =
k∑
z=1

δXz , and LXk =
n∑
z=k

δXz (3.6)

are the pre-computed structures for X which are considered to be known at the
time of the computation. Here and henceforward, we denote d(xi, xj) as dXi|j to
save horizontal space. For the proof, see [31]. A derivation of similar result for
the 2-string operator is shown next.

Assuming 0 < X, 0 < Y , i + X < j and j + Y < n we consider the origi-
nal path to be X = (x0, x1, . . . , xi, xi+1, . . . , xi+X , xi+X+1, . . . , xj , xj+1, . . . , xj+Y ,
xj+Y+1, . . . , xn), and the operation X ′ = 2-string(X , X, Y , i, j) results in
X ′ = (x0, x1, . . . , xi, xj+1, . . . , xj+Y , xi+X+1, . . . , xj , xi+1, . . . , xi+X , xj+Y+1, . . . ,
xn). For the graphical example of the operation see Fig 3.4. The cost of the
original path is cost(X) = δX1 + · · · + δXn and the cost of the new path can be

51

3. Solution approach......................................
computed as

cost(X ′) = δX1 + · · ·+ δXi +

δXi+1 + ∆+(i,j+1)
−(i,i+1) + · · ·+ δXi+Y + ∆+(i,j+1,...,j+Y)

−(i,i+1,...,i+Y) +

δXi+X+1 + ∆+(i,j+1,...,j+Y,i+X+1)
−(i,i+1,...,i+X,i+X+1)︸ ︷︷ ︸

=Θ1

+ · · ·+ δXj +Θ1 +

δXj+1 +Θ1 + ∆+(j,i+1)
−(j,j+1) + · · ·+ δXi+X +Θ1 + ∆+(j,i+1,...,i+X)

−(j,j+1,...,j+X) +

δXj+Y+1 +Θ1 + ∆+(j,i+1,...,i+X,j+Y+1)
−(j,j+1,...,j+Y,j+Y+1)︸ ︷︷ ︸

=Θ2

+ · · ·+ δXn +Θ2,

(3.7)

where we use the following notation: ∆+(a,...,b)
−(c,...,d) = dX(a,...,b)−d

X
(c,...,d), and d

X
(a,b,c,...,d,e) =

dXa|b + dXb|c + · · ·+ dXd|e. The improvement obtained by applying 2-string on path
X is given by

∆X,Y
2-string(X , i, j) = cost(X ′)− cost(X) =

δXi+1 − δXj+1 + ∆+(i,j+1)
−(i,i+1) +

· · ·+ δXi+Y − δXj+Y + ∆+(i,j+1,...,j+Y)
−(i,i+1,...,i+Y) +

δXj+1 − δXi+1 +Θ1 + ∆+(j,i+1)
−(j,j+1) +

· · ·+ δXj+X − δXi+X +Θ1 + ∆+(j,i+1,...,i+X)
−(j,j+1,...,j+X) +

Θ1(j − i−X) +Θ2(n− j − Y).

(3.8)

With the use of identities

∆+(i,j+1)
−(i,i+1) = δXi − δXi+1 + dXi|j+1,

∆+(i,j+1,...,j+Y)
−(i,i+1,...,i+Y) = δXi − δXi+Y + dXi|j+1 + δXj+Y − δXj+1,

∆+(j,i+1)
−(j,j+1) = δXj − δXj+1 + dXj|i+1, and

∆+(j,i+1,...,i+X)
−(j,j+1,...,j+X) = δXj − δXj+X + dXj|i+1 + δXi+X − δXi+1,

(3.9)

we can rewrite Eq. (3.8) as

∆X,Y
2-string(X , i, j) =
δXi − δXj+1 + dXi|j+1 + · · ·+ δXi − δXj+1 + dXi|j+1 +

δXj − δXi+1 +Θ1 + dXj|i+1 + · · ·+ δXj − δXi+1 +Θ1 + dXj|i+1 +
Θ1(j − i−X) +Θ2(n− j − Y),

(3.10)

which can be further simplified into the following form:

∆X,Y
2-string(X , i, j) =
Λ1Y + Λ2 (j − i−X) + Λ3X + Λ4 (n− j − Y) ,

(3.11)

52

................................. 3.3. Metaheuristic for the TDP

where

Λ1 = δXi − δXj+1 + dXi|j+1, (3.12)

Λ2 = Λ1 + δXj+Y − δXi+X+1 + dXj+Y |i+X+1, (3.13)

Λ3 = Λ2 + δXj − δXi+1 + dXj|i+1, (3.14)

Λ4 = Λ3 + δXi+X − δXj+Y+1 + dXi+X|j+Y+1. (3.15)

Note that with different assumptions the computation of ∆X,Y
2-string(X , i, j) may

differ, but its derivation will be analogous to the one we have shown. Let us further
state two observations that we encountered when deriving the improvement for
all the special cases and which may bring major simplification to one who may
follow our path. The two observations are:

X = Y ⇒ ∆X,Y
2-string(X , i, j) = ∆X,Y

2-string(X , j, i), (3.16)

j < i⇒ ∆X,Y
2-string(X , i, j) = ∆Y,X

2-string(X , j, i). (3.17)

3.3.8 Proposed: Ms-GVNS

The best metaheuristic design is done in two phases. The first phase chooses
several promising sets of neighborhoods considered in the improvement procedure.
In the second phase, a number of methods’ configurations are tested, and the best
is selected as the proposed method. We describe the process in extensive detail
in Appx. A. All tested methods, including the reference GILS-RVND [30], are
implemented in C++ under the same framework. All possible parts of code are
shared between different configurations in order to ensure fairness. This include
improvement calculations of all operators as they are described in Sec. 3.3.7,
despite the fact, that the authors of [30] use different improvement calculations
for their GILS-RVND. The authors were so kind to provide us with their code
so we could ensure that our implementation of GILS-RVND is not worse, in any
sense, than their implementation.

We call the best overall metaheuristic multi-start GVNS (Ms-GVNS). Its full
specification follows. It is based on the G+G general scheme (1c) but uses
deterministic greedy construction (3a), hence the name. Its parameters are the
following: N = (N2-opt,N1-point,Nor-opt2,Nor-opt3,Nor-opt4), P = (4, 8, 12), and
jmax = dsize(i)/5e, where size(i) is the size of the solved instance i. Furthermore,
it uses VND (the deterministic one) (6a) and leaves the inner loop after jmax
iterations without improvement (4b).

53

3. Solution approach......................................
3.4 TDP extensions

Ways to model the mobile search better than by plain TDP are discussed in this
section. We introduce modifications of the TDP that consider an extended model
of the robot’s kinematics and differing gains of cover-locations in Subsec. 3.4.1.
Additional extension that acknowledges sensing on the way between cover-locations
is developed in Subsec. 3.4.1. The last improvement in Subsec. 3.4.3 suggests
replanning during the search as a way to cope with changing cover-locations’ gains.

We use the same metaheuristic as developed for the TDP in Sec. 1.3.3, i.e., the
Ms-GVNS, to solve the modified problems. The algorithm and its parameters stay
identical and the improvement computations as in Sec. 3.3.7 are updated to suit
each individual variant.

3.4.1 ATDP, GSP, AGSP

We extend the TDP defined in Sec. 2.2 by considering two additional traits of the
graph G = (V,E):

. α : V ×V ×V → R+
0 : a non-negative cost α(i, j, k) associated with each triplet

(vi, vj , vk), of the graph’s vertices or alternatively with each pair (ei,j , ej,k) of
consecutive edges that share one common endpoint vj . The costs are assumed
symmetrical, i.e., α(i, j, k) = α(k, j, i).

. w : V → R+
0 : a non-negative weight w(i) associated with each vertex vi.

We denote the problem defined by tuple

. (G, d, α, s) as ATDP,

. (G, d,w, s) as GSP, and

. (G, d, α,w, s) as AGSP.

54

......................................3.4. TDP extensions

Then, we define the total AGSP cost of a Hamiltonian path X = (x0 = s, x1, . . . , xn)
in graph G as

cost(X) =
n∑
k=1

w(k) ·
k∑
i=1

(d(xi−1, xi) + α(xi−2, xi−1, xi))

=
n∑
k=1

w(k) · δXk ,
(3.18)

where α(x−1, x0, x1), that would formally be undefined, can be zero or α(x−1, x0, x1) =
α0(x1), where α0 : V → R+

0 is an additional one-dimensional cost provided for
all vertices. Notice that the meaning of δXk in Eq. (3.18) differs from the TDP,
Eq. (2.12). Let us note that the improvement computations as in Sec. 3.3.7 for
the new extended problems are different than for the TDP and must be derived
anew analogously as for the TDP.

Since AGSP is the most general problem, the total costs for ATDP and GSP
can be defined in terms of Eq. 3.18, where ∀ vi, vj , vk ∈ V : α(vi, vj , vk) = 0 and
∀ vi ∈ V : w(i) = 1, respectively. Unlike ATDP and AGSP, the GSP is not an
original problem, i.e., it is already known in the literature. The GSP stands for
graph search problem that was originally introduced in Koutsoupias et al. [18], and
its first applications were built around the area of web searching. The connection
between TSP, TDP, and GSP is also discussed in [21]. Furthermore, the GSP
was utilized for solving the mobile search in [10] and in our previous work [33].
Interpretations of costs α(i, j, k) and weights w(i) with respect to the mobile
search are discussed next.

Mobile search formulations that consider the three dimensional costs α(i, j, k)
can better model the robot’s kinematics. To achieve the better model, the original
cost d(i, j) does not represent the length of the shortest path from location li
to lj but instead the shortest time of travel from li to lj . Similarly, the new
cost α(i, j, k) represents the shortest time the robot needs to spend (e.g., by
turning) in location lj while assuming it reached lj from li, and its next goal is lk.
In our idealized case, paths through the environment are represented as poly-lines,
and the robot can follow given path by a series of simple maneuvers consisting of
going straight with linear velocity vlin (m/s), and turning on the spot with angular
velocity vang (rad/s). Therefore, the time d(i, j) of travel from li to lj is equal to

d(i, j) = ρi,j
vlin

+ φi,j
vang

, (3.19)

where ρi,j is the length of the shortest poly-line from li to lj , and φi,j is the robot’s
turning angle accumulated over the same poly-line. The accumulated turning
angle φi,j is computed as the sum of absolute values of all the turning angles on
the way from li to lj . The time α(i, j, k) spent on location lj ,

α(i, j, k) = βi,j,k
vang

, (3.20)

55

3. Solution approach......................................

x0 x1

β0,1,2

φ1
1,2

φ2
1,2

φ4
1,2
φ3

1,2

φ5
1,2

φ6
1,2

x2

β1,2,3

φ1
2,3 φ2

2,3

φ3
2,3

x3

Figure 3.5: Exaple of a simple route X = (x0, x1, x2, x3) inside a polygonal envi-
ronment, where all non-zero turning angles of the robot are marked. The angles
dependent on three locations, i.e., β0,1,2, β1,2,3, are shown in red. The accumulated
angles dependent only on two locations, i.e., φ1,2 =

∑
i |φi

1,2|, φ2,3 =
∑

i |φi
2,3|, are

shown in green.

(a) : vlin � vang (b) : vlin ≈ vang (c) : vlin � vang

Figure 3.6: The effect of velocity constants vlin, vang on an optimized ATDP route.
If vlin � vang, then the optimization prefers short distances. On the other hand, if
vlin � vang, then small turning angles are preferred. The two features are, to some
extend, balanced if vlin ≈ vang.

is proportional to the turning angle βi,j,k on location lj , which is dependent on
the previous location li and the current goal lk. An example of a simple route
consisting of several locations to visit and the corresponding turning angles of two
types (φ and β) are shown in Fig. 3.5. Let us note, that the choice of velocity
constants vlin, vang significantly impacts the character of the resulting route after
it is optimized. This effect in case of the ATDP is shown in Fig. 3.6.

56

......................................3.4. TDP extensions

Mobile search formulations that consider the weights w(i) are better at esti-
mating the probability of finding the searched object when visiting location li and,
therefore, better guide the search towards promising areas. For example, at the
beginning of the search, visiting an open area location should be preferred over
visiting a location inside of a tiny room, assuming uniform probability distribution
for the searched object’s location, as we do.

The weight w(i) associated with location li could be determined in various
creative ways; however, none of them would be quite accurate as we assume static
weights in our formulations, but in reality, they change as the search progresses.
We define the weight of location li in the most straightforward way as an area of
a region sensed from the location, i.e.,

w(i) = Area(V(li)), (3.21)

where V(li) is defined by Eq. (2.11). We deal with the non-static character of
weights in Sec. 3.4.3.

3.4.2 GSP2, AGSP2

We define two more variants of the TDP similar to the GSP and AGSP, but this
time with two-dimensional weights. Let us consider one more trait of the graph
G = (V,E):

. w2 : E → R+
0 : a non-negative weight w2(i, j) associated with each edge ei,j ∈

E. The weights are symmetrical, i.e., w2(i, j) = w2(j, i).

We denote the problem defined by tuple

. (G, d,w2, s) as GSP2, and. (G, d, α,w2, s) as AGSP2.

Then, we define the total AGSP2 cost of a Hamiltonian path X = (x0 =
s, x1, . . . , xn) in graph G as

cost(X) =
n∑
k=1

w2(k − 1, k) ·
k∑
i=1

d(xi−1, xi) + α(xi−2, xi−1, xi)

=
n∑
k=1

w2(k − 1, k) · δXk .
(3.22)

57

3. Solution approach......................................

li

lj

(a) : V(li), V(lj)

li

lj

(b) : V(li, lj)

Figure 3.7: Comparison of weights’ computation for GSP, AGSP (left) and GSP2,
AGSP2 (right).

Since AGSP2 is more general than GSP2, the cost for GSP2 can be defined in
terms of Eq. 3.22, where ∀ vi, vj , vk ∈ V : α(vi, vj , vk) = 0. Again, let us note that
the improvements for the introduced problems must be derived anew analogously
as for the TDP.

Mobile search formulations that consider the two-dimensional weights w2(i, j)
allow sensing during the whole search, i.e., in between the locations to visit and
not only when the robot reaches one of these locations. This, again, better models
the reality of our problem defined in Sec. 2.1.

We define the weight of two locations li, lj in the most straightforward way,
analogously as the one-dimensional weight for the GSP and AGSP, as

w(i, j) = Area(V(li, lj)), (3.23)

where V(li, lj) is the whole region sensed while following the shortest path from
li to lj . The comparison between V(li, lj) and the classical one-location V(li) is
shown in Fig. 3.7. In practice, we acquire the region V(li, lj) by finely discretizing
the path, computing all sub-regions sensed from the discretized points of the path,
and finally computing the union of all these sub-regions.

58

......................................3.4. TDP extensions

3.4.3 Replanning

The final improvement that we suggest is replanning during the search. Replanning
is, originally, an online process of creating a new plan during the execution of the
current plan. However, if we consider that we have available an implementation of
the whole search scheme, Alg. 3.2 where a simple simulation replaces the actual
robot’s navigation, we can create an offline plan that is based on replanning even
before starting the search execution. The refined plan is returned by Alg. 3.2
as the truly visited sequence of goals ltrue. For our experiments, we choose this
scenario. Nevertheless, in a real application to shorten the time of planning, i.e.,
waiting before starting the search, the replanning might be performed online
during the search. We expect the online and offline approaches to be equivalent if
the considered simulation sufficiently well describes the robot’s kinematics.

In all cases, the new plan’s creation works as follows: already visited locations are
discarded from the new plan, weights of the rest are recomputed while considering
the so-far covered region Wcov, and the resulting new instance of the routing
problem is solved. Replanning is realized by the RePlan procedure in the general
search scheme, Alg. 3.2. It is only meaningful for formulations that consider
the weights of locations or paths, i.e., GSP, AGSP, GSP2, and AGSP2. During
replanning, the new weights for GSP and AGSP are computed as

w(i) = Area(V(li) \Wcov), (3.24)

and for GSP2 and AGSP2 as

w(i, j) = Area(V(li, lj) \Wcov). (3.25)

If the replanning is used in Alg. 3.2, we denote the corresponding planning
algorithms as GSP-RP, AGSP-RP, GSP2-RP, and AGSP2-RP, respectively. Finally,
one last rule is included within those planning variants. If V(li) \ Wcov = ∅ for
some unvisited location li, then this location is entirely discarded, i.e., not included
in the next and all later plans.

59

60

Chapter 4

Computational evaluation

4.1 TDP: Ms-GVNS vs. GILS-RVND

First, we demonstrate the properties of the developed metaheuristic for the TDP
on its own in this section; then, we compare complex solutions to the mobile search
where the metaheuristic is integrated (solving various problems derived from the
TDP) in the next Sec. 4.2.

Thorough computational evaluation of Ms-GVNS and its comparison with the
state-of-the-art method for the TDP — GILS-RVND [30] — follows. For the
final evaluation, we use a different implementation of the algorithms from the
one employed for designing the proposed Ms-GVNS and tuning its parameters in
Appx. A. While the original heavy implementation was optimized for the most
effortless use with much variability, the ultimate evaluation is realized under
a new, more straightforward implementation, aiming towards the best possible
performance. Both methods are again implemented in C++, sharing all possible
pieces of code. Ms-GVNS (the proposed) is parametrized as in Sec. A.4, and
GILS-RVND (the reference) as in [30]. All experiments described in this section
are executed on a personal computer with Intel R© CoreTM i7-7700 CPU (3.60 GHz),
32 GB of RAM, and Ubuntu 18.04.1 LTS. The implementation is single-threaded,
and only one physical core of the CPU is used for each experiment.

The proposed is tested against the reference on several sets of standard bench-
mark instances generated by Salehipour et al. [29]. The available sets consider 10,
20, 50, 100, 200, 500, and 1000 customers, respectively, and each is composed of
20 random instances. For the evaluation, we use three different approaches that
we call time-limits, TTT-plots, and fixed-iters.

61

4. Computational evaluation1. Time-limits: our key results — only a computational time limit is given
to the method, 50 runs are performed, and the resulting solution costs are
recorded. This approach is realized on instances of sizes 200, 500, and 1000,
and the considered time limits are 1, 2, 5, 10, 20, 50, and 100 seconds...2. TTT-plots: plots from 200 executions are obtained (the same way as in
Appx. A), and the probability ppr ≈ P (RTp < RTr) is computed as described
in Sec. 1.3.5. Here, RTp and RTr are random variables representing the time
needed by the proposed and the reference respectively to find a solution that
is as good as given cgoal. This approach is realized on instances of sizes 10,
20, 50, 100, 200, and 500, and the given target value cgoal is the optimum for
smaller instances (sizes 10, 20, 50) where it is known [29, 30], and the best
solution reported by [30] worsened by 1% for the rest of instances...3. Fixed-iters: this type of evaluation is the most common in the literature.
The algorithm is given a fixed number of iterations (imax = 10), and 10 runs
are performed. The returned solution costs and the computational times are
recorded. This approach is realized on instances of sizes 10, 20, 50, 100, 200,
and 500.

In the tables presented hereafter, cbest is the best-known solution, Best and Mean
denote the best and the mean solution cost found by the considered algorithm
respectively, %bG, and %mG are the best, and a mean percentage gap from cbest
computed as 100 · (Best− cbest)/cbest, and 100 · (Mean− cbest)/cbest respectively,
and Time is the average computing time over 10 executions. For instances with up
to 200 customers, cbest corresponds to values reported by [30], while for 500 and
1000-customer instances they are the minimum of values reported by [30], [73],
and [74]. In the context of TTT-plots results, we report TTT, as the average (over
200 runs) time to target solution, and %ppr as the probability ppr ≈ P (RTp < RTr)
computed from TTT plots of both methods, in percents. An over-lined symbol
(e.g., %bG) indicates that the value is averaged over instances of the same size.
In some tables, we use blue and orange colors to emphasize %bG, %mG, Time,
TTT, and %ppr values where Ms-GVNS and GILS-RVND, respectively, performed
better than the other. If the methods performed equally, then none of the values is
shown in color. If one of the values is in color, but the values numerically appear
equal, then the difference is non-zero and was lost after rounding. Additionally,
we note that within generating fixed-iters results on instances of sizes 10-500,
we performed the same experiments as Silva et al. [30], however with our own
implementation, improvement calculations, different random number generator
seeds, and using more powerful hardware. For %bG and %mG, our obtained
results are identical (except some small statistical error), to the ones reported by
the authors. On the other hand, our values of Time are significantly lower. Thus,
we report unchanged values of %bG, %mG from [30], and our updated values of
Time in our results.

62

.............................. 4.1. TDP: Ms-GVNS vs. GILS-RVND

●

●

●

●

●

●

●

av
er

ag
e

m
G

 [%
]

time limit [s]
1 20 50 100

0.01

0.1

1

10

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(a) : 200 customers

●

●

●

●

●

●

●

av
er

ag
e

m
G

 [%
]

time limit [s]
1 20 50 100

1

10

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(b) : 500 customers

●

●

●

●

●

●

●

av
er

ag
e

m
G

 [%
]

time limit [s]
1 20 50 100

10

100

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(c) : 1000 customers

Figure 4.1: Convergence of the average mean gap from Tables 4.1, 4.2, and 4.3 for
Ms-GVNS (blue) and GILS-RVND (orange). The dashed magenta horizontal line is
the average %mG of the upper bound.

To produce our main results, time-limits, we simulate a scenario in which
the algorithms are allowed to run only for a fixed time tmax, after which they
immediately return a solution, and its cost is recorded. Seven different values for
tmax are used (1, 2, 5, 10, 20, 50, and 100 seconds), and 50 runs are executed for
each experimental setup consisting of a method, an instance, and a time-limit.
The values of %mG over 50 runs on instances with 200, 500, and 1000 customers
are presented in Tables 4.1, 4.2, and 4.3, respectively. The one extra column,
%mG of UB, shows the mean gaps of upper bounds from the best-known solutions.
The upper bounds are obtained by a purely greedy algorithm used to generate
the initial solution in Ms-GVNS. For 200-customer instances, both Ms-GVNS
and GILS-RVND return a better solution than the upper bound even after one
second of computing time. As expected, the proposed method converges more
quickly towards cbest. After 100 seconds, the solution returned by both methods
is of similar quality. For 500-customer instances, the values after one second are
closer to the upper bound, and after 100 seconds, Ms-GVNS typically still returns
higher-quality solutions.

The convergence of the average %mG can be better tracked in Fig. 4.1, which
shows the last rows (avg) of these tables plotted as graphs. See the graph for
the largest instances with 1000 customers. Here, after one second, the proposed
returns a solution better than the upper bound and converges to the best-known
solution. However, the reference starts significantly above the upper bound and
gets below it typically after no less than 20 seconds. This behavior is caused by
generating the initial solution in a randomized way as it is done by GRASP. Such
an initial solution can be very far from the optimum, and it takes many operations

63

4. Computational evaluation

Inst
%
m
G

U
B

G
ILS-RV

N
D

M
s-G

V
N
S

tm
a
x

:
1

2
5

10
20

50
100

1
2

5
10

20
50

100

R
1

18.31
1.03

0.65
0.31

0.16
0.08

0.03
0.00

0.83
0.60

0.24
0.12

0.05
0.01

0.01
R
2

13.15
1.24

1.02
0.59

0.35
0.24

0.07
0.05

0.93
0.71

0.48
0.31

0.20
0.11

0.06
R
3

20.61
1.08

0.54
0.29

0.15
0.08

0.02
0.01

0.69
0.35

0.13
0.10

0.06
0.03

0.01
R
4

12.65
1.12

0.74
0.30

0.08
0.04

0.01
0.00

0.71
0.41

0.08
0.03

0.01
0.00

0.00
R
5

14.85
1.26

0.87
0.46

0.27
0.18

0.07
0.02

0.81
0.53

0.34
0.30

0.15
0.07

0.04
R
6

13.28
1.46

0.94
0.41

0.13
0.05

0.00
0.00

1.33
0.70

0.23
0.11

0.03
0.00

0.00
R
7

18.39
1.49

1.17
0.53

0.23
0.08

0.01
0.00

1.17
0.70

0.42
0.19

0.09
0.03

0.00
R
8

16.60
1.15

0.85
0.29

0.12
0.01

0.00
0.00

0.90
0.54

0.22
0.13

0.05
0.01

0.00
R
9

16.94
1.17

0.74
0.46

0.25
0.06

0.00
0.00

1.03
0.78

0.39
0.30

0.09
0.00

0.00
R
10

18.03
1.03

0.99
0.44

0.17
0.06

0.03
0.00

1.09
0.70

0.21
0.10

0.05
0.00

0.00
R
11

11.49
0.81

0.50
0.24

0.12
0.08

0.02
0.01

0.38
0.29

0.13
0.06

0.03
0.01

0.00
R
12

17.78
1.06

0.61
0.34

0.15
0.09

0.03
0.01

0.61
0.31

0.19
0.09

0.05
0.02

0.00
R
13

16.66
1.13

0.79
0.35

0.23
0.06

0.02
0.00

0.43
0.23

0.07
0.03

0.01
0.00

0.00
R
14

17.04
1.52

0.81
0.43

0.16
0.08

0.01
0.00

1.12
0.54

0.32
0.15

0.05
0.01

0.00
R
15

12.69
1.17

0.83
0.40

0.13
0.05

0.00
0.00

0.74
0.51

0.24
0.12

0.04
0.00

0.00
R
16

16.96
1.84

1.04
0.68

0.30
0.14

0.02
0.00

1.55
1.05

0.67
0.37

0.19
0.06

0.03
R
17

20.35
0.86

0.61
0.32

0.17
0.06

0.02
0.01

0.79
0.61

0.41
0.21

0.11
0.03

0.01
R
18

15.52
1.77

1.02
0.33

0.22
0.09

0.02
0.00

1.24
0.69

0.39
0.26

0.22
0.11

0.07
R
19

13.22
1.31

0.95
0.45

0.34
0.16

0.05
0.03

0.97
0.71

0.43
0.18

0.12
0.04

0.00
R
20

35.21
1.26

0.77
0.25

0.11
0.01

0.00
0.00

0.77
0.43

0.11
0.01

0.00
0.00

0.00

avg
16.99

1
.24

0
.82

0
.39

0
.19

0
.08

0
.02

0
.01

0
.90

0
.57

0
.28

0
.16

0
.08

0
.03

0
.01

Table
4.1:

T
im

e-lim
its

results
on

instances
w
ith

200
custom

ers.
A
lltim

es
are

in
seconds.

64

.............................. 4.1. TDP: Ms-GVNS vs. GILS-RVND

In
st

%
m
G

U
B

G
IL
S-
RV

N
D

M
s-
G
V
N
S

t m
a
x

:
1

2
5

10
20

50
10

0
1

2
5

10
20

50
10

0

R
1

19
.1

12
.1

6.
8

4.
8

3.
7

2.
6

1.
6

1.
5

6.
0

5.
2

4.
0

3.
1

2.
2

1.
7

1.
2

R
2

19
.9

12
.8

7.
3

4.
5

3.
4

2.
1

1.
4

1.
0

5.
6

4.
5

3.
4

2.
2

1.
5

1.
0

0.
7

R
3

23
.8

11
.7

6.
8

4.
8

3.
3

2.
4

1.
5

1.
1

5.
5

4.
5

3.
1

2.
4

1.
7

1.
2

0.
9

R
4

15
.9

12
.2

7.
1

4.
8

3.
3

2.
5

1.
7

1.
2

5.
1

4.
2

3.
4

2.
7

2.
2

1.
5

1.
2

R
5

21
.7

11
.6

6.
8

4.
7

3.
3

2.
3

1.
7

1.
2

5.
8

4.
7

3.
5

2.
7

2.
2

1.
3

1.
1

R
6

19
.9

13
.3

6.
9

4.
4

3.
1

2.
2

1.
5

1.
0

5.
2

4.
2

2.
9

2.
3

1.
5

1.
1

0.
9

R
7

19
.9

11
.7

7.
4

4.
8

3.
7

2.
8

1.
7

1.
5

5.
3

4.
7

3.
6

2.
9

2.
2

1.
5

1.
3

R
8

17
.2

13
.1

7.
0

4.
8

3.
4

2.
4

1.
6

1.
3

5.
5

4.
9

3.
5

2.
7

1.
9

1.
3

0.
9

R
9

23
.8

12
.5

7.
2

4.
5

3.
4

2.
3

1.
5

1.
1

4.
0

3.
5

2.
8

2.
4

1.
8

1.
3

1.
1

R
10

22
.8

13
.4

7.
1

4.
9

3.
3

2.
5

1.
5

1.
1

3.
9

3.
1

2.
6

2.
1

1.
6

1.
2

0.
9

R
11

27
.3

11
.8

6.
2

3.
8

2.
8

1.
9

1.
2

0.
9

4.
4

3.
6

2.
6

1.
8

1.
4

0.
9

0.
7

R
12

17
.3

13
.7

7.
6

4.
9

3.
6

2.
5

1.
6

1.
2

5.
5

4.
9

3.
9

2.
9

2.
3

1.
4

1.
1

R
13

11
.6

12
.0

6.
7

4.
7

3.
5

2.
3

1.
7

1.
3

4.
8

4.
0

2.
8

2.
2

1.
6

1.
1

0.
8

R
14

14
.2

12
.5

7.
3

4.
5

3.
2

2.
5

1.
6

1.
3

4.
6

4.
1

3.
0

2.
1

1.
8

1.
1

1.
0

R
15

14
.1

12
.0

7.
4

5.
0

3.
4

2.
6

1.
7

1.
3

3.
9

3.
2

2.
6

1.
8

1.
3

0.
9

0.
8

R
16

18
.7

12
.2

6.
7

4.
3

3.
2

2.
5

1.
6

1.
1

5.
3

4.
2

3.
1

2.
4

1.
8

1.
0

0.
8

R
17

16
.4

12
.0

6.
6

4.
3

3.
3

2.
4

1.
6

1.
3

5.
0

4.
6

3.
2

2.
6

1.
7

1.
2

0.
8

R
18

18
.3

11
.8

6.
6

4.
6

3.
2

2.
1

1.
3

1.
0

5.
7

4.
8

3.
6

2.
6

1.
9

1.
2

0.
9

R
19

13
.1

12
.7

7.
5

4.
7

3.
6

2.
3

1.
4

1.
1

5.
4

4.
6

3.
2

2.
5

1.
7

1.
1

0.
7

R
20

18
.4

13
.7

7.
2

4.
7

3.
3

2.
3

1.
6

1.
2

5.
2

4.
5

3.
4

2.
7

2.
2

1.
4

1.
2

av
g

18
.7

12
.4

7.
0

4.
6

3.
4

2.
4

1.
6

1.
2

5.
1

4.
3

3.
2

2.
5

1.
8

1.
2

1.
0

Ta
bl
e
4.
2:

T
im

e-
lim

its
re
su
lts

on
in
st
an

ce
s
w
ith

50
0
cu
st
om

er
s.

A
ll
tim

es
ar
e
in

se
co
nd

s.

65

4. Computational evaluation

Inst
%
m
G

U
B

G
ILS-RV

N
D

M
s-G

V
N
S

tm
a
x

:
1

2
5

10
20

50
100

1
2

5
10

20
50

100

R
1

18.3
676

.1
502.6

247.2
93.6

12.3
6.9

5
.7

9.4
8.1

6.1
5.6

5.2
4.2

3
.5

R
2

23.6
679

.5
626.6

350.8
132.2

21.2
7.7

5
.9

9.8
8.4

6.8
6.2

5.3
4.4

3
.8

R
3

15.6
685

.2
588.8

355.2
117.5

17.9
6.9

5
.4

10.7
9.9

7.8
6.6

5.7
4.6

3
.8

R
4

15.7
673

.8
664.0

328.9
133.6

21.0
7.5

5
.6

8.7
7.3

6.2
5.4

4.9
4.3

3
.7

R
5

21.8
766

.3
586.0

313.7
142.4

21.5
7.5

5
.6

9.3
8.1

6.3
5.8

5.4
4.7

4
.2

R
6

19.0
629

.9
586.6

342.0
136.5

23.9
7.9

5
.8

10.9
9.9

7.9
7.0

6.4
5.3

4
.6

R
7

19.9
720

.8
636.7

368.9
140.2

27.3
7.9

6
.5

10.9
9.6

7.8
7.3

6.6
5.7

4
.9

R
8

18.6
760

.0
542.4

348.5
126.4

23.4
7.3

5
.5

10.5
9.3

7.8
7.0

6.1
4.8

4
.0

R
9

22.6
675

.8
617.0

368.8
126.8

24.5
8.3

6
.2

11.7
10.9

8.9
8.1

7.0
5.6

4
.5

R
10

15.6
761

.7
508.9

312.0
160.7

24.9
8.0

6
.1

11.1
10.0

8.2
7.6

6.5
5.5

4
.6

R
11

20.6
688

.0
586.8

335.0
137.0

25.9
7.7

6
.2

11.5
9.9

7.4
7.0

6.1
4.8

4
.0

R
12

19.8
687

.7
584.5

381.2
153.9

27.2
8.3

6
.5

10.5
9.5

7.9
7.0

6.4
5.3

4
.4

R
13

19.1
656

.3
599.2

355.8
143.3

26.4
7.6

6
.0

11.3
10.1

8.1
6.6

6.0
4.9

4
.1

R
14

17.3
683

.0
556.5

365.2
145.0

24.8
7.2

5
.7

8.4
7.2

6.2
5.4

4.9
4.0

3
.5

R
15

15.9
674

.2
645.3

327.8
143.7

23.6
7.7

5
.7

9.2
8.1

6.3
5.7

4.9
4.2

3
.5

R
16

17.5
692

.5
562.0

358.4
138.1

27.8
7.8

5
.9

11.3
10.0

8.3
7.3

6.1
4.7

3
.9

R
17

20.3
661

.2
571.6

316.9
144.1

27.0
7.8

5
.9

10.2
9.4

8.5
7.4

6.6
5.3

4
.4

R
18

23.8
670

.4
649.2

365.6
134.8

29.0
8.3

6
.4

10.8
9.7

7.8
7.1

6.5
5.5

4
.5

R
19

18.7
737

.2
593.3

375.0
141.9

28.7
7.7

5
.8

9.5
8.1

6.9
6.3

5.7
4.6

3
.8

R
20

24.1
776

.6
559.6

333.2
142.1

29.1
7.9

6
.0

9.2
8.3

7.2
6.6

6.0
4.8

4
.1

avg
19.4

697
.8

588
.4

342
.5

136
.7

24
.4

7
.7

5
.9

10
.2

9
.1

7
.4

6
.7

5
.9

4
.9

4
.1

Table
4.3:

T
im

e-lim
its

results
on

instances
w
ith

1000
custom

ers.
A
lltim

es
are

in
seconds.

66

.............................. 4.1. TDP: Ms-GVNS vs. GILS-RVND

to get anywhere nearby it. This behavior could be neglected by generating a
purely greedy solution at first, saving it as the incumbent, and then run GILS-
RVND as usual. Note that this improvement would merely change the behavior
of Ms-GVNS, which works with the purely greedy solution from the start, and
provides better-than-UB solutions after no more than one second. Even if we
considered the improved reference as suggested, after 100 seconds Ms-GVNS would
still return better solutions which are on average by 1.8 % closer to cbest than
solutions returned by the reference. Based on these observations, we claim that
Ms-GVNS is superior to GILS-RVND in scenarios with up to 1000 customers and
a hard limit on computational time ranging from 1 to 100 seconds.

The complementary results — fixed-iters and TTT-plots — are summarized in
Table 4.4 for instances with 10, 20, 50, 100, and 200 customers. For instances with
up to 50 customers, both methods found the optimal solution in all executions
over all instances and sizes, i.e., the average values of %bG and %mG are both
exactly zero. For 100 and 200-customer instances, GILS-RVND’s %mG is slightly
better than Ms-GVNS’s, as well as is %bG for 200-customer because Ms-GVNS
did not find the best-known solution for two instances (R1 and R2). On the other
hand, the Time improvement of Ms-GVNS over GILS-RVND is 37 %, 82 %, 118 %,
136 %, and 40 % for the considered sizes, respectively. The average TTT-plots
results are favorable towards Ms-GVNS. The average improvement in reaching the
target solution is 15%, 38%, 64%, 91%, and 73%, respectively, and the average
probabilities of returning the target solution in time before the reference are 62 %,
71 %, 69 %, 71 %, and 78 % respectively.

The full fixed-iters and TTT-plots results for 500-customer instances are shown
in Table 4.5. Here, the proposed provides better gaps; however, the run-time of
classical fixed-iters experiments is worse, on average, by about 43% when compared
to the reference. It seems like the roles of the two algorithms have switched as
we consider large problems. This observation is caused by two factors specific
to the fixed-iters computational context: (i) the longer the method runs, the
better solution usually returns at the end, and (ii) the running time of the method
depends on the number of tries to improve the incumbent solution before it gives
up and moves to the next iteration. Regarding the latter, GILS-RVND gives up
after min(size(i), 100), and Ms-GVNS after dsize(i)/5e · |P| tries on instance i.
In other words, for instances with 100, 200, and 500 customers, the reference
has the number of tries fixed to 100, but the proposed performs 63, 123, and 303
tries, respectively. To conclude, Ms-GVNS is more thorough for larger instances
than GILS-RVND, which results in better gaps and longer running times, but
for smaller instances, it is the opposite. Thus, it is hard to make an absolute
statement about which method performs better in general.

Fixed-iters computational context may provide useful, informative results, but
it is not suitable for the absolute comparison of the methods. Rather, it is more

67

4. Computational evaluation

time to target (TTT) [s]

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty
 [−

]

10 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) : Inst R9: ptr = 45.97 %
time to target (TTT) [s]

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty
 [−

]

10 100 1000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) : Inst R7: ptr = 63.68 %

time to target (TTT) [s]

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty
 [−

]

10 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) : Inst R13: ptr = 80.68 %
time to target (TTT) [s]

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty
 [−

]

10 100 1000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(d) : Inst R15: ptr = 91.22 %

Figure 4.2: TTT-plots for Ms-GVNS (blue) and GILS-RVND (orange) on four
instances with 500 customers.

relevant to compare the methods according to their ppr in the TTT-plots context,
as discussed in Sec. 1.1, 1.3.4, and 1.3.5. In terms of probability ppr, the proposed
is almost always better than the reference, except for two 500-customer instances.

To complement Table 4.5, we show full TTT-plots for four instances: one with
the lowest ppr (Fig. 4.2a), one with ppr close to median (Fig. 4.2b), and two with
the highest ppr (Fig. 4.2c, and 4.2d). In the end, the last table also shows in bold
four newly found best-known solutions of instances TRP-S500-R2, TRP-S500-R8,
TRP-S500-R11, and TRP-S500-R19.

68

.............................. 4.1. TDP: Ms-GVNS vs. GILS-RVND

G
IL
S-
RV

N
D

M
s-
G
V
N
S

Si
ze

%
bG

%
m
G

T
im

e
T
T
T

%
bG

%
m
G

T
im

e
T
T
T

%
p
p
r

11
0.

00
0

0.
00

0
1.

3
·1

0−
3

5.
2
·1

0−
5

0.
00

0
0.

00
0

9.
0
·1

0−
4

4.
5
·1

0−
5

61
.9

21
0.

00
0

0.
00

0
1.

4
·1

0−
2

7.
1
·1

0−
4

0.
00

0
0.

00
0

7.
4
·1

0−
3

5.
2
·1

0−
4

70
.5

51
0.

00
0

0.
00

0
2.

6
·1

0−
1

2.
5
·1

0−
2

0.
00

0
0.

00
0

1.
2
·1

0−
1

1.
5
·1

0−
2

69
.0

10
1

0.
00

0
0.

00
0

3.
3
·1

00
9.

8
·1

0−
2

0.
00

0
0.

00
2

1.
4
·1

00
5.

1
·1

0−
2

70
.9

20
1

0.
00

0
0.

03
5

2.
9
·1

01
2.

0
·1

00
0.

00
4

0.
08

0
2.

1
·1

01
1.

1
·1

00
67
.7

Ta
bl
e
4.
4:

Av
er
ag
e
Fi
xe
d-
ite

rs
an

d
T
T
T
-p
lo
ts

re
su
lts

on
in
st
an

ce
s
w
ith

10
,2

0,
50
,1

00
,a

nd
20
0
cu
st
om

er
s.

A
ll
tim

es
ar
e
in

se
co
nd

s.

69

4. Computational evaluation
G
ILS-RV

N
D

M
s-G

V
N
S

Inst
c
best

c
g
o
a
l

%
bG

%
m
G

T
im

e
T
T
T

B
est

%
bG

M
ean

%
m
G

T
im

e
T
T
T

%
p
p
r

R
1

1841210
1859799

0.01
0
.80

615.3
371.9

1848215
0
.38

1852248.7
0
.60

952.3
282.4

56.15
R
2

1815664
1834733

0.05
0
.41

608.8
112.5

1815478
−

0.01
1818765.5

0
.17

806.1
58.0

71.30
R
3

1826738
1851374

0.35
0
.69

627.0
84.9

1830510
0
.21

1833469.3
0
.37

939.6
59.9

62.76
R
4

1802921
1827358

0.35
0
.72

635.7
128.8

1803003
0
.00

1811107.7
0
.45

934.8
82.4

63.45
R
5

1821250
1842214

0.15
0
.70

556.8
185.8

1823213
0
.11

1829110.9
0
.43

837.5
111.7

62.76
R
6

1782731
1804486

0.22
0
.46

615.4
98.0

1786903
0
.23

1790935.4
0
.46

806.7
48.0

72.67
R
7

1846251
1866478

0.09
0
.63

666.6
275.2

1847322
0
.06

1853758.1
0
.41

936.6
165.2

63.68
R
8

1819636
1839054

0.07
0
.53

618.9
248.4

1818621
−

0.06
1826246.4

0
.36

893.3
154.9

62.40
R
9

1729796
1751157

0.23
0
.42

599.0
86.1

1734166
0
.25

1739277.9
0
.55

794.9
101.1

45.97
R
10

1761174
1780368

0.09
0
.35

624.1
148.4

1762984
0
.10

1766260.3
0
.29

874.9
102.8

62.21
R
11

1797771
1815859

0.01
0
.21

530.6
101.1

1797111
−

0.04
1801042.4

0
.18

825.9
49.0

72.26
R
12

1774452
1792196

0.00
0
.53

575.4
151.9

1775230
0
.04

1780101.6
0
.32

948.5
161.8

48.70
R
13

1863905
1892435

0.53
0
.76

625.2
88.0

1865963
0
.11

1870876.1
0
.37

817.7
34.2

80.68
R
14

1796129
1817162

0.17
0
.53

667.7
164.6

1798223
0
.12

1802641.2
0
.36

888.1
67.4

73.77
R
15

1784919
1809056

0.35
0
.71

621.4
125.5

1786988
0
.12

1791543.4
0
.37

780.7
25.2

91.22
R
16

1804392
1828289

0.32
0
.67

637.6
103.5

1806297
0
.11

1809260.2
0
.27

879.1
45.6

75.20
R
17

1819909
1844005

0.32
0
.80

594.0
112.9

1823132
0
.18

1825989.3
0
.33

926.1
54.4

71.85
R
18

1825615
1844525

0.04
0
.42

650.1
104.0

1825659
0
.00

1829417.4
0
.21

904.3
77.1

60.15
R
19

1776855
1797040

0.13
0
.33

598.1
105.2

1775030
−

0.10
1779258.1

0
.14

911.2
59.9

68.54
R
20

1820168
1839021

0.04
0
.57

623.4
213.8

1822641
0
.14

1828615.0
0
.46

942.5
165.4

56.79

avg
-

-
0
.18

0
.56

614
.6

150
.5

-
0
.10

-
0
.36

880
.0

95
.3

66
.13

Table
4.5:

Fixed-iters
and

T
T
T
-plots

results
on

instances
w
ith

500
custom

ers.
A
lltim

es
are

in
seconds.

70

.......................................4.2. Mobile search

4.2 Mobile search

This section is dedicated to evaluating algorithms described in Sec. 3.2, 3.3,
and 3.4 on instances of the mobile search. For the mobile search, we design
and implement in C++ an entire framework composed of custom ROS packages.
ROS — Robot Operating System [86] — is a collection of software tools for robot
software development. It provides libraries, visualizers, hardware abstraction,
device drivers, message-passing and more. We use Melodic Morenia distribution
of ROS. For the package management we use Catkin Command Line Tools1 —
a software tool designed by the ROS community to efficiently build numerous inter-
dependent, but separately developed, CMake projects. The collection of algorithms
that together make the mobile search framework is partially implemented from
scratch and partially with the use of external libraries. The used libraries include
the following: Boost C++ Libraries [87] (for graph algorithms and various helper
tools), Clipper2 (for polygon clipping and offsetting), Triangle [11] (for Delaunay
triangulations), Cairo3 (for drawing), LKH-3 [81] (for solving the TSP), and
PolyPartition4 (for convex polygon partitioning). All experiments described in
this section are executed on a personal computer with Intel R© CoreTM i5-7300HQ
CPU (2.50 GHz), 8 GB of RAM, and Ubuntu 18.04.1 LTS.

As part of the evaluation, we consider a realistic simulation performed with a
commercial robot — TurtleBot3 [88] — a small ROS-based mobile robot with
open source software. TurtleBot3 simulation physics runs in Gazebo5 simulator,
which can be delivered as part of ROS, and the robot’s navigation utilizes standard
ROS navigation packages6. Besides the TurtleBot3 simulation, we also develop a
simple ideal stand-alone simulator, i.e., an application outside ROS, which allows
simulating the mobile search much faster. The ideal simulator is based on the
search scheme, Alg. 3.2, where the actual robot’s navigation is replaced by a simple
idealized one that considers two types of movements: going straight with linear
velocity vlin (m/s), and turning on the spot with angular velocity vang (rad/s).
We do our best to make the two considered simulations alike. First, we tune
the TurtleBot3 navigation demo parameters such that the robot’s movements
resemble the two basic maneuvers considered in our ideal simulation. Then, we
estimate proper values for our ideal simulation velocity constants vlin = 0.171m/s,
vang = 0.312 rad/s based on the Gazebo simulations. The constants’ estimation
is done by dragging the TurtleBot3 to complete several routes in the Gazebo
simulation, then traversing the same routes by our ideal simulation, and finally
minimizing the mean square error between the recorded times of both simulations.

1Available at https://catkin-tools.readthedocs.io/en/latest/
2Available at http://www.angusj.com/delphi/clipper.php
3Available at https://www.cairographics.org/.
4Available at https://github.com/ivanfratric/polypartition.
5Available at http://gazebosim.org/.
6Available at http://wiki.ros.org/navigation.

71

https://catkin-tools.readthedocs.io/en/latest/
http://www.angusj.com/delphi/clipper.php
https://www.cairographics.org/
https://github.com/ivanfratric/polypartition
http://gazebosim.org/
http://wiki.ros.org/navigation

4. Computational evaluation

(a) : empty: 32× 32 meters (b) : potholes: 32× 32 meters

(c) : warehouse: 32× 32 meters (d) : jari-huge: 33× 37 meters

Figure 4.3: The environments used in our experiments available at http://imr.
ciirc.cvut.cz/planning/maps.xml.

In our mobile search experiments, we consider four distinct environments:
empty, potholes, warehouse, and jari-huge, all shown in Fig. 4.3, and three different
visibility radii rV ∈ {∞, 5, 3}m, where rV =∞m represents the unlimited visibility
range. All possible pairs of the environments and visibility radii make 12 different
mobile search instances. However, the combination of the empty environment and
rV =∞m is trivial, i.e., the robot automatically covers the whole environment from
the start. Thus, we use only the other 11 non-trivial combinations. The robot’s
initial position q0 is at the middle-bottom of each environment, facing up. We
assume a circular robot with radius rA = 0.4 meters.

72

http://imr.ciirc.cvut.cz/planning/maps.xml
http://imr.ciirc.cvut.cz/planning/maps.xml

.......................................4.2. Mobile search

Let us overview all planning algortihms developed in the previous chapter.
Regarding the discretization phase, we recognize the following variants: DT,
KA, DS (Sec. 3.2.1), WR (Sec. 3.2.2), DTF, KAF, DSF, WRF (Sec. 3.2.3),
and WRF-DT-F (Sec. 3.2.4). Regarding the routing phase, we consider just
one general algorithm — our new metaheuristic for the TDP — Ms-GVNS
(Sec. 3.3.8). However, this general metaheuristic is, by considering different
optimization criterion and improvement calculations, adapted to solve several
MLPs modeling the mobile search in various ways. The considered MLPs are the
following: TDP (Sec. 2.2), ATDP, GSP, AGSP (Sec. 3.4.1), GSP2, and AGSP2
(Sec. 3.4.2). In addition, we recognize four other variants of planning algorithms
with replanning: GSP-RP, AGSP-RP, GSP2-RP, and AGSP2-RP (Sec. 3.4.3).
These use our ideal simulator to execute the whole search scheme, Alg. 3.2, where
the metaheuristic progressively refines the plan as the search progresses, and the
resulting overall plan ltrue is returned at the end. In all individual runs, Ms-GVNS
is constrained by a hard limit on computational time tmax = 2 seconds.

We test selected planning algorithms in the following two steps...1. Planning. Starting with the robot placed in the environment at the initial
configuration, we first create the search plan lseq. For variants without
replanning, it is enough to execute lines 1-3 of Alg. 3.2. For variants with
replanning, the whole scheme needs to be executed using our ideal simulator
and then lseq is assigned with the resulting ltrue. Here, for planning speed up,
we use low sensing frequency f = 2 · vlin = 0.342Hz...2. Evaluation. Having the plan prepared, we execute the search simulation
according to lines 4-20 of Alg. 3.2 with high sensing frequency f = 5Hz (always
ignoring the RePlan procedure). As a result, we receive a precise estimation
of the expected time texp to find the searched object, which characterizes the
quality of our solution lseq. This step can be done in two ways:..a. we either navigate the robot in our idealized simulator, or..b. use the TurtleBot3 ’s ROS simulation in Gazebo described at the begin-

ning of this section.

We denote these two options as ideal and ROS evaluation, respectively.

Let us first deem the ideal evaluation. Preliminary tests have shown that dis-
cretization algorithms with filtering provide better results than their corresponding
non-filtering versions. We demonstrate this effect with algorithms DS and DSF.
Regarding the rest, we consider only the versions with filtering, i.e., DTF, KAF,
WRF, and the hybrid WRF-DT-F. Other preliminary tests have shown that DTF,
WRF, and WRF-DT-F, on average, provide better results than DS, DSF, and KAF.
Thus, we evaluate the most promising discretizations DTF, WRF, WRF-DT-F
thoroughly and consider with them all the routing versions, i.e., TDP, ATDP,
GSP, AGSP, GSP2, AGSP2, GSP-RP, AGSP-RP, GSP2-RP, and AGSP2-RP.

73

4. Computational evaluation
rV Environment Abbr. Ideal ROS

t?exp [s] Met. t?exp [s] Met.

∞ potholes ∞-pot 36.78 1 - -
∞ warehouse ∞-war 277.92 1 - -
∞ jari-huge ∞-jar 194.95 2 - -
5 empty 5-emp 333.17 1 327.85 3
5 potholes 5-pot 372.33 1 369.26 4
5 warehouse 5-war 517.85 3 519.00 1
5 jari-huge 5-jar 546.97 1 543.85 1
3 empty 3-emp 600.10 2 - -
3 potholes 3-pot 626.05 1 - -
3 warehouse 3-war 718.26 1 - -
3 jari-huge 3-jar 962.67 2 - -

Table 4.6: The best recorded times t?exp for all mobile search instances and the two
types of evaluation. Methods’ legend: 1: WRF-DT-F+AGSP-RP, 2: DS+AGSP-RP,
3: WRF-DT-F+AGSP2-RP, 4: DSF+AGSP-RP.

For the less promising discretizations, i.e., DS, DSF, and KAF, we consider just
the most promising routing versions AGSP and AGSP-RP, that we determined,
again, based on preliminary results. Totally, we deem 3 · 10 + 3 · 2 = 36 solution
methods, i.e., combinations of discretization and routing algorithms. For every
pair consisting of a mobile search instance and a solution method, we perform
20 iterations with different random seeds. Then, we report the percentage mean
gap %mG computed as 100 · (texp − t?exp)/t?exp, where texp is the mean texp over
the 20 iterations, and t?exp is the best (lowest) texp for the considered instance
and type of evaluation recorded over all of our experiments. An overview of the
best times t?exp for all considered instances is shown in Tab. 4.6. In the table, an
additional column Abbr. shows abbreviations of instances used throughout this
section. Columns Met. show which solution methods have found the best times,
whereas the legend is included within the table’s caption.

The mean gaps, %mGs, for all 36 tested solution methods are shown in Tab. 4.7.
The first three columns show the line number and the solution methods’ dis-
cretization and routing variants. The next 11 columns are the methods’ %mGs for
individual instances, and the last column is the %mG averaged over all instances.
The table’s rows are ordered according to the average performance. Values,
which are blue and underlined, are the best results of the respective column, and
just blue values are the second best. Overall the best performing method is the one
combining WRF-DT-F and AGSP-RP. It provides, on average, the best plans for
almost all mobile search instances with limited visibility, except one (3-pot), where
it provides the second best. For instances with unlimited visibility, it provides
intermediate results, whereas the supremacy is distributed over a wider spectrum
of other methods.

74

.......................................4.2. Mobile search

In
st

an
ce

s

D
is

cr
et

iz
at

io
n

R
ou

ti
ng

∞
-p

ot
∞

-w
ar

∞
-ja

r
5-

em
p

5-
po

t
5-

w
ar

5-
ja

r
3-

em
p

3-
po

t
3-

w
ar

3-
ja

r
av

g

1
W

R
F

-D
T

-F
A

G
SP

-R
P

9.
6

8.
7

24
.8

2.
7

5.
1

4.
7

4.
7

4.
7

3.
5

2.
5

4.
8

6.
9

2
D

T
F

A
G

SP
-R

P
2.

5
0.

8
25

.2
2.

8
8.

0
14

.9
7.

5
5.

6
2.

2
3.

1
5.

9
7.

1
3

W
R

F
-D

T
-F

G
SP

-R
P

9.
4

10
.5

31
.3

3.
9

7.
3

9.
1

8.
3

8.
7

7.
7

5.
6

7.
7

10
.0

4
W

R
F

-D
T

-F
A

G
SP

2-
R

P
8.

2
13

.1
33

.3
8.

1
12

.2
6.

4
7.

3
7.

4
5.

7
7.

0
6.

1
10

.4
5

D
T

F
A

G
SP

2-
R

P
2.

8
1.

6
32

.7
11

.4
9.

3
15

.3
7.

8
9.

2
7.

1
12

.6
6.

1
10

.6
6

D
T

F
G

SP
-R

P
2.

5
0.

7
50

.3
4.

6
7.

3
17

.0
9.

6
9.

4
7.

5
7.

5
10

.2
11

.5
7

W
R

F
A

G
SP

-R
P

26
.1

12
.7

25
.9

11
.6

10
.7

6.
3

6.
9

9.
8

7.
0

5.
1

8.
8

11
.9

8
D

SF
A

G
SP

-R
P

27
.5

21
.4

28
.1

11
.4

7.
5

8.
1

8.
9

6.
2

6.
8

4.
8

6.
9

12
.5

9
D

S
A

G
SP

-R
P

47
.9

21
.6

24
.3

9.
2

6.
8

7.
1

9.
2

6.
0

6.
5

4.
7

5.
3

13
.5

10
K

A
F

A
G

SP
-R

P
31

.2
14

.2
11

.9
14

.5
8.

1
12

.6
15

.0
12

.8
5.

2
6.

9
22

.4
14

.1
11

W
R

F
-D

T
-F

G
SP

2-
R

P
9.

6
14

.0
50

.3
11

.1
17

.1
9.

4
10

.3
12

.6
11

.8
8.

2
8.

9
14

.8
12

W
R

F
G

SP
-R

P
27

.6
13

.1
32

.7
13

.9
14

.0
7.

0
11

.3
13

.0
11

.9
7.

4
12

.3
14

.9
13

D
T

F
G

SP
2-

R
P

2.
8

10
.3

54
.6

14
.9

11
.2

15
.3

9.
6

13
.9

13
.8

12
.8

10
.2

15
.4

14
W

R
F

-D
T

-F
A

G
SP

14
.2

24
.3

36
.6

11
.0

17
.8

10
.4

19
.2

14
.0

17
.9

8.
9

11
.8

16
.9

15
W

R
F

A
G

SP
2-

R
P

47
.4

22
.2

32
.2

15
.2

14
.6

10
.7

9.
0

12
.1

9.
7

7.
3

9.
8

17
.3

16
W

R
F

-D
T

-F
G

SP
14

.7
26

.4
36

.5
13

.9
21

.5
13

.6
20

.0
19

.8
22

.5
11

.2
14

.9
19

.5
17

W
R

F
-D

T
-F

A
T

D
P

12
.9

39
.0

32
.4

11
.6

27
.8

15
.8

20
.0

13
.8

18
.7

11
.3

13
.4

19
.7

18
W

R
F

A
G

SP
31

.6
30

.7
38

.0
22

.4
21

.0
12

.6
19

.3
18

.5
15

.5
8.

3
17

.8
21

.4
19

W
R

F
G

SP
2-

R
P

51
.2

28
.0

45
.7

20
.3

19
.3

10
.7

12
.7

15
.9

14
.2

9.
2

13
.0

21
.8

20
D

T
F

A
G

SP
7.

7
16

.2
88

.3
12

.4
21

.5
17

.4
21

.0
15

.7
20

.4
10

.6
14

.9
22

.4
21

W
R

F
-D

T
-F

T
D

P
14

.5
38

.9
35

.6
14

.6
31

.6
16

.4
25

.0
18

.9
22

.2
13

.1
17

.8
22

.6
22

W
R

F
-D

T
-F

A
G

SP
2

15
.9

38
.5

49
.9

14
.5

28
.9

17
.1

22
.4

22
.0

23
.3

11
.7

15
.6

23
.6

23
W

R
F

G
SP

32
.0

33
.4

38
.1

23
.4

25
.6

13
.0

22
.5

24
.0

22
.1

10
.8

20
.5

24
.1

24
D

SF
A

G
SP

31
.3

46
.8

58
.6

21
.1

18
.1

15
.4

20
.6

16
.2

14
.9

9.
8

15
.8

24
.4

25
W

R
F

A
T

D
P

46
.8

44
.7

32
.7

22
.4

26
.0

13
.4

22
.3

19
.3

17
.7

9.
9

20
.6

25
.1

26
D

T
F

G
SP

7.
7

25
.4

93
.8

17
.5

25
.0

17
.2

22
.8

19
.8

27
.3

14
.5

18
.3

26
.3

27
D

T
F

A
T

D
P

7.
7

24
.4

11
1.

1
12

.4
21

.5
20

.7
24

.4
17

.6
23

.5
11

.1
15

.7
26

.4
28

W
R

F
-D

T
-F

G
SP

2
19

.0
39

.6
50

.3
18

.0
32

.5
16

.9
24

.9
26

.0
25

.5
16

.2
21

.7
26

.4
29

K
A

F
A

G
SP

48
.5

42
.7

38
.0

27
.6

23
.7

22
.3

30
.4

22
.4

13
.1

16
.0

31
.9

28
.8

30
W

R
F

A
G

SP
2

51
.6

46
.6

50
.7

25
.9

27
.2

18
.4

22
.6

23
.9

21
.3

12
.9

20
.4

29
.2

31
W

R
F

T
D

P
43

.5
50

.9
34

.6
25

.6
33

.9
16

.5
29

.1
25

.7
24

.3
11

.9
27

.4
29

.4
32

D
T

F
A

G
SP

2
10

.2
25

.9
11

6.
4

23
.3

21
.5

19
.9

26
.5

25
.6

24
.7

16
.4

19
.3

30
.0

33
D

T
F

T
D

P
7.

7
24

.4
11

6.
4

19
.4

37
.9

19
.3

34
.7

19
.7

31
.6

15
.2

18
.4

31
.3

34
W

R
F

G
SP

2
56

.3
53

.5
50

.8
27

.4
27

.8
20

.9
28

.2
27

.4
25

.2
15

.7
26

.6
32

.7
35

D
T

F
G

SP
2

15
.0

25
.9

11
6.

4
25

.0
35

.0
19

.9
25

.3
31

.5
29

.7
19

.0
22

.4
33

.2
36

D
S

A
G

SP
65

.5
63

.8
11

3.
4

22
.7

21
.3

19
.0

26
.8

17
.5

19
.6

14
.8

18
.5

36
.6

Ta
bl
e
4.
7:

Id
ea
le

va
lu
at
io
n
re
su
lts

.
Ta

bl
e
sh
ow

s
%
m
G

fo
r
al
lt
es
te
d
so
lu
tio

n
m
et
ho

ds
an

d
co
ns
id
er
ed

m
ob
ile

se
ar
ch

in
st
an

ce
s.

75

4. Computational evaluation
Let us now discuss individual influences of different discretization and routing

algorithms on the quality of resulting plans. For easier orientation, we present
Tab. 4.8 that extracts just the relevant rows from the full Tab. 4.7. The first
part of the table (above the middle line) shows the influence of routing variants,
whereas the discretization is fixed on WRF-DT-F. Firstly note that considering
turning angles always improves the plans as it can be seen on pairs TDP →
ATDP, GSP→ AGSP, etc. Next, one-dimensional weights also positively influence
the results as seen on pairs TDP → GSP, ATDP → AGSP, etc. Surprisingly,
two-dimensional weights have the opposite effect and significantly worsen the
plans according to pairs GSP→ GSP2, AGSP → AGSP2, etc. The negative effect
is most likely caused by the way we compute the weights. We compute the two-
dimensional weights straightforwardly as areas of V(li, lj), which is analogous to
how we compute the one-dimensional weights, as described in Sec. 3.4.2. However,
this is probably not the best way, as we weight the beginning of the shortest
route from li to lj the same way as the end, which does not match the general
aims of mobile search. In mobile search, portions of the environment seen early
during the search are more significant than those seen later, as discussed before
on several occasions. This approach might be as well applied to the subproblem
of weighting the shortest paths. We reserve this idea for future research. For
now, let us continue analyzing the current results. Replanning always improves
the plans according to pairs GSP → GSP-RP, AGSP → AGSP-RP, etc., and
notably, all solution methods with replanning are superior to those without it.
To conclude, almost all suggested extensions of the TDP actually improve the
mobile search results, except one — the two-dimensional weights. However, we
plan to advance the weights’ computations in later research to investigate its
potential more properly. Overall, the currently best way to discretely model the
mobile search, based on our results, is by utilizing AGSP-RP.

The quality of a solution to the mobile search is also dependent on how the
environment is discretized. The effect of different discretizations can be easily
observed in the second part of Tab. 4.8 (bellow the middle line), where the routing
is fixed to AGSP-RP. The best properties with respect to the mobile search has
the hybrid WRF-DT-F discretization efficiently combining sophisticated WRP
approach, straightforward but dense triangulation, and the proposed filtering
procedure. The standalone related methods, DTF and WRF, are the second and
third best, respectively. However, the gap between DTF and WRP is surprisingly
large. An interpretation of this observation might be the following. The WRF
strengths mostly show off around dense obstacle areas such as peeking into rooms
in the jari-huge environment. Despite the resulting plans being visually appealing,
the dense obstacle areas are usually visited at later stages of the search and
therefore have just a minor effect on the solution’s quality. Conversely, in large
spaces where there are overlaps between MCCSs, the LKH-3 may not find the
best ordering w.r.t. to the mobile search, which in turn leads to poor optimization
of the li locations in the MCCSs. Plus, of course, the LKH-3 solves TSP and
not TDP. As a result, the combination of dense coverage and efficient filtering
is superior to the WRP sophisticated approach, especially in open areas that

76

.......................................4.2. Mobile search

In
st

an
ce

s

D
is

cr
et

iz
at

io
n

R
ou

ti
ng

∞
-p

ot
∞

-w
ar

∞
-ja

r
5-

em
p

5-
po

t
5-

w
ar

5-
ja

r
3-

em
p

3-
po

t
3-

w
ar

3-
ja

r
av

g

1

W
R

F
-D

T
-F

A
G

SP
-R

P
9.

6
8.

7
24

.8
2.

7
5.

1
4.

7
4.

7
4.

7
3.

5
2.

5
4.

8
6.

9
3

G
SP

-R
P

9.
4

10
.5

31
.3

3.
9

7.
3

9.
1

8.
3

8.
7

7.
7

5.
6

7.
7

10
.0

4
A

G
SP

2-
R

P
8.

2
13

.1
33

.3
8.

1
12

.2
6.

4
7.

3
7.

4
5.

7
7.

0
6.

1
10

.4
11

G
SP

2-
R

P
9.

6
14

.0
50

.3
11

.1
17

.1
9.

4
10

.3
12

.6
11

.8
8.

2
8.

9
14

.8
14

A
G

SP
14

.2
24

.3
36

.6
11

.0
17

.8
10

.4
19

.2
14

.0
17

.9
8.

9
11

.8
16

.9
16

G
SP

14
.7

26
.4

36
.5

13
.9

21
.5

13
.6

20
.0

19
.8

22
.5

11
.2

14
.9

19
.5

17
A

T
D

P
12

.9
39

.0
32

.4
11

.6
27

.8
15

.8
20

.0
13

.8
18

.7
11

.3
13

.4
19

.7
21

T
D

P
14

.5
38

.9
35

.6
14

.6
31

.6
16

.4
25

.0
18

.9
22

.2
13

.1
17

.8
22

.6
22

A
G

SP
2

15
.9

38
.5

49
.9

14
.5

28
.9

17
.1

22
.4

22
.0

23
.3

11
.7

15
.6

23
.6

28
G

SP
2

19
.0

39
.6

50
.3

18
.0

32
.5

16
.9

24
.9

26
.0

25
.5

16
.2

21
.7

26
.4

1
W

R
F

-D
T

-F

A
G

SP
-R

P

9.
6

8.
7

24
.8

2.
7

5.
1

4.
7

4.
7

4.
7

3.
5

2.
5

4.
8

6.
9

2
D

T
F

2.
5

0.
8

25
.2

2.
8

8.
0

14
.9

7.
5

5.
6

2.
2

3.
1

5.
9

7.
1

7
W

R
F

26
.1

12
.7

25
.9

11
.6

10
.7

6.
3

6.
9

9.
8

7.
0

5.
1

8.
8

11
.9

8
D

SF
27

.5
21

.4
28

.1
11

.4
7.

5
8.

1
8.

9
6.

2
6.

8
4.

8
6.

9
12

.5
9

D
S

47
.9

21
.6

24
.3

9.
2

6.
8

7.
1

9.
2

6.
0

al
l6

.5
4.

7
5.

3
13

.5
10

K
A

F
31

.2
14

.2
11

.9
14

.5
8.

1
12

.6
15

.0
12

.8
5.

2
6.

9
22

.4
14

.1

Ta
bl
e
4.
8:

Id
ea
le

va
lu
at
io
n
re
su
lts

—
ov
er
vi
ew

of
re
le
va
nt

re
su
lts

,i
.e
.,
se
le
ct
ed

ro
w
s
ex
tr
ac
te
d
fro

m
pr
ev
io
us

Ta
b.

4.
7,

to
st
ud

y
th
e
in
di
vi
du

al
in
flu

en
ce

of
di
ffe

re
nt

di
sc
re
tiz

at
io
n
an

d
ro
ut
in
g
al
go
rit

hm
s.

77

4. Computational evaluation

(a) : TurtleBot3 in Gazebo simulator.

(b) : Robot data in RViz, visualiser for ROS.

Figure 4.4: Example screenshots from the ROS simulation with TurtleBot3 inside
the jari-huge environment.

appear in environments empty and potholes. The proposed method, WRF, would
be better justified in solving the WRP, which is something we reserve for future
research. Finally, the positive effect of filtering can be seen on DS and DSF. The
improvement shown in Tab. 4.8 for AGSP-RP appears minor, but the improvement
in the case of AGSP (without replanning), shown in the previous Tab. 4.7, is
significant.

The ideal mobile search results discussed so far are only relevant to a robot with
simplified kinematics, as assumed by our ideal simulator. To be more realistic,
we also include the ROS evaluation with TurtleBot3 in Gazebo simulator, whose
example screenshots are shown in Fig. 4.4. The purpose of these second simulations
is to verify that our ideal simulations are, to some extent, relevant also to more
realistic robots. However, since Gazebo simulation is much more time demanding,
we have to limit the scale of the performed experiments. We consider only the
four instances with rV = 5 (i.e., 5-emp, 5-pot, 5-war, 5-jar), a subset of planning
algorithms, and just five iterations for each instance-algorithm pair. The results
obtained by the realistic ROS simulations are compared to the ideal simulation

78

.......................................4.2. Mobile search

W
RF-D

T-F
+A

GSP-R
P

W
RF-D

T-F
+G

SP-R
P

DTF+A
GSP-R

P

W
RF+A

GSP-R
P

DSF+A
GSP-R

P

DS+A
GSP-R

P

DTF+G
SP-R

P

W
RF-D

T-F
+A

GSP2-
RP

DTF+A
GSP2-

RP

W
RF+G

SP-R
P

W
RF+A

GSP2-
RP

W
RF-D

T-F
+G

SP2-
RP

KAF+A
GSP-R

P

DTF+G
SP2-

RP

W
RF+G

SP2-
RP

0

2

4

6

8

10

12

14

16

18

M
ea

n
ga

p
[%

]a
ve

ra
ge

d
ov

er
in

st
an

ce
s Ideal

ROS

Figure 4.5: Comparison of the ideal and ROS evaluation.

results of identical scale in Fig. 4.5. The figure displays the %mGs based on
five iterations averaged over the four considered instances. We can see that the
results of both types are nearly identical in the case of the best solution method
combining WRF-DT-F and AGSP-RP and about half of the other methods. For
the second half, some deviations can be observed. These are most likely caused
by imprecise modeling of the robot’s kinematics in our ideal simulator and also
by occasional errors during the ROS simulation. Especially the dynamic window
approach algorithm [89], which is used as the default local planer for TurtleBot3,
has sometimes troubles with simple maneuvers such as turning the robot on the
spot by 180 degrees. Despite these inconveniences, the overall trends of both
evaluation types in Fig. 4.5 correlate. To prove our results even more relevant to
real robots, we might introduce some improvements concerning the simulations in
the future. For example, our simulator, as well as our mobile search formulations,
could consider more of the robot’s kinematics, such as acceleration. Regarding
the ROS simulations, we might better tune the navigation parameters or use an
entirely different local planner for TurtleBot3.

Let us conclude the analysis of algorithms’ performance with respect to the
quality of the produced plans. The best plans are, on average, constructed by a
solution method composed of WRF-DT-F discretization algorithm and replanning
scheme where the Ms-GVNS general metaheuristic iteratively solves and refines
the discretized version of the mobile search modeled as AGSP. Note, that this
observation is consistent with both evaluation types (ideal and ROS). The best
plans for all environments and rV = 5 produced by the leading method are shown
in Fig. 4.6. The robot stands at its initial configuration in the figure, and the
currently seen region of the environment is shown in orange. The plan is depicted

79

4. Computational evaluation

(a) : empty: texp = 333.2 seconds. (b) : potholes: texp = 372.3 seconds.

(c) : warehouse: texp = 521.2 seconds. (d) : jari-huge: texp = 547.0 seconds.

Figure 4.6: The best plans for all environments and rV = 5 produced by the WRF-
DT-F+AGSP-RP solution method.

as a route in the environment that changes its color and thickness for easier visual
tracking. It starts as green and thick, turns to blue in the middle, and ends as red
and thin. All the plans have a common feature. It looks as they guide the robot
to always travel two or more rounds around the environments. The first round is
to see large areas very early but is quite rough, meaning it leaves behind small
uncovered portions distributed evenly over the environment. The first round is
crucial for good result w.r.t. the expected time texp to find the searched object.
The other rounds cover the left-overs, which usually have a small probabilistic
chance to exhibit the searched object and therefore have just an insignificant
impact on the resulting texp. At first sight, we can see that those plans would

80

.......................................4.2. Mobile search

Symbol Meaning

cpudis Discretization CPU time.
n The number of generated locations.
cpupre Structure pre-computing CPU time.
cpupla The first routing CPU time.
cpudpp = cpudis + cpupre + cpupla
cpurep Total replanning CPU time.
cpudppr = cpudis + cpupre + cpupla + cpurep
tend Total plan execution time (in simulation time).
texp The expected time to find the object (in simulation time).
%mG = 100 · (texp − t?exp)/t?exp (for t?exp see Tab. 4.6)

Table 4.9: Extended results: the legend.

not be nearby optimum for the WRP, where we only wish to cover the whole
environment at the earliest. This observation is in line with the discussion in
Sec. 2.1.4.

The remainder of this section shows extended ideal results of the best algorithm
WRF-DT-F+AGSP-RP and some related variants. The extended results include
computational (CPU) times of several algorithms’ parts, numbers of generated
locations by the discretization, plan execution times &c. The complete list of
record labels is shown in Fig. 4.9. We explain how the new records particularly
relate to the search scheme, Alg. 3.2, next. CPU time cpudis is the run-time of the
Discretize procedure, and n = |lset| is the cardinality of its output. CPU time
cpupre is when our program prepares the instance of the routing problem, which is
then solved by the Ms-GVNS metaheuristic. The instance preparation comprises
computing the shortest paths between all pairs of cover-locations and determining
the costs and weights that define the discretized optimization problem. In other
words, cpupre is the time between procedures Discretize and Plan. CPU time
cpupla is the time of the optimization, i.e., when Ms-GVNS solves the routing
problem, or the run-time of procedure Plan. The optimization time is, in all cases,
constrained by a hard time limit tmax = 2 seconds, as noted before. CPU time
cpudpp is the total time of planning for algorithms without replanning. CPU time
cpurep is the computational time between lines 4-20 of Alg. 3.2 for variants with
replanning. CPU time cpudppr is the total time of planning for algorithms with
replanning. Simulation time tend is the last tick recorded at line 16 (during the
evaluation step), i.e., the time that WRP would optimize.

The extended results for methods WRF-DT-F+{AGSP-RP, GSP-RP, AGSP2-
RP, GSP2-RP} are shown in Tab. 4.10. In the table, all values are averaged
over 20 iterations of the ideal simulation, and the last column shows the average
over all considered instances. Records cpudis, n, and cpupre are the same for the
methods so we show them only once at the first three rows of the table. Note

81

4. Computational evaluation
that the best overall method shown at the top produces plans which take the
longest to execute; however, the average expected time texp is the lowest. Once
again, this observation demonstrates the difference between the mobile search and
the WRP. Also note, that the average CPU time of planning without replanning,
cpudpp, is about five seconds for all methods. On the other hand, the average
total time of planning, replanning included, cpudppr, is about two-times higher for
the best method compared to the one that considers GSP instead of the more
complex AGSP. However, this may not be a problem since, in a real application,
the replanning can be performed online as the search progresses, so the robot
would only need to wait five seconds for the first plan.

The extended results for methods {DTF, WRF, DSF}+AGSP-RP are shown in
Tab. 4.11. Here, we remark just one final observation. The method that produces
the second-best average plans, i.e., the one with DTF discretization, can provide
the first plan in only 1.7 seconds, on average. That is 3-times faster than the one
with sophisticated WRF-DT-F discretization producing the best average plans.

82

.......................................4.2. Mobile search

In
st

an
ce

s

D
is

cr
et

iz
at

io
n

R
ou

ti
ng

∞
-p

ot
∞

-w
ar

∞
-ja

r
5-

em
p

5-
po

t
5-

w
ar

5-
ja

r
3-

em
p

3-
po

t
3-

w
ar

3-
ja

r
av

g

W
R

F
-D

T
-F

cp
u d

is
8.

5
5.

1
7.

2
0.

4
1.

7
1.

3
2.

2
2.

0
3.

5
2.

5
5.

0
3.

6
n

15
.8

27
.9

23
.2

35
.5

40
.3

43
.8

53
.4

83
.8

87
.7

76
.8

12
2.

8
55

.6
cp

u p
re

0.
5

0.
1

0.
7

0.
3

0.
5

0.
2

0.
5

1.
4

1.
1

0.
4

1.
4

0.
6

W
R

F
-D

T
-F

A
G

SP
-R

P

cp
u p

la
0.

0
0.

0
0.

0
0.

1
0.

2
0.

2
0.

7
2.

0
2.

0
2.

0
2.

0
0.

8
cp

u d
pp

9.
0

5.
3

8.
0

0.
8

2.
4

1.
7

3.
4

5.
3

6.
6

4.
9

8.
4

5.
1

cp
u r

ep
0.

0
0.

2
0.

2
0.

7
1.

5
2.

1
5.

8
52

.7
61

.3
33

.3
12

0.
8

25
.3

cp
u d

pp
r

9.
0

5.
5

8.
2

1.
5

3.
9

3.
9

9.
2

58
.0

67
.9

38
.2

12
9.

2
30

.4
t e

nd
84

6.
3

14
24

.7
16

39
.2

12
77

.1
14

75
.3

19
54

.6
25

58
.3

21
73

.6
22

38
.8

24
93

.8
42

07
.5

20
26

.3
t e

xp
40

.3
30

2.
1

24
3.

2
34

2.
1

39
1.

5
54

2.
0

57
2.

7
62

8.
2

64
7.

7
73

6.
0

10
08

.6
49

5.
9

%
m

G
9.

6
8.

7
24

.8
2.

7
5.

1
4.

7
4.

7
4.

7
3.

5
2.

5
4.

8
6.

9

W
R

F
-D

T
-F

G
SP

-R
P

cp
u p

la
0.

0
0.

0
0.

0
0.

0
0.

1
0.

1
0.

2
1.

1
1.

3
0.

8
2.

0
0.

5
cp

u d
pp

9.
0

5.
3

8.
0

0.
7

2.
3

1.
6

3.
0

4.
5

5.
9

3.
7

8.
4

4.
7

cp
u r

ep
0.

0
0.

1
0.

1
0.

3
0.

7
0.

9
2.

3
19

.1
24

.2
10

.7
76

.0
12

.2
cp

u d
pp

r
9.

0
5.

4
8.

1
1.

1
3.

0
2.

5
5.

3
23

.6
30

.0
14

.4
84

.4
17

.0
t e

nd
84

4.
6

14
82

.9
16

81
.2

12
67

.5
14

15
.9

19
16

.6
23

76
.6

21
35

.6
22

73
.3

24
93

.3
42

34
.0

20
11

.0
t e

xp
40

.2
30

7.
0

25
5.

9
34

6.
2

39
9.

5
56

5.
2

59
2.

4
65

2.
3

67
4.

3
75

8.
8

10
36

.4
51

1.
7

%
m

G
9.

4
10

.5
31

.3
3.

9
7.

3
9.

1
8.

3
8.

7
7.

7
5.

6
7.

7
10

.0

W
R

F
-D

T
-F

A
G

SP
2-

R
P

cp
u p

la
0.

0
0.

0
0.

0
0.

1
0.

2
0.

3
0.

5
2.

0
2.

0
1.

8
2.

0
0.

8
cp

u d
pp

9.
0

5.
3

8.
0

0.
8

2.
4

1.
8

3.
4

5.
4

6.
8

4.
8

8.
8

5.
1

cp
u r

ep
0.

3
0.

8
1.

6
1.

2
4.

8
4.

2
12

.4
60

.9
86

.4
39

.2
19

9.
3

37
.4

cp
u d

pp
r

9.
3

6.
1

9.
7

1.
9

7.
2

6.
0

15
.8

66
.4

93
.1

44
.0

20
8.

2
42

.5
t e

nd
77

3.
9

14
02

.9
13

17
.1

10
31

.4
13

32
.8

17
14

.9
22

00
.9

19
31

.4
20

85
.8

21
34

.3
37

88
.3

17
92

.2
t e

xp
39

.8
31

4.
4

25
9.

8
36

0.
3

41
7.

9
55

0.
7

58
6.

8
64

4.
2

66
1.

9
76

8.
5

10
21

.5
51

1.
4

%
m

G
8.

2
13

.1
33

.3
8.

1
12

.2
6.

4
7.

3
7.

4
5.

7
7.

0
6.

1
10

.4

W
R

F
-D

T
-F

G
SP

2-
R

P

cp
u p

la
0.

0
0.

0
0.

0
0.

0
0.

1
0.

1
0.

2
1.

0
1.

3
0.

6
2.

0
0.

5
cp

u d
pp

9.
0

5.
3

8.
0

0.
7

2.
3

1.
6

3.
0

4.
4

6.
0

3.
6

8.
7

4.
8

cp
u r

ep
0.

3
0.

7
1.

3
0.

8
3.

8
2.

9
9.

2
29

.3
49

.4
20

.6
15

7.
5

25
.1

cp
u d

pp
r

9.
3

6.
0

9.
4

1.
5

6.
1

4.
5

12
.3

33
.7

55
.4

24
.2

16
6.

2
29

.9
t e

nd
78

1.
7

13
87

.6
11

06
.7

99
9.

3
12

99
.4

17
56

.2
20

82
.6

19
32

.4
20

40
.6

20
96

.7
39

08
.3

17
62

.9
t e

xp
40

.3
31

6.
8

29
3.

1
37

0.
0

43
6.

0
56

6.
4

60
3.

1
67

5.
7

70
0.

1
77

6.
8

10
48

.5
52

9.
7

%
m

G
9.

6
14

.0
50

.3
11

.1
17

.1
9.

4
10

.3
12

.6
11

.8
8.

2
8.

9
14

.8

Ta
bl
e
4.
10
:
Ex

te
nd

ed
re
su
lts

fo
r
W

R
F-
D
T
-F
+
{A

G
SP

-R
P,

G
SP

-R
P,

A
G
SP

2-
R
P,

G
SP

2-
R
P}

.
A
ll
tim

es
ar
e
in

se
co
nd

s.

83

4. Computational evaluation
Instances

D
iscretization

R
outing

∞
-pot

∞
-w

ar
∞

-jar
5-em

p
5-pot

5-w
ar

5-jar
3-em

p
3-pot

3-w
ar

3-jar
avg

D
T

F
A

G
SP

-R
P

cpu
dis

0.4
0.1

0.4
0.0

0.1
0.1

0.1
0.1

0.1
0.1

0.1
0.1

n
16.0

32.0
27.0

38.0
41.0

43.0
55.0

86.0
90.0

84.0
122.0

57.6
cpu

pre
0.5

0.1
1.1

0.3
0.5

0.2
0.6

1.4
1.1

0.4
1.4

0.7
cpu

pla
0.0

0.1
0.0

0.1
0.2

0.2
0.7

2.0
2.0

2.0
2.0

0.9
cpu

dpp
0.9

0.3
1.5

0.5
0.8

0.5
1.4

3.5
3.2

2.5
3.6

1.7
cpu

rep
0.0

0.5
0.4

1.1
1.6

2.0
6.4

57.0
69.4

47.2
123.4

28.1
cpu

dppr
1.0

0.8
1.9

1.6
2.4

2.5
7.8

60.6
72.5

49.7
127.0

29.8
tend

875.9
1618.6

2367.9
1248.9

1484.2
1952.3

2404.3
2330.6

2400.8
3136.3

4750.7
2233.7

texp
37.7

280.1
244.0

342.5
402.1

595.1
588.0

633.6
640.1

740.9
1019.8

502.2
%

m
G

2.5
0.8

25.2
2.8

8.0
14.9

7.5
5.6

2.2
3.1

5.9
7.1

W
R

F
A

G
SP

-R
P

cpu
dis

8.2
5.1

7.1
0.4

1.6
1.3

2.1
1.9

3.4
2.5

4.9
3.5

n
14.7

26.6
23.4

31.1
38.5

44.0
52.3

79.1
81.0

77.2
118.9

53.3
cpu

pre
0.4

0.1
0.7

0.2
0.4

0.2
0.5

1.2
0.9

0.4
1.3

0.6
cpu

pla
0.0

0.0
0.0

0.1
0.2

0.3
0.6

2.0
2.0

1.9
2.0

0.8
cpu

dpp
8.6

5.2
7.8

0.6
2.3

1.7
3.3

5.1
6.3

4.7
8.2

4.9
cpu

rep
0.0

0.2
0.2

0.4
1.4

2.2
5.3

43.9
49.3

30.9
112.3

22.4
cpu

dppr
8.6

5.4
8.0

1.0
3.6

3.9
8.6

49.1
55.6

35.6
120.5

27.3
tend

767.3
1468.8

1656.8
1260.5

1501.0
1911.6

2541.8
2123.3

2209.5
2336.3

4293.5
2006.4

texp
46.4

313.3
245.4

371.8
412.0

550.4
585.0

658.8
669.9

755.1
1047.5

514.1
%

m
G

26.1
12.7

25.9
11.6

10.7
6.3

6.9
9.8

7.0
5.1

8.8
11.9

D
SF

A
G

SP
-R

P

cpu
dis

0.2
0.2

0.3
0.1

0.2
0.2

0.2
0.2

0.3
0.3

0.5
0.2

n
12.4

27.4
25.9

31.3
37.8

44.5
49.7

80.2
81.7

77.4
109.0

52.5
cpu

pre
0.4

0.1
0.9

0.2
0.4

0.2
0.5

1.3
0.9

0.4
1.2

0.6
cpu

pla
0.0

0.0
0.0

0.1
0.2

0.3
0.5

2.0
2.0

2.0
2.0

0.8
cpu

dpp
0.5

0.3
1.2

0.4
0.8

0.6
1.2

3.4
3.3

2.6
3.7

1.6
cpu

rep
0.0

0.2
0.3

0.4
1.2

2.5
4.3

44.7
51.2

35.2
96.0

21.5
cpu

dppr
0.6

0.5
1.5

0.7
2.0

3.1
5.5

48.2
54.5

37.8
99.7

23.1
tend

772.8
1569.3

2173.8
1311.8

1586.3
2084.9

2487.6
2243.9

2323.0
2547.4

4466.8
2142.5

texp
46.9

337.4
249.8

371.2
400.2

559.7
595.9

637.5
668.3

752.6
1029.2

513.5
%

m
G

27.5
21.4

28.1
11.4

7.5
8.1

8.9
6.2

6.8
4.8

6.9
12.5

Table
4.11:

Extended
results

for
{D

T
F,W

R
F,D

SF}+
A
G
SP-R

P.A
lltim

es
are

in
seconds.

84

Chapter 5

Final remarks

5.1 Conclusions

In this work, we propose an original solution to the mobile search problem.
In general, the problem is solved by a standard decoupling approach; nevertheless,
both parts of the solution are innovative and can also be seen as stand-alone
contributions to related sub-problems — WRP and TDP. In our global solution,
the main continuous problem is discretized by selecting a set of locations that
completely cover the considered environment — the discretization. Then their
visits’ order is determined such that the expected time to find the target is
minimized — the routing. About the same amount of work is dedicated to both
solution stages.

In the discretization, we look for the shortest route covering the whole environ-
ment — a problem known in the literature as the WRP. The WRP is approached,
again, by decomposition to two steps. First, a discrete set of covering points is
generated. Second, the points’ locations are optimized so that the shortest possible
route connects them all while constrained that they remain to cover the whole
environment. Our solution originally combines approaches from computational
geometry and combinatorial optimization. The first step is achieved by customized
dual sampling algorithm [13] utilizing solutions to modified MACS problem [14],
and the optimization is done by combining solutions to the TSP [15], and TPP [16].
After obtaining the solution to the WRP, i.e., a route represented discretely as
a sequence of covering locations connected by the shortest paths, the locations
are de-sequenced and passed to the mobile search for re-sequencing that would
minimize the second problem’s optimization criterion. The overall idea behind

85

5. Final remarks..
tackling the mobile search discretization obliquely by solving the WRP is based on
the premise that particular discretizations well-fitted to either one of the problems
would share some common properties. This hypothesis is confirmed only partially
when tested on instances of the mobile search, as the proposed was not the best
among tested methods, the others of which were taken directly from the literature.
Our methods’ strengths mostly show off around dense obstacle areas. However, as
we found out, in mobile search, these areas are usually visited at later stages of the
search and therefore have just a minor effect on the solution’s quality. In wide-open
areas that are the most desired to be searched efficiently and therefore crucial for
good results, the method based on the dense conforming constrained Delaunay
triangulation [11] exhibits better properties than our original method. Ultimately,
we receive the best results from a hybrid that combines both approaches and a
custom simple filtering that we additionally design. The filtering method efficiently
reduces a set of locations to just those that are necessary for covering the whole
environment. We show that filtered cover-locations yield better solutions to the
mobile search in our experiments. In principle, the filtering method could also be
used for solving the AGP by densely covering the environment and then applying
the filtering, but this is not attempted in this work.

Regarding the routing stage of the mobile search, a significant portion of this
thesis studies the simplest model — the TDP. We propose a new metaheuristic
based on GVNS with restarts, deterministic VND, and custom double-bridge
inspired perturbations for solving the TDP. Its design, together with selecting the
best parametrization, is transparently described in a step-by-step fashion. The
method’s performance on the total of 120 benchmark instances of sizes 10-1000 is
assessed by three types of experiments: (1) with hard upper limit on computational
time, (2) with target solution cost, and (3) with fixed number of iterations. In
the first two contexts (1, 2), the proposed method stably outperforms a reference
metaheuristic suggested by Silva et al. [30]. Therefore, the proposed method is
suitable for real-time applications, e.g., in mobile robotics, where the best possible
solution is required while a hard limit bounds the time of computation. In the
literature’s most classical context (3), the proposed method provides solutions of
better quality in exchange for longer running times for instances of size 500, while
for smaller instances, this trend is observed reversely with the reference method.
For the 500-customer instances, the proposed method found four new best known
solutions.

As future improvements of the proposed metaheuristic for the TDP, we con-
template an extension to the MDM version similarly as the authors of [74] do
with GILS-RVND. Application of DM techniques will not change the main results
presented in this thesis. It will, however, further improve the performance of
Ms-GVNS on larger instances and in scenarios without strict time constraints.

86

....................................... 5.1. Conclusions

Further in the thesis, we extend the TDP to better model the mobile search.
The first one of the extended models, GSP, considers weights associated with
locations as a way to deal with non-equal locations’ gains. The weights are
proportional to the areas of regions sensed by the robot from the locations. The
second extension, ATDP, considers an effort needed to turn the robot, which is
modeled by combining two and three-dimensional costs. One another suggested
routing problem, GSP2, models sensing on the way between the cover-locations by
considering two-dimensional weights computed as the areas of regions perceived
from the shortest routes between locations. Two more models — AGSP and
AGSP2 — are created as the result of combining the ones previously mentioned.
Four of the new models — ATDP, AGSP, GSP2, AGSP2 — are original to this
work to the best of our knowledge. We adapt the proposed metaheuristic for
the TDP to the new models by considering specialized total solution costs and
separate efficient calculations of operator improvements. The derivations of the
improvements are analogous to those for the TDP and are part of the projects’
work too. Lastly, as the search progresses, we propose replanning as a simple trick
to deal with the non-static character of locations’ gains.

The developed metaheuristics and the proposed discretization methods are
integrated into a software framework for the mobile search. Designing and im-
plementing the framework is part of the work as well. A realistic simulation
with a commercial robot, TurtleBot3 [88], running on ROS, and a simple ideal
stand-alone simulator are part of the framework. The ideal simulator was designed
to perform large-scale experiments faster and allow replanning before starting a
plan’s execution. It assumes that the robot’s movements are composed of simple
maneuvers: going ahead with velocity vlin and turning on the spot with veloc-
ity vang. The velocity constants are estimated based on the realistic simulations
with TurtleBot3. In our experiments, we show that the two types of simulations
provide, to some extent, comparable results.

Using the framework, we thoroughly evaluate 36 combinations of the discretiza-
tion and routing variants on 11 mobile search instances and analyze the results.
The solution method that provides the best average plans benefits from combining
the hybrid discretization and AGSP model with replanning. The second best
method uses the same routing but simpler triangulation-based discretization. How-
ever, it can provide the first plan in about 3-times lesser computational time than
the best one. Lastly, we also confirm that our suggested model improvements
indeed enhance the resulting plans, except for the two-dimensional weights. Some
additional future work is required to adjust the weights’ computing for the GSP2
and AGSP2 such that they stress out the beginnings of the shortest routes, which
would be in line with the overall goal of the mobile search.

87

5. Final remarks..
5.2 Publication plans

We intend to publish the key results created within this diploma project on an
international forum. In this last section, we reveal our current publication plans.

This work’s contributions can be divided into three major parts — TDP-related,
WRP-related, and related to the mobile search as a whole — the first of which is
complete, and the second two require slight amount of additional work. We intend
to publish them separately. More specifically, as follows...1. The proposed metaheuristic for the TDP, Ms-GVNS, has been already de-

scribed in the article Mikula, J., Kulich, M. "A metaheuristic for the Traveling
Deliveryman Problem in applications with a hard limit on computational
time," which is currently in review of the journal International Transactions
in Operational Research (IF 2.987)...2. The proposed method for the discretization based on covering the environment
by MCCS, together with solution methods for the traveling salesmen problem
with neighborhoods (TSPN), appears to provide good quality solutions to
the WRP. The TSPN methods were not particularly discussed in this work,
but we want to employ those introduced in [82] that utilize solutions to the
TPP similarly to our proposed Improve method (Sec. 3.2.2), but in a more
sophisticated way. We plan to present the overall combination in an article
and send it for review to IEEE Robotics and Automation Letters (IF 3.608)...3. The complete solution to the mobile search will be presented in another
article that we intend to send to IEEE Transactions on Robotics (IF 6.123).
In the definitive paper, in addition to experiments performed in this thesis,
we also want to compare our solution to Sarmiento et al. [3, 5] that introduce
the only other complex solution methods for the mobile search known to us
at this moment. We did not achieve the comparison in the thesis because
Sarmiento et al. use slightly different assumptions about the problem, and
therefore the transition of their solution methods to our framework is not
straightforward. The authors in [3] assume differently from us the following:
the robot is modeled as a single point, the sensor has unlimited range and
sensing is performed only at the covering locations, i.e., not throughout the
whole search independently of the robot’s position, as in our case. Continuous
sensing is assumed in [5], but the rest of the assumptions stays the same.
Implementing and adapting their solution methods to our current framework
requires some additional work that we will carry out in the future.

88

Appendix A

The TDP metaheuristic design

An extended methodology for comparing a lot of different metaheuristics on many
instances of the problem is introduced in Sec. A.1. Then, the best metaheuristic
design is done in two phases. First, several promising sets of neighborhoods are
selected for consideration in the improvement procedure. The process is described
in Sec. A.2. Second, many methods’ configurations are tested, and the best is
selected as the proposed method. Sec. A.3 provides the details. The final method’s
specification is done in the last Sec. A.4.

A.1 Methodology

While designing the best metaheuristic, on many occasions, we need to compare
the performance of a lot of distinct variants on many different instances by
some adequate metric. For this purpose, we extend the TTT-plots methodology
presented in Sec. 1.3.5 by one extra step. We consider a reference algorithm AR
and z instances of the TDP labeled as Inst = {1, . . . , z}. For each given instance
i ∈ Inst, TTT-plots are computed for the reference and the tested method. Then,
the probability pitr = P (RT iT < RT iR) is computed as described above. Here,
RT iT and RT iR are random variables representing the time needed by the tested
algorithm and the reference algorithm respectively to find a solution of an instance
i which is as good as the given target value. Then, for every tested algorithm, we

89

A. The TDP metaheuristic design
report the final metrics

mean probability : mp =
∑
i p
i
tr

Z
, and (A.1)

weighted mean probability : wmp =
∑
i size(i) · pitr∑
i size(i)

, (A.2)

where size(i) is the number of vertices of the instance i. We choose GILS-
RVND [30] as the reference algorithm for reasons explained in Sec. 3.3.1.

A.2 Promising neighborhoods

Here, all the general schemes are considered. Namely: GVNS, GRASP, and G+G,
i.e., Alg. 3.8, 3.9, and 3.10 respectively. Also, two extra options were taken into
account for G+G. The inner GVNS cycle inside G+G stops either after a fixed
number of iterations jmax or after jmax iterations without improvement. The
two versions of G+G are called G+G-(4a), and G+G-(4b) respectively with a
reference to Point (4) of Sec. 1.1. The parameters of the algorithms are all fixed,
with the exception of neighborhood structures. The parameters are chosen as
follows: P = (4, 8, 12, 16), R = {.00, .01, . . . , .25}, and jmax = 10. The methods
are tested on 15 standard benchmark instances TRP-S{50,100,200}-R{1,2,3,4,5}
from Salehipour et al. [29]. For each pair consisting of a method and an instance,
nrun = 200 runs are performed to compute a single TTT-plot. From each
method’s TTT-plots over all instances, the mp and wmp values are calculated as it
is described in Sec. A.1. The target solution cost for each instance is chosen to be
1.01-multiple of the best solution reported by [30]. Also, in this set of experiments,
RVND is preferred over the fixed-sequence VND. Thus, we do not take the order
of neighborhoods into account, and the notion of sets instead of sequences is
applicable. The way of selecting the most promising sets of neighborhoods is
described next.

Assuming we have omax operators available, then the total number of their
combinations used in RVND is(

omax
1

)
+
(
omax

2

)
+ · · ·+

(
omax

omax − 1

)
+
(
omax
omax

)
. (A.3)

For omax = 8, we get 8+28+56+70+56+28+8+1 = 255 available combinations.
To reduce the number, we heuristically select just some of them. First, a set of all
8 neighborhoodsM8 = {Nop : op ∈ ops8}, ops8 = {2-opt, 1-point, or-opt2,
or-opt3, or-opt4, or-opt5, 2-point, 3-point }, and its 8 corresponding subsets
M8\op =M8 \ {Nop}, each containing one lesser neighborhood thanM8, are
tested as part of the 4 considered algorithms. The results are averaged over the
algorithms and the best set amongM8\op, op ∈ ops8 , is chosen and denoted

90

................................. A.2. Promising neighborhoods

Scheme

2-
op

t

1-
po

in
t

or
-o

pt
2

or
-o

pt
3

or
-o

pt
4

or
-o

pt
5

2-
po

in
t

3-
po

in
t

%wmp %mp

1 GVNS X X X 52.1 52.7
2 GVNS X X X X 50.1 51.1
3 GVNS X X X X 49.9 50.9
...

...
...

...
...

...
...

...
...

...
...

...
19 G+G-(4b) X X X X 46.0 46.6
...

...
...

...
...

...
...

...
...

...
...

...
38 G+G-(4a) X X X X 42.9 44.3
...

...
...

...
...

...
...

...
...

...
...

...
106 GRASP X X X X X X 15.7 22.4

...
...

...
...

...
...

...
...

...
...

...
...

223 G+G-(4b) X 0.8 1.1
...

...
...

...
...

...
...

...
...

...
...

...
226 GVNS X 0.2 0.3
227 G+G-(4a) X 0.2 0.3
228 GRASP X 0.1 0.2

avg avg

GVNS - - - - - - - - 30.7 32.3
G+G-(4b) - - - - - - - - 26.9 28.4
G+G-(4a) - - - - - - - - 25.8 27.7
GRASP - - - - - - - - 9.1 13.7

Table A.1: Selecting promising neighborhoods: full results. Ordered by the %wmp
column, shortened.

asM7. Then, the set of considered operators is changed to ops7 ← ops8 \
(M8 −M7). In the next iteration, sets M7\op, op ∈ ops7 , are tested and
evaluated analogously as above. The same is repeated forM6, . . . ,M1. We
follow this strategy in a relaxed way, meaning that at some points, we add extra
promising branches to the exploration tree. Eventually, we end up with 57 sets of
neighborhoods tested in the four considered schemes. The results are recorded in
a table and ordered by the value of wmp. The table has 57 · 4 = 228 rows, and
its shortened version is shown in Tab. A.1. The shortened table shows the best
three configurations on rows 1-3 and then the rows, where each algorithm appears
for the first or for the last time. The symbol X in the operator’s column means
that the operator was included in the tested neighborhood set. %mp and %wmp
are the metrics described in Sec. A.1 in percents, rounded. The second metric,
%wmp, emphasizes good performance on larger instances, which is convenient and
we favor it over %mp.

91

A. The TDP metaheuristic design

2-
op

t

1-
po

in
t

or
-o

pt
2

or
-o

pt
3

or
-o

pt
4

or
-o

pt
5

2-
po

in
t

3-
po

in
t

%wmp %mp

1 X X X X 46.4 47.3
2 X X X 46.1 47.8
3 X X X X X 45.1 46.7
4 X X X X X 44.9 45.3
5 X X X X 44.8 45.9
6 X X X X X X 44.6 45.5

7 X X X X 44.4 45.7
...

...
...

...
...

...
...

...
...

...
...

35 X X 34.2 39.5
36 X X X X X 10.4 13.8
...

...
...

...
...

...
...

...
...

...
...

46 X X X X X X 6.0 8.1
47 X X X X X X 5.9 8.1
...

...
...

...
...

...
...

...
...

...
...

57 X 0.4 0.6

Table A.2: Selecting promising neighborhoods: operator sets comparison. Ordered
by %wmp column, shortened.

We can observe that the location of a particular configuration in the table
is dependent both on the considered operators and the algorithm. The first 18
rows are ruled by GVNS only and the first 105 rows only by GVNS and G+Gs.
The first appearance of pure GRASP is in row 106 with the value of %wmp 15.7,
which is not much compared to the first appearance of GVNS, G+G-(4b), and
G+G-(4a) with the values of %wmp 52.1, 46.0, and 42.9 respectively. To better
illustrate how GRASP lacks behind the other methods, we show the averaged
values over the operators at the bottom of Tab. A.1. Here we can see that the
average value of %wmp is just 9.1 for GRASP while for the other methods it is over
25. Note, that the most significant difference between G+Gs and pure GRASP
is that G+Gs contain the perturbation phase, which now seems to be crucial
for TDP solving. This confirms the so-far leading role of GVNS, which contains
the perturbation and not the randomized restarts. We might even hypothesize,
that the lack of randomized restarts is what puts GVNS before G+Gs. Based
on these interim results, we decide not to consider the pure GRASP algorithm
anymore. Its performance is deficient compared to other methods, and its core
idea, randomized restarts, can be represented as well by G+Gs in later phases of
testing. The final results of this testing stage are shown in the shortened Tab. A.2.
The full version of this table is obtained by removing all rows with GRASP from
the full version of Tab. A.1, then averaging over the algorithms, and ordering
the rows by the values of %wmp. The best seven sets of operators are in rows

92

.................................. A.3. Finding the best variant

1-7 of Tab. A.2. These sets provide the best performance on average, throughout
all the considered instances and algorithms. Note that they have some common
features. For example, all of them contain operators 2-opt, 1-point, and at
least one of or-opt2, or-opt3, or-opt4, and none of them contains or-opt5, or
3-point. In addition, the special importance of 2-opt and 1-point can be seen
from the table as a whole. Combinations, which contain both operators, are all in
the first 35 rows. Note that the worst among the first 35, is the one where only
2-opt and 1-point are present and no other operator with them. The first row,
which does not contain 1-point is the 36th, and a significant jump (from 34.2 to
10.4) in the value of %wmp can be seen when compared with the 35th row. All
combinations which contain 2-opt and not 1-point are in the rows 36-46, and all
combinations which contain 1-point and not 2-opt are in the rows 47-57. From
these observations, we can conclude that 2-opt on its own is better than 1-point
on its own, however, to get a significant boost in performance, both operators must
be present in the considered set. To get even better results, 1-4 other operators
can be taken into account, excluding or-opt5, and 3-point. The most promising
sets of operators that we select for further consideration are the best six (above
the line) of Tab. A.2, and we entitle them as N ?

1 , . . . , N
?

6 respectively.

A.3 Finding the best variant

Here, three basic algorithms GVNS, G+G-(4a), and G+G-(4b) are considered
together with the sets of promising neighborhoods N ?

1 , . . . , N
?

6 . In addition
to RVND - the improving procedure used so far - we also consider its original
fixed-sequence version - VND. For the VND, a specific order of the neighborhood
structures must be taken into account. We use the same order as in which the oper-
ators appear in Tab. A.2. This choice is motivated by the importance of 2-opt, and
1-point, which are put on the first and the second place in the sequence respec-
tively. The rest of the operators are put in the sequence arbitrarily ordered, as no
significant observations of their effect on the performance are made. Furthermore,
four different configurations of the perturbation parametrization are considered:
P1 = (4), P2 = (4, 8), P3 = (4, 8, 12), and P4 = (4, 8, 12, 16). The constructive
heuristic in G+Gs has several different variants as well. All variants are imple-
mented by Construct(srcl) procedure as it is discussed in Sec 3.3.4, where srcl = 1
for the deterministic strategy, srcl = 3 for the fixed-randomness strategy, and srcl
is constructed as in line 5 of Alg. 3.9 with R = {.00, .01, . . . , .25} for the variable-
randomness strategy. Let us call these construction strategies det, fixed-srcl and
rand-srcl respectively. Also, for both G+G heuristics, 8 different values of the inner
iteration constant jmax are considered: jmax ∈ {10, 20, 30, 40, 50, 100, 150, 200}.

93

A. The TDP metaheuristic design
Scheme Constr. jmax RVND N ?

(·) P(·) %wmp %mp

1 G+G-(4b) det 30 4 3 72.2 74.3
2 G+G-(4a) det 40 5 3 72.1 74.1
3 G+G-(4a) det 40 4 4 71.9 74.7
...

...
...

...
...

...
...

...
...

38 GVNS 5 3 71.0 73.3
...

...
...

...
...

...
...

...
...

56 G+G-(4b) det 50 5 2 70.8 72.4
...

...
...

...
...

...
...

...
...

274 G+G-(4b) fixed-srcl 20 4 4 66.6 69.9
...

...
...

...
...

...
...

...
...

276 G+G-(4b) det 200 2 1 66.4 68.6
...

...
...

...
...

...
...

...
...

287 G+G-(4b) rand-srcl 10 4 4 66.0 68.9
...

...
...

...
...

...
...

...
...

572 G+G-(4b) det 50 X 2 2 63.5 66.6
...

...
...

...
...

...
...

...
...

2352 G+G-(4a) rand-srcl 10 2 1 30.1 45.0

Table A.3: Finding the best metaheuristic: full results. Ordered by the %wmp
column, shortened.

Ultimately, we consider two versions of the improvement procedure, six sets /
sequences of neighborhood structures, and four different perturbation parametriza-
tions for the GVNS, i.e., 2 · 6 · 4 = 48 different configurations. For G+Gs, we
have in addition: three versions of the construction procedure, and eight values
for the J parameter, therefore 48 · 3 · 8 = 1152 different configurations. Overall,
48 + 2 · 1152 = 2352 heuristics’ configurations are tested on 15 instances TRP-
S{50,100,200}-R{1,2,3,4,5} [29], and nrun = 200 runs for each method-instance
pair are performed. The produced run-times are processed in accordance with
the methodology of Sec. A.1. The results in a form of mp and wmp metrics for
each method configuration are recorded into a 2352-row table, whose shortened
version we show in Tab. A.3. The symbol X in RVND column means RVND is
used as the improvement procedure. The absence of X means VND is used. The
number q ∈ {1, . . . , 6} in column N ?

(·) means N ?

q is used as the neighborhood
set/sequence, and the number g ∈ {1, . . . , 4} in column P(·) means the sequence
Pg is used as the perturbation parametrization. Values %wmp and %mp are the
metrics described in Sec. A.1, in percents, rounded.

94

.................................. A.3. Finding the best variant

Construction RVND P(·) %wmp %mp

1 det 4 69.7 73.0
2 det 3 69.2 72.5
3 det 2 65.9 69.9
4 fixed-srcl 4 63.6 68.0
5 rand-srcl 4 63.1 67.7
6 fixed-srcl 3 62.2 66.8
7 rand-srcl 3 61.7 66.6
8 det X 2 59.6 63.2
9 det X 3 58.8 62.8
10 fixed-srcl 2 57.2 63.2
11 det X 4 57.1 61.6
12 rand-srcl 2 56.7 62.9
13 det X 1 56.3 60.8
14 det 1 54.8 61.3
15 fixed-srcl X 2 54.6 58.7
16 fixed-srcl X 3 54.2 58.4
17 rand-srcl X 2 53.6 57.8
18 rand-srcl X 3 53.5 57.8
19 fixed-srcl X 4 52.9 57.6
20 rand-srcl X 4 52.1 56.9
21 fixed-srcl X 1 50.2 55.4
22 rand-srcl X 1 49.0 54.6
23 fixed-srcl 1 44.2 53.4
24 rand-srcl 1 43.3 52.9

Table A.4: Comparison of construct-improve-perturbate strategies for G+G-(4a).
Ordered by the %wmp column.

The best three heuristics’ configurations, the worst one, and some notable
others, are displayed in Tab. A.3. The notable configurations include the following
rows: 38, where GVNS firstly appears; 56, where P2 firstly appears; 274, where
fixed-srcl firstly appears; 276, where P1 firstly appears; 287, where rand-srcl
firstly appears; and 572, where RVND firstly appears. Let us, for the rest of this
paragraph, discuss how certain components of certain configurations can have an
effect on the value of wmp. Note, that the configurations in the head of the table
carry some common features. They follow one of G+G schemes, they are fully
deterministic except the perturbation, and the perturbation parametrization is
either P3 or P4. To better illustrate how different construct-improve-perturbate
strategies effect the resulting %wmp, we show Tab. A.4. Here, we select the rows
of a single scheme - G+G-(4a) and average them over jmax, and N

?

(.) columns.
It is clear from the table, that the strategies with the highest value of %wmp
(rows 1-3) use deterministic construction, VND and P4, P3, and P2. The next
best-performing methods (rows 4-12) use P4, P3, or P2 and only one of these two
features: deterministic construction, and VND. The rest of the methods (13-24) use

95

A. The TDP metaheuristic design
either both randomized construction and RVND, or P1. On average, deterministic
construction is better then randomized, srcl-fixed construction is better than
srcl-rand construction, and VND is better than RVND. If the construction and
the improvement procedure are fixed, then using P1 in perturbation is always the
worst option. If VND is used, then the higher q for Pq, the higher value of %wmp.
If RVND is used, then the best option for q is 2. Similar conclusions can be made
for the other schemes as well.

A.4 The final method

According to Tab. A.3, the best overall method configuration is the G+G-(4b)
with deterministic construction, jmax = 30, VND,N = (N2-opt,N1-point,Nor-opt2,
Nor-opt3,Nor-opt4), and P = (4, 8, 12). The best heuristic’s scheme is based on
G+G general scheme, however, the construction it uses is deterministic, and
therefore the relation with GRASP is no longer accurate. Let us denote the
metaheuristic as multi-start GVNS (Ms-GVNS). Our final observation regarding
Ms-GVNS is that for larger instances (including those of size 1000) it works better
with higher jmax. Therefore, the final method is the same as described above,
except jmax = dsize(i)/5e instead of being fixed to 30. Here, size(i) is the size of
the instance i being solved.

96

Appendix B

List of abbreviations

Abbr. Meaning

AGP art gallery problem
AGSP GSP extended by considering three-dimensional costs
AGSP-RP AGSP with replanning
AGSP2 AGSP modified by considering two-dimensional weights
AGSP2-RP AGSP2 with replanning
ATDP TDP extended by considering three-dimensional costs
CDF cumulative distribution function
DM data mining
DS discretization based on dual sampling algorithm
DSF DS with filtering
DT discretization based on conforming constrained Delaunay triangulation
DTF DT with filtering
FIM frequent itemset mining
G+G GRASP + GVNS
GILS GRASP-ILS
GRA greedy randomized adaptive (adj.)
GRASP GRA search procedure
GSP graph search problem
GSP-RP GSP with replanning
GSP2 GSP modified by considering two-dimensional weights
GVNS generalized VNS
IF impact factor
ILP integer linear programming
ILS iterated local search
KA discretization based on Kazazakis and Argyros
KAF KA with filtering
LK Lin-Kernighan heuristic

97

B. List of abbreviations
LKH Helsgaun’s effective implementation of the LK
MACS maximum area convex subset
MCCS maximally covering convex subset
MDM multi-DM
MILP mixed integer linear programming
mp mean probability
Ms-GVNS multi-start GVNS
PDF probability density function
ROS Robot Operating System
RP replanning
RTD run-time distribution
RVND randomized VND
TPP touring polygons problem
TPPO TPP with obstacles
TS tabu search
TSP traveling salesman problem
TSPN TSP with neighborhoods
TTT time to target
UB upper bound
VND variable neighborhood descent
VNS variable neighborhood search
VRP vehicle routing problem
wmp weighted mean probability
WR discretization based on WRP
WRF WR with filtering
WRF-DT-F discretization combining WRF and DT, with filtering
WRP watchman route problem

98

Appendix C

Bibliography

[1] C. Robin and S. Lacroix, “Multi-robot target detection and tracking: taxon-
omy and survey,” Autonomous Robots, vol. 40, pp. 729–760, apr 2016.

[2] A. Sarmiento, R. Murrieta, and S. Hutchinson, “An efficient strategy
for rapidly finding an object in a polygonal world,” in Proceedings 2003
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
2003) (Cat. No.03CH37453), vol. 2, pp. 1153–1158, IEEE, 2003.

[3] A. Sarmiento, R. Marrieta-Cid, and S. Hutchinson, “Planning expected-
time optimal paths for searching known environments,” in 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (IEEE
Cat. No.04CH37566), vol. 1, pp. 872–878, IEEE, 2004.

[4] A. Sarmiento, R. Murrieta-Cid, and S. Hutchinson, “A multi-robot strategy
for rapidly searching a polygonal environment,” in Advances in Artificial
Intelligence – IBERAMIA 2004, pp. 484–493, Springer Berlin Heidelberg,
2004.

[5] A. Sarmiento, R. Murrieta-Cid, and S. Hutchinson, “An Efficient Motion
Strategy to Compute Expected-Time Locally Optimal Continuous Search
Paths in Known Environments,” Advanced Robotics, vol. 23, pp. 1533–1560,
jan 2009.

[6] J. Lv, M. Liu, H. Zhao, B. Li, and S. Sun, “Maritime Static Target Search
Based on Particle Swarm Algorithm,” in SAI Intelligent Systems Conference,
pp. 917–927, 2018.

[7] M. Kulich, L. Přeučil, and J. J. M. Bront, “Single robot search for a stationary
object in an unknown environment,” in 2014 IEEE International Conference
on Robotics and Automation (ICRA), pp. 5830–5835, IEEE, may 2014.

99

C. Bibliography ..
[8] M. Kulich, J. J. Miranda-Bront, and L. Přeučil, “A meta-heuristic based

goal-selection strategy for mobile robot search in an unknown environment,”
Computers & Operations Research, vol. 84, pp. 178–187, aug 2017.

[9] M. Kulich, L. Přeučil, and J. J. Miranda Bront, “On multi-robot search for a
stationary object,” in 2017 European Conference on Mobile Robots (ECMR),
pp. 1–6, IEEE, sep 2017.

[10] M. Kulich and L. Přeučil, “Multirobot search for a stationary object placed in
a known environment with a combination of GRASP and VND,” International
Transactions in Operational Research, apr 2020.

[11] J. R. Shewchuk, “Delaunay refinement algorithms for triangular mesh gener-
ation,” Computational Geometry, vol. 22, pp. 21–74, may 2002.

[12] G. Kazazakis and A. Argyros, “Fast positioning of limited-visibility guards
for the inspection of 2D workspaces,” in IEEE/RSJ International Conference
on Intelligent Robots and System, vol. 3, pp. 2843–2848, IEEE, 2002.

[13] H. H. González-Baños, , and J.-C. Latombe, Planning robot motions for
range-image acquisition and automatic 3d model construction. Citeseer, 1998.

[14] D. Coeurjolly and J. Chassery, “Fast approximation of the maximum area
convex subset for star-shaped polygons,” RR-LIRIS-2004-006, 2004.

[15] W. J. Cook, In Pursuit of the Traveling Salesman: Mathematics at the Limits
of Computation. Princeton University Press, 2012.

[16] X. Pan, F. Li, and R. Klette, “Approximate shortest path algorithms for
sequences of pairwise disjoint simple polygons,” Proceedings of the 22nd
Annual Canadian Conference on Computational Geometry, CCCG 2010,
pp. 175–178, 2010.

[17] S. Sahni and T. Gonzalez, “P-Complete Approximation Problems,” Journal
of the ACM (JACM), vol. 23, pp. 555–565, jul 1976.

[18] E. Koutsoupias, C. Papadimitriou, and M. Yannakakis, “Searching a fixed
graph,” in Automata, Languages and Programming, pp. 280–289, Springer
Berlin Heidelberg, 1996.

[19] A. Archer and D. P. Williamson, “Faster approximation algorithms for
the minimum latency problem,” in Proceedings of the Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 88–96, SIAM, 2003.

[20] M. Fischetti, G. Laporte, and S. Martello, “The Delivery Man Problem and
Cumulative Matroids,” Operations Research, vol. 41, pp. 1055–1064, dec
1993.

[21] G. Ausiello, S. Leonardi, and A. Marchetti-Spaccamela, “On salesmen, re-
pairmen, spiders, and other traveling agents,” in Algorithms and Complexity,
pp. 1–16, Springer Berlin Heidelberg, 2000.

100

..C. Bibliography
[22] A. M. Campbell, D. Vandenbussche, and W. Hermann, “Routing for Relief

Efforts,” Transportation Science, vol. 42, pp. 127–145, may 2008.

[23] J. Faigl and G. A. Hollinger, “Unifying multi-goal path planning for au-
tonomous data collection,” in 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 2937–2942, IEEE, sep 2014.

[24] I. Gentilini, F. Margot, and K. Shimada, “The travelling salesman problem
with neighbourhoods: MINLP solution,” Optimization Methods and Software,
vol. 28, pp. 364–378, apr 2013.

[25] S. L. Smith and F. Imeson, “GLNS: An effective large neighborhood search
heuristic for the Generalized Traveling Salesman Problem,” Computers and
Operations Research, vol. 87, pp. 1–19, 2017.

[26] A. Gunawan, H. C. Lau, and P. Vansteenwegen, “Orienteering Problem: A
survey of recent variants, solution approaches and applications,” European
Journal of Operational Research, vol. 255, pp. 315–332, dec 2016.

[27] H. Abeledo, R. Fukasawa, A. Pessoa, and E. Uchoa, “The time dependent
traveling salesman problem: polyhedra and algorithm,” Mathematical Pro-
gramming Computation, vol. 5, pp. 27–55, mar 2013.

[28] L. M. Naeni and A. Salehipour, “A New Mathematical Model for the Traveling
Repairman Problem,” in 2019 IEEE International Conference on Industrial
Engineering and Engineering Management (IEEM), pp. 1384–1387, IEEE,
dec 2019.

[29] A. Salehipour, K. Sörensen, P. Goos, and O. Bräysy, “Efficient GRASP+VND
and GRASP+VNS metaheuristics for the traveling repairman problem,” 4OR,
vol. 9, pp. 189–209, 2011.

[30] M. M. Silva, A. Subramanian, T. Vidal, and L. S. Ochi, “A simple and
effective metaheuristic for the Minimum Latency Problem,” European Journal
of Operational Research, vol. 221, pp. 513–520, sep 2012.

[31] N. Mladenović, D. Urošević, and S. Hanafi, “Variable neighborhood search
for the travelling deliveryman problem,” 4OR, vol. 11, no. 1, pp. 57–73, 2013.

[32] T. A. Feo, M. G. C. Resende, and S. H. Smith, “A Greedy Randomized
Adaptive Search Procedure for Maximum Independent Set,” Operations
Research, vol. 42, pp. 860–878, oct 1994.

[33] J. Mikula, “Meta-heuristics for routing problems,” Bachelor’s thesis, CTU in
Prague, 2018.

[34] J. O’Rourke, Art Gallery Theorems and Algorithms. USA: Oxford University
Press, Inc., jun 1987.

[35] V. Chvátal, “A combinatorial theorem in plane geometry,” Journal of Com-
binatorial Theory, Series B, vol. 18, pp. 39–41, feb 1975.

101

C. Bibliography ..
[36] W.-p. Chin and S. Ntafos, “Optimum watchman routes,” Information Pro-

cessing Letters, vol. 28, pp. 39–44, may 1988.

[37] J. Faigl, Multi-goal path planning in mobile robotic tasks. Habilitation, CTU
in Prague, 2013.

[38] K. A. Eldrandaly, A. N. Ahmed, and A. F. AbdAllah, “Routing Problems :
A Survey,” in The 43rd Annual Conference on Statistics, Computer Sciences
and Operations Research, 2008.

[39] A. Mor and M. G. Speranza, “Vehicle routing problems over time: a survey,”
4OR, vol. 18, pp. 129–149, jun 2020.

[40] F. W. Glover and G. A. Kochenberger, eds., Handbook of metaheuristics.
New York, NY: Springer, 2003 ed., 2006.

[41] Wikipedia, “Metaheuristic — Wikipedia, the free encyclopedia.” http://en.
wikipedia.org/w/index.php?title=Metaheuristic&oldid=993135619,
2020. [Online; accessed 12-December-2020].

[42] N. Mladenović and P. Hansen, “Variable neighborhood search,” Computers
& Operations Research, vol. 24, pp. 1097–1100, nov 1997.

[43] J. P. Hart and A. W. Shogan, “Semi-greedy heuristics: An empirical study,”
Operations Research Letters, vol. 6, pp. 107–114, jul 1987.

[44] T. A. Feo and M. G. C. Resende, “A probabilistic heuristic for a computa-
tionally difficult set covering problem,” Operations Research Letters, vol. 8,
pp. 67–71, apr 1989.

[45] H. H. Hoos and T. Stützle, “Evaluating Las Vegas Algorithms - Pitfalls
and Remedies,” Proceedings of the Fourteenth Conference on Uncertainty in
Artificial Intelligence, pp. 238–245, jan 1998.

[46] R. M. Aiex, M. G. Resende, and C. C. Ribeiro, “Probability distribution
of solution time in GRASP: An experimental investigation,” Journal of
Heuristics, vol. 8, no. 3, pp. 343–373, 2002.

[47] M. G. C. Resende and C. C. Ribeiro, Optimization by GRASP. New York,
NY: Springer New York, 2016.

[48] C. C. Ribeiro, I. Rosseti, and R. Vallejos, “On the use of run time distributions
to evaluate and compare stochastic local search algorithms,” in Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2009.

[49] C. C. Ribeiro and I. Rosseti, “tttplots-compare: a perl program to com-
pare time-to-target plots or general runtime distributions of randomized
algorithms,” Optimization Letters, vol. 9, pp. 601–614, mar 2015.

102

http://en.wikipedia.org/w/index.php?title=Metaheuristic&oldid=993135619
http://en.wikipedia.org/w/index.php?title=Metaheuristic&oldid=993135619

..C. Bibliography
[50] C. C. Ribeiro, I. Rosseti, and R. Vallejos, “Exploiting run time distributions

to compare sequential and parallel stochastic local search algorithms,” in
Journal of Global Optimization, 2012.

[51] A. Lucena, “Time-dependent traveling salesman problem – the deliveryman
case,” Networks, vol. 20, no. 6, pp. 753–763, 1990.

[52] L. Bianco, A. Mingozzi, and S. Ricciardelli, “The traveling salesman problem
with cumulative costs,” Networks, vol. 23, pp. 81–91, mar 1993.

[53] C. A. van Eijl, “A polyhedral approach to the delivery man problem,” Tech.
Rep. 1995, Technische Universiteit Eindhoven (Memorandum COSOR), Eind-
hoven, 1995.

[54] I. Méndez-Díaz, P. Zabala, and A. Lucena, “A new formulation for the
Traveling Deliveryman Problem,” Discrete Applied Mathematics, vol. 156,
pp. 3223–3237, oct 2008.

[55] I. O. E. Ezzine, H. Chabchoub, and F. Semet, “New formulations for the trav-
eling repairman problem,” in Proceedings of the 8-th International Conference
of Modeling and Simulation, (Hammamet, Tunisia), MOSIM, 2010.

[56] H.-B. Ban, K. Nguyen, M.-C. Ngo, and D.-N. Nguyen, “An efficient exact
algorithm for the Minimum Latency Problem,” Progress in Informatics,
p. 167, mar 2013.

[57] L. Gouveia and S. Voß, “A classification of formulations for the (time-
dependent) traveling salesman problem,” European Journal of Operational
Research, vol. 83, pp. 69–82, may 1995.

[58] L.-P. Bigras, M. Gamache, and G. Savard, “The time-dependent traveling
salesman problem and single machine scheduling problems with sequence
dependent setup times,” Discrete Optimization, vol. 5, pp. 685–699, nov 2008.

[59] H. Abeledo, R. Fukasawa, A. Pessoa, and E. Uchoa, “The time dependent
traveling salesman problem: Polyhedra and branch-cut-and-price algorithm,”
in Experimental Algorithms (P. Festa, ed.), (Berlin, Heidelberg), pp. 202–213,
Springer Berlin Heidelberg, 2010.

[60] J. J. Miranda-Bront, I. Méndez-Díaz, and P. Zabala, “An integer program-
ming approach for the time-dependent TSP,” Electronic Notes in Discrete
Mathematics, vol. 36, pp. 351–358, aug 2010.

[61] J. J. Miranda-Bront, I. Méndez-Díaz, and P. Zabala, “Facets and valid
inequalities for the time-dependent travelling salesman problem,” European
Journal of Operational Research, vol. 236, pp. 891–902, aug 2014.

[62] M. T. Godinho, L. Gouveia, and P. Pesneau, “Natural and extended for-
mulations for the Time-Dependent Traveling Salesman Problem,” Discrete
Applied Mathematics, vol. 164, pp. 138–153, feb 2014.

103

C. Bibliography ..
[63] G. Reinelt, “TSPLIB - A Traveling Salesman Problem Library,” ORSA

Journal on Computing, vol. 3, pp. 376–384, nov 1991.

[64] A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, and
M. Sudan, “The minimum latency problem,” in Proceedings of the twenty-
sixth annual ACM symposium on Theory of computing - STOC ’94, (New
York, New York, USA), pp. 163–171, ACM Press, 1994.

[65] M. Goemans and J. Kleinberg, “An improved approximation ratio for the
minimum latency problem,” Mathematical Programming, Series B, 1998.

[66] S. Arora and G. Karakostas, “Approximation schemes for minimum latency
problems,” SIAM Journal on Computing, vol. 32, pp. 1317–1337, jan 2003.

[67] K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar, “Paths, trees, and minimum
latency tours,” in 44th Annual IEEE Symposium on Foundations of Computer
Science, 2003. Proceedings., pp. 36–45, IEEE Computer. Soc, 2003.

[68] J. Fakcharoenphol, C. Harrelson, and S. Rao, “The k -traveling repairmen
problem,” ACM Transactions on Algorithms, vol. 3, pp. 40–es, nov 2007.

[69] V. Nagarajan and R. Ravi, “The Directed Minimum Latency Problem,” in
Approximation, Randomization and Combinatorial Optimization. Algorithms
and Techniques, pp. 193–206, Berlin, Heidelberg: Springer Berlin Heidelberg,
2008.

[70] A. Archer, A. Levin, and D. P. Williamson, “A Faster, Better Approximation
Algorithm for the Minimum Latency Problem,” SIAM Journal on Computing,
vol. 37, pp. 1472–1498, jan 2008.

[71] A. Archer and A. Blasiak, “Improved Approximation Algorithms for the
Minimum Latency Problem via Prize-Collecting Strolls,” in Proceedings of
the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
(Philadelphia, PA), pp. 429–447, Society for Industrial and Applied Mathe-
matics, jan 2010.

[72] G. N. Frederickson and B. Wittman, “Approximation Algorithms for the
Traveling Repairman and Speeding Deliveryman Problems,” Algorithmica,
vol. 62, pp. 1198–1221, apr 2012.

[73] E. F. S. Rios, Exploração de Estratégias de Busca Local em Ambientes
CPU/GPU. PhD thesis, Universidade Federal Fluminense, 2016.

[74] Í. Santana, A. Plastino, and I. Rosseti, “Improving a state-of-the-art heuristic
for the minimum latency problem with data mining,” International Transac-
tions in Operational Research, jan 2020.

[75] J.-B. Saloman, “Probability and Statistics (Fourth Edition),” CHANCE,
vol. 26, pp. 54–54, sep 2013.

[76] P.-S. Laplace, Théorie analytique des probabilités. Paris: Courcier, 1812.

104

..C. Bibliography
[77] C. I. Lewis and J. M. Keynes, “A Treatise on Probability.,” The Philosophical

Review, vol. 31, p. 180, mar 1922.

[78] X. Chen and S. McMains, “Polygon Offsetting by Computing Winding
Numbers,” in Volume 2: 31st Design Automation Conference, Parts A and
B, pp. 565–575, ASMEDC, jan 2005.

[79] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction.
Berlin, Heidelberg: Springer-Verlag, 1985.

[80] K. Helsgaun, “An effective implementation of the Lin–Kernighan traveling
salesman heuristic,” European Journal of Operational Research, vol. 126,
pp. 106–130, oct 2000.

[81] K. Helsgaun, “An Extension of the Lin-Kernighan-Helsgaun TSP Solver for
Constrained Traveling Salesman and Vehicle Routing Problems,” tech. rep.,
Roskilde University, 2017.

[82] J. Vidašič, “Travelling Salesman Problem with Neighborhoods,” Master’s
thesis, CTU in Prague, 2020.

[83] O. Martin, S. W. Otto, and E. W. Felten, “Large-step Markov Chains for the
Traveling Salesman Problem,” Complex Systems, vol. 5, pp. 219–224, 1991.

[84] A. Mjirda, R. Todosijević, S. Hanafi, P. Hansen, and N. Mladenović, “Se-
quential variable neighborhood descent variants: an empirical study on
the traveling salesman problem,” International Transactions in Operational
Research, 2017.

[85] D. Satyananda and S. Wahyuningsih, “Sequential order vs random order in
operators of variable neighborhood descent method,” Telkomnika (Telecom-
munication Computing Electronics and Control), vol. 17, no. 2, pp. 801–808,
2019.

[86] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Ng, “ROS: an open-source Robot Operating System,” in ICRA
Workshop on Open Source Software, vol. 3, 2009.

[87] B. Schling, The Boost C++ Libraries. XML Press, 2011.

[88] R. Amsters and P. Slaets, “Turtlebot 3 as a robotics education platform,”
in Robotics in Education (M. Merdan, W. Lepuschitz, G. Koppensteiner,
R. Balogh, and D. Obdržálek, eds.), (Cham), pp. 170–181, Springer Interna-
tional Publishing, 2020.

[89] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4, pp. 23–
33, mar 1997.

105

106

Appendix D

CD content

File Description

mlp.zip An archive containing C++ source files of the solver for MLPs
where the Ms-GVNS method is implemented.

ros_ws.zip An archive containing ROS workspace with C++ source files for
the mobile search solution in the form of individual packages.

results.zip An archive containing results of this thesis, i.e., some CSV files,
LATEX tables and Python scripts.

107

	Preliminaries
	Introduction
	Opening example
	Subject background
	Art gallery problem
	Routing problems
	Metaheuristics
	Run-time distribution
	Time-to-target plots

	Related literature review

	Problems' definitions
	Mobile search
	Auxiliary definitions
	General formulation
	Practical formulation
	Expected vs. the worst time

	Traveling deliveryman problem

	Solution approach
	General approach to the search
	Environment discretization
	Literature: DT, KA, DS
	Proposed: WR
	Location filtering
	Hybrid: WRF-DT-F

	Metaheuristic for the TDP
	Reference: GILS-RVND
	Stopping conditions
	General schemes
	Construction
	Perturbation
	Local search
	Local search operators
	Proposed: Ms-GVNS

	TDP extensions
	ATDP, GSP, AGSP
	GSP2, AGSP2
	Replanning

	Computational evaluation
	TDP: Ms-GVNS vs. GILS-RVND
	Mobile search

	Final remarks
	Conclusions
	Publication plans

	The TDP metaheuristic design
	Methodology
	Promising neighborhoods
	Finding the best variant
	The final method

	List of abbreviations
	Bibliography
	CD content

