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Abstract 
 

In this Thesis a complete model of the dynamics describing the orbit of a geostationary 

satellite has been developed by using the Euler- Hill equations of relative motion. 

Following that, a system has been developed to control the satellite’s motion, which was 

the main objective of this work. Typically, this is classic problem in formation flight 

when the objective is to follow a “leader” or an analogous formation. On a similar basis, 

the idea developed and applied in this Thesis, was to control the satellite in order to 

minimize the distance from the satellite to the “leader” which in this case, is considered as 

a point orbiting in an ideal trajectory, irrespective of external or internal influences or 

disturbances. Real satellites are influenced by disturbances mainly caused from body 

forces due to the non-homogeneity and oblateness of the earth, body forces due to third-

body interactions that generate satellite perturbations, mainly from the moon and the sun, 

and traction forces from solar radiation and solar wind. Consequently, models causing 

those disturbances were developed. Finally, the satellite’s trajectory has been controlled 

using optimum and robust control design methods such as an LQ regulator and an H-

infinity optimal control synthesis approach. 
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Notation valid for all Chapters: 

 

Scalars  - small italic letters    e.g  a, b, c, … 

Functions  - CAPITAL non-italic letters  e.g  A, B, C, … 

Vectors  - small bold non-italic letters   e.g   a, b, c, … 

Matrices  - CAPITAL bold non-italic letters e.g  A, B, C 
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CChhaapptteerr  11  
Description of the problem & derivation of relative equations of motion 

 

Symbols for Chapter 1: 

 
ρmoon =  Satellite’s distance from the moon 

ρsun =   Satellite’s distance from the sun 

Fgrav  =  Gravitational force 

r   =  Τhe orbit radius (from the center of the earth) 

RE = The equatorial radius of the earth 

λ  =  The geocentric latitude of the orbit 

Λ =   The geocentric longitude of the orbit 

µ  = The earth’s gravitational constant 

Φ =  Gravitational potential 

Pl = Legendre polynomials 

Jl  = Zonal harmonics (dimensionless coefficients). 

Ω =   Right ascension of the ascending node 

ω =   Argument of perigee 

i =   Inclination of the orbit 

M =   n(t-t0) the mean anomaly, where n is the mean motion. 

ms =  Satellites mass 

mmoon =  Moon's mass 

γp =  Acceleration caused by moon's gravitational field 
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1.1. Introduction 

 

A common problem in the operation of satellites is to guide them and position them at a 

desired orbit. During its motion however, it is influenced by numerous forces of diverse 

intensities and directions, emanating from different sources. These forces tend to disturb 

the satellite and put it into other than the desired orbit. 

 

In this chapter an analysis of the problems encountered in modeling and estimating the 

forces acting on a satellite will be made. Some basic concepts of the geostationary orbit 

will be described, which is the case to be studied for the work of this Thesis. 

 

Following that, the derivation of the relative equations of motion will be presented. The 

relative equations of motion are based on the Hill’s equations mainly used for formation 

flight. However, in the case to be studied, the “leader” can be considered as an ideal point. 

That would be the satellite’s target. More detail analysis about the Hill’s equations on 

formation flight, can be seen in Marcel J. Sidi “Spacecraft Dynamics and Control” [1] 

 

 

1.2. The Geostationary orbit 

 

In a geostationary orbit, there are two major stages that concern the control of a satellite’s 

orbit. The first one is the transfer from the Geosynchronous transfer Orbit (GTO) to the 

Final Geostationary Orbit (GEO). The second stage is the so-called Mission Stage, which 

is generally expected to last more than ten years. In this Thesis only the second stage of 

the geosynchronous orbit will be studied. 

 

The main objective of the work is to simulate a geostationary orbit of a satellite and 

apply suitable control schemes in order to keep it in the desired orbit, irrespective of 

external influences and resulting perturbations, using the minimum possible fuel 

consumption. 
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In the mission stage, the primary parameters of a satellite that change with time are the 

inclination, eccentricity and the longitude. Hence, the task of station-keeping at a 

geostationary orbit consists primarily of three adjustments. 

 

1) Longitude (East-West) correction 

 

 

 

2) Inclination (North-South) correction 

 

 

 

3) Eccentricity correction 

 

 

 

 

However, in the case of the relative motion (with respect to the desired orbit) those 

adjustments will be interpreted as x, y and z corrections in the rotating coordinate system 

that will be placed on the satellite as will be shown below. 

 

In order to perform the desired control, it is necessary to model the equations of motion of 

the satellite. The Euler-Hill equations that describe the relative motion between satellites 

in neighboring orbits are commonly used. 

 

By considering an ideal (desired) circular orbit of a point and having a real satellite orbit, 

the relative distance between any two points on the two orbits can be calculated through 

the use of the Euler-Hill equations for a dynamical system such as the satellite. The task 

then is to minimize this distance with the constraint of seeking minimum fuel 

consumption. 

 

Summer 

Orbit 
Winter 

vsat 

vsat dvsun 

dvsun 
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1.3 Generation of suitable data for an ideal geostationary orbit of a point. 

 

Geosynchronous orbits are orbits with orbital period equal to the period of revolution of 

the earth about its axis of rotation. That is, in the ideal case when there are no 

perturbations, they have a constant angular speed ω = 1 rotation per day. 

The geostationary orbits are geosynchronous, circular and equatorial. That is, their 

inclination and eccentricity are equal to zero. 

 

The orbit of a satellite can be described by two non-linear coupled equations, which are 

obtained from an application of the fundamental equation of motion (Newton’s 2nd Law). 

2
2

2 1

rv
r

v
r r θ

µθ

θθ

= − +

= − +

r r

r

���

����
         1.1.a, b 

where, 

r = Vector radius of the orbit 

r = magnitude of the radius of the orbit, r = |r| 

θ = Angle of rotation 

µ = GM, where G is the Universal Gravitational Constant and M is the mass of the earth. 

vθ, vr = perturbations 

 

A complete description of how those equations were derived will be explained and 

presented in detail in the main text of the Thesis. However, in the case of an ideal 

geostationary orbit with no disturbances, the basic equation of motion becomes 

2
1 2

1

0
r
µθ= − =1r r ���          1.2 

 

That is, in the ideal case of a geostationary orbit, the angular velocity ω ≡ dθ/dt is 

constant, as well as the velocity in the r1 direction where r is the radius of the satellite’s 

orbit. 

thus, 0=1r�     and   0θ= =ω ���  
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1.4 Generate data of a geostationary satellite orbit with perturbances 

 

In the case of the real satellite, the equations of motion describing the orbit are given by 

equations 1.3. 

2
3

2

2

2

2

r

r

µθ

θθ

= − +

= −

2
2 2

rr r f

r

���

����
         1.3.a, b 

where the vector 
x

y

z

f
f
f

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

f  includes the total forces acting on the satellite, that is, the 

disturbances and the thruster forces. 

 

1.5 Derivation of the non-linear equations of relative motion. 

 

In developing and applying the Euler-Hill equations [4], two coordinate systems are 

needed. An inertial coordinate system (geocentric) and a rotating coordinate system on the 

point of interest of the ideal orbit. A geocentric is a system that has fixed direction in 

space relative to the solar system. The Z axis is the axis of rotation of the earth in a 

positive direction, the X axis coincides with the vernal equinox vector, which is pointing 

to the sun on the 1st day of spring. The third axis Y completes an orthogonal right handed 

The local rotating coordinate system is placed on the orbiting point (x, y, z) as shown in 

Figure 1.1.  In the local system, x is defined along the local vertical, z normal to the orbit 

plane and y completes a positive triad. 

 

 

 

 

 

 

 

 

 

Figure 1.1.Local rotating coordinate system. 

X (vernal equinox vector) 

Z 

Y 

y 

x z

r2 r1 
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As mentioned above, the orbit of the point is described with equation 1.2 and the 

satellite’s orbit with equation 1.3 and presented here again. 

 

2 1
3

1r
µθ= −1 1

rr r ���   and  2
3

2
2r r

µθ= − +2
2

rr f���  

Let 1 2= −ρ r r  , 

⇒ 3 3
1 2r r

µ
⎡ ⎤

= = − +⎢ ⎥
⎣ ⎦

1 2
ρ

r rρ a f��         1.4 

 

However, in the local rotating coordinate system, the vector equation of the relative 

distance ρ is as shown below. In this coordinate system, ( , , )Tx y z=ρ  and the acceleration 

is given by: 

 
2

2 2d d d
dt dt dt

= = + × + × + × ×ρ
ρ ρ ωρ a ω ρ ω ω ρ��       1.5 

 

Where (0,0, )θ=ω �  and θ�  is the solution of equation 1.1 without the perturbances in the 

ideal orbit of the point. 

 

By substituting ω and r in equation 1.5, and finally substituting in equation 1.4, we get 

the non linear equations of motion, where in the rotating system  1( ,0,0)r=1r . 

 

⇒

( )

( )

( )

3/ 2

2 1
22 2 2

1

3/ 2

2
2 2 2

3/ 2

1
2 2 2

( )2
)

2
)

( )
)

r xx y y x
rr x y z

yy x x y
r x y z

r xz
r x y z

µ µθ θ θ

µθ θ θ

µ

⎛ ⎞+⎜ ⎟− − − = − +
⎜ ⎟+ + +⎝ ⎠

⎛ ⎞
⎜ ⎟+ + − = −
⎜ ⎟+ + +⎝ ⎠

⎛ ⎞+⎜ ⎟= −
⎜ ⎟+ + +⎝ ⎠

� �� ��� �

� �� ��� �

��

    1.6 

 

This model is referred to as the true model and the simulations conducted using this 

model, are referred to as the complete nonlinear simulations. 
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1.6 Derivation of the linear Euler-Hill equations. 

 

By making the assumption that the distance between the reference point and the real orbit 

is small, equation 1.4 can be rewritten as 

 
3

1
1 23 3

1 2

r
r r
µ ⎡ ⎤

= = − +⎢ ⎥
⎣ ⎦

ρρ a r r f��         1.7 

Now, 

( )3/ 23 2 2
2 1 2r r

+
=

+ +
2 1

1

r ρ r

r ρ ρ
        1.8 

 

Using a Taylor Series expansion, 

( )21
3 3 2

2 1 1

231
2

O
r r r

⎡ ⎤⎛ ⎞+
= − +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
2 1r ρ r rρ ρ        1.9 

By substituting in equation 1.7 and with 
1

(1,0,0)
r
=1r  we get, 

3
1

2x
y

r
z

µ
⎡ ⎤
⎢ ⎥= − +⎢ ⎥
⎢ ⎥−⎣ ⎦

ρa f                     1.10 

 

Finally, introducing equation 1.4 into 1.10 we get the equations of motion. 

 
3 2

1
2 3

1
3

1

2( / ) 0 0 2 0
( / ) 0 2 0 0

0 0 ( / ) 0 0 0

x

y

z

r f
r f

r f

µ θ θ θ
θ θ µ θ

µ

⎡ ⎤ ⎡ ⎤+ ⎛ ⎞
⎢ ⎥ ⎢ ⎥ ⎜ ⎟= − − + − +⎢ ⎥ ⎢ ⎥ ⎜ ⎟

⎜ ⎟⎢ ⎥ ⎢ ⎥− ⎝ ⎠⎣ ⎦ ⎣ ⎦

v x v

� �� �
�� � ��     1.11 

 

Where ( , , )Tx y z=x  is the vector of the relative position of the real satellite 

and ( ), ,x y z=v � � � is the velocity vector. 

 

These are the general linearized relative equations of motion for a Keplerian system. 

It is pointed that these relative equations of motion are valid for both circular and elliptic 

leader orbits. 
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In the case however, where the reference orbit is circular, the Euler-Hill equations are 

derived. 

Setting 3
1

n
r
µ

=  to be the constant angular velocity of the reference orbit and 0θ =�� , the 

final equations are: 

 
2

2

3 0 0 0 2 0
0 0 0 2 0 0
0 0 0 0 0

x

y

z

n n f
n f

n f

⎡ ⎤ ⎡ ⎤ ⎛ ⎞
⎢ ⎥ ⎜ ⎟⎢ ⎥= + − +⎢ ⎥ ⎜ ⎟⎢ ⎥

⎜ ⎟⎢ ⎥ ⎢ ⎥− ⎣ ⎦ ⎝ ⎠⎣ ⎦

v x v�                1.12 

 

2

2

2 ( ) 3 ( )
2 ( )

( )

x

y

z

x ny t n x t f
y nx t f

z n z t f

= + +

= − +

= − +

�� �
�� �

��
       1.13
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CChhaapptteerr  22  

EEssttiimmaattiioonn  ooff  tthhee  ffoorrcceess  aaccttiinngg  oonn  aa  ssaatteelllliittee  

 

Symbols for Chapter 2: 
ρmoon =  Satellite’s distance from the moon 

ρsun =   Satellite’s distance from the sun 

Fgrav  =  Gravitational force 

r   =  Τhe orbit radius (from the center of the earth) 

RE = The equatorial radius of the earth 

λ  =  The geocentric latitude of the orbit 

Λ =   The geocentric longitude of the orbit 

µ  = The earth’s gravitational constant 

Φ =  Gravitational potential 

Pl = Legendre polynomials 

Jl  = Zonal harmonics (dimensionless coefficients). 

Ω =   Right ascension of the ascending node 

ω =   Argument of perigee 

i =   Inclination of the orbit 

M =   n(t-t0) the mean anomaly, where n is the mean motion. 

ms =  Satellites mass 

mmoon =  Moon's mass 

γp =  Acceleration caused by moon's gravitational field 
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2.1 Introduction 

 

A satellite in space is subjected to external forces that tend to disturb and modify its 

desired orbit. The effect of these forces can be mild or serious, and consequent control 

action must be taken in order to keep the satellite at the desired path and attitude. 

 

The external forces may be classified as body or traction forces. The body forces act on 

all the constituent mass elements of the satellite. The traction forces act on the external 

surface of the satellite. 

 

There are many external sources for these forces, but the most important are the following 

four: 

 

i) Body forces that are due to the varying gravity from the earth, which are 

mainly due to variations in the mass distribution and density (non-

homogeneity) and to deviations of the earth’s shape from a perfect sphere 

(oblateness). 

ii) Body forces originating from large third-bodies. 

iii) Traction forces from solar radiation and solar wind. 

iv) Traction forces from small surrounding particles (atmospheric drag). 

 

 

The atmospheric drag force is important at low-altitude orbits. For the geostationary orbit 

satellite that will be studied, where its altitude is in the order of 42164 km from the center 

of the earth, this kind of disturbance is not significant, and hence will not be included in 

the analysis. 

 

A general description of the three major external forces acting on the satellite will follow 

and then a complete analysis on how these forces will influence the relative motion of the 

satellite in respect to the ideal point will be presented. 

Finally, an analysis of the forces acting on the satellite by the thrusters will be presented. 
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2.2. Estimation of the external forces acting on a satellite 

 

In this part of the chapter a general description of the forces due to the non-homogeneity 

and oblateness of the earth, from third body perturbations, from solar wind and from 

radiation will be developed. 

 

2.2.1 Body forces due to the non-homogeneity and oblateness of the earth. 

 

The disturbance caused by variations in the earth’s gravitational field, is due to: 

a) The fact that the mean shape of the earth is not a perfect sphere, but more like an 

ellipsoid on which local deformations are superimposed, and 

b) To the non–homogeneous distribution of the earth mass. 

 

There are various levels of detailing and modeling the gravitational forces. A brief 

description of the most significant models is described below. 

 

The disturbance caused by the earths gravitational field, is due to the fact that the earth is 

not a perfect sphere. In actuality, the earth is more like an ellipsoid with local 

deformations. 

 

If earth, could be modeled as a mass concentrated in a single point, or as a homogeneous 

sphere, then the gravitational potential would be given by the expression below [3]. 

( ) µ
Φ =r

r
          2.1 

3( )grav r
r
µ

= ∇Φ = −F r          2.2 

   

 

However, there are many irregularities in the earth’s Gravitational Field, and these are 

modeled by a complex mathematics, in a system referred to as Potential Theory [1]. 
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Figure 2.1.Gravitational force at a point due to a mass element 

 

In Figure 2.1, each mass element mQ in the earth is considered when determining the 

gravitational potential. The total effect from the distribution of these elemental masses is 

given by the potential function [1]: 

 

2 2 1
( , , ) 1 sin( ) sin( ) cos( ) sin( )

l ll
E E

l l l lm lm
l l m

R RJ P P C m S mµλ λ λ
∞ ∞

= = =

⎡ ⎤⎛ ⎞ ⎛ ⎞Φ Λ = − + Λ Λ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

∑ ∑ ∑r
r r r

  2.3 

where, 

Ji   for i = 2…∞  Zonal harmonics 

Clm, Slm  for l = m,  Sectorial harmonics 

Clm, Slm  for l ≠ m ≠ 0,  Tesseral harmonics 

Pl     Legendre Polynomials 

Λ,   Geocentric longitude 

λ   Geocentric Latitude, 

 

The zonal harmonics, Ji …, account for most of the earth’s gravitational departure from a 

perfect sphere. This band and others reflect the earth’s oblateness. 

The sectorial harmonics take into account the extra mass distribution in the longitudinal 

regions. 

The tesseral harmonics are primarily used to model earth deviations in specific regions, 

which depart from a perfect sphere. 
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For a body (planet) that has symmetry about the Z (polar) axis, i.e. has North/South 

symmetry, the form of the potential function (eq. 2.2) is significantly simplified, and is 

given by : 

2

( , , ) 1 sin( )
l

E
l l

l

RJ Pµλ λ
∞

=

⎡ ⎤⎛ ⎞Φ Λ = −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

∑r
r r

      2.4 

where, 

Pl  are the Legendre polynomials 

r   is the radius of the orbit 

λ  is the geocentric latitude of the orbit 

Jl  are dimensionless coefficients. 

 

2.2.1.1 J2 Effect (Non-Spherical Effect) 

 

The largest perturbation due to the non-uniformity of the earth’s mass is the J2 component  

in the earth’s geo-potential function given by: 

 
2

2 2( , , ) 1 sin( )ERJ Pµλ λ
⎡ ⎤⎛ ⎞Φ Λ = −⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
r

r r
       2.5 

where, 

2
2

1sin( ) (3sin 1)
2

P λ λ= −          2.6  

is the second Legendre polynomial and  J2 = 0.00108263 [3]. 

The J2 effect has a direct influence in the variation of the classical orbit parameters shown 

in the figure below. 

 
Figure 2.2 Basic orbit parameters 
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More specifically, the non-uniformity of the earth’s mass has an influence in the variation 

of Ω, ω and M. 

 

2.2.2 Forces due to Third-Body Perturbations 

 

Other large body influences, can originate from planets, stars, and other stellar bodies. 

The most significant are the gravitational forces from the sun and the moon that cause 

periodic variations in all orbital elements, especially for high altitude orbits, such as the 

case of the geostationary orbit. 

 

The sun and the moon can be treated as third bodies creating a perturbing force on an 

earth-orbiting satellite. Basically, this influence can be seen as the general case of the 

classic two-body problem. 

 

In a system consisting of n interacting bodies, the sum of the forces acting on the ith body, 

will be: 

{ }3
1

( )            
j n

i j
i i

j ij

m m
G i j

r

=

=

= − ≠∑ jF r r       2.7 

Substituting in the equation of Newton's second law of motion, 
2

2i
dm
dt

= irF , it follows 

that: { }
2

2 3
1

( )                       
j n

j
i

j ij

md G i j
dt r

=

=

= − ≠∑i
j

r r r      2.8 

 

If the specific case of perturbation caused by the moon’s gravitational field, the perturbing 

acceleration can be calculated as below. 

 

 

 

 

 

 

 

Figure 2.3.Third body perturbation 
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As can be seen in Figure 2.3, the origin of the inertial frame is located in the center of the 

earth. This leads to the final equation of the perturbing force caused by the moon as 

shown below. 
2

2 3 3 3( )E s moon
sat moon

d G M m Gm
dt r rρ

⎡ ⎤
+ + = −⎢ ⎥

⎣ ⎦
sat sat moonr r rρ

     2.9 

or 

3 ( )E s
sat

G M m
r

+ + =sat
sat p

rr γ��         2.10 

where, 

3 3 3 3moon moon
moon moon

Gm
r r

µ
ρ ρ
⎡ ⎤ ⎡ ⎤

= − = −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

moon moon
p

r rρ ργ   is the perturbing acceleration. 

It is interesting to mention that 3
moon

moonr
µ  of moon is equal to 8.6x10-14 s-2  

and 3
sun

sunr
µ

  of the sun is equal to 3.96x10-14 s-2 

 

2.2.3 Forces due to the Solar Radiation and Solar wind 

 

Solar radiation includes all the electromagnetic waves radiated by the sun, in a wide range 

of wavelengths from x-rays to radio waves. 

 

The solar wind consists mainly of ionized nuclei and electrons, where both kinds of 

radiation may produce a physical pressure on the satellite’s surface, and this pressure is 

proportional to the momentum flux of the radiation. That is, the momentum per unit area 

per unit time. 

 

The mean solar energy flux integrated at the earth's position is given by: 

 

2

1.358          
1.0004 0.034cos( )e

WF
D m

=
+

      2.11 

where, 

D is the phase of the year as calculated by starting on July 4th. 
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This is equivalent to a mean momentum flux of: 

P = Fe/c = 4.5x10-6   [kg.m-1.s-2]         2.12 

where, 

c is the velocity of light. 

 

Finally, the solar radiation pressure FR is proportional to P, to the cross-section area A of 

the satellite perpendicular to the sun line, and to a coefficient CP that is dependent on the 

absorption characteristics of the satellite. 

 

FR = PACP           2.13 

where, Cp lies between 0 and 2. 

 

For a perfectly absorbing material (black body), Cp = 0. 

 

The solar radiation momentum flux effect on the perturbations of the orbit is much greater 

than that of the solar wind (by a factor of 100 to 1000), so the solar wind will not be 

considered as negligible compared to other effects. 

 

2. 3 Perturbing Forces in the Relative Equations of Motion. 

 

2.3.1 The J2 effect 

 

The Hill equations, in the linear form as derived previously, do not include the J2  

disturbance. So there is need of a set of linearized equations that are easy to use, but at the 

same time able to capture the J2  effects. 

 

A very interesting work was done in the MSc Thesis of Schweighart [2], where a new set 

of linearized equations of motion where developed. These equations are like Hill’s 

equations in form, but also capture the effects of the J2 disturbance force. 

 

The basic idea of the analysis was to introduce the J2 disturbance in the "real" satellites 

orbit equation as shown below. 

2 ( ) 02J
r
µ

= + =r r��          2.14 
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Where 2J (r)  is the force due to the J2 disturbance [2] and r is the vector of the disturbed 

orbit. 

 

The analysis of J2 force is respect to the x and z axis of the rotating coordinate system on 

the point of the ideal orbit is given by, 

 
2

2 2 22
2 4

3J ( ) (1 3sin sin ) (2sin sin cos ) (2sin sin cos )
2

EJ R i x i y i z
r
µ θ θ θ θ θ⎡ ⎤= − − + +⎣ ⎦r  

           2.15 

In the case of the geostationary orbit, the reference orbit to compare the relative motion is 

circular and equatorial. 

 

Let ρ be defined as the relative vector rref - r. 

Then, the next step in the derivation was to linearize both the standard gravitational term 

and the J2 disturbance around this reference orbit. 

⇒ g( ) g( ) ( ) ( )2 2J Jρεφρ= +∇ + +∇refr r ρ r r ρ�� i i      2.16 

An important note to be stated at this point is that under the influence of the J2 disturbance 

force, the orbital planes rotate around the Z axis (the North Pole). This is due to the fact 

that the J2 disturbance force is symmetric across the equator. 

 

So, in the equatorial case, the linearized equations of motion correctly represent the out-

of-plane motion, (the normal vector to the orbital plane). 

 

Finally, as for the derivation of Hill’s equations, in the local rotating coordinate system 

2 d d
dt dt

= − + × + × + × ×ref
ρ ωρ r r ω ρ ω ω ρ�� �� ��       2.17 

 

By substituting equation 2.2 into 2.3 and by defining ω of the reference orbit, the final 

equations of relative motion are derived as presented below. 

 
2 2

2 2

2 (5 2)
2

(3 2) ( )

x

y

z

x ncy c n x f
y nx f

z c n z t f

− − − =

+ =

+ − =

�� �
�� �

��

         2.18 
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where, 
2

2
2

31 (1 3cos 2 )
8

E
ref

ref

J Rc i
r
µ

= + +  

 

An important observation is that if x, y and z relative initial are zero, then the perturbed 

orbit will never have a different x, y, z from the ideal orbit, if the only perturbance 

considered is from the J2 effect. 

 

The satellite’s orbit can be seen in Figure 2.4.below where the only effect acting on the 

real satellite causing deviation from the ideal orbit is the J2 effect. The time period were 

the evolution was made is for two days (≈2880 min). 
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Figure 2.4.Evolution of the satellites radius as well as the relative error r1-r2 for the 

disturbance caused by the J2 effect. 

 

However, from what is mentioned above, equations 2.18 include only the disturbances 

due to the J2 effect.The disturbances caused by the Sun and Moon gravitational effects 

causing the North South drift, are not included. In this case, a model was derived about 

the disturbances from the Sun and the Moon since those disturbances are dependent on 

the position of the earth and the position of the satellite with respect to the earth. Those 

models are described in the next paragraphs. 
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2.3.2 The Moon and Sun disturbance forces. 

 

As pointed before, the satellite is influenced by perturbing forces from the earth, the sun 

and the moon. In order to calculate the direction of the force vector of every perturbance, 

the initial conditions of the position of the earth, moon and the satellite must be defined. 

For that, a specific day of the year should be considered, and that is the 21st of June. So, 

the position of the sun with respect to the earth can be defined by placing a coordinate 

system in the center of mass of the earth and having X axis the same as X equinox, Y axis 

pointing at the center of mass of the sun and X, Y on the ecliptic plane. The equatorial 

plane is inclined with respect to the ecliptic by 23.43o 

 

The position of the moon at this specific day of the year is in the X, Z plane of the 

coordinate system described above. That is by considering the earth as the center of our 

system then the Sun and moon have a 90o angle difference.  Finally, the moon's orbiting 

plane is inclined by 5.3o from the ecliptic plane in the X direction. The satellite initial 

position is on the equatorial plane in the X direction. The positions described above are 

shown in Figure 2.5 below and should be considered as the initial conditions for the 

following calculations. 

 

 
 

 

Figure 2.5.The three orbiting planes. 

Inclination of moon's 
orbiting plane with the 
ecliptic ≈5.3o  

Inclination of equatorial 
plane with the ecliptic  
plane≈23.43o  
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2.3.2.1 Moon disturbance 

 

As described above, the moon’s gravitational field causes an acceleration to the satellite.  

This acceleration, multiplied by the mass of the satellite equals the force acting on the 

satellite by the moon's gravitational field, as per the fundamental Newton’s second law. 

 

moon satF m⇒ = pγ  

 

However, since the moon and the satellite are both orbiting around the earth, the direction 

of the force vector is constantly changing. 

 

So a model was created to calculate the amplitude and direction of the force vector acting 

by the moon to the satellite. 

 

An effective approach in solving the problem of the combined movement of the moon and 

the satellite is to use spherical coordinates. That is, to assume that the moon is moving 

around the earth on the surface of a surrounding sphere. This can be visualized by 

thinking that the moon is orbiting in an approximately circular orbit around the center of 

mass of the earth and so is the satellite. So, by assuming that the satellite is stable, then it 

is the same like the moon is moving on a sphere. 

 
 

Figure 2.6.Spherical coordinates. 

 

In Figure 2.6, if it is assumed that the green dot is the moon. Then, the position of the 

moon can be described by the three coordinates: 

ρ  The radial distance of a point from a fixed origin 
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φ  The zenith angle from the positive z-axis 

θ The azimuth angle from the positive x-axis. 

 

Those coordinates, however, should be defined relative to the rotating coordinate system 

on the orbiting point. 

 

In order for this to be done, a third coordinate system is placed on the rotating point. This 

coordinate system has the xm axis pointing to the center mass of the moon and ym axis is 

pointing to the sun on the ecliptic plane. 

 

Then the xm, ym, and zm  of the moon can be defined relatively to the rotating coordinate 

system placed on the ideal orbiting point. 

 

For that, three transformations need to be made in respect to the rotating coordinate 

system. The transformations are made from the coordinate system placed on the orbiting 

point to the moons coordinate system described above. Then the inverse transformation 

should be applied to get the moons coordinates in respect to the rotating coordinate 

system. 

 

The first transformation is to go from the equatorial plane to the ecliptic. That is to rotate 

around x axis by 23.43o, as shown in figure 2.7. 

 

 

 

 

 

 

 

 

Figure 2.7.First transformation around x axis. 

 

1

1

1

1 0 0
0 cos( ) sin( )
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x x
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z i i z

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⇒ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
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      2.19 
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The second transformation is a rotation of 5.3o around the y2 axis. This can be seen in 

figure 2.8 where the sun is in the y direction. That is if we are watching figure 2.7 from 

behind the earth aligned with the sun. 

 

 

 
 

 

Figure 2.8.Second transformation around y axis. 

 

2 1

2 1

2 1

cos( ) 0 sin( )
0 1 0

sin( ) 0 cos( )

moon moon

moon moon

x i i x
y y
z i i z

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⇒ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

      2.20 

 

Finally the third transformation is around the z axis of the rotating system equal with the 

moon’s rotation angle, which is the integration of the moon’s orbital period which is 28 

days. 

 
1

3

3

3

cos( ) sin( ) 0
sin( ) cos( ) 0 0

0 0 1 0

moon moon moon

moon moon

x
y
z

θ θ ρ
θ θ

−
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⇒ = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

     2.21 

 

 

 

Where ρmoon is the moon’s distance with respect to the satellite. However, for 

simplification ρmoon is considered from the earth's center of mass since the satellite’s radii 

x1 = X equinox

z2 Inclination of Moon’s 
orbital plane with the 
ecliptic, imoon=5.3o 

Moon 

x2 

z1 
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compared to the moon's radii is very small. That is, to assume that the satellite is placed in 

the center of mass of the earth and rotating around itself. 

 

Then x, y and z of the moon’s coordinates with respect to the rotating coordinate system 

can be defined as below. 

 

 
1 1 11 0 0 cos( ) 0 sin( ) cos( ) sin( ) 0

0 cos( ) sin( ) 0 1 0 sin( ) cos( ) 0
0 sin( ) cos( ) sin( ) 0 cos( ) 0 0 1

moon moon moon moon moon

earth earth moon moon

earth earth moon moon

x i i
y i i
z i i i i

θ θ ρ
θ θ

− − −−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

i i 0
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

2.22 

 

So, if the moon’s coordinates are known, then the direction of the force vector by the 

moon to the satellite can be defined by the spherical coordinates. 

From Figure 2.6, 

 

1cos
moon

zφ
ρ

− ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 is the angle of the moon with respect to the z axis of the rotating system 

 

and 1tan sat
y
x

θ θ−⎡ ⎤⎛ ⎞= −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
  is the angle of the moon with respect to the x axis of the 

rotating coordinate system. 

 

 

Then, 

sin cos
sin sin

cos

x

y

z

F
F

F

φ θ
φ θ

φ

=
=

=

F
F

F

         2.23 

 

In Figure 2.9 below, the disturbance due to the moon's gravitational field is shown and the 

satellite’s orbit as it deviates from the ideal orbit for a time period of two days. 
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Figure 2.9.Evolution of the satellites radius as well as the relative error r1-r2 for the moon 

disturbance. 

 

2.3.2.2 Disturbances from the sun 

 

Similar procedure can be made for the calculation of the direction of the force vector from 

the solar pressure on the satellites area. In this case, a fourth coordinate system is 

introduced on the orbiting point, with the x axis equal to the rotating coordinate systems x 

axis and at the case of the initial conditions equal to x equinox and y axis pointing to the 

sun’s center of mass. The z axis completes the orthogonal triad. Again the assumption that 

the orbiting point is in the center of the earth’s mass is made. However, in this case the 

rotation of the earth around the sun was not taken into consideration, since the control 

calculations are for the maximum of one week. 

 

Once again, the first transformation is to go from the equatorial plane to the ecliptic. That 

is to rotate around x axis by 23.43o, as shown in Figure 2.7. 

 

1

1

1

1 0 0
0 cos( ) sin( )
0 sin( ) cos( )

earth earth

earth earth

x x
y i i y
z i i z

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⇒ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

      2.24 
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The second transformation is a rotation around the y axis by the satellites rotation angle 

θsat.  This would have been true if the satellite was stable and the Sun was orbiting around 

the satellite. So the rotation around the z axis should be -θsat 

 

 

2

2

2

cos( ) 0 sin( )
0 1 0 0

sin( ) 0 cos( ) 0

sat sat sun

sat sat

x
y
z

θ θ ρ

θ θ

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⇒ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

           2.25 

 

 
1 11 0 0 cos( ) 0 sin( )

0 cos( ) sin( ) 0 1 0 0
0 sin( ) cos( ) sin( ) 0 cos( ) 0

sun sat sat sun

sun earth earth

sun earth earth sat sat

Fx F
Fy i i
Fz i i

θ θ

θ θ

− −− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⇒ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

i   2.26 

 

 

In Figure 2.10 below, the disturbance due to the sun's gravitational field is shown and how 

the satellites orbit is deviated from the ideal orbit, again for a time period of two days. 
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Figure 2.10.Evolution of the satellites radius as well as the relative error r1-r2 for the sun 

disturbance. 
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2.4. SIMULINK model of the system and the perturbing forces 

 

Finally a complete model of the satellite dynamics was developed in MATLAB - 

SIMULINK, including the perturbances described previously. 

 

This model can be seen in Figure 2.11 below, where the moon and sun perturbing force 

are calculated outside the block that computes the relative motion, and the J2 disturbance 

is included in the equations of relative motion. 

 

 

 
Figure 2.11.Simulink model of the equations of motion. 
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In Figure 2.12 a simulation result is shown, based on the above SIMULINK model, where 

the influence of all the perturbances acting on the satellite can be seen. 
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Figure 2.12.Evolution of the satellites radius as well as the relative error r1-r2 after the 

influence of all perturbances. 

 

 

2.5. Thruster forces 

 

In order to be able to control the satellite, there is a need of translatory acceleration to act 

on the body of the satellite. Those accelerations are provided mainly by the propulsion 

system. 

 

Spacecraft propulsion systems are divided into three categories. Cold gas, chemicals 

(solid and liquid) and electrical, dependent on the way the trust is achieved. Propulsion 

systems, consists of several thrusters which their behavior is evaluated in terms of various 

characteristics. These basic characteristics include the thrust level F and the specific 

impulse Isp described below. 
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The basic equation of propulsion holds for all kinds of propellants. The amount of thrust 

F can be calculated as: 

[ ]e e a
dmF V A P P
dt

= + −         2.27 

where 

 

Pe, Pa  = gas and ambient pressures 

Ve = exhaust velocity 

A = area of the nozzle exit. 

dm
dt

 = mass flow rate of the propellant 

 

The second parameter relevant to the characteristics of the thrust source is the specific 

impulse Isp which is a measure of the efficiency with which the propellant mass is 

converted into thrust energy and is given by: 

 

/sp
dmI F g
dt

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 measured in seconds.       2.28 

 

Besides the level of the thrust and the specific impulse, some additional characteristics are 

necessary in order to define a thruster completely, however this analysis is beyond the 

scope of this Thesis. For more information about propulsion systems and thrusters, the 

reader is directed to Sidi M. J. (1997).Spacecraft Dynamics and Control [1]. 

 

What is important for the purposes of testing the control methods that will be presented in 

detail in the next chapters is to define a limitation on the maximum absolute value of the 

force F that can be given by the thrusters. Usually for spacecraft control, liquid propeller 

thrusters are used which provide forces in the range of 0.001 – 100 N. 
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CChhaapptteerr  33  

EExxtteennddeedd  KKaallmmaann  FFiilltteerr  
 

Symbols for Chapter 3: 

 

x̂  = Estimated system states 

e = Measurement noise. 

υ  = Process noise 

u = System input 

y  = System output 

Q = Process noise covariance matrix 

R = Measurement noise covariance matrix 

P  = Estimate error covariance 

L      = Kalman gain to the predicted error ˆ( | 1) ( ) ( | 1)t t t t t− = − −e y y , 

Where, the notation (t|t-1) indicates the estimation at time t based on the information 

given to the state observer by time t-1 

 

Chapters 3, 4, 5 and 6 are based on control theory, so in order to avoid confusion, a 

different and more specific notation is used in each Chapter. 

 

3.1. Introduction. 

 

The Kalman Filter (KF) was developed by Rudolf Kalman (1960) and it is basically a set 

of mathematical equations that provides an efficient computational (recursive) means to 

estimate the state of a process, in a way that minimizes the Mean Squared Error (MSE) 

between the real and estimated measurement. 

 

Kalman filters are mainly used in applications where it is needed to provide updated 

information on a continuous basis about the states of a dynamic system when given only 

some measurements, corrupted by noise. Thus, it is essentially a state predictor that uses 

limited available information. 
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The Kalman filter addresses the general problem of trying to estimate the state ˆ nx R∈  

(the caret ^   indicates the estimated states) of a discrete-time controlled process that is 

governed by the linear stochastic difference equation: 

 

( 1) ( ) ( ) ( )t t t t+ = + +x Ax Bu υ          3.1 

 

and the measurement output 

 

( ) ( ) ( ) ( )t t t t= + +y Cx Du e          3.2 

 

where, 

υ(t) and e(t) are the process and measurement noise. 

 

In the case to be studied, these are assumed to be independent from each other 

(uncorrelated), white with zero mean, time uncorrelated and with normal probability 

distribution. 

 

Then, the covariance ( )1 2

( ) ( ) 0
( ) ( ) 0

Tt t
t t

t t
ε δ
⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪ = −⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎪⎪ ⎭⎩

υ υ Q
e e R    3.3 

 

where, ( ) 1 2
1 2

1 ,     
 
0,otherwise

t t
t tδ

=
− = 〈  

 

Q and R are the process and measurement noise matrices. 

 

In practice, the process noise covariance and measurement noise covariance matrices 

might change with each time-step or measurement.  For the satellite problem however, it 

is assumed that they are constant. 

The Kalman filter is a recursive estimator. This means that only the estimated state from 

the previous time step and the current measurement are needed to compute an estimate for 

the current state. 
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The state of the filter is represented by two variables: 

• ˆ( | )t tx , the estimate of the state at time t 

• ( | )t tP , the error covariance matrix (a measure of the estimated accuracy of the 

state estimate). 

The Kalman filter can be described by two phases. The Predict phase and the Update 

phase. 

In the predict phase, an estimation of the current state is made by using the information 

from the estimation of the previous timestep. 

In the update phase, measurement information from the current timestep is used to refine 

this prediction to arrive at a new, more accurate estimate. 

So, basically, what the Kalman state observer does, is to use the information of the system 

by including the dynamics of the system, and trying to minimize the error from the 

estimated to the real output. The error, ˆ( | 1) ( ) ( | 1)t t t t t− = − −e y y   passes through the 

Kalman gain L, which in the satellite case to be studied, it is time varying for more 

optimum estimations as shown in Figures 3.1 and 3.2 below. 

 

 

 
 

Figure 3.1.System with state observer. 

 

 

 

 

 
System 
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x̂ (t) 

y(t) u(t) 



 

Kleanthis Neokleous MSc Thesis May 2007 

- 38 -

 
 

Figure 3.2.State observer. 

 

As described above, the Kalman filter addresses the general problem of trying to estimate 

the state of a discrete-time controlled process that is governed by a linear stochastic 

difference equation. 

 

However, in the case that the process to be estimated or the measurement relationship to 

the process is non-linear, a linearization must be done about the current mean and 

covariance and this is called the Extended Kalman Filter (EKF) which is the model that 

will be used for estimating the states of the satellite’s system that is presented in this 

Thesis. The reason for that is because although the equations of motion are linear, what 

can be measured is non-linear. 

 

3.2. The Extended Kalman Filer algorithm. 

Let the system be described by: 

 

( 1) ( ( ), ( ), ( ))
( ) ( ( ), ( ), ( ))
t f t t t
t g t t t
+ =
=

x x u υ
y x u e

         3.4 

with   ( )1 2

( ) ( ) 0
( ) ( ) 0

Tt t
t t

t t
ε δ
⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪ = −⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎪⎪ ⎭⎩

υ υ Q
e e R  

 
System 
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x̂ (t) 

y(t) u(t) 
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B 
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1
z

 

- 

x̂ (t+Ts) 

x̂ (t) 
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Then, 

ˆ ˆ ˆ( ) ( ( | 1), ( ),0) ( )( ( ) ( | 1) ( ) ( )t g t t t t t t t t e t= − + − − + ey x u C x x Γ       3.5 

where, 

 

ˆ ( | 1)t t −x  indicates the estimation of the state x̂  at time t based on the information given 

to the state observer by time t-1 

 

and C(t) is the linearized C matrix in the case where the non-linearity is on the 

measurements, defined by: 

 

ˆ ( | 1), ( ), 0

( )( )
x x t t u u t e

gt
= − = =

∂
=

∂
x,u,eC

x        3.6 

and  

ˆ( | 1), ( ), ( )

( )( )
x x t t u u t e e t

gt
= − = =

∂
=

∂
x,u,eΓ

e        3.7 

 

Then, the equations for the measurement update are: 

 

( )

( )

1
( ) ( | 1) ( ) ( ) ( | 1) ( ) ( ) ( )

ˆ ˆ ˆ( ) ( | 1) ( ){ ( ) ( ( | 1), ,0}

( | ) ( | 1) ( ) ( ) ( | 1) ( ) ( ) ( ) ( )

t t t t t t t t t t

t t t t t g t t

t t t t t t t t t t t t

−
= − − +

= − + − −

= − − − +

T T T
e e

T T T
e e

L P C C P C Γ RΓ

x x L y x u

P P L C P C Γ RΓ L

  3.8a.b.c 

 

and for the time update are: 

 

ˆ ˆ( 1, ) ( ( | ), ( ),0)
( 1| ) ( ) ( | ) ( ) ( ) ( )
t t f t t t
t t t t t t t t
+ =

+ = +T T
υ υ

x x u
P A P A Γ QΓ

      3.9.a.b 
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Where, 

A(t) is the linearized A matrix in the case where the non-linearity is on the process to be 

estimated, defined by: 

 

ˆ( | ), ( ), 0

( )( )
x x t t u u t

ft
υ= = =

∂
=

∂
x,u,υA

x        3.10 

and Γu(t) is defined as: 

ˆ( | ), ( ), ( )

( )( )
x x t t u u t t

ft
υ υ= = =

∂
=

∂υ
x,u,υΓ
υ        3.11 

 

 

3.3 Application of the EKF to the satellite model. 

 

As mentioned previously, in the case of estimating the satellite’s states, an extended 

Kalman filter will be use, for the reason that the output measurements are non-linear. 

 

The reason for that, is that basically what can be measured is the satellite’s radius which 

is: 

2 2 2
2 1( )r r x y z= + + +          3.12 

where, 

r2 is the real satellite radius, r1 is the ideal points radius, and x, y, z are the relative position 

coordinates of the satellite with respect to the ideal point. 

 

The second and third measurements are again non-linear, which are 2r� ,and the latitude of 

the satellite,
2

sin( ) zlat
r

=  
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However, what is actually used in the algorithm for measurements, for making the 

calculations simpler but not having significant deterioration on the accuracy of the results, 

are: 

 
2 2 2 2 2

2 1 1

2
2 1

2

(1) 2
1(2) ( ) ( )
2

(3) sin( )

y r r r x x y z

y r r x x yy zz

y r lat z

= − = + + +

= = + + +

= =

� � � �         3.13 

 

 

3.3.1 State space equations in continuous and discrete time. 

 

The equations of motion of the satellite, as presented in Chapter 2, are shown in 3.1.a, b 

and c below. 

 
2 2

2 2

2 (5 2)
2

(3 2) ( )

x

y

z

x ncy c n x f
y nx f

z c n z t f

= + − +
= − +

= − − +

�� �
�� �

��

        3.14 

where, 

 
2

2
2

31 (1 3cos 2 )
8

E
ref

ref

J Rc i
r
µ

= + +         3.15 

 

Then, the states of the system can be defined as: 

 

1

2

3

4

5

6

xx
xx
xy
xy

z x
z x

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

= ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

�

�

�

           3.16 

 

Finally, according to the equations of motion of 3.14.a.b.c, the state space equations can 

be calculated in continuous and discrete time, as shown henceforth. 
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Continuous time 

 

1 2
2 2

2 4 1

3 4

4 2

5 6
2 2

6 5

2 (5 2)

2

(3 2)

x x

y y

z z

x x

x ncx c n x f
x x
x nx f

x x

x c n x f

υ

υ

υ

=

= + − + +
=
= − + +

=

= − − + +

�
�
�
�
�
�

        3.17 

 

and 
2 2 2

1 1 1 3 5 1

1 1 2 3 4 5 6 2

5 3

2
( ) ( ( ), ( ), ( )) ( )

r x x x x e
y t g t t t r x x x x x x e

x e

⎡ ⎤+ + + +
⎢ ⎥= = + + + +⎢ ⎥
⎢ ⎥+⎣ ⎦

x u e     3.18 

 

Discrete time 

1 1 2
2 2

2 4 1 2

3 3 4

4 2 4

5 5 6
2 2

6 5 6

( 1) ( ) ( )

( 1) 2 ( ) (5 2) ( ) ( )
( 1) ( ) ( )
( 1) 2 ( ) ( )

( 1) ( ) ( )

( 1) (3 2) ( ) ( )

x x

y y

z z

x t x t Tx t

x t Tncx t T c n x t x t Tf T
x t x t Tx t
x t Tnx t x t Tf T

x t x t Tx t

x t T c n x t x t Tf T

υ

υ

υ

+ = +

+ = + − + + +
+ = +

+ = − + + +

+ = +

+ = − − + + +

    3.19 

where, 

T is the sampling time and the discretization was made by applying the derivative in T 

steps as shown below: 

 

1 1
1

( 1) ( )x t x tx
T

+ −
=�  

 

3.3.2 Calculation of A, B, C, D, Γe and Γu 

 

For calculating the state space matrices in the extended Kalman filter, a linearization must 

be made around the area of the estimated values. 
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Then, for 

( 1) ( ( ), ( ), ( ))
( ) ( ( ), ( ), ( ))
t f t t t
t g t t t
+ =
=

x x u υ
y x u e

 

 

the A, B, C, D, Γe and Γu matrices in discrete time are given by: 

 

2 2

2 2

1 0 0 0 0
(5 2) 1 0 2 0 0

0 0 1 0 0
0 2 0 1 0
0 0 0 0 1
0 0 0 0 (3 2) 1

T
T c n Tnc

T
Tn T

T
T c n

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥

= ⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥

− −⎢ ⎥⎣ ⎦

A
      3.20 

 

1 1 3 5

2 1 1 4 3 6 5

0
1

2(r ) 0 2 0 2 0
0

, ( )= r
1

0 0 0 0 1 0
0
1

x x x
t x x x x x x

⎡ ⎤
⎢ ⎥
⎢ ⎥ +⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

B C
    3.21 ,3.22 

where, 

ˆ( | 1), ( ), 0

( )( )
x x t t u u t e

gt
= − = =

∂
=

∂
x,u,eC

x  is the linearization of C matrix since the measured 

outputs are non-linear. 

 

g(x, u, e) is given by  3.18 

 

0 0 0
( )= 0 0 0

0 0 0
t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 D           3.23 

And finally, 

 

0 0 0 0 0 0
0 0 0 0 0

1 0 0
0 0 0 0 0 0

,       0 1 0
0 0 0 0 0

0 0 1
0 0 0 0 0 0
0 0 0 0 0

T

T

T

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

u eΓ Γ        3.24 
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3.4. Final results 

The results of the extended Kalman filter will be presented in the following Figures, 

where a comparison of the real with the estimated states can be made. 
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(c)       (d) 

Figure 3.3.Measured and estimated relative x. 

a) x versus time. b) x(dot) versus time. c) Detail at region A, x versus time. d) Detail at 

region B, x(dot) versus time. 
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Figure 3.4.Measured and estimated relative y. 

a) y versus time. 

b) y(dot) versus time. 

c) Detail at region A, y versus time. 

d) Detail at region B, y(dot) versus time. 
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Figure 3.5.Measured and estimated relative z. 

a) z versus time. 

b) z(dot) versus time. 

c) Detail at region A, z versus time. 

d) Detail at region B, z(dot) versus time. 
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Figure 3.6.Measured and estimated r2. 

a) r2 versus time. 

b) Detail at region A, r2 versus time. 
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CChhaapptteerr  44 

LLiinneeaarr  QQuuaaddrraattiicc  RReegguullaattoorr 
 

Symbols for Chapter 4: 

 

L = scalar performance index 

u = control vector 

λ = Lagrange multiplier 

J = Performance index or cost function 

Q, R, S = weighting matrices 

 

4.1. Introduction. 

 

In this chapter, a Linear Quadratic Regulator for discrete systems will be developed, 

which, basically, is a method of minimizing a cost function J associated with the control 

of a time varying system. 

 

The analysis that follows is largely based on Lewis and Syrmos [6] approach, so the same 

notation as in the reference will be used. 

 

A discrete time variant system could be described as 

 

( 1) ( ) ( ) ( ) ( ) , (0)t t t t t+ = + = 0x A x B u x x       4.1 

 

where the optimal control problem is to find the control u*(t) that drives the system along 

a trajectory x*(t) such that a suitable performance index or cost function (usually denoted 

by J) is minimized. The symbol * denotes the optimum variables. 

 

An optimization analysis will first presented for a static system, when time is not a 

parameter, and then it will be extended to a system developing dynamically through time. 
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4.2. Static optimization. 

 

Let L(x, u) be a scalar performance index, a function of the control vector mR∈u and a 

state vector nR∈x . The problem is to select u to minimize L(x, u) and simultaneously 

satisfy the constraint given by equation f(x, u) = 0. 

 

The Hamiltonian function is defined as: 

 

( ) ( ) ( )H L f= + Τx,u,λ x,u λ x,u        4.2 

 

where, 

 

λ is the set of the so-called Lagrange multipliers [6]. 

 

It is well known from advanced calculus that by equating independently to zero all 

derivatives of H, yields a stationary point. 

 

In order then to have a minimum point of L(x, u) that also satisfies the constrain 

f(x, u) = 0 some conditions must be fulfilled. 

 

Thus, the differential increments of H should be zero. 

 

Increments in H, however, depend on increments in x, u and λ according to: 

 
T T T
x udH H dx H du H dλ λ= + +         4.3 

 

The usefulness of the Lagrange multipliers approach can be mentioned at this point where 

in reality, dx and du are not independent increments. So, by introducing an undetermined 

multiplier λ, we obtain an extra degree of freedom, and λ can be selected to make dx and 

du behave as if they were independent increments. 
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By introducing Lagrange multipliers we replace the problem of minimizing L(x,u) subject 

to the constrain  f(x,u) = 0 with the problem of minimizing the Hamiltonian H(x,u,λ). 

 

Then the conditions for a minimum point of L(x, u) that also satisfy the condition 

f(x, u) = 0 are: 

 

0

0

0

T
x x

T
u u

f

L f
x

L f
u

δΗ
δλ
δΗ λ
δ
δΗ λ
δ

= =

= + =

= + =

        4.4 a, b, c 

 

4.3. Optimal control of discrete-time systems. 

 

The problem described previously can now be extended for a system that develops 

dynamically through time, since now the constraint equations are the dynamical equations 

describing the evolution in time of the system. These are governed and fixed by the basic 

physics of the system, through using fundamental laws and constitutive relations.  

 

The performance index J (or cost function) that we seek to minimize is specified by us 

depending on the particular problem we seek to solve. Such a suitable J for the case of the 

satellite that has been studied is presented in the following sections. 

 

4.3.1 Performance index J for the case of the satellite control problem 

 

The general form of the performance index, is 
1

1

( , ) ( )
N

i N k
k

J N x LΦ
−

=

= +∑ k kx ,u         4.5 

where, 

[i, N] is the interval of interest in the behavior of the system. 

( , )NΦ Nx  is a function of the final time N and the state at the final time. 

( )kL k kx ,u is a time varying function of the state and control input at each intermediate 

time L. 
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The optimal control then is to find the control u*
k that drives the system along a trajectory 

x*
k such that the performance index is minimized. 

 

In the case of satellite orbit control, which is the objective of this Thesis work, it is 

desired to find an optimum control u*
k that minimizes the energy needed to position the 

satellite both for the final and for the intermediate states. 

 

Then, 
1

1

1 1 ( )
2 2

N

i
k

J
−

=

= + +∑T T T
N N N k k k k k kx S x x Q x u R u       4.6 

 

Where, Q, R and S are suitable weighting matrices. 

 

Minimizing the energy corresponds to keeping the states and the control close to zero. 

Then, by proper weight matrices selection, an optimum control, in the sense of 

minimizing J,  is found (calculated), which is the primary desired result. 

 

For example if we want the intermediate states to be small, then Q should be chosen to be 

relatively large, so that it is  heavily weighted in J. If the concern is that the control 

energy is small, then large values of R should also be selected. 

 

In the case of the satellite’s problem, it is desired to keep the intermediate states as small 

as possible. This means that the relative error is close to zero since the requirement is to 

take the satellite to the ideal orbit. However, this should be done with the minimum 

energy, so a trade-off between the weights Q and R should be made in order to achieve 

the optimum control. 

 

4.3.2 Optimal Discrete-time Linear Quadratic Regulator. 

 

The plant of the satellite that will be controlled is described by the linear equations below: 

( 1) ( ) ( ) ( ) ( ) , (0)t t t t t+ = + = 0x A x B u x x ,       4.7 

 

and the associated performance index is given by equation 4.6 were Qk, Rk and Sk are 

assumed to be symmetric positive semidefinite matrices and in addition |Rk| ≠ 0 for all k. 
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To solve this LQR problem, the following Hamiltonian function is used: 

1 ( ) ( )
2kH = + + +T T T

k k k k k k k+1 k k k kx Q x u R u λ A x B u      4.8 

 

Then, the state and co-state equations are derived according to the Langrage multiplier 

formalism. 

kδΗ
δ

= =k+1 k k k k
k+1

x Α x + B u
λ

   (State equation)      4.9 

 

kδΗ
δ

= = T
k k k k k+1

k

λ Q x + A λ
x

    (Co-state equation)      4.10 

 

and the stationary condition 

0 kδΗ
δ

= = + T
κ κ κ κ+1

κ

R u B λ
u

        4.11 

 

According to 4.11 then 

k = −
-1 T

k k k+1u R B λ          4.12 

 

Using equation 4.12 to eliminate uk in 4.9, we get: 
-1 T

k+1 k k k k k k+1x = Α x - B R B λ         4.13 

 

In the case of the control of the satellite’s orbit, the final state xN is free. This means that 

xN can be varied while determining the constrained minimum, therefore,  dxN ≠ 0 and then 

it is required that [6] 

d
d
Φ

=Ν
N

λ
x

          4.14 

 

where Φ is the final state weighting function: 

N
1 S
2

Φ = T
N Nx x          4.15 

 

N   S⇒ =Ν Nλ x          4.16 
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In order to solve these two boundary condition problems, the sweep method developed by 

Bryson and Ho (1975) is used. 

 

That is to assume that a linear relation like 4.16 holds for all times k ≤ N: 

kS⇒ =k kλ x           4.17 

 

For equation 4.17 to be valid, a consistent formula for Sk should exist. 

 

So, by substituting 4.17 into 4.13 and solving for xk+1 we get: 
1

k+1( S )−= -1 T
k+1 κ κ κ κ κx I + B R B Α x        4.18 

 

Then, if we substitute equation 4.17 to the co-state equation 4.10 and substitute xk+1 by 

4.18, we have: 
1

k k+1 k+1S S ( S )−= + T -1 T
k k k k κ κ κ κ κx Q x A I + B R B Α x      4.19 

 

Since xk is generally non-zero, and equation 4.19 holds for all state sequences, then 
1

k k+1 k+1S S ( S )−= T -1 T
k κ κ κ κ kA I + B R B Α + Q       4.20 

 

Finally by using the matrix inversion lemma [6] 4.20 become: 
1

k k+1 k+1 k+1 k+1S [S S ( S ) S ]−= − +T T T
k κ κ κ κ κ κ kA B B B + R B Α Q     4.21 

 

which is the well known Riccati equation. 

 

If, however, |Sk| ≠ 0 for all k, then the Riccati equation can be rewritten as: 
1

k k+1S (S )+ +−= T -1 -1 T
k κ κ κ κ kA B R B Α Q       4.22 

 

Then the optimum control is given by: 

k+1S= − -1 T
k κ κ κ+1u R B x         4.23 

 

If again we substitute the plant equation 4.7 we finally get the optimum control by 

= −k κ ku K x           4.24 
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where  1
k+1 k+1( S ) S−= T T

k κ κ κ κ κK B B + R B Α      4.25 

 

Kk is known as the Kalman gain 

What is important to mention at this point is that the Kalman gain is given in terms of the 

Riccati equation solution Sk, the system and the weighting matrices. This means that it can 

be calculated off-line and then used on-line as shown in Figure 4.1 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1.Free final state LQR optimal control scheme. 

 

4.3.3 Steady-sate closed-loop control and suboptimal feedback 

 

The closed-loop system described in the above section 

( )= −k+1 κ κ k κx Α B K x            4.26 

is time varying since the optimal feedback gains are time-varying. 

 

 

Bk 

Ak

Kk

Z-1

1
k k+1 k+1 k+1 k+1S [S S ( S ) S ]−= − +T T T

k κ κ κ κ κ κ kA B B B + R B Α Q  
 

1
k+1 k+1( S ) S−= +T T

k κ κ κ κ κK B B R B Α  

Z 

on line 

off line 

Sk 
Kk 

Sk+1 

xk uk 
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However, this time-varying feedback is not always convenient to implement. 

Instead, it is common to use a sub-optimal feedback gain 

= −k ku Kx           4.27 

which is easier to implement. 

Basically, if the limit of the optimal Kk as the final time N goes to infinity exists, it 

provides a constant feedback which is often satisfactory. 

 

The Riccati equation 4.21 is solved backward in time, beginning at time N. 

 

Then, as k →−∞ , the sequence Sk can have several types of behavior. It can converge to 

a steady-state matrix S∞ which may be zero, positive semidefinite or positive definite. It 

may also fail to converge. 

 

If, however, Sk does converge, then for large negative k, we have that 

1k kS S S +� �           4.28 

 

Thus, in the limit, the Riccati equation of 4.21 becomes: 
1[ ( ) ]S S S S −= − + +T T TA B B B R B S Α Q       4.29 

 

Which is the Algebraic Riccati Equation (ARE). 

 

Then the limiting solution of 4.21 is of course also a solution of the ARE. However, since 

that ARE can also have non-positive semidefinite, nonsymmetric and even complex 

solutions, this means that not all the solutions of ARE are limiting solutions of the time-

varying Riccati equation. If then the limiting solution of 4.21 exists and is denoted as S∞, 

then the corresponding steady-state Kalman gain is: 

 
1( )S S−

∞ ∞ ∞= +T TK B B R B Α          4.30 

which is a constant gain. 

 

What is important to know however, is when a limiting solution S∞ exists and if the 

closed-loop plant is asymptotically stable. 
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The answer to these questions can be given by the following two theorems [6]. 

 

Theorem1: 

Let A, B stabilizable, then for every choice of SN there is a bounded limiting solution of 

S∞. Furthermore, S∞ is a positive semidefinite solution to the ARE. (for proof see [6]) 

 

Theorem2: 

Let C be a square root of the intermediate state weighting matrix, so that 

0= ≥TQ C C , and suppose that R > 0.      4.31 

 

If we suppose that (A, C) is observable, then (A, B) is stabilizable if and only if: 

 

a) There is a unique positive definite limiting solution S∞ to the Ricccati equation 

4.21. Also S∞ is the unique positive definite solution to the ARE. 

 

b) The closed-loop plant 

( )∞=k+1 κ κ κx Α - B K x                  4.32 

is asymptotically stable, where K∞ is given by 4.30 

 

What is basically stated by these two theorems is that if our system is stabilizable and if 

we select weighting matrix Q = CTC such as for some C the system is observable, then 

the steady-state feedback  ∞= −k ku K x  is the optimal control, for it is the control that 

minimizes the performance criterion over the infinite time interval [0,∞]. 

 

4.4. Control of the satellite using LQ regulator - discrete system. 

 

Following the above analysis, what has to be tested is the controllability and observability 

of the satellite’s system. 

 

Using the symbolic toolbox of MATLAB, it can be seen that the observability and 

controllability matrices have rank n = 6, which satisfies the criterion. 
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So, there exists a solution S∞ which has been calculated with the MATLAB function 

[S_inf, e, G] = dare(A, B, Q, R) 

 

Finally the optimal control has been  again found through the use of the MATLAB 

function: 

[K1, S_inf, e] = dlqr(A, B, Q, R) 

which internally calculates the discrete algebraic Riccati equation. 

 

The selection of matrices Q and R was made based to the fact that the requirements are to 

have as little fuel energy utilization as possible. 

 

For that case, matrix R and Q had been selected as 

 

1 0 0 0 0 0
0 1 0 0 0 0

100 0 0
0 0 1 0 0 0

0 100 0    ,        
0 0 0 1 0 0

0 0 100
0 0 0 0 1 0
0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

R Q      4.33 

 

The eigenvalues of the closed-loop system are: 

e = 

0.9156 + 0.0462i 

0.9156 - 0.0462i 

0.9161 + 0.0454i 

0.9161 - 0.0454i 

0.9159 + 0.0458i 

0.9159 - 0.0458i 
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Figure 4.2.Eigenvalues of the closed-loop system. 

 

As can be seen from Figure 4.2, the eigenvalue of the closed-loop system are within the 

stability margin. 

 

 

4.5 Final results 

 

In the following figures, the evolution of the states as well as the comparison of the real 

satellite with the ideal will be presented. The initial conditions of the satellite were: 

x = y = z = 1m. The time of the simulation was made to be 200 minutes, since after that 

period of time there is not significant difference in the satellites trajectory. 
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Figure 4.3.Measured and estimated states. a) angular velocity of the satellite (omega) 

versus time, b) x relative versus time,  c) y relative versus time , d) z relative versus time 
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Figure 4.4.a.b Evolution of the satellites radius and the relative error. 
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CChhaapptteerr  55  

HH--iinnffiinniittyy  OOppttiimmaall  CCoonnttrrooll  SSyynntthheessiiss  
 

Symbols for this Chapter: 
G = plant model 

Gd = disturbance model 

r  = reference input 

d   = disturbances 

y = plant outputs 

ym  = measured y 

u = control signals 

P  = generalized plant includes G and Gd and the interconnection structure between the plant 

and the controller. 

w = exogenous inputs (commands, disturbances, noise) 

z = exogenous outputs 

υ  = controller inputs for the general configuration (measured signals) 

L = GK loop transfer function (K = controller transfer function) 

S = (1+L)-1 sensitivity function 

T = ((1+L)-1 L) complementary sensitivity function 

 

DEFINITIONS: 

Maximum peaks: 

max ( )sM S jω ω≡  

and 

max ( )TM T jω ω≡  

Typically, Ms ≤ 2 and MT < 1.4 

 

Bandwidth: 

Bandwidth is defined as the frequency range [ω1, ω2] over which control can be  affective. 

Usually, but not always,  ω1 = 0 and ω2 ≡ ωΒ is the bandwidth. 
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The closed-loop bandwidth is the frequency where ( )S jω  first crosses the magnitude 

ratio of 1/ 2 0.707=  3dB−�  from below, while the bandwidth in terms of T, ωΒΤ is the 

highest frequency where ( )T jω crosses 1/ 2 0.707 3dB= −�  from above. 

ωC    ≡ cross over frequency, which is the frequency where |L(jω)| first crosses a 

magnitude ratio of 1 from above. 

 

5.1. H∞ controller synthesis 

 

The main task of the problem is to design a controller that can stabilize the satellite and 

control its trajectory, irrespective of external influences which are mainly disturbances 

caused by the sun’s and moon’s gravitational field as well as from the non-homogeneity 

and oblateness of the earth. 

 

The approach that will be developed, demonstrated, simulated and appraised in this 

chapter is the so-called H∞ controller (“H” stands for Hardy spaces, while the infinity 

subscript indicates a minimax optimization). The H∞ controller is essentially an optimal 

controller that can be applied to MIMO systems .This controller will be described in some 

detail below. 

 

A deterministic MIMO system can be represented by the following block diagram, 

(Figure 5.1) 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.General control configuration with no uncertainty. 
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The overall control objective is to find a controller K, which, based on the information in 

υ,to generate control signals u that will counteracts the unwanted influence of w on z. by 

minimizing some suitable norm (in this case the H∞ norm) of the transfer function relating 

w to z. 

 

That is, in the case of the control of the satellite’s orbit, to find a controller that 

counteracts the external disturbances acting on the satellite by minimizing the closed-loop 

norm from w to z. 

 

The H∞ norm of a scalar transfer function f(s) is simply the peak value of |f(jω)| as a 

function of frequency. 

That is, 

( ) max ( )f s f jω ω
∞
�          5.1 

 

The H∞ controller synthesis is basically a design method that tries to press down the peaks 

of one or selected transfer functions. The ∞ symbol, comes from the fact that the 

maximum magnitude over frequency can be written as 

( )1/

max ( ) lim ( )
pp

p
f j f j dω ω ω ω

∞

−∞→∞
= ∫         5.2 

That can be translated as taking the peak value of  | f |  by raising it at infinite power, since 

p → ∞. 

So, with this definition, H∞ is the set of transfer functions with bounded ∞-norms [11]. 

 

5.1.1 Scaling. 

 

In the analysis that follows, in order to simplify the controller design and the performance 

analysis, the inputs, outputs and disturbances of the system are normalized by suitable 

scaling of the general transfer function G. 

 

For MIMO systems, such as the case to be studied, in order to scale the inputs and outputs 

of the system, the unscaled variables are divided by the maximum expected or allowed 

value. 
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If  Dd, Du, and De define the diagonal scaling matrices for the disturbances, inputs and 

error (output), then the scaled variables are obtained by: 

 

1 1 1 ,     and    y u y
∧ ∧ ∧

− − −= = =d u ed D u D y D       5.3 

where the caret  ^ indicates scaled variables. 

 

Similarly, the scaled transfer functions will be: 
1 1ˆ ˆ and d dG G G G− −= =e u e dD D D D        5.4 

 

where G is the satellite’s model transfer function and Gd the disturbances transfer 

function. Since however, for the case of the satellite the disturbances are inertial forces 

expressed as accelerations acting on the mass of the satellite, then the disturbances can be 

considered as external forces acting on the plants input, so Gd = G. 

 

5.2. Controller design 

 

There are mainly three approaches to the controller design. 

 

a) By proper shaping of the open and closed-loop transfer functions. 

b) By the so-called signal-based approach, which this basically considers a 

disturbance or reference change and tries to optimize the closed loop response 

(LQG control). 

c) A numerical optimization: Multi-objective optimization to optimize directly the 

true objectives such as rise time and stability margins. 

 

The H∞ controller synthesis is based on the first approach, where the amplitude of the 

open-loop transfer function L(jω) is shaped, as well as the closed-loop transfer functions 

S, T and KS. 
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5.2.1. Open- loop shaping 

 

By shaping the open-loop transfer function L(jω), some fundamental trade-offs must be 

taken, such as: 

 

1. For good disturbance rejection, L must be large. 

2. For a good command following (small errors), L must be large. 

3. For measurement noise reduction, L must be small. 

4. To keep the magnitude of the input signals small, K must be small and L must be 

small. 

 

The specifications of the desired loop transfer function are: 

 

1. The gain crossover frequency ωc where L(jω) =1 

2. The slope N of |L(jω)| in certain frequency ranges, where typically the slope 

N=( -20dB/dec) around the crossover and a larger roll-off at higher frequencies. The 

desired slope at low frequencies depends on the nature of the reference signal or of the 

disturbances. 

 

As mentioned before, in the case of the satellite’s control, it is of primary interest to 

achieve good disturbance rejection. 

 

5.2.2 Loop shaping for disturbance rejection 

 

The basic control problem can be described as 

y = Guu + Gdd 

and the regulator problem is to counteract the disturbances d. 

 

That is the goal of the control is to make 

e = y = SGdd minimum. 

 

So, for achieving |e(jω)| ≤ 1 for |d(jω)| = 1 ( which is the worst case), then 

( ) 1dSG jω ≤    or    1 dL G+ ≥ ω∀       5.5 
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Or, approximately 

 dL G ω≥ ∀  

 

So one good initial guess would be that 

min
 dL G ω≈ ∀  

 

Finally, at this point it may be concluded that the controller should contain the dynamics 

of the disturbance (Gd) and invert the dynamics of the inputs (G) 

 

For disturbances at the plant output Gd  =1 while for the case that will be examined where 

the disturbances are at the plants input, Gd = G 

 

More specifically, the loop shape L(s) for our case could be modified based on the three 

points below: 

 

1. Around crossover the slope to be around -1 for transient behavior with acceptable 

gain and phase margins 

2. The loop gain should be increased for improving the settling time and reduce the 

steady state offset. 

3. L(s) should also roll off faster at higher frequencies beyond the bandwidth in order 

to reduce the use of manipulated inputs and make the controller realizable. Also 

for noise reduction. 

 

5.2.3 Closed-loop shaping 

 

For closed-loop shaping, we are interested in S and T. 

 

In the high frequencies where |L(jω)| >> 1  then, 

S ≈ L-1 and T ≈ 1, 

while in the lower frequencies where |L(jω)| << 1 

T ≈ L-1 and S ≈ 1 

 



 

Kleanthis Neokleous MSc Thesis May 2007 

- 66 -

However, in the crossover region where |L(jω)| ≈ 1, nothing can be inferred about S  and 

T. 

The sensitivity function S is a good indicator of a closed-loop performance, both for SISO 

and MIMO systems. Ideally, S must be small. 

 

Typical specifications in terms of S include: 

 

1. Minimum Bandwidth ωΒ 

2. Maximum tracking error at selected frequencies 

3. The maximum steady state tracking error A 

4. Shape of S over selected frequency ranges 

5. Maximum peak magnitude of S, ( ) sS j Mω
∞
≤  

 

The typical values of Ms =2. Peak specifications prevent amplification at high frequencies, 

as well as introduce a margin of robustness. 

These specifications may be captured by an upper boundary, 1/ ( )P sw  on S, where wP is 

the performance weight and is mainly used as a performance indicator. 

Then the performance requirements, become: 

1( )        
( )  P

S j
j

ω ω
ω

< ∀
w

        5.6 

     ( ) 1P S
∞

⇒ <w  

 

The typical performance weight, is: 

( ) s
p

s
Ms
s

Β

Β

ω

ω Α

+
=

+
w ,         5.7 

What is of our interest is that 

1( )  ,
( )  P

S j
j

ω ω
ω

< ∀
w

        5.8 

( ) 1/ ( )PS j jω ω ω⇒ < ∀w  

so, what can be seen here is that at low frequencies, the weighting filter 

1/|wP|  is equal to A. 
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So, typically A should be very close to zero in order to ensure approximate integral action 

with S(0) ≈ 0. However, for avoiding calculation errors, A usually takes a very small 

value. 

 

The desired closed-loop bandwidth ωΒ may be different for each output of the filter 

weight and depends on the position of the zeros of the system. A large value of ωΒi yields 

a faster response for output i. 

 

Also, an additional upper boundary can be added for the magnitude of T  in order to make 

sure that L does not roll off fast at high frequencies as well as to achieve robustness. 

 

That can be done by setting 

1( )      
( )T

T j
j

ω ω
ω

< ∀
w

,         5.9 

where  wT is known as the weight for robustness. 

 

To restrict the magnitude of the input signals u = -KSGdd   an upper bound on the 

magnitude of KS can be placed. That is to be less than 1/| wu | where wu is the input 

weight. 

 

By combining these mixed sensitivity specifications the following “stacking approach” 

results. 

max ( ) 1N jω σ Ν ω
∞
= <           5.10 

where 
u

T

P

KS
N T

S

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

w
w
w

 and σ  denotes the maximum singular value. 

The optimal controller is then obtained by solving the problem 

min ( )K N K
∞  

 

Numerically this problem is solved by the so-called  γ-iteration where the solution is for a 

controller that achieves N
∞

<γ.  Then γ is reduced iteratively to obtain the smallest value 

of γ for which solution exists. 
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5.3. Limitations on performance. 

 

5.3.1 Limitations on sensitivity. 

 

From the definitions of S and T , it can be derived that 

 

S+T=I                      5.11 

 

Ideally, S should be small to obtain small control error for the disturbances as well as 

small T to avoid sensitivity to noise. Unfortunately, these requirements are not 

simultaneously possible since at any frequency, either |S(jω)| or |T(jω)| must be larger or 

equal to 0.5. 

 

However, for MIMO systems, which is the case that will be examined, from eq. 5.11 it 

can be seen that: 

 

( ) 1 ( ) ( ) 1S T Sσ σ σ− ≤ ≤ +         5.12a 

and 

( ) 1 ( ) ( ) 1T S Tσ σ σ− ≤ ≤ +         5.12b 

These can be combined to get 

( ) ( ) 1S Tσ σ− ≤          5.12c 

 

So, it is only possible for the magnitudes of ( )Sσ  and ( )Tσ to differ by at most 1 at a 

given frequency. 

 

There is also a limitation due to interpolation constrains, where if p is a RHP pole of the 

plant G(s), then T(p) = 1 and S(p) = 0. Similarly, if z is a RHP zero of G(s) then T(z) = 0 

and S(z) = 1. 

 

The main difference for MIMO systems is that basically for a multivariable system, the 

plant gain, RHP poles and zeros as well as disturbances, all have directions associated 



 

Kleanthis Neokleous MSc Thesis May 2007 

- 69 -

with them. Poles and zeros directions, which is of primary concern, may be obtained from 

a singular value decomposition (SVD) of G(p) or G(z) [11] 

 

So, basically for MIMO systems, from interpolation constrains, if G(s) has a RHP zero at 

z with output direction yz then for internal stability of the feedback system, T must have a 

RHP pole in the same direction as G and that S(z) has an eigenvalue of 1 corresponding to 

the left eigenvector yz. 

That is, 

( ) 0 and ( )H H H
z z zy T z y S z y= = , where yH is the conjugate transpose. 

 

If G(s) has a RHP pole at p with output direction yp then for internal stability 

( ) 0 and ( )p p pS p y T p y y= =  

 

One other limitation on sensitivity is what is known as the waterbed effect that basically 

states that if we push the sensitivity down at some frequencies, then it will have to 

increase at others. 

 

In general, a trade-off between sensitivity reduction and sensitivity increase must be 

performed whenever L(s) has at least two more poles than zeros or L(s) has a right hand 

plane (RHP) zero. 

 

5.3.2 Limitations on peaks 

 

The term ‘peak’ at this point means the maximum value of the frequency response or the 

H∞ norm of important transfer functions such as S and T. So the main concern is to derive 

explicit bounds on these transfer functions. 

 

From the Maximum modulus principle [11], which basically states that for a stable f(s) , 

then the maximum value of |f(s)| (for s in the right-hand plane) is attained on the region’s  

boundary. 

More specifically, 

0 0( ) max ( ) ( )              RHPf j f j f s sωω ω
∞
= ≥ ∀ ∈     5.13 
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Then by considering that ( ) ( ) ( )pf s s S s= w  and ( ) ( ) ( )Tf s w s T s=  

the following theorems are true. 

 

Weighted sensitivity theorem: 

If G(s) has a RHP zero z and wp is any stable weight, then for closed-loop stability, the 

weighted sensitivity function must satisfy 

( )p pS z
∞
≥w w          5.14a 

For MIMO systems, 

( ) ( ) max ( ( ) ( )) ( )p p ps S s j S j zω σ ω ω
∞
= ≥w w w      5.14b 

 

In MIMO systems, we generally have the freedom to move the effect of RHP zeros to 

different outputs by appropriate control. 

 

Weighted complementary sensitivity theorem: 

If G(s) has a RHP pole p and wT is any stable weight, then for closed-loop stability, the 

weighted sensitivity function must satisfy 

( )T p
∞
≥T Tw w          5.15a 

The above theorem for MIMO systems becomes: 

( ) ( ) max ( ( ) ( )) ( )p p ps S s j S j zω σ ω ω
∞
= ≥w w w      5.15b 

 

Also the weighted sensitivity and complementary sensitivity have limitations on their 

peaks caused by combination of RHP poles and zeros as well as from pairs of complex 

poles and zeros. All the above constrains have as effect the limitations on the bandwidth 

ωΒ, which is a major factor on the selection of the weighting filters. 

 

However, since for the case of the satellite’s model that is studied, it is of primary concern 

the rejection of disturbances, the following analysis is about bandwidth limitation on low 

frequencies. 

 

5.3.3 Bandwidth limitation 

 

5.3.3.1 RHP-zero and performance at low frequencies 



 

Kleanthis Neokleous MSc Thesis May 2007 

- 71 -

By considering the performance weight /( ) s
p

s Ms
s

Β

Β

ω
ω Α
+

=
+

w  , a minimum bandwidth ωΒ 

is defined by the performance limitation: ( ) 1/ ( ) ,   PS j jω ω ω< ∀w . 

Also maximum peak of |S| less than Ms and a steady-state offset less than A<1. If then the 

plant has a RHP-zero at s=z then from 5.14 a we have that 

/( ) 1s
p

z Mz
z

Β

Β

ω
ω Α
+

= <
+

w         5.16 

 

In the case that z is real then all variables are real and positive and from 5.16 we derive 

the bound on ωΒ. 

⇒ 1 1/
1

s
B

Mz
A

ω −
<

−
         5.17 

If we assume A=0 and Ms=2 we must at least have that ωΒ < 0.5z 

 

In the case that the system has a pair of complex conjugate RHP- zeros, 

,  0z x jy x= ± ≥  , A=0 and Ms=2 then: 

2 20.5 0.75x x yΒω < − + +  

 

5.3.3.2 Limitations imposed by unstable (RHP) poles. 

 

By making similar assumptions as above, that is A=0 and MT =2 and considering as a 

complimentary sensitivity weight 

1( )T
T T

ss
MΒω

= +w          5.18 

 

Then for a real RHP-pole at s = p and from the robustness limitation 

 

( ) 1/ ( ) ,    TT j jω ω ω< ∀w  , Results that the minimum ωΒ > 2p 

 

Similarly, for a pair of complex RHP poles ,  0p x jy x= ± ≥  then: 

 

2 20.67( 4 3 )x x yΒω > + +         5.19 
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The above approximations are made for SISO systems. In the case of MIMO systems, 

lower bounds on various closed-loop functions can be derived by direct generalizations of 

those from the SISO systems if only the directions are taken into account. 

 

In the case of the satellite’s MIMO model, Gsat has the following poles and zeros which 

they were derived by the MATLAB function tzero(G) and pole(G) 

 

 

 

Poles: Zeros: 

 

 

 

By observing the poles and zeros of the system, what can be inferred to at this point is that  

10 / sradΒω <  . The second observation is that the system has six poles on the imaginary 

axis. This can cause a calculation problem when the MATLAB function hinfopt is 

called to calculate the optimum controller. However, this issue will be analyzed in the last 

part of this chapter. 

 

5.3.4 Functional controllability 

 

In order to be able to control all outputs independently, it is required that the normal rank 

of the plant Gsat(s) has the same rank as the number of outputs. This is basically the 

definition of functional controllability, where in the case of the satellite’s model, if we 

define n the normal rank of Gsat then it can be seen that n = 3 which is the number of the 

system’s outputs. This means that the satellite’s system is functionally controllable. 

 

All of the above analysis however, is a good indicator for the selection of the initial filter 

weights. What follows next is a lot of simulations and with trial and error the optimum 

controller is selected. 
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5.4. The general control problem. 

 

As described in the introduction of this chapter and from Figure 5.1, it can be seen that the 

overall objective is to minimize the H∞ norm of the transfer function from w to z. 

 

The first step of this analysis is to obtain the general plant P. However, in order to get a 

meaningful controller synthesis, it is necessary to include the weights wu for penalizing 

the control inputs, wp for performance and wT to ensure robust performance, as shown in 

figure 5.2 below. 

 
Figure 5.2.General plant including performance weights 

 

The plant in Figure 5.2 is basically what will be used for solving the mixed sensitivity 

problem for controlling the satellite’s orbit. 

In the case of the satellite, an important consideration is to bound ( )Sσ for performance, 

( )Tσ for robustness and ( )KSσ to penalize large control inputs. 

 

As mentioned previously, the above requirements can be combined to a mixed sensitivity 

problem, trying to find an optimal controller by solving 

min ( )K N K
∞

  where 
u

T

P

KS
N T

S

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

w
w
w

 

It will be shown in the next part of this chapter that by solving the mixed sensitivity 

problem formulated here, an input multiplicative uncertainty which is my main interest in 

this case is included. 

 

wT 

wp 

wu 

K + υ u 

w

+ - G 

Ν 

z1 

z2 

z3 
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It can be seen from Figure 5.2 that N is the complete block. In order to obtain N we first 

need to derive the general plant P. 

 

5.4.1 Obtaining the generalized plant P. 

 

P is the open loop transfer function from [w u ]T to [ z υ]T 

 

Then, 

0
0

u

T

p p

I
G

P
I G

I G

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥− −⎣ ⎦

w
w

w w
         5.20 

In order however, to get N, P is needed to be partitioned as  11 21

12 22

P P
P

P P
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

Finally, by closing the loop, we have that z = Nw where N  is given by 

 
1

11 12 22 21( ) ( , )lN P P K I P K P F P K−= + − �       5.21 

 

where, Fl(P,K) denotes a lower linear fractional transformation (LFT) of P with K as a 

parameter. 

 

In the case of the satellite’s model, P was derived by using the MATLAB function 

[P] = augtf(Gg, W1, W2, W3) 

 

where Gg  is the scaled general plant for the equations of motion of the satellite. 
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5.5. Control configuration including model uncertainty. 

 

Model uncertainties, can be defined as the differences between the actual system and the 

system which was used to design. A control system is then robust if is insensitive to those 

differences. 

 

The general N∆ structure is shown in Figure 5.3 below. 

 

 
 

Figure 5.3.Uncertainty block in the general configuration. 

 

For the robustness analysis, a system representation is used where the uncertain 

perturbations are “pulled out” into a block diagonal matrix as shown in Figures 5.4a and b 

below. 

 

 
 

Figure5.4.a.Original system with multiple perturbations 

 

 

∆1 

∆3 

∆2 

w z 

∆ 

w z Ν 

y∆u∆ 



 

Kleanthis Neokleous MSc Thesis May 2007 

- 76 -

 
 

Figure 5.4.b. Pulling out the perturbances 

 

As mentioned above N is related to P and K by a lower (LFT) 
1

11 12 22 21( ) ( , )lN P P K I P K P F P K−= + − �  

 

Similarly, the uncertain closed-loop transfer function from the input w to the output z is 

related to N and ∆ by an upper (LFT) 
1

22 21 11 12( ) ( , )uF I F NΝ Ν ∆ Ν ∆ Ν ∆−= + − �       5.22 

For analyzing robust stability of F the system is then re-arranged into the M∆ structured, 

where M = N11 as shown in Figure 5.5 below. 

 

 
 

Figure 5.5.M∆ structure. 

 

Each perturbation in the ∆ structure, is assumed to be stable and normalized such as 

( ( )) 1  ,    1j iισ ∆ ω ω ∆
∞

≤ ∀ ∀ ⇔ ≤        5.23 
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5.5.1 Unstructured uncertainty. 

 

Unstructured uncertainty can be defined as a full complex perturbation matrix ∆, where at 

any frequency, equation 5.23 is satisfied. 

 

There are basically six common forms of unstructured uncertainties. 

These are: 

Additive and inverse additive uncertainty 

Multiplicative and inverse multiplicative input uncertainty 

Multiplicative and inverse multiplicative output uncertainty. 

 

In the case of the control of the satellite, what is important and will be considered is the 

multiplicative input uncertainty for the reason that we are not absolutely sure what the 

output of the thrusters will be. The multiplicative input uncertainty is shown in Figure 5.6 

below. 

 
Figure 5.6.Multiplicative input uncertainty. 

 

Then the perturbed plant, becomes: 

( )       where           P I I IG G I E E Ι∆= + = w       5.24 

 

5.5.2 Robust stability with multiplicative uncertainty. 

 

In order to ensure robust stability in the case that multiplicative uncertainty is applied to 

the system, the following analysis occurs [11] 

1 ,I L L ω≤ + ∀w          5.25 

    1,     1,        1
1

I
I I

L
L

ω Τ ω Τ
∞

⇒ ≤ ∀ ⇔ < ∀ ⇔ <
+

w w w     5.26 

∆I 

G

wI 

+ 

+ 
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Finally, for RS in SISO systems    1/ ,IΤ Τ ω< ∀w      5.27 

 

In the case of MIMO system, which is the case of the satellite’s plant, the following 

theorem stands for unstructured uncertainties [11]. 

 

Assuming that the nominal system M(s) is stable and that the perturbations ∆(s) are also 

stable, then the M∆ system of Figure 5.5 is stable for all perturbations ∆ satisfying 

1∆
∞
<  

 

In other words, we have RS if and only if 

( ( )) 1  ,    1j iσ Μ ω ω Μ
∞

≤ ∀ ∀ ⇔ ≤       5.28 

 

Then, for the multiplicative uncertainty of Figure 5.6, we can assume that 

2 1,     ∆ 1E Ι∆ ∞
= ≤w w , since now we are considering a MIMO system. 

 

To derive the matrix M the perturbation is isolated, and thus 

M = W1MoW2          5.29 

 

Where, Mo is the transfer function from the output to the input of the perturbation. 

 

For the case of the multiplicative uncertainty in the input, 
1

0 ( ) IK I GK G TΜ −= + =           5.30 

 

Then from the theorem above, we get that 

1 0 2( ) ( ) 1    ωW j W jω Μ ω
∞
≤ ∀        5.31 

 

Then if we consider a multiplicative uncertainty with a scalar weight 

( ) , 1P IG G I Ι Ι∆ ∆
∞

= + ≤w  

 

⇒    For RS we have  1I IT
∞
≤w        5.32 

It can be seen here that equation 5.27 for SISO system is a special case of 5.32 
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5.5.3 Robust performance. 

 

As mentioned previously, for having nominal performance the condition is 

1         1 ,P PS Lω ω< ∀ ⇔ < + ∀w w          5.33 

 

If we define again LP = GPK , then from equation 5.24 for multiplicative input 

uncertainty, we have: 

LP =L+ wiL∆          5.34 

 

What is required for robust performance (RP) is that the condition 5.33 is satisfied for all 

possible plants. 

 

Then,   if we define (1 )P PS L= +  for RP we get: 

,1   

or, 1   
P P P

P P

S S

L

ω< ∀

< +

w

w
          5.35 

Therefore, from equations 5.24, 5.34 and 5.35, we can finally get that: 

For RP 

1 1

1   , ω

(1 ) (1 )  , ω

p I

p I

L L

L L L− −

+ < + ∀

⇒ + + + ∀

w w

w w
       5.36 

 

Finally, for SISO systems, in order to ensure RP we have: 

 

( )max 1p IS Tω + <w w         5.37 

 

For Robust Performance on MIMO systems the structured singular value µ is introduced. 

One simple statement to define µ is: If we find the smallest structured ∆ (measured in 

terms of ( )σ ∆ ) which makes det(I-M∆) = 0 , 

 

then µ(M) = 1/ ( )σ ∆                     5.38 

In MIMO systems, RP condition is the same as the RS only with an additional 

perturbation block ∆P. 
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From the next theorem [11] which states that from the N∆ structure of Figure 5.3, if we 

assume nominal stability such as N is internally stable, then for RP 

( , ) 1   , ∆ 1uF F N ∆
∞ ∞ ∞
= < ∀ ≤        5.39 

 

⇒ For RP in MIMO systems, ( )( ) 1 , j∆µ Ν ω ω< ∀�      5.40 

where µ is computed with respect to the structure 
0ˆ

0 p

∆
∆

∆
⎢ ⎥

= ⎢ ⎥
⎣ ⎦

 and ∆P  is a full 

complex perturbation  with the same dimensions as F 

 

5.6. The satellite’s control problem. 

 

From the above analysis, it can be concluded that a good approach for solving the 

problem of controlling the satellite’s orbit would be to try and find an optimal controller 

by minimizing the H∞ norm of the transfer function of the inputs w to the outputs z as 

shown in Figure 5.2. 

 

With the proper selection of weights the configuration of Figure 2 can be seen as in the 

model a multiplicative input uncertainty is considered since from equation 5.11 in order to 

ensure robust stability we need 1I IT
∞
≤w . 

 

The optimal controller was calculated by using the MATLAB function 

 

[gamopt, sscp, sscl] = hinfopt(P) 

where P is the generalize plant. 

 

What is needed to be controlled in the satellite’s case are the relative x, y and z. However 

those states are also the measured ones since with the use of the extended Kalman filter, 

we had very good estimations of those states. 

This configuration can be considered as the optimum since what we want to control, can 

be measured with the help of the extended Kalman filter. The general configuration in 

MATLAB SIMULINK is shown in Figure 5.7 below. 
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Figure 5.7 General configuration of the satellites model. 

 

However, what has to be stated at this point is as mentioned previously, the system has six 

poles on the imaginary axis, causing calculation problems if  

[gamopt, sscp, sscl] = hinfopt(P) is used. 

 

So, a solution to this problem was to add a small value e=0.1 in order to move the 

eigenvalues of the system to the right hand plane. This has not significant influence to the 

system and makes the calculations easier. 

 

5.6.1 Selection of filter weights 

 

As mentioned, all the previous analysis is a good indicator for choosing the initial 

weights. However for getting the final weights a lot of simulations were done and selected 

by trial and error. So the final weights are shown below: 
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5.6.1.1 Performance weight wP 

 

/( ) s
p

s Ms
s

Β

Β

ω
ω Α
+

=
+

w          5.41 

Where wP is a diagonal matrix with components the scalar weights of equation 5.41 

 

Ms = 2, A = 0.003 and ωB = 10 rad/s. 

 

In Figure 5.8 below the singular values of the closed-loop transfer function S = (I+L)-1  

where L = GK  can be seen as well as the comparison with the singular values 1/wp . 
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Figure 5.8.Singular values of  S = 1/ (I+L) S compared with 1/wP 

 

 

5.6.1.2 Robustness weight wI 

 

To represent unmodelled dynamics usually a simple multiplicative weight is used as 

shown in equation 5.42 below. 

0( )
( / ) 1I

s rs
r s

τ
τ ∞

+
=

+
w          5.42 

( )Sσ  

1/ pw  
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where: 

r0 = the relative uncertainty at steady-state 

1/τ = is (approximately) the frequency at which the relative uncertain reaches 100% 

r∞ = the magnitude of the weight at high frequency. 

 

The final values of the filter wI after a number of simulations are: 

r0 = 0.3 

τ = 0.1 

r∞ = 2 

 

In Figure 5.9 below, the singular values of T= ((1+L)-1 L) compared to the singular values 

of 1/wI  are shown. 
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Figure 5.9.Singular values of T= ((1+L)-1 L) compared to the singular values of 1/wI 

 

1/ Iw  

( )Tσ  
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5.7 Final results 

 

Finally, in the Figures below, the evolution of the states x,y and z relative are shown. The 

optimum control is to take the states to zero after the influence of the external 

disturbances caused by the sun, moon and the earth’s non-homogeneous magnetic field. 

Then if the relative position of the satellite is x = y = z = 0, this means that the satellite 

will have the same position as the ideal point. The control of the satellite was made for 

2880 minutes, which is equivalent to two days. 

 

However, in the plots that follow only the first 200 minutes of the satellites trajectory are 

shown since there is not significant difference in any of the states after that period, and the 

results are clearer to see in this time scale. The initial conditions of the satellite were: 

x = y = z = 1m 
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Figure 5.10.a omega ideal and omega real, evolution of x relative, evolution of y relative 

and evolution of z relative. 

 

As can be seen in Figures 5.10 the error of the states goes fast to zero, which means that 

the controller is cancelling satisfactory the disturbances from the sun moon and earth. 



 

Kleanthis Neokleous MSc Thesis May 2007 

- 85 -

 

0 20 40 60 80 100 120 140 160 180 200

4.2164

4.2164

4.2164
x 104 Evolution of the satellites radius

t[min]

km

r ideal
r real

0 20 40 60 80 100 120 140 160 180 200
-1

-0.5

0

Relative error r1-r2

t[min]

m

 
Figure 5.11.a Evolution of the satellites radius and the relative error. 
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CChhaapptteerr  66  

CCoommppaarriissoonnss  aanndd  ffiinnaall  ccoonncclluussiioonnss  
 

6.1. Introduction 

 

Both of the control methods that were developed in the previous chapters, were tested 

with many simulations for different cases, such as for extreme initial conditions, high 

noise influencing the states of the system, and limited control signal after saturation was 

applied at the output of the controller. Both methods have very satisfactory results. 

However, those results were accomplished by analogous tuning for each case of the 

weights of the corresponding filters in the case of Hinf optimal controller and the weights 

of the corresponding matrices in LQR. 

 

For example, when high gain to the weighting matrix R in the case of LQR or 

equivalently high gain to the weighting filter wu was applied, for both cases then it took 

more time to the satellite to reach the desired position, but the fuel consumption was very 

low. But in the case of penalizing strongly the control input, if an additional noise was 

added to the states of the system, in both cases small oscillations were noticed. On the 

contrary, if the gain of the weighting filter wu and the weighting matrix R was reduced, 

there were good results for robustness of the system, after the influence of noise, however 

the amount of fuel was considerably higher than the previous case. 

 

So, the main conclusion of the many simulations with various cases is that both methods, 

with the proper “fine tuning” can have very good results, in every case independently. In 

order however, to compare these two methods, an imaginary scenario was created with 

some restrictions and both methods were tested and compared to this scenario. In each of 

the control method was applied after many trials what could be considered as the best 

selection of weighting filters and matrices in order to handle this scenario. 

 

The results will be compared in respect to the total force applied to the satellite by each 

control method within the time window of 1000 minutes. 
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6.2. Comparison between the two control schemes. 

 

As described in the introduction, an imaginary scenario will be implemented to test and 

compare the two optimization control methods. 

What will be presented are the plots of the total forces given by the controller to the 

satellite, as well as the performance of the satellite. 

 

The imaginary scenario, is described as follows: The satellites initial conditions would 

be x0 = y0 =  z0 = 100m and the maximum absolute value of force that can be applied to the 

satellite by the thrusters is of 100N. In addition, noise will be added to the states of the 

system that may be caused by interactions of the space environment to the satellites model 

such as solar pressure, or gravitational forces from other non modeled planets. Finally, the 

satellite should be within a boundary of ±10cm from the ideal point after a period of 100 

minutes. For this test, the saturation limit will not be placed at the output of the controller 

since this will create a non-linearity to the system and then stability of the system can not 

be implied. However, what will be tested is if the corresponding force given by the two 

controllers is within the acceptable limits. If saturation is applied at the output the easiest 

way to prove the stability is by simulations since the controllers are designed for a linear 

system.  

 

What will be used as a measurement of comparison is not the amount of fuel spent during 

the 1000 minutes but the integration of the force acted on the satellite, since as can be 

seen from Chapter 2.5 the fuel flow rate is analogous of the thruster force.  

 

 The equations of the thruster forces 2.27 and 2.28 are presented at this point again. 

 

[ ]e e a
dmF V A P P
dt

= + −         6.1 

 

/sp
dmI F g
dt

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 measured in seconds      6.2 
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6.2.1. LQ regulator optimal controller 
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Figure 6.1.Evolution of the satellites radius, the relative error and the boundary condition 

for the case were the controller was designed by LQ regulator methodology. 

0 100 200 300 400 500 600 700 800 900 1000
-0.5

0

0.5
Evolution of the force Fx

t[min]

N

0 100 200 300 400 500 600 700 800 900 1000
-0.5

0

0.5
Evolution of the force Fy

t[min]

N

0 100 200 300 400 500 600 700 800 900 1000
-0.5

0

0.5
Evolution of the force Fz

t[min]

N

 
Figure 6.2.Evolution of the thruster forces Fx, Fy and Fz given by the LQ controller 
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In figure 6.1 what can be seen is the evolution of the satellites radius as well as how the 

satellite is within the boundary limit of ±10cm after 100 minutes. In addition Figure 6.2 

shows the evolution of the forces in the three relative directions x, y and z. 

Since the whole model is in discrete time, the integration of the total force acting in the x, 

y and z direction is equal to the total summation of the absolute value. The reason that an 

absolute value is used is because the negative force is equivalent with a force caused by 

the thruster in the opposite direction. 

For the case of the LQ regulator in the time period of 100 minutes is: 

Fx  = 0.6619 N , Fy  0.5869 N, Fz  = 0.6260 N 

The total force acted on the satellite is: 

Ftotal = 1.8748 N 

The weighting matrices Q and R were selected as: 

1 0 0 0 0 0
0 1 0 0 0 0

200 0 0
0 0 1 0 0 0

0 200 0    ,        
0 0 0 1 0 0

0 0 200
0 0 0 0 1 0
0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

R Q     6.3 

 

6.2.2. H-Infinity Optimal Control 
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Figure 6.3.Evolution of the satellites radius, the relative error and the boundary condition 

for the case were the controller was designed by Hinf Optimal Control Synthesis. 
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Figure 6.4.Evolution of the thruster forces Fx, Fy and Fz 

 

The summation of the absolute value of the three forces given by the controller designed 

with H-Infinity Optimal Control Synthesis regulator in the time period of 100 minutes is: 

Fx  = 0.0060 N , Fy  0.0050 N, Fz  = 0.0033 N 

The total force acted on the satellite is: 

Ftotal = 0.0143 N 

 

The weighting filters wp , wI and wu  were selected as shown below: 

( ) s
p

s
Ms
s

Β

Β

ω

ω Α

+
=

+
w          6.4 

where 

Ms = 2, A = 0.03,  ωΒ = 1 rad/s , and is applied the same for the three system outputs 

 

0( )
( / ) 1I

s rs
r s

τ
τ ∞

+
=

+
w           6.5 

where 

τ = 1/20, r0 = 0.3, r∞ = 2, the same for the three outputs of the satellites plant 

And 1.5u =w  the same for the three outputs of the controller.   6.6 
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6.2.3. Non-linear model tests. 

 

As described previously in this chapter, if the control signal is saturated then the system 

has nonlinearities and the easiest way to prove the stability is by simulations. 

Additionally, with the assumptions made in chapter 1 in order to derive the linear 

equations of motion the satellite should be near the ideal point. So, by taking large initial 

conditions the assumption does not stand. 

 

In the figures that follows, what is shown is the model simulated with initial conditions   

x0 = y0 = z0 = 1km, with additional noise added to the system and the output of the 

controller to be saturated at 1 N. 

 

6.2.3.1 LQ regulator optimal controller 
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Figure 6.5.Evolution of the satellites radius, the relative error with the control signal 

saturated and initial conditions of 1km by LQR Optimal Controller. 
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Figure 6.6.Evolution of the thruster forces Fx, Fy and Fz with control signal saturated. 

 

6.2.3.2 H-Infinity Optimal Control 

 

0 100 200 300 400 500 600 700 800 900 1000

4.2164

4.2165
x 104 Evolution of the satellites radius

t[min]

km

r ideal
r real

0 100 200 300 400 500 600 700 800 900 1000
-1000
-500

0
500

Relative error r1-r2

t[min]

m

0 100 200 300 400 500 600 700
-1

0

1
Relative error r1-r2 with boundary limits

t[min]

m

 
Figure 6.7.Evolution of the satellites radius, the relative error with the control signal 

saturated and initial conditions of 1km by Hinf Optimal Control Synthesis. 
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Figure 6.8.Evolution of the thruster forces Fx, Fy and Fz   with control signal saturated. 

 

6.3 Conclusions. 

 

After many simulations with different values for the weighting matrices and filters, as 

well as many different cases the conclusions are that basically both methods with the 

proper design and tuning can have very good results in the specific case. 

 

The basic differences in the special case of the imaginary scenario that I observed is that 

as far as robustness concern, the Hinf controller is more reliable. Even with higher noise it 

could still stabilize the satellite still with low fuel consumption. In order for the controller 

given by the LQ regulator methodology, to stabilize the satellite when high noise was 

applied to the system, the weighting matrix Q had to become very large. 

 

This can also be confirmed if the Figures 6. 1, 2, 3 and 4 are observed when both methods 

were tested in the scenario described previously. The total force applied to the satellite 

within 100 minutes with the Hinf controller its much less than that given by the LQR. 

Nevertheless, the above conclusions are applied specifically for the case of the scenario 

described and should not be considered as a general case since with proper tuning of the 

weighting matrices, LQ controller can have equally good results. 
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Another conclusion that was derived from the simulations that had been made is that even 

if the output of both of the controllers was saturated, and the initial conditions were set 

very far away from the ideal point, the satellite was still stabilized. On the other hand, 

what can be noticed is that with both control methods, additional oscillations occurred. 

The problem with the oscillations caused by the saturation of the control signal can be 

solved with two methods. The first method would be to add anti-wind strategy to the 

controller [14] .This method basically stops the operation of the integrator at the point 

where the signal is saturated [15].  

 

The second way to solve this problem would be by using a Model Predictive Control 

(MPC). The main idea of MPC is to choose the control action by repeatedly solving on 

line an optimal control problem. The online optimization problem takes account of system 

dynamics, constraints and control objectives. Conventional model predictive control 

requires the solution of an open-loop optimal control problem, in which the decision 

variable is a sequence of control actions, at each sample time. This aims at minimizing a 

performance criterion over a future horizon and most of the time when it is subject to 

constraints on the manipulated inputs and outputs [16]. For more information about 

Model Predictive Control, a number of references can be found on the webpage: 

http://www.rpi.edu/dept/chem-eng/WWW/faculty/bequette/courses/mpc/MPC_refs.pdf. 

 

 

As for designing of the controllers, there are advantages and disadvantages in both 

methods. With the Hinf, the controller has some dynamics and probably is more difficult to 

be designed while with LQ, the controller is only a gain. The advantage though of the Hinf 

controller that has been studied in this case, is that it takes as inputs only the three states 

which this makes it easier to adapt it in the satellite since there is not a lot of information 

needed. On the other hand, the LQ controller it’s designed to have full state feedback. 
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