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S U M M A RY

Climate changes, diminishing world supplies of the non-renewable
fuels as well as economic aspects are probably the most driving fac-
tors of current effort to save the energy. As buildings account for
about 40 % of global final energy use, an efficient building climate con-
trol can significantly contribute to the saving effort. Predictive building
automation can be used to operate the buildings in energy and cost
effective manner instead of conventional automation with minimum
retrofitting requirements.

Dynamic models (which must be simple, yet effective) are of crucial
importance in predictive control approach. As the industrial experi-
ence has shown, the modeling and identification is the most time-
demanding and costly part of the overall automation process. Many
papers devoted to this topic actually model only the subsystems of
a building. Some of them identify a building complex in reality as
simple two-zones models. Others provide extremely detailed models
resulting from the use of simulation software packages. These mod-
els, however, are not suitable for control as they are not in an explicit
form.

This thesis deals with the identification and modeling of the build-
ings resulting in a model suitable for the predictive control. A number
of identification and modeling approaches is analyzed with respect
to their suitability to use for predictive control of the buildings. Those
that appear to be the promising candidates for the Model Predictive
Control (MPC) are treated in detail.

A novel approach combining a detailed modeling by a building-
design software with a black-box subspace identification is proposed.
The uniqueness of the presented approach is not only in the size of
the problem, but also in the way of getting the model and intercon-
necting several computational and simulation tools.

As most of the industrial applications (as well as buildings) are
Multiple-Input Multiple-Output (MIMO) systems that can be identi-
fied using the knowledge of the system’s physics or from measured
data employing statistical methods. Currently, there is the only class
of statistical identification methods capable of handling the issue

xi



of the vast MIMO systems – Subspace State Space System Identifi-
cation (4SID) methods. These methods, however, as all the statistical
methods, need data of a certain quality, i.e. excitation of the corre-
sponding order, no data corruption, etc. Nevertheless, combination
of the statistical methods and a physical knowledge of the system
could significantly improve system identification. The thesis presents
a new algorithm which provides remedy to the insufficient data qual-
ity of a certain kind through incorporation of the prior information,
namely a known static gain and an input-output feed-through. The
presented algorithm naturally extends classic subspace identification
algorithms, that is, it adds extra equations into the computation of
the system matrices.

For some kind of buildings, there is a possibility to take the advan-
tage of using the physical structure. Hence, yet another class of model-
ing approaches, namely grey-box modeling techniques emerges. And
as the objective is to have a good predictor on a horizon which is com-
mensurate with the control, a natural choice is Model Predictive Con-
trol Relevant Identification (MRI). Some improvements to this identifi-
cation methodology are suggested in this thesis as well.

Finally, a problem of the model selection is addressed. Very often,
there are far too many candidate inputs/states of the analyzed sys-
tem and one has to decide which of them should be included to max-
imize the given quality criterion. The effective methodology for the
selection of the inputs and states as well as the following model vali-
dation are proposed.

The thesis is structured as follows: Chapter 2 presents motivation
and provides comments on contributions of this work published in
the papers which are available (for pdf version) in Chapter 3 by click-
ing the corresponding hyperlink. For online version, the hyperlink
directs the reader to the list of references with the hyperlink to the
internet address. The main results are outlined in Chapter 4 while
Chapter 5 concludes the work and outlines directions of possible re-
search. Chapter 6 summarizes the fulfilment of the objectives of the
thesis.
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1
A I M S O F T H E D O C T O R A L T H E S I S

As was mentioned above, the MPC used for building’s climate con-
trol is a novel approach with identification and modeling being the
most tedious, cumbersome and time-demanding part of the whole
framework. Therefore, the goals of this thesis were set as follows:

1. To perform a survey of the currently available approaches. There is a
huge number of identification and modeling approaches devel-
oped over the years, but not all of them are suitable for predic-
tive control and even lesser are proper to use for buildings.

2. To select and analyse the suitable approaches. Apart from the sur-
vey, the thesis will select only those methods that are suitable
for predictive control applied to buildings with analysing and
assessing their pros and cons.

3. To find a solution to the specific problems of building modeling tech-
niques. The statistically-based identification approaches are able
to treat MIMO systems, however, they need the data of a certain
quality, e.g. excitation of the corresponding order, low or no
data corruption. The thesis should address the issue of statisti-
cal identification for buildings with respect to the data quality.

4. To develop the model selection and validation methodology. In real ap-
plications and buildings specifically, there is very often an enor-
mous quantity of the system inputs, (measurable) disturbances
and system states. Not all of them contribute with the same
information and many of them are completely useless for iden-
tification process. The methodology that treats the problem of
input/state selection would greatly reduced identification com-
plexity.
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2
M O T I VAT I O N A N D C O N T R I B U T I O N S O F T H E
W O R K

There are several reasons, why the building climate control has been
drawing much attention lately both in academic and industrial worlds.
The buildings account for 20–40 % of the total final energy consump-
tion and in developed countries the per year increases are 0.5–5 % [Perez-
Lombard et al., 2008]. Moreover, the buildings produce 33 % of global
CO2 emissions. On the other hand, they have very large potential
of both primary energy and CO2 reduction [Metz, 2007]. In addi-
tion, as pointed out by [Ekins and Lees, 2008], currently available en-
ergy efficiency measures could save about 30 % of the current energy
consumption. This can be done by refurbishment (e.g. installation of
building integrated photovoltaic system for preheating of the fresh
air [Lodi et al., 2012]), using the energy certificates, changing thus
the user behavior (actually, the Energy Performance of Buildings Di-
rective of European Commission requires the residential buildings to
have Energy Performance Certificate when they are sold, rented or
reconstructed) [Bull et al., 2012] or optimization techniques applied
to Building Automation System (BAS).

The potential for saving the energy was first time fully recognized
within the Opticontrol Project [ETH, 2007] with main objectives to
[Gyalistras and Gwerder, 2010] i) develop the software, models and
data sets for the integrated optimization of buildings and building
systems, ii) to improve rule-based Integrated Room Automation (IRA)
control strategies, iii) to introduce a novel model predictive control
algorithms tailored to buildings, iv) to propose new algorithms for
delivering optimally precise hourly temperature and radiation fore-
casts at a building’s location, and v) to perform comparative analysis
of energy saving potentials for IRA.

The project was aimed at the IRA dealing with the automated con-
trol of blinds, electric lighting, heating, cooling, and ventilation of
an individual building zone [ETH, 2007]. The whole project was in-
tended as a large simulation case study with developing the general
rules for the above-mentioned objectives.

Soon thereafter a project with very similar motivation but com-
pletely different means and objective was launched in Prague. As
of 2009 and 2010, first experiments on the real building were per-
formed and a potential of the MPC for control of BAS was summarized
in [Prívara et al., 2011]. The paper summarizes state-of-the-art ap-
proaches to the heating (such as Proportional-Integral-Derivative (PID)
controllers) in Section 2 and discusses the potential of the MPC in Sec-

3



4 motivation and contributions of the work

tion 3. Finally, the last Section provides reader with the results from
the real operation of the building of the Czech Technical University
in Prague (CTU). There can be seen a huge savings potential (approx-
imately 30 %), which stimulates further research.

The MPC opens up the possibilities of exploiting the thermal stor-
age capacities of the buildings making use of a prediction of the
future disturbances (internal gains due to presence of people and
equipment, weather) given some specific requirements such as con-
trol ranges instead of single value set-points for controlled variables,
known (in-advance) or at least estimated ranges for controlled vari-
ables, disturbances, control costs, etc. The analysis of savings poten-
tial by employing predictive strategies were addressed in e.g. Gyal-
istras et al. [2010]; Oldewurtel et al. [2010a]. The other applications
of the MPC within the buildings were energy peak reductions Rijk-
sen et al. [2009]; Katipamula et al. [2010]; Oldewurtel et al. [2010b],
discontinuously occupied buildings Hazyuk and Ghiaus [2010], pre-
cooling Ma et al. [2010], time-varying electrical energy price Ma et al.
[2009] and others. One of the most up-to-day developments in the
field of MPC applications is a change of the concept in formulation
of the optimization problem. Instead of classic minimization of the
energy consumption, or economic cost, the new approach optimizing
the subjective feelings of the users was introduced. This concept, en-
titled Predicted Mean Vote (PMV), is treated in detail by [Cigler et al.,
2012]. Finally, the thorough review of the MPC applications and their
possible modifications was provided by [Široký et al., 2011].

Even though there have been developed some techniques which
enable implementation of MPC directly from the input-output data
(see Stenman [2002]; Huang and Kadali [2008]; Rossiter and Kouvar-
itakis [2001]), the dynamic model still plays the crucial role in a MPC

approach.

Most of the industrial applications (as well as buildings) are MIMO

systems for which there exist a suitable family of methods, namely
4SID. 4SID methods originally emerged as a conjunction of linear alge-
bra, geometry and system theory and compared to the classic iden-
tification methods Ljung [1999], they provide the user with several
advantages such as numerical robustness, natural extension to MIMO

systems, etc. There are, however, also some drawbacks, e.g. lack of sat-
isfactory number of data samples, proper order of excitation or strong
noise contamination can lead to poor identification results [Ljung,
1999; Willems et al., 2005]. Some problems coupled to these meth-
ods, such as identification of stable, positive, real models, etc., using
regularization can be found in Van Gestel et al. [2000]; Goethals et al.
[2003] or formulated as a constrained optimization, as in Lacy and
Bernstein [2003]. The black-box identification, such as 4SID, relies only
on experimental data, that is, they may result in biased models [Trnka
and Havlena, 2009], or fail in giving a proper model (this problem is
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addressed by Gevers et al. [2005]; Rojas et al. [2008]). Prior informa-
tion can significantly improve the identification results, however, the
current algorithms are not able to provide satisfactory results for the
MIMO systems. Previous works, such as Bai and Sastry [1986], count
with a Single-Input Single-Output (SISO) system only. The detailed
review of the approaches of the incorporation of the Prior Informa-
tion (PI) was given by Section 1 of [Prívara et al., 2012]. Section 2 pro-
poses a new way of solving the problem of incorporation of PI into the
4SID algorithm, namely into matrices B and D. The proposed solution
enables incorporation of known static gain and zero matrix D.

Unfortunately, this solution is very limited as we do not always
know the static gain, moreover, that is usually not the only problem.
When creating a building model, two basic paradigms to derive a
total model of building dynamics are at hand. The first one origi-
nated in Heating, Ventilation, and Air Conditioning (HVAC) engineer-
ing and building automation communities, a “traditional” approach,
which uses knowledge of the structure and physical and material
properties of a building. A detailed building model is then assembled
from simple subsystems mutually physically interacting, making use
of computer aided modeling tools, or Building Energy Management
System (BEMS), e.g. Trnsys Thermal Energy System Specialists [2012],
EnergyPlus of Energy [2011], ESP-r ESP [2011], etc. Their objective is
to simulate the behavior of the building, however, they do not pro-
vide an explicit model1, thus can be hardly used for control oriented
modeling. An alternative is to use statistically-based, i.e. data-driven
approaches, resulting in a model in an explicit form. The concept of
interconnection of these two methods, i.e. computer aided modeling
tools and subsequent statistical identification using Building Controls
Virtual Testbed (BCVTB) are introduced in Section 3 of [Prívara et al.,
2013a] and the application to the real data gathered from the large
office building in Munich is described in the Section 4.

It is a well-known fact, that the modeling and System Identifi-
cation (SID) are the most difficult and time-consuming part of the
automation process as such Zhu [2001], and particularly, employ-
ing predictive technologies. The basic conditions, that each model
intended for MPC usage should satisfy, are the reasonable simplic-
ity, well estimated system dynamics and steady-state properties as
well as satisfying prediction properties (fitting on multi-step predic-
tion). These requirements do not need to be of the same quality
at the whole frequency range, rather they should comply with the
quality requirements for the control-relevant frequency range (see
e.g. Hjalmarsson [2009]; Gopaluni et al. [2004]; Shook et al. [2002]).
As the MPC optimizes over some time horizon, the model used for

1 Note that in this context, we call a model explicit if there are mathematical formu-
las describing a state evolution, i.e. a set of differential or difference equations is
available. Otherwise the model is called implicit.



6 motivation and contributions of the work

optimization should primarily be a good predictor over the same
horizon. Hence, we are not specifically interested in its performance
on the single-step ahead predictions, rather on the control horizon.
The family of methods dealing with multi-step ahead predictions are
called MRI. There is, however, often a problem of contamination with
noise or too much “explanatory variables” with low or no contribu-
tion to solution of the regression problem and therefore the Partial
Least Squares (PLS) were taken and combined with MRI into a new
combined algorithm (MRI+PLS). The problem is addressed in Section
3 of [Prívara et al., 2013b]. The paper presents comparison of the
methods frequently used in building modeling such as Stochastic
Semi-Physical Modeling (PSPM), Deterministic Semi-Physical Model-
ing (DSPM) (often called Resistance-Capacitance (RC) modeling) and
algorithms based on multistep error minimization. The results pre-
sented in Section 4 of this paper clearly demonstrate, that with proper
choice of the number of components, one can obtain superior results
in comparison to MRI only.

As the various identification or modeling techniques give rise to a
large number of different models, the problem which must be often
solved is to decide how to choose a suitable model for the control pur-
poses. The problem is not only the identification of a model which is
in accordance to the physical reality and matches the data measured
on the process, but also a choice of its parameters. The final set of
parameters used within the model should be as small as possible, yet
containing a sufficient level of information extracted from the data.

In case of models with given sets of inputs and outputs and with
open set of states (parameters), a natural question arises: what is the
minimum possible set of states which contains (statistically) the same
information as a set one element larger. Or rephrased, what (statisti-
cally significant) information is gained from the addition of a state.
There are several tests which solve this issue Gourieroux et al. [1982];
Dickey and Fuller [1981].

A different problem is to select an appropriate model when the sets
of inputs and outputs are not fixed, i.e. these sets are to be chosen
during the identification procedure. Such a task of model selection
becomes more difficult than in the previous case. The interpretation
of the estimation problem shifts as well. The objective is still the same
- to select the best model for control, however, apart from the mini-
mum number of states, the number of inputs and outputs is of in-
terest as well. This problem was addressed by Section 3 of [Prívara
et al., 2012], where not only the methodology for selection of the in-
puts/states was presented, but also the statistical validation of the
residuals making use of a variety of statistical tests, e.g. Likelihood
Ratio Test (LRT).
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a b s t r a c t

This paper presents model predictive controller (MPC) applied to the temperature control of real build-
ing. Conventional control strategies of a building heating system such as weather-compensated control
cannot make use of the energy supplied to a building (e.g. solar gain in case of sunny day). Moreover
dropout of outside temperature can lead to underheating of a building. Presented predictive controller
uses both weather forecast and thermal model of a building to inside temperature control. By this, it can
utilize thermal capacity of a building and minimize energy consumption. It can also maintain inside tem-
perature at desired level independent of outside weather conditions. Nevertheless, proper identification
of the building model is crucial. The models of multiple input multiple output systems (MIMO) can be
identified by means of subspace methods. Oftentimes, the measured data used for identification are not
satisfactory and need special treatment. During the 2009/2010 heating season, the controller was tested
on a large university building and achieved savings of 17–24% compared to the present controller.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

According to the U.S. Energy Information Administration, in
2005, buildings accounted for 39% of total energy usage, 12% of the
total water consumption, 68% of total electricity consumption, and
38% of the carbon dioxide emissions in the U.S.A. [1]. Although the
energy efficiency of systems and components for heating, ventilat-
ing, and air conditioning (HVAC) has improved considerably over
recent years, there is still potential for substantial improvements.
This article deals with an advanced control technique, that can pro-
vide significant energy savings in comparison with conventional,
non-predictive techniques.

Widely used control strategy of water heating systems is the
weather-compensated control. This feedforward control can lead
to poor energy management or reduced thermal comfort even if
properly set up, because it utilizes current outside temperatures
only. Weather conditions, however, can change dramatically in few
hours; and due to the heat accumulation in large buildings, it can
lead to underheating or overheating of the building easily.

During recent years, significant advances have been done for the
HVAC control systems [2–6]. For instance, continuous adaptation
of control parameters, optimal start–stop algorithms, optimiza-
tion of energy loads shifting [7], or inclusion of free heat gains in
the control algorithm are particular improvements of the build-

∗ Corresponding author. Tel.: +420 776 697 672.
E-mail addresses: samuel.privara@fel.cvut.cz (S. Prívara), jan.siroky@rcware.eu

(J. Široký), lukas.ferkl@fel.cvut.cz (L. Ferkl), jiri.cigler@fel.cvut.cz (J. Cigler).

ing heating system [8]. Some new concepts have been verified by
simulations [9,10], nevertheless they are still waiting for real oper-
ations. The model predictive control, [11–15] (MPC) presented in
this article introduces a different approach to the heating system
control design. As the outside temperature is one of the most influ-
ential quantity for the building heating system, weather forecast is
employed in the predictive controller. It enables to predict inside
temperature trends according to the selected control strategy. The
aims of the control can be expressed in natural form as thermal
comfort and economy trade off. Unfortunately, this concept has
some drawbacks, such as extensive computational requirements or
necessity of a mathematical model of the physical system (building
in this case).

All these issues are discussed in detail in following sections,
which are organized as follows. Section 2 compares the current con-
trol techniques with MPC. Section 3 introduces model predictive
control concept more in detail and explains the mathematical back-
ground of this technique. This section also addresses new modified
zone model predictive controller. Problem of the model identifi-
cation is discussed as well. Application results are summarized in
Section 4. Remarks to future development are outlined in Section
5. The last section concludes the work.

List of abbreviations used throughout the article is mentioned
in Table 1.

2. Current heating control strategies

Let us briefly compare the major state-of-the-art heating
control techniques – on–off room temperature control, weather-

0378-7788/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.enbuild.2010.10.022
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Table 1
Notation.

Abbrev. Meaning

ARX Auto-regressive model with external inputs
ARMAX Auto-regressive, moving average model with external inputs
CTU Czech Technical University in Prague
HVAC Heating, ventilation and air-conditioning systems
MIMO Multiple-input, multiple-output systems
MPC Model predictive control
OE Output error model
PID Proportional – integrative – derivative controller
SISO Single-input, single-output systems
WC Weather-compensated control

compensated control, and PID [8] control – with the proposed
application of MPC.

The on–off room temperature control is the simplest type of
control; the heating devices in a room are switched on and
off (device state S) according to some room temperature error
(et = trequired − troom) threshold, usually implemented as a suitable
hysteresis curve fon–off:

S = fon–off(et) (1)

This is a very simple feedback control, which does not contain any
information about the dynamics of the building. The main advan-
tage is its simplicity.

On the contrary, the weather-compensated control is a feedfor-
ward control, which also does not contain any information about
the building dynamics. The temperature of the heating medium,
such as water (twater), is set according to the outside temperature
toutside by means of predetermined heating curves fw-c, that is

twater = fw-c(toutside) (2)

In spite of the lack of dynamics in the control, this is a long used and
proven control strategy; its advantage is its robustness and simple
tuning.

PID control is one of the most favorite strategies of control engi-
neers [16,17]. It is a feedback control with some information about
the system dynamics, that is, the heating water temperature twater is
determined according to the room temperature error et and “some”
history:

twater = fPID(et ,history) (3)

PID controllers are robust and allow accurate tuning, but they can-
not reflect the outside temperature effects. This is the reason why
PIDs in HVAC control are not as common as in other control appli-
cations.

Even though all the above controllers are easy to tune for single-
input, single-output (SISO) systems, their tuning for multiple-input
multiple-output (MIMO, sometimes called multidimensional) sys-
tems becomes very difficult or even impossible in practice. The PID
control can be applied to MIMO systems only in very rare occasions,
in case of specially structured (input–output decoupled) systems.

We would therefore appreciate some control strategy, which
would have a feedback (i.e. the room temperature error et is used),
use as much information as possible (the outside temperature
toutside, the weather forecast tpredicted, and others x) and include
some system dynamics (“history”) as well. This can be formalized
– in the spirit of the above Eqs. (1)–(3) – as

twater = fMPC(et, toutside, tpredicted, x,history) (4)

These requirements are satisfied by a so-called model (based) pre-
dictive controller (MPC), which is specially suitable for systems
with multiple inputs and multiple outputs, which is very typi-
cal for heating systems. Its main drawbacks are high demands

Fig. 1. The building of the Czech Technical University in Prague that was used for
MPC application.

for computational resources and non-trivial mathematical back-
ground, especially in the “Model” part of the controller.

3. Model predictive control

3.1. State of the art

Model (based) predictive control (MPC) is a method of advanced
control originated in late seventies and early eighties in the process
industries (oil refineries, chemical plants, etc.) [11]. The MPC is not
a single strategy, but a vast class of control methods with the model
of the process explicitly expressed trying to obtain control signal
by minimizing objective function subject to (in general) some con-
straints [18]. The minimization is performed in an iterative manner
on some finite optimization horizon to acquire N step ahead pre-
diction of control signal that leads to minimum criterion subject to
all constraints. This, however, carries lots of drawbacks such as no
feedback, no robustness, and no stability guarantee. Many of these
drawbacks can be overcome by applying so-called receding hori-
zon, i.e. at each iteration only the first step of the control strategy is
implemented and the control signal is calculated again, thus, in fact,
the prediction horizon keeps being shifted forward. Stability of the
constrained receding horizon has been discussed in Refs. [13,14],
or yet another approach using robust control design approach [15].

There were several attempts made to utilize predictive control
concept in HVAC in the last decade [19,9,20,21,10]. Complex view
into area of optimal building control gives the project OptiControl.1

Besides its own results, it also provides a wide range of references to
the related articles. Another project worth to mention is the predic-
tive networked building control that deals with predictive control
of the thermal energy storage on the campus of the UC-Berkeley.2

Most of the articles devoted to the HVAC predictive control con-
clude results just by numerical simulations. On the contrary, this
article describes MPC being tested on the real eight-floor building
(see Fig. 1).

3.2. Principles

We will now briefly describe the basic ideas lying behind the
MPC. To be more illustrative, we will take the course of the MPC
implementation in our own project; even though the experienced
practitioners in heating control are rather conservative in their
field, they can accept new method, such as MPC, if performed in
small, consecutive steps, which helps them to get acquainted with
its principles.

1 http://www.opticontrol.ethz.ch.
2 http://sites.google.com/site/mpclaboratory/research/predictive-networked-

building-control-1.
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Having a well working control, such as weather-compensated
control of a building, it is often unwise to change it to something
novel, but unproven. However, it can be very advantageous to pro-
vide a “tool” that would enhance the possibilities of the existing
system. A mathematical model can be such a “tool”, allowing the
system operators to predict the behavior of the building. If the
model is accurate enough (e.g. as a one-day predictor), another fea-
ture can be added—the operator can experiment with the model
and try some “what if” scenarios. The next step is obviously imple-
mentation of an algorithm that proposes the best scenarios; it is
still a “tool”, the model and algorithm are not involved in the con-
trol loop. That would be the last step – after the operator begins to
trust the algorithm, he begins to ask for the closer of the control
loop incorporating what we call model predictive control.

To be more precise, the first step is to find a dynamic model P

y = P(u, t) (5)

where y is the output, u is the input (both can be vectors) and t
is time. Inputs u may be entered by the operator in the beginning,
such that he can see the expected behavior of the system, as seen
on outputs y. The next step is finding the optimal inputs u automat-
ically. This can be achieved by introducing an optimality criterion
J(y, u, t), wherein the control demands are described in the language
of mathematics. Substituting from (5), the optimal control inputs
can be found by computing

uoptimal = min
u

J(P(u, t), u, t) (6)

subject to “some” constraints. This very basic idea will now be
discussed more in detail.

3.3. Model identification

One of the crucial contributors to the quality of the control is
a well identified model which will be later on used for control in
MPC algorithm. There are several completely different approaches
to system identification (see e.g. [22,23]). Some of them use knowl-
edge of system physics, while others exploit statistical data, such as
grey-box [24,25] (some prior information such as system structure
is known in advance) or black-box identification. Grey box methods
using models such as ARX, ARMAX, OE and others are well estab-
lished among the practitioners as well as theoreticians. There is,
however, a significant problem, when multiple input multiple out-
put (MIMO) systems are considered. The standard input–output
identification methods are not capable of dealing with such a
model, thus one has to either reformulate the problem to several
single-output cases, or to use state-space identification methods,
such as subspace methods. The first approach, including computer
modeling of the building, as well as comparison of ARMAX model
and subspace methods, was briefly described in [26].

The main difference between classical and subspace identifica-
tion can be seen in Fig. 2 (see Ref. [27]). Given the sequence of input
and output data, u(k) and y(k), respectively, do:

• Classical approach. Find system matrices, then estimate the sys-
tem states, which often leads to high order models that have to
be reduced thereafter.

• Subspace approach. Use orthogonal and oblique projections
to find Kalman state sequence, then obtain the system matri-
ces using least squares method. Here we introduce the
latter—subspace identification methods.

The objective of the subspace algorithm is to find a linear, time
invariant, discrete time model in an innovative form:

x(k + 1) = Ax(k) + Bu(k) + Ke(k)

y(k) = Cx(k) + Du(k) + e(k),
(7)

based on given measurements of the input u(k) ∈Rm and the output
y(k) ∈Rl generated by an unknown stochastic system of order n,
which is equivalent to the well-known stochastic model:

x(k + 1) = Ax(k) + Bu(k) + w(k)

y(k) = Cx(k) + Du(k) + v(k),
(8)

with covariance matrices Q, S and R of process and measurement
noise sequences as follows:

cov(w, v) = E

([
w(p)

v(p)

][
wT (q) vT (q)

])
=
[

Q S

ST R

]
ıpq ≥ 0, (9)

and with A, B, C, and D denoting system matrices and K and e in (7)
is Kalman gain – derived from the Algebraic Riccati Equation (ARE)
[28], and white noise sequence, respectively. Loosely speaking, the
objective of the algorithm is to determine the system order n and
to find the matrices A, B, C, D and K.

3.3.1. Data matrices for subspace algorithm
The following matrices are necessary to form for subspace

algorithm. Notation was adapted as in Ref. [27]. Upper index d
denotes deterministic subsystem, while the upper index s denotes
stochastic subsystem. Two kinds of matrices are used for subspace
algorithm, data and system related matrices.

• Data matrices. Input and output block Hankel matrix are formed
from input and output data as follows:

U0|2i−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u0 u1 u2 ··· u j−1
u1 u2 u3 ··· u j
...

...
...

. . .
...

ui−1 ui ui+1 ··· ui+ j−2

ui ui+1 ui+2 ··· ui+ j−1
ui+1 ui+2 ui+3 ··· ui+ j
...

...
...

. . .
...

u2i−1 u2i u2i+1 ··· u2i+ j−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Y0|2i−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y0 y1 y2 ··· y j−1
y1 y2 y3 ··· y j
...

...
...

. . .
...

yi−1 yi yi+1 ··· yi+ j−2

yi yi+1 yi+2 ··· yi+ j−1
yi+1 yi+2 yi+3 ··· yi+ j
...

...
...

. . .
...

y2i−1 y2i y2i+1 ··· y2i+ j−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(10)
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IO sequences

A,B,C,D

Kalman states

State sequence

A,B,C,D,K

Subspace Classical

Least squares Kalman filter

Fig. 2. Comparison between classical and subspace identification methods.

which can be written in shorten form as follows:(
U0|i−1

Ui|2i−1

)
=
(

Up

Uf

)

(
Y0|i−1

Yi|2i−1

)
=
(

Yp

Yf

)
,

(11)

where matrices Up and Uf represent past and future inputs,
respectively. Outputs y(k) and noise e(k) related matrices can be
formed in similar manner. Grouped data matrix consisting of past
input and past output data is formed as follows:

Wp = W0|i−1 =
(

U0|i−1

Y0|i−1

)
.

• System related matrices. Extended (i > n) observability (�i) and
reversed extended controllability (�i) matrices for deterministic
and stochastic subsystems, respectively are defined as follows:

�i =

⎛
⎜⎜⎜⎜⎝

C

CA

...

CAi−1

⎞
⎟⎟⎟⎟⎠

(12)

�d
i =

(
Ai−1B Ai−2B . . . AB B

)
(13)

�s
i =

(
Ai−1K Ai−2K . . . AK K

)
(14)

Algorithm also uses lower block triangular Toeplitz matrix for
deterministic and stochastic subsystem, respectively:

Hd
i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

D 0 0 . . . 0

CB D 0 . . . 0

CAB CB D . . . 0

...
...

...
...

...

CAi−2B CAi−3B CAi−4B . . . D

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Hs
i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0 . . . 0

CK I 0 . . . 0

CAK CK I . . . 0

...
...

...
...

...

CAi−2K CAi−3K CAi−4K . . . I

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

3.3.2. Subspace algorithm
The entry point to the algorithm are input–output equations as

follows:

Yp = �iXp + Hd
i
Up + Hs

i
Ep

Yf = �iXf + Hd
i
Uf + Hs

i
Ef

Xf = AiXp + �d
i
Up + �s

i
Ep.

(16)

Oblique projection as described in Refs. [29,27] is the main tool
used in subspace methods is defined as follows:

Oi = Yf /
Uf

Wp. (17)

The order of the system can be determined from analysis of sin-
gular values obtained using singular value decomposition (SVD) of
W1OiW2, where Wi are weighting matrices of particular size and
determine resulting state space basis. It has been shown [27], that
Oi = �iX̃i, where X̃i is Kalman filter state sequence. This factoriza-
tion also yields extended observability matrix �i and Kalman filter
states X̃i.

Algorithm continues from either �i or X̃i in a slightly different
manner depending on particular subspace identification algorithm,
however, both ways lead to a computation of system matrices A and
C using least squares method.

Computation of system matrices B and D follows subject to
matrices A and C computed in previous step. Different approaches
for matrices determination are addressed in detail in Ref. [27].

The algorithm concludes with computation of Kalman gain
matrix K in a standard way using state and output noise covariance
matrices (9) which are computed from residuals of the previous
computations.

The model structure used in MPC is the state-space model (7)
identified by subspace identification (described in Section 3.3) from
measured data. The application of the model will become apparent
later in this section.

3.4. Predictive controller

3.4.1. MPC strategy
The MPC strategy comprises two basic steps:

• The future outputs are predicted in an open-loop manner using
the model provided information about past inputs, outputs and
future signals, which are to be calculated. The future control
signals are calculated by optimizing the objective function, i.e.
chosen criterion, which is usually in the form of quadratic func-
tion. The criterion constituents can be as follows:
- errors between the predicted signal and the reference trajectory

yr(k);
- control effort;
- rate of change in control signals.

• The first component of the optimal control sequence u(k) is sent
to the system, whilst the rest of the sequence is disposed. At the
next time instant, new output y(k + 1) is measured and the control
sequence is recalculated, first component u(k + 1) is applied to
the system and the rest is disposed. This principle is repeated ad
infinitum (receding horizon).

The reference trajectory yr(k), room temperature in our case,
is known prior, as a schedule. The major advantage of MPC is
the ability of computing the outputs y(k) and corresponding input
signals u(k) in advance, that is, it is possible to avoid sudden
changes in control signal and undesired effects of delays in system
response.

Standard formulation of criterion for MPC is as follows:

J =
N−1∑

k=0

q(k)(y(k) − yr(k))2 + r(k)u(k)2, (18)

where q(k) is weight for difference between system output y(k) and
reference yr(k) at time instant k, while r(k) is the weight of the dis-
placement of control signal u(k). If the future desired output value
is known in advance, then this criterion leads to such an optimal
system input, which minimizes weighted square of y(k) − yr(k). By
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time

Reference
Classical

Zone control

HIGH
 PENALIZATION

NO
 PENALIZATION

Fig. 3. Comparison between classical and zone predictive strategy. Weighting of
entirely negative errors makes predictive controller to follow accurately the upper
part of reference trajectory. When step down of desired value occurs, the system
output drops to the reference value with a minimum control effort.

this, the area delimited by the system output below desired value
is same as the area above it. This is depicted in Fig. 3 by line marked
with circles. Such a behavior is satisfactory for most of the common
control problems but not for temperature control of a building. The
aim of the control is to adhere the upper desired value from its
beginning to its end. Resulting behavior of the output is delineated
in Fig. 3 by line with crosses.

This unusual problem can be solved by several approaches:

• The intuitive method is to use dynamic weights q(k) and r(k)
at time, i.e. to make them time-dependant. These weights then
depend on the shape of the reference trajectory – if there is a
step-up/down on a prediction horizon, then weight q(k) is set to
be greater than r(k) for k when the reference trajectory is on upper
level, whilst q(k) < r(k) for the rest of k on prediction horizon. This
simple procedure ends if there exists more reference trajectory
levels than two (but in this case is the best way how to solve such
a problem).

• The second approach is as follows: In the minimization of the
criterion (18) the reference trajectory yr can be substituted with
“artificial” reference w, which can be some approximation from
the actual output y to real reference yr. This can be done using
following convex combination [30]:

w(k) = y(k)

w(k + i) = ˛w(k + i − 1) + (1 − ˛)yr(k + i),
(19)

where i = 1 . . . N and ˛ ∈ 〈0;1〉 is a parameter, that determines the
smoothness (and speed) of the approaching of the real output to
the real reference. (19) can be also restated as follows:

w(k) = y(k)

w(k + i) = ˛r(k + i) − ˛i(y(k) − yr(k)).
(20)

Making use of artificial reference may be very helpful in the case
of number of “steps” in reference trajectory with need of its pre-
cise tracking by the actual output.

• Completely different way is to reformulate the part of criterion
(18), which refer to the desired value error. If y(k) < yr(k) then
weight the square of this difference using q(k), otherwise the error
is not weighted. This can be treaded by using the concept of zone
control (also called funnel MPC) [18] where the reference error
is not weighted in a specified interval while the weighting out is
made in a common way. The lower bound of the interval is in our
case desired value, whilst the upper bound is not specified due to
the fact, that the building naturally tends to underheat providing
the weighted output. Such a method can be used for tracking of
reference trajectory with arbitrary number of levels.

The last approach will be discussed in detail.

3.4.2. MPC problem formulation
For a given linear, time invariant, discrete-time deterministic

model

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)
(21)

find the optimal control sequence on the horizon of prediction
(length N) by minimizing the objective function

J =
N−1∑

k=0

q(k)(y(k) − z(k))2 + r(k)u(k)2, (22)

subject to

umin ≤ u(k) ≤ umax

yr(k) ≤ z(k)

�max ≥ |u(k) − u(k − 1)|
(23)

where constraints umin, umax are the minimum and maximum val-
ues of the control signal, yr(k) is desired value, thus lower bound
for z(k) and �max is a maximum rate of change of the control signal.

The objective function J (in (22)) can be rewritten into a matrix
form (denoted without specification of a time instant)

J = (y − z)T Q (y − z) + uT Ru, (24)

where Q and R are weighting matrices of output error and control
effort, respectively. The trajectory of the output is given as:
⎡
⎢⎢⎣

y(0)
y(1)

...
y(N − 1)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

C
CA
...

CAN−1

⎤
⎥⎥⎦ x(0)

+

⎡
⎢⎢⎣

D
CB D
...

. . .
CAN−2B . . . CB D

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u(0)
u(1)

...
u(N − 1)

⎤
⎥⎥⎦ , (25)

i.e.

y = �x(0) + Hu, (26)

where � is extended observability matrix and H is a matrix of
impulse responses. Let ỹ = �x(0), then using (26), we can rewrite
(24) as follows:

J = (ỹ + Hu − z)T Q (ỹ + Hu − z) + uT Ru. (27)

Minimization of such an objective function is a nonlinear pro-
gramming problem, which can be readily rewritten into quadratic
programming problem

J =
[

uT zT
][HT QH + R −HT Q

−QH Q

][
u
z

]
+

+2
[

ỹT QH −ỹT Q
][ u

z

]
+ ỹT Q ỹ (28)

This yields the optimization problem min u,zJ, which can be effec-
tively solved using some of the computer algebra systems. The
resulting problem has (m + p) · T variables which is a greater dimen-
sion compared to the classical one (described by criterion (18)) with
m · T variables, where m and p are number of inputs and outputs
respectively.
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Fig. 4. Simplified scheme of the ceiling radiant heating system.

4. Application

The methods described in the previous sections were tested
through December 2009 and January 2010 and the the real run
of control application using proposed control strategy started in
February 2010 at the building of the Czech Technical University in
Prague. As of February 2010 the whole building consisting of 7 con-
trol blocks is controlled by presented MPC algorithm. All algorithms
were implemented in Scilab.3

4.1. Description of the building

The building of the Czech Technical University in Prague uses a
“Crittall” type ceiling radiant heating and cooling system. The “Crit-
tall” system, invented in 1927 by R.G. Crittall and J.L. Musgrave [31],
was a favorite heating system in the Czech Republic during 1960s
for large buildings. In this system, the heating (or cooling) beams
are embedded into the concrete ceiling. The control of individual
rooms is very complicated due to the technical state of the con-
trol elements in all rooms. The control is therefore carried out for
one entire building block, i.e. the same control effort is applied to
all rooms of the building block. There are two (out of seven control
blocks) building blocks with the same construction and orientation.
Therefore, this situation is ideal for comparison of different control
strategies, as depicted in Fig. 5.

A simplified scheme of the ceiling radiant heating system is illus-
trated in Fig. 4. The source of heat is a vapor–liquid heat exchanger,
which supplies the heating water to the water container. A mix-
ing occurs here, and the water is supplied to the respective heating
circuits. An accurate temperature control of the heating water for
respective circuits is achieved by a three-port valve with a servo
drive. The heating water is then supplied to the respective ceil-
ing beams. There is one measurement point in a reference room
for every circuit. The setpoint of the control valve is therefore
the control variable for the ceiling radiant heating system in each
circuit.

4.2. Description of the model

The ceiling radiant heating system was modeled by a discrete-
time linear time invariant stochastic model. We can consider this
model as a Kalman filter giving an estimate of x̂(k) and ŷ(k). Outside
temperature prediction and heating water temperature were used
as the model inputs. Prediction of outside temperature is composed
of two values Tmax and Tmin defining a confidence interval. The out-
puts of the model are estimates of inside temperature T̂in and of

3 Open source scientific software package for numerical computations
(http://www.scilab.org/).

return water4 T̂rw . This can be formalized according to (21) as

x̂(k + 1) = Ax̂(k) + B

⎡
⎣

Tmin(k)

Tmax(k)

Thw(k)

⎤
⎦+ K(y(k) − Cx̂(k))

[
T̂in(k)

T̂rw(k)

]
= Cx̂(k) + D

⎡
⎣

Tmin(k)

Tmax(k)

Thw(k)

⎤
⎦ ,

(29)

where Thw is temperature of the heating water and Tin denotes the
inside temperature. System matrices A, B, C and D are to be identi-
fied using subspace methods as was described in Section 3.3.2. The
state x̂(k) has no physical interpretation, when identified by means
of the subspace identification. System order is determined by the
identification algorithm. Modeling of the heating system of the CTU
building is discussed in detail in Ref. [32].

4.3. Results

We have employed two methods of estimating the savings
achieved on the building, based on comparison with a finely tuned
weather-compensated controller (which also took weather fore-
cast into account).

The first one was a cross-comparison of energy consumption
in particular building blocks based on the difference between the
heating and return water temperatures (this is directly propor-
tional to the heat consumption provided that the pumps have a
constant flow). In the period from mid-February to the end of the
heating season (end of March), the overall savings reached 17–24%,
depending on the particular building block.

The second method was based on comparison of calorime-
ter measurements for the entire building for MPC and said
weather-compensated control. The measurements were normal-
ized by outside temperatures and ambient temperature set-points
to achieve reliable results. For said period of measurement, MPC
achieved 29% savings according to this method.

It should be noted that the heating and return water tempera-
ture is being measured by standard industrial thermometers, which
suffer from measurement errors, such as noise or offset. This intro-
duces some uncertainty into the results. On the other hand, the
calorimeters are installed by the heat provider, so we expect them
to be well calibrated (or, at least, they do not measure less than the
actual heat); heat payments are also based on the calorimeters. So
in the terms of finances, the money savings of were also 29% (there
is a flat rate on heat for the building).

Measurement of thermal comfort is always difficult and highly
individual. As there are some 1500 employees and 8000 students
in the building and there are always some people who complain
about the ambient temperature, we decided to take the number of
complains as the thermal comfort measure. To achieve objective
results, the building occupants were not told about the new heat-
ing strategy. Under such conditions, the change in the number of
complains was insignificant during the test period.

The results are depicted in Fig. 5. The upper part shows out-
side temperature, whilst the lower compares reference tracking
for weather-compensated and predictive controllers. It can be seen,
that the predictive controller heats in advance in order to perform
optimal reference tracking, that is, inside comfort, and minimum
energy consumption. Two last subfigures compare the efficiency

4 It is crucial to model return water as an output because it gives a significant
information about energy accumulated in the building, moreover it represents the
interconnection between heating water and room temperature. Omitting the return
water would lead to significant lost of information.



570 S. Prívara et al. / Energy and Buildings 43 (2011) 564–572

-20

-15

-10

-5

 0

23.01. 24.01. 25.01. 26.01. 27.01. 28.01. 29.01. 30.01.

O
ut

si
de

 te
m

pe
ra

tu
re

 [
°C

]

time [days]

Tmin
Tmax

 19

 20

 21

 22

 23

23.01. 24.01. 25.01. 26.01. 27.01. 28.01. 29.01. 30.01.

T
in

 [
°C

]

time [days]

Reference
MPC

Weather-compensated

 22
 24
 26
 28
 30
 32
 34
 36
 38

23.01. 24.01. 25.01. 26.01. 27.01. 28.01. 29.01. 30.01.
time [days]

MPC: energy consumption
MPC: heating water

MPC: return water

 20

 25

 30

 35

 40

 45

 50

 55

23.01. 24.01. 25.01. 26.01. 27.01. 28.01. 29.01. 30.01.

T
em

pe
ra

tu
re

 [
°C

]
T

em
pe

ra
tu

re
 [

°C
]

time [days]

WC: energy consumption
WC: heating water

WC: return water

Fig. 5. Different control strategies: comparison of weather-compensated (WC) and predictive control (MPC) of heating water temperature and the room temperature
controlled by MPC.

of control measured by energy consumption. The efficiency of the
predictive control was superior to the weather-compensated con-
troller, even if the active heating was necessary.

As mentioned before, the building has up to 12 hour heating
delay. During weekends, the building cools down and classical heat-
ing has to be launched approximately one day before Monday 8 am,
depending on the outside temperature.

5. Remarks to future development

Subspace identification methods represent black-box approach
to the system modeling. This, alongside with its advantages carries
also some drawbacks:

• The system might not be excited enough [22], i.e. the input of
the system does not excite the system on satisfactory number
of frequencies, thus identification algorithms lack considerable
amount of information.

• User may have knowledge of some key feature or characteris-
tics of the physical essence of the system, which is “lost” in the
number of data.

• Natural character of the data might pose considerable statistical
problem.

One of the most important aspects of the identification is
the persistency of the excitation or the excitation itself. Data
gathered from the measurement lack some important physical
characteristics of the building. One of the possible approaches
how to deal with this weak point is generation of artificial
data that already contains desired properties. There is also
another possibility, more expensive though—specially proposed
experiment. It was decided to perform an experiment on real
building in through late December 2009 and early January 2010.
The comparison of model identification results is depicted in
Fig. 6.

It is obvious, that experimental data significantly improved the
identification fit. Yet another approach (and much cheaper) how to
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deal with lack of data quality is prior information and its incorpo-
ration to the subspace algorithm. Current methods [33] proposed
algorithm how to incorporate PI into the algorithm using Bayesian
framework. This algorithm makes use of Structured Weighted
Lower Rank Approximation (SWLRA) [34] to decompose the projec-
tion matrix in order to save special structure, thus keep PI. However,
this approach is able to deal with single input single output (SISO)
and single input multiple output (MISO) systems only.

Future development of the identification algorithm will try to
remedy the above-mentioned problems. Speaking generally, there
several approaches to this problem:

• Bayesian framework. This approach requires extension to SWLRA
algorithm to effectively solve MIMO systems.

• Incorporation of PI into subspace algorithm. This approach requires
such an computation in subspace identification procedure which
enables direct incorporation of PI into system matrices. This
approach is the topic of ongoing research.

• Spectral identification methods. In robust control, analysis in fre-
quency domain is very popular. The prior information could be
incorporated by means of user-defined “filters”. This methodol-
ogy is also topic of current research.

• Artificial data. Generation of data with desired properties is yet
another approach. The user incorporates required properties and
the knowledge of the physical essence into artificial data which
are then used for regular identification. This approach, however,
does not explicitly say, how to choose the ratio between artifi-
cial and measured data and, therefore, it is only of experimental
nature.

In this paper, we treated only predictions of outside temperature
because it has dominant influence out of all disturbances affecting
the inside temperature. There are, however, other energy sources
(like sun intensity, occupancy of the building, etc.). Taking them
into account would provide better MPC performance as well as
further savings.

6. Conclusion

Predictive control proved to have a great potential in the area of
building heating control. The results from real operation on a large
university building are very promissing and proved the supremacy
of predictive controller over a well tuned weather-compensated
control, with the savings of 17–24%. The MPC implementation dis-
cussed in the present paper is able to track the desired temperature
very accurately, thus maintaining the heating comfort of the build-
ing.

However, the MPC strategy requires some extra effort. The
crucial part of the controller is the mathematical model of the
building. This is not possible by traditional system identification
techniques based on statistical identification, as the building data
usually do not have the desired statistical properties. On the other
hand, finding first principle models is time consuming and not suit-
able for commercial application. We have shown that a proper
identification experiment can provide data suitable for statistical

identification, with the help of certain modifications of the standard
identification algorithms. Numerical issues of the identification
process must be treated very carefully, especially for large-scale
systems.

Fortunately, once an appropriate model is found, the MPC tun-
ing is very intuitive and desired properties of the control system
can be achieved in a short term. The energy peaks are reduced and
the controller does not make fast changes to the control input of the
system, which also saves the lifetime of the equipment and reduces
the peak energy demands. If desired, it also enables to take differ-
ent energy prices into account by introducing time-variable tuning
parameters into the optimization criterion.

Finally, the decision whether to implement the MPC or not
depends largely on the return time of the investments. Even though
this largely depends on air temperatures and sunshine during the
heating season, the return time for our building is estimated to 2
years. As the identification effort does not really depend on the
size of the building, this time will be shorter for large buildings
with expensive heating and longer for small buildings with cheap
heating.
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[32] J. Široký, L. Ferkl, Model of a hot water full circulation mode in a building, in:

IEEE International Conference on Control and Automation. ICCA 2009, 2009,
pp. 585–590, doi:10.1109/ICCA.2009.5410421.

[33] P. Trnka, V. Havlena, Subspace like identification incorporating prior informa-
tion, Automatica 45 (4) (2009) 1086–1091.

[34] M. Schuermans, P. Lemmerling, S.V. Huffel, Block-row hankel weighted low
rank approximation, Numerical Linear Algebra with Applications 13 (2006)
293–302.



3.2 modeling crucial for building predictive control 17

3.2 modeling crucial for building predictive control

Energy and Buildings paper entitled Building modeling as a crucial part
for building predictive control guides a reader through a variety of iden-
tification and modeling approaches for building with a special em-
phasis on those suitable for predictive control.

Apart from the review of the building modeling approaches a new
approach based on combination of the building energy performance
simulation tools and statistical identification is introduced. The pro-
cedure is based on the so called co-simulation that has appeared re-
cently as a feature of various building simulation software packages.
The whole concept is demonstrated on the real office building in Mu-
nich.

The share of the author on the result according to VVVS is 49%.
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Recent  results  show  that  a  predictive  building  automation  can  be used  to  operate  buildings  in an  energy
and cost  effective  manner  with only  a small  retrofitting  requirements.  In this  approach,  the  dynamic  mod-
els are  of  crucial  importance.  As  industrial  experience  has  shown,  modeling  is  the most  time-demanding
and  costly  part of  the  automation  process.  Many  papers  devoted  to this  topic  actually  deal  with  modeling
of  building  subsystems.  Although  some  papers  identify  a  building  as a complex  system,  the  provided  mod-
els are  usually  simple  two-zones  models,  or extremely  detailed  models  resulting  from  the  use  of  building
simulation  software  packages.  These  are, however,  not  suitable  for  predictive  control.  The objective  of
this paper  is to share  the years-long  experience  of  the authors  in  building  modeling  intended  for  predic-
tive  control  of the  building’s  climate.  We  provide  an overview  of  identification  methods  for  buildings  and
analyze  their  applicability  for subsequent  predictive  control.  Moreover,  we  propose  a new  methodology
to obtain  a  model  suitable  for the  use  in a  predictive  control  framework  combining  the building  energy
performance  simulation  tools  and  statistical  identification.  The  procedure  is  based  on the  so-called  co-
simulation  that  has  appeared  recently  as  a  feature  of various  building  simulation  software  packages.

©  2012  Elsevier  B.V.  All  rights  reserved.

1. Introduction

1.1. Motivation for advanced control in buildings

Building climate control has drawn a lot of attention in recent
years in both academia and industry. Buildings account for 20–40%
of the total final energy consumption, and in the developed
countries, the amount per year increases at a rate 0.5–5% [1].  In
addition, the building sector is responsible for 33% of global CO2
emissions. The savings related to buildings are therefore a natu-
ral objective of many research groups. Apart from retrofitting and
modernization, one of the most popular current approaches is the
application of advanced control strategies to the building automa-
tion systems (BAS) or to some of their parts.

1.2. Current control approaches, trends and possible
improvements

Even though a number of advanced control solutions have been
suggested by researches, the most widely used method in building

� The results in paper were partly written during the visit at IfA, ETH Zurich.
∗ Corresponding author at: Department of Control Engineering, Faculty of Electri-

cal  Engineering, Czech Technical University in Prague, Technická 2, 166 27 Praha 6,
Czech Republic. Tel.: +420 776 697 672.

E-mail address: samuel.privara@fel.cvut.cz (S. Prívara).

temperature control has been until recently a controller supervised
by heating-curve (HC) which require no model of the process (see
e.g. [2,3]). The respective subsystems of heating, ventilation, and air
conditioning (HVAC) are then controlled making use of rule-based
controllers (RBC, “if–then–else”) [4],  which are mainly responsi-
ble for a specific and space-limited area. On the level of the whole
building, there is no optimization (even though there are often
highly sophisticated local controllers). This is caused by extreme
complexity of the respective RBCs and the fact that it is practically
impossible to generalize their rules for the building level. This prob-
lem becomes even more severe in view of the rising complexity of
BAS tasks in modern office buildings.

One can distinguish two  main research directions in advanced
HVAC control (i) learning based approaches of artificial intelligence
(AI) like neural networks, genetic algorithms, fuzzy techniques,
support vector machines, etc. (ii) Model predictive control (MPC)
techniques that stand on the principles of classical control. Gener-
ally, learning based techniques are easier to implement (if lots of
on-site measurements are available) but the subsequent AI model
is not suitable for optimization, lacks a physical insight and does not
deal well with changes as caused by varying occupancy behavior
or physical changes in the building.

MPC  is a well established method for constrained control and
has also been in focus of researchers in the area of buildings
[5–9]. Among the first notes about MPC  for supervisory control of
a building was the work presented by [10], however, due to the

0378-7788/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.enbuild.2012.10.024
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Fig. 1. Number of papers devoted to MPC  in buildings in journals Energy and Build-
ings, Building and Environment and Energy.

computational demands, this framework has not received much
attention until the past decade when MPC  was applied to various
types of buildings systems often using standard simulation tools.
The growing interest in the use of MPC  for buildings is well demon-
strated by Fig. 1. Lately, the concept of predictive control has found
a way to the practical applications as well [5,11,12].

MPC  opens up possibilities of exploiting thermal storage capaci-
ties. It makes use of prediction of future disturbances (internal gains
due to people and equipment, weather, etc.) given requirements
such as comfort ranges (single value set-points still remains possi-
ble to set) for controlled variables. The control ranges (constraints)
are either known in advance or at least estimated for controlled
variables, disturbances, control costs, etc.

1.3. Dynamic model as a crucial part of MPC

Reliable predictions from the identified dynamic model are
crucial for a sound performance of MPC. It is a well-known fact
that modeling and identification are the most difficult and time-
consuming parts of the automation process as such [13], particu-
larly for predictive control. The basic conditions that each model
intended for MPC  usage should satisfy are reasonable simplicity,
well estimated system dynamics and steady-state properties as
well as satisfactory prediction properties. These requirements do
not need to be of the same quality on the whole frequency range,
rather they should comply with the quality requirements for the
control-relevant frequency range (see e.g. [14–16]). The key ques-
tion therefore is what kind of model should be searched for?

Two basic paradigms to derive a total model of building dynam-
ics are at hand. The first one originated in HVAC engineering and
building automation communities, a “traditional” approach, which
uses knowledge of the structure and physical and material prop-
erties of a building. A detailed building model is then assembled
from simple subsystems mutually physically interacting, making
use of computer aided modeling tools, e.g. Trnsys [17], EnergyPlus
[18], ESP-r [19], etc. Their objective is to simulate the behavior of the
building, however, they do not provide an explicit model,1 thus can
be hardly classified into control oriented modeling approaches even

1 Note that in this context, we call a model explicit if there are mathematical
formulas describing a state evolution, i.e. a set of differential or difference equations
is  available. Otherwise the model is called implicit. Notice that AI models are also
implicit.

though there is a challenging project GenOpt aiming at employing a
(predictive) control framework directly without the need of a sim-
ple model [20]. This is however very computationally demanding,
hardly scalable and therefore not further considered here.

An alternative is to use statistically based, i.e. data-driven
approaches, resulting in a model in an explicit form. We must
emphasize that even physically-based parametric models are clas-
sified into statistically-based models here as the parameters are
identified using measured or simulated data.

Basically, following categories of building modeling techniques
suitable for predictive control that can be considered as statistical.

Subspacemethods(4SID)  [21] belong to the black-box identifi-
cation algorithms and provide a model in a state space form.

The main advantage of 4SID methods is their ability to han-
dle large amount of data. This was  demonstrated for instance in
the identification of a thermodynamic model of a small residential
building that was equipped with tens of wireless sensors collecting
temperatures, humidity and solar radiation [22]. 4SID methods
were also used for an identification of a university building: at first,
the authors compared prediction error methods with 4SID meth-
ods [23], then showed that a suitable identification experiment can
significantly increase quality of the resulting model [24] as the qual-
ity of input–output data is a key factor for 4SID methods. Further
on, 4SID algorithm was  also applied for the identification of a large
office building [25].

Predictionerrormethods(PEM) [26] are the most commonly
used statistical identification techniques. Their objective is to min-
imize one-step ahead prediction error by optimizing parameters of
a prespecified model structure.

Typically, autoregressive moving average with external input
(ARMAX) model structures are preferred. This structure is used for
modeling of a room temperature in office buildings as presented in
[27], the model is then used for real-time fault detection and con-
trol applications. In [28], several black-box model structures are
investigated for identification of the thermal behavior of a mod-
ern office building. The authors conclude that Box–Jenkins general
model results in the best prediction performance among the stud-
ied group.

PEM are simple-to-use methods that are, however, suitable
mainly for identification of single-input single-output (SISO)
systems. As the building systems are normally multiple-input
multiple-output (MIMO) systems, these methods have to be
carefully used. In [29], the authors show that modeling of air con-
ditioning process by multiple SISO ARMAX models of all system
components leads to poor performance compared to the proposed
MIMO  ARMAX counterpart.

MPCrelevantidentification(MRI) is an approach minimizing
multi-step ahead prediction errors [30–32].  The horizon for error
minimization commensurate with the prediction horizon of the
predictive controller.

A multi-step ahead prediction error cost function for selection
of a building model is examined in [33]. The authors adapts the
MRI  algorithm for usage on building data that are usually highly
correlated and then show that the proposed algorithm results out-
performs standard one-step ahead PEM methods.

Deterministicsemi − physicalmodeling(DSPM)  uses resistance
capacitance (RC) network analogue to an electric circuitry to
describe the process dynamics and is often referred to as a gray-box
modeling.

This approach was  presented in a wide variety of papers. Gray-
box technique is used to obtain a model of a university building in
[11]. With this model, the MPC  applied in a real operation saved
16–28% energy compared to the previous well-tuned conventional
control strategy. RC networks are also used by the leading projects
dealing with predictive control of buildings, i.e. UC Berkeley [5],
ETH Zurich [34], KU Leuven [6].
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Besides that, [35] shows how to use identification toolbox for
Matlab [36] to estimate parameters of RC networks, while in [37],
the authors estimate building parameters using genetic algorithms
minimizing one-step prediction error. Detailed RC network for
thermally activated building systems (TABS) is presented in [38].

Probabilisticsemi − physicalmodeling(PSPM)  [39] utilizes
stochastic differential equations for the description of a system to
be identified. A hierarchy of models with increasing complexity is
formulated based on prior physical knowledge, parameters of each
model are estimated using the maximum likelihood (ML) method
and a forward selection strategy is used to find a meaningful and
adequately complex model by an iterative process.

This technique is presented in a series of papers by [40,41], the
additional statistical tests for the iterative procedure are proposed
in [42].

1.4. The contribution and a structure of the paper

Following the discussion in the previous paragraphs, MPC  has
a potential to address the issue of energy consumption in build-
ings as well as growing complexity of control requirements. The
crucial part of MPC  is the dynamic model. The objective of this
paper is to (i) present a review of methods applicable to the
building modeling intended for the predictive control and (ii)
address an issue of handling of the growing complexity of modern
buildings.

The paper continues with the following structure. The next sec-
tion is devoted to building modeling and identification approaches
– those well-known in control engineering community as well
as those originating from the community of building and civil
engineers. Section 3 is devoted to a novel method combining a
building modeling software with a subsequent statistical identi-
fication. This approach can be conveniently used for large office
buildings. Section 4 presents two case studies: the first is an arti-
ficial example of a simple, yet realistic building constructed in
Trnsys environment, where the properties of several identification
approaches are shown, while the second is a statistically-based
identification of a large office building in Munich. To the best of
the authors’ knowledge, there was no detailed building model-
ing of such size intended for predictive control as is discussed
there. The last section contains final remarks and concludes the
paper.

1.5. Notation

Throughout the paper R  denotes the set of reals, Z set of integers,
t ∈ R  the time while k ∈ Z is the discrete time, vectors u ∈ R

m, x ∈
R

n, y ∈ R
r stand for system input, state and output, respectively. The

symbols w ∈ R
n and e ∈ R

r denote process and measurement noise
sequences, respectively. The positive integer N stands for number
of identification data while P is the length of an MPC  prediction
horizon. Notation Zj

1 means that matrix Zj
1 is composed as Zj

1 =
[z1, z2, . . . , zj]. The symbol (·)† stands for Moore–Penrose pseudo-
inverse of a matrix, whilst the symbol M̂ means the estimate of
quantity M.  The symbol Is stands for the identity matrix of size s.
Finally, the symbols vec (•) and ⊗ denote the vectorization and the
Kronecker product, respectively.

2. Modeling and identification for buildings

In the following, two basic concepts for derivation of a building
model are treated in detail. First, we deal with an approach using a
building simulation software, and thereafter we will have a look at
statistically-based approaches.

2.1. Physically-based models, simulation tools

Physically-based models are typically developed making use of
specialized computer aided modeling tools. The particular tool then
assembles the model from the provided information about building
structure and physical and material properties. A detailed building
model is then assembled from simple subsystems mutually physi-
cally interacting. Overall, the software packages are called building
energy performance simulation tools (BEPST).

2.1.1. Application of a building energy performance simulation
The building energy performance simulation has become an

important tool to assess the building’s energy consumption and
user comfort. In early design phases architects and designers mostly
use BEPST to compare performance of different design variants. The
simulation inputs are based on the designer’s experience since not
all design decisions are finalized yet. The building’s energy perfor-
mance simulated at these stages may  vary greatly from the actual
building’s energy performance once it is in operation. It is however
possible to deduce tendencies of expected performance of different
design solutions in early design stages.

Application of BEPST is not limited to the early design phases. In
more detailed design phases the building simulation is often used
to check the functionality of a proposed design and increase the
planning reliability. In addition, the building simulation is increas-
ingly employed to evaluate an absolute energy performance which
requires a greater level of detail for all energy consuming building
and plant components.

The level of detail for modeling HVAC plants depends on the
available building data. For gathering all the information needed
to model a building and its plants, a close cooperation of technical
consultants for architecture, HVAC and electrical and the building
owner is necessary. In early design phases, issues of building con-
trol are often postponed to detailed planning. Simulation engineers
thus often fall back on implementing standardized and simplified
control rules in their models.

2.1.2. Control in building energy performance simulation tools
Currently available BEPST have quite different control capabili-

ties. Typically, simulation tools provide thermostat and humidistat
control as well as pre-defined control strategies for system
availability and plant control. Because BEPTS use idealized approx-
imations, control in simulation tools performs more efficient and
stable as it might be in real-world applications. Thus, the calculated
building energy consumption is generally optimistic [43].

2.2. Statistically-based identification approaches

The building modeling approaches described in the following
are in-line with the short discussion from Section 1.3.

2.2.1. Subspace identification
Buildings usually have tens or even hundreds of rooms/zones

with a large number of actuators and sensors, what results in MIMO
model.

One of the most popular and successful methods for identifica-
tion of MIMO  systems is subspace state-space system identification
(4SID).

Problemstatement. The objective of the 4SID is to find matrices
A, B, C, D and K of a linear time-invariant (LTI) discrete-time model
in an innovative form:

xk+1 = Axk + Buk + Kek,

yk = Cxk + Duk + ek

(1)
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Table  1
Symbols and their meaning used for 4SID algorithm.

Symbol Meaning

Yp Hankel matrix of the past outputs
Yf Hankel matrix of the future outputs
Xp Hankel matrix of the past states
Xf Hankel matrix of the future states
Up Hankel matrix of the past inputs
Uf Hankel matrix of the future inputs
�i Extended observability matrix
Hd Markov parameter matrix corresponding to the deterministic

part
Hs Markov parameter matrix corresponding to the stochastic part
�d Reversed extended controllability matrix corresponding to the

deterministic part
�s Reversed extended controllability matrix corresponding to the

stochastic part
Ep Hankel matrix of the past noise
Ef Hankel matrix of the future noise
i  Number of block rows in Hankel matrices

based on given measurements of an input and an output generated
by an unknown stochastic system of order n subject to unknown
white noise ek.

Algorithm. The entry point is the input–output equations:

Yp = �iXp + Hd
i
Up + Hs

i
Ep,

Yf = �iXf + Hd
i
Uf + Hs

i
Ef ,

(2)

Xf = AiXp + �d
i Up + �s

i Ep, (2)

where the symbols are defined in Table 1. Note that a very detailed
explanation of the respective symbols, e.g. how the Hankel matrices
are constructed is provided in [21,44]. The basic idea of the algo-
rithm is to drop input and noise matrices by finding an appropriate
projection and instrument matrices. The main tool of 4SID is an
oblique projection defined as follows [21]:

Z = Yf /
Uf

Wp = Yf

[
WT

p UT
f

]
[

WpWT
p WpUT

f

Uf WT
p Uf UT

f

]† [
Ir

0

]
Wp, (3)

where Wp = (Up/Yp), i.e. the matrices of past inputs and outputs
are stacked onto each other. The equation basically represents the
projection of future system outputs onto a space of past system
inputs. Then it can be shown [21] that Z = �X, where X is the
Kalman filter state sequence and � is state observability matrix.
The order of the system can be determined from an analysis of sin-
gular values obtained from a singular value decomposition (SVD)
of W1ZW2, where W1,2 are weighting matrices of an appropriate
size which determine the resulting state space basis as well as the
importance of the particular element of Z, see Eq. (8).

The algorithm continues from either � or X in a slightly different
manner depending on the particular subspace identification algo-
rithm, however, both ways lead to a computation of A and C by
ordinary least squares (OLS).

For selection of a submatrix we have adopted a Matlab-like nota-
tion, where A(1 : n, :) means, that the submatrix is obtained from
the original matrix A by taking 1 to n rows and all the columns. Then

Ĉ = �(1 : r, :), (4a)

Â = �(1 : (i − 1) ∗ r, : )−1�(r + 1 : i ∗ r, :). (4b)

Given Â and Ĉ, the estimate of B and D (and an initial state x0) is per-
formed in different ways [21,26,45–47]; here the general idea will

be outlined. The system output equation of Eq. (1) can be written
as:

yk = CAkx0 +
k−1∑

j=0

CAk−j−1Buj + Duk + ek. (5)

Note that in this equation, the only unknowns are x0 and matrices
B and D. The rest of the terms are known or can be replaced by the
estimates. With aid of vectorization and Kronecker product, the
equation can be rewritten into a form of a least-squares problem.
For more details, consult [48].

Finally, given the estimates of A, B, C, D, the Kalman gain matrix
K can be computed solving the Algebraic Riccati Equation (ARE) in
which the covariance matrices Q, S and R:
[

Q S

ST R

]
= 1

N

([
W

V

][
WT VT

])
(6)

are determined from the residuals as follows:
[

W

V

]
=
[

Xk+1

Yk

]
−
[

Â B̂

Ĉ D̂

]  [
Xk

Uk

]
(7)

At last, a short note on choice of a system order is given. Two
possible approaches are at hand.

• The oblique projection matrix is decomposed by SVD and then
the system order is determined as a number of non-zero singular
values of  ̇ matrix in SVD(W1ZW2) = U˙VT ,

• In case of worse signal to noise ratio, the estimation of the
number of dominant singular values becomes cumbersome. An
alternative heuristic approach improving the order estimation is
suggested as:

f (�j) = grad log(�j) j = 1, . . . , i · r,

n = argmin
j

f (�j),
(8)

where �j are singular values of ˙.  Note that this heuristic can be
used in situations, when there is a low signal to noise ration, thus
the singular values are “drowned” in the noise.

Subspaceidentificationforbi − linearsystems. Some
phenomena in buildings cannot be modeled using linear physics
by their nature. These are, for instance, operation of ventilation
units [49] or the heat transmission through the windows [34].
The latter is caused by opening and closing the blinds (which can
be controlled by MPC). The effects of the blinds on the dynamics
can be modeled by splitting the heat transmission [34]. The first
part describes the heat transmission with closed blinds (constant),
whilst the second part describes the heat transmission with the
partially or fully opened blinds. This means, that for the partially
or fully opened blinds, the system state is multiplied by an input
u ∈ {0, 1}, which forms a bi-linear system description. A product
of mass flow rate and a temperature (to obtain a heat flux) results
in another example of a bi-linearity. Bi-linearities are treated in
detail in [5].

A possible solution is to use bi-linear subspace algorithm
(Bi4SID). The objective of Bi4SID is to find a bi-linear, time-
invariant, discrete time model in a form:

xk+1 = Axk + F (xk ⊗ uk) + Buk + wk,

yk = Cxk + Duk + ek.
(9)

The objective of the algorithm is to determine the system order
n and to find the matrices A, B, D, C and F up to some similarity
transformation.
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The biggest disadvantage of the Bi4SID is that the number
of rows of data matrices grows exponentially with the order of
the system [50,51]. This drawback was to a great extent over-
come by kernel method [51,52],  where used kernel data matrices
have smaller dimensions than those used in original bi-linear sub-
space problem. As an alternative to the kernel method, the basic
OLS problem has been reformulated as a Ridge regression prob-
lem [52], where for solution the only kernel matrix is needed.
Even with these simplifications, Bi4SID are not yet applicable to
the real building as they are unable to process larger amounts of
data.

2.2.2. Prediction error methods
Prediction error methods [26] (PEM) are frequently used for

system identification and can be formulated as:

�̂ = argmin
�

N∑

k=1

�(εk(�)), (10)

where �(•) is an appropriate scalar-valued function, � is a vector of
parameters and εk a prediction error in time k, εk = yk − ŷk, with ŷk

denoting the output estimate. Typically, one-step ahead prediction
is to be minimized which uses past output data up to time k − 1
to obtain the estimate of yk. This is formally written as ŷk|k−1 =
f (Uk

1, Yk−1
1 ). The function f depends on the user’s choice of model

structure (ARX, ARMAX, etc.).

2.2.3. Model predictive control relevant identification
When building-up a model for MPC, we should think about

the minimization of the control error on the prediction horizon.
Hence a model used for predictive control should be primar-
ily a sound multi-step predictor. Such methods, minimizing the
multi-step prediction error, are collectively called MPC  rele-
vant identification methods (MRI) [32,53–55] and in some sense
extend PEM. These methods are addressed in detail in the
following.

Problemstatement. A possible formulation of a basic MPC  prob-
lem can be as follows:

min
u0,...,uP−1

P−1∑

k=0

(yref
k

− yk)T Qk(yref
k

− yk) + Rkuk, (11)

subject to : x0 = x, (12)

xk+1 = f (xk, uk), (13)

yk = g(xk, uk), (14)

(xk, uk, yk) ∈ Xk × Uk × Yk, (15)

where Xk, Uk and Yk denote the constraints sets of states, inputs and
outputs. Qk and Rk are time varying weighting matrices of appropri-
ate dimensions. Based on Eq. (11), without penalization on control,
the MPC  cost function which penalizes the sum of the squared dif-
ferences of the actual value of the controlled output yk and the
required reference yref

k
during a prediction horizon can be rewritten

as:

JMPC = 1
(N − P) P

N−P∑

k=1

P∑

i=1

(yref
k+i

− yk+i)
2 (16)

For buildings, P is typically chosen such that it corresponds to 48 h,
while N is significantly larger. Next, yk+i = ŷk+i|k + ek+i|k, where
ŷk+i|k denotes the predicted output values at the time k + i using

the data until k, ek+i|k is the i-step ahead prediction error. Eq. (16)
can be rewritten [53] as:

JMPC = 1
(N − P) P

N−P∑

k=1

P∑

i=1

(yref
k+i

− yk+i|k)2

+ 1
(N − P) P

N−P∑

k=1

P∑

i=1

(yk+i − ŷk+i|k)2

− 2
(N − P) P

N−P∑

k=1

P∑

i=1

(yref
k+i

− ŷk+i|k)(yk+i − ŷk+i|k). (17)

The MPC  itself minimizes only the first term. However, from
global perspective, to achieve the optimal solution it is necessary
minimize the remaining terms as well. The last term represents
the cross-correlation between the identification and control errors
and is treated by [56]. The second term in Eq. (17) will be used as an
identification loss function for MRI  and expresses the identification
error:

JMRI = 1
(N − P) P

N−P∑

k=1

P∑

i=1

‖ek+i|k‖2 = ‖Ea‖2, (18)

or with explicit dependence on estimated parameters as:

JMRI(�) = ‖Ea‖2 = ‖Ya − Za(�)�‖2 (19)

with

Ea =

⎡
⎢⎢⎣

Ea1

...

EaP

⎤
⎥⎥⎦ , Eai

=

⎡
⎢⎢⎣

e1+i|1

...

eN|N−i

⎤
⎥⎥⎦ , i = 1, . . . , P (20)

and similarly defined output matrix Y and regressor Z. The specific
form of regressor depends on the model used.

2.2.4. Estimation of ARX models
In case that AutoRegressive eXternal input (ARX) [26] model is

considered, the multi-step output prediction ŷk+i|k is expressed as:

ŷk+i|k = Zk+i�̂, i = 1, 2, . . . , P. (21)

where Zk+i = [uk+i−nk
, . . . , uk+i−nb

, yk+i−1, . . . , yk+i−na ] and �̂ =
[b̂nk

, . . . , b̂nb
, â1, . . . , âna ]T , nb and na are the numbers of lagged

inputs and outputs, nk represents the relative lag of outputs w.r.t.
to inputs. As the outputs yk0

in Zk+i with k0 > k are not available at k,
the output prediction ŷk0|k is obtained recursively from Eq. (21), i.e.
by an iterative use of one-step ahead predictions. Having formed
the Za and Ya according to Eq. (20), the problem can be solved by
available solvers minimizing Eq. (19).

2.2.5. Estimation of state space models
When minimizing Eq. (19) for MIMO  system, the use of the

state space representation is more convenient than e.g. ARX
parametrization. In the simplest case when all the states are mea-
surable, the relation between �̂ and system matrices A and B can
be expressed as:

� =
[

A

B

]
, (22)

that is, if all the states are measured (C is a unit matrix), matrices A
and B can be readily extracted from �̂.

The more difficult situation is for the case when some states are
not measured and the particular input and output pair is repre-
sented by a higher-order transfer function nb > 1 for the jth input.
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The basic idea is to introduce artificial outputs (by means of Aaux

and Baux) and make thus all the states “measurable”. The respective
parameters are estimated by MRI  minimizing Eq. (19) using MIMO
ARX structure.

Without loss of generality, let us assume that the output which
depends on the lagged input is the first one. Then nb − 1 auxiliary
variables in matrices Aaux and Baux are introduced:
⎡
⎢⎢⎣

xno+1,k+1

...

xno+nb−1,k+1

⎤
⎥⎥⎦ = Aaux

⎡
⎢⎢⎣

xno+1,k

...

xno+nb−1,k

⎤
⎥⎥⎦+ Bauxu, (23)

where Aaux and Baux are in the following form:

Aaux =

⎡
⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1 0
...

...
. . .

...

0 · · · · · · 0

⎤
⎥⎥⎥⎥⎦

, (24)

Baux =

⎡
⎢⎢⎢⎣ 0j−1

⎡
⎢⎢⎢⎣

0
...

0

1

⎤
⎥⎥⎥⎦ 0ni−j

⎤
⎥⎥⎥⎦ , (25)

with 0j−1 and 0ni−j being appropriate size zero matrices and ni
and no being number of inputs and outputs, respectively. Then, the
system matrices A, B can be expressed as:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A

⎡
⎢⎢⎢⎢⎣

bnb,j bnb−1,j · · · b2,j

0 0 · · · 0
...

. . .
...

0 ·  · · 0

⎤
⎥⎥⎥⎥⎦

0 Aaux

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, B =
[

B

Baux

]
(26)

with A and B in Eq. (26) computed analogously to Eq. (22) leaving
out the coefficients corresponding to the influence of the lagged
input (this is equivalent to na = nb = 1). The skipped coefficients are
stored in the last nb − 1 elements of the first row of A. Note that j
denotes the lagged input channel. Similar procedure is used in the
case when more than one output is affected by the lagged input.
Matrix C is a matrix with as many rows as system outputs (origi-
nal, without artificial outputs created by introducing the auxiliary
states) and as many columns as system states. Matrix D is a zero
matrix.

2.2.6. Deterministic semi-physical modeling
As already stated, DSPM uses RC network analogue to electric

circuitry to describe internal workings. To detail this approach,
we first need to consider all kinds of heat transfers to assemble
a detailed first principles model.

Conduction is a heat transfer through walls (solid body)
expressed as [57]:

Ṫ2 ≈ T1 − T2

kcd
≈ Q̇

kcd
, (27)

where T1 is a temperature of a source, T2 is a measured temperature
of some entity, Q̇ is a heat flux and kcd stands for the conduction
time constant of a process (R × C with R and C being the thermal
resistance and capacity of a mass).

Convection is a heat transfer through air (liquid) expressed as:

Ṫ2 ≈ T1 − T2

kcv
· 4

√
T1 − T2

T1 + T2
(28)

with a time constant kcv. Eq. (28) can also be approximated by Ṫ2 ≈
(T1 − T2)/Kcv as 4

√
(T1 − T2)/(T1 + T2) is considered constant for a

building heating process [57].
Radiation corresponds (similar as a convection) to a heat trans-

fer through air and is expressed as:

Ṫ2 ≈ T4
1 − T4

2
kra

(29)

with time constant kra.
Based on the simplified equations for all heat transfers, dif-

ferential equations can be formulated for all states/nodes. This is
schematically outlined in Fig. 2. Control actions are introduced in
two ways. The first one involves simply adding a heating or cool-
ing input to the particular room node, which then appears in the
right-hand side of above mentioned equations. The second way of
introducing control actions is by assuming that some resistances
are variable. For example, solar heat gains and luminous fluxes
through windows are assumed to vary in a linear fashion with
a blind position, i.e. the corresponding resistance was multiplied
with an input u = {0, 1}. This leads to a bi-linear model, i.e. bi-linear
in a state and input and a disturbance and input as well.

Now we  will briefly outline a simple procedure how to estimate
parameters of a RC network. Other procedures exist and are usually
based on the computationally demanding parameter estimation
of differential equations that are solved by sequential quadratic
programming. We rather present numerically simple and stable
procedure based on least squares technique. The procedure was
firstly used by [11].

DSPMestimationprocedure. Having described a physics of a
building by a set of differential equations, the estimation problem is
formulated in the continuous time. Most of the mathematical tools,
however, work with discrete-time counterparts, therefore the orig-
inal continuous-time problem must be reformulated to a discrete
world, e.g. as:

A = eAcTs = In + AcTs + A2
c T2

s

2
+ . . . ≈ In + AcTs,

B =
∫ Ts

0

eAc	d	 ≈
∫ Ts

0

Ind	Bc = TsBc,

where Ac, Bc and A, B are model matrices of continuous- and
discrete-time models, respectively. Ts stands for a sampling
time. This corresponds to the Euler’s discretization, thus can be
applied for non-linear systems as well. Then the state equation
xk+1 = Axk + Buk + ek developed over the time can be written as:

XN
2 = AXN−1

1 + BUN−1
1 + EN−1

1 = (30)

=
[

A B
]
[

XN−1
1

UN−1
1

]
+ EN−1

1 (30)

For standard optimization using OLS, Eq. (30) is rewritten as:

vecXN
2 =

([
XN−1

1

UN−1
1

]
⊗ In

)T

vec
[

A B
]

+ vecEN−1
1 .

Extra lines for a structure preservation of A and B as well as
other required constraints can be added into the regressor matrix
and the left-hand side matrix. Then, the unknown parameters are
estimated using a weighted LS technique.
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Fig. 2. RC network representing a building model.

2.2.7. Probabilistic semi-physical modeling
Ubiquitous noise and non-linearities in the identification data

that cannot be modeled using RC networks can be partly com-
pensated by introduction of noise additively entering system state
(process noise w) and affecting measurement (measurement noise
e). Hence, the RC network gets the form of a stochastic differen-
tial equation. Model parameters can then be estimated using ML
technique as

�∗
ML = argmax

�
{ln(L(�, YN

1 |y0))}, (31)

L(�, YN
1 |y0) =

N∏

k=1

exp(−1/2εT
k
R−1

k|k−1εk)
(√

2

)r√

det(Rk|k−1)
p(y0|�) (31)

including a prior knowledge of the system. Following the standard
notation, L is a likelihood function, y0 is the vector of initial con-
ditions, � is the vector of unknown parameters, p(y0|�) is the
conditional probability of initial conditions on parameters, εk are
residuals and Rk|k−1 is a residual covariance matrix. It must be noted
here, that the problem can be solved only in an iterative manner,
when εk and Rk|k−1 are computed given an estimate �̂  of �. How-

ever, to compute �̂,  the knowledge of the noise properties must be
assumed. The estimation of both parameters and covariance matrix
is performed using the expectation maximization (EM) algorithm
[58,59].

The above-mentioned procedure is iterative and interactive at
the same time. Basically, at each step a model designer specify a
tentative model structure M with several unknown parameters:

︷  ︸︸  ︷
xt = x0 +

∫ t

t0

m(	, x, u, p(c, �))d	 +
∫ t

t0

�(	, p(c, �))dˇ,

ytk
= h(tk, x, u, p(c, �)) + R(tk, p(c, �))w(tk),

M

where  ̌ is the Wiener process, y is the vector of output measure-
ments. p(c, �) represents all the known and unknown parameters
with c and � being known constants and unknown parameters to
be estimated, respectively; w(tk) is the Gaussian zero-mean white

noise with unit variance scaled arbitrary by R(tk, p(c, �)). Note
that tk are not necessarily uniformly spaced sampling instances.
The parameter optimization then takes place and terminates when
the tentative model gives a statistically relevant output response.
If there are no such parameter values, the model is rejected and
user should specify a different model. However the user can also
refine the already accepted model by adding or removing a cer-
tain component. This provides a considerable freedom to control
a complexity of the model and gives user a way to find as simple
model as possible. The procedure is already implemented in CTSM
software. 2 A significant advantage of this method is that impor-
tance of adding the parameters can be tested by standard statistical
tests, e.g. likelihood-ratio tests [61]. The biggest disadvantage of
this method is its computational complexity and inability of hand-
ling larger amounts of data.

2.3. Comparison of the identification approaches

Finally, Table 2 summarizes the MPC  applicability of above men-
tioned approaches from various viewpoints.

3. Co-simulation based building modeling

In this section we  present a methodology how to utilize BEPST
to obtain an LTI model for control. The motivation is the following:

• Data collected from the real operation of a building nearly
always violate conditions under which the statistical identifica-
tion techniques estimate models reliably. The main issues are the
persistent excitation and the closed-loop nature of the identifi-
cation data.

• A suitable identification experiment can significantly increase the
model quality but such experiments can be quite expensive [11].
In addition, the more system inputs, the longer the necessary
experiment time which leads to additional costs.

2 Continuous-time stochastic modeling [60]
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Table  2
Comparison of the identification/modeling approaches.

Building simulation
software modeling

RC modeling –
tabular data driven

Deterministic and
stochastic semi-physical
modeling

Subspace
identification

Model predictive
control relevant
identification

Planning data from architects and engineers need Yes Yes No No No
Operation data need No No Yes Yes Yes
HVAC  engineering background needed Yes Yes No No Yes
Result  is achieved in defined time Yes Yes No No No
Use  of prior information about building Yes Yes Yes No Yes
Continuous model update No No Yes No No
MPC  applicable No Yes Yes Yes Yes
Estimation procedure computational complexity – – Medium Low High

• In real operation, temperature signals suffer from a co-linearity.
Physically, this means that the temperatures in the building
are very similar in time and make the estimation problem ill-
conditioned. Moreover, in case of MIMO  systems, this can even
lead to wrong input–output coupling in the resulting model.

It is therefore desirable to use BEPST not only for validation of
the resulting controller, but for the identification data generator
as well. An arbitrary experiment with no financial cost can then be
performed in order to achieve a model of a desirable quality. More-
over, the complexity of the model can be controlled, e.g. by means
of an examination which sensor is important for the model and
which is not. If the BEPST model is a true copy of the real building
then the resulting LTI model describes the real building sufficiently
precisely.

3.1. Coupling control and building simulation

Even though BEPST are open for custom model adaptation, the
flexibility of the tools is still limited – since they were developed
and optimized for a building energy performance simulation in
the first place. In order to enhance flexibility and combine simu-
lation tools of different emphasis (such as building performance
and control), a co-simulation becomes more and more important.
Co-simulation describes the integration of different tools by run-
time coupling. This allows for example to couple building energy
performance simulation tools to Matlab, thus provides new pos-
sibilities to building simulation. Co-simulation fundamentals for
building simulation such as coupling strategies and data transfer
are described in [62].

Run-time coupling allows for example simulation assisted con-
trol. Different fields of application of building simulation tools
concerning building control were defined by [63]:

• Used as an emulator, the simulation tool replaces the building and
its plants. BEPST is given input by the simulation. This approach
can be used for control product development, tuning control
equipment, fault-detection amongst other applications.

• Used as evaluator, the building simulation tool provides a detailed
building and plant model for evaluation of different control
strategies, evaluation criteria being energy performance and user
comfort.

• Coupling the building simulation tools to the BEPST simulation
assisted control is feasible. The building simulation tool becomes
part of the controller and is used to evaluate control scenarios for
each control task before control actions are applied on the actual
building.

Yet another field of application for co-simulation is a develop-
ment and testing the MPC. Currently, many BEPST already feature
interfaces to other tools:

• Trnsys allows coupling with Matlab on Windows platforms mak-
ing use of Type155.

• Extensive capabilities for coupling simulation tools are provided
by the Building Controls Virtual Testbed (BCVTB) which is devel-
oped by the Lawrence Berkeley National Laboratory [64]. BCVTB
is a middle-ware tool that allows to couple different simulation
programs for distributed simulation. Programs that can be linked
via the BCVTB are EnergyPlus (EP), Matlab/Simulink, Dymola and
Radiance. Data exchange with BACnet building automation sys-
tems is also featured.

3.2. Combined procedure

In this procedure, we combine benefits of both approaches, i.e.
we use BEPST for identification experiments to get input–output
data and then we use statistically-based algorithm to identify LTI
model from the generated data.

The whole procedure of getting a building model is described in
the following steps. Note that in the following discussion, we  con-
sider use of EP only, however, an arbitrary simulation tool featuring
co-simulation and providing an implicit model can be used.

3.2.1. Choice of model inputs and outputs
The choice of model inputs and outputs plays an important role

for the particular identification procedure. They must be chosen so
that the resulting underlying physics is linear. The specific selection
of the system inputs and outputs is provided in the second case
study of Section 4.

3.2.2. Data preparation and system identification
High quality data needed for a system identification (SID) can be

obtained as an output of the EP model provided the model is excited
by specially designed inputs. The main task of the generator of EP
inputs (GenEI, see Fig. 3) is a generation of sufficiently exciting input
signals.

Three different kinds of input signals can be considered; pseudo-
random binary signal (PRBS), sum of sinusoids (SINE) and multilevel
pseudo-random signal (MPRS). Let 	H, 	L denote the slowest and the
fastest time constants of a system, respectively. Then the frequency

Fig. 3. Preparation of data for identification.
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spectrum to cover is (ω*, ω*) with ω* = 1/ˇ	H ≤ ω ≤ ˛/	L = ω*, where
 ̨ defines how fast is a closed loop w.r.t. an open loop response.

 ̌ specifies a low frequency information corresponding to a sett-
ling time. Typical values are  ̨ = 2 and  ̌ = 3, which corresponds to
95% of the settling time [65]. In case of MPRS, an input sequence is
computed by Galoise fields [65] with the number of shift registers
c and a length q, which defines the maximum possible multiple of
harmonics to suppress. Or, in the opposite direction, let h be a max-
imum possible multiple of harmonics to suppress, then q must be
chosen so that q ≥ 2h − 1 holds and c is computed from

ω∗ ≥ 2


Ts(qn − 1)
. (32)

The length of a signal cycle is Ncyc = qc − 1, which (in a time domain)
represents a signal of duration Tcyc = Ncyc . Ts. The number d of sig-
nals to be generated does not need to be considered, as it is sufficient
to generate a single signal and shift it (d − 1) times, which guaran-
tees good statistical properties of the generated signals [66].

Both the generated EP inputs and weather predictions are
processed by EP to produce EP outputs. To have a complete set
of inputs and outputs for SID, we need EP outputs, some variables
from schedules (e.g. building’s internal gains, equipment gains) and
databases (weather predictions) that are processed by a software
block written in Matlab (GenSIO, see Fig. 3).

Finally, having inputs and outputs ready, a SID algorithm is per-
formed to obtain a linear time-invariant model.

4. Case studies

We will discuss here two examples of buildings with completely
different structure and complexity. Both of them will demonstrate
the properties of the co-simulation based procedure from Section
3. The first one deals with a large office building that is modeled
using EP and due to the model complexity, 4SID identification tech-
nique is the only option to get LTI model, whilst the second example
is an artificial building constructed in Trnsys environment, where
the performance of all identification approaches from Section 2 but
4SID is investigated.

For evaluation of a model quality we will use a normalized root
mean square error (NRMSE) fitness value defined as:

NRMSEfit =
(

1 −
∥∥yk − ŷk

∥∥
2∥∥yk − E(yk)
∥∥

2

)
100 %, (33)

where E stands for the expected value operator.

4.1. Example I: a large office building in Munich

4.1.1. Building description
The building under investigation is a large office building in

Munich (20 000 m2, six above-ground floors, see Fig. 4(a) and (b)).
The objective of the identification is the 3rd floor with an area of
approximately 2800 m2. Based on a usage, a faç ade orientation and
a HVAC supply, the floor can be divided into 24 mutually intercon-
nected zones. The faç ade of the building has a window-to-wall ratio
of approx. 70%. Faç ades to the atrium have a glazing ratio of approx.
50%. Roughly 50% of the windows have interior blinds, remaining
blinds are in-between-glass blinds of double windows.

The building automation system contains several actuators:
individually controlled convectors, 24 independently controlled
radiant ceiling panels for cooling and heating, two  air handling
units (AHU) for control of the ventilation, and Venetian blinds for
all windows in all zones. Energy supply, i.e. hot and chilled water
supply for the entire building, is provided by a central heating and
a cooling plant, which is located partly in the basement and partly
on the roof. District heating is used for the building’s heat supply.
Chilled water is provided locally by mechanical chillers. We  will
now follow the steps from Section 3.

4.1.2. Building modeling
Choiceofmodelingstrategy, inputsandoutputs. Following the

discussion in Section 3 we  selected the heat fluxes affecting zone
temperatures for system inputs and temperatures and illuminances
for system outputs to obtain an LTI model. The selection resulted in
288 inputs and 48 outputs lumped into the variable categories as
described in Table 3. Note that some inputs are common for multi-
ple zones, while others are unique for respective zones. Signals, that
are common for multiple zones are marked by ‘No’ in the column
‘Zone relevant’ of Table 3. Signals marked by ‘Yes’ are unique for
each single zone and therefore each category has as many signals as
zones (E.g. there are 16 convectors for 24 zones, therefore variable
category QCONV contains 16 signals.). Moreover, all the variables are
inputs/outputs/disturbances of the LTI model (model produced by
SID). These are not necessarily the same as those of EP (remember a
use of GenSIO from Section 3.2.2), which is indicated in the column
EP equivalent.

Excitationsignals. The fastest and the slowest time constants
are 4 h and 20 days, respectively. The minimum necessary length
of the experiment as well as a suitable sampling time and addi-
tional settings are obtained from the aforementioned technique
(see Section 3.2.2) for the excitation signal generation. Apart from
the frequency properties there exist further requirements on the
properties of the input signal such as minimum and maximum
values, a maximum possible step or a mutual exclusivity of some
signals.

Fig. 4. Office building in Munich. (a) 3D simulation model: investigated zones are on the third floor, other floors are grayed out. The zone layout is shown on top of the model
for  clarity. The zones of the same sub-system are colored alike. Core areas are gray. (b) A photo of the building shortly before opening.
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Table  3
Notation of the variables used for system identification.

ID Variable category Type Zone relevant EP equivalent

QCONV Convector heating rate Input Yes Same quantity, power can be arbitrarily set within limits
ZCPCR Zone ceiling panel cooling rate Input Yes Supply water temperature and mass flow rate through plumbing

can  be adjusted. Together with return water temperature, they
stand for heat flux of radiant ceiling

ZCPHR Zone ceiling panel heating rate Input Yes Same as ZCPCR
LG  Lighting gains Input Yes Same quantity, power can be arbitrarily set within limits
NRF  Net radiation flux Disturbance Yes Partly by means of blinds control
FP Fan  power Input Yes Air flow rate (which is either 55 or 0 m3/h) and supply air

temperature. Together with return air temperature, they stand for
heat flux of fans.

ODBT Outdoor dry bulb temperature Disturbance No Same quantity
EG  Equipment gains Disturbance Yes Same quantity
OG  Occupancy gains Disturbance Yes Same quantity
ZT Zone  temperature Output Yes Same quantity
ZI  Zone interior illuminance Output Yes Same quantity

After analysis of a frequency response of the system, PRBS was
chosen as the most convenient excitation input signal from the
investigated group. Its advantage compared to SINE input signal is
that it covers the whole frequency interval (frequency spectrum of
SINE signal is not continuous) and compared to MPRS is the speed
of its generation (milliseconds in case of PRBS, minutes or even
hours depending on the number of inputs and signal length in case
of MPRS).

In case of unknown processes and non-linearities in the system,
the best choice is to use PRBS for the first shoot and then analyze
system frequency response because MPRS has clearly delimited fre-
quency spectrum and some of system modes might not be properly
excited.

AnalysisofthelinearityofEPmodel. In Section 3.2.2 we have dis-
cussed an importance of a linearity of the underlying physics of the
process to allow the use of the 4SID algorithm. Hence we need to
verify linearity of the data produced by EP, which can be performed
according to a definition, i.e.

˛f (x1) + ˇf (x2) = f (˛x1 + ˇx2). (34)

This means, that independent inputs (e.g. convectors in Fig. 5(a)
and (b) lower figures, and equipment and lightning gains Fig. 6(a)
lower figure) are fed into EP and the sum of corresponding outputs
is compared to the response of EP to the sum of the same inputs. The
results can be seen in Fig. 5(c) and (d) for convectors, equipment
and lightning gains, respectively. The errors between the responses
are summarized in Table 4. The growing error in case of a multiple
step in input signals can be explained as follows. Linearity tests
were intentionally performed at two different outside tempera-
tures, namely 15 ◦C and 20 ◦C. The actual zone temperatures are
a bit different due to the heat flux (from/to measured zones), i.e.
Qss − Qcool(Tz) = QEP. Qss denotes here the heat flux corresponding to
the designed input (e.g. convectors), Qcool(Tz) is a flux altering (an
actual size depends on the temperature difference between outside
and zone temperatures) the requested value and QEP is a real value
of the flux affecting EP. When summing-up two signals of a differ-
ent step size, there is a different alternation by Qcool(Tz), hence a
small difference between the sum of responses and a response of

Table 4
Temperature linearity error.

Errors in % EG LG QCONV

15 ◦C outside 20 ◦C outside

2nd step 3.9 2.1 4.4 5.2
3rd  step 3.3 1.0 3.4 5.0

the sums. Nevertheless, it can be concluded, that EP response on
selected inputs is indeed linear.

Settingsoftheidentificationprocedure. Final step is the choice of
parameters for the SID, namely identification algorithm, desired
model order and size of the Hankel matrices.

1. Identification algorithm: There are several algorithms covered
by 4SID, which differ in, for instance, applicability, numerical
stability and computational demands [21]. For our case, N4SID
was selected.

2. Desired model order: Although the order selection has already
been implemented in N4SID, an insight into a building physics
can help. A physically based order selection leads to a 2nd–3rd
order dynamics per output temperature [57] leading thus to the
order between 48 and 72 for 24 zones. After employing N4SID
algorithm and validation tests, 72th order model (order selection
according to an algorithm Eq. (8)) turned out to be indeed a good
choice, considering both its simplicity and sufficient precision.

3. Size of Hankel matrices is given by the number i of block rows,
Section 2.2.1, i > n, where n is a system order to identify [21].
Essentially, i means how far into the past/future of the measured
data is searched. It may  therefore seems that bigger i leads to a
better result. However, one should not forget, that the size of the
system matrices grows considerably with the system size and i
must be therefore a trade-off between computation difficulties
and the size of a “memory window”.

Several values of i were examined experimentally and the
results for step responses to several inputs for i = 24, 30, 36 and
40 are depicted in Fig. 7. All step responses recorded satisfactory
results as far as reliable dynamics, a sign of the effect and nom-
inal value is of concern. The increase of i leads only to DC-gains
change. Next, the measured step responses were analyzed. It
turned out, that with bigger i the model step responses approach
to the measured step responses (see Fig. 8). Because of the com-
putational limitations, the i = 40 has been selected as a suitable
choice for the size of Hankel matrices.

Predictionproperties. The good prediction properties of the
identified model are crucial for predictive controller. For com-
parison of the predictions for various prediction horizon refer to
Figs. 9 and 10.  It can be seen, that the model has satisfactory pre-
diction properties even for larger horizons.

4.2. Example II: artificial building modeled in Trnsys

In the second example, we will consider a small building
modeled in Trnsys environment. As mentioned before, the



18 S. Prívara et al. / Energy and Buildings 56 (2013) 8–22

Fig. 5. Convectors: test of linearity of the EP model. (a) Two  convectors: input sig-
nals at outside temperature 15 ◦C and the EP model response. (b) Two  convectors:
input signals at outside temperature 20 ◦C and the EP model response. (c) Sum of
two  convectors: input signal at outside temperature 15 ◦C and EP model response
(response of sum and sum of responses). (d) Sum of two  convectors: input signal
at  outside temperature 20 ◦C and EP model response (response of sum and sum of
responses).

current system identification techniques from Section 2 can be
used.

4.2.1. Building description
A building, schematically outlined in Fig. 11,  was constructed

in Trnsys environment. It is a medium weight office building with

Fig. 6. Equipment and lightning gains: test of the EP model linearity. (a) Two con-
vectors: input signals at outside temperature 15 ◦C and the EP model response. (b)
Sum  of signals: input signals at outside temperature 20 ◦C.

two zones (5 m × 5m × 3 m)  separated by a concrete wall (involving
the transient properties between zones). South oriented walls of
the zones include a window (3.75 m2). The HVAC system used in
the building is TABS [67]. Technically, a set of pipes is placed in the
ceiling and distributes supply water which then performs a thermal
exchange with a concrete core. Each zone has a unique heating
circuit with a constant mass flow rate of the supply water leaving
thus a supply water temperature the only manipulated variable.
This control strategy was chosen to mimic  a real-life application
[12], where there are no valves, thus no possibility of control the
fluxes.

We  employed several Trnsys components such as (i) Type56 for
a construction of the building, (ii) Type15 for outside environmen-
tal conditions (involving ambient temperature, outside air relative
humidity and solar characteristic) with year weather profile corre-
sponding to Prague, Czech Republic, (iii) Type155 to establish a link
between Trnsys and Matlab.

The communication link was  used to generate identification
data in order to excite the system properly. Based on the previous
discussion, PRBS was  used as an excitation input signal. Time-step
of the simulation was set to Ts = 0.25 h which guarantees a proper
convergence of Trnsys internal algorithms and is also suitable for a
description of important building dynamics.

4.2.2. Building modeling
Choiceofmodelingstrategy, inputsandoutputs. The model built

in Trnsys has 18 states and 12 inputs (manipulated variables and
disturbances). We  applied an iterative procedure for selection of
a minimum input and state sets [42]. The procedure iteratively
selects only those inputs and states which brings statistically sig-
nificant information to the model. Finally, we  obtained 4 out of
original 12 inputs (8 disturbances were proven not be significant),
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Fig. 7. Step responses of several inputs in zone 1 for different is. Vertical axes are particular contributions to zone temperatures.
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Fig. 8. Comparison of measured and simulates step responses from convectors.

namely Tsw1 , Tsw2 , To and Q̇ and 6 out of original 18 states, namely
Tc1 , Twall1 , Tz1 , Tc2 , Twall2 and Tz2 with a meaning described in Table 5.
Note that the table presents only those states that are depicted in
Fig. 11.
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Fig. 10. Part of model outputs.

Identificationproceduresused. We  are now ready to investigate
the applicability of the methods from Section 2. As the investigated
building is a small, more computationally demanding identification
techniques can be used.
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Fig. 11. A scheme of the modeled building.

Table 5
System states, inputs and measured disturbances.

Notation Description

(a) System inputs and measured disturbances
Tsw1 Supply water temperature, zone 1
Tsw2 Supply water temperature, zone 2
To Ambient temperature
Q̇ Solar radiation

(b) System states
Tc1 Ceiling core temperature, zone 1
Twall1

Core temperature of common wall, zone 1
Ts1 Core temperature on south side, inside, zone 1
Tw1 Core temperature on west side, inside, zone 1
Tn1 Core temperature on north side, inside, zone 1
Tz1 Zone temperature, zone 1
Tc2 Ceiling core temperature, zone 2
Twall2

Core temperature of common wall, zone 2
Ts2 Core temperature on south side, inside, zone 2
Te2 Core temperature on east side, inside, zone 2
Tn2 Core temperature on north side, inside, zone 2
Tz2 Zone temperature, zone 2

For MRI  and DSPM, we consider a model of the following form

y(z) = G(z)u(z) + H(z)e(z), (35)

with G(z) and H(z) transfer functions corresponding to a determi-
nistic and a stochastic3 part of the system. A state-space model will
be use for case of PSPM as:

dxt = (A(�)xt + B(�)ut)dt + �(�)dωt, (36)

yt = C(�)xt + D(�)ut + et, (37)

where � ∈ � ⊂ R
p is the vector of parameters, ωt is the

n-dimensional Wiener process and et∼N(0,  S(�)) is a white zero-
mean Gaussian noise and A(•), B(•), �(•), C(•), D(•) and S(•) are
appropriate system parametric matrices.

Predictionproperties. The performance of the respective meth-
ods is evaluated using NRMSEfit and is summarized in Fig. 12.
To show the properties of the identification methods, Fig. 12
depicts results which correspond only to the deterministic trans-
fer function. A comparison of measured and predicted outputs
(for deterministic transfer function only) obtained from models of
different approaches for 15 steps-ahead prediction is depicted in
Fig. 13.  These results are presented for one zone, however, they are
almost identical to the other zone which is not presented due to
space reasons. Note that 4 step-ahead predictions for all methods
recorded NRMSEfit over 96% even without stochastic part which can
be considered as excellent. The growing error with larger horizons

3 Note that H(z) includes non-linearities of a detailed Trnsys model which cannot
be  described by a linearized model.
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is caused by non-linearities of the underlying physics, which are
lumped in a stochastic part (H(z)).

Validationofmodels. To evaluate the validity of the models we
have used several tests applied to model residuals, namely (i) test of
AutoRegressive (AR) process order, for details refer to [68,69] and
(ii) tests using partial autocorrelation function (PACF) and cumula-
tive periodogram [70].

All the tests confirmed the whiteness of the residuals for all three
identification approaches, for visual results refer to Figs. 14 and 15.
It can be seen, that the residuals are well within the confidence
intervals corresponding to the 5% significance level.

5. Concluding remarks

Apart from a detailed overview of modeling approaches and
algorithms suitable for a predictive control, two case studies
were presented. The first was a real-life example of a large office
building in Munich where a new procedure combining an implicit
model built in EnergyPlus and a subsequent statistical identifica-
tion, namely 4SID algorithm, was presented. For large buildings
with a complex structure, the only viable option seems to be
statistically-based algorithms which are inherently capable of
treating MIMO  systems. The biggest disadvantage of 4SID is that
it does not preserve a physical structure during modeling phase,
which causes deteriorating predictions for the larger horizon.

The second example of an artificial building modeled in Trnsys
demonstrated that use of a number of identification approaches
(MRI, DSPM, PSPM) led to the very similar results. These meth-
ods make use of a known system structure and estimate system
parameters. This property ensures appropriate prediction proper-
ties even for longer prediction horizon. On the other hand, time
demands and a computational complexity become the issue for
these methods in two ways. (i) With a growing complexity of a pro-
cess (building), a description becomes difficult to follow pointing
thus to 4SID as the only suitable candidate. (ii) Use of a probabilistic
semi-physical modeling and MRIs for large datasets and/or complex
systems becomes computationally infeasible.

Therefore, the methods that make use of a physical description
of a system should be used primarily for buildings with simpler
structure.

Note that not all the BEPST as introduced in Section 2.1 can be
used in co-simulation as not all of them posses the capability of
the co-simulation. Building modeling tools Trnsys and EnergyPlus
were used to mimic  the behavior of a modelled building. All the
presented models are in explicit form with reasonable prediction
properties suitable for predictive control.
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International Journal of Modelling, Identification and Control paper en-
titled Incorporation of System Steady State Properties into Subspace Identi-
fication Algorithm offers the incorporation of the PI into the 4SID algo-
rithm. There are two kinds of PI provided, namely the known static
gain and existence/non-existence of the system matrix D. This kind of
PI is sometimes able to improve the statistical identification procedure
which would otherwise fail due to noisy data with low information
content.

The performance of the algorithm is shown on a case study and
compared to the current methods, where the model is used for an
MPC control of a large building heating system.

The percentage share of the author on the result according to VVVS
is 40%.
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1 Introduction 

1.1 Motivation 

With 40% of energy consumption share, buildings 
contribute significantly to the total energy usage  
(Perez-Lombard et al., 2008). This poses a strong 
motivation for development of advanced and energy saving 
heating, ventilating, and air conditioning (HVAC) systems. 
A significant amount of energy can be saved using the 
predictive control strategies compared to the conventional 
strategies. This has been shown in the OptiControl project 
(Gyalistras et al., 2010). Widely used control strategy, a 
weather-compensated control, can lead to a poor energy 
management or a reduced thermal comfort even if properly 
set up, because it utilises the current outside temperatures 
only. In case of sharp change of weather, there is an 
improper control action due to the energy accumulation in 
large buildings, resulting in an over- or under-heating of a 
building. Even though the HVAC control systems have been 
improved significantly during recent years, the predictive 
controller described by Prívara et al. (2011a, 2011b) 
introduces a different approach to the heating system control 
design. There is, however, a crucial condition for the 
successful control, that is, properly identified model of the 
system (Zhu, 2009). Model identification can be performed 
by a large variety of methods, physical modelling or 
statistical approach among others. 

For successful and wide-spread deployment of 
predictive control algorithms for HVAC systems, an 
efficient identification method is necessary (Prívara et al., 
2011a, 2011b). The physical models (sometimes referred to 
as first principle models) can be very accurate, but the time 
needed for their set up is usually way too long. Statistical 
methods, on the other hand, can find the models much 
faster, but they lack accuracy for buildings, as will be 
discussed further. Incorporation of prior information (PI) 
may improve their accuracy significantly. 

This paper presents incorporation of PI into the subspace 
state space system identification methods (4SID). 4SID 
methods originally emerged as a conjunction of linear 
algebra, geometry and system theory and compared to the 
classical identification methods [nicely introduced by Ljung 
(1999)], they provide the user with several advantages such 
as numerical robustness, natural extension to multiple-input 
multiple-output (MIMO) systems, etc. There are, however, 
also some drawbacks, e.g., lack of satisfactory number of 
data samples, proper order of excitation or strong noise 
contamination can lead to poor identification results (Ljung, 
1999, Willems et al., 2005). Some problems coupled  
to these methods, such as identification of stable, positive,  
 

real models, etc., using regularisation can be found in  
Van Gestel et al. (2000), Goethals et al. (2003) or 
formulated as a constrained optimisation, as in Lacy and 
Bernstein (2003). The black-box identification, such as 
4SID, relies only on experimental data, that is, it may result 
in biased models (Trnka and Havlena, 2009), or fail in 
giving a proper model [this problem is addressed by Gevers 
et al. (2005) and Rojas et al. (2008)]. 

PI can significantly improve the identification results, 
however, the current algorithms are not able to provide 
satisfactory results for the MIMO systems. Previous works, 
such as Bai and Sastry (1986), count with a single-input 
single-output (SISO) system only. Even (Trnka and 
Havlena, 2009) using Bayesian framework approach did not 
present a method which would treat MIMO system in a 
satisfactory manner. 

1.2 Incorporation of PI 

PI is a good tool for improvement of the identification 
results. Its incorporation can be considered as a bridge 
between classical identification approaches based on the 
estimation of a time response of an unknown system base 
upon, e.g., step or impulse response, and statistically-based 
identification methods (Ljung, 1999). The system 
properties, such as steady state gain, settling time, 
asymptotic stability, dominant time constants, smoothness 
of step response, etc., can be used in the classical approach 
to determine the unknown system. The question is, how to 
involve at least some of these properties into the 
statistically-based identification, and in particular, into the 
4SID methods. 

Several methods dealing with above problem have been 
proposed. They can be generally classified into four groups. 

1.2.1 Bayesian framework 

This approach can be characterised as a natural way for 
incorporation of PI because it allows an inference of a prior 
estimate of unknowns system parameters with information 
retrieved from measured data. The resulting posterior 
conditional probability function can be obtained using 
Bayesian rule 

( | ) ( | ) ( ),p y l y pθ θ θ∝  (1) 

where p(θ) is the prior probability density function of the 
parameters and l(θ | y) the likelihood function for measured 
data (Peterka, 1984). 

Although many satisfactory results were proposed for 
the incorporation of PI into ARX or ARMAX model 
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identification (Peterka, 1984), similar strategies do not work 
well for the class of 4SID methods. This problem is treated, 
e.g., by Trnka and Havlena (2009), but favourable results 
are given only for the multiple-input single-output (MISO) 
systems, because presented algorithm is based on a 
structured weighted lower rank approximation (SWLRA) 
(Schuermans et al., 2006), which provides an optimal 
solution only for the MISO systems. A suboptimal 
algorithm is presented by Trnka and Havlena (2009), 
however, the level of optimality is not guaranteed. 

1.2.2 Artificial data 

Generation of data with desired properties deals with a weak 
point of 4SID, its black-box character (and associated 
statistical problems). Such data can contain trends that 
represent system in a decoupled form (connection of the 
particular input to the particular output, etc.). As the ratio 
between artificial and measured data is unknown, the only 
way how to address this problem is a trial and error method. 

1.2.3 Frequency domain identification methods 

Yet another approach for system identification is the  
use of the frequency domain methods. It has been shown 
that this approach leads to the maximum likelihood 
formulation of the frequency domain estimation problem 
(McKelvey, 2002). This problem is treated in detail, e.g., by 
Marelli et al. (2010), Ag et al. (2010), Schoukens et al. 
(2010), Wills et al. (2010) and Wang et al. (2010). Even 
though there were some proposals how to incorporate the PI 
into an identification algorithm (e.g., Ljung and Gillberg, 
2010), it is still an open problem and a topic of ongoing 
research. 

1.2.4 Direct incorporation of system properties into 
4SID algorithms 

This is the main contribution of this paper and will be 
treated in detail. 

1.3 Organisation of the paper 

This paper presents a new algorithm of incorporation of PI, 
which is built-in directly into the system matrices B and D 
and does not make use of the covariance matrix, which 
enables treating MIMO systems in a natural way using 
state-space approach. Section 2 formulates the general 
identification algorithm. Section 3 describes incorporation 
of known system steady state properties into subspace 
identification framework. Section 4 presents identification 
results of previously described algorithms. The objective of 
the identification was creation of a proper model (in sense 
of fit and controllability) of a real, eight-floor building. 
Future development is outlined in Section 5 and the paper is 
concluded by Section 6. 

2 Subspace identification 

2.1 Problem statement 

In the last two decades, the subspace algorithms have 
become an important tool of system identification. The 
objective of the 4SID, as will be used further on, is to find a 
linear, time invariant, discrete time state space model in an 
innovative form 

( 1) ( ) ( ) ( )
( ) ( ) ( ) ( ),

x k Ax k Bu k Ke k
y k Cx k Du k e k
+ = + +

= + +
 (2) 

given the measurements of the input u(k) ∈ Rm and the 

output y(k) ∈ Rl. The set of data 

1( ( ), ( )) ,N N
tZ u t y t ==  (3) 

is generated by an unknown stochastic system of order n, 
which is equivalent to the well-known stochastic model as 
defined by e.g., Lewis (1986) and Kalman (1960). The 
objective of the algorithm is to determine the system order n 
and to find the A, B, C, D and K matrices. 

2.2 General algorithm 

The entry point to the algorithm is the input-output 
equations 

,

d s
p i p i p i p

d s
f i f i f i f

i d s
f p i p i p

Y X H U H E

Y X H U H E

X A X H U H E

= Γ + +

= Γ + +

= + +

 (4) 

where all the corresponding symbols are explained  
in Table 1. The basic idea of the algorithm is to drop the 
input and the noise matrices by finding appropriate 
projection and instrument matrices. The main tool of 4SID, 
an oblique projection, is defined as follows (Trnka, 2007; 
Van Overschee and De Moor, 1999): 

†

,
0

T T
p p p f l lT T

f p f pT T
f p f f

W W W U I
Y W U W

U W U U
×

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥= ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎣ ⎦⎣ ⎦
O  (5) 

where l is number of the outputs, †( )•  is Moore-Penrose 

pseudo-inverse and .p
p

p

U
W

Y
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 Equation (5) is in 

literature often referred to as 

.
f

f p
U

Y W=O  (6) 
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Table 1 Symbols and their meaning used for SID algorithm 

Symbol Meaning 

Yp Hankel matrix of the past outputs 
Yf Hankel matrix of the future outputs 
Xf Hankel matrix of the future states 
Up Hankel matrix of the past inputs 
Uf Hankel matrix of the future inputs 

Γ Extended observability matrix 

Hd Markov parameter matrix corresponding to the 
deterministic part 

Hs Markov parameter matrix corresponding to the 
stochastic part 

Δd Reversed extended controllability matrix 
corresponding to the deterministic part 

Δs Reversed extended controllability matrix 
corresponding to the stochastic part 

Ep Hankel matrix of the past noise 
Ef Hankel matrix of the future noise 
i Prediction horizon 
N Number of data samples 

Then it can be shown (see e.g., Van Overschee and  
De Moor, 1999; Lyzell, 2009), that 

,X= ΓO  (7) 

where X is the Kalman filter state sequence, i.e., the oblique 
projection [equation (6)] is a tool how to drop the input and 
noise matrices. The order of the system can be determined 
from analysis of the singular values obtained using a 
singular value decomposition (SVD) of W1OW2, where Wi 
are the weighting matrices of an appropriate size and 
determine resulting state space basis as well as importance 
of the particular element of O. 

The algorithm continues from either Γ or X in a slightly 
different manner depending on the particular subspace 
identification algorithm, however, both ways lead to a 
computation of the system matrices A and C using the least 
squares method. 

In the following, we will use the approach of Lyzell 
(2009) using a MATLAB-like notation for the selection of a 
submatrix of a given matrix: 

ˆ (1: ,:)C l= Γ  (8a) 

1ˆ (1: ( 1) ,:) ( 1: ,:)A i l l i l−= Γ − ∗ Γ + ∗  (8b) 

Given the Â and Ĉ matrices, the estimate of the system 
matrices B and D (and initial state x0) is performed in many 
different ways, see e.g., Van Overschee and De Moor 
(1999), Lyzell et al. (2009), Ljung (1999), Veen et al. 
(2010), Pouliquen et al. (2010) and Miller and Callafon 
(2010); we will adopt the idea of Lyzell (2009). The system 
output equation can be written as 

1
1

0

( ) (0) ( ) ( ) ( ),
k

k k j

j

y k CA x CA Bu j Du k e k
−

− −

=

= + + +∑  (9) 

with e(k) being the noise contributions. Then equation (9) 
can be readily rewritten using the operator of vectorisation 
vec and Kronecker product ⊗ as follows: 

( )

1
1

0

( ) (0) ( )  vec ( )

  ( )  vec ( ) ( ).

k
k T k j

j

T
t

y k CA x u j CA B

u k I D e k

−
− −

=

⎛ ⎞
= + ⊗⎜ ⎟

⎜ ⎟
⎝ ⎠

+ ⊗ +

∑
 (10) 

The optimisation problem can be then formulated using a 
matrix form as 

2*
2arg min T

θ
θ θ= −Y Z  (11) 

where Y represents the vectors y(k) stacked onto each other, 

Z = (ϕ(1), …, ϕ(N)), with 

1
1

0

ˆ ˆ ˆ ˆ( ) ( ) ( )
k

k T k j T
l

j

k CA u j CA u k I
−

− −

=

⎛ ⎞
= ⊗ ⊗⎜ ⎟
⎜ ⎟
⎝ ⎠

∑Τϕ  (12) 

and 

( ) ( )( )ˆ ˆ(0)  vec vec 
T TT Tx B Dθ =  (13) 

This step is crucial for the incorporation of the PI and 
therefore will be discussed in detail in Section 3. 

Finally, given the estimates of the system matrices  
A, B, C, D, the Kalman gain matrix K can be computed. If 
an estimate of a state sequence X is known [e.g., from 
equation (7)], the problem can be solved by computing the 
algebraic Riccati equation (ARE) in which the covariance 
matrices are determined from the residuals as follows: 

1 ˆ ˆ
,

ˆ ˆ
k k

k k

X XW BA
Y UV DC
+⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤

= −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (14) 

where 

[ ]1 .T T
T

Q S W
W V

R VNS

⎛ ⎞⎡ ⎤ ⎡ ⎤
= ⎜ ⎟⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎝ ⎠
 (15) 

3 Direct incorporation of system properties into 
4SID algorithms 

The following section tries to sketch out the identification 
algorithm in a simplified way. The incorporation of all 
conceivable kinds of PI is shown. 

• Computation of an extended observability matrix and 
the state vector sequence W1OW2 = ΓX. Different 4SID 
algorithms make use of different rules for the 
computation of these matrices [for reference, see e.g., 
Van Overschee and De Moor (1999)]. 
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• Estimates of the system matrices A and C based on Γ 
using the least squares method. 

• Determination of the estimates of the matrices B and D 
and possible incorporation of the PI in this step. The 
solution will be addressed in Section 3.1. 

• Kalman gain computation. 

3.1 Knowledge of the static gain 

In the following, to make the notation simpler, we will drop 
the Â and use only A instead whenever it is appropriate. The 
subspace identification process consists of several parts  
(see Figure 1). Each of them corresponds to a particular 
property of the resulting system. The A matrix contains 
dynamics of the states, while the C matrix transfers the 
dynamics to the outputs. Therefore, the system input-output 
structure is influenced mainly by determination of the B and 
D matrices, with A and C fixed. Hence, the key idea is to 
involve the PI about the steady state gain into the B and D 
matrices. This is especially useful during development of a 
building model, in a case of so called multi-zone modelling, 
when gathered data do not posses satisfactory quality. 

Let the A and C matrices have already been computed 
by some two-step 4SID algorithm (see Figure 1). 
Knowledge of these matrices is then exploited to formulate 
an optimisation problem, i.e., computation of such B and D 
matrices that lead to the desired steady state behaviour. This 
is possible thanks to the fact, that a sum of the elements of 
the impulse response of an asymptotically stable system is 
equal to the steady state: 

2 ,D CB CAB CA B G+ + + + =…  (16) 

that is, 

0

,k
l l

k

D
I CA G

B

∞

×
=

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦⎢ ⎥⎣ ⎦
∑  (17) 

where G is a matrix of steady state gains (gij is the steady 
state gain from the jth input to ith output): 

11 1

1

.
m

l lm

g g
G

g g

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

"
# % #

"
 (18) 

In case of an asymptotically stable A matrix, the following 
holds [Neumann series convergence theorem, see Stewart 
(1998)], 

( ) 1

0

.k
n n

k

I A A
∞

−
×

=

− =∑  (19) 

Finally, by employing Kronecker product and vectorisation, 
we get the resulting formula which represents the additional 
set of constraints that have to be fulfilled: 

( ) 1 vec ( )
vec ( )

vec ( ).
s

m m n n ml ml
B

I C I A I
D

G

−
× × ×

Γ

⎡ ⎤⎡ ⎤⊗ − ⎢ ⎥⎣ ⎦
⎣ ⎦

=

������	�����
  (20) 

Now, the calculation of B and D matrices in equation (11) 
can be performed with the additional constraints  
equation (20) to accomplish the desired steady state 
properties: 

[ ]

2*
2arg min

s.t. vec ( ) 0

T

ml n sG
θ

θ θ

θ×

= −

= Γ

Y Z
 (21) 

The aforementioned constrained least-squares problem can 
be also restated as the weighted least-squares as follows: 

[ ]

2
* arg min ,

0vec ( )

T

ml n s W
Gθ

θ θ
×

⎡ ⎤⎡ ⎤
= − ⎢ ⎥⎢ ⎥ Γ⎣ ⎦ ⎣ ⎦

Y Z  (22) 

where W is a user-defined weighting matrix that guarantees 
the desired steady state behaviour. 

Incorporating the constraints from equation (20) can be 
done in two possible ways: 

• solve the least squares problem with the equality 
constraints (21) 

• solve the weighted least squares problem (22). 

Presented approach for incorporation of system steady state 
properties is suitable for identification with full prior 
knowledge of the process, however, for a large process, 
getting the steady state gain can be a complicated task. In 
such a case only a submatrix Gsub of the gain matrix G is 
usually known. Then the constraints equation (17) can be 
modified by two square diagonal matrices Sr, Sc of an 
appropriate size as 

0

k
r l l c sub

k

D
S I CA S G

B

∞

×
=
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=⎢ ⎥ ⎢ ⎥

⎣ ⎦⎢ ⎥⎣ ⎦
∑  (23) 

and the further procedure is analogous. Matrices Sr, Sc are 
‘selectors’ of the relevant rows (Sr) and columns (Sc), and 
contain only ones and zeros for retaining and disposal of the 
known gain, respectively. 

 

Figure 1 Subspace algorithm with the proposed incorporation of PI step by step (see online version for colours) 
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Let us shortly summarise the incorporation of the static gain 
knowledge. In 4SID algorithm A and C were computed in a 
standard way [see any 4SID algorithm, e.g., Van Overschee 
and De Moor (1999)]. The computation of B, D [and initial 
state x(0) if required] is performed in a standard least-square 
sense using formulation equation (22). This was possible 
thanks to equation (23) where users can specify their partial 
or full knowledge of the static gain. 

3.2 Knowledge of input-output feed-through 

Often-times in industrial applications, the input-output  
feed-through of the system to be identified is known in 
advance. For a general case of a prior knowledge of the 
feed-through matrix D, the optimisation problem (21) can 
be restated as follows: 

2*
2arg min

s.t. vec ( )  vec ( ) ,G D
ξ

ξ ξ

ξ

= −

− =

P Q

R
 (24) 

where R = [0ml×n Im×n ⊗ C(In×n – A)–1], 0 vec ( ) ,T T Tx Bξ ⎡ ⎤= ⎣ ⎦  

P is a vector composed of the vectors vec (D) stacked onto 
each other and QT = (q(1), …, q(N)), where 

1
1

0

( ) ( ) .
k

T k T k j

j

q k CA u j CA
−

− −

=

⎡ ⎤
= ⊗⎢ ⎥
⎢ ⎥⎣ ⎦

∑  (25) 

In fact, it is not a rare phenomenon, that there is no  
input-output feed-through present in the system, that is,  
|the system matrix D is equal to zero. This will be treated  
in the following: consider again equation (11), i.e., the 
computation of B and D matrices. The D matrix can be 
forced to be zero by computation of equations (21) or (22) 
using a modified Z matrix with last ml columns eliminated 
(they correspond to the D matrix). 

4 Identification results 

The proposed algorithms were implemented and then 
applied to data gathered from the HVAC system of the 
building of the Czech Technical University in Prague.  
The simplified scheme of one building block consisting of 
three inputs (outside temperature, heating water 1, heating 
water 2) and four outputs (room temperature 1, return  
water 1, room temperature 2, return water 2) is depicted in 
Figure 2. 

Data from such an industrial environment do not always 
have a sufficient quality, they suffer from a strong noise 
contamination, occurrence of outliers, low excitation, etc. In 
our case, there is a strong multicollinearity present in the 
data, that is, the conventional control strategies, which have 
been used for maintenance of the desired temperature levels, 
drive both courses (north and south course, as well) of 
heating water, so that return water and room temperatures 

had similar behaviour and were strongly correlated. The 
black-box identification approach was not able to handle 
this problem. The PI about the system structure, i.e., the 
steady state gain and/or no presence of input-output  
feed-through had to be incorporated to get the desired 
results. This can be seen in Figure 3, where the step 
responses of the models identified by the different 4SID 
approaches are shown. The prior knowledge about the 
steady state gain was in this case selected as follows: 

0.5 0.75 0.15
0 0.9 0

.
0.5 0.15 0.75
0 0 0.9

G

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
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⎣ ⎦

 

Figure 2 Simplified scheme of model identification setup  
(see online version for colours) 

 

These 4SID methods come, in general, from the robust, 
combined deterministic and stochastic algorithm as 
introduced by Van Overschee and De Moor (1999). 
Moreover, the two methods of Trnka and Havlena (2009) 
are mentioned for comparison: 

• N4SID – version without changes 

• N4SID + PI – the steady state gain was included using 
equation (22). Matrix D is not set to zero 

• N4SID-D – matrix D is set to zero but the steady state 
gain is not included 

• N4SID-D + PI – both types of the PI information, i.e., 
zero D and the steady state gain are incorporated 

• Kung and SWLRA – PI incorporated as in Trnka and 
Havlena (2009), Kung’s respectively SWLRA 
realisation algorithms are used to get system matrices. 

The models retrieved from the proposed algorithm were 
verified against validation data by an open-loop simulation, 
see Figure 4. SWLRA and Kung’s algorithms produced 
poor results, therefore the open-loop responses are not 
shown. 

Both figures prove the superiority of the identification 
algorithm with PI included. The identification results can be 
summed-up as follows. 
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Figure 3 Comparison of step responses of systems identified using different algorithms (see online version for colours) 

 
Note: There is a significant improvement in the identification results using PI about the steady state gain. 

Figure 4 Comparison of different identification strategies: open-loop simulation (see online version for colours) 
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4.1 Zero D matrix 

There is almost no difference in results between robust 
combined algorithm (full D matrix) and algorithm with zero 
D matrix. This is useful especially in cases, when the 
nonzero D matrix has no physical meaning in many 
industrial applications. 

4.2 PI in the B and D matrices 

The incorporation of the known static gain into the 
identification algorithm has different consequences for the 
deterministic and stochastic (in sense of system with noise) 
algorithms. In case of the deterministic algorithm, PI is able 
to substitute the lack of information caused by a noise (no 
presence of the Kalman filter) and significantly improves 
the identification results. In many cases, it is even not 
possible to identify a system with noise using the 
deterministic algorithm without knowledge of PI due to 
insufficient information and noise contamination; this can 
be rectified using PI. In the case of the stochastic algorithm, 
the differences in fit between the algorithm with and 
without PI is not major, however, the incorporation of PI 
enables the creation of the model which has properties 
equivalent to the real physical system, and is valid for 
control. 

4.3 Sensitivity of the true value of PI 

The price for the better identification performance in case of 
PI incorporation must be paid by a greater sensitivity to the 
changes in parameters, that is, even a slight change in 
parameters aggravates the identification results (in a sense 
of a fit). The importance of PI in respective parameters can 
be adjusted by the weighting matrix in equation (22). 

5 Future development 

As mentioned in Section 4, there is no SWLRA algorithm 
for MIMO systems working properly. This is still a topic of 
ongoing research. In case of successfully solving this 
problem, PI could be incorporated by means of a Bayesian 
network, as proposed by Trnka and Havlena (2009), even to 
the MIMO systems. Yet another approach was presented in 
this article via a direct incorporation of PI into the system 
matrices B and D. There is, however, PI of a certain type 
(e.g., dynamics), which must be incorporated directly into 
the A or C matrices; however, the solution to this problem is 
still unknown, and topic of possible research as well. 

6 Conclusions 

The proposed algorithm presents an incorporation of PI into 
the subspace identification methods. The incorporation is 
performed directly into the system matrices B and D, thus 
enables a certain type of PI, e.g., static gain. The 
incorporated PI is able to significantly improve the 
identification results and substitute the lack of information 

in the input-output data. Moreover, it notably improves the 
model for control purposes by shaping it into the physical 
structure of the real system. However, the quality of the 
identification is sensitive to the accuracy of the prior 
estimate of parameters. A constructed model has been used 
for temperature control in a real operation of the 8-floor 
building of the Czech Technical University in Prague. The 
predictive control with the model identified using the 
proposed algorithm achieved 27% savings of energy, 
compared to the state-of-the-art weather-compensated 
controller (Siroký et al., 2011). 
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3.2 modeling crucial for building predictive control 43

Control Engineering Practice paper entitled Use of partial least squares
within the control relevant identification for buildings present the concept
of multi-step ahead error minimization, when the control and identi-
fication criteria commensurate ensuring thus the best possible model
in sense of multi-step ahead predictor.

As there is often noise contamination present or the number of co-
variates used for regression problem is too large, and a number of
them does not contribute significantly to improve the solution, some
of the components can be removed. This is performed by the combi-
nation of the MRI and PLS.

The algorithm is tested at the provided example.

The share of the author on the result according to VVVS is 47%. The
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a b s t r a c t

Climate changes, diminishing world supplies of non-renewable fuels, as well as economic aspects are

probably the most significant driving factors of the current effort to save energy. As buildings account

for about 40 % of global final energy use, efficient building climate control can significantly contribute

to the saving effort. Predictive building automation can be used to operate buildings in an energy and

cost effective manner with minimum retrofitting requirements. In such a predictive control approach,

dynamic building models are of crucial importance for a good control performance. An algorithm which

has not been used in building modeling yet, namely a combination of minimization of multi-step ahead

prediction errors and partial least squares will be investigated. Subsequently, two case studies are

presented: the first is an artificial model of a building constructed in Trnsys environment, while the

second is a real-life case study. The proposed identification algorithm is then validated and tested.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Energy management in buildings

There are several reasons why building climate control has
been drawing attention in recent years in both academic and
industrial fields. Buildings account for about 40% of the total final
energy consumption, and in developed countries, the per year
increases are 0.5–5% (Laustsen, 2008; Pérez-Lombard, Ortiz, &
Pout, 2008). Moreover, buildings produce 33% of global CO2

emissions (Dascalaki, Droutsa, Gaglia, Kontoyiannidis, & Balaras,
2010). On the other hand, they have very large potential of both
primary energy and CO2 reduction (Metz, 2007). Moreover, as
pointed out by Ekins and Lees (2008), currently available energy
efficiency measures could save 28% of the current energy con-
sumption. This can be done by refurbishment (e.g. installation of
building integrated photovoltaic system for preheating of the
fresh air Lodi, Bacher, Cipriano, & Madsen, 2012), using the energy
certificates, changing thus the user behavior (actually, the Energy
Performance of Buildings Directive of European Commission requires
the residential buildings to have Energy Performance Certificate
when they are sold, rented or reconstructed) (Bull, Chang, &
Fleming, 2012) or optimization techniques applied to building

automation systems (BAS) (Široký, Oldewurtel, Cigler, & Prı́vara,
2011). The latter case is focused on in this paper.

The current practice in a building temperature control is
heating-curve controllers which require no model of a process
(see e.g. Tashtoush, Molhim, & Al-Rousan, 2005; Zhu, 2001) and
are implemented in the topmost level of a control hierarchy. The
respective subsystems of heating, ventilation and air conditioning
(HVAC) are then controlled by rule-based controllers (RBC, ‘‘if–
then–else’’), which are mainly responsible for a specific and
space-limited area. A control performance is then highly depen-
dent on a huge number of threshold values and parameters. With
higher complexity of the BAS and HVAC systems, it is increasingly
difficult to achieve energy efficient formulations of these rules at
the building level.

Model Predictive Controller (MPC) opens up possibilities of
exploiting thermal storage capacities making use of a prediction of
future disturbances (internal gains due to presence of people and
equipment, weather, etc.) given some specific requirements, such as
acceptable ranges (single value set-points still remain possible to
set) for controlled variables, known in advance or at least estimated
ranges for controlled variables, disturbances, control costs, etc. An
increase in research in the field of MPC used in BAS or HVAC (see e.g.
Ma et al., 2011; Oldewurtel et al., 2010) mirrored in the applications
and successful operation on the real buildings (Lukasse et al., 2009;
Prı́vara, Široký, Ferkl, & Cigler, 2011). The analyses of a savings
potential by employing predictive strategies were addressed in e.g.
Gyalistras et al. (2010), Oldewurtel et al. (2010) and Cigler, Prı́vara,
Váňa, Žáčeková, and Ferkl (2012).
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1.2. Model Predictive Control for buildings

MPC is a modern control technique, which is characterized by
its ability to handle constrained optimal control problems. At
each time step, a constrained optimization problem on a finite
horizon is solved for the current state of a building and the
solution is then applied. In fact, at each time step a plan for
heating, cooling, ventilation, etc. is computed for the optimization
horizon based on predictions of future weather conditions and
other disturbances (e.g. occupancy, internal gains, etc.). Time-
dependencies of the control costs (e.g. dynamic electricity prices),
or of the constraints (e.g. thermal comfort range) can readily be
included into an optimization (Oldewurtel et al., 2010).

1.3. Modeling and identification

The reliable prediction properties of an identified dynamic model
are vital for a good performance of MPC. The need for a good model
has led to an intensive research in the field of building model
identification (Ferkl & Široký, 2010; Gyalistras & Gwerder, 2009;
Prı́vara, Váňa, Žáčeková, & Cigler, 2012; Váňa & Preisig, 2012;
Žáčeková, Prı́vara, & Váňa, 2011). It is a well-known fact that
modeling and identification are the most difficult and time-
consuming parts of an automation process as such (Bars et al.,
2006; Zhu, 2001), particularly for predictive control technologies.
The basic conditions that each model intended for an MPC usage
should satisfy, are reasonable simplicity, a well estimated system
dynamics as well as satisfactory prediction properties (on a multi-
step prediction horizon). These requirements do not need to be of the
same quality on the whole frequency range, they should rather
comply with the quality requirements for a control-relevant fre-
quency range, see e.g. Hjalmarsson (2009), Gopaluni, Patwardhan,
and Shah (2004) and Shook, Mohtadi, and Shah (2002).

Basically, there are four main categories for building modeling
techniques.

� Subspace methods family (4SID) is a family of algorithms
estimating a model of a system in a state space form (Van
Overschee & De Moor, 1999). They work purely in a statistical
manner and belong to the black-box identification algorithms.
� Probabilistic semi-physical modeling(PSPM) utilizes stochastic

differential equations for the description of the system to be
identified (Andersen, Madsen, & Hansen, 2000; Bacher &
Madsen, 2011; Bohlin & Graebe, 2007). Then a maximum
likelihood estimation (ML) is employed to obtain unknown
parameters. This method naturally enables an incorporation of
a prior information.
� Grey box modeling using a Resistance Capacitance (RC) network

in analogue to an electric circuit is a very popular approach
when the structure of a system is defined and the parameters
are estimated using some optimization tools (Jimenez, Madsen,
& Andersen, 2008; Levermore, 1992; Wang & Xu, 2006).
� MPC relevant identification (MRI). While the traditional system

identification aims at minimizing the bias and variance of the
errors to fit the model, control relevant identification (Rivera,
Pollard, & Garcia, 1992) aims at obtaining a model intended for
control. In case of the MPC this is referred to as MRI (Gopaluni,
Patwardhan, & Shah, 2002, 2004; Laurı́, Martı́nez, Salcedo, &
Sanchis, 2010; Shook et al., 2002). MRI is an approach mini-
mizing multi-step ahead prediction errors. The horizon for an
error minimization commensurate with a prediction horizon
of the predictive controller.

A new algorithm in the field of building modeling is intro-
duced in the paper. MRI combined with Partial Least Squares
(PLS) (later on denoted as MRIþPLS) is an approach combining a

minimization of the multi-step ahead prediction errors and a
selection of the most important directions in the measured data.

1.4. Contribution and structure of the paper

The main contribution of this paper is twofold: Firstly, a new
algorithm based on a method used in different fields is proposed,
which is, however, completely novel in building modeling,
namely MRIþPLS. Secondly, the algorithm is validated and tested
on two examples; a simulation model built in Trnsys and a real
building of the Czech Technical University in Prague. The effec-
tiveness and applicability of MRI and MRIþPLS is demonstrated
on both examples.

The paper is further structured as follows. In order to for-
mulate the problem and to introduce the necessary terminology,
the paper starts with the formulation of the MPC problem for
buildings, see Section 2. Section 3 discusses the minimization
of the multi-step ahead prediction error and introduces a new
algorithm in the field of a building automation – combination of
MRI and partial least squares. Section 4 is devoted to case studies,
where the properties of the said algorithms are examined. The
last section contains final remarks and concludes the paper.

2. Model Predictive Control for buildings

In this setup the control is assumed to be performed at two
levels (Široký et al., 2011): a low-level controller (often RBC or PID
loops) operates on the level of setpoints predefined by a high level
controller (MPC) operating at the level of a whole building. MPC
in buildings is used for the control of heating, cooling, ventilation,
blind positioning, electrical lighting, humidity, etc.

2.1. MPC strategy

The MPC is not a single strategy, it is rather a class of constrained
control algorithms, which originated in the late seventies and early
eighties in the process industries (oil refineries, chemical plants,
etc.) (see e.g. Richalet, Rault, Testud, & Papon, 1978). The MPC
requires the model of a process in order to compute the optimal
control input. At each time step a finite horizon optimal control
problem is solved resulting in a sequence of inputs which, applied
to the process being optimized, satisfies the constraints and more-
over, minimizes the given optimization criterion. This would,
however, result to an open loop control with all its problems.
Therefore, only the first step of the control plan is applied to the
process. Then the procedure moves one step forward and is
repeated at the next time step, closing thus the loop. This approach,
so-called receding horizon, introduces a feedback into the system,
while at each time step, a new optimal control action is computed
as a function of the new state, hence of any disturbances acting on
the process.

2.2. MPC for buildings

In the context of the building control, the computation of the
optimal control action means that at each time step, the plans for
heating, cooling, ventilation, blind positioning, electric lighting,
etc. are computed in such a way that the temperature, CO2 and
luminance levels in rooms or building zones stay within the
desired comfort ranges and the physical and economic (or any
other) constraints are satisfied. To compute the optimal input
MPC needs (i) the initial state, (ii) the model of a process, and
(iii) the predictions of the upcoming weather conditions and other
disturbance variables such as internal gains, occupancy, etc. Time-
dependencies of the control costs (e.g. dynamic electricity prices),
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or of the constraints (e.g. thermal comfort range) can be readily
included in the optimization.

The basic principle of the MPC is depicted in Fig. 1. In the most
general case, the inputs to the MPC (the energy price, the comfort
criteria, as well as predictions of the weather and occupancy) are
time varying. The cost function and the constraints formulate a
mathematical description of a desired behavior. In order to the
MPC being able to compute the optimal input, a process model
must be at hand. The procedure of obtaining the model suitable
for a predictive control is thoroughly described in Section 3.

2.3. Mathematical formulation

The MPC finite-horizon optimization problem is often formu-
lated as follows (for a comprehensive overview on the MPC
formulations, refer to e.g. Maciejowski, 2001):

min
u0 ,...,uP�1

XP�1

k ¼ 0

ðyrk�ykÞ
T Qkðy

r
k�ykÞþRkuk, ð1Þ

s:t: : x0 ¼ x, ð2Þ

xkþ1 ¼ f ðxk,uk,wkÞ, ð3Þ

yk ¼ gðxk,uk,vkÞ, ð4Þ

ðxk,uk,ykÞAXk � Uk � Yk, ð5Þ

where xkARn is the system state, ukARm is the control input,
ykARl is the system output, yr

k is the reference, wkARn is the
process noise, vkARl is the measurement noise, k is the time step,
Xk, Uk and Yk denote the constraint sets of the states, inputs and
outputs, P is the prediction horizon. The common practice is to
formulate the cost function so that the optimal cost guarantee the
stability, i.e. forms a Lyapunov function. As buildings belong to
slower and stable processes, this condition is relaxed and Eq. (1) is
usually expressed purely on a performance basis, which means
that a user specifies preferences for the particular parts of the cost
function. Note that the main goal of the formulation of Eq. (1) is to
minimize the energy cost while respecting comfort constraints. Qk

and Rk are the time varying matrices of an appropriate size. A
trade-off between the precision of a reference tracking and the
energy consumption is expressed by the proportion of Qk and Rk.
The reference tracking is expressed as a quadratic form because
it significantly penalizes larger deviations from the reference. The
energy bill is usually an affine function of a total amount of
consumed energy, therefore the control cost is weighed linearly.

Eq. (1) is not the only cost function applicable to the building
control. There can be, for instance, a peak energy demand
penalization included in the energy bill that can be expressed
by L1 norm of control inputs in the cost function.

The system model is initialized to the measured/estimated
current state of the building Eq. (2). The system state has physical
meaning only in cases when an approach using a physical description

of a system is employed. On the other hand, for purely statistical
approaches, the system state has no physical meaning. In the case
that the measurements of the state are not available, a Kalman filter
can be used to its estimation and the estimate is then used as the
initial state.

A mathematical description of a building dynamics is a critical
part of the MPC controller, significantly influencing the overall
performance. A general description of the time invariant system
dynamics is presented in Eqs. (3) and (4), however, the work
addressed in this paper is restricted to linear time invariant stochastic
systems

xkþ1 ¼ AxkþBukþwk,

yk ¼ CxkþDukþvk, ð6Þ

which is the most common model type as it results in a convex and
easily solvable optimization problem if the constrains form polytopic
sets and stochastic disturbances are replaced by their estimates based
upon the information available at the time. A, B, C, D are the system
matrices of appropriate size, while wk and vk are zero mean white
noise sequences entering the system.

The ability to specify constraints in the MPC formulation and
to have the optimization routine handling them directly, is the
key strength of the MPC approach (Široký et al., 2011). The following
explanation holds for the input, state and output constraints alike.
Most of the constraints can be formulated as linear inequalities

umin,krukrumax,k: ð7Þ

For formulation of others refer to Široký et al. (2011).

3. Minimization of multi-step ahead prediction errors

3.1. Model Predictive Control relevant identification

Prediction error methods (PEM) (Ljung, 1999) belong to the
most often used methods for system identification and can be
formulated as

ŷ ¼ arg min
y

XN

k ¼ 1

e2
k ðyÞ, ð8Þ

where y is the vector of parameters and ek the prediction error in
time k, i.e. ek ¼ yk�ŷk, with ŷk denoting the output estimate and N

denotes the number of samples.
Typically, the identification objective function minimizes

Eq. (8). However, when the model for the MPC is being built,
the minimization of the control error on the prediction horizon
should be aimed at. Hence the model should be primarily a good
multi-step predictor. The methods that optimize the model on the
same horizon as used later for control are collectively called
control relevant identification and if the MPC is considered for
control, then they are called MPC relevant identification methods
(Laurı́ et al., 2010) (MRI). The problem is addressed in detail in the
following.

Cost function 

Constraints   

MPC controller 

Comfort criteria  

Energy price  

Dynamics / 
Building model  

 Weather prediction 

Occupancy prediction 

Weather Occupancy 

O
ptim

ization Building 

Current state 

Time varying parameters 

Fig. 1. Basic principle of Model Predictive Control for buildings.

S. Prı́vara et al. / Control Engineering Practice 21 (2013) 113–121 115



3.1.1. Problem formulation

The generic MPC cost function, see e.g. Eq. (1) penalizes the
sum of squared differences of the actual value of the controlled
output yk and the required reference output yr

k during the
prediction horizon. Without penalization on control actions and
after simple adjustments, Eq. (1) can be written as

JMPC ¼
1

ðN�PÞP

XN�P

k ¼ 1

XP

i ¼ 1

ðyr
kþ i�ykþ iÞ

2, ð9Þ

where N is the number of samples and P is the prediction horizon.
For buildings, P is typically chosen so that it corresponds to 6–
48 h, while N is significantly larger. Next, ykþ i ¼ ŷkþ i9kþekþ i9k,
where ŷkþ i9k denotes the predicted output values at the time kþ i

using the data until k, ekþ i9k is the i-step ahead prediction error.
Eq. (9) can be rewritten (Gopaluni et al., 2002) as

JMPC ¼
1

ðN�PÞP

XN�P

k ¼ 1

XP

i ¼ 1

ðyr
kþ i�ykþ i9kÞ

2

þ
1

ðN�PÞP

XN�P

k ¼ 1

XP

i ¼ 1

ðykþ i�ŷkþ i9kÞ
2

�
2

ðN�PÞP

XN�P

k ¼ 1

XP

i ¼ 1

ðyr
kþ i�ŷkþ i9kÞðykþ i�ŷkþ i9kÞ: ð10Þ

The MPC itself minimizes only the first term. However, from
the global perspective, to achieve the optimal solution, it is
necessary minimize the remaining terms as well. The last term
represents the cross-correlation between the identification and
control errors and is treated by Gevers (2002). The second term in
Eq. (10) will be used as an identification loss function for MRI and
expresses the identification error

JMRI ¼
1

ðN�PÞP

XN�P

k ¼ 1

XP

i ¼ 1

Jekþ i9kJ
2
¼ JEaJ

2, ð11Þ

or with explicit dependence on estimated parameters Y as

JMRIðYÞ ¼ JEaJ
2
¼ JYa�ZaðYÞYJ2, ð12Þ

with

Ea ¼

Ea1

^

EaP

2
64

3
75, Eai

¼

e1þ i91

^

eN9N�i

2
664

3
775, i¼ 1, . . . ,P, ð13Þ

and similarly defined output matrix Ya and regressor Za. The
specific form of a regressor depends on the model used.

3.1.2. Estimation of ARX models

In the case that AutoRegressive eXternal input (ARX) (Ljung,
1999) model is considered, the multi-step output prediction
ŷkþ i9k is expressed as

ŷkþ i9k ¼ Zkþ iŶ, i¼ 1,2, . . . ,P: ð14Þ

where Ŷ ¼ ½b̂nk
, . . . ,b̂nb

,â1, . . . ,âna �
T and Zkþ i ¼ ½ukþ i�nk

, . . . ,ukþ i�nb
,

ykþ i�1, . . . ,ykþ i�na
�, nb and na are the numbers of lagged inputs and

outputs, nk represents the relative lag of outputs w.r.t. to inputs.
As the outputs yk0

in Zkþ i with k04k are not available at k, the
output prediction ŷk09k is obtained recursively from Eq. (14), i.e.
by an iterative use of one-step ahead predictions. Having formed
the Za and Ya according to Eq. (13), the problem can be solved by
available solvers minimizing Eq. (12).

3.1.3. Estimation of state space models

A state space representation is more convenient for MIMO
systems than e.g. ARX parametrization. When all the states are
measurable and na ¼ nb ¼ 1, the relation between Ŷ and system

matrices A and B can be expressed as

Y¼
BT

AT

" #
, ð15Þ

that is, C is a unit matrix and A and B can be readily extracted
from Ŷ.

A more difficult situation occurs when not every state is mea-
surable and some input–output pair is represented by a higher-
order transfer function nb41 for the j-th input. Then the artificial
outputs (by means of Aaux and Baux) are introduced and thus all
the states are made ‘‘measurable’’. The corresponding parameters
are then estimated by minimizing Eq. (12) using the MIMO ARX
structure.

Without the loss of generality, let us assume that the output
which depends on the lagged input is the first one. Then nb�1
auxiliary variables in matrices Aaux and Baux are introduced

xnoþ1,kþ1

^

xnoþnb�1,kþ1

2
64

3
75¼ Aaux

xnoþ1,k

^

xno þnb�1,k

2
64

3
75þBauxu, ð16Þ

where Aaux and Baux are in the following form:

Aaux ¼

0 1 0 � � � 0

0 0 1 0 ^

^ & ^

0 � � � � � � 0

2
6664

3
7775, ð17Þ

Baux ¼ 0j�1

0

^

0

1

2
6664

3
7775 0ni�j

2
66664

3
77775, ð18Þ

with 0j�1 and 0ni�j being the appropriate size zero matrices and ni

and no being the number of inputs and outputs, respectively.
Then, the system matrices can be expressed as

A ¼
A

bnb ,j bnb�1,j � � � b2,j

0 0 � � � 0

^ & ^

0 � � � 0

2
6664

3
7775

0 Aaux

2
6666664

3
7777775

,

B ¼
B

Baux

" #
ð19Þ

with A and B computed analogously as in Eq. (15) omitting the
coefficients corresponding to the influence of the lagged input.
These coefficients are stored in the last nb�1 elements of the first
row of A. Note that j denotes the lagged input channel. A similar
procedure is used in the case when more than one output is
affected by the lagged input. Matrix C is a matrix with as many
rows as system outputs (original, without artificial outputs
created by introducing the auxiliary states) and as many columns
as system states. Matrix D is a zero matrix.

3.2. Partial least squares

A collinearity (Mason & Perreault, 1991) (high correlation of
predictor variables) leads to numerical problems in a regression.
Frequently used solution is then a use of latent variable methods
(LVMs) (Farrar & Glauber, 1967; Kiers & Smilde, 2007) such as
multivariate linear regression (MVR), principal component ana-
lysis (PCA), partial least squares (PLS) or others. In fact a
continuum regression (Stone & Brooks, 1990) showed a relation-
ship between these three by a choice of parameter bAð0,1Þ, when
b¼ 0 leads to MLR, b¼ 0:5 means PLS and b¼ 1 results in PCA.
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Let us discuss the basic idea now. Matrix Z is a regressor and Y
is a solution of a well-known formula of Ordinary Least Squares
(OLS) solution

Ŷ ¼ ðZT ZÞ�1ZT Y : ð20Þ

In the case of collinearity ZTZ is ill-conditioned, hence OLS fitting
results in parameters with large variance. Given lumped outputs
Y and regressor Z, a variable reduction can be performed

Y ¼UQ T
þF,

Z ¼ TPT
þE, ð21Þ

where U and T are the scores and Q and P are the loadings for Y

and Z, respectively, F and E are the residuals. The number of
columns of U and T is given by the number of principal compo-
nents npc that is acquired by minimizing the means squared error
of prediction (MSEP)

MSEP¼
1

N

XN

k ¼ 1

Jyk�ŷkJ
2: ð22Þ

It was shown by Höskuldsson (1988) that the MSEP is a trade-off
between the bias and variance errors. More columns mean
smaller the bias error but larger the variance error and vice versa.
npc is often decided by evaluating the MSEP in cross-validation.

Different methods to determine P and Q in Eq. (21) give name to
a different LVMs. PLS is a method to model a response variable when
there is a large number of predictor variables, and the predictors are
highly correlated or even collinear. Then new predictors, known as
principal components, are constructed as linear combinations of the
original predictor variables. They find a multidimensional direction
in the Z-space that explains a maximum variance direction in the
Y-space which means that the correlation between columns of T and
U is maximized. The resulting response variable then has fewer
components.

In principle, the computation is performed as follows. The ori-
ginal regression problem

Ŷ ¼ ZŶ, ð23Þ

transformed to the space of the latent variable using Eq. (21) is
equivalent to

Û ¼ TB̂, ð24Þ

with Ŷ being the vector of a parameter estimate in an ‘‘outer’’
and B̂ in an ‘‘inner’’ regression problem, respectively. The inner
regression thus provides a model in the latent variable space,
while the outer regression in the original variable space. To obtain
T with orthogonal columns W s.t. ZW ¼ TPT W is introduced. Then

Ŷ ¼ ZŶ ¼ ÛQT
¼ TB̂QT with B̂ ¼ ðTT TÞ�1TT U,

Ŷ ¼WðPT WÞ�1B̂QT : ð25Þ

Notice that if the regression is performed in the outer space, then
correlation among columns of Z strongly influence the fitting,
while in the case of the inner fitting, the columns of T are
orthogonal, therefore fitting B is not affected by the correlation
of columns of X.

The deflated data matrices are often computed using the non-
linear iterative partial least square (NIPALS) algorithm (Geladi &
Kowalski, 1986) or the alternative SIMPLS (de Jong, 1993; Xie &
Kalivas, 1997).

3.3. Combination of MRI and PLS

It was stated in the previous paragraphs that MRI ensures a
model which is commensurate with MPC criterion (9) and PLS fix
the problem of the collinearity. Their combination appears to be a

promising strategy for a building modeling where both require-
ments should be satisfied.

In this approach the solution proposed by Laurı́ et al. (2010)
which is a combination of numerical optimization and PLS is
adapted. The advantage is that it is based on the Taylor expansion
reducing thus computation complexity in comparison to other
PLS algorithms, e.g. SIMPLS (de Jong, 1993).

Algorithm. Consider a minimization of Eq. (12) approximated
by the Taylor expansion

ĴMRIðYkþpkÞ ¼ JMRIðYkÞþpk

@JMRIðYkÞ

@Yk
þ

1

2
pT

k

@JMRIðYkÞ

@Y2
k

pk,

Ykþ1 ¼Ykþakpk, ð26Þ

where pk is the search direction and ak is the step size. Then

ĴMRIðYkþpkÞ ¼ JYa�ZaðYkÞðYkþpkÞJ
2

¼ trðYa�ZaðYkÞðYkþpkÞÞ
T
ðYa�ZaðYkÞðYkþpkÞÞ ð27Þ

with trð�Þ means the trace of a matrix. An optimal direction and
step are obtained as

@ĴMRIðYkþpkÞ

@ðYkþpkÞ
¼ 0) pk ¼ ðZ

T
ðYkÞZðYkÞÞ

�1ZT
ðYkÞYa�Yk,

ak ¼ argmina ĴMRIðYkþapkÞ: ð28Þ

pk is the direction leading to an optimum (possibly local), while
a is a step leading from the local optimum and searching for a
possible improvements. The algorithm continues in an iterative
sense until the defined stopping condition. Note that solution pk

in Eq. (28) is a solution in an OLS sense, which results in problem
in the case of an ill-conditioned regressor and therefore it is
replaced by PLS solution from Eq. (25), thus the optimal direction
is computed as

pk ¼WðPT WÞ�1B̂QT
�Ŷk, ð29Þ

with respective matrices obtained by applying PLS to Ya and
ZaðYkÞ. For discussion on the convergence and numerical aspects,
refer to Boyd and Vandenberghe (2004), Potra and Shi (1995) and
Moré and Thuente (1994).

4. Case studies

Two case studies are presented here to investigate the proper-
ties of the proposed identification method. The first is devoted
to a simulation example built in Trnsys and the second one
deals with the building of the Czech Technical University (CTU)
in Prague (Fig. 4(a)).

For the evaluation of the performance of the developed models a
normalized root mean square error (NRMSE) fitness value defined as

NRMSEfit ¼ 1�
1

N

XN

k ¼ 1

Jyk�ŷkJ2

Jyk�EðykÞJ2

 !
100% ð30Þ

is used, where E stands for the expected value operator, yk and ŷk

are the system and model outputs at time k, respectively.

4.1. Building model constructed in Trnsys

First Trnsys1 for a construction of a building model is used.
This model can be considered as a simulator of a real building
because it contains its full physical description. In addition, the
number of measured variables is not limited hence more informa-
tion is available at no additional costs. Subsequently, the input
data are fed into the Trnsys model generating thus outputs. These
data are then used for identification of a linear time-invariant

1 www.trnsys.com.
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(LTI) model. Finally, the Trnsys model is used for the validation of
the LTI model. Trnsys model per se cannot be used in predictive
control directly as it is in an implicit form which would require to
employ general nonlinear solvers to solve the MPC problem. This,
of course, would cause a computational intractability. On the
other hand, the LTI model can be readily used in optimization
routines.

For the construction of the model in Trnsys, the three building
blocks (i) Type56 for a construction of the building, (ii) Type15
for modeling the outside environmental conditions with year
weather profile corresponding to Prague, Czech Republic, and
finally (iii) Type155 for the communication between Trnsys and
Matlab were primarily used. Time-step of the simulation was set
to Ts¼15 min. This time-step guarantees proper convergence of
Trnsys internal algorithms.

4.1.1. Description of the building

The constructed building (see a sketch in Fig. 2) is a medium-
weight office building. It has a simple structure: two zones with
the same area ð5� 5� 3 mÞ, each having a window (3:75 m2) in
the south oriented walls. The HVAC system used in the building is
TABS (Lehmann, Dorer, & Koschenz, 2007) with a set of pipes in
the ceiling distributing supply water. Supply water then performs
thermal exchange with the concrete core of the building. The
mass flow rate of supply water is constant in both heating circuits
which are independent. This means that supply water tempera-
ture is the only manipulated variable within the corresponding
heating loop.

A 12-state model was developed to investigate the properties
of MRI and MRIþPLS (Fig. 3). The model has the following vectors
of states and inputs (both manipulated variables and measured
disturbances are lumped here) xT

¼ ½Tc1
, Twall1 , Ts1

, Tw1
, Tn1

, Tz1
,

Tc2
, Twall2 , Ts2

, Te2
, Tn2

, Tz2
� and uT ¼ ½Tsw1

, Tsw2
, To, _Q c , _Q s, _Q w, _Q n,

_Q e� with meaning of the symbols explained in Tables 1 and 2,
respectively. Note that the temperature of each wall except floors
together with zones temperatures is measured and considered as
states.

4.1.2. Results

The MRI and MRIþPLS algorithms from Section 3 were applied
to the data from the Trnsys model. The predictors of the larger
model are correlated, i.e. collinearity is present. This fact was used
to demonstrate the superiority of MRIþPLS algorithm over MRI
when collinearity is present.

The results are summarized in Tables 3 and 4, respectively.
Only the results for the output 6 are presented as all the other
outputs have very similar contributions. Moreover na ¼ nb ¼ 2
was selected, which is in accordance with the physical insight,
when most of the heat/temperature transfer functions are of
order two. This was also confirmed empirically, when choosing

na ¼ nb ¼ 1 and na ¼ nb ¼ 3 aggravated the results. Similarly, the
increase in the prediction horizon P makes the prediction worse.
Modelpred and its subindex describes the identification method by
which the model was obtained as well as the prediction horizon
on which the optimization was performed. Of course, model
MRI24 should have the best results on P¼24, which is indeed
true. One of the key factors in the MRIþPLS algorithm is a choice
of the number of principal components. The optimal number of
the components (30 in our case) was an outcome of the optimiza-
tion task when MSEP as defined by Eq. (22) was minimized. As
can be seen from Table 4, when a lower than optimal number of
the components is selected, the model quality defined by NRMSEFig. 2. A scheme of the modeled building
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Prediction properites: na=2, nb=2, 24−steps
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MRI: fit = 93.51%
MRI+PLS: fit = 93.23%

Fig. 3. Comparison of the measured outputs vs. predicted obtained by MRI and

MRIþPLS. The data were de-trended for identification purposes, therefore only

dynamics of the output without the mean is displayed.

Table 1
Notation of the system inputs and measured disturbances.

Notation Description

Tsw1
Supply water temperature, zone 1

Tsw2
Supply water temperature, zone 2

To Ambient temperature
_Q c

Total solar radiation on a horizontal plane

_Q s
Total solar radiation on south side

_Q w
Total solar radiation on west side

_Q n
Total solar radiation on north side

_Q e
Total solar radiation on east side

Table 2
Notation of the system states used in described models.

Notation Description

Tc1
Ceiling core temperature, zone 1

Ts1
Core temperature measured on south side, zone 1

Tw1
Core temperature measured on west side, zone 1

Tn1
Core temperature measured on north side, zone 1

Tz1
Zone temperature, zone 1

Tc2
Ceiling core temperature, zone 2

Ts2
Core temperature measured on south side, zone 2

Te2
Core temperature measured on east side, zone 2

Tn2
Core temperature measured on north side, zone 2

Tz2
Zone temperature, zone 2

Twall1 Core temperature measured on east side, zone 1

Twall2 Core temperature measured on west side, zone 2
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of Eq. (30) decreases. As assumed, the MRIþPLS indeed per-
formed better than MRI for the model with correlated predictors.

4.2. Building of the Czech Technical University in Prague

The second example presents a case of the real application, the
CTU building in Prague, see Fig. 4(a). The control task is relatively
simple as the only controlled quantities supply waters to the
heating circuits. The MPC was implemented and operating on the
building for more than two years and recorded over 20% average
yearly cost savings comparing to the tuned conventional con-
troller (Široký et al., 2011). These results could be even better
provided a model optimized on the horizon which commensurate
with control horizon.

4.2.1. Description of the building

The CTU building uses Crittall type (Crittall & Musgrave, 1927)
ceiling radiant heating and cooling system, where the heating and
cooling beams are embedded into the concrete ceiling. For a
simple scheme of the heating system refer to Fig. 5. Heating water
is supplied by a vapor–liquid heat exchanger to the container
where the mixing occurs. An accurate control of the heating water
temperature for the respective circuits is achieved by a three-port
valve with a servo drive. Heating water is then supplied to the
respective ceiling beams. Every circuit has a reference room with
a measurement point. The set-point of the control valve is there-
fore a manipulated variable for the ceiling radiant heating system
in each circuit. Because of these reasons, the same control action

is carried out for the entire building block represented as a south
or north room in Fig. 4(b).

4.2.2. Model under investigation

The simplified scheme of one building block consists of
the ambient temperature predictions, heating water temperature,
return water temperature (both in the corresponding heating
circuit), reference room temperature and solar radiation. The
vector of the inputs contains the ambient temperature, solar
radiation and the heating water temperature for south and north
oriented zones, i.e. four inputs in total. The outputs are return
water temperatures for both zones and reference room tempera-
tures, i.e. four measured outputs in total. The data sets used for
identification and consequent validation were processed and
resampled with Ts¼30 min.

4.2.3. Results

Both approaches MRI and MRIþPLS as introduced in Section 3
were applied to data gathered from the CTU building. The data are
low-excited and suffer from many problems typical for real-life
applications such as missing values, outliers, etc. and collinearity
is present as well. This is caused by the fact that supply waters for
the respective control loops have very similar temperatures.

The results are computed in-line with the previous example,
that is, several models (column modelpred) were created, where
the lower index means the horizon on which the model was
optimized. Next the number of steps in prediction horizon (note,
however, that the sampling period was increased) was lowered
due to the computational complexity of the procedures.

For the results of MRI and MRIþPLS refer to Tables 5 and 6,
respectively. It can be seen that MRIþPLS improves the NRMSEfit

in compare to MRI. Note also that results for na ¼ nb ¼ 1 and
na ¼ nb ¼ 3 were outperformed by those for na ¼ nb ¼ 2 which is
in accordance with physical reality as discussed in the previous
paragraphs.

Note that Fig. 6 displays south room, while 5 and 6 contain
information from the north room.

Table 3
MRI: 12-state model, the model quality is evaluated using MRSEfit

from Eq. (30), na¼2, nb¼2.

Modelpred P¼1 P¼24 P¼48

MRI1 99.83 92.59 87.72

MRI24 99.73 93.74 88.41

MRI48 99.70 93.25 88.94

Table 4
MRIþPLS: 12-state model, the model quality is evaluated using MRSEfit from

Eq. (30), na¼2, nb¼2.

Modelpred npc¼20 npc¼30

P¼1 P¼24 P¼48 P¼1 P¼24 P¼48

MRIþPLS1 97.08 78.95 70.8 99.76 94.17 89.55

MRIþPLS24 97.02 79.48 70.88 99.78 94.05 89.77

MRIþPLS48 96.96 78.04 68.28 99.78 94.56 90.94

Fig. 4. The building of the CTU in Prague, Faculty of Electrical Engineering and Faculty of Mechanical Engineering. (a) Photo of the building under investigation.

(b) Simplified scheme for the identification setup.

Fig. 5. Simplified scheme of the ceiling radiant heating system.
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A comparison of measured and predicted outputs by MRI and
MRIþPLS is displayed for south room in Fig. 7. The dependence of
the model quality on the prediction horizon was computed as
well. It can be seen that even for very large horizons (50 steps,
30 min per step) the model quality expressed by NRMSE is high.

5. Concluding remarks

It was mentioned in the paper that applying the MPC for
control of the HVAC system of the CTU building improved the
energy consumption during the last heating seasons by approxi-
mately 20%. The control strategy utilized the model obtained
by optimizing one-step ahead predictions. In this paper it was
argued that the optimization of a model on the horizon that
commensurate with the control horizon provides a better results
than a standard one-step ahead optimization techniques. More-
over, the novel algorithm for building modeling was proposed.
The algorithm named MRIþPLS combines the advantages of the
minimization of the multi-step ahead errors and a robust estima-
tion using partial least squares. Finally, two case study examples
were provided, the model built in Trnsys and the real building of
the CTU in Prague. It was showed that MRIþPLS outperformed
MRI in cases where the collinearity is present, otherwise the
results are similar. Both MRI and MRIþPLS improved the model
quality in compare to the model obtained by the standard one-
step ahead minimization.

The next step will be the application of the MPC to the model
obtained by MRIþPLS. This will, or course, include the investiga-
tion of the energy savings thanks to the improved modeling.
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3.3 selection of the most appropriate model for predic-
tive control

Energy and Buildings paper entitled Building Modeling: Selection of the
Most Appropriate Model for Predictive Control treats the problem of se-
lection of the best model for subsequent predictive control as well as
the statistical validation of the selected model.

The presented approach is iterative having two stages. In the first
stage, a minimum set of disturbance inputs is formed so that the re-
sulting model is the best with respect to a defined quality criterion;
then the second stage comprises addition of the states to obtain the
final minimum set of states maximizing the model quality. The proce-
dure stops when it makes no sense to select more complex model as
it brings no more quality improvements. The residuals of the selected
model are statistically evaluated against expected white noise.

Finally, a case study is provided where the above mentioned ap-
proach is investigated and tested.

The share of the author on the result according to VVVS is 50%.
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Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic

a  r  t  i c  l  e  i  n  f  o

Article history:
Received 24 March 2012
Received in revised form 22 August 2012
Accepted 26 August 2012

Keywords:
Building modeling and identification
Model selection
Statistical tests
Model complexity

a  b  s  t  r  a  c  t

Model  predictive  control  has  become  a widespread  solution  in many  industrial  applications  and  is  gaining
ground  in the  field  of  energy  management  and  automation  systems  of  buildings.  A  model  with  reasonable
prediction  properties  is  an ultimate  condition  for  good  performance  of  the  predictive  controller.

This paper  presents  an  approach  in which  a model  of a building  is selected  by  an iterative  two  stage
procedure.  In the  first  stage,  a minimum  set of disturbance  inputs  is formed  so that  the  resulting  model
is the best  with  respect  to a  defined  quality  criterion;  then  the  second  stage  comprises  addition  of  the
states  to  obtain  the  final  minimum  set  of  states  maximizing  the model  quality.  The  procedure  stops
when  it  makes  no sense  to  select  more  complex  model  as  it brings  no  more  quality  improvements.
Statistical  tests  such  as the  likelihood  ratio  test,  the  tests  based  on  cumulative  periodogram,  the two-
sample  Kolmogorov–Smirnov  test  as well  as others  (fit  factor  and coefficient  of determination)  are  used  to
evaluate  the  relationship  between  the  addition  of  inputs/states  and  the  model  quality.  Three  identification
approaches,  namely  model  predictive  control  relevant  identification,  deterministic  semi-physical  and
probabilistic  semi-physical  modeling  are  used  for  estimation  of building  parameters.

Finally,  a case  study  is  provided  where  all  the  above  mentioned  approaches  are investigated  and  tested.

© 2012  Elsevier  B.V.  All rights  reserved.

1. Introduction

1.1. Use of predictive control in the buildings

Buildings account for huge amount of final energy consump-
tion [1] and there is a growing effort targeted at optimization of
its consumption. Apart from the retrofitting and modernizations
of the buildings, the cheaper and recently very popular approach
for energy consumption optimization is to deploy advanced control
algorithms [2].

Model predictive control (MPC) has become a widespread solu-
tion in many industrial applications and is gaining ground in the
field of building energy management and automation systems. Its
growing popularity for the control of building automation systems
(BAS) or heating ventilation air conditioning (HVAC) has mirrored
in a number of papers dealing with both theory [3–7] and practical
applications [2,8,9].

MPC  is a modern control technique, which is characterized by
its ability to handle constrained optimal control problems. At each

∗ Corresponding author at: Department of Control Engineering, Faculty of Electri-
cal  Engineering, Czech Technical University in Prague, Technická 2, 166 27 Praha 6,
Czech Republic. Tel.: +420 776 697 672.

E-mail addresses: samuel.privara@fel.cvut.cz (S. Prívara),
zdenek.vana@fel.cvut.cz (Z. Váňa), zacekeva@fel.cvut.cz (E. Žáčeková),
jiri.cigler@fel.cvut.cz (J.  Cigler).

time step, a constrained optimization problem is solved for the cur-
rent state of the building and the first step of the solution is then
applied. This means that at each time step, a plan for heating, cool-
ing or ventilation is computed for the optimization horizon based
on predictions of future weather conditions and other disturbances
such as occupancy, internal gains, etc. A case study devoted to the
MPC control of thermally activated building system (TABS) for a
real building is shown in [2].  The energy savings potential, when the
MPC  with weather predictions for the investigated building heating
system was used, were between 15 % and 28 % depending on var-
ious factors, mainly the insulation level and outside temperature.
This is consistent with results achieved in large scale simulations
done in the scope of the Opticontrol project ([10] chapter 8). Thus,
there is a great potential to save energy by applying the MPC  to the
building environment control.

1.2. Building modeling and identification

As the identification of the model suitable for MPC  is the bottle-
neck of the whole procedure, there is an intensive research in the
field of a building model identification [11–13].  A possible approach
is to use building simulation programs such as Trnsys, EnergyPlus
(EP), ESP-r, etc., but these models are not explicit and thus can-
not be used for control directly. Alternatively, there are basically
these modeling and identification approaches that can be used for
buildings.

0378-7788/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.enbuild.2012.08.040
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• Probabilistic semi-physical modeling (PSPM) [14,15] is an
approach utilizing maximization of the likelihood function in
order to estimate parameters of the predefined physical descrip-
tion of a stochastic process.

• Deterministic semi-physical modeling (DSPM) [2,16–18] uses
resistance capacitance (RC) network analogue to an electric cir-
cuit to describe the dynamics of a process.

• Subspace identification method (4SID) [9,19] is an example of
a black box identification approach, when there is no or very
limited knowledge of the system structure. The system is identi-
fied in a purely statistical manner.

• MPC  relevant identification (MRI) [11] is a method when a multi-
step ahead prediction error is minimized over the same horizon
as used for the predictive control.

Note that PSPM, DSPM and MRI  belong to the group of grey
box modeling approaches. In this case, the internal workings in the
physical system are partially known but the full (exact, complete)
information is not required. By contrast, the black box techniques
rely on the measured data only which are then processed by statisti-
cal identification; the internal workings are not reflected, therefore
a user must provide the data with certain quality of excitation to
acquire valid results [20].

1.3. Objective of the paper

As was noted above, the MPC  proved to have a significant savings
potential. On the other hand, it depends on the quality of the model
used for optimization. Low-quality models eliminate much of its
saving potential. The high quality models tend to be quite complex
which brings problems of computational tractability and the loss
of physical insight.

Therefore, it is certainly desirable to have a model of the least
possible complexity, though still having the required quality. The
objective of this paper is to find a method to construct a model
which has the smallest input and parameter sets possible, has
good prediction properties and, moreover, is in accordance with
the physical reality.

Note that the whole paper deals with the energy savings result-
ing from better modeling. For savings thanks to control, refer e.g.
to [2].

1.4. Scope of the paper

Usually, there is a number of models at hand and the task is to
select the best model suitable for predictive control. In case of static
models, the solution is standardized and well-established, however
in dynamical models, especially those multiple-input multiple-
output (MIMO), it is a demanding task.

We  present here an approach for the systematic building-up of
a model through a growing model complexity. This work follows
the previous papers by [14–16,21].  In these papers an approach
using the maximization of the likelihood for identification of the
parameters and the likelihood ratio criterion for model selection
was introduced. We  extend this approach to several identification
methods. Moreover, not only the relationship between increasing
number of parameters and model quality, but the selection of the
disturbance inputs are considered. In our approach we  present a
two stage selection procedure. In the first stage, a minimum set of
disturbance inputs maximizing the model quality is selected and
then, for the given set of inputs, the minimum set of states using the
same logic as in the previous stage is selected. Such a procedure can
have a significant technical and economical impact, as the model
resulting from this procedure is of much lower complexity than
the full model (model with the full set of disturbance inputs and
all the system states) but is of a comparable quality. As a result,

the consequent MPC  optimization problem is computationally less
demanding, which is, especially for large systems such as office
buildings, very important. Moreover, less states and disturbance
inputs mean less sensors, which, in cases that some disturbances
are very difficult to measure (internal gains, presence of occupants),
or others being provided as a service (e.g. weather forecasts for
building climate control) leads to significant financial savings.

In this study, a building model in the simulation software
Trnsys is used to test the proposed building identification pro-
cedure. Moreover, in contrast to a real building, the length of
measured/generated signals is not limited (technically or economi-
cally) and, therefore, more information is available at no additional
cost. It is thus possible to verify which set of signals is necessary for
obtaining the certain quality of the resulting model for control.

1.5. Structure of the paper

The following section provides the overview of identification
and modeling approaches suitable for predictive control of build-
ings as well as discusses the pros and cons for each of them.
Two stage procedure for model selection and model validation is
described in Section 3. The case study in Section 4 presents the
application of selected identification and modeling approaches and
evaluates their performance. Finally, the last section concludes the
paper.

2. Building identification and modeling approaches

Even though there is a large number of modeling and identi-
fication approaches developed over the years, not all of them are
suitable for the building modeling. Moreover, one cannot say that
a single strategy is the best for all the instances. Grey box mod-
els provide a way of combining the advantages of both white box
models and black box models [20,21] that is, they form a natural
framework for modeling of dynamical systems. On the other hand,
the physical structure of the process is not always known or the
system is too large, thus the grey box modeling cannot be used and
statistically based methods are more appropriate [19,22]. Identifi-
cation approaches resulting in a linear model suitable for the MPC
are listed below.

2.1. Subspace identification algorithm

Subspace state-space algorithm (4SID) [23] is a very popular
choice when there is no information about the system structure.
This algorithm uses state-space structure

xk+1 = Axk + Buk + Kek,

yk = Cxk + Duk + ek,
(1)

ek is zero mean Gaussian white noise, xk ∈ R
n is the state vector,

uk ∈ R
m is the input vector, yk ∈ R

l is the output vector with k denot-
ing the discrete time, and A, B, C, D, K stand for the system matrices.
It can provide the estimate of the system order as well as matrices
of the state-space description [24]. In case of large data sets and/or
a complex structure, when other algorithms suffer from compu-
tational problems, 4SID is a very suitable candidate. On  the other
hand, its greatest advantage, black box approach, is also its greatest
weakness as it often spoils the true system structure and only the
input-output behavior is satisfactory, while the internal behavior
depending on the system structure is misleading. This can be partly
fixed by the incorporation of prior information [25–27],  however
these approaches do not work for general case.
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2.2. Probabilistic semi-physical modeling

Having a physical description of the system, it is possible to esti-
mate the model parameters directly from stochastic differential
equations e.g. by using the maximum likelihood (ML) estimation
including the prior knowledge of system parameters. Then the esti-
mation problem can be expressed as

�∗
ML = argmax

�
{ln(L(�, YN

1 |y0))}, (2)

L(�, YN
1 |y0) =

N∏

k=1

exp(−εT
k
R−1

k|k−1εk/2)

(
√

2�)l
√

det(Rk|k−1)
p(y0|�), (3)

where L is the likelihood function, YN
1 stands for N measurements,

y0 are the initial conditions, l is a dimension of the problem (num-
ber of outputs), � is the vector of unknown parameters, p(y0|�) is
the conditional probability of initial conditions on parameters, εk
are residuals and Rk|k−1 is the residual covariance matrix. The prob-
lem can be solved only in an iterative manner, when εk and Rk|k−1

are computed given the estimate �̂ of �. However, to compute �̂, the
knowledge of the noise properties must be assumed. The estima-
tion of both parameters and covariance matrix is performed using
the EM algorithm [28,29]. An alternative procedure for estimat-
ing the covariance by means of the Kalman filter in a recursive
manner is implemented in CTSM software [21]. The biggest bottle-
neck of this approach is its high computational demand, therefore
it is suitable only for smaller data sets and/or models of the lower
complexity.

2.3. Deterministic semi-physical modeling

In many cases, it is sufficient to model a building in a deter-
ministic fashion. The very simple, though effective method [16]
is presented in the following. This method uses least squares (LS)
for solving the parameter estimation problem. It starts with the
discretization of the original continuous-time linear system, e.g. as

A = eAcTs = I + AcTs + A2
c T2

s

2
+ · · · ≈ I + AcTs,

B =
∫ Ts

0

eAc�d� ≈
∫ Ts

0

Id�Bc = TsBc,

(4)

where Ac, Bc and A, B are model matrices of continuous- and
discrete-time models, respectively. Ts stands for sampling time.
This corresponds to the Euler’s discretization, thus can be applied
for the non-linear systems as well. Then the state equation can be
written as

XN
1 = AXN−1

0 + BUN−1
0 + EN−1

0 = (5)

=
[

A B
]
[

XN−1
0

UN−1
0

]
+ EN−1

0 , (5)

with N + 1 being the number of samples and XN
1 , XN−1

0 , UN−1
0 and

EN−1
0 defined similarly as in Section 2.2. The state equation (5) can

be rewritten to the LS estimation problem with the aid of vector-
ization (vec •) and the Kronecker product (• ⊗ •)

vecXN
1 =

([
XN−1

0

UN−1
0

]
⊗ In

)T

vec
[

A B
]

+ vecEN−1
0 ,

with In being n × n identity matrix, n represents system order. Extra
lines for preserving the structure of A and B as well as other required
constraints can be added into the regressor and left-hand side
matrices. The unknown parameters are then estimated using the
weighted LS or arbitrary quadratic programming solver.

2.4. MPC relevant identification

One of the most important criteria for the selection of the mod-
eling and identification approach is the purpose of the constructed
model. If the purpose is predictive control, the performance of the
model over the prediction horizon is of the highest concern, thus the
minimization of the prediction error over the prediction horizon
plays a major role.

The prediction error method (PEM) [30] optimizes model pre-
diction properties over a single step ahead only. The MPC  however,
needs satisfactory predictions over the whole prediction horizon,
hence a model intended for use within the MPC  framework should
primarily be a good multi-step ahead predictor. Such methods,
minimizing the multi-step ahead prediction error, are collectively
called MPC  relevant identification (MRI) methods [11,31–34].  This
problem is addressed in detail in the following.

For minimization of the multi-step ahead prediction error, the
following criterion is considered

JMRI =
N−P∑

k=0

P∑

i=1

(yk+i − ŷk+i|k)2, (6)

where ŷk+i|k is the i-step ahead output prediction constructed from
data up to time k, N + 1 is the number of samples and P is the pre-
diction horizon for identification.

In the elementary case of the single-input and single-output
AutoRegressive eXternal Input (ARX) model, the multi-step output
prediction ŷk+i|k is expressed as a multiplication of the regressor Z

and the vector of the unknown parameters �̂:

ŷk+i|k = Zk+i�̂, i = 1, . . . , P, (7)

where �̂ =
[
b̂nd

, · · ·, b̂nb
, â1, · · ·, âna

]T
and regressor Z(q) =[

uq−nd
, · · ·,  uq−nb

, yq−1, · · ·,  yq−na

]
with q = k + i. na and nb denote the

number of the delayed inputs and outputs in the regressor, respec-
tively, and nd represents the delay of the outputs compared to the
inputs (nd = 0 means the direct input–output connection). Every
output ya in Zk+i with a > k is not available at the actual time k,
therefore an output prediction ŷa|k must be obtained. To acquire
the prediction, the following expression is applied i-times

ŷk+1|k = Zk+1�̂. (8)

Obviously, k ≥ max(na, nb). The recursion starts with the current
output yk. Then the optimal values of the coefficients of the deter-
ministic part of the system contained in the unknown vector � can
be acquired by solving the following non-linear optimization task

�∗ = argmin
�̂

P∑

i=1

N−i∑

k=0

(yk+i − Z
k+i,�̂

�̂)2. (9)

The MRIs provide models with very good prediction properties
over the optimized horizon [11]. Unfortunately, they suffer from
computational complexity as they employ non-linear numerical
optimization algorithms and provide results in a reasonable time
only for simpler model structures such as ARX or some cases of
AutoRegressive Moving Avarage with eXternal input (ARMAX).

3. Model selection and validation

Selection of an appropriate model for predictive control is
addressed in this section. First, a two  stage procedure is described
in detail and then, criteria for model performance evaluation and
model selection are provided. Additionally, the models selected for
further investigation are validated using standard assumptions on
the residuals [35].
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Fig. 1. Two  stage model selection procedure.

3.1. Two stage model selection procedure

In case that model candidates of a different complexity (in
sense of the number of disturbance inputs and states) are at hand,
the question naturally arises, how to select the more appropriate
model. The proposed selection procedure comprises the following
stages (see Fig. 1). First, the minimum set of (disturbance) inputs
maximizing the model quality is selected and then, given the fixed
set of inputs, the same routine is performed to select the minimum
set of the system states. Both stages are performed iteratively, when
the necessity of the subsequent iteration is decided by a result of a
statistical test applied to a chosen criterion. The respective stages
are described in the following.

3.1.1. Selection of the disturbance inputs
The set of the selected inputs is initialized, it contains all the

control inputs and no disturbance inputs. In the first iteration, s
models are constructed. Each of them contains all the inputs from
the set of selected inputs (i.e. all the control inputs) and one of
the s disturbance inputs, that is, as many models as disturbance
inputs available are created. Afterwards, the quality criterion is
computed for all the models. The disturbance input corresponding
to the model with the highest value of the chosen quality criterion
is added to the set of the selected inputs. In the next iteration, s − 1
new models are created. Each of them contains the set of selected
inputs (i.e. all the control and disturbance inputs from the previ-
ous iteration) and one of the s − 1 remaining disturbance inputs.
Again, the quality criterion of all models is evaluated and the best
one is selected. The iterations continue using the same logic. If the
increase1 of the model quality due to the additional input is not sig-
nificant in a statistical sense, the iterations stop and the first stage
is completed resulting to the fixed set of inputs.

3.1.2. Selection of the system states
Next, for the fixed set of the inputs, the minimum set of the

system states maximizing the model quality is found in a similar
way as was done for the inputs.

1 The quality of the model under consideration is compared to the full model, i.e.
the model is tested against the hypothesis that the model under consideration is a
good representative of the full model.

Note that this procedure is possible only for the cases when a
full complexity model is known. That means that the model with
the highest value of a criterion is statistically tested against the
full model in each iteration. An alternative procedure, applicable
even in the situation when the full complexity model is not avail-
able, has a different principle. In each iteration, the model under
consideration is statistically tested against the model from the pre-
vious iteration. That is, there are far more iterations than in the
procedure proposed in this paper, however, the results of both
procedures are always the same. A variety of criteria considered
for the quality evaluation and testing are treated in detail in the
following.

3.2. Criteria for model selection

Different system parameter estimation techniques require dif-
ferent criteria for model selection. For parameters obtained by
CTSM, a ML  estimate given by Eq. (2) offers three statistical tests,
namely the likelihood ratio test (LRT), the Wald test (WT) and the
Lagrange multipliers test (LMT). When using the LMT, the ques-
tion is what parameters (if any) should be added to improve the
performance of the model, while in case of the WT  the task is the
exact contrary, i.e. having the more complex model, the objective
is to test if there are any parameters of those currently used which
could be set to zero without significantly worsening the model per-
formance. In this paper the LRT will be examined and is discussed
in the following paragraph.

For the evaluation of the quality increase in case of models
obtained by DSPM and MRI, a different approach is adopted. For
the purposes of this paper the T-criterion based on the cumulative
periodogram has been developed and is used alongside with the
similar two-sample Kolmogorov-Smirnov (KS) test. The main dif-
ference is that the KS is based on infinity norm, while the T-test is
proportional to 2-norm.

3.2.1. Likelihood ratio test
The basic idea of the the LRT is to compare the amount of

information contained in the sub-model (restricted model) and the
(unrestricted) model itself. If the performance of the more complex
model is not significantly (in a statistical sense) better, it is possible
to use the submodel. LRT is defined as

�(YN
1 ) = max�0∈�0

L(�0, YN
1 )

max�∈�L(�, YN
1 )

, (10)

where �0 ∈ �0 are the parameters of the submodel, r is the number
of parameters of the full model and c is a number of parameters of
the submodel, i.e. dim(�0) = c, dim(�) = r. Then, under the hypoth-
esis H0 : �0 ∈ �0, the test statistics can be expressed as −2 ln(�(YN

1 ))
which asymptotically follows 	2(r − c). If the corresponding p-value
is lower than the selected significance level ˛, then H0 is rejected,
i.e. the increase in the model quality is still significant and further
additions are necessary.

3.2.2. The test based on the cumulative periodogram
This criterion was  developed for the purposes of this paper to

evaluate the models obtained by the DSPM and MRIs. The cumula-
tive periodogram of a random quantity xk : k = 1, . . .,  N is defined as
[36]

F̂x(ωj) =
∑j

i=1 Îx(ωi)∑s
i=1 Îx(ωj)

, j = 1, . . . , s, (11)
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where s = (N − 1)/(2) and Îx(ω) = (1/(2�N)
∣∣∣
∑N

k=1xke−iωk
∣∣∣
2

evalu-

ated at ω of the form ωj = 2�j/N that is ω ∈ [0, 0.5] of Nyquist
frequency. Then T-criterion is defined as follows

T =
s∑

j=1

min

{∥∥∥∥∥F̂x(ωj) −
(

F̂wn(ωj) ± 1.36√
N
2 + 1

)∥∥∥∥∥

}
, (12)

where F̂wn(ωj) and F̂x(ωj) are values of the periodogram of white
noise and the tested residuals at ωj, respectively; 1.36√

N/2+1
is the KS

statistics corresponding to 5% significance level, N is the number
of considered samples. In fact, Eq. (12) corresponds to the sum of
distances between the actual periodogram F̂x(ωj) and the permited
range F̂wn ± 1.36√

N/2+1
for white noise. Note that Eq. (12) is propor-

tional to the area between two tested functions. T = 0, when there is
no statistically significant difference between the constrained and
the unconstrained model.

Yet another approach, similar to the previous one, performs
statistical testing of L∞ vector norm applied to difference in peri-
odograms. KS two-sample test [37,38] makes use of the normalized
cumulative periodogram of residuals and compares it with theoret-
ical cumulative periodogram of white noise.

3.3. Model validation and analysis of residuals

3.3.1. Analysis of the residuals
The validity of the models is examined by testing the residuals

for whiteness. Residual autocorrelation (ACF) and partial autocor-
relation functions (PACF) [36], AutoRegressive model (AR) and the
cumulative periodogram are used for tests of whiteness of residu-
als. The tests based on the cumulative periodogram were also used
for model selection as described in the previous paragraph. The
residuals of all the models were tested (i) visually using ACF, PACF
and the cumulative periodogram, and (ii) statistically, when the
null hypothesis H0 assumes that the data generator is a zero order
AR process (residuals are white sequences) against the hypothesis
that the AR process is of a higher order. For details of the test, refer
to [39,40].

3.3.2. Model quality criteria
To evaluate a model, the following criteria can be used.

FITj = 100 ×
(

1 − ||yj − ŷj||2
||yj − ε(yj)||2

)
[%],  (13)

R2
j = 1 − var(yj − ŷj)

var(yj)
,  (14)

where yj denotes the jth output of the model, var(•) stands for vari-
ance, ŷ is the estimate of y and ε(y) denotes the mean of y. The
former defined by Eq. (13) is called fit factor (100% means that
even the noise is fully explained by the model. In fact, the fit fac-
tor is 1 − NRMSE,  where NRMSE stands for normalized root means
square error.), while the latter is the coefficient of determination.
Note that Eq. (13) and Eq. (14) are unreliable in case of purely sta-
tistically based methods such as the 4SID applied to the estimation
of dynamical models intended for control. Even though they have
usually a high fit, they do not preserve the physical properties of
the system.

4. Case study

As a case study, the two stage selection of the complexity of
a building model is presented. First, a description of the building
under investigation, a short review of the basic physical processes

Fig. 2. A scheme of the modeled building.

in the building as well as model formulation are provided (Sections
4.1–4.4). Thereafter, the results of the model complexity selection
procedure as well as model verification and validation are pre-
sented (Section 4.5).

4.1. Building under investigation

The building under investigation, schematically outlined in
Fig. 2, is a medium weight office building with two zones sepa-
rated by a concrete wall. Both zones have the same dimensions
(5 m × 5 m × 3 m)  and the south oriented walls of the zones include
a window (3.75 m2).

The HVAC system used in the building is Thermally Activated
Building Systems (TABS) [41]. These systems are radiant hydronic
systems embedded in the building structure, which distribute or
extract heat from the spaces. In the investigated building, the
hydronic system is composed of a long pipe placed in the ceiling
distributing supply water, which then performs thermal exchange
with the concrete core. The mass flow rate in the pipe is held con-
stant. This building has two  independent hydronic circuits, each for
one zone.

4.2. Trnsys model of the investigated building

A model of the investigated building was  constructed in Trnsys
environment2. Various components were employed in the mod-
eling of the building (i) Type56 for the building construction, (ii)
Outside environmental conditions (involving ambient tempera-
ture, outside air relative humidity and solar characteristics) are
simulated using Trnsys Type15 with year weather profile corre-
sponding to Prague, Czech Republic, (iii) For purposes of model
identification, the link between Trnsys and Matlab was  established
based on Trnsys Type155. The communication link was used to gen-
erate the identification data in order to excite the system properly.
The pseudo random binary sequence was used as the excitation
input signal.

Note that for a real building, the excitation of the system is a
topic which is not treated here. For more details refer to e.g. [19,42].
The time-step of the simulation was  set to Ts = 0.25 h. This time-step
guarantees proper convergence of Trnsys internal algorithms and
is also suitable for description of important building dynamics.

2 Trnsys is an energy simulation software primarily used in the fields of renewable
energy and building simulation. For control engineers, a Trnsys model can be used
as  a data generator for construction of a building model or for validation of control
algorithms. The Trnsys model as such cannot be used directly in the optimization,
i.e. in predictive control, because the model is in implicit form and thus general
nonlinear solvers would have to be utilized, which is computationally intractable.
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Table 1
System states, inputs and measured disturbances.

Notation ID Description

(a) System inputs and measured disturbances
Tsw1 1 Supply water temperature, zone 1
Tsw2 2 Supply water temperature, zone 2
To 3 Ambient temperature
Q̇s 4 Total solar radiation on south side
Q̇w 5 Total solar radiation on west side
Q̇n 6 Total solar radiation on north side
Q̇e 7 Total solar radiation on east side
Q̇bs 8 Direct solar radiation on south side
Q̇bw 9 Direct solar radiation on west side
Q̇bn 10 Direct solar radiation on north side
Q̇be 11 Direct solar radiation on east side
Tsky 12 Sky temperature
(b) System states
Tc1 1 Ceiling core temperature, zone 1
Twall1

2 Core temperature of common wall, zone 1
Ts1 3 Core temperature on south side, inside, zone 1
Tw1 4 Core temperature on west side, inside, zone 1
Tn1 5 Core temperature on north side, inside, zone 1
Tz1 6 Zone temperature, zone 1
Tc2 7 Ceiling core temperature, zone 2
Twall2

8 Core temperature of common wall, zone 2
Ts2 9 Core temperature on south side, inside, zone 2
Te2 10 Core temperature on east side, inside, zone 2
Tn2 11 Core temperature on north side, inside, zone 2
Tz2 12 Zone temperature, zone 2
Tos1 13 Core temperature on south side, outside, zone 1
Tow1 14 Core temperature on west side, outside, zone 1
Ton1 15 Core temperature on north side, outside, zone 1
Tos2 16 Core temperature on south side, outside, zone 2
Toe2 17 Core temperature on east side, outside, zone 2
Ton2 18 Core temperature on north side, outside, zone 2

4.3. Heat transfer in a building

To assemble a full detailed first principle model, the following
ways of heat transfer are considered.

• Conduction, which can be expressed as Ṫ2 = (T1 − T2)/kcd, repre-
sents the heat transfer through a solid body. T1 and T2 are the
temperatures of a source and a measured entity, respectively; kcd

stands for the conduction constant (kcd ∝ R · C, R and C denoting
the thermal resistance and capacity of the mass). Moreover, the
conduction can be expressed as Ṫ2 = Q̇/k′

cd
with Q̇ being a heat

flux and k′
cd

modified conduction constant.

• Convection, characterized as Ṫ2 = (T1 − T2)/kcv · 4
√

(T1 −
T2)/(T1 + T2), corresponds to a heat transfer through the
air, kcv is a convection constant. It can be approximated by
Ṫ2 ≈ (T1 − T2)/k′

cv as 4
√

(T1 − T2)/(T1 + T2) is considered con-
stant for building heating process [43]. Here, k′

cv covers the
approximation of the nonlinear term.

• Radiation, specified by Ṫ2 = (T4
1 − T4

2 )/kra, is the heat transfer
through the air, kra is the radiation constant.

4.4. Formulation of the model

The heat transfer from the heating pipes to ceiling surfaces as
well as the transfer through the walls can be represented by the
conduction. The heat transfer between the wall surfaces and the
zone air corresponds to the convection and radiation, respectively.
For the sake of simplicity, functions D  for the conduction and R for
the convection and radiation are defined as

D(T, D) =
∑

Td∈D

Td − T

ki
, (15)

R(T, R) =
∑

Tr∈R

Tr − T

ki
+ T4

r − T4

kj
, (16)

where D, R  are the sets of all appropriate sources of heat, T is
the influenced temperature and ki, kj are unknown time constants,
indices i, j only denote that all used constants are different (even
for every use of functions D and R).

The building’s physics can be described by a set of non-linear
equations utilizing the heat transfer relations as described above.
The following non-linear equations are considered fully describing
the Trnsys model.

Table 2
MRI  and DSPM: numerical results: stage I, selection of inputs.

Iter. 1 2

Model Criterion Model Criterion

T KS Fit [%] R2 T KS Fit [%] R2

DSPM

1,2,3 89.21 1.3E−13 74.42 0.937 1,2,3,8 0.00 0.98 77.18 0.959
1,2,4  72.28 7.1E−10 70.45 0.913 1,2,4,8 48.66 1.5E−04 68.88 0.903
1,2,5 95.41 2.6E−14 68.44 0.901 1,2,5,8 60.29 2.2E−07 69.43 0.907
1,2,6  95.10 3.9E−14 67.79 0.897 1,2,6,8 59.14 3.9E−07 70.54 0.913
1,2,7  95.41 2.6E−14 68.42 0.901 1,2,7,8 59.15 3.9E−07 70.51 0.913
1,2,8 59.17 3.9E−07 70.49 0.913 1,2,8,9 60.29 2,2E−07 69.43 0.907
1,2,9  95.41 2.6E−14 68.42 0.901 1,2,8,10 59.17 3.9E−07 70.49 0.913
1,2,10 95.10 3.9E−14 67.73 0.897 1,2,8,11 60.29 2.2E−07 69.43 0.907
1,2,11 95.41 2.6E−14 68.42 0.901 1,2,8,12 27.25 2.7E−03 72.01 0.924
1,2,12 95.00 3.9E−14 68.61 0.902 – – – – –

MRI

1,2,3  159.82 2.7E−29 70.71 0.960 1,2,3,8 0.00 0.95 80.35 0.982
1,2,4  126.02 1.4E−18 74.93 0.940 1,2,4,8 87.51 2.5E−10 75.02 0.940
1,2,5  163.31 4.4E−30 69.20 0.915 1,2,5,8 109.14 5.8E−14 72.87 0.929
1,2,6 163.52 4.4E−30 69.47 0.915 1,2,6,8 109.63 3.9E−14 74.49 0.940
1,2,7  163.43 4.4E−30 69.64 0.915 1,2,7,8 106.74 2.9E−13 75.25 0.941
1,2,8 103.61 1.4E−12 77.69 0.952 1,2,8,9 108.68 8.8E−14 73.24 0.931
1,2,9 163.89 2.4E−30 71.02 0.921 1,2,8,10 107.11 2.9E−13 75.37 0.941
1,2,10 163.10 4.4E−30 69.30 0.915 1,2,8,11 107.73 2.0E−13 73.63 0.931
1,2,11 163.26 4.4E−30 71.35 0.922 1,2,8,12 76.53 6.6E−08 75.54 0.943
1,2,12 162.26 1.5E−29 72.17 0.923 – – – – –
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Table  3
MRI  and DSPM: numerical results: stage II, selection of states.

Iter. 1 2

Model Criterion Model Criterion

T KS Fit [%] R2 T KS Fit [%] R2

DSPM

1,6,7,12 26.5 6.1E−04 72.8 0.940 1,2,6,7,8,12 0.0 0.98 85.8 0.980
2,6,8,12 19.8 6.8E−04 83.2 0.973 2,3,6,8,9,12 20.2 5.5E−04 75.4 0.941
3,6,9,12 19.8 6.7E−04 82.2 0.968 2,4,6,8,10,12 19.8 6.7E−04 75.9 0.944
4,6,10,12 19.8 6.7E−04 76.3 0.944 2,5,6,8,11,12 19.8 6.7E−04 75.8 0.944
5,6,11,12 19.8 6.7E−04 76.2 0.944 2,6,8,12,13,16 19.9 6.7E−04 83.3 0.973
6,12,13,16 19.8 6.7E−04 82.9 0.972 2,6,8,12,14,17 20.2 5.5E−04 83.3 0.973
6,12,14,17 19.9 6.7E−04 82.7 0.971 2,6,8,12,15,18 20.0 6.7E−04 83.2 0.973
6,12,15,18 19.8 6.7E−04 82.8 0.972 – – – – –

MRI

1,6,7,12 69.0 2.1E−06 78.0 0.973 1,2,6,7,8,12 0.0 1 81.5 0.986
2,6,8,12 50.5 2.7E−10 82.1 0.969 2,3,6,8,9,12 47.0 7.1E−10 80.0 0.961
3,6,9,12 52.9 8.7E−11 82.8 0.971 2,4,6,8,10,12 50.2 3.6E−10 81.3 0.965
4,6,10,12 50.7 2.5E−10 81.5 0.967 2,5,6,8,11,12 50.0 3.6E−10 81.2 0.965
5,6,11,12 50.7 2.5E−10 81.5 0.967 2,6,8,12,13,16 52.1 1.8E−10 82.7 0.970
6,12,13,16 53.4 8.7E−11 82.6 0.972 2,6,8,12,14,17 51.8 2.5E−10 82.5 0.970
6,12,14,17 53.2 8.7E−11 82.6 0.971 2,6,8,12,15,18 52.0 1.8E−10 82.6 0.970
6,12,15,18 53.3 8.7E−11 82.6 0.971 – – – – –

Table 4
PSPM: Model complexity selection procedure.

Iteration 1 Iteration 2

Model L r Model L r

Input analysis
U 1,2,3 11 157.8 66 U 1,2,3,4 11 964.1 70
U 1,2,4 11 600.6 60 U 1,2,4,5 11 668.5 61
U  1,2,5 11 182.0 57 U 1,2,4,6 11 669.7 62
U  1,2,6 11 159.2 58 U 1,2,4,7 11 607.3 61
U  1,2,7 11 170.7 57 U 1,2,4,8 11 605.2 64
U  1,2,8 11 536.1 60 U 1,2,4,9 11 746.9 61
U  1,2,9 11 166.3 57 U 1,2,4,10 11 746.9 62
U  1,2,10 11 166.3 58 U 1,2,4,11 11 765.3 61
U  1,2,11 11 168.0 57 U 1,2,4,12 11 631.3 68
U  1,2,12 11 175.6 64 – – –
State analysis
X 1,6,7,12 11 842.2 20 X 1,2,6,7,8,12 11 948.3 26
X  2,6,8,12 11 094.8 18 X 1,3,6,7,9,12 11 832.0 30
X  3,6,9,12 11 081.4 22 X 1,4,6,7,10,12 11 831.9 28
X  4,6,10,12 6692.6 20 X 1,5,6,7,11,12 11 831.9 28
X  5,6,11,12 6692.0 20 X 1,6,7,12,13,16 11 867.2 30
X  6,12,13,16 6698.5 22 X 1,6,7,12,14,17 11 867.3 29
X  6,12,14,17 6698.5 20 X 1,6,7,12,15,18 11 867.3 29
X  6,12,15,18 6698.5 20 – – –

Table 5
PSPM: evaluation of the likelihood and using LRT.

Model L r p-value

(a) Likelihood test results
U 1,2 11 166.7 56 0.0000
U  1,2,4 11 600.6 60 0.0000
U  1,2,3,4 11 964.1 70 1.0000

X  6,12 6 692.0 12 0.0000
X  1,6,7,12 11 842.2 20 0.0000
X 1,2,6,7,8,12 11 948.3 26 0.9993

Other models

Model L r

(b) Model complexity selection: initial and full models
The simplest input structure U 1,2 11 166.7 56
The  simplest state structure X 6,12 6692.0 12
The  most complex model Full 11 964.7 90

Ṫc1 = D(Tc1 , {Tsw1 , To}) + R(Tc1 , {Tz1 }),
Ṫwall1 = D(Twall1 , {Twall2 }) + R(Twall1 , {Tz1 }),

Ṫs1 = D(Ts1 , {Tos1 }) + R(Ts1 , {Tz1 }),
Ṫw1 = D(Tw1 , {Tow1 }) + R(Tw1 , {Tz1 }),
Ṫn1 = D(Tn1 , {Ton1 }) + R(Tn1 , {Tz1 }),
Ṫz1 = R(Tz1 , {Tc1 , Twall1 , Ts1 , Tw1 , Tn1 , To, Tsky}) + Q̇s

ki
+ Q̇bs

ki
,

Ṫc2 = D(Tc2 , {Tsw2 , To}) + R(Tc2 , {Tz2 }),
Ṫwall2 = D(Twall2 , {Twall1 }) + R(Twall2 , {Tz2 }),

Ṫs2 = D(Ts2 , {Tos2 }) + R(Ts2 , {Tz2 }),
Ṫe2 = D(Te2 , {Toe2 }) + R(Te2 , {Tz2 }),
Ṫn2 = D(Tn2 , {Ton2 }) + R(Tn2 , {Tz2 }),
Ṫz2 = R(Tz2 , {Tc2 , Twall2 , Ts2 , Te2 , Tn2 , To, Tsky}) + Q̇s

ki
+ Q̇bs

ki
,

Ṫos1 = D(Tos1 , {Ts1 }) + R(Ts1 , {To, Tsky}) + Q̇s

ki
+ Q̇bs

ki
,

Ṫow1 = D(Tow1 , {Tw1 }) + R(Tw1 , {To, Tsky}) + Q̇w

ki
+ Q̇bw

ki
,

Ṫon1 = D(Ton1 , {Tn1 }) + R(Tn1 , {To, Tsky}) + Q̇n

ki
+ Q̇bn

ki
,

Ṫos2 = D(Tos2 , {Ts2 }) + R(Ts2 , {To, Tsky}) + Q̇s

ki
+ Q̇bs

ki
,

Ṫoe2 = D(Toe2 , {Te2 }) + R(Te2 , {To, Tsky}) + Q̇e

ki
+ Q̇be

ki
,

Ṫon2 = D(Ton2 , {Tn2 }) + R(Tn2 , {To, Tsky}) + Q̇n

ki
+ Q̇bn

ki
.

(17)

Table 6
PSPM: Quantitative results of two  stage model complexity selection procedure.

Model Criterion

T KS Fit [%] R2

U 1,2 80.80 1.00E−09 64.44 0.87
U  1,2,4 5.69 6.86E−02 72.66 0.93
U  1,2,3,4 1.25 2.07E−01 78.97 0.96

X  6,12 281.89 2.00E−13 79.25 0.96
X  1,6,7,12 1.11 1.85E−01 87.05 0.98
X 1,2,6,7,8,12 0.00 4.17E−01 89.33 0.99

Full 0.00 9.00E−01 89.37 0.99
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Fig. 3. Cumulative periodograms and partial autocorrelations using PSPM (first column), DSPM modeling (second column) and MRI  (last column). First two rows correspond
to  the system inputs, while the other two to the system states. The lower and upper bounds corresponds to the 5% confidence level for all cases.
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The corresponding system inputs and states are defined in
Table 1. The non-linear model (Eq. (17) with Eq. (15) and Eq. (16))
can be linearized around the operating point P0 naturally chosen
as a stable state with maximum entropy P0 = [T, Tr], where Tr = T for
all Tr ∈ R. Then

∑
Tr∈R

∂R(T,R)
∂Tr

|P0 ≈∑Tr∈R(Tr − T)/Ki, with Ki being
the constant of proportionality. Under this assumption, the linear
approximation of Eq. (17) can be written in the same form, but
Rlin(T, R),

Rlin(T, R) =
∑

Tr∈R
(Tr − T)/Ki, (18)

must be used instead of Eq. (16). Note that the constants Ki in Eq.
(18) and ki in Eq. (16) have different meanings. Except for the full
model, some simpler models are derived and the possibility of their
acceptance as a good representative of the system is investigated.

4.5. Results

The full complexity linear model is identified first. This model
is composed of Eq. (17) with linear function Eqs. (15) and (18) and
further on is referred to as full model. When using the DSPM and
the MRIs, the model of the following form is obtained

y(z) = G(z)u(z) + H(z)e(z), (19)

with y, u, e being output, input and noise sequences, G(z) and
H(z) the transfer functions corresponding to the deterministic and
stochastic3 parts of the system, whilst in case of the PSPM, the
state-space description as follows is at hand

dxt = (A(�)xt + B(�)ut)dt + �(�)dωt, (20)

yt = C(�)xt + D(�)ut + et, (21)

where ωt is the n-dimensional Wiener process and et∼N(0,  S(�)) is
the white noise process, t ∈ R  is the time, xt ∈ R

n is the state vector,
ut ∈ R

m is the input vector, yk ∈ R
l is the output vector, � ∈ � ⊂ R

p

is the vector of parameters, A(•), B(•), �(•), C(•), D(•) and S(•) are
the nonlinear functions of parameters. Then, the model selection is
performed in two stages as described in Section 3.

The results for the MRIs and the DSPM are summarized in Table 2
for the selection of inputs and Table 3 for the selection of states.
The models as used in these tables are defined by indices of the
corresponding inputs and states, see Table 1. The most appropri-
ate model (min value T or max  value of KS)  and its characteristics
selected in the corresponding iteration (and each method) is high-
lighted. It is worthy to remark that both tests have selected the
same model for both modeling approaches, which is qualitatively
identical with the full model. Moreover, its quantitative statistics
are impressive as well, the coefficient of determination close to
one (0.98) and the multi-step ahead prediction (15 steps) recorded
85.8% and 81.5% fit factors, respectively (one-step ahead prediction
is almost perfect).

The results for models obtained by the PSPM recorded in Tabs.
4–6 show that both the first and the second stages had two
iterations and thereafter the procedure stopped as the increase
in the model quality compared to the full model was  statistically
insignificant. The highlighted models had the highest value of the
likelihood, therefore were selected and tested by LRT against the
full model. The model selected as the most appropriate representa-
tive of the full model contains only 4 inputs (out of 12, namely both
supply water temperatures, ambient temperature and total solar
radiation on south surface) and only 6 states (out of 18). The perfor-
mance of the model described by the fit factor and the coefficient of

3 Note that H(z) includes non-linearities of the detailed Trnsys model which can-
not  be described by the linearized full complex model.

determination were computed for 15 step-ahead predictions. The
quantitative as well as qualitative results of the model selected as a
satisfactory representative of the full model have indeed recorded
satisfactory results and is almost indistinguishable from the full
model as far as value of the likelihood function, properties of the
residuals and prediction properties are considered.

The residuals for models obtained by all three methods are
depicted in Fig. 3. The first column is devoted to PSPM, the second
to DSPM and the last one to MRI. The cumulative periodograms
and partial autocorrelations in the first two  rows correspond to
the system inputs, while the other two to the system states. The
red line represents the cumulative periodograms for white noise
and dotted red lines correspond to ±5% significance level from the
white noise line. As was  already stated, in each iteration an input (a
pair of states) is added, which corresponds to the periodograms of
respective model residuals. It can be seen that addition of the inputs
(states) causes the approach4 of the periodogram curves towards
the tolerance range for white noise. The selected model (depicted
in blue) is well within the tolerance range, i.e. its residuals are white
noise sequences, which are further tested as described in Section
4.5. The red horizontal lines in subfigures depicting autocorrelation
functions correspond to 5% tolerance range. Observe that the val-
ues for different frequency bins decrease with the more complex
models and for the model selected as a final candidate (depicted
in blue) replacing the full model are within the tolerance range for
the white noise sequence.

5. Conclusions and future works

The paper proposed a new two stage procedure for model
complexity selection. In the first stage, the minimum set of dis-
turbance inputs was  found. Given a minimum set of inputs, the
minimum set of system states maximizing the model quality was
then selected. The evaluation of the qualitative improvements of
the model thanks to adding inputs/states was  performed using sev-
eral criteria, namely the tests of whiteness, KS test, T-criterion, fit
factor and coefficient of determination. The procedure stops when
there is no statistically significant quality improvement.

All three identification methods – DSPM, MRIs and PSPM con-
sistently selected the models (zone temperatures, ceiling core
temperatures and core temperatures of the common wall as for
the system inputs and supply water temperatures, ambient tem-
perature, solar radiation on the south surface as for the states). The
ultimately selected model containing only 4 inputs and 6 states
had similar properties to the model with the full set of inputs and
states. This can lead to both technical and economic savings as less
states and disturbance inputs mean less sensors. Moreover, in case
of the disturbances provided as a service (e.g. weather forecasts for
building climate control), the lower number of disturbances result
into financial savings. Additionally, using the proposed procedure,
the consequent optimal control problem is computationally less
demanding even for large systems such as buildings.

Next research is going to focus on application of the proposed
technique on a real building. Moreover, it will be implemented
within the predictive control framework already working on the
building of the CTU in Prague. In addition, the future research
should include the numerical evaluation of the savings separately,
due to the proposed model selection procedure and due to predic-
tive control itself.

4 Note that for DSPM and MRI, the selection criteria were based on periodogram.
Therefore, in each iteration an improvement of the corresponding periodogram is
notable. In case of PSPM, this is not the case, as it has a different selection criterion
and  the periodogram is shown only for validation purposes.
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4
R E S U LT S

The application of modern control approaches such as MPC to control
of BAS is a very complex task of i) designing the experiment for ob-
taining the quality data from the building 1, ii) processing the data
gathered usually in a raw form in a database, iii) proposing the model
structure suitable for a given type of the building, iv) choosing the
best available identification method and obtaining the model of the
building, v) selecting the suitable control criterion and computation
of the optimal control law, vi) implementing the control action to the
available hardware solution, and vii) testing and adjusting any of the
previous steps.

This thesis is aimed at providing a reader with a complex view
on the process of building modeling and identification. First, the ap-
proaches suitable for creating models intended for predictive control
were analysed and some recommendations were given. It was found
out, that grey-box modeling (whatever approach out of many is cho-
sen) is very common and useful in modeling of low complex build-
ings with a few inputs/states. This should be a preferable way of
modeling for low complex buildings as it retains the physical proper-
ties and structure of the modelled system.

On the other hand, when a large building with tens or even hun-
dreds inputs/states is considered, the grey-box modeling is not a vi-
able option any more and statistically-based approaches such as 4SID

become a very useful tool. These methods, however, require the data
of certain quality which is often problematic in the real life. There-
fore, two different approaches were suggested to treat the problem,
namely i) incorporation of PI about the system to be modelled, and
ii) a combined approach using the computer aided simulation tools
and statistical identification. The former uses some knowledge of the
system such as the static gain or non-existence of the system matrix
D and by including them into the 4SID algorithm, the results are more
accurate. This solution is, however, not valid universally, as the user
does not always have the proper kind of prior information, or this
information does not help to the desired extent.

The other approach is based on the idea, that the building can
be mimic quite precisely by building modeling tools, such as Trn-
sys, EnergyPlus (EP), etc. providing thus the user with an implicit

1 This step is very often replaced or supported by the data generated by some software
tool.
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model (not suitable for predictive control though). Statistical methods
such as 4SID on the other hand are able to provide an explicit model
suitable for predictive control, however, needs the sufficiently excited
data. A new approach that unifies both frameworks was introduced
in this thesis. First, the building is modelled by the Software (SW)
tools, then the sufficiently excited data are generated for 4SID result-
ing thus to the Linear Time Invariant (LTI) model suitable for predic-
tive control.

Finally, the very natural question arises, when considering what in-
puts/states should be included in the model of a building. It is a very
frequent case, that there is an enormous number of measured dis-
turbances, however, most of them does not have a significant effect
on the system. A new approach of systematic selecting the system
disturbance inputs and states was proposed in the thesis, when their
contributions are ordered according to their effect and they are itera-
tively added to the model and tested, whether their inclusion to the
model is statically significant. The resulting model is of much lower
order than the “full” model but has almost the same quality. More-
over, the residuals of the model are tested against the hypothesis of
white noise.



5
C O N C L U S I O N S A N D P O T E N T I A L D E V E L O P M E N T

This work provided a thorough study of the building modeling ap-
proaches and techniques. These were discussed both in theoretical
level and case studies. The main theoretical legacy of the thesis is
multiple. Firstly, we have discussed variety of approaches to the in-
corporation of the prior information into the subspace algorithm en-
abling thus merge of black-box nature of the subspace algorithm and
some knowledge of physical properties of the system. A new algo-
rithm of incorporating the steady state gain information and presence
of no feed-through was proposed. Secondly, a new methodology ex-
ploiting the best out of computer aided tools and statistically-based
identification was presented. The physical model of a building using
the software is created and verified, data for identification are gen-
erated fulfilling thus requirements for proper statistical properties,
and successively modified subspace algorithm is performed. This ap-
proach enables identification of the buildings of arbitrary complexity
and level of details. Thirdly, the utilization of the multi-step ahead
prediction framework was analyzed and a combined algorithm using
PLS was proposed. Finally, the model selection and validation method-
ology was proposed.

The proposed algorithms and techniques have been demonstrated
on several case studies.

• A simple example of CTU building using a grey-box modeling
(with a predictive control that recorded over 20% savings over
the two-year period).

• A new methodology based on interconnection of the building
simulation software and traditional identification methods in or-
der to avoid the statistical problems with data gathered from the
real building in Munich. The building was modeled using EP,
which was excited by specially proposed signals to get data of
a good quality. Then the subspace identification approach (with
some modifications) was applied to acquire a model suitable for
predictive control. To the author’s best knowledge, there was
no detailed building modeling intended for predictive control
of such a size.

• The algorithm of incorporation of the PI into the subspace iden-
tification methods. The incorporation is performed directly into
the system matrices B and D, thus enables a certain type of a
prior information, e.g. static gain. The incorporated PI is able
to significantly improve the identification results and substitute
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the lack of information in the input-output data. Moreover, it
notably improves a model for the control purposes by approach-
ing to the physical system structure. However, the quality of the
identification is sensitive to the accuracy of a prior estimate of
parameters. The constructed model has been used for the tem-
perature control in a real operation of the building of the CTU.

• Many of the theoretical results were demonstrated on a model
created in Trnsys environment. The model mimic a typical two-
zone building where many of the proposed algorithms were
tested on this benchmark example.

5.1 future development

Even though there was a huge development in building modeling,
identification and control recently, the fundamental questions still re-
main. Most of the control solutions are computed “on-line”, itera-
tively, with a significant need of computational resources. The indus-
trial practice, however, needs a light-weight (both memory and com-
putational power) solution that would be possible to implement on
the current hardware equipment. A promising directions seems to be
an explicit predictive control, when the control law is pre-computed
offline. The unsolved issues in this area include the numerical prob-
lems, suitability of approximations, and especially the time-varying
parameters of the system which completely ruin a current paradigm
of the explicit control.

As far as the identification and modeling part is concerned, one
of the greatest challenges will be the full automation of the identifi-
cation procedure. Even though the predictive controllers applied to
a building have proven to have an immense savings potential, the
whole commissioning greatly suffers from the time necessary to com-
plete the identification and modeling part. The experienced modeller
is still needed to decide the most suitable method, algorithm settings
and many others for each single building. The ultimate objective is an
automated 1 procedure functioning applied to all (or at least at a suf-
ficiently large set) buildings with a reasonable time of commissioning.

Yet another challenging problem is the data. So far, the current
paradigm was to collect the data generated by the real system or
by software solution (Trnsys, EP and similar), to process them (selec-
tion of proper signal, treatment of the erroneous signals, etc.) and
to launch the process of identification resulting to the model. This ap-

1 To be honest, the full automation in sense of the currently implemented industrial
controllers, will probably be always impossible, however, the effort directs towards
identification process with defined at least time upper bound and exact succession
of the steps, of which many could be performed automatically.
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proach is quite useful for the buildings which have been operating for
some time, however, is completely useless for newly built buildings
or buildings being completely retrofitted thus changing their thermal
properties. As the European Directive 2002/91/EC (The Directive on
the Energy Performance of Buildings (DEPB)) requires all the newly
built and significantly retrofitted buildings to have computed the in-
tegrated energy performance of buildings and introduces minimum stan-
dards on the energy performance of new buildings and existing buildings
that are subject to major renovation, etc. As a result, this category of the
buildings has a very detailed documentation available. This provides
us a unique opportunity to detour above-mentioned problem of the
data availability. The physical modeling (DSPM, PSPM) with the data
availability from the building documentation could be very attractive
approach. Very similar approach, using basic construction data was
lately mentioned by a colleague of mine, David Sturzenegger of ETH
Zurich.

A completely different story is a predictive control with non-linear
models. Even though there is a large number of approaches that are
able to provide non-linear building models, most of them are abso-
lutely useless as multi-step ahead predictors and are very cumber-
some to use in a predictive control framework. On the other hand,
there are many non-linear effects in the building modeling that are
currently somehow approximated. It would certainly be interesting
to know in a quantitative way, what are the effects of the model ap-
proximations of the control performance.





6
F U L L F I L M E N T O F T H E O B J E C T I V E S

Here a short note on fulfilment of the aims from Chapter 1 is pro-
vided.

1. To perform a survey of the currently available approaches. This objec-
tive was completed and described in [Prívara et al., 2011, 2013a].

2. To select and analyse the suitable approaches. This objective was
satisfied by analysis and selection of the suitable approaches
described mainly in [Prívara et al., 2013a].

3. To find a solution to the specific problems of building modeling tech-
niques. The objective was mainly met by incorporation of PI into
the SID algorithm described in [Prívara et al., 2012] and by a
problem of insufficient excitation and so-called co-simulation
from [Prívara et al., 2013a].

4. To develop the model selection and validation methodology. Finally,
the last objective was accomplished by proposing the selection
and validation methodology as described in [Prívara et al., 2012].

Additionally, an interconnection of the MRI and PLS resulting from the
topic of diploma thesis of that time master student Eva Žáčeková are
provided in [Prívara et al., 2013b].
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