
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybenetics

Time Parameterization of the Manipulator
Path

Kryštof Teissing

Supervisor: Ing. Pavel Krsek, Ph.D
Study program: Cybernetics and Robotics
May 2021

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

474544Personal ID number:Teissing KryštofStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and RoboticsStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Time Parameterization of the Manipulator Path

Bachelor’s thesis title in Czech:

Časová parametrizace dráhy manipulátoru

Guidelines:
1. Study the existing algorithm of path planning and mainly time parameterization of trajectory.
2. Test the existing algorithm implemented in ROS (Robot Operating System) and module MoveIt.
3. Explore the options of parameter settings and configuration of existing algorithms. Try to find the proper setup for robot
KUKA iiwa.
4. As necessary, modify the existing implementation or develop and implement your own algorithm for time parameterization.
5. Write proper documentation.

Bibliography / sources:
[1] Haruhiko Asada, Jean-Jacques Slotine: Robot Analysis and Control. John Wiley and Son, New York, USA 1986, ISBN:
978-0471830290.
[2] Reza N. Jazar: Theory of Applied Robotics: Kinematics, Dynamics, and Control. Springer, 2010, ISBN: 978-1441917492.
[3] Hung Pham, Quang-Cuong Pham: A New Approach to Time-Optimal Path Parameterization Based on Reachability
Analysis. June 2018, IEEE Transactions on Robotics 34(3): 645–659.
[4] B. Paden, K. Sullivan: Bounded deviation trajectory interpolation for robot manipulators. In Proceedings. 1988 IEEE
International Conference on Robotics and Automation: 56–61, IEEE 1988, ISBN:0-8186-0852-8.

Name and workplace of bachelor’s thesis supervisor:

Ing. Pavel Krsek, Ph.D., Robotic Perception, CIIRC

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 21.05.2021Date of bachelor’s thesis assignment: 05.01.2021

Assignment valid until: 30.09.2022

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Pavel Krsek, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

iv

Acknowledgements

I would like to thank all the people who
have helped me in making this thesis, es-
pecially my supervisor Ing. Pavel Krsek,
Ph.D for valuable advice throughout the
whole project, Ing. Vladimír Smutný,
Ph.D and the rest of the CIIRC RMP
team for consultations and technical sup-
port. I also owe thanks to my mother
Mgr. Alžběta Soperová for proofreading
this thesis and the rest of my family for
their support along the way.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, May 21, 2021

v

Abstract

This thesis deals with the motion plan-
ning of an industrial KUKA LBR iiwa
7 collaborative manipulator implemented
in the Robot Operating System and its
package MoveIt, and in particular time
parameterization. The time parameteri-
zation algorithms already implemented in
MoveIt, namely ’Iterative Parabolic Time
Parameterization’ and ’Time Optimal Tra-
jectory Generation’, were compared with
the recently introduced algorithm ’Time-
Optimal Path Parameterization based on
Reachability Analysis’. The aim was to
improve the initial robot setup, which
was suffering from jittery movement at
higher speeds. Both the path planner
and time parameterization settings have
been tested and compared on a set of pre-
defined paths. In order to subject the
trajectory generation to the correct kin-
odynamic bounds, joint acceleration lim-
its of the KUKA robot were estimated.
Based on the experiments, we have made
conclusions concerning the suitability of
the individual algorithms for our setup.

Keywords: Motion planning, Time
optimal path parameterization,
Trajectory, MoveIt, ROS, IPTP, TOTG,
TOPP-RA, KUKA LBR iiwa 7

Supervisor: Ing. Pavel Krsek, Ph.D
CIIRC, CTU,
Jugoslávských partyzánů 3,
160 00 Prague 6,
Czech Republic

Abstrakt

Tato práce se zabývá plánováním pohybu
a především časovou parametrizací dráhy
průmyslového kolaborativního manipulá-
toru KUKA LBR iiwa 7. Plánování po-
hybu je prováděno pomocí knihovny Ro-
botic Operating System a v ní obsaženého
softwaru MoveIt. Algoritmy „Iterative Pa-
rabolic Time Parameterization“ a „Time
Optimal Trajectory Generation“, které
jsou již součástí MoveIt softwaru, byly
porovnány s nedávno představeným algo-
ritmem „Time-Optimal Path Paramete-
rization based on Reachability Analysis“.
Cílem bylo zlepšit pohyb robota, který byl
v původním nastavení při vyšších rychlos-
tech trhaný. Jak algoritmus pro plánování
dráhy, tak algoritmy generující časovou
parametrizaci, byly otestovány na skupině
předem určených drah. Byly rovněž od-
hadnuty limity kloubových zrychlení ro-
bota KUKA, aby generovaná trajektorie
respektovala jeho kinetická a dynamická
omezení. Na základě provedených experi-
mentů byly učiněny závěry o použitelnosti
jednotlivých algoritmů pro naše účely.

Klíčová slova: Plánování pohybu,
Časově optimální parametrizace dráhy,
Trajektorie, MoveIt, ROS, IPTP, TOTG,
TOPP-RA, KUKA LBR iiwa 7

Překlad názvu: Časová parametrizace
dráhy manipulátoru

vi

Contents

1 Introduction 1

2 Motion Planning in Robotics 3

2.1 Path and trajectory 3

2.2 The motion planning pipeline . . . 4

2.2.1 Joint space and Cartesian space
path planning 4

2.2.2 Path time parameterization . . 5

3 Path Planning and Path Time
Parameterization in MoveIt 7

3.1 Robot Operating System and
MoveIt . 7

3.2 Implementation of path planning 8

3.3 Time parameterization algorithms 9

3.3.1 Iterative Parabolic Time
Parameterization 9

3.3.2 Time Optimal Trajectory
Generation 11

3.4 Execution of trajectory in ROS . 13

4 Alternative Path Time
Parameterization Algorithms 15

4.1 Alternative algorithms 15

4.2 TOPP-RA 16

5 Identification of Acceleration
Bounds of the KUKA Manipulator 19

5.1 KUKA LBR iiwa 7 r800 Robot . 19

5.2 Acceleration bounds of the KUKA
robot . 20

5.3 Calculating the worst-case scenario
acceleration limits 21

5.4 The results and their verification 24

6 Implementation of TOPP-RA as a
Service in to ROS 27

6.1 TOPP-RA and ROS 1
compatibility 28

7 Experiments 31

7.1 Experimental KUKA robot cell . 31

7.2 Paths for testing 32

7.3 Methods for trajectory error
computation 33

7.4 Simulating the fault movement . 34

vii

7.5 Parameter tuning 36

7.5.1 IPTP . 36

7.5.2 TOTG. 37

7.5.3 TOPP-RA 39

7.5.4 Effect of path discretization
settings on the time
parameterization algorithms 40

7.6 Comparison of trajectories
generated by the individual time
parameterization algorithms 42

7.6.1 Computation and trajectory
execution time 42

7.6.2 Trajectory sampling 43

7.6.3 Deviation of the trajectory from
the original path 44

7.6.4 Impact of the cartesian path
planner on the generated
trajectory . 47

7.6.5 Joint trajectory courses 47

7.7 Trajectory execution by the KUKA
robot . 50

7.8 Discussion of the results 53

8 Conclusion 55

Bibliography 59

A Comparison of estimated joint
acceleration bounds of KUKA LBR
iiwa 7 r800 63

B Trajectories generated by the
IPTP, TOTG and TOPP-RA time
parametrization algorithms 65

C Description of the paths for the
time parameterization testing 79

viii

Figures

3.1 A forward/backward pass step of
teh IPTP trajectory computation
algorithm, where the resulting
velocity and acceleration of trajectory
points are computed based on the
positions qi,j of j-th joint at i-th
path point through adjusting the
time interval dti,j between adjacent
path points and velocities vi,j 10

3.2 Circular blend around a waypoint
as part of path preprocessing in the
TOTG algoritm [15]. 12

3.3 Integration of path velocity ṡ with
respect to constraints dictated by
joint acceleration ṡmax

acc (s) and joint
velocity ṡmax

vel (s) [15]. 13

3.4 Trajectory execution in ROS [18] 14

4.1 Forward and backward passes of
the TOPP-RA algorithm with
highlighted controllable sets and
selected controls minimizing the
execution time [20]. 17

5.1 KUKA LBR iiwa 7 r800
manipulator. 20

5.2 Poses Pj , j = 1, .., 5 for
identification of acceleration bounds
of joint/-s Ji, i = 1, ..., 7 from a step
response. 22

5.3 Simplified dynamics of robot’s arm
reduced to a homogeneous rod. . . . 22

5.4 Scheme of KUKA LBR iiwa 7 r800
links [26]. 24

5.5 Comparison of estimated joint
acceleration bounds εmax, measured
joint acceleration ε and commanded
joint acceleration ε by KUKA robot
controller for joints Ji, i = 1, 4. . . 25

5.6 Torque course of joint J2 when
executing a joint rotation of
∆θ = 20o. The trajectory was
generated by the TOPP-RA
algorithm. 26

7.1 A robot cell network including two
KUKA LBR iiwa 7 r800 robots, each
controlled by the corresponding
KUKA Sunrise Cabinet controller
(KRC) which is connected via
Ethernet switch to an external real
time control unit CapekPc0 and
client computers. Only a single robot
was used for our experiments. Author
[Ing. Vladimir Petrik, Ph.D.]. 32

7.2 Paths for testing the time
parameterization algorithms with
highlighted path points with blue
crosses. 33

7.3 Courses of joint position θ, velocity
ω, acceleration ε and jerk j for joints
Ji, i = 1, ..., 7 of a rectangular
trajectory computed by the IPTP. 35

7.4 Figures visualizing the rectangle
shaped trajectory generated by the
IPTP time parameterization
algorithm. The path was planned by
the OMPL from the input
waypoints. 44

ix

7.5 The detail of a rectangle shaped
trajectories generated bye TOPP-RA
and TOTG. The path points
generated by the path planner are
marked with blue crosses. 45

7.6 Figures visualizing the generated
rectangular trajectory by the
TOPP-RA and TOTG time
parameterization algorithms. 46

7.7 Figures visualizing the generated
circular trajectory by the TOPP-RA
and TOTG time parameterization
algorithms. 48

7.8 Figures visualizing the generated
and executed circle shaped trajectory
by the TOPP-RA and TOTG time
parameterization algorithms. 49

7.9 Comparison of the joint courses of
a rectangle shaped trajectory
computed by the TOTG time
parameterization algorithms and
executed by the KUKA robot. 51

7.10 Comparison of the joint courses of
a rectangle shaped trajectory
computed by the TOPP-RA time
parameterization algorithm and
executed by the KUKA robot. 52

A.1 Comparison of estimated joint
acceleration bounds εmax, measured
joint acceleration ε and commanded
joint acceleration ε by KUKA robot
controller for joints Ji, i = 1, 2 in
response to a position step input of
the magnitude ∆θi = 2o. 63

A.2 Comparison of estimated joint
acceleration bounds εmax, measured
joint acceleration ε and commanded
joint acceleration ε by KUKA robot
controller for joints Ji, i = 2, ..., 7 in
response to a position step input of
the magnitude ∆θi = 2o. 64

B.1 Figures visualizing a rectangle
shaped trajectory generated by the
IPTP time parameterization
algorithm. The path was planned by
the OMPL from the input
waypoints. 66

B.2 Figures visualizing a rectangle
shaped trajectory generated by the
TOTG time parameterization
algorithm. The path was planned by
the OMPL from the input
waypoints. 67

B.3 Figures visualizing a rectangle
shaped trajectory generated by the
TOPP-RA time parameterization
algorithm. The path was planned by
the OMPL from the input
waypoints. 68

B.4 Figures visualizing a rectangle
shaped trajectory generated by the
IPTP time parameterization
algorithm. The path was planned by
the OMPL from the input
waypoints. 69

B.5 Figures visualizing a rectangle
shaped trajectory generated by the
TOTG time parameterization
algorithm. The path was planned by
the OMPL from the input
waypoints. 70

x

B.6 Figures visualizing a rectangle
shaped trajectory generated by the
TOPP-RA time parameterization
algorithm. The path was planned by
the OMPL from the input
waypoints. 71

B.7 Figures visualizing a rectangle
shaped trajectory generated by the
IPTP time parameterization
algorithm. The path was planned by
the OMPL from the input
waypoints. 72

B.8 Figures visualizing a rectangle
shaped trajectory generated by by
the TOTG time parameterization
algorithm. The path was planned by
the OMPL from the input
waypoints. 73

B.9 Figures visualizing a rectangle
shaped trajectory generated by the
TOPP-RA time parameterization
algorithm. The path was planned by
the OMPL from the input
waypoints. 74

B.10 Figures visualizing a rectangle
shaped trajectory generated by the
IPTP time parameterization
algorithm. The path was planned by
the OMPL from the input
waypoints. 75

B.11 Figures visualizing a rectangle
shaped trajectory generated by the
TOTG time parameterization
algorithm. The path was planned by
the OMPL from the input
waypoints. 76

B.12 Figures visualizing a rectangle
shaped trajectory generated by the
TOPP-RA time parameterization
algorithm. The path was planned by
the OMPL from the input
waypoints. 77

xi

Tables

5.1 KUKA LBR iiwa 7 r800
parameters [25]. 19

5.2 KUKA LBR iiwa 7 r800 joint
Ji, i = 1, .., 7 range of motion ∆θmax,
velocity vmax and torque τmax

limits [26]. 20

5.3 The joint position values
θi, i = 1, .., 7 for all poses
Pj , j = 1, ..5 used for joint
acceleration limits estimation. 21

5.4 The nominal distance from the
manipulator’s flange to the payload’s
center of gravity [25]. 21

5.5 Dimensions of KUKA LBR iiwa 7
r800 links as depicted in
figure 5.4 [26]. 24

5.6 Calculated and corrected i-th joint
Ji acceleration bounds, εmaxcalculated

and εmaxcorrected
respectively, of the

KUKA robot with and without rated
payload. 25

7.1 The computation time tcomp and
generated trajectory execution time
texec of the IPTP algorithm for
different settings. The maximal
number of iterations nit and maximal
time change per iteration ∆tmaxit

parameters were tested. 37

7.2 Computation time tcomp and
generated joint trajectory execution
time texec of the TOTG algorithm
subjected to different values of the
maximal deviation δ from the
original joint path. The maximal
error dmax of the generated
trajectories compared to the original
paths was also noted. 38

7.3 The computation time tcomp and
generated trajectory execution time
texec of the TOPP-RA algorithm
subjected to different settings. The
effect of the changing number of grid
points ngridp derived from the
number of original path points npathp

on the resulting trajectory was tested.
The automatic selection of ngridp by
the TOPP-RA algorithm was also
tested. 40

7.4 MoveIt cartesian planner path
discretization parameter settings for
testing their effects on time
parameterization algorithms, namely
the maximal step in translation dmax

between two adjacent path points
and maximal joint distance ∆θmax

between two configurations
corresponding to the adjacent path
points. 41

7.5 The resulting time
parameterization computation time
tcomp and trajectory execution time
texec of the time parameterization
algorithms based on different
parameter settings of the path
planner specified in table 7.4. The
rectangular path described in section
7.2 was used. 41

xii

7.6 Computation times of the time
parameterization algorithms. 43

7.7 Trajectory execution times of the
time parameterization algorithms. 43

7.8 The computed and actual
trajectory execution times of the
TOTG and TOPP-RA algorithms on
a rectangular path. 50

C.1 Path points of the rectangular
path. 80

C.2 Path points of the "sand clock"
shaped path. 80

C.3 Path points of the "pick and place"
shaped path. 80

C.4 Path points of the circle shaped
path. 81

xiii

Chapter 1

Introduction

A wide application of robotic manipulators across all industrial sectors has
been a reality for quite a while now. The need for a strong, reliable and precise
multipurpose machine capable of working continuously for several years on a
predefined set of tasks drives the widespread automation in manufacturing.
The automotive industry serves as a perfect example.

Every single manipulator executes a movement that has to be planned
with respect to the manipulator’s capabilities and its environment in order to
avoid collisions with other objects and humans. Irrespective of whether the
movement is planned on the go or beforehand, a similar process is required.
A desired action or goal must translate into a set of commands for the
manipulator to execute.

In this thesis, we will inspect the path planning process of a robotic cell
which includes an industrial manipulator KUKA LBR iiwa7 r800 and runs
an open-source framework called Robotic Operating Software for its control
and planning. The first part of this thesis deals with the theory of path
planning, and in particular time parameterization algorithms. Based on
this knowledge, we will try to find the cause of a jittery movement of our
manipulator at high speeds and propose a suitable solution for our setup. The
focus will be on testing and comparing different path time parameterization
algorithms and their settings on a set of paths, as this turns out to be one of
the more challenging aspects of the path planning process. Further, we will
try to identify the acceleration limits of the KUKA manipulator so that the
algorithms employed to generate the trajectory take account of all existing
constraints.

1

2

Chapter 2

Motion Planning in Robotics

2.1 Path and trajectory

Before exploring the motion planning of the serial manipulator KUKA LBR
iiwa7 in more detail, we will define some fundamental terms and theory
behind the task of motion planning.

Every motion is defined by a start and end point. In the field of robotics,
the start and end points are usually defined by the poses or states q ∈ C of
the manipulator from its’ configuration space C which contains all possible
configurations the manipulator can get in to. The number of independent
parameters necessary to define the robot’s configuration is called degrees of
freedom (DOF). In the case of a serial manipulator with n rotation joints and
thus having n-DOF, a state or pose is usually represented by an n-dimensional
vector q ∈ Rn of joint angle values. A configuration space of the manipulator
represented by its joint values is called a joint space [1].

A spatial construct that connects the initial pose qstart ∈ C with the goal
pose qgoal ∈ C is called a path P [2] and gives a pure geometric description
of the motion. It can be described by a continuous function

P : [0, 1] −→ C

s 7−→ q(s)
(2.1)

that returns the pose of the manipulator at every position s ∈ [0, 1] along the
path, where s is an arbitrary parameter; in our case we consider the path

3

2. Motion Planning in Robotics
length scaled to 1, and all positions along the path can thus be described by
a real number from the interval [0, 1].

A trajectory Π is a path with added timing [2]. It can be represented by a
continuous function of time

Π: [0, tend] −→ C

t 7−→ q(s(t))
(2.2)

which returns the manipulator’s pose at a specific time t ∈ [0, tend], where tend

denotes the duration of the trajectory and s(t) is now a continuous function

s : [0, tend] −→ [0, 1]
t 7−→ s(t)

(2.3)

that assigns every time stamp a certain position along the path. It is called a
time parameterization of path P .

2.2 The motion planning pipeline

The motion planning of a robotic manipulator is usually decoupled in-to two
steps. In the first step, a path describing the motion is generated through
the path planning and, in the second step, the path is transformed into a
trajectory using the path time parameterization algorithms.

2.2.1 Joint space and Cartesian space path planning

Before initiating the path planning, the desired start and goal points of the
path have to be specified. This can be done by specifying the start q(0) and
end q(1) poses of the manipulator from its joint space as stated in chapter 2.1.
However, for practical application, it is convenient to first define the start and
goal points in coordinates of the manipulator’s operation space. The operation
space of a manipulator is an Euclidean subspace of all possible positions of
a reference point on the manipulator’s flange or end effector. Depending
on the space in which the path is computed, we distinguish between two
methods of path planning, namely joint space path planning and Cartesian
path planning [1].

The position of a rigid body in Euclidean space is determined by its
translation and rotation component. Consequently, in order to fully describe

4

............................. 2.2. The motion planning pipeline

the desired positions of the manipulator’s flange, additional information about
its orientation is needed. There are several ways to represent translation and
rotation in Euclidean space, one of which is the transformation matrix T.

The manipulator’s configuration q, defined by its joint values from a known
flange or end effector position, is computed by the inverse kinematic task
(IKT) [1], formally denoted as

T→ q(T), (2.4)

where T is the transformation matrix of the end effector or flange position.
For a reverse transformation of the configuration in the joint variable space
into the position of the manipulator’s reference link in Cartesian space, the
forward or direct kinematic task (DKT) is used [1].

In addition to the start and goal points, other via points can be given to
further specify the desired path shape. Subsequently, the first algorithm, called
path planner (usually referred to only as planner), is called to connect the start,
goal and via points through a Cartesian or joint space path that respects the
manipulator’s kinematics constraints. The term kinematic constraints means
all limitations of the manipulator’s configuration, for example joint limits
and other obstacles in the manipulator’s operation space, as an admissible
trajectory should be collision free [3]. The planner uses the IKT and DKT
mentioned above to transform the Cartesian path into joint space path P (s)
and vice versa. However, the resulting path is not always continuous; indeed,
it can be only piecewise continuous (e.g., a Cartesian path composed only
of straight segments) or even represented by a mere list of configurations of
the manipulator’s poses sampled along the planned path. This necessitates
additional tasks to be performed by the path time parameterization algorithm
to compute a continuous joint trajectory.

2.2.2 Path time parameterization

The next step is to compute the trajectory Π(t) based on the path P (s) and
the given initial condition represented by the start and end joint velocities.
A path time parameterization algorithm serves for this purpose. The general
principle is to add timing to the planned path in such a way so that both
the kinematic and dynamic constraints of the manipulator are met. Dynamic
constraints are determined by the bounds on joint velocities, accelerations, or
torques. These conditions are also referred to as kinodynamic constraints [3].
Other criteria, such as the execution time or energy consumption, can be
given to find the appropriate trajectory for a certain task. In our applications,

5

2. Motion Planning in Robotics
the emphasis is placed on the execution time, which should be minimized,
and we will thus focus on time optimal path parameterization algorithms.
The resulting trajectory Π(t) contains the information about the position,
velocity and acceleration of each joint at a specific time t.

An aspect of time path parameterization is generating a smooth trajectory,
i.e. that the manipulator’s configuration changes smoothly in time, which
usually requires continuous joint velocity, acceleration and sometimes even
jerk (a derivative of joint acceleration) courses [2]. Usually, it is also necessary
to ensure that the resulting trajectory is executed in a continuous motion,
without stopping at each path point. This causes problems in processing
piecewise continuous multi-segment Cartesian paths. To create a continuous
trajectory, additional blends between Cartesian path segments need to be
generated [1]. This results in a feasible trajectory which, however, deviates
from the original path. A feasible trajectory means a trajectory that respects
the manipulator’s kinodynamic constraints.

Usually, the resulting trajectory Π(t) needs to be sampled with a certain
frequency to enable the control of the manipulator. For position-controlled
manipulators, the resulting positions represented by joint values q(ti) are
forwarded at the relevant time ti ∈ [0, T] to the manipulator’s controller and
executed; T is the trajectory duration and i ∈ [0, N] denotes the i-th time
sample from N samples.

6

Chapter 3

Path Planning and Path Time
Parameterization in MoveIt

3.1 Robot Operating System and MoveIt

If we need to program a robot manipulator, we can currently choose from
a wide range of frameworks for robot software development that provide a
collection of tools, libraries, and conventions simplifying the task at hand.
One of the widely used frameworks is the Robot Operating System (ROS)
which includes a MoveIt motion planner framework. We use both these
open-source platforms to control the KUKA LBR iiwa 7 r800 manipulator.
We will perform a set of experiments aimed to verify the functionality of the
motion planning used in our setup and, if possible, remedy their faults.

ROS, namely the ROS 1 version, consists of a set of software frameworks
providing services for robot control, including hardware abstraction, low-
levIt implements a Computation Graph architecture for process management,
where a peer-to-peer network of processes communicate using several different
communication methods, including synchronous communication over Services
and asynchronous streaming process data over Topics [4]. Bothmethods imple-
ment a publisher-subscriber model of message passing between computation
processes, called Nodes. As a part of the Computation Graph architecture,
the ROS Master provides name registration and lookup of the remaining
processes and enables a peer-to-peer communication between them [5]. ROS
1 is not a real-time framework, but it can be interconnected with a real-time
code [4]. The ROS software includes the MoveIt package, which serves for

7

3. Path Planning and Path Time Parameterization in MoveIt
motion planning, robot kinematics, control and collision checking.

In our setup, we use the software distributions ROS Melodic and MoveIt 1,
which was initially called "MoveIt!" or simply "MoveIt", but, after release of
new versionsit is also labeled as MoveIt 1. In this thesis, we will refer to the
first version only as MoveIt.

3.2 Implementation of path planning

The MoveIt framework is compatible with several types of path planning
algorithms, or planners, as specified in their online documentation [6] The
open-source library called Open Motion Planning Library (OMPL) , described
in detail in [7], is the primary one, which is set as the default planner and
will be used in all our experiments.

The OMPL implements the basics of sampling-based motion planning and
provides several different state-of-the-art planners, listed in [8]. Sampling-
based methods search for a feasible collision-free path in the robot’s free
configuration space, which is sampled as searching in a continuous configuration
space would be excessively time consuming. A free configuration space is a
subspace of the manipulator’s configuration space where each configuration
has to be collision-free [8]. There are several methods for connecting the start
and goal configuration through sampled configurations into an admissible
path, for example a tree-based planning. These are implemented in the
available state-of-the-art OMPL planners.

The OMPL is not equipped with a collision checking program; MoveIt
handles this task itself. There is a variety of collision detectors available in
MoveIt, where the Flexible Collision Library [9] is used by default. MoveIt fur-
ther handles the manipulator’s inverse kinematics (IKT) using a MoveIt LMA
(Levenberg-Marquardt) kinematics plugin, a numerical inverse kinematics
solver provided by the Kinematics and Dynamic Library [10].

The OMPL planning adapter in MoveIt offers several configuration possibil-
ities for adjusting the OMPL to meet the user’s needs. Moreover, additional
ROS packages were written by the CIIRC RMP team under the Capek project,
which enable the user to set additional parameters for the path planning,
namely the maximal Cartesian distance and maximal joint angle difference
between two points along the generated path. The final path is then returned
as a list of sampled joint path poses.

8

........................... 3.3. Time parameterization algorithms

3.3 Time parameterization algorithms

Following the path planning, the second step of the motion planning in the
MoveIt framework consists in generating a joint trajectory using a path time
parameterization algorithm. There are several algorithms already included in
MoveIt, which can be found on their website [11] and we will introduce in the
following sections. We will nonetheless exclude the Iterative Spline Algorithm
as there have been several reports of issues with its implementation [12]. As
the planned path is returned as a list of robot’s configurations defined by it’s
joint positions, the path parameterization is computed in the manipulator’s
joint space.

3.3.1 Iterative Parabolic Time Parameterization

The Iterative Parabolic Time Parameterization (IPTP)is the default option,
which we also used in the initial setup of our KUKA LBR iiwa 7 r800 cell.
Since no relevant article about this algorithm could be found, we made the
following assumptions concerning the algorithms concept, based on the source
code included in MoveIt and the theory of trajectory generation as described
in the book [13] and article [14].

The main idea of this algorithm is to compute the path time parameter-
ization in the manipulator’s joint space, where an initial estimation of the
execution time dti of all path segments between two adjacent path points
is calculated for all the input path points; i = 0, 1, .., n − 2 is the index of
the path segment and n is the total number of path points. The calcula-
tion is based on an assumption that the movement of a manipulator with k
DOF will be executed with the maximal possible velocity vjmax for each joint
j = 0, 1, ..., k − 1, and uses the following equation:

dti,jmin = qi+1,j − qi,j

vjmax

, i = 0, 1, .., n− 2, j = 0, 1, ..., k, (3.1)

where qi,j is the j-th joint’s start position of the i-th path segment.

For each path point, a time difference between the given point and the next
point is selected with respect to the slowest joint, and the final estimated
execution time of the i-th path segment for all joints thus equals

dtimin = max(dti,jmin). (3.2)

At this stage, all joint acceleration limits are disregarded.

9

3. Path Planning and Path Time Parameterization in MoveIt
In the second step, constant joint acceleration for each k joint in the

relevant i-th path segment is computed as follows. The algorithm first
considers constant joint velocity

vi,j = qi+1,j − qi,j

dti
(3.3)

at each i-th path segment. Next, a constant acceleration ai,j is calculated from
the joint velocity vi−1,j of the previous path segment with estimated execution
time dti−1 and the joint velocity vi,j of the current one with execution time
dti. For this purpose, the algorithm considers a time interval 1

2(dti−1 + dti)
where the relevant joint changes its velocity with the acceleration

ai,j = 2vi,j − vi−1,j

dti−1 + dti
. (3.4)

as shown in figure 3.1.

t

qj

qi-1,j

qi+1,j

qi,j

ti-1 ti ti+1

Figure 3.1: A forward/backward pass step of teh IPTP trajectory computation
algorithm, where the resulting velocity and acceleration of trajectory points are
computed based on the positions qi,j of j-th joint at i-th path point through
adjusting the time interval dti,j between adjacent path points and velocities
vi,j .

If these joint accelerations exceed the acceleration limits of the manipula-
tor’s joints at i-th path segment, then, in a forward pass, starting form the
first path segment, the time differences dti are one after the other increased
repeatedly by a small fraction until the resulting acceleration ai,j satisfies
the limits. However, the time differences are not instantly changed to the
computed value because the scope of change is limited by an input parameter
which determines the maximum change for dti within a single iteration. For

10

........................... 3.3. Time parameterization algorithms

subsequent iterations, the value of vi,j is changed to

vi,j = 1
2(vi−1,j − vi,j) (3.5)

which does not necessarily lead to a feasible trajectory. The reasons are
twofold: firstly, dti−1 can be much smaller than dti and vi−1,j thus cannot
change to the newly computed vi,j while accelerating with constant accelera-
tion ai,j ;secondly, the maximal change of the time interval, as determined by
the input parameter, can result in the acceleration exceeding the acceleration
bounds. To overcome both these factors, also the time difference dti−1 is
repeatedly increased in the backward pass i.e. starting from the end segment
and handling the segments in opposite direction as in the forward pass, until
all accelerations are within bounds. Moreover, once the forward and backward
passes are repeated a sufficient number of times, the limitation of time change
per iteration will no longer affect the feasibility of the final trajectory. The
algorithm will iterate i.e. do forward and backward passes until the resulting
trajectory is no longer updated or he maximal number of iterations is reached,
which is also given as an input parameter.

In computing joint accelerations, only linear course of acceleration is
considered. There are comments in the source code about solving quadratic
equations to get the exact time interval and thus implement the parabolic
time parameterization, but as it stands now, it does not represent polynomial
time parameterization as described in [13]. This is probably also the reason
why the word "parabolic" does not appear in the name of the source file.

The output of this algorithm consists in a list of the initial path points with
added velocities and acceleration, but there is no option for resampling with
a specific time period. This demands a trajectory interpolation by the robot
controller, which can lead to trajectories, that deviate from the computed
one or even violate the kinodynamic bounds of the manipulator.

3.3.2 Time Optimal Trajectory Generation

The Time Optimal Trajectory Generation (TOTG) algorithm is another
parameterization algorithm available in MoveIt, which was introduced in the
article [15]. This algorithm uses a numerical integration approach and should
return a time optimal trajectory respecting all the manipulator’s constrains,
based on the initial condition specified in section 2.2.2.

The TOTG takes into account the possibility of a discontinuous path,
consisting of path points connected by straight line segments. This is a quite

11

3. Path Planning and Path Time Parameterization in MoveIt
common form of describing a planned path and it is also the case with the
OMPL planner described in section 3.2. In order to obtain a differentiable
path, a pre-processing takes place, where instantaneous changes of direction
between two straight segments in the robot’s configuration space are replaced
with circular segments that start and end tangentially to the original path,
as shown in figure 3.2. Without this step, the manipulator would have to
stop at each waypoint, which would result in a slow, jerky movement. The
method of constructing the circular blends around path points is described
in detail in the article [15]. However, one parameter is important for the
correct application of this algorithm, specifically the maximal distance δ
of the original path point, i.e configuration, from the circular blend with
which it is replaced. The replacement causes deviation from the originally
collision-free path computed by the planner, so some additional checking
might be necessary in high precision applications. The maximal distance δ is
determined by an input parameter of the implemented TOTG algorithm.

Figure 3.2: Circular blend around a waypoint as part of path preprocessing in
the TOTG algoritm [15].

Through the pre-processing, we obtain a path f(s) which returns a pose
q(s) for every position s ∈ [0, sf] along the path of the length sf (the path
f(s) corresponds to our definition of path 2.1; however, we used a scaled
interval s ∈ [0, 1] for the parameter s), formally expressed as

q = f(s). (3.6)

As the path f(s) is continuous and differentiable, joint velocities q̇(s, ṡ) and
accelerations q̈(s, ṡ, s̈) can be derived as continuous functions of position s,
velocity ṡ and acceleration s̈ along the path,

q̇ = f ′(s)ṡ
q̈ = f ′(s)s̈+ f(s)ṡ2 (3.7)

where �′ is a derivative with respect to s and �̇ is a time derivative.

To reduce the problem of trajectory generation to one dimension, joint
acceleration and velocity constraints q̇max

j and q̈max
j of j-th joint are trans-

formed into constraints on velocity ṡ along the path using the equations 3.7.

12

.............................3.4. Execution of trajectory in ROS

These are divided in to path velocity constraints ṡmax
acc (s) determined by joint

acceleration limits, on one hand, and path velocity constraints ṡmax
vel (s) deter-

mined by joint velocity limits, on the other hand, which are both functions
of position s along the path.

Further, in order to obtain the time optimal trajectory, a principle is
applied where path velocity ṡ is maximized. This implies that at every
step of the trajectory, the manipulator should either accelerate with the
maximal/minimal acceleration possible (±s̈max) or lie on a limit curve defined
as the minimum of ṡmax

acc (s) and ṡmax
vel (s), as shown in figure 3.3. The points

where the acceleration changes are called switching points and are highlighted
with an arrow in figure 3.3.

Figure 3.3: Integration of path velocity ṡ with respect to constraints dictated
by joint acceleration ṡmax

acc (s) and joint velocity ṡmax
vel (s) [15].

The final time optimal trajectory is then computed by numerically integrat-
ing forwards and backwards along the path, searching for path acceleration
and velocity limit curves and finding the appropriate switching points. A
final backward integration is performed to verify that the resulting trajectory
is admissible. An admissible trajectory means a trajectory that respects the
kinodynamic constraints of the manipulator.

The implementation of this algorithm in MoveIt [16] also enables to resample
the final trajectory with a certain period dt, which is then returned as a list
of joint positions, accelerations and velocities at according time stamps.

3.4 Execution of trajectory in ROS

An analysis of the manipulator’s behavior when executing a movement com-
puted by a trajectory generating algorithm should consider the process of
execution of the trajectories. The ROS includes a ros_controls package

13

3. Path Planning and Path Time Parameterization in MoveIt
Controller
e.g. joint_position_controller
Dynamically allocated from loaded controller plugin.

hardware_interface::RobotHW

Control

Controller Manager
Loads, unloads and calls
updates to controllers

Controller 1

update()

Controller 2

Controller 3

ROS Interface
e.g. msg

joint_trajectory

ROS Interface
e.g. msg

joint_position

ROS Interface
e.g. msg

joint_velocity

write()

e.g. PID
Controller

Actuators
Servos, etc

read()

(Forward) State
Transmissions

Real mechanical state

Encoders
Sensors on the real

robot

Effort Transmissions
Convert from joint

torques to motor torques

Robot States
e.g. joint states - radians

Robot Commands
e.g. joint efforts - N.m.

Data flow of controllers

Dave Coleman
Updated Jun 20, 2013

Joint State Interface
e.g. JointStateInterface

Joint Command Interfaces
e.g. EffortJointInterface

list_controllers
load_controller

unload_controller

switch_controller

Mechanism States
e.g. encoder ticks

Actuator Efforts
e.g. current

Joint Limits
Enforce limits (optional)

Optional
Components

Hardware /
Embedded

Real Robot

Hardware Resource Interface Layer

Embedded Controllers
e.g. PID loop to follow

effort setpoint

Communication Bus
e.g. Ethercat,
Serial, USB

Set point from
ROS Interface

Figure 3.4: Trajectory execution in ROS [18]

for this task. A controller called JointTrajectoryController is included in
the ros_controls package, which provides an action interface for executing
the by MoveIt computed joint trajectories on a group of joints.

This action interface is called FolowJointTrajectory and through it, the
goals and tolerances for execution are specified. It also provides a feedback
and possibility to cancel a request mid execution. A spline interpolator
is implemented as a part of the JointTrajectoryController by default,
where the input trajectory with defined joint velocities and accelerations is
interpolated with a quintic function [17].

The JointTrajectoryController is managed by the Controller Manager.
For position-controlled manipulators, which is also the case of our setup for
KUKA LBR KUKA LBR iiwa 7 r800, the desired positions are then forwarded
to the JointStateController and sent, via a hardware_interface, to the
manipulator, which uses its own embedded controllers to steer itself to the
desired goal pose. The position control of the JointStateController in our
setup runs with the frequency of 1 kHz. The whole principle is illustrated in
figure 3.4.

14

Chapter 4

Alternative Path Time Parameterization
Algorithms

4.1 Alternative algorithms

We have encountered certain issues with the default path time parameter-
ization algorithm IPTP included in MoveIt framework and described in
section 3.3.1. As time parameterization plays a key role in the decoupling of
the trajectory generation into path planning and path time parameterization,
many algorithms and approaches have been developed to this end.

There are two main methods used for computing time optimal path pa-
rameterization. The first one is the Numerical Integration (NI), which was
implemented inter alia in the TOTG algorithm described in chapter 3.3.2 and
introduced in 2012. A more recent implementation is the Time-Optimal Path
Parameterization (TOPP) algorithm introduced in the article[19] in 2014.
The second method is a Convex Optimization (CO), most recently used in the
algorithm called Time Optimal Path Parameterization based on Reachability
Analysis (TOPP-RA) introduced in 2018 in the article [20], which claims
promising results. It should succeed TOPP and other NI based algorithms
and promises 100% success rate of finding a feasible trajectory if it is possible.
Indeed, the MoveIt developers have suggested implementing TOPP-RA in
MoveIt [21], and we will therefore test this algorithm in comparison to the
ones already included in MoveIt.

15

4. Alternative Path Time Parameterization Algorithms
4.2 TOPP-RA

The main idea of Time-Optimal Path Parameterization based on Reachability
Analysis (TOPP-RA) algorithm is to "recursively compute reachable and
controllable sets at discretized positions on the path by solving small Linear
Programs"[20] and then with a greedy approach select the quickest trajectory
possible from the controllable sets.

The algorithm considers generalized first- and second-order constraints of
a manipulator

Av(q)q̇ + fv(q) ∈ Cv(q)
A(q)q̈ + q̇>B(q)q̇ + f(q) ∈ C(q)

(4.1)

where A, Av, B, f , fv are transformations from Rn to Rm×n, Rm×n, Rn×m×n,
Rm and Rm respectively, C is a convex polytope and Cv is a convex set. Gen-
eral first-order constraints include, in particular, direct velocity bounds and
momentum bounds; general second-order constraints include for example
joint torque bounds or acceleration and velocity bounds. The meaning of
the transformations in the equation 4.1 differs for different kinodynamic
constraints e.g. for torque constraints on a fully actuated manipulator

M(q)q̈ + q̇>C(q)q̇ + g(q) = τ (4.2)

can be transformed in to 4.1 with A := M as the manipulator inertia matrix,
B := C as the Coriolis tensor, f := g as the vector of gravity forces and
C(q) := [τmin

1 , τmax
1] × ... × [τmin

n , τmax
n] as a convex polytope generated by

the torque τi constraints of each joint i = 1, ..., n [20][22].

The constraints 4.1 are then transformed in to constraints on path position
s, velocity ṡ and acceleration s̈ by application of the same equations 3.7 as
in TOTG, and projected on a ṡs-plane. The path P , as defined in 2.1, is
then divided in to N discrete segments s0, s1, ..., sN linked by N + 1 grid
points. The number of grid points can be set as an input parameter when
using the implementation of the TOPP-RA algorithm [23]. At each path
segment si, a state (squared path velocity) xi = ṡ2

i and a control (constant
path acceleration) ui are defined.

The Reachability Analysis, newly introduced to the optimal time param-
eterization, uses two main constructs, specifically the reachable and the
controllable sets. A reachable set Li(I0) is a set of all states x from admissible
states Xi (states the manipulator can get in considering feasible controls) at
i-stage that can be reached by choosing a sequence of admissible controls
u0, ..., ui−1 from the initial state x0 out of a set of starting states I0. A

16

......................................4.2. TOPP-RA
controllable set Ki(IN), on the other hand, is a set of all states x ∈ Xi from
which the manipulator can be steered in-to a set of ending states IN using a
sequence of admissible controls ui, ..., uN−1. The Convex Optimization takes
place at this stage as a set of Linear Programs needs to be solved to find the
upper and lower bounds of reachable and controllable sets at each path step.
A maximization/minimization of states x takes place subject to satisfying
the projected general second-order constraints 4.1.

Firstly, in a backward pass, starting from the end of the path and reflecting
the defined initial and final joint velocities, controllable sets are recursively
computed for each grid point. Secondly, in a forward pass, at each grid point,
the algorithm greedily selects from a controllable set the highest possible
controls (i.e. controls that result in the quickest motion) that still satisfy
the given constraints and are therefore admissible. The process is shown in
figure 4.1. The principle on which the controls are selected is determined by a
parametrizer. There are two parametrizers available in TOPP-RA, the spline
parametrizer, which will try to fit a spline on the original waypoints while
using the controls from the controllable sets. Next, a parametrizer which
realizes a constant acceleration between the waypoints can be selected.

Figure 4.1: Forward and backward passes of the TOPP-RA algorithm with
highlighted controllable sets and selected controls minimizing the execution
time [20].

The implementation of this algorithm allows to define the second-order
constraints as acceleration and velocity limits and returns the final trajectory
as a list of trajectory points containing joint positions, velocities and acceler-
ation, sampled with a frequency given as an input parameter. In addition, a
specific trajectory duration can be requested.

17

18

Chapter 5

Identification of Acceleration Bounds of
the KUKA Manipulator

5.1 KUKA LBR iiwa 7 r800 Robot

The industrial robot KUKA LBR iiwa 7 r800 [24] is a redundant serial manipu-
lator with seven rotation joints; each joint is equipped with a torque sensor, in
addition to a position sensor. It was designed as a human robot collaborative
manipulator for lighter payloads. The robot used for the experiments in
this thesis is depicted in picture 5.1 mounted on a table. This setup is a
part of a Capek project implemented by the Robot and Machine Perception
(RMP) team in the Czech Institute of Informatics, Robotics and Cybernetics
(CIIRC). Detailed specification and dimensions are contained in the tables 5.1
and 5.2.

Table 5.1: KUKA LBR iiwa 7 r800 parameters [25].

KUKA LBR iiwa 7 r800
Number of axis [-] 7

Number of controlled axis [-] 7
Pose repeatability [mm] ±0.1
Maximum Reach [mm] 800
Rated payload [kg] 7

19

5. Identification of Acceleration Bounds of the KUKA Manipulator...............
Table 5.2: KUKA LBR iiwa 7 r800 joint Ji, i = 1, .., 7 range of motion ∆θmax,
velocity vmax and torque τmax limits [26].

J1 J2 J3 J4 J5 J6 J7

∆θmax [deg] ±170 ±120 ±170 ±120 ±170 ±120 ±175
vmax [deg/s] 98 98 100 130 140 180 180
τmax [Nm] 176 176 110 110 110 40 40

Figure 5.1: KUKA LBR iiwa 7 r800 manipulator.

5.2 Acceleration bounds of the KUKA robot

Having reviewed the initial setup of our robot cell, we found out that the
acceleration limits used for specifying the joint limits of the KUKA robot
were omitted in the MoveIt configuration file joint_limits.yaml, and the
time parameterization algorithm set them internally as the default values.
Consequently, the IPTP time parameterization, implemented in MoveIt,
used the default joint acceleration limits defined by the global variable
DEFAULT_ACCE_MAX = 1.0 rad·s−2 for all joints [27].

20

................... 5.3. Calculating the worst-case scenario acceleration limits

Moreover, only velocity and torque bounds on the robot’s joints were speci-
fied in the KUKA LBR iiwa 7 r800 robot documentation as listed in table 5.2.
The acceleration limits indeed depend on the manipulator’s configuration,
as the arm’s ratio of extension directly influences the torque applied on the
joints. In this thesis, we will disregard pose related acceleration constraints
as that would requre an identification of the manipulator’s dynamic model
which, goes beyond the scope of this thesis. Moreover, the implementations
of the IPTP and TOTG algorithms use constant joint acceleration bounds.

Accordingly, we will consider the worst-case scenario i.e. the maximal
possible extension of the manipulator’s arm and poses, where the gravitation
force applied on the extended part of the arm causes the biggest moment on
the corresponding joint. We will use the torque sensors in the robot’s joints
to identify the acceleration bounds, based on the position step response of
each joint. We will also take account of the maximal payload of the robot,
which is specified in table 5.1.

5.3 Calculating the worst-case scenario
acceleration limits

A pose has been chosen for each joint where the static torque acts upon the
joint. They are shown in figures 5.2, and the joint values which define them
are specified in table 5.3.

Table 5.3: The joint position values θi, i = 1, .., 7 for all poses Pj , j = 1, ..5
used for joint acceleration limits estimation.

P1 P2 P3 P4 P5

θ1 [deg] 0 0 0 0 0
θ2 [deg] 90 90 0 0 0
θ3 [deg] 0 90 0 0 0
θ4 [deg] 0 90 -90 -90 0
θ5 [deg] 0 0 0 90 0
θ6 [deg] 0 0 0 90 90
θ7 [deg] 0 0 0 0 0

Table 5.4: The nominal distance from the manipulator’s flange to the payload’s
center of gravity [25].

Lxy [mm] 35
Lz [mm] 60

21

5. Identification of Acceleration Bounds of the KUKA Manipulator...............

(a) : P1 for J1 and J2 (b) : P2 for J3 (c) : P3 for J4

(d) : P4 for J5 (e) : P5 for J5 and J6

Figure 5.2: Poses Pj , j = 1, .., 5 for identification of acceleration bounds of
joint/-s Ji, i = 1, ..., 7 from a step response.

A simplified dynamics of the robot’s arm reduced to a homogeneous rod with
the mass marm was used for all poses, as shown in figure 5.3. A gravitational
acceleration g causes gravitation force Fgarm on the rod’s center of mass Carm

with the distance rarm from the axis of rotation of the i-th joint. A payload
with the mass mpayload is fixed on the other end of the rod, having the center
of mass Cpayload in the distance rpayload from the axis of rotation. It is fixed
in the maximal distance Lz (or Lxy for joint J7) from the robot’s arm tip as
listed in table 5.4. A gravitational force Fgpayload

acts on the payload.

Lz

Figure 5.3: Simplified dynamics of robot’s arm reduced to a homogeneous rod.

If we consider the arm stationary, static moments Msarm and Mspayload
are

applied on the joint Ji. The static moment of the armMsarm can be measured
with the torque sensor in the corresponding joint and the static moment of
the payload Mspayload

can be calculated from the general definition of moment
M = F× r, where F is a force vector and r is a position vector. In our case,

22

................... 5.3. Calculating the worst-case scenario acceleration limits

the gravitational force is perpendicular to the position vector, and thus the
norm of the moment can be calculated using the following equation:

Mspayload
= Fgpayload

· rpayload. (5.1)

In addition, moments caused by the angular acceleration εarm are applied
on the joint if we consider the arm rotating around the axis of the i-th joint.
The moment of inertia Iarm of the arm rotating around the joint axis can
be calculated from the measured torque Mdarm and corresponding angular
acceleration εarm of a certain motion. A response on a step change in joint
position of the magnitude ∆θ = 2o was used for this purpose. The moment
of inertia is then calculated from the known equation M = Iε as

Iarm = Mdarm

εarm
(5.2)

Next, the moment caused by the payload is calculated from its moment of
inertia Ipayload in relation the corresponding joint’s axis of rotation which lies
in distance rpayload as

Ipayload = mpayload · r2
payload

Mdarm = Ipayloadεarm.
(5.3)

The maximal torque τmax applied on a joint by a rotating arm can then
be expressed as

τmax = Mmax =Fgarmrarm + Iarmεmax + Fgpayload
rpayload + Ipayloadεmax

=Msarm + Iarmεmax +Mspayload + Ipayloadεmax

(5.4)
The final acceleration bounds for the corresponding joint are subsequently
computed from equation 5.4 as

± εmax =
τmax+Msarm +Mspayload

Iarm + Ipayload
(5.5)

This procedure was used to estimate the worst-case scenario acceleration
bounds for all seven joints.

The norm of the position vectors r that correspond to the extended arm
section and extended payload were calculated based on the dimensions of
the KUKA LBR iiwa 7 r800 links specified in table 5.5. For the calculation,
both the measured joint accelerations and torques needed to be smoothed
out using Moving Avarage Filter as there were high oscillations.

23

5. Identification of Acceleration Bounds of the KUKA Manipulator...............

Figure 5.4: Scheme of KUKA LBR iiwa 7 r800 links [26].
Table 5.5: Dimensions of KUKA LBR iiwa 7 r800 links as depicted in
figure 5.4 [26].

Dimensions A B C D E MF
Length [mm] 1266 1140 340 400 400 50

5.4 The results and their verification

The resulting estimated acceleration bounds are shown in the first column of
table 5.6. They were compared with the courses of the measured acceleration
and commanded acceleration by the KUKA Sunrise Cabinet robot Controller
(KRC), both provided through KUKA FRI to ROS hardware interface, as
described in section 7.1. The comparison is shown in figure 5.5 for joints
J1 and J4, as those have the biggest error; all courses can be seen in the
appendix A.

It can be clearly seen that the results are fairly near to the measured
courses and except for the joint J1, all the estimated bounds are smaller
than the maximal accelerations commanded by the KRC. However, when
testing these values on trajectories consisting of the same rotational motion
around the corresponding joint axis, only with a higher position difference

24

............................ 5.4. The results and their verification

∆θ = 20o, the KUKA robot internal controllers kept stopping the movement,
as it probably exceeded their internally set kinodynamic bounds. The same
poses as those specified in table 5.3 were used.

Table 5.6: Calculated and corrected i-th joint Ji acceleration bounds,
εmaxcalculated

and εmaxcorrected
respectively, of the KUKA robot with and without

rated payload.

Without payload With payload 7 kg
εmaxcalculated

[rad·s−2] εmaxcorrected
[rad·s−2] εmaxcalculated

[rad·s−2]
J1 ±28.02 ±3.65 ±3.17
J2 ±16.38 ±3.65 ±0.80
J3 ±60.79 ±3.85 ±1.71
J4 ±43.27 ±6.20 ±2.56
J5 ±133.56 ±7.00 ±5.85
J6 ±162.29 ±12.30 ±6.58
J7 ±177.68 ±12.30 ±11.64

0 0.5 1 1.5 2

t [s]

-30

-20

-10

0

10

20

s
-
2
]

max

(a) : Courses for joint J1

0 0.2 0.4 0.6 0.8 1

t [s]

-150

-100

-50

0

50

100

150

200

s
-
2
]

max

(b) : Courses for joint J4

Figure 5.5: Comparison of estimated joint acceleration bounds εmax, measured
joint acceleration ε and commanded joint acceleration ε by KUKA robot controller
for joints Ji, i = 1, 4.

The values in the second column of table 5.6 were then determined through
systematically lowering the computed values of the maximal accelerations
without the rated payload. They are significantly lower than the initially
estimated ones, which could be caused by several factors. There might be
certain violations in the KUKA inner controller, which remain unknown to
us, as the KUKA low-level control remains a black box. Secondly, there
could be certain issues with the MoveIt joint_trajectory_controller
and trajectory execution in general as the position commands are not passed
correctly and cause violations in the KUKA internal controller. The trajectory
was computed by the TOPP-RA algorithm; however, the possibility that the
time parameterization was at fault was excluded as the generated trajectory

25

5. Identification of Acceleration Bounds of the KUKA Manipulator...............

0 1 2 3

t [s]

50

60

70

80

90

100

[
N
m
]

Figure 5.6: Torque course of joint J2 when executing a joint rotation of ∆θ = 20o.
The trajectory was generated by the TOPP-RA algorithm.

had correct joint courses. A violation of torque bounds was also excluded as
the torque courses of all joints were significantly below the maximal torques
allowed while executing the same rotation movement of ∆θ = 20o with the
estimated maximal joint acceleration. As an example, a course of the joint J2
is shown in figure 5.6, which, even at the maximal value around 110 Nm, was
way below the maximum torques allowed, i.e. 176 Nm for joint J2.

Subsequently, the worst-case scenario joint acceleration bounds for a loaded
manipulator specified in the third column of table 5.6 were computed from
the corrected acceleration bounds εmax, specified in the second column, using
equations 5.4 and 5.5. These values were not verified due to time constraints
and safety aspects of such experiments.

26

Chapter 6

Implementation of TOPP-RA as a Service
in to ROS

There is already a package available for connecting TOPP-RA to ROS called
topp_ros [28], which provides a ROS Service for calculating the path time
parameterization. However, since the TOPP-RA algorithm was introduced
quite recently, it has been further developed and improved. Consequently,
top_ros is compatible with an obsolete version and does not provide all the
features available in the newer versions.

Therefore, a similar ROS package called toppra_srv has been written,
which provides the additional features. It implements a ROS service, which
is described by the description file GenerateToppraTrajectory.srv shown
below.
trajectory_msgs/JointTrajectory waypoints
float64 sampling_frequency
uint32 n_gridpoints
float64 trajectory_duration
bool splineParametrizer
bool plot
bool debug

trajectory_msgs/JointTrajectory trajectory
float64 computing_time
bool success

27

6. Implementation of TOPP-RA as a Service in to ROS
A ROS service request for TOPP-RA parameterization consists of several

parameters. First, a list of path points waypoints is given. In addition to
the robot’s configuration, at least the first path point has to contain the
information about velocity and acceleration bounds of the manipulator. Next,
the number of grid points n_gridpoints for the calculation of the controllable
sets has to be defined, as described in section 4.2. If this parameter is set to
zero or if it is not specified, the TOPP-RA algorithm determines the number
of grid points automatically.

As the TOPP-RA algorithm is also able to calculate a trajectory of a given
duration, the parameter trajectory_duration realizes this feature. Where
it is not specified or set to zero, the time optimal trajectory is computed.

In the newer versions, the option of choosing a different parameterizer was
added, allowing to select the highest possible controls, i.e. the joint accelera-
tions, from the controllable sets in various manners. A spline parametrizer
and a parametrizer ensuring a constant acceleration between the waypoints
can be selected. However, due to the issues with ROS 1 compatibility de-
scribed in the section 6.1, the final trajectory is computed with the spline
parametrizer even if the second option has been chosen. The parameter
splineParametrizer chooses the spline parametrizer by default or if set to
true; otherwise the constant acceleration parametrizer should be used. This
was implemented for further use, once the compatibility issues are resolved.

Finally, the sampling_frequency determines the time sampling frequency
of the final trajectory. The plot and debug parameters are used for plotting
and printing the information about the computation process of the TOPP-RA
algorithm.

The service returns the computed trajectory as a list of trajectory points
with the corresponding positions, velocities and accelerations sampled with
the sampling frequency. In addition computing_time and success values
are returned.

6.1 TOPP-RA and ROS 1 compatibility

We have identified a problem with the compatibility of the newest version
of TOPP-RA library. TOPP-RA is currently being further developed using
the latest Python 3. However, ROS 1 Melodic distribution is only compatible
with Python 2.7, which became obsolete in January 2020 and causes conflicts

28

...........................6.1. TOPP-RA and ROS 1 compatibility

when the more recent TOPP-RA version are used. While the toppra 0.4.0
package is the most recetn release, we implement the service for the toppra
0.3.1 version to ensure compatibility with Python 2.7. Certain features,
such as the constant velocity parameterizer, thus do not work properly, but
they are prepared for the possible upgrade of the system to the newer ROS
distributions. As the whole Capek project, under which the KUKA LBR
iiwa 7 r800 robot cell was designed, uses ROS 1, the replacement path time
parameterization must be compatible with it.

Moreover, a TOPP-RA C++ API in currently being developed, which
could allow to overcome the issue with the Python version compatibility;
however, only the basic algorithm has been implemented to date, so it would
not help to resolve the missing features, such as the second parameterizer.

29

30

Chapter 7

Experiments

7.1 Experimental KUKA robot cell

All the following tests and examples have been carried out on a KUKA LBR
iiwa 7 r800 manipulator mounted in a robotic cell, as shown in figure 5.1.
A KUKA Sunrise Cabinet robot controller (KRC) is used for the robot
control, safety and process control of the manipulator. It is connected via
KUKA Fast Robotic Interface (FRI) to a real time control unit CapekPC0
(RTCU) running Arch linux and ROS Melodic. The FRI allows the RTCU
to obtain information about the robot from the KUKA Sunrise Cabinet
and to perform the external control of the manipulator. As the RTCU also
provides a connection between KUKA FRI and ROS, a real-time control loop,
implemented with the ROS, is able to send the desired robot positions with a
frequency of 1 kHz through the FRI to the KUKA Sunrise Cabinet, which
then executes the low-level control of the manipulator’s movement.

The RTCU is also connected via Ethernet to a Local Area Network providing
access to an external client computer which can in turn communicate with the
RTCU through the ROS communication services and command the desired
robot movement. For this purpose, a PC with Ubuntu 18.04 operating system
that runs ROS Melodic with MoveIt 1 was used. It computes and provides the
desired trajectory, which is subsequently forwarded to the RTCU. The whole
setup, together with an additional second KUKA manipulator, is shown in
figure 7.1.

31

7. Experiments

Figure 7.1: A robot cell network including two KUKA LBR iiwa 7 r800 robots,
each controlled by the corresponding KUKA Sunrise Cabinet controller (KRC)
which is connected via Ethernet switch to an external real time control unit
CapekPc0 and client computers. Only a single robot was used for our experiments.
Author [Ing. Vladimir Petrik, Ph.D.].

7.2 Paths for testing

Four trajectories were chosen to test the path time parameterization algo-
rithms.

. A rectangle in the xy-plane shown in figure 7.2a. Basic straight line
segments should show how the time parameterization algorithm handle
simple moves in the space. Next, the different deviations from the original
path should be visible at the edges of the rectangle, as the manipulator
would have to change the direction of movement instantaneously if the
original path were to be executed.. A "sand clock" shaped path shown in figure 7.2b is slightly more complex
as the manipulator crosses the center part of its operation space several
times, which will force the manipulator to slow down because all joints
have to move simultaneously.. A "circle" in the xy-plane path shown in figure 7.2c is the most complex
of the four paths as it has quite dense distribution of waypoints and the
manipulator moves in the center of its operation space. In reality, the
"circle" path is a polygon with 20 edge points since the path is defined
by a list of discrete path points.. "Pick and place" motion path shown in figure 7.2d serves to verify the
most common type of trajectories a manipulator of this type is usually
tasked to do..

32

........................ 7.3. Methods for trajectory error computation

The coordinates of the path points for each path are listed in appendix C,
where the world coordinate system is placed in the root of the manipulator.

(a) : A rectangle in the xy-plane (b) : A "sand-clock" shaped path

(c) : A circle in the xy-plane with
the radius 10 cm. (d) : "Pick and place" motion

Figure 7.2: Paths for testing the time parameterization algorithms with high-
lighted path points with blue crosses.

7.3 Methods for trajectory error computation

Each path segment in the form of a line connecting two path points is
transformed in to a subspace of a one-dimensional affine space Xi defined by
the equation

Xi = pi + r · (pi+1 − pi) = pi + rv, i = 1, .., n (7.1)

where pi ∈ R3 and pi+1 ∈ R3 are position vectors of the corresponding path
points from n path points in total, r ∈ R is a scalar and v ∈ R3 is a vector
from pi to pi+1.

The error of a sampled cartesian trajectory point z is then computed as its
distance from the closest cartesian path segment. This is done by shifting the

33

7. Experiments
affine space Xi representing each path segment to the origin, thus creating
a linear subspace Yi = Xi − pi. This is followed by finding the orthogonal
projection xzs of a shifted trajectory point position vector zs = z− pi on the
newly computed linear subspace Yi with a normalized basis vector v0 = v

|v|
with the equation

xzs = v0v0
T zs. (7.2)

The minimal distance of the trajectory point z from the affine space Xi equals
to the norm of a vector xzs − zs pointing from the shifted trajectory point
zsto its orthogonal projection xzs , which is orthogonal to the linear subspace
and represents thus the minimal distance.

As the i-th path segment is not represented by the whole affine space Xi
but rather its subspace limited by the edge path points, the coordinates t of
the projection xzs with respect to the basis vector v0 are computed with the
equation

t = v0
T zs. (7.3)

If the projection lies within the path segment, i.e. t ≥ 0 and t ≤ |v|, the
minimal distance of the trajectory point z to the i-th path segment is then
computed as

dz,i = |xzs − zs|. (7.4)

Else, the minimal distance dz,i is equal to the distance between the trajectory
point z and the closest edge point

dz,i = min {|pi − z|, |pi+1 − z|} . (7.5)

For every trajectory point z, the distances dz,i from all path segments are
computed and the final error of the corresponding trajectory point is then
computed as

errz = min
i
{dz,i} . (7.6)

7.4 Simulating the fault movement

The main objective of this thesis was to find a solution to remedy the jerky
movement of the KUKA manipulator at higher speeds. Initially, both the
path planner and the path time parameterization algorithms in MoveIt were
set to the default options, i.e. the OMPL planner and IPTP algorithm with
parameters mentioned as default in the following section 7.5. We will refer
to these options as the "initial setup". Even though the initial setup has

34

.............................7.4. Simulating the fault movement

been used for some time, no significant issues with the movement have been
encountered until a recent task, which required a quick, precise and the
smoothest possible movement. This turned out to be unfeasible with the
initial setup.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t [s]

-2

0

2

j

[
r
a
d
 s
-
3
]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t [s]

-5

0

5

 s
-
2
]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t [s]

-1

0

1

[
r
a
d

s
-
1
]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t [s]

-1

0

1

[
r
a
d
]

J
0

J
1

J
2

J
3

J
4

J
5

J
6

Figure 7.3: Courses of joint position θ, velocity ω, acceleration ε and jerk j for
joints Ji, i = 1, ..., 7 of a rectangular trajectory computed by the IPTP.

The initial setup was tested on a rectangular path, described in section 7.2,
and the results of the IPTP algorithm generated trajectory are shown in
figure 7.3. It is clear, that there are quite high oscillations in joint acceleration
and jerk curves, which cause rough courses of the joint velocities throughout
the movement. This led to the conclusion that the time parameterization of
the path was the cause of the problem as no significant issues with the path
planner were identified. This will be further elaborated in following sections.

35

7. Experiments
7.5 Parameter tuning

The initially selected IPTP algorithm was then tested in comparison with
the second algorithm already included in MoveIt, namely the TOTG, and
a recently introduced alternative time parameterization algorithm TOPP-
RA, in order to further explore the possibilities of improving the path time
parameterization in our setup.

The parameters of the algorithms used for the trajectory generation should
be tuned prior to commencement of the experiments on different trajectories
to test the algorithms’ full potential on our KUKA robot cell. All three
path time parameterization algorithms and their settings were tested on a
rectangular and circular shaped paths, described in section 7.2. In addition,
different parameter settings of the OMPL planner were tested.

7.5.1 IPTP

The IPTP algorithm described in section 3.3.1 is implemented in MoveIt as a
class called IterativeParabolicTimeParameterization, and its construc-
tor has two arguments:

. max_iterations, which determines the maximum number nitmax of
forward and backward passes of the iterative algorithm.. max_time_change_per_it, which limits the path segment’s time exten-
sion ∆tmaxit when searching for feasible trajectory.

In addition, the acceleration and velocity constraints can be scaled with a
constant factor, which can be passed by the parameters when calling the
path parameterization function. However, in our experiments, we will always
consider the maximal possible acceleration and velocity bounds as specified
in section 5.1.

Different settings were tested on the aforementioned paths, with the results
given in table 7.1. The default values are on the third line of the table. It is
clear that the nitmax is at a sufficient value for paths of this length, as the
increasing number of iterations does not have effect on the execution time of

36

...................................7.5. Parameter tuning

the generated trajectory and usually increases the computation time of the
algorithm.

Table 7.1: The computation time tcomp and generated trajectory execution
time texec of the IPTP algorithm for different settings. The maximal number of
iterations nit and maximal time change per iteration ∆tmaxit

parameters were
tested.

Rectangular Path Circular Path
nitmax [-] ∆tmaxit [s] tcomp [s] texec [s] tcomp [s] texec [s]

100 0.005 0.0025 3.8053 0.0013 2.9229
150 0.005 0.0026 3.8053 0.0013 2.9229
100 0.010 0.0014 3.8226 7.7568e-04 2.8828
150 0.010 0.0015 3.8226 6.4479e-04 2.8828
100 0.050 7.0210e-04 3.7846 6.3696e-04 4.3644
150 0.050 6.4852e-04 3.7846 5.3068e-04 4.3644

The decreasing value of the ∆tmaxit does lead to a faster trajectory in
more complex cases, such as the circle shaped path. However, surprisingly,
the execution time of the circular shaped trajectory increases with a smaller
time change per iteration, while the execution time of the rectangular path
decreases with a larger time change per iteration. Based on this observation,
we have decided to use the following default settings:

nitmax = 100
∆tmaxit = 0.01 s.

(7.7)

7.5.2 TOTG

This algorithm described in section 3.3.2 is implemented in MoveIt as a
class TimeOptimalTrajectoryGeneration, which requires the following ar-
guments:

. path_tolerance, which determines the maximal distance δ of the com-
puted joint trajectory from the original path configurations. As the
configuration space is a multi-dimensional space of joint positions, the
path tolerance δ is given in radians.. resample_dt, which determines the sampling period of the computed
trajectory in seconds. As the position control frequency of our KUKA
robot cell is set to 1 kHz, the value 0.001 s has been chosen for this
parameter.

37

7. Experiments
. min_angle_change which determines the threshold of minimal joint

position difference in radians between two adjacent path points to remove
repeated points. There was no issue with redundant path points or
points that very close proximity, this parameter was left at the default
value 0.001 rad.

Even though parameter δ is called path tolerance, it does not specify
the maximal deviation of the final cartesian trajectory from the original
cartesian path (designated as trajectory error d and computed as stated
in section 7.3). In fact, the path tolerance only limits the change in the
manipulator’s configuration defined by its joint position values i.e. gives
the norm of vector δ = |q2 − q1| representing the difference between two
configuration vectors q1 and q2 in the configuration space. The degree to
which it is reflected in the trajectory error d is depends on the robot design
(joint types, link dimensions ect.) and the specific configuration (the difference
in the end effectors position will increase with increasing distance from the
axis of rotation). However, we have tested the trajectory generation using
different path tolerances δ and noted the maximal trajectory error dmax

occurred. This can serve to estimate the resulting trajectory error when
executing trajectories around the center of the robot’s working space. The
results are given in table 7.2.

As expected, the smaller the path tolerance δ, the longer the trajectory
execution time texec and the smaller the maximal trajectory error dmax. This
can be clearly illustrated on both the rectangle and circular shaped path,
where increasing path tolerances enable creating shortcuts that lead to quicker
trajectories. The default value for the path tolerance was δ = 0.1 rad which is
quite high as the resulting maximal trajectory error was around 1.4 · 10−3 m.

Table 7.2: Computation time tcomp and generated joint trajectory execution
time texec of the TOTG algorithm subjected to different values of the maximal
deviation δ from the original joint path. The maximal error dmax of the generated
trajectories compared to the original paths was also noted.

Rectangular Path Circular Path
δ [rad] dmax [m] tcomp [s] texec [s] tcomp [s] texec [s]
0.0005 2.1 · 10−4 0.0357 3.5005 0.0208 2.9287
0.0008 3.4 · 10−4 0.0308 3.4963 0.0131 2.6121
0.0010 4.2 · 10−4 0.0288 3.4936 0.0126 2.4849
0.0030 8.0 · 10−4 0.0297 3.4720 0.0140 2.3565
0.0050 1.3 · 10−3 0.0290 3.4546 0.0124 2.3565
0.1000 1.4 · 10−3 0.0289 3.4536 0.0141 2.3565

As the path tolerance affects only the preprocessing of the input path of the
TOTG algorithm, the computation times remain similar for all settings. The

38

...................................7.5. Parameter tuning

computation time includes the sampling of the trajectory with the frequency
of 1kHz. Subsequently, the parameter path_tolerance can be chosen for
each task differently according to the precision needed; we will use the value
of

δ = 0.001 rad (7.8)

as the resulting error is expected to lie around 4.2 · 10−4 m which is sufficient
for most tasks and is in some cases similar to the error of the trajectories
generated by TOPP-RA algorithm, which will be shown in section 7.6 below.

7.5.3 TOPP-RA

The parameters used by the TOPP-RA algorithm are specified in section 6,
the ROS Service implementation is described.

The results of the different settings for the parameter n_gridpoints which
determines the number of points for discretization ngridp of the TOPP-RA
algorithm are shown in table 7.3. As the trajectories of different lengths have
different number of path points npathp, it is recommended in the TOPP-RA
documentation that the number of grid points be derived from the number of
path points of the input path.

It is evident that the increasing number of grid points where the path is
discretizied and the controllable sets are computed prolongs the computation
time tcomp but leads to faster trajectories. The more grid points, the more
controllable sets that need to be computed by solving small linear programs.
However, a higher density of known controllable sets results in choosing
the controls with higher precision, which leads to faster trajectories. The
automatic selection of the number of grid points is set by default, which
results in the fastest computation time but generates the slowest trajectories.
The computation time of the TOPP-RA algorithm includes the time needed
for sampling the trajectory with the frequency of 1 kHz.

As the TOPP-RA manual recommends to use more than twice the number
of grid points and we have a quite large distance between the adjacent path
points, as it will be shown in the next section. The number of grid points
will be computed using the following equation:

ngridp = 3 · npathp. (7.9)

39

7. Experiments
Table 7.3: The computation time tcomp and generated trajectory execution time
texec of the TOPP-RA algorithm subjected to different settings. The effect of the
changing number of grid points ngridp derived from the number of original path
points npathp on the resulting trajectory was tested. The automatic selection of
ngridp by the TOPP-RA algorithm was also tested.

Rectangular Path Circular Path
ngridp [-] tcomp [s] texec [s] tcomp [s] texec [s]

Automatically selected 0.0121 3.7620 0.0069 2.8830
2 · npathp 0.0164 3.6880 0.0124 2.8710
3 · npathp 0.0252 3.7090 0.0169 2.8470
4 · npathp 0.0352 3.6820 0.0200 2.8370
6 · npathp 0.0911 3.6520 0.0311 2.8270
8 · npathp 0.1083 3.6240 0.0448 2.8110

7.5.4 Effect of path discretization settings on the time
parameterization algorithms

There are three main parameters in MoveIt for specifying yhe manner how
the by OMPL planned path will be sampled in to path points, namely:

. cartesian_path_max_step_translation, which determines the maxi-
mal euclidean distance dmax between two adjacent path points,. cartesian_path_max_step_orientation, which determines the maxi-
mal change in the orientation between two adjacent path points; however,
since there is no need to further limit the orientation of the end effector
in our applications when the next parameter is set, we will leave this its
value unchanged,. cartesian_path_max_joint_distance, which limits the maximal dif-
ference in joint position ∆θmax between two adjacent path points.

To ascertain whether the trajectory generation will improve these parame-
ters with different settings, a grid search was executed, where the parameters
mentioned in table 7.4 were tested for all three path time parameterization
algorithms on the rectangular path described in section 7.2. The default
settings for the time parameterization algorithms were used.

The table 7.5 shows the results, where the computation time of the cor-
responding time parameterization algorithms and the execution time of the
generated trajectory were measured to observe the effects of the different

40

...................................7.5. Parameter tuning

Table 7.4: MoveIt cartesian planner path discretization parameter settings for
testing their effects on time parameterization algorithms, namely the maximal
step in translation dmax between two adjacent path points and maximal joint
distance ∆θmax between two configurations corresponding to the adjacent path
points.

Setting Nr. dmax [m] ∆θmax [rad]
1 0.008 0.04
2 0.01 0.05
3 0.012 0.06
4 0.015 0.075

Table 7.5: The resulting time parameterization computation time tcomp and
trajectory execution time texec of the time parameterization algorithms based
on different parameter settings of the path planner specified in table 7.4. The
rectangular path described in section 7.2 was used.

IPTP TOTG TOPP-RA
Setting Nr. tcomp [s] texec [s] tcomp [s] texec [s] tcomp [s] texec [s]

1 0.0229 3.7243 0.0497 3.4334 0.0427 3.5990
2 0.0185 3.8226 0.0344 3.4406 0.0316 3.6820
3 0.0169 3.7531 0.0280 3.4536 0.0269 3.6790
4 0.0123 3.7131 0.0264 3.4051 0.0217 3.5570

parameter settings. It is clear that the increasing step size in both the
cartesian translation and joint rotation affects the generated trajectories
as the trajectory execution times decrease with increasing values. This is
because the OMPL generates rough trajectories with small step sizes; due to
the numeric inverse kinematics, different configurations are found for path
points that lie in a proximity. Even slightly different joint position values
of adjacent configurations can result in end effector positions with larger
Euclidean distance between them. Consequently, the trajectories are forced
to follow a more complex path shape. A larger gap between the points creates
more room for smooth transitions between the path points which leads to
faster trajectories.

The computation times of the time parameterization algorithms also vary
with the different step sizes of translation and joint position. The computation
time tends to decrease with the larger step sizes for all three algorithms,
which can be explained by fewer path segments needing to be transformed
in to a feasible trajectory. Indeed, all three algorithms divide the trajectory
computation task in connecting the adjacent path segments, whether with
circular blends, as in the TOTG algorithm, through computing controllable
sets, as in the TOPP-RA algorithm, or with systematic adjustment of the
time difference between two adjacent trajectory points in IPTP.

41

7. Experiments
However, a larger step size can cause problems as the trajectory between

the path points usually deviates from the originally intended path, and the
bigger the gaps between the path points are, the more room there is for
deviation from the planned path. The trajectory segments between the given
path points are in principle undefined and can be generated differently with
each algorithm. Having regard to the above, we will use a slightly bigger step
size than the default settings number 2 in table 7.4 to prevent rough courses
of the planned path, specifically

dmax = 0.012 m
∆θmax = 0.06 rad.

(7.10)

7.6 Comparison of trajectories generated by the
individual time parameterization algorithms

Trajectories have been generated for all the paths described in section 7.2,
which were planned by the OMPL planner. The visualization and joint
trajectory courses of all the generated trajectories can be found in appendix B
for detailed study. However, for the sake of clarity, only the circular and
rectangular paths were used in this section to illustrate the behavior of
each algorithm. The parameter settings of all three time parameterization
algorithms are specified in section 7.5 and the applied acceleration and velocity
bounds are given in table 5.6 for an unweighted KUKA robot. The errors of
the computed trajectories were determined using the methods introduced in
section 7.3,and the error of the planned path compared to the initial intended
path was computed similarly.

7.6.1 Computation and trajectory execution time

The resulting computation times of each time parameterization algorithm for
all paths can be found in table 7.6. It is clear that the IPTP algorithm is
significantly faster in all cases, which is also the reason why it is still used
by default in MoveIt. The TOPP-RA algorithm had shorter computation
times than TOTG in all cases and was approximately 40% faster. Moreover,
where necessary, the algorithm is capable of computing the trajectories even
faster, as shown in table 7.3. The computation time is directly dependent on
the number of grid points of the TOPP-RA algorithm. This, however, also
negatively affects the execution time of the computed trajectory as slower
trajectories have been found.

42

.... 7.6. Comparison of trajectories generated by the individual time parameterization algorithms

Table 7.6: Computation times of the time parameterization algorithms.

tIPTP [s] tTOTG [s] tTOPP-RA [s]
Rectangle 0.0013 0.0352 0.0218
Circle 0.0006 0.0163 0.0118

Sand Clock 0.0027 0.0858 0.0316
Pick and place 0.0024 0.0484 0.0293

Table 7.7 contains the execution times of the generated trajectories. The
IPTP algorithm computes the slowest trajectories, which can be expected, as
it does not claim to be a time optimal time parameterization. The TOPP-RA
algorithm computes trajectories that are slower than the ones computed by
the TOTG algorithm even though it claims to find the time optimal trajectory.
This is due to the applied method of computing a continuous path from the
input path points generated by the path planner, which is then translated in
to the final trajectory. Paths of different lengths and shapes are generated by
the two algorithms, and thus both can generate time optimal, yet different
trajectories. As we will show in section 7.6.3, TOPP-RA generates longer
trajectories for several reasons, which supports these findings.

Table 7.7: Trajectory execution times of the time parameterization algorithms.

tIPTP [s] tTOTG [s] tTOPP-RA [s]
Rectangle 3.7531 3.4936 3.7350
Circle 2.5932 2.4849 2.5940

Sand Clock 4.7461 4.2596 4.4800
Pick and Place 4.5838 4.4772 4.5610

7.6.2 Trajectory sampling

The IPTP is the only one of the three algorithms that does not provide the
possibility of sampling the computed trajectory with a certain period. As
shown in figure 7.4 the resulting trajectory is returned as a list of the same
path points that were given by the path planner, only with added timing. The
Euclidean distance between the computed trajectory points and originally
intended path also supports these findings, as the trajectory error is zero along
the whole path, as shown in figure 7.4b. This, however, does not correspond
to reality as the segments between the trajectory points are not defined and
the error thus cannot be computed in those segments.

43

7. Experiments
This is probably the cause of the jittery movement of our KUKA robot.

The generated trajectory has to be fitted with a quintic spline by the
FollowJointTrajectory in order to provide the KUKA robot with a position
command every millisecond, as described in section 3.4. Subsequently, the
trajectory passed for execution to the KUKA robot controller may differ
from the generated ones and can even violate the kinodynamic bounds as
the fitting of the spline is not limited by the latter. Because of this, we will
try to replace the IPTP with one of the remaining time parameterization
algorithms.

(a) : Input waypoints, planned path
and highlighted trajectory points with red
crosses.

20 40 60 80 100

n [-]

0

0.5

1

d

[
m
]

10
-6 Inut-Output Path Error

20 40 60 80 100

n [-]

-1

-0.5

0

0.5

1

d

[
m
]

Path-Trajectory Error

(b) : Path end trajectory error.

Figure 7.4: Figures visualizing the rectangle shaped trajectory generated by the
IPTP time parameterization algorithm. The path was planned by the OMPL
from the input waypoints.

7.6.3 Deviation of the trajectory from the original path

The main difference between the TOTG and TOPP-RA generated trajectories
lies in the manner of handling of the input path points. The TOPP-RA
algorithm tries to connect the input path points with a feasible trajectory, i.e.
includes the input configurations in the computed trajectory. The TOTG,
on the other hand, replaces parts of the input path with arcs that miss the
original path points. This can be clearly seen in figure 7.5 on an edge detail
of the generated trajectory.

Moreover, larger path segments may deviate from the original path points
when using the TOTG algorithm, as shown in figure 7.6a. It is further
noticeable on the path-trajectory error displayed in figure 7.6b, where a
non-zero error is visible throughout the whole trajectory, with spikes in the
edge sections of the rectangular trajectory, as there is the biggest deviation
from the original edge path points.

44

.... 7.6. Comparison of trajectories generated by the individual time parameterization algorithms

0.506 0.508

x [m]

0.245

0.246

0.247

0.248

0.249

0.25

0.251

y

[
m
]

Path

Trajectory

(a) : TOTG.

0.51 0.52

x [m]

0.22

0.225

0.23

0.235

0.24

0.245

0.25

0.255

0.26

y

[
m
]

Path

Trajectory

(b) : TOPP-RA.

Figure 7.5: The detail of a rectangle shaped trajectories generated bye TOPP-
RA and TOTG. The path points generated by the path planner are marked with
blue crosses.

The TOPP-RA algorithm generates more oscillating trajectory as it con-
nects the path points. This is shown in figure 7.6d where the spikes in
the trajectory error are more frequent, but the deviation always returns to
values around 10−8 m as the trajectory crosses the corresponding path points.
However, it is disputable whether this can be qualified as a trajectory error
because only the path points were given to the TOPP-RA algorithm, without
specification of the path between them. Therefore, we consider the trajectory
error in the sense of the deviation from the originally intended path given by
the waypoints.

Nonetheless, it is unclear to what extent the omitting of path points in the
TOTG generated trajectory causes problems in real tasks. The magnitude
of the cartesian trajectory error can be limited by an input parameter. The
exact maximal error cannot be set directly because the effect of the joint
path tolerance on the cartesian trajectory error depends on the manipulator’s
configurations. However, the expected values can be estimated, as shown
in table 7.2. In our experiments, the trajectory error spikes are usually
much smaller than those of the TOPP-RA generated trajectory between the
path points, specifically around 5 · 10−4 m, compared to 10−3 m, (i.e. the
typical value for the maximal trajectory error of the TOPP-RA algorithm
given the selected path discretization step). This applies to all tested path
shapes except for the circular path, where the TOTG trajectory error is
larger. Moreover, the path-trajectory error is even smaller in most parts of
the trajectory, approximately 5 · 10−5 m. Considering the trajectory as a
whole, the TOPP-RA generated trajectory has error throughout the trajectory
due to the frequent oscillations. This clearly follows from a comparison of
figures 7.6b and 7.6d. The TOTG generated trajectory also respects the
start and goal path points as the path-trajectory error is nearly zero at these

45

7. Experiments
points; this can be seen in both figures 7.6 and 7.7.

(a) : Visualization of input waypoints,
planned path and generated trajectory by
TOTG algorithm.

20 40 60 80 100

n [-]

0

0.5

1

d

[
m
]

10
-6 Inut-Output Path Error

500 1000 1500 2000 2500 3000

n [-]

0

1

2

d

[
m
]

10
-4 Path-Trajectory Error

(b) : Path and TOTG gen-
erated trajectory error of n
path/trajectory poitns.

(c) : Visualization of input waypoints,
planned path and generated trajectory by
TOPP-RA algorithm.

20 40 60 80 100

n [-]

0

0.5

1

d

[
m
]

10
-6 Inut-Output Path Error

500 1000 1500 2000 2500 3000 3500

n [-]

0

0.5

1

d

[
m
]

10
-3 Path-Trajectory Error

(d) : Path and TOPP-RA
generated trajectory error of
n path/trajectory poitns.

Figure 7.6: Figures visualizing the generated rectangular trajectory by the
TOPP-RA and TOTG time parameterization algorithms.

Issues with the omitting of path points may, however, occur in high precision
tasks where the manipulator needs to pass through the predefined path points.
A collision with other objects could also be a problem since only the path
points generated by the path planner are checked for collisions. Consequently,
if the input path points are omitted, additional collision checking might be
necessary because the exact value of the maximal path-trajectory error cannot
be predicted with certainty.

46

.... 7.6. Comparison of trajectories generated by the individual time parameterization algorithms

7.6.4 Impact of the cartesian path planner on the generated
trajectory

The OMPL cartesian planner uses a numeric inverse kinematic task to compute
a joint path from the cartesian path as described in section 3.2. This results
in rough path courses which can be seen at the input-output path error
in figure 7.7b and its spatial visualization in figure 7.7c. We have tried to
suppress this behavior with longer path segments (steps), but some oscillations
are still apparent in the planned path.

This also causes high oscillations in the TOPP-RA generated path as it
follows all the path points of the rough path and connects them. This results
in a longer path, which is slower than the TOTG generated path. The TOTG
generates smoother trajectories since the replacement of the original path
bypasses the rough path courses. This fact is also evident when comparing
the trajectories in figures 7.7a and 7.7c.

7.6.5 Joint trajectory courses

Joint trajectory courses of the circular trajectory were visualized in figure
7.8 in order to compare the smoothness of the generated trajectories. The
courses are as can be expected since the "circle" path is actually a polygon;
there are spikes in the velocity in the straight segments and lows when the
direction of the end effector’s movement has to change.

The main differences between the TOTG and TOPP-RA generated joint
trajectories, respectively, lie in the acceleration and jerk courses. The TOTG
algorithm always chooses the maximal acceleration possible, which can be illus-
trated by the rectangular courses of the joint acceleration in figure 7.8a. This
causes very high joint jerk spikes with the magnitude of around 104 rad · s−3.
Certain spikes have also occurred in the acceleration courses, which are no-
ticeable in figure 7.9a. There are high oscillations in the acceleration courses
at the start of nearly all trajectories generated by TOTG, which cannot be
easily explained.

The TOPP-RA algorithm, on the other hand, uses a spline parameterizer
for choosing the controls, i.e. the accelerations specified in section 4.2 and
further shown in figure 7.8b. The spline parameterization results in much
smaller joint jerk spikes, with the magnitude of around 9 · 102 rad · s−3, which
are nearly ten times smaller than the ones in the TOTG trajectory.

47

7. Experiments

(a) : Visualization of input waypoints,
planned path and generated trajectory by
TOTG algorithm.

10 20 30 40 50 60

n [-]

0

2

4

6

d

[
m
]

10
-7 Inut-Output Path Error

500 1000 1500 2000

n [-]

0

1

2

3

4

d

[
m
]

10
-4 Path-Trajectory Error

(b) : Path and TOTG gen-
erated trajaectory error of n
path/trajectory poitns.

(c) : Visualization of input waypoints,
planned path and generated trajectory by
TOPP-RA algorithm.

10 20 30 40 50 60

n [-]

0

2

4

6

d

[
m
]

10
-7 Inut-Output Path Error

500 1000 1500 2000 2500

n [-]

0

1

2

d

[
m
]

10
-4 Path-Trajectory Error

(d) : Path and TOPP-RA
generated trajectory error of
n path/trajectory poitns.

Figure 7.7: Figures visualizing the generated circular trajectory by the TOPP-
RA and TOTG time parameterization algorithms.

Smaller jerk spikes of the TOPP-RA generated trajectory should result in
a smoother motion of the manipulator. Since the KUKA robot is position
controlled and the low-level movement is done by an embedded controller,
the final commanded acceleration by the KUKA robot controller should have
much smoother courses then those computed by TOTG.

48

.... 7.6. Comparison of trajectories generated by the individual time parameterization algorithms

0 0.5 1 1.5 2

t [s]

-1

0

1

j

[
r
a
d
 s
-
3
]

10
4

0 0.5 1 1.5 2

t [s]

-5

0

5

 s
-
2
]

0 0.5 1 1.5 2

t [s]

-1

0

1

[
r
a
d

s
-
1
]

0 0.5 1 1.5 2

t [s]

-1

0

1

[
r
a
d
]

J
0

J
1

J
2

J
3

J
4

J
5

J
6

(a) : Joint courses of joint position θ, velocity ω, acceleration ε
and jerk j for joints Ji, i = 1, ..., 7 computed by TOTG.

0 0.5 1 1.5 2 2.5

t [s]

-500

0

500

j

[
r
a
d
 s
-
3
]

0 0.5 1 1.5 2 2.5

t [s]

-5

0

5

 s
-
2
]

0 0.5 1 1.5 2 2.5

t [s]

-1

0

1

[
r
a
d

s
-
1
]

0 0.5 1 1.5 2 2.5

t [s]

-1

0

1

[
r
a
d
]

J
0

J
1

J
2

J
3

J
4

J
5

J
6

(b) : Joint courses of joint position θ, velocity ω, acceleration ε
and jerk j for joints Ji, i = 1, ..., 7 computed by TOPP-RA.

Figure 7.8: Figures visualizing the generated and executed circle shaped trajec-
tory by the TOPP-RA and TOTG time parameterization algorithms.

49

7. Experiments
7.7 Trajectory execution by the KUKA robot

Following the comparison of the TOPP-RA and TOTG time parameterization
algorithms, the generated rectangular trajectories were executed by the KUKA
LBR iiwa 7 r800 robot to test the behavior on the real setup. The resulting
courses are shown in figures 7.9 and 7.10, where the measured joint positions
and the velocities and accelerations, both derived from the joint positions,
are compared with the computed ones. The joint acceleration courses had to
be smoothed out for clarity using a moving average filter with the span of 20
samples, i.e. milliseconds, as the data about the KUKA robot is forwarded
to ROS every millisecond.

The joint courses of the executed trajectory correspond to the theoretical
ones. The execution times approximately correspond to the computed times
as shown in table 7.8. The TOTG and TOPP-RA joint acceleration courses,
respectively, are quite similar. Due to the noise of the acceleration courses,
it is hard to estimate to what degree the high jerk and smaller acceleration
peaks in the courses of the TOTG generated trajectory were eliminated by
the KUKA robot controller. Considering the similarity to the TOPP-RA
courses and the observation of the executed movement, we believe that the
final trajectory is in this case sufficiently smooth for our purposes, however,
it does not always have to be the case.

Table 7.8: The computed and actual trajectory execution times of the TOTG
and TOPP-RA algorithms on a rectangular path.

tTOTG [s] tTOPP-RA [s]
Computed 3.4936 3.7350
Executed 3.4950 3.7360

The courses of the executed TOPP-RA trajectory show small oscillations
in joint accelerations and velocity, which are caused by rough path courses
and the design of the algorithm, as mentioned above, and are consequently
forwarded for execution.

50

........................ 7.7. Trajectory execution by the KUKA robot

0 0.5 1 1.5 2 2.5 3

t [s]

-5

0

5

s
-
2
]

0 0.5 1 1.5 2 2.5 3

t [s]

-1

0

1

[
r
a
d

s
-
1
]

0 0.5 1 1.5 2 2.5 3

t [s]

-1.5

-1

-0.5

0

0.5

1

[
r
a
d
]

J
0

J
1

J
2

J
3

J
4

J
5

J
6

(a) : Computed joint courses of joint position θ, velocity ω, and
acceleration ε for joints Ji, i = 1, ..., 7.

0 0.5 1 1.5 2 2.5 3

t [s]

-5

0

5

10

s
-
2
]

0 0.5 1 1.5 2 2.5 3

t [s]

-1

0

1

[
r
a
d

s
-
1
]

0 0.5 1 1.5 2 2.5 3

t [s]

-1.5

-1

-0.5

0

0.5

1

[
r
a
d
]

J
0

J
1

J
2

J
3

J
4

J
5

J
6

(b) : Joint courses of joint position θ, velocity ω, acceleration
ε and jerk j for joints Ji, i = 1, ..., 7 executed by the KUKA
robot.

Figure 7.9: Comparison of the joint courses of a rectangle shaped trajectory
computed by the TOTG time parameterization algorithms and executed by the
KUKA robot.

51

7. Experiments

0 0.5 1 1.5 2 2.5 3 3.5

t [s]

-5

0

5

s
-
2
]

0 0.5 1 1.5 2 2.5 3 3.5

t [s]

-1

0

1

[
r
a
d

s
-
1
]

0 0.5 1 1.5 2 2.5 3 3.5

t [s]

-1.5

-1

-0.5

0

0.5

1

[
r
a
d
]

J
0

J
1

J
2

J
3

J
4

J
5

J
6

(a) : Computed joint courses of joint position θ, velocity ω, and
acceleration ε for joints Ji, i = 1, ..., 7.

0 0.5 1 1.5 2 2.5 3 3.5

t [s]

-5

0

5

s
-
2
]

0 0.5 1 1.5 2 2.5 3 3.5

t [s]

-1

0

1

[
r
a
d

s
-
1
]

0 0.5 1 1.5 2 2.5 3 3.5

t [s]

-1.5

-1

-0.5

0

0.5

1

[
r
a
d
]

J
0

J
1

J
2

J
3

J
4

J
5

J
6

(b) : Joint courses of joint position θ, velocity ω, acceleration
ε and jerk j for joints Ji, i = 1, ..., 7 executed by the KUKA
robot.

Figure 7.10: Comparison of the joint courses of a rectangle shaped trajectory
computed by the TOPP-RA time parameterization algorithm and executed by
the KUKA robot.

52

................................7.8. Discussion of the results

7.8 Discussion of the results

The above-described characteristics of the respective path time parameteriza-
tion algorithms follow from all the generated trajectories listed in appendix B.
The IPTP time parameterization has been declared unfit for our setup as
it was probably responsible for the jittery movement of the manipulator.
Nonetheless, we can see the reason why it is still widely used by default in
MoveIt as the computation times are nearly ten times shorter in comparison
to the other algorithms and its faults were less noticeable at lower motion
speeds.

The execution of the trajectories did not reveal any other aspects where
the TOPP-RA and TOTG algorithms would deviate. Both trajectories were
executed as expected, and the biggest difference between them remains the
manner how they handle the path points and, consequently and the shapes
of the resulting trajectories. The difference in the speed of the algorithms is
also an important aspect.

The TOTG algorithm’s disadvantages include longer computation time;
the omitting of the input path points, and the resulting deviation of the
generated trajectory from the original path in larger segments. The error is
mostly small but not insignificant in view of possible collisions. Moreover,
the maximal deviation of the trajectory from the original path, i.e. the path-
trajectory error, cannot be set directly because the replacing of the initial
path is done in the configuration space of the robot. The small spikes in the
acceleration courses could also cause potential jitters, mostly at the start of the
trajectories. Nonetheless, the algorithm handles well the rough input paths
for path tolerances δ > 10−3 and, consequently, generates faster trajectories
than TOPP-RA. For smaller path tolerances, the TOTG generated algorithms
also start to oscillate due to the path shape.

The TOPP-RA algorithm’s drawback, on the other hand, lies in oscillating
and thus slower trajectories caused by rough courses of the planned path.
The oscillations cause even larger deviations from the originally intended
path than those resulting from the TOTG algorithm, which is a toll for
respecting the input path points and creating a trajectory that connects them.
This behavior could be suppressed by choosing even larger step between
path points; this would, however, lead to a loss of precision as there would
be fewer points from the original path to follow and deviations could arise
in larger segments. A more densely sampled path would be a solution for
larger deviations between the trajectory points provided that it is sufficiently
smooth. This was not the case of the paths we have used, though. The

53

7. Experiments
TOPP-RA generated trajectories are thus highly dependent on the shape and
density of the planned path. Nonetheless, the TOPP-RA algorithm presents
better results in terms of the computation time. Our experimetns revealed
that TOPP-RA is notably faster then the TOTG algorithm, and indeed can
compute the trajectory nearly twice as fast in some cases.

It should also be noted, that the tested version of TOPP-RA is now obsolete.
Newer versions are now available and further developed, a C++ API is also in
progress, so there is a chance that the TOPP-RAs capabilities will improve in
our setup. Moreover, TOPP-RA is equipped with other useful features, such
as generating a trajectory of a defined duration or using other parameterizers,
which we did not include in this thesis. We also did not cover the robustness
of both algorithms, the TOPP-RA documentation claims 100% success rate
of finding a feasible time parameterization by the algorithm, the statistics for
the TOTG algorithm are unknown and possible issues may arise.

In summary, the TOPP-RA time parameterization does seem to be a
perspective solution remedying the issues with our KUKA robot cell, despite
the consequences of the inaccurate path planning, probably caused by the
inverse kinematics. Nonetheless, the TOTG algorithm is also a suitable
solution, it provides stable trajectories that might be more suitable for certain
applications than TOPP-RA. Indeed, even though the trajectories are slightly
deviated, they follow the originally intended path more accurately and without
oscillations. Moreover, the path tolerance can be set according to the task
that is being executed. The final path-trajectory error can, however, be only
estimated because the limitations of the generated trajectory are applied in
the configuration space of the manipulator. Some additional collision checking
might therefore be necessary for larger path tolerances.

54

Chapter 8

Conclusion

In this thesis, we have described the theory of path planning and trajectory
computation of a robotic manipulator with the aim to better understand
the principles of motion planning of a KUKA LBR iiwa 7 r800 robotic cell
and the issue of its jittery movement. The motion planning and execution
pipeline of a Robot Operating System (ROS) framework including its MoveIt
motion planning package were explained, as these software tools are used to
control the KUKA robot and are crucial for understanding the movement of
the manipulator.

Both parts of the MoveIt trajectory generation process were explored. First,
the settings and the planned paths of the Open Motion Planning Library
(OMPL) used for path planning were tested. Next, two algorithms for the
time parameterization of the planned path were analyzed, namely the Itera-
tive Parabolic Time Parameterization (IPTP) and Time Optimal Trajectory
Generation (TOTG). Their principles were explained and their behavior
tested using different parameter settings. Both algorithms were compared
with the recently introduced Time-Optimal Path Parameterization based on
Reachability Analysis (TOPP-RA) algorithm on a set of four trajectories; the
resulting courses were visualized and are shown in appendix B. A ROS service
has been written to connect the TOPP-RA algorithm with ROS.

We found out that the joint acceleration bounds of the KUKA robot were
missing in the MoveIt configuration. Since these bounds, together with the
joint velocity bounds, are necessary for computing a correct trajectory, the
worst case scenario values were estimated by a series of experiments. The
actual acceleration limits depend on the robots configuration and would

55

8. Conclusion......................................
require the identification of a dynamic model, which is out of the scope of
this thesis.

Based on the results of the testing of different parameter settings for each
time parameterization algorithm and the completed experiments, we made
the following conclusions. Firstly, the IPTP algorithm is problematic in
several aspects: the implementation does not use parabolic, but rather only
linear functions for trajectory computation, and it does not offer functions for
sampling of the final trajectory. The ROS joint controller is thus forced to in-
terpolate the resulting trajectory, consequently modifying the final trajectory,
which can subsequently violate the kinodynamic bounds of the manipula-
tor. In addition, high oscillations occurred in the joint acceleration courses.
Therefore, we have decided to replace the IPTP algorithm with one of the
two remaining algorithms in our setup, even though IPTP is significantly
faster in computing the trajectories than the other algorithms.

Secondly, the TOTG and TOPP-RA algorithms differ in the manner of
handling the planned path passed to them in the form of a list of path points
and their time parameterization computation time. The TOTG algorithm
replaces the path segments with circular blends, which results in a trajec-
tory that deviates from the passed path points. The deviation is non-zero
throughout the whole trajectory, except for the start and goal points, which
is the primary drawback of this algorithm. There are also spikes in the accel-
eration courses of the computed trajectories, mostly at the beginning, which
could potentially cause jittery movement. Nonetheless, this is compensated
to a certain degree by the KUKA robot controller. TOTG also generates
faster trajectories then TOPP-RA as the path preprocessing crates smoother
trajectories with shortcuts in the form of the circular blends.

The TOPP-RA algorithm, on the other hand, connects the path points
with a trajectory. This, however, results in an oscillating movement as the
trajectory follows a path with rough courses, which are probably caused by
the numeric inverse kinematics used by the Open Motion Library planner.
At the peaks, the resulting deviations from the path exceed the maximal
deviations of the TOTG generated trajectories. There is also an issue with
the compatibility of the TOPP-RA software with the ROS 1 distribution. For
this reason, an obsolete version of TOPP-RA was used in this thesis, which
is nonetheless capable of computing the trajectories much faster than the
TOTG parameterization.

Finally, both the TOTG and TOPP-RA algorithms can be a suitable
solution for our setup, albeit in different situations. The TOTG generated
trajectories have only a small, yet not insignificant error from the original
path, which can, to a certain degree, be limited by the path tolerance

56

...................................... 8. Conclusion

parameter. The rough courses of the planned path are handled well because
the deviation of the trajectory eliminates small the serrated path. This is
TOTG’s advantage compared to TOPP-RA and TOTG is thus a suitable
solution for situations where a rough path causes high oscillations in the
TOPP-RA generated trajectories and the deviation from the original path is
not a problem

The TOPP-RA algorithm, on the other hand, respects the planned path
and is notably faster in computing the time parameterization then the TOTG
algorithm even though it strongly dependent on the smoothness and density
of the discrete input path. The TOPP-RA would also be a clear choice thanks
to its smoother acceleration courses, were it not for the rough paths from
which the trajectory is computed. It also offers some additional features
and could present a more robust solution. Given that the algorithm is being
further developed, its capabilities might possibly improve in our setup.

The above summarized work covers all the guidelines given for this thesis.
The main contribution of this thesis lies in the description and explanation
of a frequently encountered issue with the time parameterization algorithm
selected by default in MoveIt, and in description and comparison of other
time parameterization algorithm which can be used instead. As ROS and
MoveIt software are widely used and there are many occurrences of people
reporting the same issue with the time parameterization, we present them
with different options for replacing the IPTP algorithm and describe their
advantages and drawbacks. There is also a discussion among the MoveIt
developers about including TOPP-RA into the MoveIt package, so this thesis
can also be useful for anyone who is considering this option.

For further work, we recommend inspecting the behavior of the OMPL
planner and the rough paths as these cause problems with the TOPP-RA
algorithm. Moreover, the execution of the generated trajectories could be
further explored to find the cause of the significant difference between the
estimated and verified joint acceleration bounds, respectively, as presented in
this thesis. It would be interesting to use other methods of estimation of the
joint acceleration bounds to verify or improve our results.

57

58

Bibliography

[1] Reza N. Jazar. Theory of applied robotics. kinematics, dynamics, and
control. 2nd ed. New York: Springer, c2010. isbn: 978-1441917492.

[2] Peter Corke. Robotics, vision and control. fundamental algorithms in
MATLAB. 2nd ed. Berlin: Springer, 2013. isbn: 978-3-642-20143-1.

[3] Bruce Donald et al. “Kinodynamic motion planning”. In: Journal of
the ACM 40.5 (1993), pp. 1048–1066. issn: 0004-5411. doi: 10.1145/
174147.174150.

[4] ROS Introduction. url: http://wiki.ros.org/ROS/Introduction
(visited on 04/05/2021).

[5] ROS Concepts. url: http://wiki.ros.org/ROS/Concepts (visited
on 04/05/2021).

[6] MoveIt Documentation. Planners. 2016. url: https://moveit.ros.
org/documentation/planners/ (visited on 04/01/2021).

[7] Ioan A. Sucan, Mark Moll, and Lydia E. Kavraki. “The Open Motion
Planning Library”. In: IEEE Robotics & Automation Magazine 19.4
(2012), pp. 72–82. issn: 1070-9932. doi: 10.1109/MRA.2012.2205651.

[8] Rice University Kavraki Lab. Open Motion Planning Library: A Primer.
Huston, Texas, 2021. url: https://ompl.kavrakilab.org/OMPL_
Primer.pdf (visited on 04/01/2021).

[9] Jia Pan, Sachin Chitta, and Dinesh Manocha. “FCL. A general purpose
library for collision and proximity queries”. In: 2012 IEEE International
Conference on Robotics and Automation. IEEE, 2012, pp. 3859–3866.
isbn: 978-1-4673-1405-3. doi: 10.1109/ICRA.2012.6225337.

[10] R. Smits. KDL: Kinematics and Dynamics Library. url: http://www.
orocos.org/kdl (visited on 04/01/2021).

59

https://doi.org/10.1145/174147.174150
https://doi.org/10.1145/174147.174150
http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/ROS/Concepts
https://moveit.ros.org/documentation/planners/
https://moveit.ros.org/documentation/planners/
https://doi.org/10.1109/MRA.2012.2205651
https://ompl.kavrakilab.org/OMPL_Primer.pdf
https://ompl.kavrakilab.org/OMPL_Primer.pdf
https://doi.org/10.1109/ICRA.2012.6225337
http://www.orocos.org/kdl
http://www.orocos.org/kdl

Bibliography
[11] MoveIt Time Parameterization Algorithms. url: http://docs.ros.

org/en/melodic/api/moveit_tutorials/html/doc/time_parameterization/
time_parameterization_tutorial.html#time-parameterization-
algorithms (visited on 04/05/2021).

[12] MoveIt Iterative Spline Parameterization issues. url: https://github.
com/ros- planning/moveit/issues/2183%5C#issue- 650150134
(visited on 04/10/2021).

[13] Bruno Siciliano. Robotics. modelling, planning and control. 1st ed.
London: Springer, c2010. isbn: 978-1-84628-641-4.

[14] Friedrich Lange and Alin Albu-Schäffer. “Iterative path-accurate tra-
jectory generation for fast sensor-based motion of robot arms”. In:
Advanced Robotics 30.21 (2016-08-29), pp. 1380–1394. issn: 0169-1864.
doi: 10.1080/01691864.2016.1222307.

[15] Tobias Kunz and Mike Stilman. “Time-Optimal Trajectory Genera-
tion for Path Following with Bounded Acceleration and Velocity”. In:
Robotics: Science and Systems VIII. Robotics: Science and Systems
Foundation, 2012-07-09, pp. -. isbn: 9780262519687. doi: 10.15607/
RSS.2012.VIII.027.

[16] MoveIt implementation of Time Optimal Trajectory Generation al-
goritm. url: https://github.com/ros- planning/moveit/blob/
melodic-devel/moveit_core/trajectory_processing/src/time_
optimal_trajectory_generation.cpp (visited on 04/10/2021).

[17] ROS joint_trajectory_controller package. url: http://wiki.ros.
org/joint_trajectory_controller (visited on 05/06/2021).

[18] Dave Coleman. ROS Control documentation. url: https://github.
com/ros-controls/ros_control/blob/noetic-devel/ros_control/
documentation/gazebo_ros_control.pdf (visited on 05/06/2021).

[19] Quang-Cuong Pham. “A General, Fast, and Robust Implementation
of the Time-Optimal Path Parameterization Algorithm”. In: IEEE
Transactions on Robotics 30.6 (2014), pp. 1533–1540. issn: 1552-3098.
doi: 10.1109/TRO.2014.2351113.

[20] Hung Pham and Quang-Cuong Pham. “A New Approach to Time-
Optimal Path Parameterization Based on Reachability Analysis”. In:
IEEE Transactions on Robotics 34.3 (2018), pp. 645–659. issn: 1552-
3098. doi: 10.1109/TRO.2018.2819195.

[21] Suggestion to include TOPP-RA in to MoveIt. url: https://github.
com/ros- planning/moveit/issues/2110%5C#issue- 624468617
(visited on 04/10/2021).

[22] Quang-Cuong Pham and Olivier Stasse. “Time-Optimal Path Parame-
terization for Redundantly Actuated Robots. A Numerical Integration
Approach”. In: IEEE/ASME Transactions on Mechatronics 20.6 (2015),
pp. 3257–3263. issn: 1083-4435. doi: 10.1109/TMECH.2015.2409479.

60

http://docs.ros.org/en/melodic/api/moveit_tutorials/html/doc/time_parameterization/time_parameterization_tutorial.html#time-parameterization-algorithms
http://docs.ros.org/en/melodic/api/moveit_tutorials/html/doc/time_parameterization/time_parameterization_tutorial.html#time-parameterization-algorithms
http://docs.ros.org/en/melodic/api/moveit_tutorials/html/doc/time_parameterization/time_parameterization_tutorial.html#time-parameterization-algorithms
http://docs.ros.org/en/melodic/api/moveit_tutorials/html/doc/time_parameterization/time_parameterization_tutorial.html#time-parameterization-algorithms
https://github.com/ros-planning/moveit/issues/2183%5C#issue-650150134
https://github.com/ros-planning/moveit/issues/2183%5C#issue-650150134
https://doi.org/10.1080/01691864.2016.1222307
https://doi.org/10.15607/RSS.2012.VIII.027
https://doi.org/10.15607/RSS.2012.VIII.027
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_core/trajectory_processing/src/time_optimal_trajectory_generation.cpp
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_core/trajectory_processing/src/time_optimal_trajectory_generation.cpp
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_core/trajectory_processing/src/time_optimal_trajectory_generation.cpp
http://wiki.ros.org/joint_trajectory_controller
http://wiki.ros.org/joint_trajectory_controller
https://github.com/ros-controls/ros_control/blob/noetic-devel/ros_control/documentation/gazebo_ros_control.pdf
https://github.com/ros-controls/ros_control/blob/noetic-devel/ros_control/documentation/gazebo_ros_control.pdf
https://github.com/ros-controls/ros_control/blob/noetic-devel/ros_control/documentation/gazebo_ros_control.pdf
https://doi.org/10.1109/TRO.2014.2351113
https://doi.org/10.1109/TRO.2018.2819195
https://github.com/ros-planning/moveit/issues/2110%5C#issue-624468617
https://github.com/ros-planning/moveit/issues/2110%5C#issue-624468617
https://doi.org/10.1109/TMECH.2015.2409479

.......................................Bibliography
[23] TOPP-RA Github repository. url: https://github.com/hungpham2511/

toppra (visited on 04/12/2021).
[24] KUKA LBR iiwa 7 r800. url: https://www.kuka.com/en- de/

products/robot-systems/industrial-robots/lbr-iiwa (visited
on 04/17/2021).

[25] Pub Spez LBR iiwa en. 5th ed. Augsburg,Germany: KUKA Roboter
GmbH, 2015. url: http://www.oir.caltech.edu/twiki_oir/pub/
Palomar/ZTF/KUKARoboticArmMaterial/Spez_LBR_iiwa_en.pdf
(visited on 04/17/2021).

[26] KUKA Sensitive robotics LBR iiwa. Augsburg,Germany: KUKA Roboter
GmbH, 2017. url: https://www.kuka.com/-/media/kuka-downloads/
imported/9cb8e311bfd744b4b0eab25ca883f6d3/kuka_lbr_iiwa_
brochure_en.pdf?rev=5a25f7eac825492e92af6343dbf5bc6b (vis-
ited on 04/17/2021).

[27] Ken Anderson. IterativeParabolicTimeParameterization. url: https:
/ / github . com / ros - planning / moveit / blob / melodic - devel /
moveit _ core / trajectory _ processing / src / iterative _ time _
parameterization.cpp (visited on 04/05/2021).

[28] Topp_ros package repository. url: https://github.com/larics/
topp_ros (visited on 04/23/2021).

61

https://github.com/hungpham2511/toppra
https://github.com/hungpham2511/toppra
https://www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-iiwa
https://www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-iiwa
http://www.oir.caltech.edu/twiki_oir/pub/Palomar/ZTF/KUKARoboticArmMaterial/Spez_LBR_iiwa_en.pdf
http://www.oir.caltech.edu/twiki_oir/pub/Palomar/ZTF/KUKARoboticArmMaterial/Spez_LBR_iiwa_en.pdf
https://www.kuka.com/-/media/kuka-downloads/imported/9cb8e311bfd744b4b0eab25ca883f6d3/kuka_lbr_iiwa_brochure_en.pdf?rev=5a25f7eac825492e92af6343dbf5bc6b
https://www.kuka.com/-/media/kuka-downloads/imported/9cb8e311bfd744b4b0eab25ca883f6d3/kuka_lbr_iiwa_brochure_en.pdf?rev=5a25f7eac825492e92af6343dbf5bc6b
https://www.kuka.com/-/media/kuka-downloads/imported/9cb8e311bfd744b4b0eab25ca883f6d3/kuka_lbr_iiwa_brochure_en.pdf?rev=5a25f7eac825492e92af6343dbf5bc6b
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_core/trajectory_processing/src/iterative_time_parameterization.cpp
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_core/trajectory_processing/src/iterative_time_parameterization.cpp
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_core/trajectory_processing/src/iterative_time_parameterization.cpp
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_core/trajectory_processing/src/iterative_time_parameterization.cpp
https://github.com/larics/topp_ros
https://github.com/larics/topp_ros

62

Appendix A

Comparison of estimated joint acceleration
bounds of KUKA LBR iiwa 7 r800

0 0.5 1 1.5 2

t [s]

-30

-20

-10

0

10

20

s
-
2
]

max

(a) : Courses for joint J1

0 0.5 1 1.5 2

t [s]

-20

-15

-10

-5

0

5

10

15

20

s
-
2
]

max

(b) : Courses for joint J2

Figure A.1: Comparison of estimated joint acceleration bounds εmax, measured
joint acceleration ε and commanded joint acceleration ε by KUKA robot controller
for joints Ji, i = 1, 2 in response to a position step input of the magnitude
∆θi = 2o.

63

A. Comparison of estimated joint acceleration bounds of KUKA LBR iiwa 7 r800

0 0.2 0.4 0.6 0.8 1

t [s]

-150

-100

-50

0

50

100

150

s
-
2
]

max

(a) : Courses for joint J3

0 0.2 0.4 0.6 0.8 1

t [s]

-150

-100

-50

0

50

100

150

200

s
-
2
]

max

(b) : Courses for joint J4

0 0.2 0.4 0.6 0.8 1

t [s]

-200

-150

-100

-50

0

50

100

150

200

s
-
2
]

max

(c) : Courses for joint J5

0 0.2 0.4 0.6 0.8 1

t [s]

-200

-150

-100

-50

0

50

100

150

200

s
-
2
]

max

(d) : Courses for joint J6

0 0.2 0.4 0.6 0.8

t [s]

-200

-150

-100

-50

0

50

100

150

200

s
-
2
]

max

(e) : Courses for joint J7

Figure A.2: Comparison of estimated joint acceleration bounds εmax, measured
joint acceleration ε and commanded joint acceleration ε by KUKA robot controller
for joints Ji, i = 2, ..., 7 in response to a position step input of the magnitude
∆θi = 2o.

64

Appendix B

Trajectories generated by the IPTP, TOTG
and TOPP-RA time parametrization
algorithms

65

B. Trajectories generated by the IPTP, TOTG and TOPP-RA time parametrization algorithms ..

0 0.5 1 1.5 2 2.5 3 3.5

t [s]

-200

0

200

j

[
r
a
d
 s
-
3
]

0 0.5 1 1.5 2 2.5 3 3.5

t [s]

-5

0

5

 s
-
2
]

0 0.5 1 1.5 2 2.5 3 3.5

t [s]

-1

0

1

[
r
a
d

s
-
1
]

0 0.5 1 1.5 2 2.5 3 3.5

t [s]

-1

0

1

[
r
a
d
]

J
0

J
1

J
2

J
3

J
4

J
5

J
6

(a) : The courses of joint position θ, velocity ω, acceleration ε and jerk j for
joints Ji, i = 1, ..., 7.

(b) : Visualization of the input waypoints,
planned path and generated trajectory.

20 40 60 80 100

n [-]

0

0.5

1

d

[
m
]

10
-6 Inut-Output Path Error

20 40 60 80 100

n [-]

-1

-0.5

0

0.5

1

d

[
m
]

Path-Trajectory Error

(c) : Path and trajectory error.

Figure B.1: Figures visualizing a rectangle shaped trajectory generated by the
IPTP time parameterization algorithm. The path was planned by the OMPL
from the input waypoints.

66

... B. Trajectories generated by the IPTP, TOTG and TOPP-RA time parametrization algorithms

0 0.5 1 1.5 2 2.5 3

t [s]

-1

0

1

j

[
r
a
d
 s
-
3
]

10
4

0 0.5 1 1.5 2 2.5 3

t [s]

-5

0

5

 s
-
2
]

0 0.5 1 1.5 2 2.5 3

t [s]

-1

0

1

[
r
a
d

s
-
1
]

0 0.5 1 1.5 2 2.5 3

t [s]

-1

0

1

[
r
a
d
]

J
0

J
1

J
2

J
3

J
4

J
5

J
6

(a) : The courses of joint position θ, velocity ω, acceleration ε and jerk j for
joints Ji, i = 1, ..., 7.

(b) : Visualization of the input waypoints,
planned path and generated trajectory.

20 40 60 80 100

n [-]

0

0.5

1

d

[
m
]

10
-6 Inut-Output Path Error

500 1000 1500 2000 2500 3000

n [-]

0

1

2

d

[
m
]

10
-4 Path-Trajectory Error

(c) : Path and trajectory error.

Figure B.2: Figures visualizing a rectangle shaped trajectory generated by the
TOTG time parameterization algorithm. The path was planned by the OMPL
from the input waypoints.

67

B. Trajectories generated by the IPTP, TOTG and TOPP-RA time parametrization algorithms ..

(a) : The courses of joint position θ, velocity ω, acceleration ε and jerk j for
joints Ji, i = 1, ..., 7.

(b) : Visualization of the input waypoints,
planned path and generated trajectory.

20 40 60 80 100

n [-]

0

0.5

1

d

[
m
]

10
-6 Inut-Output Path Error

500 1000 1500 2000 2500 3000 3500

n [-]

0

0.5

1

d

[
m
]

10
-3 Path-Trajectory Error

(c) : Path and trajectory error.

Figure B.3: Figures visualizing a rectangle shaped trajectory generated by the
TOPP-RA time parameterization algorithm. The path was planned by the
OMPL from the input waypoints.

68

... B. Trajectories generated by the IPTP, TOTG and TOPP-RA time parametrization algorithms

0 0.5 1 1.5 2

t [s]

-200

0

200

j

[
r
a
d
 s
-
3
]

0 0.5 1 1.5 2 2.5

t [s]

-5

0

5

 s
-
2
]

0 0.5 1 1.5 2 2.5

t [s]

-1

0

1

[
r
a
d

s
-
1
]

0 0.5 1 1.5 2 2.5

t [s]

-1

0

1

[
r
a
d
]

J
0

J
1

J
2

J
3

J
4

J
5

J
6

(a) : The courses of joint position θ, velocity ω, acceleration ε and jerk j for
joints Ji, i = 1, ..., 7.

(b) : Visualization of the input waypoints,
planned path and generated trajectory.

10 20 30 40 50 60

n [-]

0

2

4

6

d

[
m
]

10
-7 Inut-Output Path Error

10 20 30 40 50 60

n [-]

-1

-0.5

0

0.5

1

d

[
m
]

Path-Trajectory Error

(c) : Path and trajectory error.

Figure B.4: Figures visualizing a rectangle shaped trajectory generated by the
IPTP time parameterization algorithm. The path was planned by the OMPL
from the input waypoints.

69

B. Trajectories generated by the IPTP, TOTG and TOPP-RA time parametrization algorithms ..

0 0.5 1 1.5 2

t [s]

-1

0

1

j

[
r
a
d
 s
-
3
]

10
4

0 0.5 1 1.5 2

t [s]

-5

0

5

 s
-
2
]

0 0.5 1 1.5 2

t [s]

-1

0

1

[
r
a
d

s
-
1
]

0 0.5 1 1.5 2

t [s]

-1

0

1

[
r
a
d
]

J
0

J
1

J
2

J
3

J
4

J
5

J
6

(a) : The courses of joint position θ, velocity ω, acceleration ε and jerk j for
joints Ji, i = 1, ..., 7.

(b) : Visualization of the input waypoints,
planned path and generated trajectory.

10 20 30 40 50 60

n [-]

0

2

4

6

d

[
m
]

10
-7 Inut-Output Path Error

500 1000 1500 2000

n [-]

0

1

2

3

4

d

[
m
]

10
-4 Path-Trajectory Error

(c) : Path and trajectory error.

Figure B.5: Figures visualizing a rectangle shaped trajectory generated by the
TOTG time parameterization algorithm. The path was planned by the OMPL
from the input waypoints.

70

... B. Trajectories generated by the IPTP, TOTG and TOPP-RA time parametrization algorithms

0 0.5 1 1.5 2 2.5

t [s]

-500

0

500

j

[
r
a
d
 s
-
3
]

0 0.5 1 1.5 2 2.5

t [s]

-5

0

5

 s
-
2
]

0 0.5 1 1.5 2 2.5

t [s]

-1

0

1

[
r
a
d

s
-
1
]

0 0.5 1 1.5 2 2.5

t [s]

-1

0

1

[
r
a
d
]

J
0

J
1

J
2

J
3

J
4

J
5

J
6

(a) : The courses of joint position θ, velocity ω, acceleration ε and jerk j for
joints Ji, i = 1, ..., 7.

(b) : Visualization of the input waypoints,
planned path and generated trajectory.

10 20 30 40 50 60

n [-]

0

2

4

6

d

[
m
]

10
-7 Inut-Output Path Error

500 1000 1500 2000 2500

n [-]

0

1

2

d

[
m
]

10
-4 Path-Trajectory Error

(c) : Path and trajectory error.

Figure B.6: Figures visualizing a rectangle shaped trajectory generated by the
TOPP-RA time parameterization algorithm. The path was planned by the
OMPL from the input waypoints.

71

B. Trajectories generated by the IPTP, TOTG and TOPP-RA time parametrization algorithms ..

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

t [s]

-200

0

200

400

j

[
r
a
d
 s
-
3
]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

t [s]

-5

0

5

 s
-
2
]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

t [s]

-1

0

1

[
r
a
d

s
-
1
]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

t [s]

-1

0

1

[
r
a
d
]

J
0

J
1

J
2

J
3

J
4

J
5

J
6

(a) : The courses of joint position θ, velocity ω, acceleration ε and jerk j for
joints Ji, i = 1, ..., 7.

(b) : Visualization of the input waypoints,
planned path and generated trajectory.

50 100 150

n [-]

0

2

4

6

d

[
m
]

10
-7 Inut-Output Path Error

50 100 150

n [-]

-1

-0.5

0

0.5

1

d

[
m
]

Path-Trajectory Error

(c) : Path and trajectory error.

Figure B.7: Figures visualizing a rectangle shaped trajectory generated by the
IPTP time parameterization algorithm. The path was planned by the OMPL
from the input waypoints.

72

... B. Trajectories generated by the IPTP, TOTG and TOPP-RA time parametrization algorithms

(a) : The courses of joint position θ, velocity ω, acceleration ε and jerk j for
joints Ji, i = 1, ..., 7.

(b) : Visualization of the input waypoints,
planned path and generated trajectory.

20 40 60 80 100 120 140 160

n [-]

0

2

4

6

d

[
m
]

10
-7 Inut-Output Path Error

500 1000 1500 2000 2500 3000 3500 4000

n [-]

0

2

4

6

d

[
m
]

10
-5 Path-Trajectory Error

(c) : Path and trajectory error.

Figure B.8: Figures visualizing a rectangle shaped trajectory generated by by
the TOTG time parameterization algorithm. The path was planned by the
OMPL from the input waypoints.

73

B. Trajectories generated by the IPTP, TOTG and TOPP-RA time parametrization algorithms ..

(a) : The courses of joint position θ, velocity ω, acceleration ε and jerk j for
joints Ji, i = 1, ..., 7.

(b) : Visualization of the input waypoints,
planned path and generated trajectory.

20 40 60 80 100 120 140 160

n [-]

0

2

4

6

d

[
m
]

10
-7 Inut-Output Path Error

500 1000 1500 2000 2500 3000 3500 4000

n [-]

0

1

2

3

d

[
m
]

10
-4 Path-Trajectory Error

(c) : Path and trajectory error.

Figure B.9: Figures visualizing a rectangle shaped trajectory generated by the
TOPP-RA time parameterization algorithm. The path was planned by the
OMPL from the input waypoints.

74

... B. Trajectories generated by the IPTP, TOTG and TOPP-RA time parametrization algorithms

0 0.5 1 1.5 2 2.5 3 3.5 4

t [s]

-400

-200

0

200

400

j

[
r
a
d
 s
-
3
]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

t [s]

-6

-4

-2

0

2

4

 s
-
2
]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

t [s]

-1

0

1

[
r
a
d

s
-
1
]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

t [s]

-1

0

1

[
r
a
d
]

J
0

J
1

J
2

J
3

J
4

J
5

J
6

(a) : The courses of joint position θ, velocity ω, acceleration ε and jerk j for
joints Ji, i = 1, ..., 7.

(b) : Visualization of the input waypoints,
planned path and generated trajectory.

20 40 60 80 100 120 140

n [-]

0

0.5

1

d

[
m
]

10
-6 Inut-Output Path Error

20 40 60 80 100 120 140

n [-]

-1

-0.5

0

0.5

1

d

[
m
]

Path-Trajectory Error

(c) : Path and trajectory error.

Figure B.10: Figures visualizing a rectangle shaped trajectory generated by the
IPTP time parameterization algorithm. The path was planned by the OMPL
from the input waypoints.

75

B. Trajectories generated by the IPTP, TOTG and TOPP-RA time parametrization algorithms ..

(a) : The courses of joint position θ, velocity ω, acceleration ε and jerk j for
joints Ji, i = 1, ..., 7.

(b) : Visualization of the input waypoints,
planned path and generated trajectory.

20 40 60 80 100 120 140

n [-]

0

0.5

1

d

[
m
]

10
-6 Inut-Output Path Error

500 1000 1500 2000 2500 3000 3500 4000

n [-]

0

1

2

d

[
m
]

10
-4 Path-Trajectory Error

(c) : Path and trajectory error.

Figure B.11: Figures visualizing a rectangle shaped trajectory generated by the
TOTG time parameterization algorithm. The path was planned by the OMPL
from the input waypoints.

76

... B. Trajectories generated by the IPTP, TOTG and TOPP-RA time parametrization algorithms

(a) : The courses of joint position θ, velocity ω, acceleration ε and jerk j for
joints Ji, i = 1, ..., 7.

(b) : Visualization of the input waypoints,
planned path and generated trajectory.

20 40 60 80 100 120 140

n [-]

0

0.5

1

d

[
m
]

10
-6 Inut-Output Path Error

1000 2000 3000 4000

n [-]

0

0.5

1

d

[
m
]

10
-3 Path-Trajectory Error

(c) : Path and trajectory error.

Figure B.12: Figures visualizing a rectangle shaped trajectory generated by
the TOPP-RA time parameterization algorithm. The path was planned by the
OMPL from the input waypoints.

77

78

Appendix C

Description of the paths for the time
parameterization testing

79

C. Description of the paths for the time parameterization testing

Table C.1: Path points of the rectangular path.

x [m] y [m] z [m]
p1 0.5064 6.1926e-08 0.3033
p2 0.5064 -0.2500 0.3033
p3 0.6564 -0.2500 0.3033
p4 0.6564 0.2500 0.3033
p5 0.5064 0.2500 0.3033
p6 0.5064 6.1926e-08 0.3033

Table C.2: Path points of the "sand clock" shaped path.

x [m] y [m] z [m]
p1 0.5064 6.1926e-08 0.3033
p2 0.5064 -0.2500 0.3033
p3 0.6564 0.2500 0.2033
p4 0.6564 -0.2500 0.2033
p5 0.5064 0.2500 0.3033
p6 0.5064 6.1926e-08 0.3033

Table C.3: Path points of the "pick and place" shaped path.

x [m] y [m] z [m]
p1 0.5064 6.1926e-08 0.3033
p2 0.4064 0.2000 0.3033
p3 0.3064 0.4000 0.3033
p4 0.3064 0.4000 0.1033
p5 0.3064 0.4000 0.3033
p6 0.4064 0.2000 0.3033
p7 0.5064 6.1926e-08 0.3033
p8 0.5064 6.1926e-08 0.2033
p9 0.5064 6.1926e-08 0.1033
p10 0.5064 6.1926e-08 0.2033
p11 0.5064 6.1926e-08 0.3033

80

................ C. Description of the paths for the time parameterization testing

Table C.4: Path points of the circle shaped path.

x [m] y [m] z [m]
p1 0.5064 6.1926e-08 0.3033
p2 0.5113 -0.0309 0.3033
p3 0.5255 -0.0588 0.3033
p4 0.5476 -0.0809 0.3033
p5 0.5755 -0.0951 0.3033
p6 0.6064 -0.100 0.3033
p7 0.6373 -0.0951 0.3033
p8 0.6652 -0.0809 0.3033
p9 0.6873 -0.0588 0.3033
p10 0.7015 -0.0309 0.3033
p11 0.7064 6.1926e-08 0.3033
p12 0.7015 0.0309 0.3033
p13 0.6873 0.0588 0.3033
p14 0.6652 0.0809 0.3033
p15 0.6373 0.0951 0.3033
p16 0.6064 0.1000 0.3033
p17 0.5755 0.0951 0.3033
p18 0.5476 0.0809 0.3033
p19 0.5255 0.0588 0.3033
p20 0.5113 0.0309 0.3033
p21 0.5064 6.1926e-08 0.3033

81

	Introduction
	Motion Planning in Robotics
	Path and trajectory
	The motion planning pipeline
	Joint space and Cartesian space path planning
	Path time parameterization

	Path Planning and Path Time Parameterization in MoveIt
	Robot Operating System and MoveIt
	Implementation of path planning
	Time parameterization algorithms
	Iterative Parabolic Time Parameterization
	Time Optimal Trajectory Generation

	Execution of trajectory in ROS

	Alternative Path Time Parameterization Algorithms
	Alternative algorithms
	TOPP-RA

	Identification of Acceleration Bounds of the KUKA Manipulator
	KUKA LBR iiwa 7 r800 Robot
	Acceleration bounds of the KUKA robot
	Calculating the worst-case scenario acceleration limits
	The results and their verification

	Implementation of TOPP-RA as a Service in to ROS
	TOPP-RA and ROS 1 compatibility

	Experiments
	Experimental KUKA robot cell
	Paths for testing
	Methods for trajectory error computation
	Simulating the fault movement
	Parameter tuning
	IPTP
	TOTG
	TOPP-RA
	Effect of path discretization settings on the time parameterization algorithms

	Comparison of trajectories generated by the individual time parameterization algorithms
	Computation and trajectory execution time
	Trajectory sampling
	Deviation of the trajectory from the original path
	Impact of the cartesian path planner on the generated trajectory
	Joint trajectory courses

	Trajectory execution by the KUKA robot
	Discussion of the results

	Conclusion
	Bibliography
	Comparison of estimated joint acceleration bounds of KUKA LBR iiwa 7 r800
	Trajectories generated by the IPTP, TOTG and TOPP-RA time parametrization algorithms
	Description of the paths for the time parameterization testing

