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Abstract

One of the recently established fields of science is the development of
unmanned aerial vehicles (UAVs), which are able to perform tasks in
various environments without the need of human assistance. One key
component to solve this task is the reconstruction of a 3D scene of
an unknown environment, where the UAV needs to localize and safely
navigate itself. One way of creating this 3D model is based on frames
from a monocular camera attached to the UAV and the data from
sensors of the inertial measuring unit (IMU). The advantage of this
combination is availability and a low price compared to other setups for
example with light detection and rangings (LIDARs). Thanks to the
reconstructed 3D model, the UAV is then able to follow a safe trajectory
through a real environment.
This work deals with two open-source algorithms, FLaME and Kimera,
which process information from images captured by a monocular camera
and use structure from motion (SfM) algorithm to reconstruct a 3D
model of an unknown environment. The algorithms were evaluated and
compared on publicly available EuRoC datasets and subsequently, their
functionality was verified in a simulator that is used and developed by
the multi-robot systems (MRS) group at the Department of Cyber-
netics, Czech Technical University (CTU). Finally, experiments in a
real environment were conducted to evaluate algorithms for practical use.

Keywords: unmanned aerial vehicle, monocular camera, 3D scene
reconstruction, structure from motion, monocular simultaneous local-
ization and mapping
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Abstrakt

Jedńım z nedávno vzniklých odvětv́ı vědy je vývoj autonomńıch
bezpilotńıch prostředk̊u (UAVs), které jsou schopny vykonávat úkoly
v r̊uzných prostřed́ıch bez nutnosti lidského zásahu. Mezi části této
problematiky patř́ı rekonstrukce 3D scény neznámého prostřed́ı, aby
se v něm UAV dokázala lokalizovat a bezpečně pohybovat. Jeden ze
zp̊usob̊u, jak takový 3D model źıskat, je pomoćı sńımk̊u z monokulárńı
kamery připevněné na UAV a údaj̊u o pohybu ze senzor̊u inerciálńı
měřićı jednotky IMU. Výhodou této kombinace je dostupnost a ńızká
cena v porovnáńı s ostatńımi sestavami jako např́ıklad s LIDARem.
Dı́ky výslednému 3D modelu je pak UAV schopna sama naplánovat
bezpečnou trajektorii vyhýbaj́ıćı se všem překážkám a aplikovat ji v
reálném prostřed́ı.
Tato práce se zabývá dvěma open source algoritmy, FLaME a Kimera,
které zpracovávaj́ı informace ze sńımk̊u poř́ızených monokulárńı
kamerou a pomoćı algoritmu structure from motion (SfM) vytvář́ı 3D
model neznámého prostřed́ı. Algoritmy byly nejdř́ıve otestovány na
veřejně dostupných EuRoC datasetech a následně byla ověřena jejich
funkčnost v simulátoru použ́ıvaného a vyv́ıjeného skupinou MRS na
katedře kybernetiky ČVUT. Nakonec byly provedeny i experimenty v
reálném prostřed́ı pro ověřeńı reálného použit́ı.

Kĺıčová slova: autonomńı bezpilotńı helikoptéra, monokulárńı
kamera, rekonstrukce 3D scény, struktura z pohybu, monokulárńı
lokalizace a mapováńı
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Chapter 1

Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Introduction to the problematic . . . . . . . . . . . . . . . . . . 3

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

The latest improvements in computational technology enabled to produce small,
power efficient and computationally powerful devices such as micro-controllers, central
processing units (CPUs) or graphics processing units (GPUs). This paved the way to a
massive development in the area of unmanned aerial vehicles (UAVs), which are limited
in the weight of the carried payload and have a constrained power supply. Equipped with
these small and modern devices that can provide sufficient computing power, the UAVs
are then able to process a large amount of data from onboard sensors and use them for
localization, mapping or detection of obstacles and interesting objects.

There is a wide variety of UAV spanning from very large drones that can replace a
piloted aircraft, to smaller and lighter types of UAVs such as multi-rotor UAVs that can
perform a lot of interesting and diverse tasks, which are covered in the next section.

1.1 Motivation

The number of rotors and length of the arms of the UAVs depend on the situation
and the task the drone is meant to do. Larger types of multi-rotor UAVs with more motors
and longer arms are more stable and therefore are suited for carrying heavier and often
expensive equipment for example professional cameras for filming or larger sensors, that
can provide very precise data from the surroundings.
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(a) Cave Býč́ı skála [5] (b) DARPA SubT challenge [6]

Figure 1.1: Examples of multirotor UAVs deployed undeground

Smaller UAVs have the advantage of lower weight and therefore smaller inertia when
flying. This makes them able to perform agile maneuvers and effectively avoid any obstacles
that could get in their way. Thanks to their small size, they can also fly through narrow
passages or tight man-made environments which makes them well suited for reconnaissance
missions in difficult terrains.

Such example are missions in underground environments such as caves or human-
made structures. Successful testing experiments were conducted by the multi-robot systems
(MRS) group in Southern Moravia Karst cave system Býč́ı skála [5] — figure 1.1a. The
results proved, that the drones were able to map the cave system well and could be very
helpful in further cave exploring. Another example of an underground task was at the
DARPA SubT challenge [7, 6] — figure 1.1b, where the drones had to explore tunnel, cave
and urban environments including a subway station-like structure.

The UAVs can be used also in emergency situations, where their efficiency was also
proven in various tasks: the fire extinguishing in high-rise buildings on MBZIRC 2020 inter-
national challenge [8] — figure 1.2a and also during mapping and search in the earthquake-
damaged buildings in Japan [9].

Swarms of UAVs are also useful if trying to cover larger areas, however the com-
munication and coordination becomes more challenging with the increasing number of
drones. Very interesting approach is the UVDAR project [10], where there is no central-
ized control system and the drones are using only blinking ultra violet (UV) light emitting
diodes (LEDs) for both mutual localization and basic communication (by changing the
frequency of the blinking). This system is very robust and can be used in real world condi-
tions with changing illumination, presence of undesirable light sources or their reflections,
because the blinking UV light can be easily separated from the background.

Another interesting field of usage is documentation of historical buildings and monu-
ments covered by the project Dronument [11] — figure 1.2b. The UAV is used to map the
interior or exterior of the object including remote areas that are difficult for humans to
reach and would require the scaffolding. Usually, two drones in a formation are used: one
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carrying a light source and the other the camera. This whole approach drastically reduces
the required effort and time from number of months to only a few hours.

Concluding all the results from these projects, the UAVs are starting to play an
important role in helping humans in solving a lot of often dangerous tasks and also making
the work much more effective and less time consuming.

(a) MBZIRC 2020 Challenge [8] (b) Mapping remote areas in a church [11]

Figure 1.2: Examples of another multirotor UAV applications

1.2 Introduction to the problematic

In many tasks the UAV has to enter an unknown environment. In that case, it has no
information about the layout of the surroundings and possible obstacles in the way. To be
able to generate a safe trajectory and navigate through such environment, the UAV must be
able to create a 3D structure of its surroundings. There are several ways of reconstructing
it using a light detection and ranging (LIDAR), stereo pair of cameras, depth camera or
just a single camera. The solution with the single camera has the advantage of being the
most lightweight and the most affordable.

This work focuses on FLaME [3] and Kimera [12], two state-of-the-art methods that
employ the single-camera solution. Both methods utilize the structure from motion (SfM)
approach, where an image stream from a monocular camera onboard the UAV is used to
reconstruct a 3D model. This is achieved by analyzing the image differences caused by
motion of the camera between subsequent frames. The resulting model then provides vital
information for planning safe trajectories.

1.3 Thesis outline

This chapter has introduced the broad range of UAV applications and touched on the
problematic of reconstructing models of unknown environments. In the following chapters,
we will delve deeper into this topic.
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Chapter 2 presents state-of-the-art approaches that are relevant to this problem and
are closely related to evaluated algorithms. Following this, the chapter 3 introduces the
theoretical foundations for the evaluated methods FLaME and Kimera. These methods
are further described in chapter 4. The implementation of the evaluation framework is
outlined in chapter 5.

Chapter 6 discloses the results and performance assessments. The FLaME and Kimera
methods were evaluated using publicly available EuRoC datasets, the UAV system with
Gazebo simulator that is used by the MRS group [13] and data from a real-world UAV
flight.

The results and outcomes from this thesis are discussed in chapter 7. Also, the possible
future work is mentioned.



Chapter 2

State-of-the-art approaches

Contents
2.1 Structure from motion . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Simultaneous localization and mapping . . . . . . . . . . . . . 6

2.3 Visual-inertial odometry . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Visual-inertial navigation system . . . . . . . . . . . . . . . . . 7

The object of this chapter is to outline the available cutting-edge methods and ap-
proaches that are utilized during the process of the 3D scene reconstruction from the
monocular camera output. These are either integrated into one of both of the examined
methods — FLaME and Kimera — or are closely related to them. The chapter begins with
the description of SfM and simultaneous localization and mapping (SLAM). The rest of
this chapter is devoted to the visual-inertial odometry (VIO) methods.

2.1 Structure from motion

SfM is utilized in both FLaME and Kimera. In general, SfM uses camera frames
from varying positions, typically during motion, to reconstruct a 3D structure. The most
common implementations of SfM, found in both tested methods, assume that the scene is
static and the successive camera frames are ordered with only minor movements in between.
Nonetheless, there are also alternatives to this approach. For instance, if the scene contains
motion, there are methods that can estimate this movement from the optical flow in the
images [14] and share this information with the SfM. If the set of images is unordered, the
SfM can still be used, however it may result in larger error due to the increased difficulty in
feature selection and matching. These types of SfM can be used for example on photographs
of the same object from a photo collection [15, 16].
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The outcome of this process has the form of 3D points, commonly referred to as a
point cloud. Typically, the SfM doesn’t need to be executed in real time, and is therefore
often designed to produce a high-quality 3D structures, a process which requires longer
computation time. However, both FLaME and Kimera are primarily designed to be used
on UAVs, where real-time performance is more important than high precision, due to its
application in navigation and obstacle avoidance. This means that it is possible to compute
it in real-time on an UAV equipped with a CPU.

Another advantage of this method is that many SfM algorithms don’t require any
information about the camera poses and they can determine it on its own. As such, it can
effectively work in areas without a global positioning system (GPS) signal or in environ-
ments with a high level of signal noise. However, relying solely on estimated poses may
impact the quality of the result point cloud.

On the other hand, some methods require the camera pose for the reconstruction or
just for initialization. To estimate the camera poses, techniques such as SLAM, VIO or
visual-inertial navigation system (VINS) prove to be extremely beneficial. These methods
will be discussed in the subsequent sections.

2.2 Simultaneous localization and mapping

SLAM is just like the SfM a computational problem of constructing a map of an
unknown environment while simultaneously keeping track of an agent’s location within
it. However, there is a difference between these methods. While SfM can be used for
producing a high-quality mesh, SLAM is more focused on real-time performance tailored
to the available resources, which can be limited. It is not expected from SLAM to produce a
perfect output, but rather one that enables the operational compliance. This can include a
lower quality mesh often with outliers and reconstructed trajectory from previous positions
of the UAV.

SLAM methods are based on concepts in computational geometry and computer
vision, and are used in robot navigation, robotic mapping and odometry for virtual reality
or augmented reality. The first monocular SLAM system to operate in real-time was created
in 2003 and is commonly attributed to [17]. The method is also analyzed and described in
more detail in paper [18].

Another examples of SLAMs that use monocular camera are Large-Scale Direct (LSD)
Monocular SLAM [19] and the multi-level mapping (MLM) SLAM [20] from the authors of
FLaME. LSD-SLAM allows to build consistent and large-scale maps of the environment and
the MLM is able to distinguish between plane areas and areas, that have to be reconstructed
in more detail.

The SLAM methods are also often using extended Kalman filter (EKF) [21] that is
well designed for processing data from areas with high noise intensity. Considering a set
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of measurements with noise and inaccuracies, the real values are estimated based on the
assumption that the measurements are from normal (Gaussian) distribution.

In one of the two methods examined in this thesis, namely Kimera, the estimation
of the UAV position is included. Generally, it can be determined using only a combination
of on-board sensors: the camera and the inertial measuring unit (IMU), which includes
acclelrometers and gyroscopes capable of measuring angular rate and specific force. The
method using this combination of sensors is called VIO and is discussed in the following
section 2.3.

2.3 Visual-inertial odometry

In general, the process of estimation of the UAV pose within an environment, based
on information from its visual sensor is referred to as visual odometry (VO). However, the
camera alone cannot retrieve the scale of the scene and therefore is only capable of esti-
mating the motion, not the true scale of the trajectory and objects in the environment. By
adding accelerometer measurements, the scale of the scene can also be estimated, derived
from the absolute value of the acceleration. This method is then referred to as VIO, due
to its use of inertial measurements from IMU.

The VIO is useful in correcting the bias from gyroscope measurements, because the
sensors accumulate an error over time, which causes a drift in the measured values. By
adding a camera with VIO to the IMU, there are two independent sources of information,
which improves the precision.

Another practical example of use is with very distorted or none GPS signal, allowing
the UAV to fly under bridges, between buildings or even indoors. VIO can also run parallel
with the GPS and just improve the error of the path estimation same as with the IMU.

However, the VIO can be constrained by a bad visibility, too intensive motion blur
or by the lack of texture in the environment. In these situations, the IMU measurements
can replenish the data from visual track, that would be otherwise insufficient for the pose
estimate.

When it comes to the pose estimation method, the VIO most frequently uses the
EKF [22, 23]. More recently, the combination with the non-linear optimization was also
developed [24].

2.4 Visual-inertial navigation system

The VIO can also be used for navigation purposes similar to SLAM. A navigation
system with implemented VIO is called VINS, but unlike SLAM, it inherits all advantages
of the VIO such as more precise estimation.
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VINS can further be used with multiple cameras to improve accuracy [25] or even
across multiple UAVs [26]. Nevertheless, a monocular VINS can achieve satisfactory results
as well, requiring only a minimal setup consisting of a single camera and IMU.

The VINS can use the same methods for optimization as those mentioned in section
2.3. OpenVINS [27] is an example of the method that uses the EKF. It is well documented
and extendable, making it a suitable foundation for further VINS development. Another
example is VINS-mono [28], which is a monocular VINS system that is presently used by
the MRS group, implemented with the non-linear optimization.
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This chapter provides an overview of the theoretical principles and mathematical
tools that are essential for the functionality of the reconstruction methods. To configure
these methods for minimal error while creating the 3D mesh, it’s crucial to have knowledge
about the camera parameters, because these parameters determine the deformation of the
scene projection on the 2D image plane. Equally important is the understanding of the
used coordinate systems and how to perform the transformations between them. Such
knowledge ensures the successful conversion of the resultant pointcloud into the desired
coordinate frame to build a global pointcloud for evaluation.

3.1 Camera model

A camera can be characterized as a sensor that captures a static image of a desired
scene. Mathematically, this can be described as mapping from 3D coordinates onto a 2D
image plane. However, given the unique parameters of each camera, no two mappings are
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identical. In order to determine how exactly the coordinates would be transformed, we need
to define a camera model that approximates the actual camera as accurately as possible.

3.1.1 Camera parameters

The camera model is described by camera parameters, which define its technical
properties. There are two types of parameters: the extrinsic and intrinsic parameters.

The extrinsic parameters determine the camera position relative to the reference
frame, i. e. how to transform coordinates from the world coordinate system to the camera
coordinate system. To perform this transformation, the extrinsic matrix P (3.1) has to be
created from these parameters.

P =


r11 r12 r13 vx
r21 r22 r23 vy
r31 r32 r33 vz
0 0 0 1

 (3.1)

The rij elements correspond to the rotation matrix that is part of P. The fourth
column represents the translation vector v in homogenous coordinates that connect the
two origins of the coordinate systems.

The intrinsic parameters provide the transformation from the metric 3D camera coor-
dinate system to the 2D image plane with pixel coordinates. Similarly, we need to construct
the intrinsic matrix K (3.2) to perform this transformation. This matrix is often called the
calibration matrix, because it contains all technical parameters of the camera that can be
obtained by a calibration (section 3.1.2).

K =

fu 0 cu
0 fv cv
0 0 1

 (3.2)

The fu and fv are the focal lengths of the camera and the cu and cv are the coordinates
of the principal point.

With the correct camera parameters it is possible to perform a triangulation of feature
points from the camera frames with high precision.

3.1.2 Obtaining camera parameters

Generally, there are two approaches to retrieve the parameters. The first, calibration,
is to measure the parameters of the used camera with maximum precision before the scene
reconstruction. A calibrated camera simplifies the reconstruction process substantially,
because the images from the camera are transformed to the undistorted ones with minimal
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error. On the other hand, it poses a disadvantage, because once measured, the parameters
remain constant during the reconstruction, so the setup must not be altered.

The second approach is to calculate the camera parameters along with the 3D points,
only relying on established correspondences between the observed images. One example of
this approach is described in [29]. Compared to the calibration approach, it takes more com-
putational effort and it is less accurate. In addition, it needs a subsequent auto-calibration
step to remove the projective distortion. But besides these disadvantages it features greater
flexibility and ease of use.

In this work, the first approach is used. The camera parameters are either obtained
from already created configuration files or we perform the calibration by ouserlves. For
that, the Kalibr [30] package was used.

3.1.3 Pinhole camera model

The pinhole camera model (figure 3.1) is the most simple, idealized approximation
of the camera. The aperture is described as a point with no lenses used to focus the light.
Therefore, no distortion is occurring. The model also does not include the effect of blurring
of unfocused objects caused by lenses and finite sized apertures. The validity of the model
depends on the quality of the camera. The model error typically increases from the center
of the image to the edges as lens distortion effects increase.

Some of the effects that the pinhole camera model does not take into account can be
compensated, for example by applying suitable coordinate transformations on the image
coordinates. Other effects are sufficiently small to be neglected if a high quality camera
is used. This means that the pinhole camera model often can be used as a reasonable
description of how a camera depicts a 3D scene.

Figure 3.1: Pinhole camera model [1]
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3.1.4 Distortion parameters

In many cases, the error of the pinhole camera model can be too high. As said before,
the biggest source of the error comes from the distortion effects of the lens. Therefore, a
compensation for this effect is needed. This can be done by undistorting the image using
a distortion model. The most commonly used one is the radial distortion model. In this
thesis, the equidistant distortion model is used which is suitable for the fish-eye camera
which was used both in simulation and in real world setup.

The most common way to get distortion parameters of the camera is by pointing on a
chessboard with the known sizes. Comparing it with the distorted image of this chessboard
it is possible to get relatively precise parameters of the distortion [31]. In figure 3.2, an
example of the distortion effect can be seen. The chessboard gets more curved on the sides
as the effect intensity is increasing with respect to the distance from the image center.

Figure 3.2: Comparison between the undistorted and distorted image from camera

3.2 Coordinate frames

During scene reconstruction, having a good coordinate representation of the present
environment is vital. It can be represented by three primary coordinate frames: the world
frame, the body frame and the camera frame. The world frame signifies a fixed point in
the environment, such as the origin of a GPS system, a tracking ground station, or the
location from which the UAV took off. The body frame usually signifies the position of the
center of the UAV, which is commonly the IMU. The camera frame represents the camera’s
position on the UAV, with the origin is typically situated in the camera’s focal point.

Both the world and body frames typically have the right-forward-up (RFU) orienta-
tion, or any other with the z-axis pointing upward. On the other hand, the camera frame
uses a back-down-right (BDR) orientation, with the z axis aligned with the lens axis, that
is, pointing in the direction where the camera is facing.

In this work, we also deal with a camera-world frame, which is used by FLaME. It
shares the same position as the world frame, but uses the BDR orientation.
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3.3 Transformations

In this work, we heavily rely on transformations between the coordinate frames such
as described in 3.2. It is used to transform the pointclouds to the desired frame. The trans-
formations are mainly performed with 3D vectors representing translations and quaternions
(described in 3.3.1) representing rotations.

Nevertheless, there are also other methods such as 4 by 4 transformation matrix
similar to P, which is explained in section 3.1. This matrix can transform any points or
vectors in homogenous coordinates.

3.3.1 Quaternion

Quaternions, in a simpler form, can be represented as a 4D vector, as shown in 3.3:

q = [x, y, z, w] (3.3)

The x, y and z components represent the axis of rotation in three-dimensional space.
The w component, often called the scalar or real part, corresponds to the amount of rotation
around this axis. By using quaternions for rotation calculations, we can avoid issues like
gimbal lock that are commonly encountered with other methods, such as Euler angles. This
makes quaternions a highly effective tool for transformations between coordinate frames.

3.4 Epipolar geometry

Figure 3.3: Epipolar geometry [1]

Epipolar geometry is a key component of the SfM monocular scene reconstruction
method (section 2.1) that is used both in FLaME and Kimera. Leveraging this principle
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allows us to effectively identify correspondences, which are the same points in space across
two consecutive camera views. This concept uses the geometric relations between these
views, effectively narrowing the the search of the correspondences from the entire image to
just a line and its surroundings. The concept of this geometry is illustrated in figure 3.3
and is further explained in the following text.

If there is a point X in the space that is seen in two camera views, it can be represented
as image points x and x’ that are its projections onto each image plane. The point X, its
projections and camera centers c, c’ lie in the same plane π called the epipolar plane.
The baseline is a line that connects the two camera centers. The intersection point of
the baseline and the image plane is termed the epipole, while the the intersection of the
epipolar plane with the image plane is referred to as the epipolar line.

With information about the camera’s poses in 3D space (relative to the correctly set
fixed world frame) and the coordinates of the image point x, it is possible to determine
the epipolar plane π using only these points. This implies that the corresponding point x’
must lie on the epipolar line l’. This characteristic can be used to restrict the search of
the correspondences in the second image to the epipolar line or points within a specified
proximity.

An example of epipolar lines in an image is depicted in figure 3.4 [2]. In this example,
nine feature points were selected in the first image (right), followed by the computation
of the corresponding epipolar lines and their transformation onto the second image (left).
The result than enables to find the correspondences in the second image restricted onto
the epipolar lines and finally compute the 3D coordinates of the point.

Figure 3.4: Epipolar lines from two images [2]

3.5 Feature detection

In order to construct epipolar lines and 3D points, it’s essential to first identify the
features in an image. Feature selection is a process in which a set of points is selected from
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the image such that every point can be easily distinguished between subsequent camera
frames. To identify the most suitable points, a simple metrics based on the gradient of the
images can be used.

Over time, various descriptors and detectors have been developed. One of the oldest
feature detectors is Good Features to Track (GFTT) [32], which is still widely used today.
Among the most well-known are: Features from Accelerated and Segments Test (FAST), a
feature detector that identifies features based on the pixel surroundings [33, 34]. Oriented
FAST and Rotated BRIEF (ORB) [35] is a descriptor that combines the FAST detector and
Binary robust independent elementary feature (BRIEF) [36] descriptor in order to benefit
from the invariance to rotating and scaling. Adaptive and Generic Accelerated Segment
Test (AGAST) [37], another notable detector, is build upon the FAST foundation.

The scale-invariant feature transform (SIFT) [38] descriptor is also widely used. It
is robust to various changes like image scaling, translation, rotation and change of illumi-
nation. There is also more modern variant that builds on SIFT: SURF, which has much
faster performance [39]. Sadly unlike ORB, these two descriptor types are patented and
cannot be used in commercial applications.

3.6 Feature tracking

Once the features have been successfully obtained from the image, they are used
for the triangulation to determine their corresponding points in 3D space. To accomplish
this, we need to identify the same points - also known as correspondences - in different
camera views. As previously mentioned in section 3.4, this can be achieved through epipolar
geometry, which utilizes the geometric relationship between two consecutive camera images.

3.7 Delaunay triangulation

The Delaunay triangulation is a process for creating a structure, where all the trian-
gulated feature points are connected into triangles to form a Delaunay graph. This graph
has one important feature: no points should be inside any of circumscribed circle of the
triangles in the graph (figure 3.5 left). As a result, the structure is clearly defined and
optimal, because it maximizes the minimum angle of all triangles. Therefore, no narrow
triangles, which would degrade its quality, are present in the structure. In the following
figure 3.5, there is an example of the graph structure with circumscribed circles (on the
left) and the practical usage (on the right).

The triangulated mesh thus creates a very efficient reconstruction of the environment
and its computational complexity is lower compared to other algorithms that do not use
this method.
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Figure 3.5: Delaunay graph structure with circumscribed circles and practical usage [12]

3.8 Variational smoothing

The methods that are using the Delaunay graph triangulation have effective and
often precise output. However, there is room for further improvement as the mesh can
be smoothed and cleaned from the outliers. The Variational smoothing solves exactly this
problem by trying to minimize the general error of the mesh that can be represented by
the function f :

E(f) = Esmooth(f) + λ · Edata(f) (3.4)

The total mesh error is defined by the data error Edata which represents the amount
of noise in the mesh and the Esmooth where the second-order Total Generalized Variation
is used [3].

The result is then minimized by the Chambolle and Pock method [40].

The parameter λ controls the balance between those two error functions and divides
the importance between the data-fitting and the smoothness.

This process is used in the FLaME algorithm. The impact of the variational smooth-
ing can be seen in the figure 3.6. On the left, there is the standard approach to reconstruct
the scene without any optimization compared with the optimized one on the right.

Figure 3.6: Comparison between the standard approach and the Variational smoothing [12]



Chapter 4

Evaluated methods

Contents
4.1 FLaME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Kimera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

The aim of this chapter is to describe the selected open-source methods, FLaME
and Kimera that implement the SfM and are based on previously described state-of-the-
art methods (chapter 2) and the mathematical foundations (chapter 3). In the end, there
is a comparison and analysis whether they are suitable for the usage in UAV control in
unknown terrain with obstacles where the fast response and low computational complexity
is required.

4.1 FLaME

The FLaME - Fast Lightweight Mesh Estimation [3] is a method based on the SfM
which creates a 3D mesh of the surrounding environment from the camera frames taken in
the motion (section 2.1). The mesh network is created from selected points in the image
and their depth is estimated using an optimization algorithm (Chambolle and Pock [40]).
The advantage of this 3D network is that it can be updated and expanded in real time using
consecutive images captured by the monocular camera, while maintaining its optimality.

The figure 4.1 shows how the algorithm proceeds when creating a 3D mesh from the
camera image and pose.

Firstly, the feature selection (section 3.5) is applied. Subsequently, all points are con-
nected into triangles to form the optimal structure Delaunay graph as described in section
3.7. Furthermore, the Variational smoothing optimization (section 3.8) can be additionally
applied on the structure.
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Figure 4.1: Overview of FLaME algorithm steps [3]

The network thus creates a very efficient reconstruction of the environment and its
computational complexity is lower compared to other algorithms that do not use this
method, such as Large-Scale Direct (LSD)SLAM [19] or multi-level mapping (MLM) [20].
The comparison can be seen in the following table 4.1:

Table 4.1: Efficiency comparison of FLaME with LSD SLAM and MLM [3]

The parameter L in the table corresponds to the density of points in the network (3 -
densest, 5 - thinnest). FLaME can produce quite bigger number of depth maps (DM), while
also maintaining lower relative inverse depth error (RE) and a higher density of accurate
inverse depths of points, i. e. their distance from the camera (AD). ”Time” represents the
duration it took to process one frame and it is also substantially lower, mainly when L is
4 and 5.

Thanks to short single-frame processing time in order of miliseconds and Delaunay
graph features, FLaME is able to provide accurate 3D reconstruction of the surroundings
during each frame, which is very useful for the UAV navigation in an environment with
unknown obstacles, where the lowest latency possible needs to be achieved.
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4.2 Kimera

The Kimera algorithm is quite similar in its design to FLaME, differing only in a
few improvements, such as the division of the program into separate modules, so that the
whole algorithm can be set to provide for example only the visual odometry (VIO). In
addition to FLaME, Kimera is also equipped with semantic segmentation, which is able
to recognize and label individual types of objects in the resulting 3D mesh and color them
with different colors. The colored mesh can be seen in the figure 4.2.

Figure 4.2: Example of semantic segmentation in 3D mesh [3]

Kimera contains a total of 4 modules that can work all together when using the
algorithm at full scale or they can be combined in various ways, as can be seen on the
figure 4.3. These 4 modules are:

� Kimera-VIO: Visual-Inertial Odometry Module - the visual-inertial odometry,
that was dedcribed in section 2.3, is performed in this module. The depth of the
obtained points in the image is estimated and also the position of the UAV relative
to them is determined.

� Kimera-RPGO: Robust Pose Graph Optimization Module - this module is
used for the optimisation of the reconstructed mesh. Outliers that do not contribute
to the structure representation are removed and loop closures are detected, if the
UAV visits the same place more than once.

� Kimera-Mesher: 3D Mesh Reconstruction - creates both a spatial mesh of
all captured images and a mesh for each individual image. Although this module
doesn’t produce as accurate mesh as the following module and is more noisy as well,
its computing time is very low (15 ms in average).

� Kimera-Semantics: Metric-Semantic Segmentation - a module that generates
higher quality mesh and complements it with semantic labels that describe the type
of surrounding objects. Labels are first determined for individual images, which are
then used to mark labels in the overall 3D mesh. This whole process requires an order
of magnitude more time to compute (0.1s on average), which is suitable for the use
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in real-time.
To determine labels, the neural networks for semantic segmentation [41] are used. The
probability of all labels for each point of the mesh is estimated and then the most
probable one is assigned to it. Thanks to this, it is possible to precisely determine
the shape of the recognized objects.

Figure 4.3: The architecture of the Kimera pipeline [3]

In order for the algorithm to work in an environment where low latency and fast re-
sponse are essential, we decided to use the Kimera-Mesher module with low computational
complexity. The Kimera-Semantics module is redundant for this application, because its
computational speed is slower and when avoiding an object it is usually not necessary to
have a semantic labeled mesh.
Therefore, the combination of the first three modules without the Kimera-Semantics mod-
ule, which is not necessarily needed, seems to be the most suitable combination that saves
additional computing power on CPU as a result.
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In this chapter, we discuss the implementation of the evaluation framework, along
with other related implementations. The evaluation framework is specifically designed to
handle corrections or transformations of input data to the evaluated methods, which can in-
clude image streams, camera information, IMU measurements and ground truth odometry
data. It also facilitates processing the output of the evaluated methods, which predom-
inantly consists of 3D polygon mesh. Rest of the implementations aim to enhance the
performance of the methods, expand the scope of evaluation or facilitates the process of
implementation.

5.1 Used libraries

Because the examined methods are designed to work on the UAVs, it is suitable to
use the robot operating system (ROS) for managing the data streams and all the com-
munication. We also use the OpenCV library, which is suitable for computer vision, here
especially for image undistortion. We also use the PCL library for the construction of
transformations of the method output meshes to form a global point cloud.
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5.1.1 ROS

ROS is popular open-source library that is characteristic for the division of the pro-
gram into so-called nodes, that solve specific part of the problem. The nodes form a network,
where they can communicate by message interface provided by ROS. The communication
between nodes can be recorded and stored in a file format called rosbag, which enables
offline data analysis and simulation replay. ROS also provides an rosservice utility, which
enables nodes to exchange requests and responses, allowing for the execution of specific
functionalities or operations through service calls.

During the development process, the Rviz visualization package in ROS proved to be
an essential and versatile utility. It offers a comprehensive set of tools for visualizing various
types of data, including images, coordinate frame transformations, and point clouds. This
capability proved invaluable for developing the framework and verifying the performance of
the system, enabling effective debugging and validation of the implemented functionalities.

For the transformation between the coordinate systems (described in section 3.2), the
tf2 ROS library is used. It allows to transform anything transformable between any two
coordinate frames at any desired point in time.

5.1.2 OpenCV

OpenCV, which stands for Open Source Computer Vision Library, is a comprehensive
library of programming functions mainly aimed at real-time computer vision. This library,
is highly versatile and is used extensively in areas such as interactive art, stitching maps
on the web, robotics, and more. In this work, we use the cv::fisheye::undistort function,
which is particularly useful when dealing with images taken by a fisheye lens camera.
This function is used to correct the distortions caused by the fisheye lens, converting the
distorted image into a standard perspective image. By doing so, it enables us to use the
methods with externally undistorted image stream as an input.

5.1.3 PCL

The point cloud library (PCL) is an open-source library dedicated to the processing of
3D point cloud data. The library contains numerous state-of-the-art algorithms for filtering,
feature estimation, surface reconstruction, 3D segmentation, and more. PCL is designed
to be highly efficient and scalable, being able to handle large volumes of data, and it is
compatible with various sensor data types and formats. The modular architecture of PCL
allows developers to easily adapt and use specific components for their needs. In this work,
we leverage PCL’s tools to process the output point clouds from the evaluated methods
and to load reference point clouds. Both these point clouds are then visualized in Rviz.
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5.1.4 Kalibr

The Kalibr [30] package is a robust and versatile toolbox developed for calibrating
single or multiple cameras, as well as inertial sensors. It’s an open-source tool, widely
used in the robotics and computer vision communities. Kalibr allows for the calibration
of both intrinsic camera parameters such as focal length and optical center, as well as
extrinsic parameters like relative pose between sensors. This calibration process is crucial
in systems involving multi-sensor fusion, such as UAVs and autonomous vehicles, where a
high degree of accuracy and precision is required. Kalibr offers advanced algorithms and
techniques to perform calibration in a consistent and efficient manner, making it a valuable
tool in many projects.

5.2 Implemented framework

The implementation is written in the C++ programming language, leveraging its
unique features. The C++ has a support in ROS and offers faster performance and better
efficiency compared to languages such as Python. Hence, it stands as the optimal choice
for real-world UAV applications and related use cases. Furthermore, a significant majority
of the popular libraries are written in C++, enhancing its utility in this context.

The work was developed on Ubuntu 20.04 Linux Operating system (OS), which sup-
ports the newest version of ROS — Noetic, which is compatible with the MRS UAV
system (section 6.3) used for the simulation. The FLaME and Kimera had been developed
on Ubuntu 16.04, but after some configuration, it was possible to use them in the newest
version.

The implemented evaluation process could be described like following: Input from a
rosbag or simulation is processed before being passed to either FLaME or Kimera. Process-
ing may include undistorting the image stream, correcting the values of camera parameters
(as described in 3.1.1), distortion parameters (section 3.1.4) or discarding data with the
identical time-stamps, which may disrupt the evaluated pipelines.

After the reconstruction process by the evaluated method, the output in the form
of polygon mesh is further processed. Initially, 3D points are extracted and, if necessary,
transformed to the coordinate system of ground truth. The transformation values are ob-
tained either directly from simulation or extracted from the odometry data published by
the rosbags. The transformed 3D points are then concatenated into a global point cloud,
which constitutes the final result.

Throughout the entire process, the result cloud and the positions of coordinate frames
are visualized and can be observed in Rviz. A reference point cloud is also published and
visualized to verify the proper functioning of the methods.
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Finally, once the rosbag record ends or the tracking of the planned path in simulation
is completed, the resultant point cloud is saved. This cloud is subsequently evaluated using
two metrics: mean distance to reference (MDR) with standard deviation and mean map
entropy (MME).

The overall framework is illustrated in the diagram shown in figure 5.1.

Figure 5.1: Diagram of the evaluation framework

5.3 Extending the evaluated methods

In Kimera, the primary emphasis is on stereo reconstruction, with the monocular
variant considered more as an additional extension. This also reflected in the implemen-
tation, which didn’t provide any module for 3D polygon mesh reconstruction. However,
the authors were clearly intending to extend it to the monocular variant as well, so it was
possible to implement it into this method.

Also, Kimera seemed to provide the possibility to receive external accurate poses.
However, a closer examination of the code revealed that the callback functions for reini-
tialization were incomplete and would require significant changes in the pipeline.

To address this, we allowed the Kimera VIO to estimate the poses internally and the
output point cloud extracted from the polygon mesh was transformed from the estimated



5.3. Extending the evaluated methods 25

pose into the accurate pose. Sometimes, the VIO also tended to be unstable and drift out
very quickly. To manage this, the distance between the accurate and estimated poses was
being computed and if the difference exceeded a defined threshold, we reinitialized the
Kimera pipeline by calling a reinitialization rosservice.

On the other hand, the FLaME method didn’t require any modifications. This is
because FLaME is specifically designed to generate a mesh from a monocular camera and
relies on externally provided poses.
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In this chapter, we present the results obtained from our experiments. We start by
analyzing the specific configuration options of FLaME and Kimera. We then select the
optimal variant and proceed to compare the performance of the two methods. To conduct
these evaluations, we utilize the publicly available EuRoC datasets [4]. In the next step,
we integrate these methods into the MRS UAV system and assess their performance in the
Gazebo simulator. Finally, we evaluate the methods using real-world flight data collected
in outdoor environment and compare the outcomes with the ground truth model.

6.1 Metrics for pointcloud evaluation

To evaluate FLaME and Kimera, we employ two key metrics to evaluate the quality
of the generated point clouds. Firstly, we utilize the MDR metric, which involves compar-
ing the resulting point clouds against highly precise reference point clouds. Secondly, we
utilize the MME metric to measure the degree of point scattering within the point cloud.
Additionally for Kimera, we also consider the number of points in the point cloud as an
important factor when selecting among the available feature detectors, because it produces
smaller number of points, namely in simulation or on the recorded outdoor dataset.
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6.1.1 Mean distance to reference

The MDR is a metric used to evaluate the accuracy of a constructed point cloud
by measuring the distance between each point in the constructed cloud and its nearest
neighbor in a reference point cloud. It relies on having a known reference point cloud,
which is often obtained from high-resolution 3D scanners with negligible measurement
error. The coordinate systems of the localization system on-board the UAV and the 3D
scanner need to be aligned using a yaw-only rigid body transformation algorithm. It is
assumed that the nearest neighbor in the reference cloud corresponds to the same point in
the real world, which is a reasonable approximation for dense LIDAR scans.

6.1.2 Mean map entropy

When a high-quality reference point cloud is not available, alternative methods can
be employed to assess the quality of the map. In these cases, it is assumed that a good map
should exhibit sharpness, meaning that a large variation in points that are relatively close
together can be attributed to noise. This assumption is particularly valid in man-made
environments where planes are prevalent, and nearby points are expected to lie on the
same plane and be evenly distributed. Conversely, natural environments like grass would
yield more scattered point sets. To address this, we introduce a method known as MME
for evaluating map quality.

The method how to compute the entropy of a point in the point cloud is defined in
following equation 6.1:

H(x) =
1

2
ln

[
det(2πe

∑
(x; r))

]
(6.1)

The
∑

(x; r) represents the sample covariance of the points in the radius r around
the point x. In our case, we use the value r = 0.6m.

6.2 The EuRoC datasets

The EuRoC micro aerial vehicle (MAV) datasets [4] are one of the most popular
datasets for 3D reconstruction, because they provide all the necessary data such as synchro-
nized images, IMU measurements and ground-truth poses of the UAV. Also, the ground-
truth laser scan of the environment is provided for the comparison with the point cloud
reconstruction by the evaluated algorithms.

We use the part of the EuRoC with two Vicon Room datasets together with an
accurate ground-truth 3D structure. The datasets are recorded in two different rooms and
are captured over different flight paths through these rooms. Each of the flights has different
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level of difficulty: easy, medium and difficult. The difficulty levels resemble the speed of
the flight, agility of maneuvers, motion blur and the changes of the lighting.

For better visualization, we removed the upper part of the reference model containing
the ceiling. Figure 6.1 illustrates the two modified reference point clouds after the cropping
process. The colors in the figure represent the reflection intensity of the materials present in
the room. In further figures with result point clouds, the reference model will have always
a gray color.

(a) Vicon room 1 (b) Vicon room 2

Figure 6.1: Reference pointclouds from EuRoC [4]

To ensure the authenticity of the results, no point cloud alignment operations, like
iterative closest point (ICP), were conducted. Only minimal adjustments were made to
the point clouds obtained from FLaME, comprising just from a 90-degree rotation around
the z-axis. In case of Kimera, we utilized its feature for initializing the VIO using ground
truth odometry data. These ground truth odometry data were generated based on the data
extracted from the rosbag.

Following the successful construction of the result point clouds, the MDR and cor-
responding standard deviation (SD) were calculated using the CloudCompare software.
MME and corresponding SD were computed using an approach from [42]. Firstly we veri-
fied the benefit of the Variational smoothing optimization method used in FLaME. After
that we compared the different feature detectors in Kimera. Finally, we chose the variants
of FLaME and Kimera that presented the best results and compared them together.
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6.2.1 FLaME optimization

We conducted an evaluation to assess the impact of the optimization module in
FLaME, specifically the Variational smoothing (as mentioned in section 3.8). When re-
constructing the scene without applying this optimization, the variance in the depth map
increased significantly. This had a noticeable effect on the resulting point cloud, which had
twice higher MDR as shown in table 6.1. On the other hand, the MME was considerable
lower. Furthermore, the impact of the optimization module is clearly visible in the fraying
artifacts present in the resulting point clouds, as depicted in figure 6.2. These artifacts
indicate a loss of detail and accuracy in the reconstructed 3D model when the Variational
smoothing optimization is not applied.

Dataset
Without With

MDR [m] MME MDR [m] MME
easy 0.317 ± 1.548 -0.234 ± 0.588 0.154 ± 0.403 -0.416 ± 0.337

medium 0.390 ± 1.328 -0.257 ± 0.8 0.203 ± 0.280 -0.336 ± 0.443
difficult 0.803 ± 4.003 -0.174 ± 1.088 0.355 ± 0.801 -0.208 ± 0.602

Table 6.1: Results of FLaME without and with Variational smoothing on EuRoC Vicon
room 1

(a) No optimization (b) Variational smoothing

Figure 6.2: Comparison of FLaME without and with Variational smoothing on EuRoC
Vicon room 1
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6.2.2 Kimera feature detectors

Authors of Kimera also provide an option to choose from multiple feature detectors:
FAST, ORB or GFTT. To determine, which is the most suitable, we chose to run it on the
easy variant of Vicon room 1. The results are presented in table 6.2:

Feature detector MDR [m] MME N. of points
FAST 0.317 ± 0.403 -0.385 ± 0.448 289368
ORB 0.276 ± 0.187 -0.555 ± 0.472 254913

GFTT 0.298 ± 0.195 -0.316 ± 0.345 405249

Table 6.2: Results of Kimera with different feature detectors

The MDR values come around the same value, with ORB being slightly more accu-
rate. However, if we look at the number of produced points, the GFTT stands out by a
great margin. The values can be verified on the figure 6.3. Even though GFTT has slightly
higher MDR, we consider it as the best option, because the pros of twice more 3D points
overweights the slightly lower accuracy. Therefore, we use GFTT on Kimera in further
experiments. The following visualization underlines the presented results (figure 6.3):

(a) FAST (b) ORB (c) GFTT

Figure 6.3: Comparison of Kimera feature detectors
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6.2.3 Comparison with best configurations

After selecting the best variants of both methods, we conducted a comparison between
them. The results are summarized in table 6.3.

dataset method MDR [m] MME

V
ic

on
ro

om
1 easy

FLaME 0.154 ± 0.403 -0.416 ± 0.337
Kimera 0.303 ± 0.197 -0.298 ± 0.346

medium
FLaME 0.203 ± 0.280 -0.336 ± 0.443
Kimera 0.271 ± 0.252 -0.366 ± 0.577

difficult
FLaME 0.355 ± 0.801 -0.208 ± 0.602
Kimera 0.355 ± 0.318 -0.346 ± 0.752

V
ic

on
ro

om
2 easy

FLaME 0.444 ± 0.985 -0.184 ± 0.585
Kimera 0.260 ± 0.208 -0.289 ± 0.395

medium
FLaME 0.459 ± 0.757 -0.062 ± 0.611
Kimera 0.257 ± 0.248 -0.262 ± 0.564

difficult
FLaME 0.776 ± 1.956 -0.185 ± 0.918
Kimera 0.292 ± 0.277 -0.305 ± 0.683

Table 6.3: Results of FLaME and Kimera on the EuRoC dataset

Based on the obtained results, it is evident that the FLaME method performed better
in the first room of the evaluation. However it’s accuracy decreased noticeably in the second
room. Additionally, the standard deviation remained relatively high throughout all flights.
This can be attributed to a significant number of points that were estimated in great
distance from the rest of the estimated point cloud. The visualization of the comparison
can be seen in the figure 6.4:

(a) FLaME (b) Kimera

Figure 6.4: Comparison of FLaME and Kimera point clouds on V1 room — easy
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6.3 The MRS UAV system and Gazebo

The functionality of the algorithms was also tested in the Gazebo simulator using
the MRS UAV system [13] developed by the MRS group. This framework can provide a
simulation of a flight in various environments. The UAV setup can be also configured to
be as similar to the real UAV as possible. It offers the selection between different UAV
types and a lot of on-board sensors. In this work, a f330 UAV setup with fish-eye camera
was used. In figure 6.5, a comparison between the real UAV and its counterpart in the
simulation can be seen.

(a) DJI f330 in the simulation (b) DJI f330 in a real world

Figure 6.5: UAV model in Gazebo simulator compared to the real UAV [13]

The simulation was conducted using the model of the Stará Voda church (figure 6.6),
which proved to be an ideal environment for the evaluation. This choice was based on
several factors, including the church’s moderate size and the presence of feature-rich walls.
To ensure equal conditions for both methods, a path with multiple way-points was created,
so that both methods operated on similar inputs. The reference model (in gray) along with
the results from both methods can be seen in figure 6.7.

Figure 6.6: Stará Voda church reference model
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During the flight simulation, it was essential to specify the camera distortion model to
ensure accurate estimation of the points’ position. This involved identifying the intrinsic
and extrinsic camera parameters, as well as selecting the appropriate distortion model
(described in section 3.1.1). In this scenario, the equidistant distortion model for the pinhole
camera was chosen. This model effectively represents the fish-eye camera and was one of
the few supported by the evaluated algorithms.

Furthermore, the input had also been filtered from images and IMU data with iden-
tical subsequent time-stamps, which were produced by the simulator. This step was neces-
sary, because otherwise it would cause errors in the evaluated methods, especially Kimera.

The results from the flight are in table 6.4 the resulting point cloud along with the
reference (in gray) are illustrated in figure 6.7.

method MDR [m] MME
FLaME 2.109 ± 3.797 -2.066 ± 3.339
Kimera 0.727 ± 0.825 -2.701 ± 3.729

Table 6.4: Results of the comparison in the simulation in Stará Voda church

(a) FLaME (b) Kimera

Figure 6.7: Comparison of FLaME and Kimera in the simulation of Stará Voda church
model

In this case, FLaME demonstrated more precise and convincing results compared
to Kimera. However, the point cloud generated by FLaME contained a higher number of
points that were significantly deviated from the reference model, in comparison to Kimera.
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6.4 Testing in real outdoor environment

The experiments from the real-flight data took place on the MRS camp in Temešvár.
The flights were conducted in the area with buildings using a UAV setup with real-time
kinematic (RTK) positioning system and also a laser scanner for precise ground-truth
model that can be used for the evaluation of the error of the tested methods.

The data were recorded using DJI f330 UAV setup, that can be seen in figure 6.8.

Figure 6.8: The UAV setup used for the real world flight experiments

The ground-truth 3D scan of the environment was done by the Leica BLK360 3D laser
scanner. This scanner is able to produce a high precision point cloud of the environment
with accuracy up to 5 cm. Scans from multiple areas were conducted in order to connect
them into one 3D model of the whole area. For that, the ICP algorithm was used. To
enable better visualization, the point cloud was cropped in order to cover only the area of
the UAV flight path. In figure 6.9 the scanned 3D point cloud can be seen with the colors
representing — same as in EuRoC — the intensity of reflection. The result metrics values
are in table 6.5.

method MDR [m] MME
FLaME 0.552738 ± 1.809013 -0.423 ± 1.406
Kimera 0.795701 ± 0.788564 -1.779 ± 2.811

Table 6.5: Results of FLaME and Kimera on custom dataset from outdoor environment

To further underline the results from table 6.5, we present the pictures containing
the resultant point clouds along with the reference point cloud in figure 6.10:

Based on the results, we can say that FLaME performed better than Kimera in the
number of points produced and also in the accuracy. However, neither method presented
such point cloud that could be represented as a faithful 3D model, because without the
reference cloud it is hardly recognizable. This concludes that in open environment, these
methods are not suitable for the precise scene reconstruction.
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Figure 6.9: Reference 3D point cloud from Leica BLK360 laser scanner

(a) FLaME results (b) Kimera results

Figure 6.10: Comparison of FLaME and Kimera on custom real-world dataset
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In conclusion, the evaluation of the Kimera and FLaME methods for 3D scene re-
construction has yielded positive results. The evaluation was successfully conducted on
the EuRoC dataset, demonstrating the effectiveness of both methods. Integration into the
MRS UAV system of both of the methods was successful, performing with correctly mod-
ified inputs such as the camera extrinsic and intrinsic parameters and the input stream
from camera that was cleared from the redundant images that the algorithms would not
be able to process. Additionally, the custom dataset from the real world was successfully
recorded and the reference scan of the environment was successfully created. The evaluation
provided further insight into their capabilities and characteristics.

Furthermore, the Variational smoothing optimization module utilized by FLaME
proved to have significant impact on the method, improving its reconstruction accuracy
with point clouds having . The choice of the GFTT feature tracker for Kimera showed to
be a good decision because the produced point clouds with this option had twice as many
3D points with comparable precision.

When comparing the two methods, FLaME showcased higher accuracy in the recon-
struction, although with a larger standard deviation. This was mainly due to a significant
number of points deviating far from the reference model. Kimera, on the other hand, had
demonstrated better performance in EuRoC’s Vicon room 2 and presented overall less ac-
curate results, but with lesser deviation. The points generated by Kimera were generally
more aligned with the reference point cloud.

It can be concluded that both methods are suitable for 3D scene reconstruction in
indoor environments. However, they may not perform as effectively in outdoor settings
where distances are larger and obtaining features may become more challenging.
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7.1 Future work

With the implemented evaluation framework, we were able to evaluate and make com-
parisons between the FLaME and Kimera methods. The strength of this framework lies in
its universality, as it can be applied to analyze and assess any other method that performs
the monocular 3D scene reconstruction. This flexibility offers an exciting opportunity to
further enhance the evaluation process by incorporating additional similar methods into
the analysis. By including a wider range of these methodologies, we can gain a more com-
prehensive understanding of the strengths and weaknesses of various approaches, thereby
contributing to the advancement of the field as a whole. Expanding the evaluation to these
additional methods would not only enrich our findings but also provide a more robust basis
for future research and development efforts.
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Archive Content

All root directories in the archive, which contain all necessary accessories to this
thesis, are listed in Table 1.

Directory name Description
f330 simulation the configuration for simulation
eval package evaluation framework
flame scripts scripts to launch the framework with FLaME
kimera scripts scripts to launch the framework with Kimera
thesis the thesis in pdf format

Table 1: Archive Content
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List of acronyms

AGAST Adaptive and Generic Accelerated Segment Test

BRIEF Binary robust independent elementary feature

BDR back-down-right

CPU central processing unit

CTU Czech Technical University

EKF extended Kalman filter

FAST Features from Accelerated and Segments Test

GFTT Good Features to Track

GPS global positioning system

GPU graphics processing unit

ICP iterative closest point

IMU inertial measuring unit

LED light emitting diode

LIDAR light detection and ranging

LSD Large-Scale Direct

MAV micro aerial vehicle

MDR mean distance to reference

MLM multi-level mapping

MME mean map entropy

MRS multi-robot systems

ORB Oriented FAST and Rotated BRIEF

OS Operating system
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PCL point cloud library

RFU right-forward-up

ROS robot operating system

RTK real-time kinematic

SD standard deviation

SfM structure from motion

SIFT scale-invariant feature transform

SLAM simultaneous localization and mapping

UAV unmanned aerial vehicle

UV ultra violet

VINS visual-inertial navigation system

VIO visual-inertial odometry

VO visual odometry
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