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Abstract

Detection of drones using neural networks
from combined RGB and Light Detecting
And Ranging (LiDAR) data is tackled in
this thesis. Multiple approaches for RGB
and LiDAR data fusion into Red Green
Blue Depth (RGBD) data are presented.
The detection of the drone is realized via
a convolutional neural network. All meth-
ods are trained and tested and the results
are compared with a detection approach
utilizing only RGB images. The dataset
used in this thesis was generated using
multiple simulated environments. The
results show that there is a difference be-
tween RGBD and RGB approaches and
that in some specific scenarios, RGBD
approaches provide an advantage over us-
ing RGB only in drone detection. Fur-
ther work on these methods is therefore a
worthwhile study.

Keywords: Drone, Convolutional neural
network, Detection, LiDAR, Sparse
depthmap

Supervisor: Ing. Matouš Vrba

Abstrakt

Detekcia dron pomocou neurónových sietí
z kombinovaných dát RGB kamery a Li-
ght Detecting And Ranging (LiDARu) je
popísaná v tejto práci. Viacero spôsobov
kombinácie RGB kamery a LiDARu do
Red Green Blue Depth (RGBD) obrázkov
je prezentovaných. Samotná detekcia dron
je realizovaná pomocou konvolučnej neu-
rónovej siete. Všetky metódy sú natréno-
vané a otestované a následné výsledky sú
porovnané s čistou RGB kamerou. Dáta
používané v tejto práci boli vygenerované
pomocou viacerých virtuálnych prostredí.
Výsledky dokazujú, že v niektorých prí-
padoch RGBD metódy produkujú lepšie
výsledky oproti RGB kamere v kontexte
detekcie dronov. Budúca práca preto pred-
stavuje ďaľšiu zaujímavú štúdiu.

Klíčová slova: Dron, Konvolučná
neurónová sieť, Detekcia, LiDAR, Riedka
hĺbková mapa

Překlad názvu: Detekce dronů pomocí
neuronových sítí z kombinovaných dat
RGB kamery a LIDARu
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Chapter 1

Introduction

In this thesis, drone detection using neural networks and combined data
from an RGB camera and a Light Detection And Ranging (LiDAR) sensor
is studied. With the recent development of drone technology, drones have
become more readily available to the public and can only be expected to
rise in popularity in the future. Drone detection is an important problem to
tackle when it comes to tasks such as interception of uncooperative drones
[1] or localization of drones in swarm [2] [3]. The methods presented in
this thesis are intended for the relative localization of both cooperating and
non-cooperating drones. Compared to absolute localization methods, rela-
tive localization does not need to rely on pre-existing ground infrastructure
and can be used in more environments. LiDAR sensor has been utilized on
drones on multiple occasions [4] [5] [6] and an RGB camera provides an easily
accessible, cheap and lightweight sensor. Therefore, a fusion of data retrieved
from both sensors and its impact on the overall drone detection problem is an
interesting problem to tackle. The results can be useful for occasions where a
drone is already equipped with a LiDAR sensor. Or they can provide further
clarification, whether the addition of LiDAR sensor into the drone detection
problem provides any advantage.

The goal of this thesis was to examine whether usage of LiDAR data coupled
with RGB images from camera is useful for the localization of drones in
contrast to the usage of image data alone. The LiDAR and RGB camera
were mounted on top of the observer drone, which took pictures and point-
clouds of the target drone. All the measurements were taken inside a virtual
environment, with a realistic drone and sensor simulation. The dataset was
then processed and used as the input for training and testing a convolutional
neural network for the object detection as can be seen in Figure 1.1. The
preprocessing was as follows:
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1. Introduction .....................................

Figure 1.1: Schema of the process.

. coordinate transformation for the non-matching coordinate systems,. projection of 3D points into a 2D image,. utilizing different processing methods on sparse LiDAR depthmap to
make it denser,. fusing RGB images and LiDAR data into Red Green Blue Depth (RGBD)
images.

The output metrics were then compared with the RGB trained convolutional
neural network metrics.

1.1 Related Work

Solving the problem of drone detection has been tackled in different ways.
They mostly differ with the sensors that are utilized or by placing markers
on flying drones.

. Static sensors Current state-of-the-art drone detection techniques
utilizing static sensors such as radars, acoustic sensors or Wi-Fi rely
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.................................... 1.1. Related Work

on pre-existing infrastructure. According to the results presented in
[7], radar technology faces multiple challenges when detecting smaller
aircrafts such as drones because of their small size and high altitude of
their flight but shows promising results. When it comes to accoustic
sensors, sound of the drone can be a very good source of information but
depends heavily on the ambient sound of its environment [7]. In [8], the
authors presented a method for drone detection using Wi-FI packets that
are sent between the drone and its user. This method relies on the fact
that most commercially available drones utilize Wi-Fi packets when it
comes to communication with the end user. However, only the presence
of the drone in the vicinity of the sensor can be detected using this
method and not its exact location, which is crucial for most multi-robotic
tasks..Marker-based detection Some of the relative localization techniques
utilize a set of markers that are placed on a target. In [9], an observer
drone detects and localizes drones equipped with markers using a spheri-
cal camera with a 360◦ field of view. This system is applied in real-time
and provides accurate localization with 4 cm precision. Another approach
is provided in [10], where ultra-violet emitters are equipped on a drone
and serve as detection markers for detection using an ultra-violet camera
sensor. This approach proved to be successful in real-life situations. The
downside of utilizing visual markers on target drones is that a hardware
modification of the target drone is required. Therefore, this approach is
not applicable to all situations, especially when the target drone is not
cooperating..Convolutional neural networks Due to its speed, accuracy and ad-
vancements, object detection convolutional neural networks have become
a popular technique for relative drone detection such as YOLOv3 [11],
CenterNet [12], RetinaNet [13] and Faster R-CNN [14]. One approach of
using a convolutional neural network is described in [15]. This approach
is similar to the approach presented in this thesis in the sense that it
fuses RGB and LiDAR data and use them as input into the modified
YOLOv2 [16] convolutional neural network. This approach represents
the LiDAR pointcloud as a birds-eye-view map and outputs 7 degrees of
freedom, which includes the position, size and rotation of the bounding
box for the detected objects. Another approach described in [17] uses a
convolutional neural network for the use of relative micro aerial vehicle
detection. This approach uses tiny-YOLO architecture [16] and estimates
the distance of the detected vehicle from the size of its bounding box.
The results prove to be applicable in real-world scenarios. For this thesis,
a YOLOv3 architecture is utilized due to its speed and simplicity, making
the utilization of the LiDAR data easier..Dense depthmap A LiDAR produces sparse depthmaps, which are not
always satisfactory for further use. Therefore, ways to denser the sparse
depthmaps have been explored. In [18] dense depthmaps are generated
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1. Introduction .....................................
by combining LiDAR with Stereo Imagery using a convolutional neural
network with a self-supervised training process. This method shows that
the method used can create dense depthmaps even from low-resolution
LiDAR measurements and therefore reduce the cost by utilizing a low-
resolution LiDAR sensor. Another method is described in [19]. It
uses sparse depthmaps combined with RGB images as an input to the
convolutional neural network to create a dense depthmap. This method
is used in the thesis. In [20] an image inpainting method is utilized,
which fills in unknown pixel values based on the neighbouring known
pixel values. It is usually used for inpainting RGB or grayscale images,
but it can be used for sparse depthmaps as well and is used in this thesis.

1.2 Problem Statement

An RGB camera and a LiDAR sensor are assumed to be mounted on an
observer drone so that their fields of view overlap. The transformation
between coordinate frames of the LiDAR and the camera must be known.
The target drone is located in a range of 0.9 meters to 100 meters and has
length, width and height dimensions of 0.6, 1.0 and 0.3 meters, respectively.
The drone is located in the field of view of both sensors and is not obstructed
by any other object. The location of the target drone on the image is required
to be determined from the data obtained from both sensors.

4



Chapter 2

Methodology

In this chapter, five different approaches to the detection problem were
tackled:

. RGB-only,. Sparse-to-dense RGBD,. Sparse-to-dense modified RGBD,. Inpaint RGBD,. Raw RGBD.

The baseline approach in this thesis is to use RGB image and use it as an
input into the YOLOv3 [11] convolutional neural network for drone detection.

The second approach utilizes the Sparse-to-dense convolutional neural net-
work [19], which takes sparse LiDAR depthmap and RGB image as an input
and outputs dense LiDAR depthmap. The neural network is pre-trained and
its output is concatenated with RGB images and used as an input into the
YOLOv3 for drone detection

Another approach is to use the output of Sparse-to-dense network and further
process the data, eliminating sections of the depth image that are very sparse
and using the output concatenated with RGB images to use as input for
YOLOv3.

5



2. Methodology.....................................

Figure 2.1: Example of different network architectures available. Taken from [19].

A separate approach is to use the inpainting method from the OpenCV
Python library1, which takes sparse LiDAR depthmap and fills in unknown
values based on the nearby known values, outputting dense depthmap. The
output of the inpainting method is further processed to filter inpainted values
that are very far from known values and concatenated with RGB images to
use as an input into YOLOv3.

The final approach is to concatenate sparse LiDAR depthmap with RGB
images and use it as an input into YOLOv3.

A video game engine Unreal Engine2paired with plugin AirSim3 is used
for simulating real-life environments and for generating the dataset.

2.1 Sparse-to-dense

Sparse-to-dense [19] is a convolutional neural network with an implementation
in PyTorch publicly available4. The input into the network is a sparse
depthmap and an RGB image and the output is a dense depthmap. The
sparse depthmap is a matrix with few values that have known depth value
and the rest are unknowns. In the dense depthmap every value is known. The
size of the network is modifiable and can be chosen as a meta-parameter. For
the encoding layers, a ResNet-50 or ResNet-18 can be chosen depending on
the size of the input image as can be seen in Figure 2.1. The decoding layers
consist of 4 upsampling layers and a deconvolutional layer with either stride
2 or 3 or uprojection layer or upconvolutional layer as a choice for training.
The loss function used for backpropagation is the least absolute deviations

1https://docs.opencv.org/4.x/d7/d8b/group__photo__inpaint.html
2https://www.unrealengine.com
3https://microsoft.github.io/AirSim/
4https://github.com/fangchangma/sparse-to-dense.pytorch
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................................... 2.1. Sparse-to-dense

error also known as L1 error:

L1 =
∑
|ytrue − ypredicted|, (2.1)

where

. ytrue are the ground-truth depth values,. ypredicted are the predicted depth values.

The depth input D is sampled from the ground truth depth map D∗ with
the following formula:

D(i, j) =
{
D∗(i, j), with probability p,
0, otherwise,

(2.2)

where

. i, j are coordinates of the input image,. p = m
n , where m number of depth samples to be chosen at the start of

training and n is the total amount of available depth samples.

During training several input data augmentations take place. These augmen-
tations include:

. scaling the input image by a random number s ∈ [1, 1.5],. rotating the input image by a random degree r ∈ [−5, 5],. scaling the brightness, contrast and saturation of the RGB component
of the image by a random number k ∈ [0.6, 1.4],. normalizing the RGB component of the image,. flipping the image horizontally with a 50% chance.

The output of the network is a dense depthmap with the dimensions of the
input. Every pixel contains predicted depth measurement in meters. The
output of the Sparse-to-dense network will be used for further training later
and can be seen in Figure 2.2.

7



2. Methodology.....................................

(a) : Input image. (b) : Output depthmap.

(c) : All depthmap points. (d) : Selected depthmap points.

Figure 2.2: Sparse-to-dense training.

Sparse-to-dense modified is another approach used in this thesis. It uses the
dense depthmap outputted from the trained Sparse-to-dense network and a
sparse depthmap and further filters the dense one. At each pixel of the dense
depthmap if there exists a known depth value in sparse depthmap within the
range of 3 pixels, the dense depthmap value is kept. Otherwise, the value is
overwritten to −1.0. The example output of Sparse-to-dense modified can be
seen in Figure 2.3.

2.2 YOLOv3

You Only Look Once (YOLO) is a convolutional neural network model
used mainly for object detection and recognition [21]. The main advantage
is its simplicity in comparison to similar convolutional neural networks,
resulting in faster detection speeds. The network belongs to the state-of-the-

8



...................................... 2.2. YOLOv3

Figure 2.3: Applied filter on Sparse-to-dense output.

Figure 2.4: YOLOv3 network architecture5.

art convolutional neural networks for object detection and recognition. The
version used in this work is the third version, called YOLOv3[11]. YOLOv3
takes n-channel images as the input. Each of the detection layers outputs three
bounding boxes for each of the cells. The backbone called Darknet53 consists
of 53 convolutional layers. The original detector consists of 3 detection layers
each responsible for detecting objects of various sizes as shown in Figure 2.4.
At each detection layer, the image is divided into multiple grid cells, where
each grid cell detects three bounding boxes. The content of one bounding
box is as follows:

. tx, ty, tw, th are bounding box coordinates,. pO is objectness score,
5https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b
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2. Methodology.....................................
. pc is class score for each class in the dataset.

The bounding box tx and ty coordinates are relative to the upper-left corner of
its respective cell, while tw and th are relative to one of the anchors. Anchors
are pre-defined default bounding box sizes and can be modified before training.
To transform these bounding box coordinates to be relative to the image the
following transformation is applied:

bx = σ(tx) + cx,

by = σ(ty) + cy,

bw = pwe
tw ,

bh = pwe
th ,

(2.3)

where

. σ(x) is a sigmoid function, defined as σ(x) = 1
1+e−x ,. cx, cy are grid cells offsets from the top left corner of the image,. pw, ph are the anchor’s width and height, respectively,. bx, by, bw, bh are the bounding box coordinates relative to the image size.

The loss function used during the training is the sum squared error loss or
L2 error described as follows:

L2 =
∑

(̂t− t)2, (2.4)

where

. t̂ is a vector of the predicted bounding box coordinates,. t is a vector of the ground truth bounding box coordinates which can be
obtained by inverting the transformation in eq. (2.3).

2.3 Image inpainting method based on the Fast
Marching Method

Image inpainting is a method used for reconstructing missing values in the
image. One such method based on [20] called the Image inpainting method

10



............... 2.3. Image inpainting method based on the Fast Marching Method

Figure 2.5: Inpainting principle. Image from: [20].

based in the Fast Marching Method was used in this thesis and is described
in this section. This method is utilized in this thesis for densing a sparse
depthmap. A sparse depthmap is provided as the input and the output is
dense depthmap. The same method can be extended for RGB images, but is
not needed for this thesis.

The depth value of a pixel to be inpainted is determined by the known
neighbouring pixel values. To compute a depth value from one close pixel the
following formula is used:

Iq(p) = I(q) +∇I(q) · (p− q), (2.5)

where

. q is a vector of pixel coordinates with a known depth value,. p is a vector of pixel coordinates with an unknown depth value,. I(x) is a depth value at pixel coordinates x,.∇I(x) is a gradient vector at pixel coordinates x.

To get a final value for the unknown pixel, the Equation (2.5) is applied on
all known pixels in a specified region Bε(p) from the unknown pixel as can
be seen in Figure 2.5. The resulting function can be expressed as:

I(p) =
∑

q∈Bε(p)w(p,q)Iq(p)∑
q∈Bε(p)w(p,q) , (2.6)

11



2. Methodology.....................................

Figure 2.6: Example of the inpainting technique. Image from: [20].

where w(p,q) is a weighting function designed for propagating sharpness of
the image and is obtained as the product of the following expressions:

dir(p,q) = p− q
||p− q|| ·N(p),

dst(p,q) = 1
||p− q||2 ,

lev(p,q) = 1
1 + |T (p)− T (q)| ,

(2.7)

where

.N(x) is a normal vector of the boundary to be inpainted at pixel x,. T (x) is distance of pixel x to the inpainting boundary.

Eq. (2.6) is iteratively applied to all pixels on the inpainting boundary and
advances inside the region to be inpainted until the whole region has been
filled. This is implemented via the Fast Marching Method algorithm. Example
results of inpainting method can be seen in Figure 2.6. The algorithm is
provided in the OpenCV Python library6. The results were processed with the
same filtering method as for the results of Sparse-to-dense modified method.
For further training, only the filtered depth map was used. The results of
this approach can be seen in Figure 2.7.

6https://docs.opencv.org/4.x/d7/d8b/group__photo__inpaint.html
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..................................2.4. Coordinate systems

(a) : Non filtered result. (b) : Filtered result.

Figure 2.7: Inpaint results.

2.4 Coordinate systems

To correctly label the data for training, a position of the target drone in
relation to the sensor mounted on the observer drone is required. The AirSim
API returns the position of each drone in respect to their starting points.
The starting point is a point where the drone spawns in the map. Therefore,
a transformation from the starting point of the target drone to the camera
mounted on the observer is required. This transformation is obtained as:

T = Tc
oTo

osTos
ts , (2.8)

where

.Tos
ts is a transformation from the starting point of the target drone to

the starting point of the observer drone,.To
os is a transformation from the starting point of the observer drone to

the body of the observer drone,.Tc
o is a transformation from the body of the first drone to the cameras

coordinate system.

The homogeneous transformation matrix T is generally described as:

T =
[

R p
0T 1

]
, (2.9)

where

.R is a 3x3 rotation matrix,

13



2. Methodology.....................................

Figure 2.8: Visualization of transformation.

. p is a 3x1 translation column vector,. 0T is a 1x3 row vector of zeros.

To transform a location of the drone represented by vector vts into the
coordinate system of the camera, as can be seen in Figure 2.8, the following
transformation is applied:

vc = Tvts. (2.10)

2.5 Camera Model

For the creation of the bounding boxes used for training of the neural networks
and for projecting the LiDAR pointcloud to a depthmap, a transformation
from the coordinate system of the camera to the pixel values of the image is
required. For this task, a pinhole camera model is used as seen in Figure 2.9.
The transformation is defined as:[

u
v

]
=

[
f Xc

Zc
+ cx

f Yc
Zc

+ cy

]
, (2.11)

where

. u and v are pixel coordinate values on the image,

14



.............................. 2.6. Training and testing dataset

Figure 2.9: Pinhole camera model7.

.Xc, Yc, Zc are coordinate values of a point in the coordinate system of
the camera,. f is the focal length of the camera,. cx,cy are pixel coordinates of the center of the image plane.

The pinhole camera model is only an idealization of a real life camera and no
lens distortion is considered. The AirSim simulator simulates an ideal pinhole
camera so no other processing was done for the purposes of this thesis.

2.6 Training and testing dataset

The dataset in this thesis was used for training and testing of all used
approaches for drone detection. It can be generated in two ways. The first is
real-life drone shots mixed with pointclouds from LiDAR mounted on top of a
drone. The second is generating a dataset using a realistic virtual environment
where a drone, camera and LiDAR are being emulated very close to their
real-life counterparts. An advantage to this approach is that a great variety of

7https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html
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2. Methodology.....................................

Figure 2.10: Unreal Engine user interface.

environments can be chosen a lot of them often inaccessible otherwise (power
plant, airport, snowy mountains out of season etc.). Therefore, this approach
was chosen for the task. The dataset is publicly available online8.

2.6.1 Unreal Engine

Unreal Engine is a software tool used for creating realistic 3D environments,
most often used as a video game engine. It is written in C++ and open-source
supporting a variety of pre-built environments and assets. Example of an
Unreal Engine interface can be seen in Figure 2.10. For this work, three
different environments were used for the creation of the dataset, that are
illustrated in Figure 2.11:

. City Park Environment Collection (2256 samples taken),. Automotive Winter Scene (1813 samples taken),. Downtown West Modular Pack (1251 samples taken).

Together, 5320 pictures and labels were generated using two drones. The
observer drone was equipped with an RGB camera and the LiDAR sensor
and was taking pictures using the camera and pointclouds from the LiDAR.

8https://drive.google.com/file/d/1169jGntZzNYojkDpVVXsOw5izrO1FV0l/view?
usp=sharing
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.............................. 2.6. Training and testing dataset

(a) : Automotive Win-
ter Scene.

(b) : City Park Envi-
ronment Collection.

(c) : Downtown West
Modular Pack.

Figure 2.11: Sample photos from each environment.

Figure 2.12: Parrot AR.Drone 2.0. Image taken from [22].

The Parrot AR.Drone 2.0 shown in Figure 2.12 was used as a model for the
drone detection target.

2.6.2 AirSim

An open-source plugin for Unreal Engine called AirSim was used for the
generation of the dataset. It simulates realistic flight motions of drones as
well as seven types of sensors, including RGB cameras and LiDARs, which
are the types used for this thesis. AirSim supports both a C++ API as well
as a Python API, the latter of which was used for controlling motion of the
observer and target drones and capturing the dataset. The location of the
second drone was generated through API call, which produces a location of
the drone in local coordinates relative to its starting point, which is later
transformed to the local coordinates of the first drone carrying the LiDAR
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2. Methodology.....................................
and RGB sensors using eq. (2.10). The location is then projected onto the
camera image using eq.(2.11). The ground-truth bounding boxes required for
the training of the convolutional neural network were generated the same way
but instead of the target’s center, corner points of the 3D bounding box were
transformed using eq.(2.10) and eq.(2.11). The bounding box dimensions
were set to 0.6 m× 1.0 m× 0.3 m. The LiDAR pointcloud was generated via
an API call, which returns a set of 3D coordinates of the points measured by
the sensor in a coordinate frame of the observer drones camera. Therefore
transformation (2.11) was utilized, transforming the LiDAR pointcloud into
depthmap. The capturing drone travelled on each map on a 3D cube grid.

2.7 Training

For training and testing purposes, 5320 samples were taken using the AirSim
simulator. Each sample consists of:

. a 640px× 640px RGB image from the camera,

. a 640px× 640px sparse depth image from the LiDAR sensor,

. a label file containing coordinates of the ground-truth bounding boxes.

This dataset was split into 3662 training, 407 validation, 1251 testing samples.

2.7.1 Sparse-to-dense

The Sparse-to-dense neural network was trained using RGB images and sparse
depthmaps. The training was done for 15 epochs using a batch size of 8. The
backbone was Resnet18 and the decoder was set to Deconv3 as described in
section 2.1. According to the authors of Sparse-to-dense [19] this provided
the best overall results. A processing algorithm was applied to the output
depth map, further filtering points that were not in the vicinity of the ground
truth depth points. Both filtered and unfiltered depth maps were used for
further training and testing to clarify their overall impact.
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.......................................2.7. Training

Figure 2.13: Sample YOLOv3 outputs.

2.7.2 YOLOv3

The following parameters were used for training all the methods:

. number of epochs was set to 15,. batch size was set to 64,. learning rate was set to 0.001.

A PyTorch implementation of YOLOv3 was used for training9. Further
modifications were made. The original implementation of YOLOv3 supports
3-channel RGB images as inputs. For the sake of this work, an RGBD input
option using the H5 file system was implemented. The dataset consisted of
drones of various sizes ranging from very small (few pixels) to very large
closeups. Therefore, 5 detection layers were implemented instead of the
original 3. The addition of two more detection layers provide finer cell
division when determining the location and the size of the bounding box,
which helps detecting smaller objects. The sample outputs can be seen in
Figure 2.13. During training, the validation AP followed the training loss
and started converging after around the 8th epoch, as is apparent from the
graphs in Figure 2.14. Considering this, the chosen weights ensured that the
network does not overfit the training and validating dataset. Table 2.1 shows
selected weights for each method.

9https://github.com/eriklindernoren/PyTorch-YOLOv3
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2. Methodology.....................................

Figure 2.14: Comparison of the training loss and validation AP scores for the
different methods during training.

RGB
(baseline)

Inpaint
RGBD

Sparse-to-dense
RGBD

Sparse-to-dense
modified RGBD

Raw
RGBD

Weights
[number of

training epochs]
8 9 11 12 9

Table 2.1: Chosen weights.
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Chapter 3

Results

After the training was completed, the different metrics on the validation
dataset were compared. These metrics include:

. precision,. recall,. Intersection over Union (IoU),. Average Precision (AP).

These metrics are given by the following formulas:

precision = True Positives
True Positives + False Positives ,

recall = True Positives
True Positives + False Negatives ,

IoU = Area of overlap of two bounding boxes
Area of union of two bounding boxes .

(3.1)

where:

.N is number of classes.

AP is calculated by plotting Precision against Recall obtained in eq. (3.1)
and calculating the area under the resulted curve.
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3. Results .......................................
Results RGB

(baseline)
Inpaint
RGBD

Sparse-to-dense
RGBD

Sparse-to-dense
modified RGBD

Raw
RGBD

AP 0.41 0.46 0.36 0.43 0.48
precision 0.79 0.89 0.92 0.60 0.59
recall 0.48 0.48 0.37 0.48 0.53
IoU 0.83 0.84 0.84 0.83 0.79

Table 3.1: Comparison of different metrics on the testing dataset for the
evaluated detection methods.

Figure 3.1: Recall over distance of the drone.

After the weights were chosen, the network was validated on the test dataset.
The confidence threshold was chosen to be 0.2 and IoU threshold was set to
0.5. These settings showed best overall results for all the methods. From
the results presented in Table 3.1, Raw RGBD offers the best improvement
in terms of AP by 7% when compared to the baseline RGB-only method.
Every method except Sparse-to-dense RGBD offers some improvement in
terms of AP over the baseline. In terms of precision, Sparse-to-dense RGBD
and Inpaint RGBD offer an improvement over RGB-only by 13% and 10% re-
spectively. Other methods namely Raw RGBD and modified Sparse-to-dense
RGBD offer a decrease of 20% and 19% respectively. When it comes to the
recall, not a big improvement is made. The best method is Raw RGBD with
an increase of 5% in comparison to RGB-only. Sparse-to-dense RGBD suffers
a decrease of 11% in comparison to RGB-only, while the remaining methods
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Speed RGB
(baseline)

Inpaint
RGBD

Sparse-to-dense
RGBD

Sparse-to-dense
modified RGBD

Raw
RGBD

Duration [ms] 39 542 67 76 61

Table 3.2: Average processing duration of all methods.

are unchanged. This can be observed in Figure 3.1 where all methods perform
the best in the range from 4 to 19 meters reaching a maximum recall of around
0.95. Modified Sparse-to-dense RGBD offers the highest recall in around 4
meters but starts to fall after 18 meters. Raw RGBD shows a few spikes
in the range from around 48 to 55 meters, the highest reaching 0.5 recall.
RGB-only shows a spike at around 67 meters with a recall of around 0.7. In
terms of the IoU, all methods perform very similarly with best-performing
methods Inpaint RGBD and Sparse-to-dense RGBD showing improvement of
1%.

Table 3.2 presents the total processing durations of the evaluated meth-
ods from acquiring the image to providing the detection output. The times
shown represent a mean from 1251 test samples. From the results, the 4th
channel depth input almost doubles the inference time of YOLOv3, while
Sparse-to-dense network alone performs quite fast. The longest time for
inference belongs to the Inpaint RGBD method with 542 milliseconds.

Overall Raw RGBD provides an increase in AP and recall in comparison to
RGB-only method but suffers a decrease in precision. The inference time is
longer, which may prove to be a problem in real-life applications.

Inpaint RGBD produces overall better results in every metric compared
to RGB-only but suffers heavily in long inference times, making it inappro-
priate for real-life applications where fast tracking is required.

Sparse-to-dense RGBD offers a decrease in AP and recall but provides overall
the best precision out of any method tested. Sparse-to-dense network output
time is slowing down the inference speed by only a small amount.

Sparse-to-dense modified RGBD provides little improvement in terms of
AP and suffers a decrease in precision. Out of any other method, it provides
the highest recall in close detection distances. The modifying algorithm is
responsible for a very little slowdown compared to Sparse-to-dense RGBD.
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Chapter 4

Conclusion

In this thesis, four different methods of fusion of RGB data with LiDAR data
for the purpose of drone detection were proposed and compared to an RGB-
only method. Virtual environments were used for the generation of the dataset.
A detection convolutional neural network was trained from scratch and tested
using various metrics that were compared with the RGB-only baseline CNN.
The advantage of these methods is that they can be easily implemented
on drones already carrying these sensors, or on drones already carrying a
LiDAR sensor as RGB camera is lightweight and cheap. Since these methods
provide detection of drones, there is no need to rely on pre-existing sensor
infrastructure as in the case of absolute localization methods. These methods
also do not rely on markers placed on target drones, so they can be used
in a wider variety of scenarios, where f.e. the target is an uncooperative drone.

The dataset used in this method was generated using a variety of virtual
environments as described in section 2.6. The engine used for the creation of
the dataset proves to be useful when trying to simulate real-life situations
and environments. The main advantage is that environments can be created
based on specific drone scenarios, without the need to physically simulate
such scenarios. Expanding on the number of different environments and the
number of different drone models could be an improvement for the overall
generalisation and size of the dataset in future works.

The main detection convolutional neural network was described in section 2.2.
The network was modified from its original implementation to process RGBD
data and to detect smaller objects as flying drones that are farther away are
only a few pixels in size. A more specific custom-designed architecture could
prove to bring an overall improvement on the problem and should be further
studied and compared.
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4. Conclusion......................................
Overall, the results show that no single approach excels over others in all
tested metrics. In situations where high precision is required, the best method
is the one utilizing the Sparse-to-dense preprocessing CNN. It suffers no sig-
nificant slowdowns in terms of inference time and provides the best precision
out of all tested methods. A modified method from section 2.1 proves to
provide a higher recall compared to other methods in terms of close distance
detection. Compared to other methods, RGB-only method provides the most
balanced results in all the metrics and the best result in terms of inference
speed, making it the best default method for drone detection out of all the
tested methods. When it comes to more specific scenarios the fusion of LiDAR
and RGB data will excel more.

This thesis aimed to compare different approaches of fusion of LiDAR and
RGB data and compare them with RGB-only method. This assignment was
satisfied and proved that some approaches of LiDAR and RGB fusion can
have better results in some specific scenarios. The fusion of LiDAR and RGB
has got potential for future works and with larger dataset methods tested in
this thesis could overall be better then RGB methods.
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