
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

Bachelor’s Project

Automatic recognition of texture-less objects from a single
image

Václav Tyle

Supervisor: Prof. Ing. Jiří Matas, Ph.D.

Study programme: Cybernetics and robotics

Study branch: Systems and control

May 24, 2013

ii

Aknowledgements
I take this opportunity to thank my supervisor Prof. Jiří Matas for his guidance, help and
many invaluable advices concerning this project.
I am really thankful also to my family and friends for support and patience.

Abstract

In the scope of this bachelor thesis, a program Pentagram_vt capable of identifying
known objects in an image or in a video was created. It is based on the method published
recently by D. Damen et al. at British Machine Vision Conference. The detection is almost
real time and the learning may be performed on a very small set of training images.

The observations gained during implementation may be used to further improve the
method. Further, a few originally not emphasized or overlooked weak points, worth of
attention, have been discovered.

Abstrakt

V rámci této bakalářské práce byl vytvořen program, Pentagram_vt, schopný iden-
tifikovat známé objekty z obrázku či videa. Založený je na metodě, nedávno publikované
D. Damen a kol. na British Machine Vision Conference. Detekce probíhá téměř v reálném
čase a k naučení postačí velmi malá množina trénovacích obrázků.

Poznatky nabyté během implementace lze zužitkovat k dalšímu vylepšení metody. Dále
byly objeveny některé původně nezdůrazněné či přehlédnuté slabiny, hodné další pozornosti.

iv

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Selecting the method . 2

2 The method 5
2.1 Overlook . 5
2.2 Edge detection . 6
2.3 Polygonal approximation . 8
2.4 Description . 8
2.5 Storage . 13
2.6 The Classification . 15
2.7 Modifications . 18

3 The experiments 21
3.1 Experiments on images . 21
3.2 Experiments on video . 21

4 Analysis 25
4.1 Complexity of the algorithm . 25
4.2 Tuning parameters . 27

5 Conclusion 31
5.1 Future work . 31

v

List of Figures

2.1 Edge detection . 7
2.2 Polygonal approximation . 9
2.3 Tracing out constellations . 11
2.4 Rotation invariance, reflection variance . 12
2.5 Overlapping views . 17

3.1 Training dataset . 22
3.2 Confusion matrix . 22
3.3 Robustness to scaling, rotation and occlusion 23
3.4 Test dataset . 23
3.5 Snapshots from the test video . 24

4.1 Time and memory complexity . 27

vi

List of Tables

3.1 The time complexity in the experiments. 22

4.1 Results of the parameter tuning. 29

vii

Chapter 1

Introduction

This thesis is focused on implementing a program able to learn, to localize and to rec-
ognize an object from an image or from a video, i. e. to identify its borders in a scene and
to assign it a correct name. To succeed, the program must have became familiar with the
object before already, which is done by sanding it other images or a video, in both cases
labelled with the object name. Since we will concern with three-dimensional objects, which
may look absolutely different when viewed from different angles, it is usually not sufficient
to learn an object based on a single image only.

We have decided to use a single camera as the input, since it is cheap, easy to manipu-
late with and though potentially very powerful for classification since it provides a similar
information as our vision (when using one eye only).

From the possible methods we have been choosing among the ones discriminating objects
based on their shape or more precisely edges. By an edge we will mean continuous regions
where the object has its borders or where the object surface changes its orientation in space.
In an image, these regions imply a fast change of color or brightness.

Further, we will avoid images with a significant texture present, that is such, where the
change corresponds much more often to the edges of surface symbols and patterns than to
the edges of objects.

Images will be considered as two dimensional arrays of pixels only. That means we won’t
use any information about the depth as the methods based on stereopsis or on shading do
it, since in both cases deriving the information about depth is a matter of some considerable
computation, which makes it time consuming and difficult to implement. Also the realisation
is more complicated and expensive, see [10] and [9] for more details.

1

CHAPTER 1. INTRODUCTION 2

1.1 Motivation

Shape is undoubtedly the most important distinguishing factor for a vast amount of
miscellaneous objects. The ability not only to recognise but also to localize the object and
possibly determine its orientation may be used on assembly lines let’s say to target and screw
a nut or to turn and correctly join two parts to be welded. We can imagine applications in
food industry, automatic waste sorting and more.

If we localise the area of an object it also allows us to segment and further analyse it.
This may be used for example in supermarket to estimate the ripeness and quality of fruits
placed on a weighing machine based on their color, after we have determined its sort based
on the shape, so that we can state its price for a customer. This interesting idea comes from
[15].

An other example is an intelligent searching engine in digital libraries, so called content-
based image retrieval (CBIR) [8].

While there are quite a plenty of various public available and powerful texture-based
recognition applications, like face recognition or most of the already mentioned CBIR engines
(see the list at [19]), the shape-based recognition seems to be an opened topic.

1.2 Selecting the method

Three basic approaches may be tracked down among the methods for texture-less recog-
nition. The first approach is based on dividing an image into small cells and computing so
called histograms of oriented gradients for each of them. The gradients stand for brightness
gradients and the histograms for their distributions in individual cells. These are then used
to compare the cells of two different images to detect the presence of same objects. This
idea was first introduced in [4]. The key disadvantage is computational complexity, although
significantly reduced by some of the derived methods, for example [12].

A few methods have been also presented that try to create a three dimensional models
of objects. The comparison is then made by comparing the models. This is useful in robot
navigation where the information about depth or distance is crucial. An example of such
method is [13].

Another group of methods are based on an old technique, so called chamfer matching.
It was introduced in [1] in 1977. Here, we first build edge maps of the two images and then
compare them by computing the distances between pairs of closest edge segments. The
average distance is than used as a similarity metric. With an advantage, distance transform
[11] may be used for fast computation. This technique has been further improved in [16] by
taking the orientation of the edges into consideration.

CHAPTER 1. INTRODUCTION 3

A key disadvantage of this approach is again the computation complexity making it
useless if we want to compare an image with hundreds of templates. To solve this, some
of the recent works use a two stage classification. The first stage reduces the amount of
templates to be compared to just a few potential candidates and the second stage uses the
oriented chamfer matching with various modifications and improvements to choose among
the candidates.

As an example, we will mention [2]. Here, the first stage is implemented as follows: A
thirty six uniformly distributed points forming a filled rectangle are "put" on a test image and
a distance to the closest edge point is measured for each of them. The resulting values are
descriptors which may be compared with the descriptors of the training views. If a match
is found, it’s taken for a candidate detection. To make the method robust to geometric
transformations, descriptor measure is repeated many times for a single image while the
orientation, scale and position of the rectangle changes (sliding window technique). The
method is almost real-time and reaches state-of-the-art success rate.

An other example of a two stage method with oriented chamfer matching is the one pub-
lished by D. Damen et al. in [5]. Although contemporary outperformed by [2], this is also
the one, we have chosen for our implementation. It is almost real-time but shows somewhat
poorer success rate than [2]. In addition to other state-of-the-art methods, it introduces
scale, rotation and translation invariant descriptors and uses a geometric transformation of
edges to partially preserve the invariances even to the chamfer-matching-based verification
stage. We also believe the method has some potential to be yet uncovered. This is why we
have decided to make it a subject of our deeper study.

It is convenient to assign our implementation a name and since the authors of [5] don’t
use any in their report, we had to choose one on our own. For a reason explained later we
decided for Pentagram_vt.

The C++ language has been chosen for the implementation as a compromise between
speed and easy readability of the code. The openCV [18] library is strongly used throughout
the program.

Chapter 2

The method

2.1 Overlook

This section gives a brief overlook of the individual steps which the algorithm carries
out in the learning and in the test phase.

Learning

The algorithm becomes a set of labelled images of the objects to be learned. There
shouldn’t be multiple objects in a single image but there may be more images of a single
object. Each of them undergoes the following procedure:

1. Edge detection. An image is handed to the edge detector. A binary image of white
edges on a black background is the output.

2. Polygonal approximation. The edges are approximated with a polygon or a polyg-
onal chain. Lengths of it’s segments are multipliers of a fixed minimal length.

3. Representation with edgelets. The polygonal chain is further described with
edgelets. An edgelet is an oriented line segment of the same fixed length. If a segment
was longer than this minimal length after the polygonal approximation, it constitutes
now of a few equally oriented edgelets. All the edgelets of an image build a view or
an edgelet representation.

4. Description. Constellations of edgelets are traced out following a particular rule
described later. For every constellation a descriptor is created. All descriptors together
build a descriptor representation of the image being processed.

4

CHAPTER 2. THE METHOD 5

5. Storage. The view gets inserted to the library. The descriptors of the descriptor
representation get quantised, hashed and used as keys to the respective view in the
library.

Classification

The input to the classification is a set of test images. They are further processed in this
way:

1. Search for descriptors. One after the other, descriptors are being traced out in an
incoming test image following the same algorithm as in the learning phase.

2. Search for correspondences. As soon as a descriptor has been created, Penta-
gram_vt tries to find a corresponding one among the known objects.

3. Overlapping. If any such is found, the edgelets of the respective training image
are mapped “onto” the of the test image, so that they lied as close to each other
as possible. If the mapped training edgelets satisfyingly “overlap” the test ones, the
classification is finished. If not, the procedure is repeated for a next descriptor.

The rest of the chapter gives a closer look to the individual steps.

2.2 Edge detection

Every Image, Pentagram_vt works with, is first pre-processed by the program Ap-
prox written in 1994 and now kindly provided by Prof. Matas. Originally, it was designed
to use files in PGM format for input and output, which was not very convenient for our
purpose. Therefore, I have modified it to communicate directly with Pentagram_vt.

The role of Approx is to detect edges and to approximate them with line segments. The
first step is done based on the Deriche’s modification[6] of Canny Edge Detector [3]. These
algorithms both operate in four steps. The key difference is in the first one:

1. Blur. The image is convolved with a blurring operator. This is to reduce the sensi-
tivity to noise. In the case of Canny, the operator is a Gaussian filter while Deriche
uses an even more effective one - one satisfying the criteria, Canny has stated for an
optimal edge detector.

2. Calculation of gradients. Every pixel of the blurred image is assigned a gradient.
There are again operators, like the Sobel, of which application makes the work for us.
The gradient orientation is rounded so that it points to one of the eight neighbouring
pixels.

CHAPTER 2. THE METHOD 6

Figure 2.1: A possible result of Deriche’s edge detection with the parameters set to discard
highly curved places (marked blue).

3. Non-maximum suppression. Only the pixels with gradient magnitude being a local
maximum are further considered.

4. Search for continuous curves. The pixels are double thresholded according to
their gradient magnitude. From the pixels satisfying the stricter threshold the pro-
gram starts to search for solid curves including also the pixels with vaguer threshold
into this search. The orientation of a curve in a given point can be estimated since it
is perpendicular to the respective gradient. We may therefore reduce the time com-
plexity by searching only in the estimated directions. Only the curves long enough are
preserved. The demanded length is an adjustable parameter.

A weakness of Pentagram_vt is a sensitivity on highly “frayed” lines. These lines are
therefore discarded using the mentioned parameter. As a positive result we usually get rid
of shadows in the picture. Nevertheless this issue should be subjected to a deeper study in
the future. A shape smoothing may be a possible solution, for example.

CHAPTER 2. THE METHOD 7

2.3 Polygonal approximation

The output of the edge detector is a set of curves; each constituted by a finite nmber of
its points, i. e. pixels (because image is a discrete space). In the next step Approx proceeds
to approximate these with polygonal chains following the method described by U. Ramer
in [14]: A polygonal chain P is an ordered set of line segments. To approximate a curve C
let P = ∅ and start with the line segment P1P2, where P1, P2 ∈ C are the boundary points of
the curve. Look for an P3 ∈ C whose distance from P1P2 is maximal. If that distance is less
than a particular value ε, add P1P2 to P and stop. If not, repeat the algorithm recursively
for P1P3 and P3P2.

As soon as the approximation has been finished, the output is handed to Penta-
gram_vt in the form of a set of line segments of a fixed minimal length. These are
further described with edgelets, in a manner obvious from the section 2.1, giving a view of
the image.

At this moment, if we wanted to compare two objects, we could take their views and
proceed like this: For every edgelet ei in the view E1 find the closest edgelet ej from the view
E2. Measure the avarage distance d(ei, ej) over all those respective pairs using a particular
metric d. If the avarage is under a certain threshold, classify E1 as being E2.

This is what we will actually do in the end; however this approach standing alone
wouldn’t be very effective since it is not rotation-, scale- and even shift-invariant. We will
therefore first invent a description of the object that will allow us to perform a candidate
classification and to estimate a mapping of E1 (training image) “onto” E2 (test image) and
to compare the object as described above to verify or refuse the classification.

2.4 Description

Basic terms

Let us start with a few definitions. We have already explained the term edgelet. Math-
ematically, it can be treated as an ordered triple

ei = [m,v, l] (2.1)

where m-middle, v-direction vector, l-fixed length (same for all edgelets in an image).

Under orientation of an edgelet o(ei) we will understand the smaller of the two base
angles it forms with the horizontal axis of a picture. A relative orientation of two edgelets,
denoted as 6 eiej , is the angle 6 eiej = |o(ei)− o(ej)|. A distance of two edgelets d(ei, ej) is

CHAPTER 2. THE METHOD 8

Figure 2.2: Visualisation of the polygonal approximation. On the left the original image, in
the middle the detected edges and on the right the resulting edgelets.

CHAPTER 2. THE METHOD 9

the euclidean distance of their middles. Notice that:

o([m,v, l]) = o([m,−v, l]) ∈ 〈0, π) (2.2a)

6 eiej = 6 ∈ 〈0, π2 〉 (2.2b)

This follows the fact that, when we imagine, for example, a horizontal line in an image, we
cannot distinguish if its oriented from the south to the west or reversely.

A constellation c may be viewed as an ordered n-tuple of edgelets

c = (e1, e2, . . . , en) (2.3)

A path Θ is an ordered tuple of n− 1 angles:

θi : Θ = (θ1, θ2, . . . , θn−1) (2.4)

The Algorithm

We have already described how to get an edgelet representation or a view. The next step
is to build descriptor representation. To achieve this, every edgelet undergoes the following
procedure (for the code see the section 4.1)

1. A number i is set to one.

2. The edgelet is considered to be the first edgelet e1 of a potential constellation c.

3. An imaginary straight line l12 intersecting the middle of the edgelet is created, so that
the edgelet forms the angle θ1 with the line l12, i. e. 6 e1l12 = θ1.

4. The number i is increased by one.

5. The algorithm looks for all edgelets e2j , having middles on the line l12 or very close
to it (the width of the tolerance band equals the fixed edgelet length). Let’s assume
there were N such edgelets, i. e. j ∈ N .

6. For each of them a new potential constellation cj is created, so that it contains both
e1 and e2j at the first and at the second position respectively.

7. For every e2j a straight half-line l23j is created, so that it starts in the middle of e2j

and forms the angle θ2 with the previous line l12, this time NOT with the edgelet e2j :
6 l12l23j = θ2.

CHAPTER 2. THE METHOD 10

8. The steps 4-7 are repeated except half-lines are used instead of lines and new edgelets
are added at the i-th position of potential constellation leaving the already present
ones unchanged.

9. The process stops as soon as i equals the number n of edgelets in constellations.

10. For every constellation c = (e1, e2, . . . , en) a descriptor D(c) is created.

The descriptors have the following form:

D(c) = (φ2, . . . , φn, δ3, . . . , φn) (2.5a)

φi = 6 ei−1ei, (2.5b)

δi = d(ei−1, ei)
d(ei−2, ei−1) (2.5c)

Such descriptors are rotation, scale and shift invariant.

The angular measures “ 6 ” in the algorithm above have nothing in common with the
relative edgelet orientation, despite they are denoted the same. It is obvious, how these are
measured, from the picture 2.3.

Figure 2.3: The image illustrates, how to trace out a constellation, following a path given
by the angles θi. The starting edgelet of the constellation is marked red, the others white.
The edgelets, not being a part of the constellation, are marked thin white. Notice that θ1
is formed by the first edgelet and the first line while the others θ by two lines. Here, we
will mention, why the program has been given the name Pentagram_vt. It is since the
polygonal chain, in our experiments created by five segments, associates us this shape drawn
similarly with five straight strokes.

CHAPTER 2. THE METHOD 11

Rotational invariance

After explaining the process of tracing out the constellations, it should be more obvious,
why we have emphasized (2.2a) and (2.2b). If we on the contrary defined o(ei) ∈ 〈0, 2π) or
6 eiej ∈ 〈0, 2π), the method wouldn’t remain rotation invariant.

Two other issues had to be thought out carefully to preserve this property: First, in
the algorithm above l12 is really a line, while the others are half-lines. It means that at
the beginning we search for tolerated edgelets in both directions while further just in one
direction. Second, the angles θ are measured either always counter-clockwise or always
clockwise. See the figure 2.4.

(a) There is a constellation traced out using the path Θ = (θ1, . . . , θ4)
on the left. The constellation on the right was derived from the other
by rotation. Though, it can be traced out using exactly the same path.

(b) The thetas on the right don’t equal the thetas on the left. I. e. the
mirrored constellation wouldn’t be traced out using the same path.

Figure 2.4: Illustration of the reflection variance and rotational invariance of the descriptors.
The solid blue lines are lengthened with dashed lines in the “tolerated” directions, i. e. to
both sides, when starting from the first (red) edgelet of the constellation and to single side,
when starting from any other edgelet.

CHAPTER 2. THE METHOD 12

2.5 Storage

Introduction

The candidate classification is based on creating the descriptor representation of a test
image and comparing it with the known representations of training images. As obvious from
(2.5a), a descriptor consist of 2n− 3 numbers, where n ≥ 2 stays for the number of edgelets
in constellation. If we represent these with the standard 4 Byte float data type, we become
264n−96 possible values a descriptor can have. Therefore, when we trace out a constellation
in a test image and a respective one in a training image, the arisen descriptors won’t most
probably be precisely the same (provided the images are not precisely the same). Even if we
slightly reduced the precision of the floats, so that it wasn’t beyond absurdity, the problem
would remain.

We can of course imagine the descriptors as points in a (2n − 3)-dimensional feature
space. Than, the classification could be carried out as a search for the training descriptor
representation nearest to the test descriptor representation. However, the time complexity
is unbearable.

We will therefore need to organise the data to a structure, a library, that will make the
classification process fast and effective. For this purpose, D. Damen et. al. use a “quantised
hierarchical hash-table.” Nevertheless, the term isn’t exhaustingly described here and our
solution may therefore differ. It is based on quantising the feature space and hashing of the
quantised descriptors.

Implementation

The equations (2.2b) and (2.5b) imply, the relative angles φi in the descriptors are from
the interval 〈0, 1

2π〉. We will divide this interval to Nφ subintervals, each marked with a
number from 1 to Nφ. Further we replace every φ in the descriptor with the number of the
subinterval it belongs to. In other words: we have chosen Nφ uniformly distributed numbers
from the original interval and rounded the thetas to them.

Similarly, if we decide to add an edgelet ei+1 to a potential constellation, only if it
satisfies the condition

d(ei+1, ei) ≥ dmin, (2.6)

where ei stands for the previous edgelet in the constellation, d is the metric stated in the
section 2.4 and dmin is a particular real parameter, we can say that

δ ∈
〈
dmin
diag

, 1
〉⋃〈

1, diag
dmin

〉
(2.7)

CHAPTER 2. THE METHOD 13

Here δ is the relative distance from the descriptor and diag is the diagonal of the image.
Both of the intervals are then divided into Nδ

2 subintervals, again each subinterval with
a number from 1 to Nδ. Every δ is then substituted with one of those numbers in the same
manner as we did it with thetas. It is yet to emphasize that, in praxis, the number diag
is actually not derived from the diagonal of an image. Instead, if a δ occurs, such that
δ > δmax, it is saturated to δ = δmax. Here δmax is a particular parameter to be tuned.

We will refer to the process described in the previous two paragraphs as mapping h(D):

h(D) = h
(

(φ2, . . . , φn, δ3, . . . , φn)
)
,

h : (φ2, . . . , φn, δ3, . . . , δn) −→ (α0, . . . , αn−3, β0, . . . , βn−4),
(2.8)

where αi ∈ {1, . . . , Nφ}, βi ∈ {1, . . . , Nδ}. The rest of the notations have the same meaning
as in (2.5).

The condition (2.6) means, we have decided not to describe very local features of the
object being classified. But this has been actually introduced already by the fact, that we
use edgelets of a fixed (non-zero) length le. Trying to trace out constellations or their parts
close to the scale given by le would be strongly affected by inaccuracy of approximation and
the resulting descriptors wouldn’t be characteristic or descriptive for given objects.

We have implemented the hash-table in the form of the unordered_map container in
C++, where descriptors D are used as keys. The hash value is assigned to them by the
composed function H(D):

H(D) = f(h(D)), (2.9a)

f : (α0, . . . , αn−3, β0, . . . , βn−4) −→
N−3∑
i=0

αiN
i +

N−4∑
i=0

βiN
i (2.9b)

As already described, the function h ensures that similar descriptors, i. e. such that their
respective deltas and thetas lie in the same subintervals, will be assigned the same hash code.
The assignment itself does the function f , which was designed to provide minimal perfect
hashing, i. e. it reduces the number of bits needed to store its output while still assigning
an unique hash code f

(
h(D)

)
to every possible h(D).

The value, respective to a key (descriptor), is first a constellation, which the descriptor
was derived from, and second a pointer to the view, the constellation comes from.

Summary

In the memory, an object is represented with its name and with the views arisen from
the training dataset. Further, each object is represented by its entries in the hash-table:

CHAPTER 2. THE METHOD 14

if we use a descriptor, which has been traced out from a particular view, as a key to the
hash-table, we become the constellation, from which the descriptor comes, a pointer to that
view and, of course, also to the name of the object, the view belongs to. We will strongly
use this in the classification phase.

2.6 The Classification

Candidate detection

When an image comes to be classified, we get an edgelet representation exactly the
same way as in the learning phase. Further the program searches for the constellations and
descriptors following the same path Θ = (θ1, . . . , θn−1) and the same algorithm. As soon as
a constellation ct is found and the respective descriptor D(ct) calculated, D(ct) is used as a
key to the hash-table. In return we receive pointers to all the training views (if there were
any such) which contained a descriptor D(cv) satisfying

H
(
D(ct)

)
= H

(
D(cv)

)
(2.10)

These views are our candidate detections. We further receive the constellations cv, which
those training descriptors came from.

Estimating transformation

To confirm or to refuse a detection, we will estimate a transform T from the candidate
view Ev to the test view Et, based on the comparison between constellations ct, cv. To
perform this we use the following metric:

∆(ei, ej) = d(ei, ej) + λ 6 (ei, ej), (2.11)

where d is the euclidean distance between the middles of the edgelets, 6 is the relative orien-
tation of edgelets as defined in 2.2b, λ is a weighting term, ei, ej are edgelets. Obviously, this
metric stands for the distance between two edgelets, where their orientation is considered.
The mapping T will have the form:

T : ev −→ e′v, (2.12)

where ev, e′v are edgelets, i. e.:

T : [m,v, l] −→ [T (m), T (v), l], (2.13)

CHAPTER 2. THE METHOD 15

where we used the notation from 2.1. T is a composed rotation, translation and scaling. We
will further demand the T to “roughly” minimize the term

n∑
i=1

∆(T(ev_i), et_i) (2.14)

where ev_i, et_i are edgelets of the constellations cv, ct and n is their size. Less formally, we
minimize the “distance” between the two constellations.

In 2.12 we have defined the transform for a single edgelet only. For the sake of simplicity,
we will define it for an edgelet representation (a view) E also:

T(E) = {T(e)|e ∈ E} (2.15)

To summarize the previous paragraph: we look for a T that will map the constellation cv
of the candidate onto the constellation ct of the test image. Since a constellation consist of
just a few edgelets, the transform can be quite easily found. The rotation can be calculated
from the orientation of respective edgelets, the scaling and the translation consequently from
their absolute position.

After the transformation T has been calculated, it is applied on the candidate view Ev.
See the figure 2.5 for possible results.

Refining the transformation

However, the mapping T alone is usually not very precise as it uses only the information
from a single constellation. The method [21] describes, how to derive a transformation Tr,
able to refine the result T(Ev).

The author originally invented it to estimate the shortest trajectory between two subse-
quent video camera frames. So, if we place the video camera on a vehicle, we may estimate
it’s actual position from the record, if the starting position is known. But it will serve well
for our purpose also.

The first step is to find the closest edgelet et ∈ Et (the test view) for every edgelet
eTv ∈ T(Ev) and to build a particular set P of those pairs (et, eTv). We measure the
distance according to 2.11. In [21], it is assumed that the motion between two subsequent
frames is small. This corresponds with the fact, that the transform T has already been
applied, in our case. The assumption also means that the two edgelets in the pairs usually
refer almost to the same point in the real world. We may therefore proclaim that such pairs,
for which ∆(eTv, et) > ∆max, where ∆max is an adaptively set number, are “false positives”
and discard them from the set P.

CHAPTER 2. THE METHOD 16

Figure 2.5: Possible results of the mapping under T. On the left the original view, on
the right the view after mapping (blue) and the edgelets of the test image being classified
(black). Obviously, the mapping is not perfect and the refinement using [21] is necessary.

CHAPTER 2. THE METHOD 17

The ∆max is chosen to reduce the size of the set P to a number N = |P|, reasonably
small for further computations. For details see [21] again. The last step is to find a rotation
matrix R and a translation vector t of a compound transformation T′r(R, t,P) to minimize
the term

∑
P

∆2(ReTv_i + t, et_i) (2.16)

where (eTv_i, et_i) ∈ P. The sum stands for a sum over the set P. By applying the R, t
on the edgelets eTv_i, et_i we mean applying it separately on their middles and direction
vectors. Minimizing the term 2.16 actually means to move the edgelets in the pairs as close
as possible to each other.

We perform T′r
(
T(Ev)

)
and recursively repeat the whole algorithm with the result until

convergence of the distances. At that moment, we become the desired refining transforma-
tion Tr.

Verification of the candidate detection

The final step is to measure, once again, an average distance 2.11 between the paired
edgelets of the classified image and the edgelets of the view that has been mapped onto it
using successively the transform T and Tr. For the case, when some edgelets have been
paired wrongly and so do not correspond to the same point in the real world, there is
a particular saturated value for the distances, so that these cases don’t affect too much
the resulting average distance. If the average distance is below a threshold, the candidate
detection is verified and the test object is classified.

2.7 Modifications

Different classification

While D. Damen et al. use exactly the approach described in the section 2.6, we haven’t
implemented the refining mapping Tr yet. Instead we use the following approach:

We first build the whole descriptor representation of the classified image and subse-
quently use each of its element as keys to the hash table to become candidate detections,
as described in the beginning of the section 2.6. In the end we count the number of votes
for the individual candidates and select the one that occurred most often, i. e., the one
with the greatest number of corresponding descriptors. More formally, if we consider the
classification as a mapping C from the set A of all objects being classified to the set B of all

CHAPTER 2. THE METHOD 18

the known objects, we can write:

C(a) = arg max
b∈B

Nd(a, b), (2.17)

where a ∈ A and Nd(a, b) stands for the number of the descriptors in the object a matching
a descriptor in the object b. Under the term matching we mean, they are equal in the
quantised feature space (see the section 2.5).

In the future, we plan to proceed the same as D. Damen et al. in the classification phase
and use the descriptors to get the candidate detections only but we believe, the experience
we have acquired in our approach will help us to make the candidate detection and therefore
the whole classification more effective. That is actually why we have decided for it.

Branching parameter

We have also introduced a new parameter - a branching factor. It serves to reduce
the average number of descriptors derived from an image. Normally, a great number of
descriptors can be found from a single starting edgelet of a constellation, as apparent from
the sections 2.4 or from the pseudo-code in the section 4.1. It is because the process of tracing
constellations is implemented as a “branching” recursive function. The branching factor
simply states the maximum number of “branches” allowed at each depth of the recursion.
Specifically, if the factor is set to one, there will be at most one descriptor for every starting
edgelet.

The parameter, if set, reduces both the space and the time complexity but decreases the
probability of recognising the object. The program computes the value of the parameter
from a base given by the user and from the size of the edgelet representation being processed.
The greater the representation, the lower the value. In other words, simple objects will be
described as detailed as possible, while the complex (and therefore more easily recognizable)
ones more vaguely. The base may be set separately for the training and the testing phase,
since we usually have different demands for the complexity of the algorithm in each of them.

Elimination of duplicate views and descriptors

In the learning phase, we use an approach which reduces the space complexity, while not
harming the later recall rate, and moreover, allows the object to be learned comfortably for
the user. It is based on the simple idea, not to store same things twice: if there are many
images to learn a single object, we first try if Pentagram_vt will successfully recognize
the object based on a newly incoming image. If so, the view of that image will not be stored.
However, what will be stored, are all new descriptors, the image contained.

CHAPTER 2. THE METHOD 19

The intention is that the program can learn an object from a video, where we covered
various viewing angles and distances, and it decides independently, which frame to use and
which will be discarded.

Similarly, we prevent the hash-table before storing duplicate entries, i. e. the same
descriptors, if pointing at the same object.

Expedite classification

During classification, when searching for descriptors, Pentagram_vt doesn’t take the
potential starting edgelets one after the other, as they are in the view, but pseudo-randomly.
It comes especially in hand if we use the descriptors only to verify candidate detections, as
described in the section 2.6, because we prevent the algorithm from getting stuck in a local
part of an image generating false candidates. This may be for example due to noise or
non-characteristics regions.

It is useful even in our approach to the classification, because we allow the classifier to
make an expedite decision before all the descriptors of a test image has been found and
compared with the library, if the previous ones vote clearly for one object.

Modified deciding rule

If some of the known objects have considerably simpler shape than the others, there will
be less constellations satisfying the path and the objects will be represented with respectively
low number of descriptors. Since we use the deciding rule 2.17, it follows the algorithm
naturally tends to classify everything as the more complex objects. The simplest idea is to
solve this issue by redefining the deciding rule:

C(a) = arg max
b∈B

Nd(a, b)
|b|

, (2.18)

where we used the same notation instead of |b| which stands for the size of the descriptor
representation of the object b. So that we don’t classify the object a as being b if b has the
greatest number Nd(a, b) among all b ∈ B any more but instead if the ratio Nd(a,b)

|b| is the
biggest possible.

Chapter 3

The experiments

3.1 Experiments on images

We have performed a series of experiments to test the abilities of the program. In all of
them we used a single path Θ = (π3 ,−

π
4 ,−

π
3 ,

π
3) to trace out five-edgelet constellations. The

length of edgelets was set to 8px. The base for the branching parameter (see sec. 2.7) was
not limited during training. In the classification phase it was set to two. Further, we have
chosen the hash-function parameters equal to Nφ = 14, Nδ = 27, δmax = 21, dmin = 25px.
All the parameters were set according to the results of the experiments in the section 4.2.

All the experiments were performed on the training dataset from the figure 3.1. In the
first experiment, we used the dataset one from the figure 3.3. The goal was to demonstrate
the robustness of the algorithm to scaling, rotation and partial occlusion. Here, we achieved
the classification rate of one hundred percent. Mention that although the descriptors 2.5 are
scale invariant, this is not fully true for the method as a whole because of the fixed length
of the edgelets and scale sensitivity of the edge detector. Nevertheless, a certain robustness
has been proven by the experiment.

The second and the more complex experiment was performed on the test dataset two,
figure 3.4. Here, we achieved the classification rate of 76%.

See the table 3.1 for the time complexity measured in the both experiments.

3.2 Experiments on video

We have also performed two experiments on a video input. For the sake of simple
analysis, they were both performed off-line with the average classification time similar as in
the table 3.1. We again used the data from the figure 3.1 for training. The achieved success
rate was 42%. This is seemingly a poor result but we have to take into account that there

20

CHAPTER 3. THE EXPERIMENTS 21

Figure 3.1: The training dataset. All images are of the size 377× 233px

Figure 3.2: The confusion matrix achieved on the training dataset and test dataset from
the figures 3.1 and 3.4 respectively.

Average time Worst time
(s) (s)

Training 2.8 6.9phase
Test 0.7 1.7phase

Table 3.1: The time complexity achieved in the both experiments.

CHAPTER 3. THE EXPERIMENTS 22

Figure 3.3: The test dataset one. The images were all taken by a camera, non was artificially
generated from an other in Photoshop or in related software. All images are of the size
377× 233px.

Figure 3.4: The test dataset two. All images are of the size 377× 233px

CHAPTER 3. THE EXPERIMENTS 23

Figure 3.5: A few snapshots from the test video. The whole video consist of one hundred
sixty 600× 384px frames of eight objects from the training set 3.1.

was only a single image for each object in the learning phase. Plus, in the case of a video,
it is not necessary to classify all the frames to identify an object. Snapshots from the test
video may be found in the figure 3.5.

We also performed an experiment on a part of the dataset which was used in [5] and
is public available at [7]. Both the learning and the testing data are a video. However,
since our classifier is not capable of multiple detections, these data had to be significantly
adjusted. When dealing with six objects only, 56% of all frames were classified correctly and
we absolutely failed when the whole dataset was used. This confirms, our approach should
not be used standing alone but for candidate detection only (as intended).

Chapter 4

Analysis

4.1 Complexity of the algorithm

Time complexity

The number of descriptors traced out in an image determines the time complexity of the
learning phase. It has already been sketched, how the tracing is done, in the section 2.4.
The following pseudo code shows it more formally:

% Global variables:

Descriptor desc_repre[]; % Empty at the beginning.

Edgelet edg_repre[]; % Edgelet representation. Not empty.

const int EDGS_IN_PATH = 5;

% Main function:

for (int i = 0; i < size(edg_repre); i++) {

Edgelet toleratedEdgs[] = findTolerated(contEdg, 1);

for (int j = 0; j < size(toleratedEdgs); j++) {

describe(new Descriptor, toleratedEdgs[j], edg_repre[i], -1, 2);

}

}

% Function definitions:

findTolerated(Edgelet contEdg, int depth) {

Edgelet toleratedEdgs[];

for (int i = 0; i < size(edg_repre); i++)

if (tolerated(edg_repre[i])

toleratedEdgs.add(edg_repre[i])

return toleratedEdgs;

24

CHAPTER 4. ANALYSIS 25

}

describe(Descriptor desc, Edgelet contEdg, Edgelet prevEdg,

double prevDist, int depth) {

Edgelet toleratedEdgs[] = findTolerated(contEdg, depth);

for (int i = 0; i < size(toleratedEdgs); i++) {

Descriptor newDesc = desc;

if (prevDist != -1)

newDesc.addDelta(distance(contEdg, toleratedEdgs[i])/prevDist);

newDesc.addPhi(rel_angle(contEdg, toleratedEdgs[i]));

if (depth == EDGS_IN_PATH) {

desc_repre.add(newDesc);

} else {

describe(newDesc, toleratedEdgs[i], contEdg,

distance(contEdg, toleratedEdgs[i]), depth+1);

}

}

}

The edgelet representation of an image is stored in the array edg_repre. The main
function hands one after the other the edgelets of the edgelet representation to the function
findTolerated as potential starting edgelets of constellations. For a given potential starting
edgelet, the representation is being searched there again to find the edgelets satisfying the
first angle of the path. These are returned.

At this moment the algorithm has traced out the first two edgelets of a few potential
constellations. In this example constellations consist of five edgelets. For each of the po-
tential constellations the function describe is called. As the argument depth increases, It
looks for the thirds, fourths and fifths edgelets of the potential constellations in a forked
recursive manner.

Notice that at each level given by depth the function describe calls itself recursively
not once but many times depending on the number of potential constellations having been
traced out at that moment. This is why we refer to it as a “branching” or “forked” recursion
in the text.

Using the famous big O notation, this gives the following time complexity:

O(E − 1
p

NE) = O(NE) (4.1)

where N -number of edgelets in an edgelet representation, E-number of edgelets in constella-
tions, p-an avarage probability that an edgelet lies in a tolerance band of a previous edgelet
of a potential constellation.

CHAPTER 4. ANALYSIS 26

Figure 4.1: The time needed to create the representation (left) and the repective number of
descriptors created (right) as functions of the size of edgelet representation. In the experi-
ment, the optimisation with the use of the branching factor (see sec. 2.7) was forbidden.

It is worthwhile emphasizing that, according to [17], the time complexity needed for
accessing or reading elements from an unordered_map, is constant in the average case.
This makes the total asymptotic complexity of the algorithm independent on hashing.

Space complexity

The space complexity also depends mainly on the number of created descriptors and it
is a weakness of the method. Possibly, many tens thousands of descriptors may be created
for a single view. See the figure 4.1. If we for example use constellations of the size five,
i. e. n = 5 in the equation 2.5, and if we represent the numbers in descriptor with 4 Byte
floats, we typically need about 1.5 MB for a view.

This is a few times more then the original image, though containing much less informa-
tion. This is an inseparable feature of the method and follows from the way, how we trace
out constellations: Most edgelets will be covered much more times then just once.

In the experiment on Bristol dataset in the section 3.2, it was confirmed that this may
really cause troubles. We worked with more than twelve hundred training views and had to
face the problem, not to run out of the primary memory of the computer.

4.2 Tuning parameters

There is quite a plenty of words introduced with the word particular in the text: partic-
ular values, thresholds and so on. These correspond to parameters that must be all assigned

CHAPTER 4. ANALYSIS 27

some specific values but we don’t now which ones at the moment. Setting all the parame-
ters manually at every start of the program is not a very user-friendly solution. A question
therefore arises, if some of them may be automatically computed or immutably fixed at a
“best” value.

Our program has been written so that all the important parameters can be set directly
from the command line. At the end of each run it also outputs a confusion matrix and some
more statistics about the success rate; everything in a an easily processable format (in Mi-
crosoft Excel for example). We can therefore let Pentagram_vt being automatically
repeatedly started by an external simple program, written in the batch language, store the
outputs and analyse them in bulk.

We have used this approach together with the training and the testing dataset from
the figures 3.1 and 3.4 respectively to randomly search the parameter space to answer the
question from the first paragraph. More specifically, we looked for convenient hash-function
parameters and paths, where we have stated, the paths will be of the length four, i. e. n = 5
in the equation 2.4. See the tables 4.1b, 4.1a for the results.

CHAPTER 4. ANALYSIS 28

dmin δmax Nφ Nδ
Correctly Incorrectly
classified classified

25 12 14 27 38 12
25 21 14 27 38 12
8 16 17 12 38 12
8 18 17 12 38 12
25 5 14 12 37 13

8 27 17 99 18 32
8 18 14 99 18 32
8 27 14 99 18 32
25 5 30 55 17 33
8 27 30 99 17 33

(a) The top five and the worst five choices of the hash-table parameters.

The path Correctly Incorrectly
(θ1, θ2, θ3, θ4) classified classified

(π3 ,−
π
4 ,−

π
3 ,

π
3) 38 12

(π3 ,−
π
3 ,

π
4 ,−

π
4) 38 12

(π4 ,
π
4 ,−

π
3 ,−

π
3) 37 13

(3π
4 ,

π
3 ,

π
4 ,−

π
4) 37 13

(π4 ,−
π
4 ,

π
3 ,−

π
4) 37 13

(π3 ,
3π
4 ,

π
3 ,−

π
4) 18 32

(π3 ,
3π
4 ,

π
3 ,−

π
3) 18 32

(3π
4 ,−

π
4 ,−

π
3 ,−

π
4) 17 33

(3π
4 ,−

π
4 ,−

π
3 ,−

3π
4) 16 34

(3π
4 ,−

π
4 ,−

π
4 ,−

3π
4) 16 34

(b) The top five and the worst five choices of the path.

Table 4.1: Results of the parameter tuning.

Chapter 5

Conclusion

My intention in this thesis was to re-implement, to analyse and, if possible, to improve
the method [5] for recognition of texture-less objects. It is based on a two-state classification.
In the first part a candidate detection is performed on an image and the second one verifies
it. I have focused mainly on the first part. It is crucial for the algorithm to be fast and
effective, since the verification phase is time consuming and therefore not capable of coping
with many false candidate detections, at least not in real time.

The pre-classification is based on describing particular edge segment constellations from
a test image and comparing them with a database. To analyse this phase separately, I have
introduced a simple classifier based on the descriptors only, skipping the verification. It has
served to discover some possible improvements of the algorithm, see the section 2.7.

In the section 4.2 this approach was used to analyse the sensitivity of the algorithm on
using different edge constellations and various feature space quantisation. Both have shown
to be crucial. Therefore, a search for “the best” choice has been performed. It has been also
shown that this may vary for different objects, although some generally better choices exist.

It is again to emphasize that my classifier wasn’t expected to outperform state-of-the-
art methods but to vote for candidate detections only. Though, it works well and almost
real-time on small sets of training objects on a clear background and reaches 76% success
rate on test images and somewhat poorer 41% on a test video.

5.1 Future work

We have discovered a few weak points of the method that hasn’t been originally men-
tioned. These are sensitivity to highly curved places and inconvenience for describing very
local features of objects. These problems are both worth deeper study. An edge smoothing
or involving a curvature metric in descriptors are possible solutions of the first one.

29

CHAPTER 5. CONCLUSION 30

As expected, it has turned up that different objects may be convenient to describe using
different paths or constellations. In the future, it would be therefore smart to use more of
them at once. The algorithm could decide itself to use an other paths for description, if the
previous ones haven’t been able to trace out enough constellations.

The main task is to finish the implementation of the verification phase, which is still in
experimental stage only since the refining transform based on [21] hasn’t been implemented
yet.

Bibliography

[1] BARROW, H. G. et al. Parametric correspondence and chamfer matching: two
new techniques for image matching. In Proceedings of the 5th international joint
conference on Artificial intelligence - Volume 2, IJCAI’77, p. 659–663, San Fran-
cisco, CA, USA, 1977. Morgan Kaufmann Publishers Inc. Available from: <http:
//dl.acm.org/citation.cfm?id=1622943.1622971>.

[2] CAI, H. – WERNER, T. – MATAS, J. Recognition beyond appearance-based methods.
Technical report, Centre for Machine Perception, Czech Technical University in Prague,
December 2012.

[3] CANNY, J. F. A Computational Approach to Edge Detection. IEEE Transactions on
Pattern Analysis and Maschine Intelligence. November 1986, p. 679–698.

[4] DALAL, N. – TRIGGS, B. Histograms of Oriented Gradients for Human Detection.
In CVPR, p. 886–893, June 2005.

[5] DAMEN, D. et al. Real-time Learning and Detection of 3D Texture-less Objects:
A Scalable Approach. In British Machine Vision Conference. BMVA, Septem-
ber 2012. Available from: <http://www.cs.bris.ac.uk/Publications/Papers/
2001575.pdf>.

[6] DERICHE, R. Using Canny’s Criteria to Derive a Recursively Implemented Optimal
Edge Detector. International Journal of Computer Vision. 1987, p. 167–187.

[7] Dima Damen and Pished Bunnun and Andrew Calway and Walterio Mayol-Cuevas .
Experimental dataset obj30 [online]. 2013. [cit. 22.. 5. 2013]. Available from: <http:
//http://www.cs.bris.ac.uk/Publications/pub_master.jsp?id=2001575>.

[8] FORSYTH, D. A. – PONCE, J. Computer Vision: A Modern Approach, Application:
finding in digital libraries. Prentice Hall, august 2002.

[9] FORSYTH, D. A. – PONCE, J. Computer Vision: A Modern Approach, Sources,
shadows and shading. Prentice Hall, august 2002.

31

http://dl.acm.org/citation.cfm?id=1622943.1622971
http://dl.acm.org/citation.cfm?id=1622943.1622971
http://www.cs.bris.ac.uk/Publications/Papers/2001575.pdf
http://www.cs.bris.ac.uk/Publications/Papers/2001575.pdf
http://http://www.cs.bris.ac.uk/Publications/pub_master.jsp?id=2001575
http://http://www.cs.bris.ac.uk/Publications/pub_master.jsp?id=2001575

BIBLIOGRAPHY 32

[10] FORSYTH, D. A. – PONCE, J. Computer Vision: A Modern Approach, Stereopsis.
Prentice Hall, august 2002.

[11] FULZENSZWALB, P. – HUTTENLOCHER, D. Distance Transforms of Sampled Func-
tions. Technical report, Cornell University, September 2004.

[12] HINTERSTOISSER, S. et al. Dominant Orientation Templates for Real-Time Detec-
tion of Texture-Less Objects. In CVPR, p. 2257–2264, June 2010.

[13] HINTERSTOISSER, S. et al. Model based training, detection and pose estimation of
texture-less 3d objects in heavily cluttered scenes. In CVPR, p. 548–562, October 2012.

[14] RAMER, U. An iterative procedure for the polygonal approximation of plane curves.
Computer Graphics and Image Processing. 1972, 1, 3, p. 244 – 256. ISSN 0146-664X.
doi: 10.1016/S0146-664X(72)80017-0. Available from: <http://www.sciencedirect.
com/science/article/pii/S0146664X72800170>.

[15] ROCHA, A. et al. Automatic produce classification from images using color, texture
and appearance cues. Computer graphics and image processing. October 2008, p. 3–10.

[16] SHOTTON, J. – BLAKE, A. – CIPOLLA, R. Contour-Based Learning for Object
Detection. In ICCV, p. 503–510, October 2005.

[17] THE CPPREFERENCE TEAM. C++ std::unordered_map container description [on-
line]. 2013. [cit. 7. 5. 2013]. Available from: <http://en.cppreference.com/w/cpp/
container/unordered_map>.

[18] THE OPENCV TEAM. Home page of openCV project [online]. 2013. [cit. 7. 5. 2013].
Available from: <http://http://opencv.org>.

[19] WIKIBOOKS CONTRIBUTORS. List of CBIR engines [online]. 2013.
[cit. 22.. 5. 2013]. Available from: <http://en.wikibooks.org/wiki/List_of_
CBIR_engines>.

[20] WIKIBOOKS CONTRIBUTORS. LATEX [online]. 2013. [cit. 12. 5. 2013]. Available
from: <http://en.wikibooks.org/wiki/LaTeX/>.

[21] ZHANG, Z. Iterative Point Matching for Registration of Free-Form Curves and Sur-
faces. In IJCV, 13, p. 119–152, 1994.

http://www.sciencedirect.com/science/article/pii/S0146664X72800170
http://www.sciencedirect.com/science/article/pii/S0146664X72800170
http://en.cppreference.com/w/cpp/container/unordered_map
http://en.cppreference.com/w/cpp/container/unordered_map
http://http://opencv.org
http://en.wikibooks.org/wiki/List_of_CBIR_engines
http://en.wikibooks.org/wiki/List_of_CBIR_engines
http://en.wikibooks.org/wiki/LaTeX/

	Introduction
	Motivation
	Selecting the method

	The method
	Overlook
	Edge detection
	Polygonal approximation
	Description
	Storage
	The Classification
	Modifications

	The experiments
	Experiments on images
	Experiments on video

	Analysis
	Complexity of the algorithm
	Tuning parameters

	Conclusion
	Future work

