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Abstract

Main topic of this work is modeling and
calibration of cameras for autonomous
driving. It summarizes theory needed for
the task of both internal and external
calibration. This theory is used for mod-
eling and calibration of middle-FOV and
wide-FOV cameras. It includes tangen-
tial and equidistant projection models and
polynomial and division model of radial
distortion. For calibration of wide-FOV
cameras are presented methods for initial
estimate of camera parameters based on
minimization of reprojection error caused
by large radial distortion. For both types
of camera is proposed method for esti-
mation of relative pose of two cameras
based on observation of planar objects
by both cameras from different positions.
All methods are verified on multi-camera
platform in laboratory environment.

Keywords: Camera calibration, camera
modeling, Calibration of multiple
cameras, autonomous driving

Supervisor: Ing. Martin Matoušek,
Ph.D.

Abstrakt

Hlavním tématem této práce je modelo-
vání a kalibrace kamer pro autonomní
řízení. Práce shrnuje teorii potřebnou pro
zjištění interní a externí kalibrace kamer.
Tato teorie je využita pro modelování a ka-
libraci kamer s normálním objektivem i ši-
rokoúhlým objektivem typu rybí oko. Mo-
delování zahrnuje ekvidistantní a tangen-
ciální model projekce a polynomiální a po-
dílový model zkreslení. Pro kalibraci širo-
koúhlých kamer jsou představeny metody
pro počáteční odhad parametrů založené
na minimilizaci reprojektivní chyby způ-
sobené velkým radiálním zkreslením.Pro
oba typy kamer je představena metoda
pro odhad relativní pozice dvou kamer,
která je založena na pozorování více rovin
oběma kamerami z různých pozic. Metody
kalibrace jsou verifikovány na pohyblivé
kamerové platformě v laboratorních pod-
mínkách.

Klíčová slova: Kalibrace kamer,
modelování kamer, kalibrace více kamer,
autonomní řízení

Překlad názvu: Kalibrace více kamer
pro autonomní řízení
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Chapter 1

Introduction

Geometric calibration of multiple cameras mounted on a vehicle is a neces-
sary prerequisite for vision-based perception system for autonomous driving.
Camera perception systems are widely used in field of autonomously driven
vehicles. Advantage of camera as perception system is that it collects large
amount of data about surroundings of vehicle. With recent development
of machine learning, especially of convolutional neural networks, these data
can be segmented and classified effectively. Information about road, other
vehicles, pedestrians, traffic signs and many other things can be extracted
from the data. Image data are combined with depth information, which is
obtained either by Lidar or by reconstruction from multiple camera views.
Generally there are many types of cameras with different technical parameters
and physical properties, that are used. In this place calibration of cameras
comes in use, so that connection between image and real physical world can
be made. This means that measurements like distances between objects and
dimensions of objects can be done. Also information from multiple cameras
and Lidar sensors can be fused. 3D reconstructions from cameras can become
more imporatant for autonomous driving after study from Cornell university
[1] suggested it as cheaper alternative for Lidar sensors. This work focuses
both on internal and external calibration of multiple cameras.

1.1 Goals of this thesis

First goal of this thesis was to study theory of mathematical modeling
and calibration, which can be applied on multi-camera moving platform

1



1. Introduction .....................................

in laboratory that consists of both middle-FOV and wide-FOV cameras.
Second goal was to use this theory to propose method for intrinsic and
extrinsic calibration of those cameras. Last goal was to verify these methods
in laboratory environment using correspondences given by coded markers.
Further motivation that exceeds scope of this work is to adapt these methods
to use real-world objects instead of markers for calibration. This would mean
that calibration could be done outside of laboratory without preparation.

1.2 Sources for this thesis

This work mainly builds on theory presented in Multiple view geometry
by Hartley and Ziessermann [2]. Calibration of middle-FOV camera was
performed according to Zhang’s [3] procedure. For calibration of wide-FOV
camera was studied paper by Ch. Mei and T. Rives [4] but in the end their
method wasn’t used. Regarding calibration of multiple cameras a paper by
E. Malis and M. Vargas [5] about decomposition of homography induced by
plane was studied and some ideas from this paper were tested.

1.3 Structure of this thesis

Theoretical concepts of camera modeling needed for calibration such as
projection models and radial distortion are described at Chapter 2. Chapter
3 is about methods for calibration of camera internal parameters. Existing
methods and some new approaches for calibration are introduced and tested
on middle–FOV and wide–FOV cameras. Chapter 4 describes method for
calibration of relative pose of two cameras, which is based on observing
multiple planes from two views by both cameras. Chapter 5 describes technical
background of this thesis. Final chapter is conclusion of this work.

2



Chapter 2

Theoretical background

2.1 Introduction

This chapter presents theory that is used for modeling of camera projection
and for calibration of camera model parameters.

2.2 Camera model

In this work camera is modeled from perspective of geometrical optics. Cam-
era model is mapping between 3D world and 2D image. It consists of rigid
transformation of world points into camera coordinates, central projection,
distortion model and affine transformation between camera internal 2D coor-
dinate system and image coordinate system. Block scheme of camera model
can be seen at Figure 2.1.

Figure 2.1: camera block model
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2. Theoretical background ................................

2.2.1 External calibration matrix

External camera calibration matrix [2] Kext ∈ R
3×4 represents rigid transfor-

mation between 3D world coordinates and 3D camera coordinates. It contains
parameters, which describe rotation R and translation t between world and
camera coordinates systems. This information can be interpreted as camera
position and orientation in space. Matrix can be written as

Kext =







r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3






=
[

R | t
]

, (2.1)

where t = −Rc and c is position of camera centre in world coordinates. The
transformation is performed as matrix multiplication







xc

yc

zc






= Kext











xw

yw

zw

1











. (2.2)

Coordinates with c subscript are in camera coordinate frame. Coordinates
with w subscript are in world coordinate frame.

2.2.2 Central projections

We are considering central projection model only. A camera projection is
mapping between 3D points and their 2D projection. We are using two types
of projection – tangential and equidistant. In this section uppercase letters
X, Y , Z are used for 3D points and lowercase letters u, v are used for 2D
projections. Further we define

R =
√

X2 + Y 2 (2.3)

r =
√

u2 + v2 (2.4)

α = arctan 2(R, Z), (2.5)

where R is distance between optical axes and 3D point, r is radius of point
in image plane and α is angle between ray from camera centre to 3D point
and optical axes.
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.................................... 2.2. Camera model

Tangential projection

The first projection we used is tangential projection [2], Figure 2.2. This
projection can be used for modeling cameras with rectilinear or almost
rectilinear lenses with low radial distortion. This projections maps 3D points
to their projections on image plane perpendicular to optical axis. Projection
is given by formula

r = tan(α), (2.6)

which leads to
(

u
v

)

=
1

Z

(

X
Y

)

=

(

X
Z
Y
Z

)

. (2.7)

Figure 2.2: Tangential projection

Equidistant projection

The second projection used in this work is equidistant projection [6], Figure 2.3.
This projection can be used for modeling cameras with lenses with significant
radial distortion (e.g. fisheye lenses). This projection maps 3D points to
surface of unit sphere with centre identical to camera centre. Advantage of

5



2. Theoretical background ................................

this projection is that it can project points from all around the camera so it
can model even spherical lens. Projection is given by formulas

r = α (2.8)

and

(

u
v

)

=
α

R

(

X
Y

)

. (2.9)

Figure 2.3: Equidistant projection

2.2.3 Radial distortion

Process of image creation cannot be fully described by projection, because
lenses generally perform more complex projection. This behaviour causes
distortions in images. In this work only radial distortion is considered. For
each point on image plane the radial distortion can be described as a function
of radius of this point f(r). Radius of the distorted point is

rd = rf(r). (2.10)

Generally the function f(r) has unknown parameters that need to be esti-
mated.

6



.................................... 2.2. Camera model

Polynomial distortion model

The first method is polynomial model [2].The Function f(r) is approximated
by polynomial (2.11). The distortion is described by 3 parameters k1, k2, k3.

P (r) = 1 + k1r2 + k2r4 + k3r6 (2.11)

For the purposes of camera calibration an inverse function for the polynomial
distortion is needed. It is approximated by polynomial (2.12). Coefficients of
this polynomial are obtained by following procedure by Drap and Lefèvre [7]

Q(r) = 1 + b1r2 + b2r4 + b3r6 (2.12)

b1 = −k1 (2.13)

b2 = 3k2
1 − k2 (2.14)

b3 = 8k1k2 − 12k3
1 − k3. (2.15)

Division distortion model

Second method for distortion estimation is division model [8]. Advantage of
this model is its easy invertibility and only one parameter to be estimated.
Forward transformation (distortion) is

r′ =
2

1 − λ
r (2.16)

rd =
r′

1 +
√

1 + λ r′2

d2
n

, (2.17)

where λ is parameter of distortion, rd is radius of distorted point, dn is radius
of circle in image that is not changed. The inverse transformation is

r =
1 − λ

1 − λ r2

d2
n

rd (2.18)

(2.19)

2.2.4 Internal calibration matrix

Internal calibration matrix [2] Kint ∈ R
3×3 represents affine transformation

between camera internal coordinates and image coordinates. It contains

7



2. Theoretical background ................................

parameters which describe properties of the camera sensor. These are scales
of axes αx, αy, skew s and position of the image centre x0, y0. The matrix
can be written as

Kint =







αx s x0

0 αy y0

0 0 1






. (2.20)

Affine transformation is performed as matrix multiplication







uim

vim

1






= Kint







ud

vd

1






. (2.21)

2.3 Camera calibration

Calibration of camera is a process of determining unknown parameters of
camera model. This process is based on taking pictures of object with known
geometrical properties and significant points which can be detected. These
detected points are reprojected by camera model. Parameters of model
are determined by minimization of reprojection error. Formally it can be
expressed as

p∗ = arg min
p

f(x, p). (2.22)

f(x, p) is objective function, x is set of coordinates of detected points and p
is set of camera model parameters.
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Chapter 3

Internal camera calibration

3.1 Introduction

This chapter describes methods of internal camera calibration. These methods
provide modular approach to camera calibration. Depending on situation
different models of cameras and distortion can be used. These methods were
verified by several experiments. For all experiments calibration board with
chessboard pattern was used. Example of the calibration board is at Figure
3.1. Results of these experiments are at the end of this chapter.

Figure 3.1: Aruco calibration board
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3. Internal camera calibration...............................

3.2 Utility function

In Section 2.3 we introduced calibration as an optimization problem. The
specific instance of utility function that is used in this chapter is

fproj,dist =

√

√

√

√

1
∑n

i=1 |Xi|

n
∑

i=1

∑

x∈Xi

‖x − projectionproj,dist(xgrid, Ri, ti, K, Pdist)‖2.

(3.1)

Expression (3.1) represents RMS of projection error over all detections. De-
pending on situation it is ftan,poly for combination of tangential projection
and polynomial distortion, ftan,div for combination of tangential model and
division distortion, feq,poly for combination of equidistant model and poly-
nomial distortion, feq,div for combination of equidistant model and division
distortion. Xi is set of detections for image i, xgrid is grid point corresponding
to detection x, Ri,ti is pose of camera relative to grid for image i, K is internal
calibration matrix, Pdist are parameters of the distortion model.

3.3 Middle–FOV cameras

In this section methods for middle–FOV cameras are introduced. Middle–
FOV camera is usually rectilinear with low radial distortion so tangential
projection was chosen to model it. For distortion both division and polynomial
model were used. Calibration was done in the way of Zhang’s flexible camera
calibration [3]. Multiple images with different position of calibration board
were used. First internal calibration matrix K is estimated directly from
multiple views of calibration board. With known K pose of camera R, t
relative to calibration board is obtained for each image. Then radial distortion
is estimated after pose. With known initial values projection error is optimized
by a numerical optimization method method.

10



................................. 3.3. Middle–FOV cameras

3.3.1 Initial estimation of K

Zero skew parameter and fixed aspect ratio was considered for calibration so
matrix ω was estimated as

ω =







ω1 0 ω2

0 ω1 ω3

ω2 ω3 ω4






. (3.2)

Linear constraints given by homographies between detected image points and
grid point coordinates were used for estimation of ω. Homography for each
image can be written as

H =
[

h1 h2 h3

]

. (3.3)

Each homography than adds 2 constraints [2] on ω

hT
1 ωh2 = 0 (3.4)

hT
1 ωh1 = hT

2 ωh2. (3.5)

These constrains form homogeneous system of linear equations Aω = 0. This
system is solved by total least squares method using SVD of matrix A. Finally
the matrix K was computed from

ω−1 = KKT (3.6)

by Cholesky decomposition.

3.3.2 Pose estimation

With known matrix K pose of camera in relation to calibration board can
be obtained using Zhang’s method [3]. Transformation between board and
image coordinates can be written as

s







u
v
1






= K

[

r1 r2 r3 t
]











x
y
0
1











(3.7)

H = K
[

r1 r2 t
]

. (3.8)
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3. Internal camera calibration...............................

For each image, pose can be than extracted from homography as follows

r1 = λK−1h1 (3.9)

r2 = λK−1h2 (3.10)

r3 = r1 × r2 (3.11)

t = λK−1h3 (3.12)

λ =
(

‖K−1h1‖+‖K−1h2‖
2

)−1

. (3.13)

Now we have pose in form of translation vector and rotation matrix

R =
[

r1 r2 r3

]

(3.14)

which as computed does not necessarily fulfill condition RT R = I so it is
approximated by rotation matrix Q [9] that is the nearest matrix fulfilling
mentioned condition in the sense of Frobenius norm.

3.3.3 Distortion model parameters estimation

Last step of internal calibration is to estimate parameters of a distortion
model. This part is different for polynomial and division model.

polynomial model

Polynomial model parameters were obtained using least squares method [10]
from equations

k1r2 + k2r4 + k3r6 = rd − r. (3.15)

Undistorted points are computed as projection of gridpoints and distorted
points are computed using inverse transfomation K from image detections.
Each pair of points generates one equation for their radii.

division model

Initial estimate of division model parameters was done by minimizing pro-
jection error. Parameters obtained in previous sections were used. Initial
value for division model were set to λ = 0. Estimated value was obtained by
minimization of objective function (3.1) with respect to λ.

12



..................................3.4. Wide–FOV cameras

3.3.4 Overall optimization

Last procedure is overall optimization to refine estimated parameters. This
procedure has two parts. One part is optimization of R and t for each
image with fixed K and distortion parameters. Other part is optimization
of parameters K and distortion parameters with fixed R and t. Objective
function for this optimization is (3.1). These two parts can be iterated until
convergence.

3.4 Wide–FOV cameras

In this section methods for wide–FOV cameras are introduced. Wide–FOV
camera has curvilinear mapping so equidistant projection was chosen to model
it. For distortion were used both polynomial and division model. Methods
from previous section couldn’t be used because of high radial distortion. For
initial estimate of parameters we tested different methods. In all methods
fixed aspect ratio and zero skew in internal calibration matrix are assumed.

3.4.1 Initial estimation of K and distortion

This section presents methods which use minimization of reprojection error to
estimate internal parameters. First method is based on plane fitting. Second
method is based on estimation of homography between grid coordinates and
rays that corresponds to detected points in images.

Calibration with planes

In this approach the fact that corners of calibration chessboard lie in lines in
real 3D world and that each of these lines can be viewed as intersection of
chessboard plane with plane that goes through camera centre is used. It is
considered that each of the corners is at least in one vertical and one horizontal
line. Also detected positions of these corners in image are known and can be
assigned to their grid position on chessboard, therefore sets of points that lie
in one line are known. Inverse distortion and projection is applied on each

13



3. Internal camera calibration...............................

of these sets and 3D rays are obtained. Those 3D rays are fitted with plane
that goes through camera centre. Each ray gives one constraint on the plane
and these constraints form homogeneous system of linear equations An = 0.
Normal vector n of this plane is found by total least squares using SVD of
matrix A. Now dot product is used to project 3D rays to this plane. Then
projection model and distortion is applied to obtain image positions of these
plane points. Now euclidean distances between original detections and these
projected points are measured. RMS of these distances over all points and all
lines is minimized with respect to scale αx and image centre x0, y0. Image
centre is initialized with image width

2
, image height

2
. Scale was initialized by guess

based on image observation. Then with these parameters fixed the error is
optimized with respect to distortion parameters. Distortion parameters are
initialized to 0.

Calibration with homography

Second approach was to estimate homography between 3D rays and grid
points. As in previous method 2D detections were transformed to 3D rays.
Homography between those 3D points grid points was estimated. 3D rays and
corresponding grid points make constraints on homography. These constraints
form homogeneous system of equations Ah = 0. Homography is obtained by
total least squares using SVD of matrix A. Grid points were transformed by
homography and projected to image. Error is computed the same way as in
previous section. The parameters αx, x0, y0 and distortion parameters were
found as in previous method.

One way calibration with homography

This approach is similar to previous one, however it does not transform
image detections to 3D rays instead it directly projects grid points to image.
Homography is in this case part of the optimization and it was initialized with
identity matrix. This method was intended to avoid inversion of distortion
model which is not precise. Optimization is needed to be bounded, otherwise
it does not converge.

14



................................. 3.5. Experimental results

3.4.2 Pose estimation

Now with known estimate of matrix K, the camera pose can be estimated.
First inversion of equidistant model is applied to detected points to transform
them to rays. Homography between grid points in homogeneous coordinates
and these rays is estimated. Pose is then extracted in similar way as for
middle–FOV camera

r1 = λh1 (3.16)

r2 = λh2 (3.17)

r3 = r1 × r2 (3.18)

t = λK−1h3 (3.19)

λ =
(

‖h1‖+‖h2‖
2

)−1

. (3.20)

Rotation matrix is approximated to fulfil condition RT R = I.

3.4.3 Overall optimization

This part is same as for middle–FOV camera. Only the projection model
is equidistant. Objective function is expression (3.1). Both polynomial and
division model of distortion are optimized with equidistant projection.

3.5 Experimental results

In this section are presented results of experiments.

3.5.1 Middle–FOV camera calibration

Tables 3.4 and 3.5 presents results for calibration with polynomial and division
distortion model and corresponding projection errors respectively. Figure
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3.5 presents visualisation of projection errors for calibration with polynomial
model.

Errrms αx x0 y0 k1 k2 k3

1.07 2767.45 1156.25 1035.61 -0.0046 -2.6635 0.6738

Table 3.1: Projection error and resulting focal length, image centre and polyno-
mial model parameters

Errrms αx x0 y0 dn λ

1.37 2764.83 1156.62 1035.61 100 -0.0052

Table 3.2: Projection error and resulting focal length, image centre and division
model parameters

Figure 3.2: Visualisation of projection errors for each point. Error vectors are
multiplied by 30 for better visibility

3.5.2 Wide–FOV initial parameter estimation

This section presents results of initial parameter estimation for wide–FOV
cameras. Estimated were focal length, image centre and polynomial distortion
model parameters. Tables 3.1 – 3.3 presents in order estimated scale of axes
and image centre, parameters of distortion model and projection errors.
Figures 3.2 – 3.4 presents visualization of projection errors for each method
in the same order as in tables.
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method αx x0 y0

planes 839.46 1260.87 961.79
homography 827.70 1257.05 958.67
one way homography 841.22 1271.97 963.62

Table 3.3: Resulting focal length and image centre

method k1 k1 k1

planes 0.0053 0.0060 -0.0051
homography 0.0083 0.0067 -0.0055
one way homography -0.0102 0.0214 -0.0089

Table 3.4: Resulting parameters of polynomial distortion

method Errrms Errrms(with disotortion model)

planes 1.03 0.50
homography 4.36 1.36
one way homography 2.95 1.90

Table 3.5: Projection errors

Figure 3.3: Visualisation of projection errors for each point for method with
planes. Errors for vertical lines are yellow. Errors for horizontal lines are red.
Error vectors are multiplied by 50 for better visibility.
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Figure 3.4: Visualisation of projection errors for each point for method with
homography. Error vectors are multiplied by 30 for better visibility.

Figure 3.5: Visualisation of projection errors for each point for one way method
with homography. Error vectors are multiplied by 30 for better visibility

3.5.3 Wide–FOV camera calibration

Tables 3.6 and 3.7 presents results for calibration with polynomial and division
distortion model respectively corresponding projection errors. Figure 3.6
presents visualisation of projection errors for calibration with polynomial
model.

18
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Errrms αx x0 y0 k1 k2 k3

0.34 815.26 1324.03 981.99 0.0149 0.0051 -0.0048

Table 3.6: Projection error and resulting focal length, image centre and polyno-
mial model parameters

Errrms αx x0 y0 dn λ

0.75 815.57 1324.03 981.99 1 0.00003

Table 3.7: Projection error and resulting focal length, image centre and division
model parameters

Figure 3.6: Visualisation of projection errors for each point. Error vectors are
multiplied by 30 for better visibility
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Chapter 4

Multiple camera calibration

4.1 Introduction

In this chapter we proposed method for estimation of relative pose of two
cameras mounted on a single frame with no necessity for overlap in FOV.
This method is based on observing multiple planes visible in both cameras
from different positions. Afterwards are presented results of experiments on
data captured in laboratory environment.

4.2 Calibration method

This method estimates relative pose of two cameras by observing multiple
planes from different positions. Supposing that world coordinates frame
origins at first camera, we have two camera matrices

Pa = Ka

[

I| 0
]

(4.1)

Pb = Kb

[

M | m
]

, (4.2)

where M represents relative rotation between two cameras and m represents
translation between those cameras. Goal of this method is to estimate
M and m. The estimation can be done by solving system of generally
non-linear equations induced by viewing multiple planes from two different

21



4. Multiple camera calibration...............................

position. Relation between two views of one plane is given by homography
transformation[11]

H = R − tnT /d (4.3)

where R, t represents transformation between the viewing positions and
πT = [nT |d] is representation of the plane with respect to coordinates system
of camera in the first position.

Figure 4.1: Diagram of transformations between cameras and positions

Transformations between camera a and b are derived using coordinates of
points in different coordinate systems, a, b identify camera and 1, 2 identify
position. Figure 4.2 illustrates this situation.

xa2 = Raxa1 + ta (4.4)

xb1 = Mxa1 + m (4.5)

xb2 = Rbxb2 + tb (4.6)

xb2 = Mxa2 + m (4.7)

By substitution we get equation

RbMxa + Rbm + tb = MRaxa + Mt + m. (4.8)

From this equation we get relations for rotations and translations of camera
a and camera b between position 1 and 2.

Rb = MRaMT

tb = Mta + m − Rbm

Transformation of plane πa to coordinates of camera b is derived from

nT
a xa1 + da = 0 (4.9)

nT
b (Mxa1 + m) + db = 0 (4.10)
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.................................4.3. Optimization problem

From (5.10) we get

nT
b Mxa1 + nT

b m + db = 0 (4.11)

Now by comparison of (5.9) and (5.11) we get relations

nb = Mna (4.12)

db = da − mT Mna (4.13)

πT
b = [nT

b |db] (4.14)

for plane in coordinates of camera b.

For one plane observed by two joint cameras and motion we get set of
equations

Ha = Ra −
tanT

a

da

(4.15)

Hb = Rb −
tbn

′T
b

d′
b

(4.16)

nb = Mna (4.17)

db = da − mT Mna (4.18)

Rb = MRaMT (4.19)

tb = Mta + m − Rbm. (4.20)

Ha and Hb are homographies. For each plane observed from both cameras
we get additional two homographies and corresponding equations. Now we
have system of equations with 3 DOF forRa, 3 DOF ta, 3 DOF forM , 3 DOF
for m, 4 DOF for n, d. This means 18 DOF and 18 equations (homography
is defined up to scale). Each added plane adds 4 DOF for n, d, 2 DOF for
homography and another 18 equations. So for at least two planes we get an
overdetermined system of equations.

4.3 Optimization problem

Above described system of equations was solved numerically by minimization
of error, which is difference between image position of points transformed
by homography and their detected position induced by movement of rig.
Homographies are computed as in equations (4.15),(4.16) for each plane.
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Objective function for one plane can be written as

f1(Xa1, Xa2, Xb1, Xb2, R, t, M, m, π1) (4.21)

erra = ||projeq,poly(Ha proj−1

eq,poly(Xa1)) − Xa2|| (4.22)

errb = ||projeq,poly(Hb proj−1

eq,poly(Xb1)) − Xb2|| (4.23)

f1 = (erra, errb). (4.24)

For two planes objective function is

f = f(Xa1, Xa2, Xb1, Xb2, R, t, M, m, π1, π2) (4.25)

f = (f1, f2) (4.26)

Output of this function is vector of difference in position for each detected
point. This function is minimized with respect to R, t, M , m, π1, π2. Rotation
matrices are represented by axis and angle for purposes of optimization.
Arguments Xa1,Xa2,Xb1,Xb2 are detections of markers. For minimization was
used least squares method. Initial values for optimization were set as rough
estimate for expected calibration. Rotation between cameras was initialized
to 90◦ around y axis and translation vector was set to (1, 0, −1)T . Normal
vectors of planes were initialized as estimate from image view and scalars d
were initialized to 1.

4.4 Experiment with synthetic data

First method was verified with synthetic data. For each plane were chosen
5 points. R, t, M , m, π1, π2 were chosen to emulate movement and spatial
distribution of rig. Positions of points in both camera coordinate systems
were calculated. These points were then projected to image coordinates and
served as synthetic detections. Optimization was done on those data and
converged to chosen parameters R, t, M , m, π1, π2. Afterwards the same
task was done, but gaussian noise was added to the data to emulate real
detection inaccuracy. Again method converged to expected results with noise
variance up to 1 px.

4.5 Experiment with real data

Calibration method was then verified on camera rig in laboratory environment.
Camera rig, which can be seen at figure 5.1, was dragged across laboratory
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room with markers taped on the walls and floor which served as planes
for calibration. Two of the rigs cameras (rear and right one in figure 5.2)
were synchronously capturing images of surroundings during movement. For
calibration were provided these images with detected positions of markers used
as correspondences. For experiment was chosen movement of the rig where
two planes were visible for all time for both cameras. Internal calibration
parameters were obtained in experiments in previous chapter and can be seen
in Table 4.6. For calibration were used multiple measurements. For each
measurement 4 images were chosen. This images had to fulfill condition that
at least two common planes were visible for both cameras at both positions
and that each plane had to have at least 4 visible correspondences at images
from both positions.
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4.6 Results of experiment with real data

Here are shown results of estimation of relative pose of two cameras. Results
are presented as difference between measured M , m and data measured by
different method at laboratory. Difference of M is presented as angular
difference between matrices and difference of m is presented as euclidean
distance between vectors. Resulting cost of optimization is also presented.
Optimization method has ambiguity for length of vector m. This was solved by
measuring real distance between cameras. Obtained vector m is normalized
and multiplied by this distance to get translation between cameras with
correct scale.

cost Merr merr

3.37 0.02 0.04

Table 4.1: Results of optimization which converged to desired solution

Figure 4.2: Set of images where optimization converged. Upper right is image
from camera a at position 1. Upper left is image from camera b at position 1.
Bottom left is image from camera a at position 2. Bottom right is image from
camera b at position 2.

Results from table 4.1 were achieved on data shown in figure 4.2. Other
good results were obtained on data close to data from figure 4.2 in sense
of position of the rig in the room. However generally optimization did not
converged to expected results.
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n cost Merr merr

1 5043.1 2.66 0.43
2 5091.3 2.69 0.45
3 96.6 0.10 0.19
4 1367.6 3.11 0.06
5 2597.8 3.10 0.17
6 8.6 0.03 0.19
7 6.44 0.08 0.22
8 1316.7 2.36 0.91
9 6.5 0.09 0.23
10 1677.3 2.65 0.80
11 8.4 0.04 0.23
12 16.6 0.01 0.20
13 20.7 0.01 0.20
14 1690.2 2.92 0.66
15 18.13 0.02 0.31
16 18.95 0.04 1.06
17 3.13 0.01 0.08
18 3.37 0.02 0.04

Table 4.2: Results of optimization for data gathered on 1 drive across laboratory,
n is number of measurement and following are value of cost function and difference
between result and reference solution

Table 4.2 shows results from calibration done on data from one drive of
rig over the laboratory. It can be seen that measured data which actually
converged to correct solution had lowest value of cost function (results 17,
18). This is an important observation because it shows that with decreasing
value of cost function estimated solution converges to correct solution.
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Chapter 5

Technical backgoround

5.1 Introduction

In this chapter will be briefly summarized technical aspects such as laboratory
equipment and software used for computations.

5.2 Software

All numerical experiments and data processing were done in python language.
For purposes of matrix computations were mainly used functions of numpy
library and for numerical computations were used functions of scipy.optimize
library. For data visualisation was used matplotlib library.

This work was done distantly on data from laboratory provided by su-
pervisor. For experiments were provided images and detected positions of
markers. For purposes of this thesis data were processed to form suitable for
experimenting. Experiments were implemented in python as scripts.
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5.3 Laboratory equipment

5.3.1 Multi–camera platform

Camera rig is cart with mounted cameras and other sensor equipment. It
has wheels attached to its frame so that it could be moved over the floor.
Camera calibration was done on both wide–FOV and middle–FOV of the rig.
Multiple camera calibration estimated relative position of rear Wide–FOV
camera and one of the side cameras.

Figure 5.1: Camera rig used for experiments
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.................................5.3. Laboratory equipment

Figure 5.2: Camera rig used for experiments top view. Mounted equipment
consists of 2 Middle-FOV cameras in the front of rig (left in image). 3 Wide-FOV
cameras on sides and rear (right in image).

5.3.2 Markers for calibration of multiple cameras

For calibration correspondences in images are needed. These correspondences
were provided by markers which can be detected in image. Markers were taped
to walls and floor of laboratory and each of them had unique identification
code. According to those codes it can be determined in which plane detected
point lies.

Figure 5.3: View of laboratory with markers taped on walls and floor. For
experiment served as planar objects mainly floor and right wall.
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Chapter 6

Conclusion

This work presents different approaches to camera calibration and results of
their application on camera platform in laboratory environment. tested two
different approaches for internal calibration of both middle-FOV and wide-
FOV cameras. For wide-FOV cameras were introduced and tested methods
for initial estimation of parameters which are based on minimization of
reprojection error that is caused by large radial distortion. For each calibration
different models of distortion models were tested. These experiments produced
results that were further utilized in external calibration.

We introduced method for calibration of relative pose of multiple cameras
with non–overlapping FOV. First this method was theoretically derived and
than verified on synthetic data and moving camera platform at laboratory.
Experiment with synthetic data prooved that this method can produce correct
results for calibration even with slightly noisy data. Experiment with real
data also produced correct results but these results weren’t achieved reliably.

6.1 Future work

It is obvious that calibration method for multiple cameras at present state is
not usable in real world applications. Further work can be done on improving
reliability of the method. First idea is to use more sets of images in one step
of optimization so that result is constrained by more equations. Second idea
is to find better initial values for optimization directly from captured data.
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Possible improvement for real world application is to adapt this method to
use marker–free correspondences.
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Appendix A

Attached files

attachment

code

calibration.py

tangential_projection.py

ea_projection.py

polynomial_distortion.py

division_distortion.py
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Appendix B

SVD sign ambiguity

When estimating solutions of overdetermined systems of equations by SVD,
problem called SVD sign ambiguity[12] occurred.

Figure B.1: Results of homography transformation with opposite sign

This problem arose when it was attempted to obtain approximate solution
of overdetermined system of linear equations, represented by matrix A, by
applying svd on matrix A and taking right singular vector as solution estimate.
Image above shows result of using homography with opposite sign and pro-
jection of corrupted result. Problem was dealt by checking reprojection error
of results given by estimated homography. Homography with opposite sign
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could be easily recognised because reprojection error was considerably higher
(at least 6 orders of magnitude). Homography was than easily corrected by
multiplying it by −1.
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