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Abstract

This bachelor’s thesis introduces a new Nonlinear Model Predictive Control (NMPC)
for the navigation and obstacle avoidance of Unmanned Aerial Vehicles (UAVs),
aimed at enhancing the controllers capabilities of the Multi-Robot Systems (MRS)
group for agile flight scenarios. The thesis focuses on the design and implementa-
tion of the NMPC controller using the acados library, outlining its cost function and
constraint formulation, alongside the methodology for obstacle management. To per-
form obstacle avoidance, drone flight is restricted to a flight corridor formed by a set
of convex polyhedra, with an optimization penalty awarded for deviations from this
corridor. This approach is evaluated through a series of simulation experiments that
highlight the effectiveness of the proposed control architecture and demonstrate its
potential to become a prominent controller in the MRS flight stack.

Keywords Unmanned Aerial Vehicles, Automatics Control, Nonlinear Model Pre-
dictive Control, Acados
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Abstrakt

Tato bakalářská práce představuje nové Nelineárńı Modelové Prediktivńı Ř́ızeńı
(NMPC) pro navigaci a vyhýbáńı se překážkám Bezpilotńıch Létaj́ıćıch Stroj̊u
(UAV), jehož ćılem je rozš́ı̌rit schopnosti ř́ıdićıch systémů skupiny Multi-Robot Sys-
tems (MRS) pro scénáře obratných let̊u. Práce se zaměřuje na návrh a implementaci
kontroléru NMPC pomoćı knihovny acados, přičemž popisuje jeho penalizačńı funkci
a formulaci omezeńı, spolu s metodologíı pro zvládáńı překážek. Pro účely vyhýbáńı
se překážkám je let drona omezen na letový koridor vytvořený množinou konvexńıch
mnohostěn̊u, přičemž za odchylky od tohoto koridoru je v rámci optimalizace uložena
penalizace. Tento př́ıstup je vyhodnocen prostřednictv́ım několika simulačńıch ex-
periment̊u, které zd̊urazňuj́ı účinnost navrhované architektury ř́ızeńı a ukazuj́ı jeho
potenciál stát se významným kontrolérem ve vybaveńı MRS.

Kĺıčová slova Bezpilotńı Prostředky, Automatické Ř́ızeńı, Nelineárńı Prediktivńı
Ř́ızeńı, Acados
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Chapter 1

Introduction

1.1 Motivation

The rapid growth and development of Unmanned Aerial Vehicle (UAV), commonly
known as drones, have revolutionized various industries, including agriculture, surveillance,
transportation, and photography [1]. One of the key challenges in the utilization of drones is
ensuring precise and efficient flight control, especially in complex environments with obstacles
and strict constraints on the drone’s motion [2].

Traditional control methods, such as Proportional-Integral-Derivative (PID) controllers,
may not be sufficient in achieving the desired performance for certain tasks or in challenging
conditions, such as following very dynamic trajectory. Advanced control techniques, such as
Model Predictive Control (MPC), have emerged as a promising alternative due to their ability
to handle complex systems and incorporate constraints directly into the control formulation.

While drones can perform well using MPC, to fully exploit their agility and capabilities,
it is necessary to model the nonlinear behavior of the drone using Nonlinear Model Predictive
Control (NMPC). NMPC is a specific variant of MPC that deals with nonlinear systems,
making it a suitable candidate for the control of drones, which exhibit nonlinear dynamics.
The implementation of an NMPC controller using the acados library [3] is an approach that
can potentially yield superior performance and enhanced robustness compared to traditional
methods.

Furthermore, obstacle modeling is essential when the predefined trajectory passes close
to obstacles, as disturbances or shortening of path while tracking of the reference point in
high speeds may cause the drone to collide. Incorporating obstacle avoidance into the NMPC
controller using linear constraints is a aspect of drone control, that enables safe navigation
along trajectories within proximity to obstacles and reduces the risk of collision.

This thesis aims to develop and implement an NMPC controller for drone flight control
along a predefined trajectory, taking into account obstacle modeling and avoidance, using the
acados library. The motivation behind this research is to enhance the flight control perfor-
mance of drones, enable agile flight maneuvers, and contribute to the advancement of control
techniques used in UAV applications.

1.2 Problem statement

Current drone flight control systems, such as Model Predictive Control (MPC), face
limitations in handling high-speed and dynamic maneuvers due to the linearization of the
system, which can lead to inaccuracies when the operating point is far from the linearization
point. This issue affects the drone’s ability to perform agile maneuvers and maintain trajectory

CTU in Prague Department of Cybernetics



2/28 1.3. OBJECTIVES AND SCOPE OF THE THESIS

tracking performance while navigating close to obstacles. NMPC is also better for handling
actuation limits such as the motor max thrust.

Building upon the limitations of current NMPC controllers, it is important to note
that existing solutions often do not consider obstacles in their formulations [2]. This omission
can lead to a conservative flight strategy, requiring the drone to closely follow the predefined
trajectory in the vicinity of obstacles to prevent collisions. In areas without obstacles, this
conservative approach may negatively impact the drone’s flight speed and limit its potential
for agile maneuvers.

The problem this bachelor’s thesis will address is the need to create a robust controller
for the MRS group, capable of tracking very fast trajectories and accounting for obstacles.

1.3 Objectives and scope of the thesis

The primary objective of this thesis is to develop an NMPC controller that accurately
captures the nonlinear dynamics of a drone and is suitable for flight control along a predefined
trajectory. This will involve formulating the NMPC controller and implementing it using the
acados library [3], ensuring real-time performance and efficient computations.

Another key objective is to incorporate obstacle modeling and avoidance in the NMPC
controller. This will allow the drone to safely navigate in environments with obstacles while
maintaining trajectory tracking performance. The performance of the developed NMPC con-
troller will be assessed in various simulation scenarios, and its effectiveness and robustness
will be compared with alternative control methods.

As an optional objective, the study will explore the possibility of conducting a proof-of-
concept flight test on a real drone to demonstrate the feasibility and real-world performance
of the NMPC controller. This will provide insights into potential limitations and areas for
improvement in the proposed control approach.

The scope of this study is limited to the development and implementation of the NMPC
controller using the acados library and the integration of obstacle modeling and avoidance.
The primary focus will be on simulations, with the optional real-world flight test serving as a
supplementary validation of the proposed control approach.

CTU in Prague Department of Cybernetics
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Chapter 2

State Of The Art

2.1 Model predictive control in drone control

MPC has emerged as a prominent control strategy for Micro Aerial Vehicle (MAV)s,
particularly in multirotor configurations such as quadrotors [2]. The success of MPC is at-
tributed to it being a model-based method, capable of exploiting the knowledge of the dynamic
model of the system. Due to recent advancements, MPCs are applicable to both linear and
nonlinear systems. By optimizing over the prediction horizon, MPC can track the reference
and simultaneously satisfy constraints on the input while maintaining robust performance.
Constraints can also include spatial constraints, thereby modeling obstacles and forbidden
areas.

Another approach to achieve time-optimal flight involves the use of Model Predictive
Contouring Control (MPCC) [4] [5]. This method is minimizing the Euclidean distance from
a curve (as opposed to deviation from a sampled state at a shooting node in standard MPC)
and maximizing the distance along the trajectory. This results in fast progress along given
trajectory, while maintaining good trajectory tracking.

2.2 Existing NMPC implementations and applications

NMPC has become a popular choice for controlling drones due to its ability to handle
nonlinear dynamics more effectively than linear MPC. NMPC has been successfully imple-
mented in various drone applications, demonstrating its potential for enhancing flight perfor-
mance and safety.

M. Jacquet et al. [6] introduces an application of NMPC for a group of UAVs aimed
at optimizing observation capacity. The strategy employs a cooperative control structure
which integrates a comprehensive nonlinear model of multirotor UAVs. This model considers
their motor-level actuation elements and real-world constraints. Every UAV in the group is
managed by its individual NMPC, which predicts the feature position utilizing a Kalman
filter and shares these forecasted measurements with the rest of the group. Subsequently, each
NMPC processes these aggregated measurements as external parameters for updating their
internal Kalman filters, thereby enhancing their collective performance.

Recalde et al. [7] introduces a NMPC for rapid trajectory tracking in dynamic envi-
ronments, particularly designed for hexacopter platforms. This control strategy optimizes a
policy that guides the hexacopter along a pre-defined trajectory, simultaneously ensuring it
evades obstacles. To achieve this, the authors developed a simplified dynamic model of the
hexacopter, incorporating low-level PID schemes to enforce velocities generated by high-level
NMPC controller. The obstacles were modeled as spherical constrains in the optimization

CTU in Prague Department of Cybernetics
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problem. This problem was solved using the CasADI optimization toolkit, ensuring fast com-
putational times. The results demonstrated effective trajectory tracking and obstacle avoid-
ance in a simulated environment. Despite external disturbances such as wind, the control
errors tended towards zero, and the computational time remained consistently under 100 ms
(which was the controller call period), showing the robustness and efficiency of the developed
NMPC scheme.

2.3 Obstacle modeling and avoidance in drone control

Although the common procedure for collision-free flight is to plan a collision-free trajec-
tory and then use a conventional control system, which does not require obstacle modelling,
obstacle modelling can enhance safety and reliability in flight near obstacles. Various tech-
niques have been developed to address these challenges, and this section highlights some of
the prominent methods.

Although method [8] is designed for legged mobile robots, it employs MPC that takes
into account obstacles. These obstacles are modeled using spheres, and distance to these
spheres is penalized using a relaxed barrier function. This approach to modeling obstacles
could potentially be applicable to the control of UAVs as well.

Another obstacles modelling strategy involves constraining the flight of UAVs to a tube
along a trajectory. By incorporating uncertainties into the formulation of the MPC method,
this approach, together with dynamic replanning of the tube, ensures system robustness even
when confronted with previously unknown obstacles and state-dependent uncertainty [9]. Al-
ternatively, this tube can be approximated using polyhedrons, and hard linear constraints can
be employed to achieve time-optimal flight within the designated tube [10].

CTU in Prague Department of Cybernetics
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Chapter 3

Methodology

In this bachelor’s thesis, the control of UAVs is adressed, specifically quadcopters, using
NMPC. To achieve this, we require a state description of the quadcopter, a specified reference
trajectory, and a method of calculating the cost function for the optimization algorithm.

3.1 Drone dynamics and mathematical models

For the state description, consider the quadcopter’s position, velocity, orientation, and
angular velocity as the state variables. An overwiew of used variables is in Table 3.1. The
position is represented by a 3-dimensional Cartesian vector p in meters, while the velocity is
a 3-dimensional vector v. The orientation is represented by a quaternion q, and the angular
velocity is represented by a 3-dimensional vector ω in the body frame. The inputs to the state
model are the thrusts of the individual propellers Ti, which form a vector T of 4 values for
the quadcopter in order shown in Figure 3.1.

As system parameters, we have the mass of the drone, the inertia tensor I (a 3×3
matrix), and an allocation matrix A that relates the thrusts of the propellers to the moments
about the body axes. The allocation matrix is dependent on the length of the propeller arms
l and the torque coefficient cτ . This torque coefficient indicates the ratio between the thrust
of the propeller and the moment of force that opposes the propeller’s rotation.

Table 3.1: Table of used variables

Symbol dimension units description

p 3 m position
v 3 m/s velocity
q 4 - rotation quaternion
ω 3 rad/s angular velocity
T 4 N thrusts
x 13 - drone state (p,v,q,ω)
m 1 kg quadcopter mass
l 1 m length of arm
I 3×3 kg m2 inertia tensor
A 3×4 m allocation matrix
cτ 1 m torque coefficient
cd 1 s−1 air drag coefficient
g 1 m/s2 gravity acceleration

The allocation matrix defines the relationship between the thrusts of the individual

CTU in Prague Department of Cybernetics
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Figure 3.1: Schema of drone

motors and the moment of force acting on the quadcopter. It has the following form:

A =

−
l√
2

l√
2
− l√

2
l√
2

− l√
2

l√
2

l√
2
− l√

2

−cτ −cτ cτ cτ

 . (3.1)

The state model can be expressed in the following form:

ṗ = v, (3.2)

v̇ = q ◦

 0
0∑4

i=1 Ti

+

 0
0
−g

− vcd, (3.3)

q̇ = 0.5 · q
[
0
ω

]
, (3.4)

ω̇ = I−1 (AT− ω × Iω) . (3.5)

Where the ◦ operation represents rotation of vector by rotation quaternion. All symbols are
explained in Table 3.1.

3.1.1 Delay and custom control command

The proposed NMPC controller produces motor thrusts Tn. This is important, because
motor thrust constraints must be in the optimization constrains to achieve truly agile flight.
But drones of the MRS group [11] have a pixhawk flight controller, which has collective
thrust and body rates as the lowest-level command. This pixhawk flight controller has its own
attitude rate PID, which run on higher frequency and commands power to individual rotors.

Therefore it’s necessary to convert the thrusts of individual propellers into the collective
thrust and attitude rate. Also the feedback loop delay was modeled to improve controller
performance.
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For modeling the delay, the last N values of motor thrusts Tn are stored in the cycle
buffer. Before each call of the Optimal Control Problem (OCP) solver, the observed state is
modified N times using the Kunge-Kutta 4 (RK4) method

N times repeat:

x←RK4 (x,Tn, tp) , (3.6)

tp is the period of controller calls.

After receiving the optimal thrust of the four propellers from NMPC, the total thrust
is obtained simply by summing them. The attitude rate is obtained by simulating the current
state with RK4 using the obtained thrust for a time t, which should roughly correspond to
tp, but it is precisely determined by fine-tuning.

3.2 Reference trajectory

It is assumed that the reference trajectory is already optimized according to certain
parameters and is continuously differentiable. Thus the position, velocity, acceleration and jerk
can be determined for each time step. From this acceleration, we can calculate the reference
orientation except yaw and the reference thrust of the motors. Yaw can be given explicitly or
simply set to zero. And from jerk and derivation of given yaw, angular speed can be calculated.

This all can be done, because drone system is differentially flat in its position and
heading [12]. From these parameters and their derivatives all other state variables and system
input can be computed.

Therefore, the reference trajectory is given by the function ftraj(t)→ x,T

3.2.1 Trajectory optimizer

For this work, the Large Scale Trajectory Optimizer [13] was chosen as a trajectory
generator. This is a header library written in C language. It is capable of finding a trajectory
with minimum jerk or snap for given sequence of points in a real time. This library operates
by dividing the trajectory into individual segments between specified points. These segments
are expressed as n-th order polynomials. It then imposes a continuity condition, stating that
the polynomials at the junction points must have the first k derivatives identical (k=3 for jerk
minimization, k=4 for snap minimization). Subsequently, it searches for coefficients for each
polynomial that would minimize the integral under the above conditions:

min

∫ tm

t0

∥d
kp

dtk
∥2dt. (3.7)

The library then transforms this problem into a Quadratic Program and, by solving it, obtains
the desired trajectory. According to the desired tracking speed, it assigns time intervals for
individual trajectory segments.

3.3 NMPC formulation and optimization

The main goal is to formulate an OCP, which can be solved by acados [14]. An OCP
consists of finding the individual motor thrusts over time so that the deviation from the
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8/28 3.3. NMPC FORMULATION AND OPTIMIZATION

desired trajectory is minimized

min
u(t)

∫ te

t0

fcost (x(τ),u(τ),yref(τ)) dτ (3.8)

subject to ẋ = fdyn(x,u) (3.9)

umin ≤ u ≤ umax.

Where yref(τ) is reference state in time τ , x(τ) is actual state in time τ (in our case it is
composed by p,v,q and ω), u(τ) are inputs to the system in time τ (in our case it is the
vector T of all four thrusts), fcost is cost function and fdyn is a function describing dynamic
model of system (in our case described by equations (3.2) - (3.5)). umin and umax are input
constraints (for drone control umin = 0 and umax is equal to maximum thrust of individual
propellers).

3.3.1 Acados implementation

The acados library offers several possible forms of solution [14], each of which has
certain advantages and requirements. The Nonlinear Least Squares was chosen to leverage the
nonlinearity of the system. As a result, the fdyn function can be any differentiable function,
but fcost must be in the quadratic form:

fcost (x,u,yref) =
1

2
∥Qx+Ru− yref∥2, (3.10)

where Q and R are weight matrices, which map drone state and thrusts onto reference.

The integral (3.8) is solved by discretization to N time steps (shooting nodes), where
u(τ) is in each time step constant, approximating (3.9) by RK4. Acados employs a Sequential
Quadratic Programming (SQP) method for optimization [3]. This approach iteratively lin-
earizes the nonlinear problem, solving the resulting quadratic problem to compute an update
of u(τ). It is well-suited for nonlinear problems, allowing acados to efficiently compute optimal
control inputs u(τ) at each time step.

3.3.2 Quaternion error decomposition

It is favorable to assign different weights for controlling the drone’s rotation around the
z axis (yaw) and around the x and y axes (pitch and roll), because drone dynamics around
z axis is much slower compared to x and y. We decompose the drone’s deviation from the
reference quaternion into the x, y, and z axes.

To do this we find error quaternion qe as the shortest rotation between attitude quater-
nion q and reference qr as

q = qe · qr, (3.11)

qe = q · q−1
r . (3.12)

(3.13)

Then we decompose qe to xy and z axes

CTU in Prague Department of Cybernetics
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qe = qz · qxy, (3.14)
qew
qex
qey
qez

 =


qwz

0
0
qz

 ·

qwxy

qx
qy
0

 . (3.15)

By multiplying these quaternions, we obtain (only the first and last element of quaternion is
important): qew...

qez

 =

qwzqwxy
...

qzqwxy

 = qwxy

qwz
...
qz

 . (3.16)

From this the rotation around z axis qz is found (because ∥qz∥ = 1)
qwz

0
0
qz

 =


qew
0
0
qez

 1√
q2ew + q2ez

. (3.17)

Finaly from equation (3.14) we can compute qxy and find minimal error coeficients:qxqy
qz

 =
1√

q2ew + q2ez

qewqex + qezqey
qewqey − qezqex

qez

 . (3.18)

3.4 Linear constraints for obstacle modeling

In order to stick with Nonlinear Least Squares (in order to keep fcost in format (3.10)),
a reasonable option for modeling obstacles is to use linear constraints with the use of slack
variables. Acados allows [14] adding the following linear constraints to the optimization prob-
lem:

min
u,s

∫ te

t0

fcost (x(τ),u(τ),yref(τ)) +
1

2

[
s(τ)
1

]T [
Z z
zT 0

] [
s(τ)
1

]
dτ (3.19)

subject to ẋ = fdyn(x,u)

umin ≤ u ≤ umax

gl ≤ Cx+ Js (3.20)

s ≥ 0,

where s(τ) are slack variables, C is a matrix with linear equation coefficients, gl is a vector
containing lower bounds for linear constrain inequality. Matrix J is assigning slack variables
to individual inequalities (in this case it is identity matrix). The matrix Z is a diagonal matrix
that contains weights used to penalize quadratic terms related to slack variables. Similarly,
the vector z is a weight vector used to penalize linear terms associated with slack variables.
Matrix C and vector gl can be set individually for each time stamp in prediction horizon.
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The inequality (3.20) describes these linear constrains:

ax+ by + cz + d ≥ 0. (3.21)

Coefficients a, b and c (a2 + b2 + c2 = 1) are in elements of the matrix C corresponding with
position states, and −d is in vector g. In order to omit this linear constraint, we set a = b =
c = d = 0. Consequently, this inequality is satisfied for every position of the drone.

These linear constraints are soft, meaning that their violation only results in an increase
of the minimized function. Consequently, the resulting optimal trajectory of the drone may
pass through the edge of the forbidden area. Therefore, it is necessary to place the linear
constraints at a certain distance from the obstacle.

The number of linear constraints, which corresponds to the maximum number of faces
of a polyhedron, was set to 6. This decision was made because a lower number of constraints
might not be sufficient for modeling restrictions in enclosed spaces, while a higher number
would result in increased computational complexity. However, this number can be adjusted
according to the user’s needs.

These linear constraints are assigned individually for each reference point in the pre-
diction horizon. For each of these points is determined a polyhedron in which the point is
situated most inward. This can be seen in figure 3.2. As linear constrains for points 1, 2 and 3
is used polyhedron A, for points 4 and 5 is used polyhedron B and for points 6 and 7 is used
polyhedron C.

Theoretically, proposed algorithm can be modified to consider moving obstacles. This
could be accomplished by making these linear constraints time-dependent. When assigning
to individual shooting nodes, the corresponding time-dependent linear constraints would be
used. This adjustment could potentially improve the algorithm’s versatility and applicability
in dynamic environments with moving obstacles.
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Figure 3.2: Example of flight corridor composed of convex polyhedrons. Blue line is reference
trajectory and points on it are shooting nodes of NMPC.
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Chapter 4

Simulation and results

4.1 Simulation setup and environment

The controller was tested in three different environments: firstly, in a simple environment
that was implemented for purposes of this thesis, then in Gazebo [15], and finally on a real
drone.

The simple environment was a simulation that simulated the system’s behavior in dis-
crete time steps of 10 ms using the RK4 method. The inputs to the system were directly the
motor commands. This simulation did not model any input or output disturbances, nor did
it simulate signal delays.

The Gazebo environment was used within a Singularity container [16]. The communi-
cation between the controller and the environment was facilitated through Robot Operating
System (ROS) [17]. The controller receives the drone’s state and the desired trajectory as
inputs and returns the total motor thrust and desired drone angular velocity. The simulation
of the drone flight and the calculation of the optimal control action occur asynchronously,
and the simulation models noise in both the input and output. In this simulation, the control
loop delay is similar to the delay experienced on a real drone.

The drone T650 [18], which has a mass of 3.5 kg and is capable of generating a total
thrust of 92 N, was utilized for a comparative analysis of the controllers. A drone with identical
parameters was used in the RK4 simulation. For testing of point tracking (Figure 4.1 and 4.2)
and for real world deployment we used drone F450 [18], which has a mass of 1.9 kg and a
total thrust of 32 N. For flights in Gazebo and in real-world flight a controller was used with
parameters according to Table 4.1. The Q and R parameters are weights in diagonal matrices
Q and R from equation (3.10) in corresponding positions. For flights in RK4 used parameters
were according to Table 4.2. The parameter Z is value of diagonal of matrix Z from integral
(3.19) and z is value of each element in vector z in the same integral.
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Table 4.1: Parameters of NMPC controller
used in Gazebo.

parameter value

Number of shooting nodes 30
Prediction horizon 2 s

Q position xy 0.5
Q position z 1

Q rotation xy 0.2
Q rotation z 3
Q velocity 0.2
Q omega 0.5
R thrust 0

Table 4.2: Parameters of NMPC controller
used in simple RK4 simulation.

parameter value

Number of shooting nodes 30
Prediction horizon 2 s

Q position xy 100
Q position z 100

Q rotation xy 0
Q rotation z 0
Q velocity 0
Q omega 0
R thrust 0

Z 0
z 0

4.2 Results and analysis of the NMPC performance

4.2.1 Time requirement

In acados, two hyperparameters can be adjusted: the Prediction horizon and the num-
ber of shooting nodes. The Prediction horizon specifies how far into the future we look - this
corresponds to the integration length te − t0 from equation (3.8). The larger the prediction
horizon, the further into the future the drone can see, but it also results in more dispersed
shooting nodes, which may impair the tracking of rapid dynamics. The number of shooting
nodes determines how finely the integral (3.8) will be approximated. A larger number acceler-
ates the dynamics of the control, but also increases the computational demand. The following
Table 4.3 and Table 4.4 shows the dependence of the average and maximum computation
time on the number of shooting nodes. This results were achieved on PC with processor AMD
Ryzen 5 5500U (6 cores 2.1 GHz) and 8 GB RAM.

Table 4.3: Table of required computation time with a prediction horizon of 1 second.

Shooting nodes average time [ms] max time [ms]

20 1.61ms 5.4ms
30 2.74ms 9.7ms
40 3.31ms 12.2ms
50 4.32ms 14.2ms
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Table 4.4: Table of required computation time with a prediction horizon of 2 second.

Shooting nodes average time [ms] max time [ms]

20 1.34 5.2
30 2.26 10.1
40 3.03 13.6
50 4.32 16.5

From these tables, it can be seen that the time complexity depends almost linearly on
the number of shooting nodes and does not depend on the prediction horizon.

When the OCP was adjusted to include obstacles (3.19), the time complexity increased.
With 6 linear constraints, the time complexity was more than double, as can be seen in table
4.5.

Table 4.5: Table of required time with prediction horizon 1 second with and 6 linear constrains.

Shooting nodes average time [ms] max time [ms]

10 2.16 3.5
20 3.94 9.9
30 5.24 16.5
40 6.87 25.2
50 8.67 27.4

Such high computational complexity is limiting for larger numbers of shooting nodes
when deploying on real drones, but for a smaller number of shooting nodes, it is usable.

To make this approach more usable, we can take into account the fact that usually
not all linear constraints in a convex polyhedron are limiting for a particular shooting node,
and therefore we can consider only the 3 closest linear constraints, thereby reducing the time
complexity 4.6.

Table 4.6: Table of required time with prediction horizon 1 second with 3 linear constrains.

Shooting nodes average time [ms] max time [ms]

10 1.29 4.7
20 2.67 9.5
30 4.18 15
40 5.7 21
50 6.8 20

4.2.2 Point tracking

Firstly, the accuracy of point tracking (That means that the reference trajectory has
all positions in one point.) was tested, to see the precision of tracking, and the controller’s
response to a reference jump to assess the speed of return to the desired position after devia-
tion.

Point reference tracking in simple simulation is accurate (the error is at the level of
rounding error). Therefore, the investigation of point reference tracking is done in the Gazebo
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simulator. This is shown in Figure 4.1. The controller’s task is to track the position (5,0,5).
However, my controller makes a slight systematic error, likely due to a fact, that we do not
model the motor dynamics, or mismatch between the real parameters of the drone and the
model, or the drone has some other unmodeled feature.

Figure 4.1: Coordinates x (blue) and z (green) of drone hovering with my NMPC.

Subsequently, the response to a reference step, that can be seen in Figure 4.2, was tested.
The aforementioned issue is even more apparent in this case.

Figure 4.2: Coordinates x (blue), y (red) and z (green) of drone responding to step change of
reference with proposed NMPC in Gazebo.

When testing the response to a step in the reference in my simple simulator, the obtained
response can be seen in Figure 4.3. No oscillations are visible here, so there is no fundamental
error in the controller.
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Figure 4.3: Coordinates x (red), y (green) and z (blue) of drone responding to step change of
reference with proposed NMPC in simple simulation.

4.2.3 Trajectory tracking

To verify trajectory tracking, a trajectory was generated in my simulator using the
Large Scale Trajectory Optimiser [13]. Minimum-jerk trajectory was calculated and the transit
points was set as per Table 4.7. The produced trajectory can be seen in Figure 4.4. The speed
parameter was adjusted so that the requirement was to traverse this trajectory in 6 seconds.

Table 4.7: Transit points used for trajectory generation in meters.

x y z

0 0 0
10 0 0
10 10 0
0 10 0
0 10 10
0 10 20
10 10 20
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Figure 4.4: 3D plot of reference trajectory (blue) and flown path (red).

The flight has high dynamics where maximum achieved speed was 60 km/h (Figure
4.6), despite this the deviation from the reference points on the trajectory remained within
0.5 meters (Figure 4.5), even though reference trajectory was not tailor-made for this specific
drone.
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Figure 4.5: Time course of position error size
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Figure 4.6: Velocity magnitude: reference
(blue), actual (green) and error (red - axis
on right).

4.2.4 Obstacle avoidance

To test obstacle avoidance, the drone was instructed in simple simulator to follow a
trajectory that passes through the edges of the penalized area, and the trajectory tracking
was set to be fast (to fly through whole trajectory in 7 seconds). The top down view can be
seen in Figure 4.7 and the magnitude of position error is in Figure 4.8. I set up 4 convex
polyhedra that formed a flight corridor. Their complement constituted the penalized area.
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Figure 4.7: Trajectory following with penal-
ized area. Blue is reference trajectory and
green is flown path.
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Figure 4.8: Position error of drone while fol-
lowing trajectory intersecting penalized area.

4.3 Comparison with other control approaches

This section compares three controllers in the Gazebo simulator. These include the SE3
controller (based on geometric state feedback [19]), the MPC, and presented implementation of
the NMPC. The comparison will be conducted on a reference trajectory created by the tracker
for a move from coordinates (0,0,5) to (5,0,5). For this tracker, so-called ”fast constraints”
were set to create a quick trajectory.

The MPC is part of the current flight stack of the Multi-robot Systems Group (MRS),
but it does not have trajectory tracking implemented. This means that it uses only the first
point of this trajectory as a reference. As a result, the trajectory tracking in this manner is
slow and very inaccurate (Figure 4.9).

The SE3 controller is the most accurate controller from the current flight stack of the
MRS, but according to the MRS website [20], it is sensitive to measurement noise, requires
a feasible and smooth reference, and needs to be tuned for each individual drone. However,
these disadvantages did not become evident in this comparison (Figure 4.10).

The proposed NMPC takes into account the entire trajectory. But for an aforementioned
issue, it begins to oscilate for a quick trajectory (Figure 4.11). For the trajectory generated
with ”slow constraints”, the dynamics are slow enough and the drone follows the trajectory
smoothly (Figure 4.12).
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Comparison of various controllers for trajectory tracking. Green represents the position of the
drone, blue represents the first point of the reference trajectory.

Figure 4.9: MPC Figure 4.10: SE3

Figure 4.11: NMPC Figure 4.12: NMPC slow

4.4 Results from flight on real drone

The presented NMPC was tested on a real drone. During the testing period, which was
month before this thesis submission, only the point-tracking version was implemented. This
reference point was subsequently manually moved, achieving the drone’s navigation through
environment. Due to the lack of information about the entire reference trajectory, the flight
performance was limited. Nevertheless, the experiment demonstrated the usability of drone
flight using the proposed NMPC under real conditions. Photo of the drone F450 used in this
experiment is in Figure 4.13.

Video of the experiment is available on youtube: https://youtu.be/ht1Rcb-7Fzk
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Figure 4.13: Drone F450 is relying on proposed NMPC.

From the flight log, we obtained both the drone’s actual positions and the commanded
positions. During the displayed time (Figure 4.14, Figure 4.15, Figure 4.16), the drone was
given a command to move in the xy plane. The graphs reveal that the drone’s position is tem-
porally lagging behind the reference point, as the drone does not receive the entire trajectory
but only a single reference point.
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Record of x, y, and z coordinates of drone F450 in real environment. Red is reference and
green is recorded position.

Figure 4.14: Axis x Figure 4.15: Axis y

Figure 4.16: Axis z
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Chapter 5

Conclusion

This work has discussed current methods for controlling drones based on MPC. New
NMPC controller meant for agile drone flight was designed and implemented using the acados
library. The quality of dynamic properties of the NMPC was tested with a simple RK4-based
simulator. The controller was integrated into the MRS system and tested in the Gazebo
simulator. The tests indicated that the controller functions as intended, however, the system
exhibits some unmodelled dynamics or other issues that result in compromised control.

Further in the project, the optimization function was enhanced with the ability to
consider obstacles and assessed the impact on computational demand and functionality in an
RK4 simulation. Then, the proposed controller was compared to the current flight stack of
the MRS and found that it has the potential to become the preferred controller for high-speed
flights if current issues are addressed. Lastly, the NMPC was deployed on a drone in a real
environment and real applicability was confirmed.

Future work will include identifying and addressing these shortcomings, as well as testing
obstacle avoidance in the Gazebo system. Given the high versatility of the acados library, the
developed controller could be extended to incorporate several additional features, such as
movable obstacles or variable time steps for individual shooting nodes, which could result in
increased modeling accuracy for the near future while still maintaining a broad future outlook
using a reasonably small number of shooting nodes.
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Appendix A

This appendix provides an overview of the codebase created for the Nonlinear Model
Predictive Control (NMPC) controller, developed as part of this Bachelor’s thesis.

A.1 Python Scripts

The Python scripts are used for generation of required C files:

1. main build.py The primary build script.
2. quadrotor model.py Contains the state equations for quadrotor.
3. quaternion.py Implements Quaternion calculations necessary for the controller.
4. utils.py ontains various utility functions used by aforementioned scripts.

A.2 Core Library

The core of the library is composed of C++ files placed in cpp and hpp directories:

A.2.1 CPP Directory

1. acados wrapper.cpp: A wrapper script for Acados, providing an interface to use the
Acados library with this project.

2. drone.cpp: Contains the implementation of drone behavior and RK4.
3. traj optim wrapper.cpp: A wrapper script for Trajectory optimizer library, providing

an interface to use of trajectory generation with this project.
4. simulation.cpp: This file includes a sample code demonstrating the use of the library.

A.2.2 HPP Directory

1. acados wrapper.hpp: The header file for acados wrapper.cpp.
2. drone.hpp: The header file for drone.cpp.
3. common.hpp: Contains definitions and declarations used throughout the library.

These files require the C files generated as mentioned above.

A.3 Configuration Files

YAML files are used for configuration purposes in this project. These files allow users
to define the controller parameters for the NMPC controller, simulation parameters and ob-
stacles.
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A.4 Visualization Scripts

Two Python scripts have been written to visualize the results obtained from the simu-
lation:

1. visualize output.py: Plots 3D figure of drone trajectory.
2. visualize output graphs.py: Renders time evolution of drone state in graphs.

A.5 Large Scale Trajectory Optimizer Library

The large scale traj optimizer directory contains an additional library that provides
generation of trajectories.
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