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Abstract

The setting of this thesis is stochastic optimal control and constrained model predic-
tive control of discrete-time linear systems with additive noise. There are three primary
topics.

First, it is the finite horizon stochastic optimal control problem with the expectation
of the p-norm as the objective function and jointly Gaussian, although not necessarily
independent, disturbances. We develop an approximation strategy that solves the prob-
lem in a certain class of nonlinear feedback policies for perfect as well as imperfect state
information, while ensuring satisfaction of hard input constraints. A bound on sub-
optimality of the proposed strategy in the class of aforementioned nonlinear feedback
policies is given.

Second, it is the question of mean-square stabilizability of stochastic linear systems
with bounded control authority. We provide simplified proofs of existing results on
stabilizability of strictly and marginally stable systems, and extend the employed tech-
nique to show stability of positive (or negative) parts of the state of marginally unstable
systems provided that the control authority is nonzero, but possibly arbitrarily small.
We also prove the existence of a mean-square stabilizing Markov policy for marginally
stable systems.

Finally, we develop a systematic approach to ensure strong feasibility of stochastic
model predictive control problems under affine as well as nonlinear disturbance feed-
back policies. Two distinct approaches are presented, both of which capitalize on and
extend the machinery of (controlled) invariant sets to a stochastic environment. The
first approach employs an invariant set as a terminal constraint, whereas the second
one constrains the first predicted state. Consequently, the second approach turns out
to be completely independent of the policy in question and moreover it produces the
largest feasible set amongst all admissible policies. As a result a trade-off between com-
putational complexity and performance can be found without compromising feasibility
properties.
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Abstrakt

Tato práce se zabývá třemi tématy z oblasti stochastického optimálńıho a predik-
tivńıho ř́ızeńı linárńıch systémů s diskrétńım časem a aditivńım šumem procesu.

Prvně je to problém stochastického optimálńıho ř́ızeńı na konečném horizontu
s p-normou jako kriteriálńı funkćı a normálně rozděleným, avšak ne nutně nezávislým,
šumem procesu. Je navržena aproximačńı strategie, která řeš́ı problém v určité tř́ıdě
nelineárńıch zpětnovazebńıch funkćı pro př́ıpady úplné i neúplné stavové informace
a přitom zajist́ı dodržeńı omezeńı na akčńı zásah. Horńı odhad mı́ry suboptimality
navržené strategie v dané tř́ıdě nelineárńıch funkćı je odvozen.

Dále se text zabývá otázkou stabilizovatelnosti linárńıch stochastických systému ve
smyslu omezeného druhého momentu stavu. Uvád́ıme zjednodušené d̊ukazy některých
existuj́ıćıch výsledk̊u pro striktně a marginálně stabilńı systémy s t́ım, že uvedená
technika je posléze rozš́ı̌rena k d̊ukazu stabilizovatelnosti pozitivńıch (nebo negativńıch)
část́ı komponent stavu marginálně nestabilńıch systémů za předpokladu nenulového,
ale př́ıpadně libovolně malého omezeńı na akčńı zásah. Dokázána je také existence
markovské stabilizuj́ıćı strategie pro marginálně stabilńı systémy.

Nakonec je navržen systematický postup pro zajǐstěńı rekurzivńı proveditel-
nosti stochastického prediktivńıho ř́ızeńı při použ́ıt́ı jak afinńıch tak nelineárńıch
zpětnovazebńıch strategíı. Představeny jsou dva r̊uzné př́ıstupy, z nichž oba stav́ı
a rozšǐruj́ı nástroje (ř́ızených) invariantńıch množin do stochastického prostřed́ı. Prvńı
př́ıstup použ́ıvá invariatńı množinu jako koncové omezeńı, zat́ımco druhý omezuje
prvńı predikovaný stav. Důsledkem je, že druhý př́ıstup je zcela nezávislý na uvažované
zpětnovazebńı strategii a vede k největš́ı množině řešitelnosti mezi všemi př́ıpustnými
strategiemi, což umožnuje naj́ıt kompromis mezi výpočetńı náročnost́ı a kvalitou ř́ızeńı
bez ohledu na velikost množiny řešitelnosti.
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1. Introduction

Over the last two decades, constrained model predictive control (MPC) has matured
substantially. There is now a solid and very general theoretical foundation for stability
and feasibility of nominal as well as robust MPC problems [37]. Nevertheless, the con-
nection to another mature field, stochastic optimal control, is still not fully developed
although there has been a considerable research effort in this direction over the last
years.

A basis for any receding horizon policy is finite horizon cost minimization, which is
the first direction of recent research. This problem lies at the heart of stochastic optimal
control theory and is known to be extremely difficult with only a handful of problems
(e.g. the linear quadratic control) that can be solved optimally. The remainder has to
be tackled by various approximation techniques most frequently, but not exclusively,
arising from the dynamic programming paradigm [5, 53].

Recent advances in computation and mathematical optimization techniques have,
however, opened new ways of dealing with these problems. One of the simplest, yet in
most practical applications very effective approach, is the certainty equivalent model
predictive control (CE-MPC) [4, 5] that solves a deterministic optimization problem
with stochastic disturbances replaced by their estimates based upon the information
available at the time, and proceeds in a receding horizon fashion (see Section 2.4). An-
other popular class of control strategies is the affine disturbance feedback policy which
turns out to be equivalent to the affine state-sequence feedback policy via a nonlin-
ear transformation similar to the classical Q-design or Youla-Kučera parametrization.
See Section 2.5.2 and also [52, 51].

However convenient the paradigm of affine disturbance feedback may be, its use is
prohibitive whenever unbounded stochastic disturbances enter the system in the pres-
ence of hard control input bounds since then the linear part necessarily vanishes, which,
in effect, renders the policy open loop. One way to overcome this problem is to use a
(saturated) nonlinear disturbance feedback as in [22, 29, 51], where this approach was
developed for the quadratic cost. The upside of this generalization is the fact that the
convexity of the cost function associated with the nonlinear disturbance feedback turns
out to be independent of the choice of the nonlinear function (see Section 2.5). This is
exploited in Section 3 of this work, which is devoted to developing a tractable extension
of this methodology to a general p-norm cost with the additional assumption of the
disturbances being jointly Gaussian (but not necessarily independent). Our methodol-
ogy brings about a significant performance improvement compared to the traditional
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1. Introduction

certainty-equivalent approach while retaining reasonable computational demands com-
pared to sampling or dynamic programming techniques.

Another branch of approximation techniques bounds the disturbances a priori and
solves a robust MPC problem, while guaranteeing an open loop probabilistic bound on
the performance [7]. This approach, however, tends to be very conservative, and thus
the idea of bounding the disturbances a priori based on their distribution appears more
often in the context of chance constraints, see e.g. [42]. For different approaches to
chance constraints handling see Section 5.1 and also [8, 23, 39].

It is the issue of recursive feasibility of (probabilistic) constraints that has predomi-
nantly hampered bridging the gap between stochastic optimal control and constrained
model predictive control. The crux of the matter lies in the fact that independent un-
bounded disturbances additively entering the system cannot give rise to a recursively
feasible problem as long as the set of state constraints is compact and control authority
bounded. Thus, one has to either develop a backup recovery policy that is triggered
when infeasibility occurs or assume compactly supported disturbances. The former was
tackled for instance in [21] where an optimal solution (in some sense) was developed
using dynamic programming techniques, carrying over the inherent computational bur-
den of dynamic programming techniques, however. The latter was extensively studied
in a series of papers [17, 18, 19, 36, 46], where the authors consider various types
of constraints and process noise properties, and present multiple techniques to tackle
these problems. The common factor of these papers is the use of a perturbed linear
state feedback (or pre-stabilization), which necessarily limits the number of degrees of
freedom and as a consequence the resulting performance.

In this work, in contrast, the use of affine disturbance feedback, where more degrees
of freedom are available, brings about performance improvement but also increased
computational effort. This can, however, be overcome by imposing structural con-
straints on the feedback matrix, allowing to reach a trade-off between performance and
computational burden [41]. Furthermore the feasibility of the second of the two ap-
proaches presented here is independent of the policy in question and in fact provides
the largest feasible set amongst all admissible policies. Our approach takes advantage
of the notion of controlled invariance, well established in (robust) constrained model
predictive control (see, e.g., [9, 24]), bringing stochastic model predictive control on a
sound footing. In fact, we derive results on strong feasibility and least-restrictiveness
(see Definitions 5.1 and 5.2) analogous to those of [26, 27, 41] in a stochastic context.

There is a wide range of applications amenable to the methods developed in this
thesis. A rich source of such applications is, for instance, building climate control, a
typical stochastic environment where p-norm or similar cost functions are ample and
constraints have typically probabilistic nature (e.g. the temperature must stay within
a certain range with given probability) [42, 43]. Another source of application can be
found in Financial Economics, an archetypal example being a portfolio optimization,
where, in the simplest setting, one maximizes return under risk constraints of stochastic
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nature, or minimizes risk under constraints on return (see, e.g., [12, 13, 14, 15]).

Organization

The text starts with a short introduction to stochastic optimal control in Chapter 2
where we set up fundamental problems encountered in this area and outline some
existing strategies to deal with them.

The main body of the thesis consists of Chapters 3, 4, 5, each of which is only loosely
connected to the others and requires only the basic notions established in Chapter 2.
Chapter 3 develops a tractable approximation to the p-norm stochastic optimal control
problem of linear systems for perfect (Section 3.2) as well as imperfect (Section 3.2.2)
state information. Chapter 4 deals with mean-square stability of linear stochastic
systems with bounded control authority. First, some simple connections to another
notion of stability are established, and then most of the currently known results on
mean-square stabilizability are presented. Chapter 5 deals with recursive feasibility
of probabilistic constraints in the presence of bounded disturbances. First we give
a brief overview of different types of probabilistic constraints typically encountered
in Section 5.1. Main results of this chapter are then collected in Section 5.2, where two
distinct approaches are developed, both of which are based on the concept of invariant
sets.

Numerical aspects of the p-norm stochastic optimal control approximation are briefly
discussed in Section 6.1, whereas numerical examples for all three main chapters are
postponed to Section 6.2.

Contribution

The main contribution of the thesis is twofold. First it is the development of a tractable
approximation of the p-norm stochastic optimal control problem with nonlinear distur-
bance feedback for perfect as well as imperfect state information. Second it is the
development of a novel approach to enforce strong feasibility of stochastic model pre-
dictive control problems based on invariant sets.

Most of the results on mean-square stabilizability have already been established al-
though some of the proof techniques are different and the results on mean-square stabi-
lizability of positive parts of marginally unstable systems and the existence of a stabiliz-
ing Markov policy for marginally stable systems are, to the best of our knowledge, new.
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2. Stochastic optimal control

2.1. Problem setup

A general stochastic optimal control problem is introduced in this section. This formu-
lation provides a very general framework for a wide variety of problems not only from
control engineering, but also from basically any field imaginable since uncertainty (or
randomness) in the future is always present.

The goal of a general discrete-time stochastic optimal control is to minimize the cost
function

J := E

{
l(xN ) +

N−1∑
k=0

l(xk, uk, wk)

}
, (2.1)

subject to system dynamics

xk+1 = fk(xk, uk, wk),

where xk is the state, uk the control input and wk is a random vector, over which
the expectation is taken, representing a disturbance acting on the system. The initial
state x0 can be random as well although without loss of generality the expectation in
(2.1) can be conditioned on x0 and minimized point-by-point for each value of x0. The
minimization is to be carried out over all Borel measurable causal feedback policies of
the form

uk = φk(x0, x1, . . . , xk). (2.2)

If the random variables wk, k = 0, . . . , N −1 are independent, an optimal policy (if one
exists) turns out to be a state feedback of the form

uk = φ̃k(xk)

for some Borel measurable φ̃ (see [28] for details).
Note that this is only one of many possible formulations of a stochastic optimal

control problem. For instance, a possible generalization is to allow φk(·) to be random
given the entire history (x0, u0, . . . , xk−1, uk−1, xk). It turns out, however, that in most
practical cases a ‘deterministic’ policy (2.2) will be optimal in this broader class of
randomized policies [28].

The functional nature of stochastic optimal control makes it much more difficult,
in fact, except for several cases, intractable, then deterministic optimization in finite
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2. Stochastic optimal control

dimensional space. Therefore, approximate techniques are usually employed to solve
this problem suboptimally.

If full state information were not available, then, at a given time instant, a causal
control policy would use all the information available up to this time. Thus the control
inputs would be given by

uk = φk(y0, . . . , yk), (2.3)

where yk, k = 0, . . . , N − 1 is the measured output sequence, i.e., a sequence of the
form

yk = hk(xk, vk),

where vk, k = 0, . . . , N − 1 is a random vector representing measurement noise.
Analytically more demanding are infinite horizon problems. Two types of costs are

most commonly considered: (i) the discounted infinite horizon cost

J := E

{ ∞∑
k=0

αkl(xk, uk, wk)

}
, (2.4)

where 0 < α < 1, and (ii) the long-run average cost

J := lim sup
N→∞

1

N
E

{
N−1∑
k=0

l(xk, uk, wk)

}
, (2.5)

where the random sequence w0, w1, . . . is typically assumed i.i.d. Both formulations
help to improve convergence properties as well as have some practical grounds, e.g., a
natural role of the discount factor α in problems arising in economics.

2.2. Dynamic programming

A basic tool for analysis and in some cases for actual solving of stochastic optimization
problems is dynamic programming, which is based on the Bellman recursion [5] defined
by

VN (XN ) := l(xN ), (2.6)

Vk(Xk) := inf
uk
{l(xk, uk) + E{Vk+1(Xk, fk(xk, uk, wk))|Xk}},

where Xk = (x0, . . . , xk) is the state sequence up to time k. It can be shown1 that if
the infimum in (2.6) is attained for all Xk, the optimal value of the problem (2.1) is
equal to J∗ = EV0(X0), and an optimal policy is given by

φ∗k(Xk) = arg min
uk

{l(xk, uk) + E{Vk+1(Xk, fk(xk, uk, wk))|Xk}}

1See [5] for derivation under the assumption of discrete random variables wk being conditionally
independent given current state and control, and [6] or [28] for a general treatment.
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2.3. Approximate dynamic programming

provided that these functions are Borel-measurable for k = 0, . . . , N − 1.
The imperfect state information problem can be treated similarly. If the information

vector at time k is defined as Ik = (y0, u0, . . . , yk−1, uk−1, yk), the Bellman recursion
becomes

VN (IN ) := E{l(xN )|IN}, (2.7)

Vk(Ik) := min
uk
{E{l(xk, uk) + Vk+1(Ik, uk, hk+1(fk(xk, uk, wk)))|Ik}},

and the optimal control policies

φ∗k(Ik) = arg min
uk

{E{l(xk, uk) + Vk+1(Ik, uk, hk+1(fk(xk, uk, wk)))|Ik}},

which is indeed a function of y0, . . . , yk as (2.3) requires since the control inputs
u0, . . . , uk−1 contained in Ik are in turn functions of y0, . . . , yk−1.

Unfortunately, dynamic programming is in its raw form impracticable for most prob-
lem instances due to the so-called curse of dimensionality [5], which is even more pro-
found in the stochastic setting, where at time k the expectation of Vk+1(fk(xk, uk, wk))
needs to be evaluated for each admissible control input and for all admissible states xk.
There are several problem instances where dynamic programming is actually tractable;
the probably best known linear quadratic case is briefly mentioned in Section 2.4.

2.3. Approximate dynamic programming

Despite the lack of applicability described above, dynamic programming is a corner-
stone for a whole field of suboptimal control strategies called approximate dynamic
programming (ADP). One of the basic approximation techniques is the one-step looka-
head control policy defined by

φk(Xk) = arg min
uk

{l(xk, uk) + E{Ṽk+1(Xk, fk(xk, uk, wk))|Xk}}, (2.8)

where Ṽk(Xk), k = 0, . . . , N − 1, are some approximations of the optimal cost-to-go
functions Vk(Xk). It is not hard to show that if Ṽk are true cost-to-go functions of
any (suboptimal) policy then the resulting one-step lookahead policy will perform no
worse [5]. The one-step-lookahead policy with Ṽk given by a suboptimal policy is
sometimes called the rollout algorithm.

Note that the applicability of a particular one-step lookahead policy relies heavily on
the ability to fast evaluate the functions Ṽk. This may be prohibitive for the rollout
algorithm even if Ṽk is based on a simple suboptimal policy, such as a certainty equiva-
lent policy, for which there is no analytical expression and evaluation is not fast enough
for purposes of minimization in (2.8) where gridding techniques are usually necessary.
On the other hand, if Ṽk has a favourable analytical form, the minimization in (2.8)
can sometimes be carried out by means of mathematical programming.
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2. Stochastic optimal control

2.3.1. An application of Bellman inequality

A particularly nice application of approximate dynamic programming ideas was given
in [60]. The authors were concerned with the infinite horizon discounted problem (2.4),
for which they used properties of the Bellman operator2

(Tg)(x) = inf
u
{l(x, u) + αE[g(f(x, u, w0))]} (2.9)

to construct global underestimators of the optimal cost-to-go function V (x). Two
important properties of the Bellman operator, which hold under reasonable conditions
[28], are monotonicity, i.e.,

g1 ≤ g2 =⇒ Tg1 ≤ Tg2,

and pointwise convergence to the optimal cost-to-go from any starting function, i.e.,

lim
k→∞

T kg = V

for any3 function g.

Now it immediately follows from these two properties that if

V̂ ≤ T V̂ (2.10)

or

V̂ ≤ T kV̂ (2.11)

for some k > 0 then

V̂ ≤ lim
k→∞

T kV̂ = V.

Hence the Bellman inequality (2.10) and, more generally, the iterated Bellman inequal-
ity (2.11) give sufficient conditions for a function V̂ to be a global underestimator of
V . Moreover, if we restrict ourselves to a finite dimensional subspace spanned by some
basis functions

V1, . . . , VN , (2.12)

the Bellman inequality becomes convex in the coefficients of the linear combination
α1, . . . , αN . Indeed, the left-hand side of the Bellman inequality is linear in αi and the
right-hand side is concave since it is the infimum over a family of functions affine in αi.
The iterated Bellman inequality (2.11) is not convex in αi by itself, but can be approx-
imated by introducing k − 1 auxiliary functions, which results in an approximation by
k Bellman inequalities (see [60] for details).

2The random sequence w0, w1, . . . is assumed i.i.d., so there could be any other random variable wk
instead of w0 in the definition of the operator.

3From now on we drop the measurability assumptions.
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2.4. Certainty equivalent control

Now it remains to optimize the underestimator in some sense. A viable approach is to
maximize the expectation EV̂ (x) for a suitably chosen distribution of x. For instance,
if only a global underestimator of V for given distribution of the initial state x0 were
of interest, we would like to solve the problem

maximize
α1,...,αN

EV̂ (x0)

subject to V̂ ≤ T V̂ or V̂ ≤ T kV̂ ,
V̂ = α1V1 + . . .+ αNVN .

On the other hand if the underestimator were to be used as a cost-to-go approxima-
tion for the one-step lookahead policy (2.8), an estimate of the stationary distribution
of x might be preferable. In this case it is also beneficial to compute the underestima-
tors for several different distributions of x and take their maximum, which is also an
underestimator.

All of this may seem of little practical value since the Bellman inequality is typ-
ically difficult to evaluate. However, in the case of convex quadratic cost and basis
functions (2.12) and affine control constraints, it is shown in [60] that the (iterated)
Bellman inequality can be approximated via the S-procedure to obtain a semidefinite
program (SDP) [10]. The program is solved offline only to get a quadratic underes-
timator, which then results in a receding horizon problem on the horizon of length
one if used in the one-step lookahead policy. Maximum of quadratic underestimators
yields equally simple receding horizon policy, only a quadratic program (QP) becomes
a quadratically-constrained quadratic program (QCQP).

2.4. Certainty equivalent control

One of the simplest suboptimal policy for solving (2.1) is the certainty equivalent con-
trol where the random disturbances w0, . . . , wN−1 are replaced by some fixed values
ŵ0, . . . , ŵN−1, which makes the problem finite-dimensional, deterministic. Typical
choices for these values are conditional expectations, most likely values or just ze-
ros. The solution of this deterministic optimization problem û0, . . . , ûN−1 then defines
a constant (open-loop) control policy.

A natural way to introduce feedback is to use the certainty equivalent control in
the so-called shrinking horizon mode, where new estimates based on all information
available are formed at each time k = 0, . . . , N−1, the deterministic problem is resolved
with these estimates on the horizon k, . . . , N , and only the first control input is applied.
This approach is closely related to the certainty equivalent model predictive control
(CE-MPC), the only difference being that with CE-MPC the horizon recedes instead
of shrinking, i.e., at each time k ≥ 0 a deterministic optimization problem is solved on
the horizon k, . . . , k + N , which in effect forms a suboptimal infinite horizon control
policy.
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2. Stochastic optimal control

2.4.1. The linear-quadratic case

There are several problems for which the certainty equivalent control policy turns out
to be optimal. The best known (at least in control community) is the linear quadratic
case where the stage cost is given by

lk(xk, uk) = xTkQkxk + uTkRkuk, k = 0, . . . , N − 1

with the terminal cost lN (xN ) = xTNQNxN and linear dynamics

xk+1 = Axk +Buk + wk,

where the disturbance sequence is assumed to be independent and zero-mean. It fol-
lows straightforward from the Bellman recursion that the cost-to-go functions are also
quadratics of the form

EVk(xk) = xTk Pkxk + qk,

where the matrices Pk satisfy the discrete-time Riccati equation [5] and, more impor-
tantly, does not depend on the distribution of the disturbance, whose effect is only
additive through the term qk. Thus, the certainty equivalent shrinking horizon control
policy is in this case optimal and can actually be expressed as a time-varying linear
state feedback

uk = Kkxk, k = 0, . . . , N − 1.

It is worth noting that the assumption of the stage cost being quadratic is crucial.
If, for instance, a simple input constraints of the form ||uk||∞ ≤ Umax were added, the
stage cost would now be

lk(xk, uk) =

{
xTkQkxk + uTkRkuk ||uk||∞ ≤ Umax

+∞ otherwise,

which is no longer quadratic, and, indeed, the certainty equivalent control is, in general,
no longer optimal. This can be seen from the Bellman recursion where the optimization
problem at the stage N − 1 is a constrained quadratic problem, whose optimal value is
piecewise quadratic in state and hence the cost-to-go, EVN−1(xN−1), is the expectation
over a piecewise quadratic function, which is not likely to depend on the disturbance
distribution in only additive manner. Thus, the certainty equivalent control will, in
general, not be optimal for horizons longer than 2.

The optimality of the certainty equivalent control for quadratic costs translates to
the imperfect state information case in the sense that the optimal control policy is given
by

uk = KkE{xk|Ik},
where Kk is the same state-feedback matrix as in the full state information case. For
Gaussian process and measurement noise, the state estimate E{xk|Ik} can be obtained

10



2.5. Disturbance feedback

by the Kalman filter [54]. The fact that the optimal full state information control law
applied to the optimal state estimate leads to the optimal imperfect state information
control law is sometimes referred to as the separation principle [5].

2.5. Disturbance feedback

A fairly general class of suboptimal policies solves the infinite dimensional problem
(2.1) in a certain finite dimensional subspace of Borel functions. To further analyse the
properties of this approach, linear dynamics

xk+1 = Axk +Buk + wk

is assumed. Moreover, since, given the control input sequence up to time k and liner
dynamics, there is a one-to-one Borel measurable transformation between the state
sequence x0, . . . , xk and the sequence x0, w0, . . . , wk−1, the causal disturbance feedback
policies of the form

uk = φk(x0, w0, . . . , wk−1) (2.13)

can be used instead of the causal state-sequence feedback (2.2).
Let the finite dimensional subspace at time k be generated by the basis functions

Ek = (e1
k, . . . , e

|Ek|
k ). (2.14)

The disturbance feedback at time k is then given by

φk(x0, w0, . . . , wk−1) =

|Ek|∑
i=0

αike
i
k(x0, w0, . . . , wk−1), (2.15)

where αik, the basis functions linear combination coefficients, are the optimization vari-
ables. The infinite dimensional optimization problem is thus approximated by a finite
dimensional one, and, moreover, this problem is convex if the stage cost lk(xk, uk) is
convex for all k. This follows straight from convex analysis fundamentals since the cost
function is convex for every disturbance realization due to the linear dynamics (since
the state and control are then affine in the optimization variables αik), and taking
expectation preserves convexity [10].

Note that the finite dimensional approximation can be made arbitrarily accurate
by choosing a sufficiently rich set of basis functions (2.14) so this approach provides
an appealing alternative to (approximate) dynamic programming. The difference in
complexity is most profound for convex cost functions since then powerful convex opti-
mization techniques can be employed to obtain an approximate solution as opposed to
largely heuristic techniques of approximate dynamic programming that quickly become
intractable in higher dimensions, at least for uncountable state and/or control space.

11



2. Stochastic optimal control

The only heuristic step involved in the design of a disturbance feedback policy is
the choice of a suitable set of basis functions as a trade-off between computational
complexity and accuracy. There are two primary factors that contribute to the overall
complexity: (i) the size of the basis, i.e., the number of optimization variables, (ii)
the speed of evaluation of the cost function with a given set of basis functions. The
second factor is a more severe one since in most cases the only way to (approximately)
evaluate the cost function (2.1) is by means of Monte Carlo sampling, i.e., to use the
approximation

E

{
l(xN ) +

N−1∑
k=0

l(xk, uk, wk)

}
≈ 1

Ñ

Ñ∑
i=1

{
l(x

(i)
N ) +

N−1∑
k=0

l(x
(i)
k , u

(i)
k , w

(i)
k )

}
, (2.16)

where w
(i)
k , k = 0, . . . , N − 1, i = 1, . . . , Ñ are samples taken from the joint distribu-

tion of w0, . . . , wN−1, and u
(i)
k , x

(i)
k are the corresponding input and state trajectories

generated by these samples.

Even though the convexity is in this case not lost by Monte Carlo sampling, this
approach becomes intractable in higher dimensions and for large horizons since the
function evaluation and, more importantly, the evaluation of the gradient and Hessian
becomes prohibitively demanding due to the sampling if higher accuracy of the cost
approximation is required. Note, however, that the size of the optimization problem is
determined by the size of the basis and is thus independent of the number of samples Ñ .
On the other hand, if the problem were formulated with explicit hard constraints, the
number of constraint, and possibly associated slack variables, would be proportional
the number of samples.

All in all, for most practical applications it is vital that an analytic expression for
the cost function in terms of optimization variables αik be found. This is in general im-
possible for arbitrary combinations of basis and cost functions. Some of the favourable
combinations will now be briefly discussed.

2.5.1. Nonlinear feedback, quadratic cost

The most favourable case is the case of the quadratic stage cost

lk(xk, uk) = xTkQkxk + uTkRkuk, k = 0, . . . , N − 1

and linear dynamics since then the cost function (2.1) turns out to be quadratic in
the optimization variables αik in (2.15) with arbitrary choice of the nonlinear basis
functions (2.14). Indeed, the cost function is then a sum of constant terms and the
terms of the form

αikE(eike
l
j)α

l
j , α

i
kE(eikwj), α

i
kEe

i
k. (2.17)
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2.5. Disturbance feedback

Hence we only need to evaluate the first and second moments of the nonlinear functions
eik, and the moments of the form Eeikwj . This can be done offline, for instance, by means
of Monte Carlo simulation. Once these moments are on hand, the problem becomes a
quadratic program. Additional constraints can be introduced by a suitable choice of
the basis functions eik. For instance, hard control input constraints can be enforced
by choosing bounded basis functions and then constraining the coefficients αik (see [22]
and also Section 3.2 for details).

The only problem remaining here is the size of the resulting quadratic program, which
can be prohibitive if too complex set of basis functions is chosen and fast sampling
period is required. For instance, for the affine disturbance policy, described in more
detail in the next section, or similar affine-like policies (Section 3.2), the number of
variables is approximately mnN2/2. If a general quadratic policies were of interest,
i.e., policies such that at each time the policy is a general quadratic function of the
past disturbances, the number of variables would be on the order of mn2N3. See
Section 6.1 for a more detailed discussion.

2.5.2. Affine disturbance feedback

One of the simplest, yet in many cases very effective, closed-loop policy is the causal
affine disturbance feedback defined as

uk = ηk +
k−1∑
i=0

Kk,iwi, k = 0, . . . , N − 1. (2.18)

In the case of linear dynamics, the class of all affine disturbance feedback policies
coincides with the class of all affine state-sequence policies in the sense that any affine
state-sequence policy can be expressed as an affine disturbance feedback policy and
vice versa. Indeed, if we denote the corresponding sequences along the horizon as

x =
[
xT0 . . . xTN

]T
, u =

[
uT0 . . . uTN−1

]T
, w =

[
wT0 . . . wTN−1

]T
,

and write both policies and the linear state equation in the matrix form

u = η +Kw, ũ = η̃ + K̃x,

x = Ax0 + Bu+ Cw,
where

η =
[
ηT0 . . . ηTN−1

]T
, η̃ =

[
η̃T0 . . . η̃TN−1

]T
,

K =


0 0 . . . 0

K1,1 0 . . . 0
...

. . .
. . .

KN−1,1 . . . KN−1,N−1 0

 , K̃ =


0 0 . . . 0

K̃1,1 0 . . . 0
...

. . .
. . .

K̃N−1,1 . . . K̃N−1,N 0



13



2. Stochastic optimal control

B =


0
B 0
...

AN−2B AN−3B . . . B 0

 , C =


0
I 0
...

AN−2 AN−3 . . . I 0

 ,

A =
[
I AT . . . (AN−1)T

]T
,

we get with the state-sequence feedback that

x = Ax0 + Bη̃ + BK̃x+ Cw.

Hence
x = (I − BK̃)−1(Ax0 + Bη̃) + (I − BK̃)−1Cw,

which is affine in w, and consequently ũ is also affine in w. The inverse always exists
because of the structure of the matrices B and K̃, which is given by causality. On the
other hand, starting with an affine disturbance feedback, we get

x = Ax0 + Bη + BKw + Cw,

so
w = (BK + C)†(x−Ax0 − Bη),

which is affine in x, and so is, therefore, u. The last equality follows again from the
structure of the matrices and the fact that the first block row of (x−Ax0−Bη) is zero.

A major advantage of the affine disturbance feedback policy over the state feedback
policy is the fact that the resulting optimization problem is affine in the design variables
(η,K), which is not the case for the state feedback4

The most important feature in the context of this thesis is the fact that the par-
ticularly simple form of the policy (2.18) allows for an analytical evaluation for much
broader class of cost functions if the disturbances entering the system are Gaussian. In
Chapter 3 we show that it is possible to, perhaps after some approximation, arrive at
a tractable convex problem for a general `p cost function even in the case with hard
control input bounds, which certainly calls for some modification of the basic affine
policy 2.18.

4The problem can, however, be transformed to a convex one via a method similar to the classical
Q-design procedure [52]. The affine disturbance feedback can actually be thought of as one such
transformation.
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3. Approximate `p stochastic optimal
control

3.1. Problem statement

This chapter deals with the problem of minimizing the cost function1

J := E

{
||QNxN ||pp +

N−1∑
k=0

||Qkxk||pp + ||Rkuk||pp

}
(3.1)

for 1 ≤ p <∞ subject to the discrete-time system dynamics

xk+1 = Axk +Buk + wk, (3.2)

xk ∈ Rn, uk ∈ Rm, and hard input constraints

||uk||∞ ≤ Umax, k = 0, . . . , N − 1, (3.3)

where Qk ∈ Rnq×n, Rk ∈ Rnr×m are weighting matrices. All the results derived here
generalize with only minor modifications to the case with different bounds on individual
control inputs and/or time varying bounds. The disturbance sequence

w = [wT0 , . . . , w
T
N−1]T

is assumed to be jointly Gaussian with the covariance matrix Σw.

The minimization to be carried out is over all Borel measurable causal disturbance
feedback policies

uk = φk(x0, w0, . . . , wk−1), k = 0, . . . , N − 1. (3.4)

This problem is, however, in general intractable and various approximation techniques
exist, see Chapter 2. Here, we adopt the approach of [22] where the authors propose

1For x = [x1, . . . , xn]T ∈ Rn, the p-norm of x is defined as ||x||p =
(∑n

i=1 |xi|
p
)1/p

for p ∈ [0,∞) and
||x||∞ = max

i=1,...,n
|xi|.
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3. Approximate `p stochastic optimal control

to search over a class of causal policies affine in certain nonlinear functions of the
disturbances, i.e.,

u = η +Ke(w) =

 η0
...

ηN−1

+


0 0 . . . 0

K1,1 0 . . . 0
...

. . .
. . .

KN−1,1 . . . KN−1,N−1 0

 e(w), (3.5)

where

u = [uT0 , . . . , u
T
N−1]T .

The matrix η ∈ RmN with blocks in Rm, and the strictly lower block triangular matrix
K ∈ RmN×nN with blocks in Rm×n are optimization variables. The choice of the
function e : RnN → RnN is discussed later, although it certainly must be bounded
should the hard input constraints be satisfied. Hereafter, the bound on ||e(w)||∞ is
denoted by ε.

One of the main goals is therefore to solve (at least approximately) the optimization
problem

minimize
η,K

E

{
||QNxN ||pp +

N−1∑
k=0

||Qkxk||pp + ||Rkuk||pp

}
subject to u = η +Ke(w)

xk+1 = Axk +Buk + wk

K is strictly block lower triangular

constraints on η,K such that (3.3) is satisfied.

(3.6)

3.2. Tractable solution

The optimization problem (3.6) is, to our knowledge, intractable owing to the p-
norm and the nonlinear function e(w) although sampling techniques (see Section 2.5,
Eq. (2.16)) can, in principle, be used. We therefore propose to solve a relaxed problem
where u = η + Ke(w) in (3.6) is replaced with u = η + Kw while keeping constraints
on η and K such that the hard input constraints are satisfied when the original control
policy is used. Suboptimality of this approximation is studied in detail in Section 3.2.3
for p = 1. The relaxed problem (as is the original one) must be convex since the
objective is convex for each disturbance realization (see [10] and Section 2.5).

In the sequel, we show that the relaxed optimization problem is not only convex but
also tractable. To this end, we need an analytical expression for E|X|p of a Gaussian
random variable X.
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3.2.1. Tractability of the proposed approach

Lemma 3.1. If X ∼ N (µ, σ2) then

g(µ, σ) := E|X|p =
2p/2√
π
σpΓ

(
p+ 1

2

)
M

(
−p

2
,
1

2
,− µ2

2σ2

)
(3.7)

and in particular for p = 1

g(µ, σ) := E|X| =
√

2

π
σ e−

µ2

2σ2 + µ erf

(
µ

σ
√

2

)
, (3.8)

where Γ(·) is the Gamma function, erf(·) the error function and M(·, ·, ·) the Kummer’s
confluent hypergeometric function (see Appendix A).

Proof. Follows by a straightforward integration from the definition of the expectation
of an absolutely continuous random variable. �

Now that we have an analytical expression for the (approximate) cost function the
gradient and Hessian can be computed by a simple use of vector calculus.

Lemma 3.2. If X ∼ N (µ, σ2) for σ > 0, X = µ for σ = 0, and µ(η, k) = µ0 + bT η,
σ(η, k) = ||a+Ck||2 then the function f(η, k) = (E|X|p)(η, k) is jointly convex in (η, k)
and the gradient and Hessian are given by

∇f =
∂f

∂µ
∇µ+

∂f

∂σ
∇σ, (3.9)

Hess(f) = ∇µ
[
∂2f

∂µ2
∇µ+

∂2f

∂µ∂σ
∇σ
]T

(3.10)

+∇σ
[
∂2f

∂σ2
∇σ +

∂2f

∂σ∂µ
∇µ
]T

+
∂f

∂σ
Jac(∇σ), (3.11)

where

∇µ =

[
b
0

]
, ∇σ =

[
0

CT a+Ck
σ

]
(3.12)

and

Jac(∇σ) =

[
0 0

0 1
σC

T
(
I − (a+Ck)(a+Ck)T

σ2

)
C

]
. (3.13)

The expressions for partial derivatives are
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3. Approximate `p stochastic optimal control

∂f

∂µ
=

1√
π

2p/2µpσp−2γM2, (3.14)

∂f

∂σ
=

1√
π

2p/2pσp−3γ
[
σ2M1 − µ2M2

]
, (3.15)

∂2f

∂µ2
=

1

3
√
π

2p/2pσp−4γ
[
3σ2M2 + µ2(p− 2)M3

]
, (3.16)

∂2f

∂σ2
=

1√
π

2p/2σp−6γ
{

[µ4 + µ2(3p− 2)σ2

+ (p− 1)pσ4]M1 − µ2(1 + p)
(
µ2 + 2(p− 1)σ2

)
M4

}
, (3.17)

∂2f

∂µ∂σ
=

1

3
√
π

2p/2µ(p− 2)pσp−5γ
[
µ2M3 − 3σ2M2

]
, (3.18)

where

M1 = M

(
−p

2
,
1

2
,− µ2

2σ2

)
, M2 = M

(
1− p

2
,
3

2
,− µ2

2σ2

)
, (3.19)

M3 = M

(
2− p

2
,
5

2
,− µ2

2σ2

)
, M4 = M

(
−p

2
,
3

2
,− µ2

2σ2

)
and

γ = Γ

(
p+ 1

2

)
.

In particular for p = 1 we have

∇f = erf

(
µ

σ
√

2

)
∇µ+

√
2

π
e−

µ2

2σ2∇σ, (3.20)

Hess(f) =

√
2

π
e−

µ2

2σ2

(
1

σ

[
b
−q µσ

] [
b
−q µσ

]T
+ Jac(∇σ)

)
, (3.21)

where

q = CT
a+ Ck

σ
.

Proof. Convexity follows from convex calculus fundamentals since

f(η, k) = E|µ0 + bT η + (a+ Ck)T w̃|p

for some w̃ ∼ N (0, I), and the right-hand side is convex in (η, k) for every realization
of w̃.
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The rest is a direct computation, and we carry out in detail only the p = 1 case. For
the gradient of f we have

∇f(µ, σ) =
∂f

∂µ
∇µ+

∂f

∂σ
∇σ = erf

(
µ

σ
√

2

)
∇µ+

√
2

π
e−

µ2

2σ2∇σ (3.22)

with

∇µ =

[
b
0

]
, ∇σ =

[
0

CT a+Ck
σ

]
. (3.23)

The expression for ∇σ follows from the fact that ∇||x||2 = x
||x||2 and the chain rule.

Now since Hess(f) = Jac(∇f) and Jac(hg̃) = g̃(∇h)T +hJac(g̃) for real-valued function
h and multivariate g̃, it follows that

Hess(f) =

[
b
0

]{
∇erf

(
µ

σ
√

2

)}T
(3.24)

+

[
0

CT a+Ck
σ

]{
∇
(√

2

π
e−

µ2

2σ2

)}T
+

√
2

π
e−

µ2

2σ2 Jac(∇σ)

with

Jac(∇σ) =

[
0 0

0 1
||x||2C

T
(
I − xxT

||x||22

)
C

]
≥ 0, (3.25)

where x = a+ Ck since, again by the chain rule,

Jack∇σ = CT Jac
a+ Ck

||a+ Ck||2
= CT

[
Jac

(
y

||y||2

)
◦ (a+ Ck)

]
C, (3.26)

where ◦ denotes the function composition. The remaining two terms in (3.24) are

∇erf

(
µ

σ
√

2

)
=

[
b
0

]
1

σ

√
2

π
e−

µ2

2σ2 −
[

0

CT a+Ck
σ

]√
2

π

µ

σ2
e−

µ2

2σ2 , (3.27)

∇
(√

2

π
e−

µ2

2σ2

)
= −

[
b
0

]√
2

π

µ

σ2
e−

µ2

2σ2 +

[
0

CT a+Ck
σ

]√
2

π

µ2

σ3
e−

µ2

2σ2 . (3.28)

Rewriting the Hessian with

q := CT
a+ Ck

σ
(3.29)

then yields

Hess(f) =

√
2

π
e−

µ2

2σ2

(
1

σ

[
b
−q µσ

] [
b
−q µσ

]T
+ Jac(∇σ)

)
≥ 0. (3.30)
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Having computed the Hessian, we can give a direct proof of convexity. The Hessian
(3.30) is undefined for σ = 0, so a little more care is needed. It is easily seen that
f(η, k) is continuous and that the sequence of smoothed functions

fn(η, k) = g

(
µ(η, k),

√
1

n
+
∑
i

x2
i

)
,

where g is defined in (3.8), converges pointwise to f . The functions fn are readily
shown to be convex by computing their respective Hessians in the same fashion as

above, which results in the same expression (3.30) with σ replaced by
√

1
n +

∑
i x

2
i .

The function f(η, k) is therefore convex since it is a limit of convex functions.
�

Note that, given p, the first two arguments of the hypergeometric functions in (3.19)
are constant and the third argument is always negative, which allows for very fast com-
putation of M1, . . . ,M4, for instance by using methods 1 and 2 of [38] (see Appendix A).

Theorem 3.1. The optimization problem

minimize
η,K

E

{
||QNxN ||pp +

N−1∑
k=0

||Qkxk||pp + ||Rkuk||pp

}
subject to u = η +Kw

xk+1 = Axk +Buk + wk

K is strictly block lower triangular

|ηi|+ ε||Ki||∞ ≤ Umax, i = 1, . . . ,mN

(3.31)

with w ∼ N (0,Σw) is convex and tractable in the variables (η,K). Furthermore the
hard input constraints (3.3) are satisfied under the control policy u = η + Ke(w) if
||e(w)||∞ ≤ ε. Here Ki denotes the i-th row of K and || · ||∞ denotes the induced
infinity norm2 (In particular not the maximum absolute value if the matrix is a row
vector)

Proof. The objective function is a sum of terms of the form E|qTjkxk|p or E|rTjkuk|p,
where qjk and rjk denote the j-th rows of Qk and Rk respectively. Denote also

Bk = [Ak−1B, . . . , B, 0, . . . , 0], Ck = [Ak−1, . . . , I, 0, . . . , 0]F,

where FF T = Σw, and observe that3

qTjkxk = qTjk(A
kx0 + Bku+ Ckw̃)

= qTjkA
kx0 + qTjkBkη + qTjk(Ck + BkKF )w̃

2The induced p-norm of a matrix A is defined for 1 ≤ p ≤ ∞ as ||A||p = supx6=0
||Ax||p
||x||p .

3Here and hereafter the equality of random elements means the equality of their distributions, not
necessarily of the elements itself.
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with w̃ ∼ N (0, I). It is clear that qTjkxk is Gaussian with the expectation

µ(η, k) = E(qTjkxk) = qTjkA
kx0 + qTjkBkη, (3.32)

and standard deviation

σ(η, k) = ||qTjk(Ck + BkKF )||2 = ||CTk qjk + (F T ⊗ qTjkBk)Sk||2, (3.33)

where Sk = vec(K) with S being a certain matrix of zeros and ones, and k containing
only the nonzero elements of K. Here we employed the equality

vec(ABC) = (CT ⊗A) vec(B)

that relates the vectorization vec(·) and the Kronecker product ⊗ [2]. Similarly

rTjkuk = rTjkvkη + rTjkvkKFw̃,

where vk is a matrix that selects k-th block row of the size m. Consequently, the
expectation and standard deviation become

µ(η, k) = E(rTjkuk) = rTjkvkη, (3.34)

σ(η, k) = ||rTjkvkKF ||2 = ||(F T ⊗ rTjkvk)Sk||2. (3.35)

Application of Lemma 3.2, where the expressions for the gradient and Hessian of
(E|X|p)(µ, σ) were given, now completes the convexity and tractability part of the
proof.

Satisfaction of the input constraints follows immediately from the definition of the
induced infinity norm and from the assumption that ||e(w)||∞ ≤ ε since

|ui| = ||ηi +Kie(w)||∞ ≤ ||ηi||∞ + ||Kie(w)||∞ ≤ |ηi|+ ε||Ki||∞.

�

It may also be of interest to solve the problem with || · ||p instead of || · ||pp, that is,
to minimize the cost

J := E

{
||QNxN ||p +

N−1∑
k=0

||Qkxk||p + ||Rkuk||p
}

(3.36)

instead of (3.1). This indeed can be done with one more approximation (for p > 1)
based on Jensen’s inequality. The individual terms E||Qkxk||p and E||Rkuk||p can be
upper bounded as

E||Qkxk||p ≤

 nq∑
j=1

E|qTjkxk|p
1/p

, E||Rkuk||p ≤

 nr∑
j=1

E|rTjkuk|p
1/p

, (3.37)
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3. Approximate `p stochastic optimal control

where qTjk and rTjk are, as in the proof of Theorem 3.1, j-th rows of Qk and Rk.

These upper bounds are convex as is shown in the following Lemma.

Lemma 3.3. Let li(x,w), i = 1, . . . , k, be functions affine in x, and let p be a number
greater than or equal to one and w a random variable. Then the function f(x) =(∑k

i=1 E|li(x,w)|p
)1/p

is convex.

Proof. Let (Ω,A, P ) be the probabilistic space that w is defined on, and let ν be the
counting measure on 2S , where S = {1, . . . , k}. Finally define g(y, x) = li(x,w) for
every y = (i, w) ∈ S × Ω and any x. It is clear that the integral of g over S × Ω with
respect to the product measure µ = ν ⊗ P is equal to∫

S×Ω
g dµ =

k∑
i=1

∫
Ω
li(x,w) dP (w) =

k∑
i=1

Eli(x,w),

and that, given x, g(y, x) is in Lp if each li(x,w) is in Lp. Now the Minkowski inequality
can be used to assert the convexity of f(x). Choose θ ∈ [0, 1] and x1, x2 arbitrary.
Then

f(θx1 + (1− θ)x2) =

(
E

k∑
i=1

|θli(x1) + (1− θ)li(x2, w)|p
)1/p

=

(∫
S×Ω
|θg(y, x1) + (1− θ)g(y, x2)|p dµ(y)

)1/p

≤
(∫

S×Ω
|θg(y, x1)|p dµ(y)

)1/p

+

(∫
S×Ω
|(1− θ)g(y, x2)|p dµ(y)

)1/p

= θ

(
E

k∑
i=1

|li(x1, w)|p
)1/p

+ (1− θ)
(

E

k∑
i=1

|li(x2, w)|p
)1/p

= θf(x1) + (1− θ)f(x2),

as desired.

The only inequality employed was the Minkowski inequality [49]. �

The proof of Theorem 3.1 now carries over without change for these upper bounds
since the last composition with 1/p in (3.37) preserves convexity by Lemma 3.3 and the
resulting gradient and Hessian are easily computed with the aid of the already com-
puted gradients and Hessians of E||Qkxk||pp and E||Rkxk||pp. Indeed, for two functions
f : R→ R and g : Rn → R we have

∇(f ◦ g) = (∇g)(f ′ ◦ g),
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3.2. Tractable solution

Hess(f ◦ g) = (∇g)(∇g)T (f ′′ ◦ g) + (f ′ ◦ g) Hess(g),

which is now applied with

g(η, k) := E||Qkxk||pp or g(η, k) := E||Rkxk||pp

and f(t) := t1/p.

3.2.2. Output feedback

Two ways of applying the presented approach to construct an output feedback are
presented in this section. The first approach employs Kalman filter innovations feedback
[31], whereas the second approach is related to the nonlinear Q-design introduced in
[51]. We assume a system in the form

xk+1 = Axk +Buk + wk, (3.38)

yk = Cxk + vk,

where the measurement noise vk and the process noise wk are, for simplicity, assumed
to be zero-mean mutually independent i.i.d. Gaussian random sequences with the co-
variances Evkv

T
k = Σ̃v > 0 and Ewkw

T
k = Σ̃w, respectively. Corresponding trajectories

over the optimization horizon are denoted by

y =
[
yTt+1 . . . yTt+N−1

]T
, v =

[
vTt+1 . . . vTt+N−1

]T
,

u =
[
uTt . . . uTt+N−1

]T
, w =

[
wTt . . . wTt+N−1

]T
.

We further assume that at time t, measurements Yt = (y0, . . . , yt) are on hand, and we
want to minimize the cost

Jt := E

{
||QNxt+N ||pp +

N−1∑
k=0

||Qkxt+k||pp + ||Rkut+k||pp
∣∣∣ Yt} (3.39)

over a certain class of output feedback policies.

3.2.2.1. Innovations feedback

First we consider minimization over the policies

u = η +Ke(ε), (3.40)

where ε =
[
εT1 , . . . , ε

T
N−1

]T
is the Kalman filter innovations sequence,

εk = yt+k − Cx̂t+k|t+k−1,
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3. Approximate `p stochastic optimal control

where

x̂t+k|t+k−1 = E(xt+k | y0, . . . , yt+k−1).

Conditionally on Yt, the innovations sequence ε as well as the initial state xt and the
disturbance sequence w are Gaussian random vectors, thus the cost function (3.39)
assumes an analytical expression if the affine relaxation of the control law (3.40),

u = η +Kε, (3.41)

is adopted.

First we evaluate the covariance matrix of [xTt , ε
T , wT ]T using the Kalman filter

estimate error dynamics. With x̃k = xt+k − x̂t+k|t+k−1 for k = 1, . . . , N − 1 and
x̃t = xt − x̂t|t we have

x̃1 = Axt +But + wt −Ax̂t|t −But = Ax̃t + wt,

and

x̃k+1 = (A−KkC)x̃k + wt+k −Kkvt+k, k = 1, . . . , N − 1,

where

Kk = APk|k−1C
T (CPk|k−1C

T + Σ̃v)
−1

is the Kalman gain associated with the Riccati equation

Pk+1|k = APk|k−1A
T + Σ̃w −Kk(CPk|k−1C

T + Σ̃v)K
T
k (3.42)

with the initial condition P1|0 = APt|tA
T + Σ̃w, where Pt|t is the Kalman filter error

covariance at time t based on measurements up to this time Yt. Rewriting the error
dynamics in a matrix form gives

x̃ = Ãx̃t + B̃w + D̃v,

where

x̃ =
[
x̃Tt+1 . . . x̃Tt+N−1

]T
,

and

Ã =


I

A−K1C
(A−K2C)(A−K1C)

...
(A−KN−2C) · . . . · (A−K1C)

A, B̃ =


I

B̃1,1 I
...

B̃N−2,1 B̃N−2,2 . . . I 0

 ,

24



3.2. Tractable solution

D̃ =


0
−K1 0

−D̃2,1K1 −K2 0
...

−D̃N−2,1K1 −D̃N−2,2K2 . . . −KN−2 0


with

B̃i,j = D̃i,j = (A−KiC) · . . . · (A−KjC).

Hence the innovations sequence is given by

ε = C̃x̃+ v = C̃Ãx̃t + C̃B̃w + (I + C̃D̃)v,

where C̃ = bdiag(C, . . . , C). The covariance thus becomes

Σ = E


xtε
w

xtε
w

T ∣∣∣ Yt
 =

 Pt|t Pt|tÃT C̃T 0

C̃ÃPt|t Λ C̃B̃Σw

0 ΣwB̃T C̃T Σw

 , (3.43)

where
Λ = C̃ÃPt|tÃT C̃T + C̃B̃ΣwB̃T C̃T + (I + C̃D̃)Σv(I + D̃T C̃T ), (3.44)

and
Σw = bdiag(Σ̃w, . . . , Σ̃w), Σv = bdiag(Σ̃v, . . . , Σ̃v).

Now we are ready to evaluate the individual terms of the cost. Since ε and w are zero-
mean and, conditionally on Yt, xt ∼ N (x̂t|t, Pt|t), the terms qTikxt+k can be expressed
as

qTikxt+k = qTik[A
kxt +Bk(η +Kε) + Ckw] = qTik(Bkη +Akx̂t|t) + qTik[A

kx̃t + BkKε+ Ckw]

= qTik(Bkη +Akx̂t|t) + qTik[A
k,BkK, Ck]Σ1/2w̃

for w̃ ∼ N (0, I) and

Bk =
[
Ak−1B, . . . , B, 0, . . . , 0

]
, Ck =

[
Ak−1, . . . , I, 0, . . . , 0

]
.

Consequently,

µ(η,K) = E(qTikxt+k|Yy) = qTik(A
kx̂t|t + Bkη),

and

σ(η,K) =
∣∣∣∣∣∣qTikAkΣ1/2

1:n + qTikBkKΣ
1/2
n+1:l(N−1)+n + qTikCkΣ

1/2
l(N−1)+n+1:end

∣∣∣∣∣∣
2
,

where l is the output dimension and the colon notation selects rows of Σ1/2.
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3. Approximate `p stochastic optimal control

Similarly for the terms rTikuk we have

µ(η,K) = rTikvkη, σ(η,K) = ||rTikvkKΛ1/2||2,

where the matrix vk selects k-th block row of size m and Λ is defined in (3.44).

Thus, we have converted the problem to the framework of Lemma 3.2, which guar-
antees convexity and tractability.

3.2.2.2. Output error feedback

Instead of taking innovations feedback (3.40), a policy of the form

u = η +Ke(y −Hu−Ax̂t|t), (3.45)

where

H =

 CB 0
...

CAN−2B CAN−3B . . . CB 0

 ,
and

A =
[
(CA)T . . . (CAN−1)T

]T
also leads to a tractable representation since the feedback term y −Hu−Ax̂t|t can be
expressed as

y −Hu−Ax̂t|t = A(xt − x̂t|t) +Dw + v,

where D is defined in the same way as H with B replaced by I. Thus, according to the
previous discussion, the term y −Hu−Ax̂t|t conditioned on Yt is a Gaussian random
variable with known moments

E(y −Hu−Ax̂t|t) = 0,

cov(y −Hu−Ax̂t|t) = APt|tAT +DΣwDT + Σv,

where Σv = bdiag(Σ̃v, . . . , Σ̃v). Lemma 3.2 can now be applied in a straightforward
way since if the affine relaxation

u = η +K(y −Hu−Ax̂t|t) (3.46)

is employed instead of (3.45), we get for state-related terms qTikxk that

qTikxk = qTik[A
kxt + Bk(η +K(y −Hu−Ax̂t|t)) + Ckw̃]

= qTik[Bkη +Akxt + BkKA(xt − x̂t|t) + (BkKDΣ1/2
w + Ck)w̃ + BkKv].
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3.2. Tractable solution

Consequently

µ(η,K) = qTikBkη + qTikA
kx̂t|t,

σ(η,K) =
∣∣∣∣∣∣qTik [AkP 1/2

t|t , Ck, 0
]

+ qTikBkK
[
AkP 1/2

t|t ,DΣ1/2
w ,Σ1/2

v

]∣∣∣∣∣∣
2
.

Similarly for control terms rTikuk we have

rTikuk = rTikvk[η +K(y −Hu−Ax̂t|t)] = rTikvk[η +KA(xt − x̂t|t) +KDw +Kv],

and therefore

µ(η,K) = rTikvkη,

σ(η,K) =
∣∣∣∣∣∣rTikvkK[AP 1/2

t|t ,DΣ1/2
w ,Σv]

∣∣∣∣∣∣
2
,

which is again exactly in the form required by Lemma 3.2.

A receding horizon implementation of both policies amounts to recursively computing
the conditional distribution of xt by the Kalman filter, minimizing the cost (3.39)
every Nc steps over affine innovations or output error feedback policies subject to input
constraints, and applying first Nc controls of the corresponding nonlinear policy (3.40)
or (3.45). Finally note that in the long run, the steady state values of the Kalman gain
and error covariance can be used to compute the joint covariance Σ in (3.43), slightly
reducing computational complexity.

3.2.3. Bound on suboptimality

In this section we provide a bound on the suboptimality in (3.6) (with the same con-
straints on η, K as in (3.31)) of the solution to the relaxed problem (3.31) for p = 1.
The idea is to bound the difference of the costs under the policies u = η + Kw and
u = η + Ke(w) for given η, K, which in effect bounds the difference of the respective
optima. For ease of notation, the result is derived with time-invariant weights, i.e.,
Qk := Q, Rk := R (and thus qjk := qj , rjk := rj) for all k, but generalizes immediately
to the time-varying case.

Lemma 3.4. The cost Je incurred under the policy u = η + Ke(w) and the cost Jw
incurred under the policy u = η +Kw differ not more than

(nq(N + 1)||Q||∞||BN ||∞ + nrN ||R||∞)E||e(w)− w||∞||K||∞ (3.47)

Proof. We have

|Je − Jw| ≤
N∑
k=0

nq∑
j=1

|E(|qTj xek| − |qTj xwk |)|+
N−1∑
k=0

nr∑
j

|E(|rTj uek| − |rTj uwk |)|. (3.48)
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3. Approximate `p stochastic optimal control

Next, by Jensen’s inequality,

|E(|qTj xek| − |qTj xwk |)| ≤ E
∣∣|qTj xek| − |qTj xwk |∣∣ (3.49)

≤ E(|qTj xek − qTj xwk |) = E|qTj BkK(e(w)− w)|,

where

xek = Akx0 + Bkη + BkKe(w) + Ckw, xwk = Akx0 + Bkη + BkKw + Ckw.

Furthermore

E|qTj BkK(e(w)− w)| ≤ ||qTj BkK||∞E||e(w)− w||∞ (3.50)

≤ ||qTj Bk||∞||K||∞E||e(w)− w||∞
≤ ||Q||∞||BN ||∞||K||∞E||e(w)− w||∞.

Similar procedure can be carried out for control inputs to yield

|E(|rTj uek| − |rTj uwk |)| ≤ ||R||∞||K||∞E||e(w)− w||∞.

Summing up all terms in (3.48) now leads to the desired result

|Je − Jw| ≤ (nq(N + 1)||Q||∞||BN ||∞ + nrN ||R||∞)E||e(w)− w||∞||K||∞,

which completes the proof. �

Now it is rather straightforward to derive the suboptimality bound. Denote J∗e the
optimal value of (3.6) and the corresponding minimizer K∗e , η∗e . Denote also J∗w the
optimal value of (3.31) and the corresponding optimal solution K∗w, η∗w. Finally denote
Je the cost J under the control policy u = η∗w +K∗we(w) and Jw the cost J under the
policy u = η∗e +K∗ew.

Theorem 3.2. The solution η∗w, K∗w of (3.31) is not more than

β := 2(nq(N + 1)||Q||∞||BN ||∞ + nrN ||R||∞)E||e(w)− w||∞
Umax

ε
(3.51)

suboptimal in (3.6).

Proof. It follows from Lemma 3.4 that

|Je − J∗w| ≤
β

2
, |Jw − J∗e | ≤

β

2

since ||K∗e ||∞ ≤ Umax/ε, ||K∗w||∞ ≤ Umax/ε because of the constraint on K and η in
both optimization problems:

|ηi|+ ε||Ki||∞ ≤ Umax, i = 1, . . . ,mN
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3.2. Tractable solution

implies ||K||∞ ≤ Umax/ε.
Now since J∗e ≤ Je and J∗w ≤ Jw the bound immediately follows

0 ≤ Je − J∗e ≤ Je − J∗w + Jw − J∗e = |Je − J∗w + Jw − J∗e | ≤ β,

which completes the proof. �

The term E||e(w)− w||∞ in (3.51) can be computed to virtually arbitrary precision
by means of a Monte Carlo simulation. The bound also provides an intuitively obvious
guide to selecting the function e(w) in such a way that e(w) and w do not differ very
much with high probability. For instance with the choice of e(w) as the elementwise
saturation ei(wi) = satr(wi) with r & 4

√
ρ(Σ) it is highly likely that the bound will

be close to zero and, consequently, the solution to the relaxed problem will be almost
optimal in the original one. Note also that this fairly crude bound can be significantly
improved by terminating one inequality earlier in (3.50) at the cost of a slightly more
complicated expression

β̃ := 2E||e(w)− w||∞
Umax

ε


N∑
k=0

nq∑
j=1

||qTj Bk||∞ +N

nr∑
j=1

||rTj ||∞

 . (3.52)
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4. Stochastic stability of linear systems

In this chapter stochastic stability in the mean-square sense of linear systems with
bounded control inputs is discussed, and some connections with a different concept of
stability are pointed out.

Throughout this chapter we consider the linear system

xk+1 = Axk +Buk + wk,

with the disturbance sequence {wk, k ∈ N0} independent. There will be no specific
assumptions on the disturbance distribution, only on the boundedness of some of its
moments.

Definition 4.1. A discrete-time stochastic system is said to be mean-square stable if

sup
k≥0

E||xk||22 <∞.

This is a convenient concept of stability to work with although it gives no protection
against large deviations occurring over a long period of time. Indeed, a sequence of
i.i.d. Gaussian random variables {xk, k ∈ N0} is certainly mean-square bounded and
still

P

(
lim sup
k→∞

xk =∞
)

= lim
N→∞

P

(
lim sup
k→∞

xk > N

)
= 1

since

P

(
lim sup
k→∞

xk > N

)
= 1− P

( ∞⋃
n=1

∞⋂
k=n

[xk ≤ N ]

)
= 1

as P (
⋂∞
k=n[xk ≤ N ]) = 0 by the i.i.d. assumption and the fact that P (xk ≤ N) < 1

for a Gaussian random variable xk.
Another plausible concept of stability of a stochastic process is the requirement of

a zero probability of divergent trajectories. In this case, the mean-square stability (or
in fact boundedness of any moment) does guarantee zero probability of a divergent
trajectory as shows the following Lemma.

Lemma 4.1. Let a stochastic process {xk, k ∈ N0} have a bounded p-th moment, i.e.,
supk≥0 E||xk||p2 < ∞ for some p > 0. Then there is a zero probability of a divergent
trajectory, i.e.,

P

(
lim
k→∞

||xk||2 =∞
)

= 0.
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4. Stochastic stability of linear systems

Proof. Assume that P (limk→∞ ||xk||2 =∞) = δ > 0. Then

P

( ∞⋃
n=0

∞⋂
k=n

[||xk||2 ≥ t]
)

= lim
n→∞

( ∞⋂
k=n

[||xk||2 ≥ t]
)
≥ δ

for every t. Hence there exists 0 < δ′ < δ such that for every t there is an n such that
P (||xn||2 ≥ t) ≥ δ′, which is a contradiction since

P (||xn||2 ≥ t) ≤
E||xn||p2
tp

≤ supk≥0 E||xk||p2
tp

by Markov’s inequality. �

On the other hand, zero probability of divergent trajectories does not imply mean-
square boundedness. Consider a sequence of independent random variables {xk, k ∈ N0}
having a Laplace distribution with densities fxk(x) = 1

2ke
−|x|/k. Then

E|xk|2 = 2k2 →∞,

but

P

( ∞⋂
k=n

[|xk| > t]

)
=
∞∏
k=n

P (|xk| > t) =
∞∏
k=n

e−
t
k = 0

for any t and any n. The last equality follows by taking a logarithm, which gives a
divergent 1/k series. Hence, using the same argument as in the proof of Lemma 4.1

P

(
lim
k→∞

|xk| =∞
)

= 0.

4.1. Conditions for stabilizability

The current state of knowledge on mean-square stabilizability of linear systems with
bounded control inputs is as follows:

A is strictly stable Mean-square stability is guaranteed with any bounded control in-
put. See Theorem 4.1.

A is marginally stable The state is mean-square stabilizable provided that the 4-th
moment of the noise sequence is bounded and there is sufficient control authority.
See Lemma 4.2 and Theorem 4.2 for a proof with slightly stronger assumptions
on the noise sequence.

A is marginally unstable Open problem. See Section 4.4.

A is strictly unstable The state is not mean-square stabilizable whenever the control
authority is bounded.
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4.2. Strictly stable case

4.2. Strictly stable case

Now we provide a slight generalization and an elementary proof of a result on mean-
square boundedness of Schur stable (ρ(A) < 1) systems that already appeared in [22].

Theorem 4.1. Let uk, wk be two stochastic processes defined on the same probabilistic
space with ||uk||∞ ≤ Umax a.s. and supi,j ||E{wiwTj }|| < ∞. The state of the system

xk+1 = Axk + Buk + wk then stays mean-square bounded (i.e., supk E||xk||22 < ∞)
provided that E||x0||22 <∞ and ρ(A) < 1.

Proof. E||xk||22 = tr(E{xkxTk }) and consequently it suffices to show that E{xkxTk } is
bounded in any norm because of the norm equivalence on finite dimensional vector
spaces and the fact that tr(·) coincides with the nuclear norm on the space of positive
semidefinite matrices. The proof proceeds by direct evaluation:

E(xkx
T
k ) = E{(Akx0 + BkUk + CkWk)(A

kx0 + BkUk + CkWk)
T } (4.1)

= AkP0(Ak)T +AkE{x0U
T
k }BTk + BkE{UkxT0 }(Ak)T

+ BkE{UkUTk }BTk + BkE{UkW T
k }CTk + CkE{WkU

T
k }BTk

+ CkE{WkW
T
k }CTk ,

where
Uk = [uT0 , . . . , u

T
k−1]T , Wk = [wT0 , . . . , w

T
k−1]T ,

Bk =
[
Ak−1B, . . . , B

]
, Ck =

[
Ak−1, . . . , I

]
.

The boundedness of the first term is obvious, the boundedness of the second and third
terms follows from the fact that ||E{x0U

T
k }||2 ≤ Umax

√
mkE||x0||22 (this follows directly

by Jensen’s and Cauchy-Schwarz inequalities). The boundedness of Bk is obvious by
the assumption that ρ(A) < 1, and therefore the second and third terms actually go to
zero.

Consider now any family of matrices Mrq such that ||Mrq|| ≤ ∆̂ for all r, q and some
∆̂ <∞. For such a family and any submultiplicative norm || · || we have∣∣∣∣∣∣

∣∣∣∣∣∣
k−1∑
i=0

k−1∑
j=0

AiMrqA
j

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤

k−1∑
i=0

k−1∑
j=0

||Ai||||Mrq||||Aj || ≤ ∆̂

k−1∑
i=0

k−1∑
j=0

||Ai||||Aj ||. (4.2)

The first term in (4.2) is therefore bounded since the last series is convergent by the
assumption that ρ(A) < 1.

The theorem then follows since the last four terms in (4.1) can be casted in the
stated form with r = k − i − 1, q = k − j − 1 and Mrq componentwise bounded (by
Cauchy-Schwarz inequality and the assumptions on uk, wk) and hence || · || bounded
due to the norm equivalence. �
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4. Stochastic stability of linear systems

Corollary 4.1. The receding horizon implementation of the control policy defined by
solving the optimization problem (3.31) every Nc ≤ N steps and applying the first Nc

control inputs generated by the policy u = η+Ke(w) renders the state xk mean-square
bounded provided that ρ(A) < 1.

Proof. Follows directly from Theorem 4.1 since the constraints in (3.31) ensure that
the inputs stay bounded. �

4.3. Marginally stable case

Now we turn to the more interesting question of mean-square stabilizability of
marginally stable (ρ(A) = 1, Lyapunov stable) linear systems with bounded control
inputs. The question was answered to satisfactory extent in [30] where the authors
employed a deeper result about boundedness of moments of a sequence with a negative
drift proven in [44]. At full strength, this result is outside the scope of this work,
but there is a simpler argument given stronger hypotheses. In either case there is the
crucial assumption of a bounded p-th moment of the process noise. The strongest
result available ensures that there is a causal feedback policy that renders the system
mean-square bounded provided that the deterministic part of the system is stabilizable,
there is sufficiently large control authority and the fourth moment of the process noise
is bounded. Under the hypothesis of the p-th moment of the process noise being
bounded for some p > 6, a more direct argument that blends the ideas of [30] and [44]
can be devised.

First recall the notation

Bn =
[
An−1B An−2B . . . B

]
, Cn =

[
An−1 An−2, . . . , I

]
and denote q the first integer such that Bq has full rank. In the following we will assume
that the pair (A,B) is reachable, so that q ≤ n. The technical part of the argument is
given in the following Lemma where we assume the system matrix being orthogonal,
i.e., ||Ax||2 = ||x||2 for all x. We also denote

sat
γ

(x) :=

{
γ x
||x||2 ||x||2 > γ

x otherwise.

Lemma 4.2. Let wk be an i.i.d random sequence with E||w0||p2 < ∞ for some p > 2.
Let further be the pair (A,B) reachable, and the matrix A orthogonal. Then there
exists a causal feedback policy with ||uk||∞ < Umax such that the state of the system
xk+1 = Axk + Buk + wk satisfies supk≥n E||xk||r2 < ∞ for every 0 ≤ r < (p − 2)/2

provided that Umax > qE||w0||2||B†qAq||∞.
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4.3. Marginally stable case

Proof. We define a subsampled process of the state norms by

Xn := ||xnq||2, n ≥ 0.

Thus we would like to prove that

sup
n≥0

EXr
n <∞,

and the Lemma will follow by a routine use of triangle inequalities for the original
process.

Since

EXr
n =

∫ ∞
0

P (Xr
n ≥ t) dt =

∫ ∞
0

tr−1P (Xn ≥ t) dt,

we can proceed by bounding P (Xn ≥ t) by decomposing according to the last time
before n that the sequence was less than or equal to some J > qµ, where µ := E||w0||2.
For t > J we have

P (Xn ≥ t) =

n−1∑
k=0

P
(
Xn ≥ t,Xk ≤ J , Xi > J , i ∈ Nn−1

k+1

)
≤

n−1∑
k=0

P
(
Xn ≥ t | Xk ≤ J , Xi > J , i ∈ Nn−1

k+1

)
=

n−1∑
k=0

P
(
Xk +Xk+1 −Xk + . . .+Xn −Xn−1 ≥ t | Xk ≤ J , Xi > J , i ∈ Nn−1

k+1

)
.

Now define the control input outside J as

uqt:q(t+1) = −B†qAq sat
γ

(xt), ||xt||2 > J , (4.3)

and arbitrarily otherwise with

qµ < γ < min

{
J , Umax

||B†qAq||∞

}
.

Such a γ exists due to the assumption on Umax. This choice of γ guarantees that
||uqt:q(t+1)||∞ ≤ Umax since

||uqt:q(t+1)||∞ = ||B†qAq||∞|| sat
γ

(xt)||∞ ≤ ||B†qAq||∞|| sat
γ

(xt)||2 ≤ ||B†qAq||∞γ ≤ Umax.

With this control input we get for i ≥ 1

Xk+i+1 −Xk+i = ||Aqxq(k+i) − BqB†qAq sat
γ

(xq(k+i)) + Cqwq(k+i):q(k+i+1)||2 − ||xq(k+i)||2
≤ ||xq(k+i) − sat

γ
(xq(k+i))||2 + ||Cqwq(k+i):q(k+i+1)||2 − ||xq(k+i)||2

≤ ||Cqwq(k+i):q(k+i+1)||2 − γ, (4.4)
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4. Stochastic stability of linear systems

where in the first inequality we used the orthogonality of A and the fact that BqB†q = I
since Bq has full row rank. The second inequality follows from the definition of the
satγ(·) function. Next, by a similar argument, we have

Xk+1 −Xk ≤ ||Bquqk:q(k+1)||2 + ||Cqwqk:q(k+1)||2 ≤
√
m||Bq||2Umax + ||Cqwqk:q(k+1)||2,

and, of course, Xk ≤ J . Finally, again by orthogonality of A,

||Cqwq(k+i):q(k+1+i)||2 = ||
q−1∑
j=0

Aq−j−1wq(k+i)+j ||2 ≤
q−1∑
j=0

||wq(k+i)+j ||2, (4.5)

for i ≥ 0.
Putting it all together using the i.i.d. assumption and denoting α :=

√
m||Bq||2Umax

we get

P (Xn ≥ t) ≤
n−1∑
k=0

P

(n−k)q∑
j=1

||wj ||2 ≥ t− J − α+ (n− k − 1)γ



≤
n−1∑
k=0

E

∣∣∣∣∣∣
(n−k)q∑
j=1

{||wj ||2 − µ}

∣∣∣∣∣∣
p

[t− J − α+ (n− k − 1)γ − (n− k)qµ]p

by Markov’s inequality.
The Martingale Mn :=

∑n
i=0(||wi||2−µ) can be bounded by Burkholder’s inequality

[11, 32] as follows. First, by Minkowski inequality,

E|Mn|p = E|Mn−M0 +M0|p ≤ 2pE|Mn−M0|p + 2pE|M0|p = 2pE|Mn−M0|p + 2pC ′p,

for C ′p := E |||w0||2 − µ|p. The process Mn −M0 is now a Martingale null at zero, so
that by Burkholder’s and Minkowski inequalities

E|Mn −M0|p ≤ cbE
(

n∑
i=1

(Mi −Mi−1)2

)p/2
≤ cb

(
n∑
i=1

(E|Mi −Mi−1|p)2/p

)p/2
≤ cbnp/2 max

1≤i≤n
E|Mi −Mi−1|p.

Since E|Mi −Mi−1| = E |||wi||2 − µ|p = C ′p for all i, we arrive at the bound

P (Xn ≥ t) ≤
n−1∑
k=0

((n− k)q)p/22pC ′p + 2pC ′p
[t− J − α+ (n− k − 1)γ − (n− k)qµ]p

≤
n−1∑
l=0

(lq)p/22pC ′p + 2pC ′p
[t− J − α− γ + l(γ − qµ)]p

≤
∞∑
l=0

(lq)p/22pC ′p + 2pC ′p
[t− J − α− γ + l(γ − qµ)]p
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4.3. Marginally stable case

for t > J + α+ γ. Since γ was chosen such that γ − qµ > 0 we get∫ ∞
0

tr−1P (Xn ≥ t) dt ≤ b+

∞∑
l=0

∫ ∞
J+α+γ+1

tr−1
(lq)p/22pC ′p + 2pC ′p

[t− J − α− γ + l(γ − qµ)]p
dt

≈
∞∑
l=0

l(2r−p)/2,

where b = (J + α + γ + 1)r/r. This finishes the proof since the right-hand side is
independent of n and finite for r < (p− 2)/2. �

Now we are ready to prove the main stability theorem by transforming the system
matrix to the real Jordan form as in [30].

Theorem 4.2. Let wk be an i.i.d random sequence. Let further be the pair (A,B)

stabilizable, the matrix A Lyapunov stable and Umax > qE||w0||2||B†qAq||∞. Then there
exists a causal feedback policy with ||uk||∞ < Umax such that for the system xk+1 =
Axk +Buk + wk holds

I. the state xk is mean-square bounded if E||w0||p2 <∞ for some p > 6,

II. there is a zero probability of a divergent trajectory if E||w0||p2 <∞ for some p > 2.

Proof. There exists a basis such that the system matrix is in the real Jordan form, and
hence, by the stabilizability and Lyapunov stability assumption,

A =

[
As 0
0 Ao

]
, B =

[
Bs
Bo

]
,

where the matrix As is strictly stable, i.e., ρ(A) < 1, the matrix Ao is orthogonal,
and the pair (Ao, Bo) is reachable. Thus the part of the state corresponding to the
matrices (As, Bs) is mean-square bounded by Theorem 4.1, and the part of the state
corresponding to the pair (Ao, Bo) can be stabilized by the previous Lemma 4.2 with
r = 2. The zero probability of divergent trajectories follows from the same Lemma and
Lemma 4.1. �

Remark 4.1. Results of [30] show that the first claim of Theorem 4.2 holds with p = 4.
The argument is built on a fundamental result of [44], which is far beyond the scope of
this text.

4.3.1. Receding horizon stabilization

A closer look at the proof of the Lemma 4.2 reveals that it is not the particular form
of the policy 4.3, but rather a negative drift condition that it ensures. The negative
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4. Stochastic stability of linear systems

drift condition can be seen by taking the expectation on both sides of (4.4), which in
view of (4.5) yields E(Xk+i+1 −Xk+i | Xk+i) ≤ qµ − γ < 0 on the event [Xk+i > J ].
This condition can be readily incorporated into an online optimization procedure even
if a nonlinear disturbance feedback of the form η +Ke(w) (see Eq. (3.5)) is employed
since the preceding results guarantees feasibility with K = 0. To derive a stabilizing
constraint observe that

E(||xk+q|| − ||xk|| | xk) = E(||Aqxk + Bquk:k+q−1 + Cqwk:k+q−1|| − ||xk|| | xk)
≤ E(||Aqxk + Bquk:k+q−1||2 | xk) + E||Cqwk:k+q−1||2 − ||xk||.

Furthermore1

E(||Aqxk + Bquk:k+q−1||2 | xk) = E||Aqxk +Bqη1:qm +K1:qme(wk:k+N−1)||2
≤ ||Aqxk +Bqη1:qm||2 + E||BqK1:qme(wk:k+N−1)||2
≤ ||Aqxk +Bqη1:qm||2 +

√
n||BqK1:qm||∞E||e(wk:k+N−1)1:qn||∞,

where the term ε̃ := E||e(wk:k+N−1)1:qn||∞ can be computed by means of Monte Carlo
or upper bounded by ε = ||e(w)||∞ < ∞. To guarantee mean-square stability we
require that E(||xk+q|| − ||xk|| | xk) ≤ −δ for some δ > 0. Thus, considering that
E||Cqwk:k+q−1||2 ≤ qE||w0||2, the stabilizing constraint is

||Aqxk +Bqη1:qm||2 +
√
nε̃||BqK1:qm||∞ − ||xk|| ≤ −qE||w0||2 − δ (4.6)

whenever ||xk||2 > J , which is a second-order cone constraint.
A stabilizing receding horizon policy then employs a control horizon Nc = q with the

understanding that the stabilizing constraint (4.6) is triggered only if ||xk||2 > J .

4.3.2. Output feedback stabilization

The preceding approach immediately generalizes to output feedback stabilization if
Gaussian disturbances are assumed for the process and measurement noise.

Assuming the linear stochastic system (3.38) and assumptions of Section 3.2.2, the
conditional expectation is given by the Kalman filter equation

x̂k+1|k = Ax̂k|k−1 +Buk + Lkεk|k−1, (4.7)

where x̂k|k−1 = E(xk | y0, . . . , yk−1), εk|k−1 = yk −Cx̂k|k−1 and Lk is the Kalman gain.
The innovations sequence εk is Gaussian and furthermore has bounded variance (and
hence all moments) under the assumption of detectability of the pair (A,C), which also
ensures that the estimate error xk− x̂k|k−1 is mean-square bounded with variance given

1Here we abuse the notation and denote by wk:k+q−1 the vector [wTk , . . . , w
T
k+q−1]T and similarly for

uk:k+q−1, but subscripts of the matrices K, η, e(w) denote row selections.

38



4.3. Marginally stable case

by the limiting solution of the Riccati equation (3.42). Thus, Theorem 4.2 guarantees
existence of a mean-square stabilizing policy for the estimator (4.7) whose state is
accessible. This, however, ensures existence of a stabilizing feedback policy for the
original system since

E||xk||22 = E||xk − x̂k|k−1 + x̂k|k−1||22 (4.8)

≤ E||xk − x̂k|k−1||22 + 2E(||x̂k|k−1||2||xk − x̂k|k−1||2) + E||x̂k|k−1||22 (4.9)

with the first and third terms bounded according to the preceding discussion. Bound-
edness of the second term then follows by the Cauchy-Schwarz inequality as

2E(||x̂k|k−1||2||xk − x̂k|k−1||2) ≤ 2
√

E||x̂k|k−1||22
√

E||xk − x̂k|k−1||22.

Discussion on receding horizon stabilization of Section 4.3.1 now applies to both
output feedback policies of Section 3.2.2.

4.3.3. Existence of a stabilizing Markov policy

The mean-square stabilizing policies arising from Theorem 4.2 are not Markov (i.e.,
require knowledge not only of the current but also of some of the preceding states)
if the reachability index q is greater than one. A natural question to ask is whether
there exists a stabilizing Markov control policy, that is, a policy for which the control
action at time k depends only on the measured state xk, and not on the previous states
xk−1, xk−2, . . . , x0. First, we establish a general result of the existence of a stabilizing
randomized Markov policy given a stabilizing non-Markov policy, and then we exploit
the particular form of the policy from Theorem 4.2 to construct a deterministic Markov
policy. Both policies constructed are, however, time-varying.

4.3.3.1. Randomized Markov policy

In this section, we will establish a general result for Markov control processes that, for
any policy π, guarantees the existence of a Markov policy π̃ such that

P π̃(xk+1 ∈ B | xk) = P π(xk+1 ∈ B | xk), k ∈ N0, (4.10)

where the P π̃ and P π denote the probability measures under the policies π̃ and π,
respectively.

We assume a Markov control process with state-space X , action space U and tran-
sition kernel Q, that is, P (xk+1 ∈ B|xk, uk) = Q(B | xk, uk) for any Borel set B ⊂ X ,
xk ∈ X and uk ∈ U . A stochastic linear system with independent additive noise is
clearly an example of a Markov control process. See [28] for a detailed treatment
of optimal control of Markov control processes. History up to time t is denoted by
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4. Stochastic stability of linear systems

ht = (x0, u0, . . . , xt−1, ut−1, xt), and the corresponding product space that ht takes val-
ues in by Ht = X × U × . . . × X × U × X . Let further π = {πt}∞t=0 denote a general
(possibly randomized and non-markov) control policy, that is, πt(·|·) is a stochastic
kernel2 on U given Ht, and, for a Borel set C ⊂ U , π(C|ht) = P π(ut ∈ C|ht). Marginal
distribution (or law) of a random variable X is denote by PX(·), and the conditional
distribution of a random variable X given Y is denoted by PX|Y (·|·). All spaces con-
sidered are assumed to be Borel, so that regular conditional distributions exist and the
measures P π̃ and P π in (4.10) can be constructed (see [28, 32] for details).

First observe that, given an initial distribution P πx0(B) = P π̃x0(B) := P (x0 ∈ B),
equality (4.10) implies that the process {xt}∞t=0 has the same one-dimensional marginals
under both policies π and π̃ (and hence if π is mean-square stabilizing, so is π̃). Indeed,
the initial distributions are the same, and, assuming P πxk = P π̃xk for some k ∈ N,

P π(xk+1 ∈ B) =

∫
X
P π(xk+1 ∈ B|xk = x)P πxk(dx)

=

∫
X
P π̃(xk+1 ∈ B|xk = x)P π̃xk(dx) = P π̃(xk+1 ∈ B).

Now we construct one particular π̃ satisfying (4.10). Note that the constructed policy
may and in most cases will be randomized (i.e., π̃k(·|xk) may not be a Dirac measure).
The policy is defined in such a way that

P π̃(uk ∈ C | xk) = P π(uk ∈ C | xk)

for every Borel set C ⊂ U . This is satisfied if the stochastic kernels π̃k, k ∈ N consti-
tuting π are defined as

π̃k(C | xk) := P π(uk ∈ C | xk) = Eπ[πk(C | hk) | xk] =

∫
Hk

πk(C | hk)P πhk|xt(dhk|xk).
(4.11)

If defined in this way, π̃t is clearly a stochastic kernel on U given X , and consequently
{π̃t}∞t=0 is a Markov control policy. It remains to show that (4.10) holds. This turns
out to be a direct consequence of the following lemma.

Lemma 4.3. Let K(·|·) be a stochastic kernel on Z given Y. Let further µ be a measure
on Y and f : Z → R a nonnegative measurable function. Then∫

Y

∫
Z
f(z)K(dz|y)µ(dy) =

∫
Z
f(z)ν(dz),

2A stochastic kernel K(·|·) on X given Y satisfies the following two properties: K(·|y) is a probability
measure on X for each y ∈ Y and K(B|·) is a measurable function on Y for every measurable
B ⊂ X . Note that the transition kernel Q is also a stochastic kernel.
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4.3. Marginally stable case

where

ν(C) =

∫
Y
K(C|y)µ(dy)

for any Borel set C ⊂ Z.

Proof. The proof is standard, starting with indicators and then using approximation
by simple functions. Thus, suppose first that f = 1A for a Borel set A ⊂ Z. Then∫

Y

∫
Z
1AK(dz|y)µ(dy) =

∫
Y
K(A|y)µ(dy),

and ∫
Z
1Aν(dz) = ν(A) =

∫
Y
K(A|y)µ(dy),

which shows that the equality holds for indicator functions of measurable sets. The
equality then extends by linearity to any simple function. Finally, approximation of f
by simple functions and the monotone convergence theorem finish the proof. �

The lemma now immediately gives equality (4.10) as

P π(xk+1 ∈ B|xk) =

∫
Hk

∫
U
Q(B|xk, uk)πk(duk|hk)P πhk|xk(dhk|xk)

=

∫
U
Q(B|xk, uk)π̃k(duk|xk) = P π̃(xk+1 ∈ B|xk),

where the second equality follows from Lemma 4.3 individually for each value of xk.

This establishes the existence of a mean-square stabilizing Markov control policy π̃
given any mean-square stabilizing policy π. Note that this result is purely theoretical
since practical implementation of this policy requires the ability to sample from the
distribution Pht|xt , which is difficult even for the special case of a q-periodic policy
arising from Theorem 4.2.

4.3.3.2. Deterministic Markov policy

The q-periodicity of the policy arising from Theorem 4.2 can be exploited to construct
a deterministic (i.e., not randomized) Markov policy. A stabilizing q-periodic policy
computes at times nq, n ∈ N0, a sequence of control inputs unq, unq+1 . . . , uq(n+1)−1

ensuring that the negative drift condition

E{||x(n+1)q||2 | xnq} − ||xnq||2 ≤ a (4.12)

is satisfied for some a > 0 whenever ||xnq||2 > J . If ||xnq||2 ≤ J , the control sequence
can be arbitrary. The sequence is then applied in open loop to the system. This
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4. Stochastic stability of linear systems

suggest that a simple q-periodic Markov policy can be constructed by solving at each
time a stochastic optimal control problem minimizing the expectation of the 2-norm
of the state at the next integer multiple of q over all open loop policies. Thus, define
functions φ0, . . . , φq−1 as

φk(x) := uk0(x), k = 0, . . . , q − 1,

where uk0(x) comes from the optimal solution uk0(x), . . . , ukq−1−k(x) to the problem

minimize
uk0 ,...,u

k
q−1−k

E{||xq−k||2 | x0 = x}

subject to xi+1 = Axi +Bui + wi

ui ∈ U , i = 0, . . . , q − 1− k

(4.13)

A q-periodic deterministic Markov policy πd = {πdk}∞k=0 is then defined by successive
concatenation of φ0, . . . , φq−1, that is,

πdk(xk) := φkmod q(xk).

It is easy to see that this policy ensures no smaller negative drift than the original non-
Markov one since the controlled process is Markov and, at each time nq, . . . , (n+1)q−1,
the remainder of the open-loop sequence that ensures (4.12) is feasible in (4.13). Con-
sequently, the deterministic Markov policy πd is mean-square stabilizing whenever the
original non-Markov policy is.

The problem (4.13) may be relatively difficult to solve since there is typically no
closed-form expression for the cost function. The problem is, however, small scale (the
horizon length is at most equal to the reachability index), and therefore sampling tech-
niques can be used to obtain good enough approximation of the cost (see Eq. (2.16)).

To demonstrate the deterministic Markov policy, we consider a 3-dimensional orthog-
onal system and an i.i.d. Gaussian disturbance sequence given by the matrices

A =
1√
2

 1 1 0
−1 1 0

0 0
√

2

 , B =
1√
2

 0
−1
1

 , Ewkw
T
k =

0.0042 0 0
0 0.0042 0
0 0 0.0085

 ,
which is (up to a coordinate transformation and an asymptotically stable part) the same
setting as in [47]. The control authority is bounded by Umax = 1, and the saturation

level is γ = Umax/||B†3A3||∞ = 0.1213. The initial state is x0 = [−0.5, −0.5, −2]T .
Simulation results over 1000 Monte Carlo runs shown in Figure 4.1 suggest that both
the non-Markov policy arising form Theorem 4.2 and the deterministic Markov policy
are indeed stabilizing, and that the latter performs slightly better in terms of the mean-
square of the state.
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Figure 4.1.: Mean-square stabilization by Markov and non-Markov policies.

4.4. Marginally unstable case

Now we briefly discuss the marginally unstable case. There are no conclusive results
even for the simplest case of a discrete double integrator although simulation results
suggest that at least this system should be mean-square stabilizable. We derive at
least a partial result on stabilizability of positive or negative part of both states of this
system with arbitrarily small but nonzero control authority. We consider the system[

xk+1

yk+1

]
= A

[
xk
yk

]
+Buk +

[
wk
vk

]
, (4.14)

where

A =

[
1 1
0 1

]
, B =

[
0
1

]
.

The disturbance sequence [vk, wk] is assumed to be independent with respect to time,
and to have bounded p-th moment as Cp = supk≥0 max{E|vk|p, E|wk|p} <∞.

To derive a bound on positive parts of the state we define τn as the last time before
n when both xk and yk were below some J ≥ max{x0, y0}3, i.e.,

τn = max{k ≤ n | max{xk, yk} ≤ J }.
3Here we could have chosen any J ∈ R independently of x0 and y0. This would only allow for the pos-

sibility of τ = −∞, which is, however, not pathological in any way, only increases notational burden.
All of the calculation below would actually remain valid with one more term in the decomposition
according to the values of τn and with J replaced by max{J , x0, y0}.
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Finally define the control policy as

uk =

{
−Umax max{xk, yk} ≥ J
0 otherwise.

(4.15)

Then for t > J we have

P (xn ≥ t) =

n−1∑
k=0

P (xn ≥ t, τn = k) ≤
n−1∑
k=0

P (xn > t | τn = k)

=

n−1∑
k=0

P

(
xk + (n− k)yk − Umax

n−k−2∑
i=0

i+

n−k−1∑
i=0

ivn−i−1 +

n−k−1∑
i=0

wn−i−1 ≥ t | τn = k

)

≤
n−1∑
k=0

P

(
(n− k + 1)J − 0.5(n− k − 1)(n− k − 2)Umax+

n−k−1∑
i=0

(ivn−i−1 + wn−i−1) ≥ t
)

≤
n−1∑
k=0

E
∣∣∣∑n−k−1

i=0 (ivn−i−1 + wn−i−1)
∣∣∣p

(t− (n− k + 1)J + 0.5(n− k − 1)(n− k − 2)Umax)p

for t ≥ t0, where t0 is chosen such that t0−(n−k+1)J +0.5(n−k−1)(n−k−2)Umax)p

is positive for all k and n. Such a t0 clearly exists for any Umax > 0 and any J ∈ R.

Now observe that
∑n−k−1

i=0 (ivn−i−1 + wn−i−1) is a sum of independent zero-mean
random variables and hence a martingale. Thus by Burkohlder’s and Minkowski in-
equalities we have

E

∣∣∣∣∣
n−k−1∑
i=0

(ivn−i−1 + wn−i−1)

∣∣∣∣∣
p

≤ cp(n− k)p/2 max
0≤i≤n−k−1

E|ivn−i−1 + wn−i−1|p

≤ 2pcp(n− k)p/2 max
0≤i≤n−k−1

{max{ipE|vn−i−1|p,E|wn−i−1|p}}

≤ cp2p(n− k)3p/2Cp,

where cp <∞ comes from Burkohlder’s inequality. Thus we have arrived at the bound

E(x+
n )r =

∫ ∞
0

P (xrn ≥ t) dt ≤ tr0/r +

∫ ∞
t0

tr−1P (xn ≥ t) dt

≤ tr0/r +

∫ ∞
t0

tr−1
n−1∑
k=0

cp2
p(n− k)3p/2Cp

(t− (n− k + 1)J + 0.5(n− k − 1)(n− k − 2)Umax)p
dt

≤ tr0/r +
∞∑
l=1

∫ ∞
t0

tr−1 cp2
pCpl

3p/2

(t− (l + 1)J + 0.5(l − 1)(l − 2)Umax)p
dt ≈

∞∑
l=0

l3p/2

l2(p−r) ,
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4.4. Marginally unstable case

which is finite for p > 4r+2. In particular, mean-square stability is ensured for p > 10.
Mean-square boundedness of y+

k follows from Theorem 4.2 for any p > 6 or directly by
an analogous computation.

This technique can be immediately extended to a Jordan block of arbitrary size and
any matrix B such that the last row of B is nonzero.

On the other hand the problem of mean-square stabilizability of the state norm, not
only positive parts is more difficult. In particular, a proof that an extension of the
policy (4.15) also stabilizes the negative parts of the state seems to be far from trivial.
There are at least some obvious modifications of the policy that look stabilizing in
computer simulations. For example for the policy

uk =


−Umax xk > J , yk ≥ −J
Umax xk < −J , yk ≤ J
0 otherwise

(4.16)

we have no proof of stability of either positive or negative parts, but computer sim-
ulations in Figures 4.2, 4.3 suggest that the policy is indeed stabilizing. Figure 4.4,
by contrast, shows unstable behaviour when the A(2, 2) element of the matrix A is
perturbed from 1 to 1.1.
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Figure 4.2.: Simulation over 2000 Monte Carlo runs using policy (4.16) with J = 10
and z0 = [x0, y0]T = [10, 10]T . Left: mean-square estimate for two values
of Umax. Right: individual trajectories for Umax = 5.
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Figure 4.3.: Simulation results over 1000 Monte Carlo runs using policy (4.16) with
J = 10, Umax = 5 and z0 = [x0, y0]T = [500, 500]T . Left: mean-square
estimate. Right: individual trajectories.
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Figure 4.4.: Simulation results over 1000 Monte Carlo runs using policy (4.16) with
J = 10, Umax = 5, z0 = [x0, y0]T = [500, 500]T and perturbed matrix
A with A(2, 2) = 1.01. Left: mean-square estimate. Right: individual
trajectories.
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5. Recursive feasibility via invariant sets

This chapter is concerned with developing techniques to ensure recursive feasibility
of probabilistically-constrained stochastic model predictive control problems. First we
give a brief overview of probabilistic (chance) constraints typically encountered in the
context of stochastic model predictive control in Section 5.1, and then we move on to
the development of recursively feasible algorithms in Section 5.2.

5.1. Chance constraints

In the presence of unbounded additive disturbances it is no longer possible1 to satisfy
hard state constraints of the form f(xk) ≤ 0. Therefore, some kind of soft constraint
has to be introduced, a natural and probably the most widely used choice being a
probabilistic (or chance) constraint of the form

P (f(xk) ≤ 0) ≥ 1− α. (5.1)

This is the sole type of constraints that will be addressed in this section, even though
there are several other possibilities for hard constraints softening. For example con-
straints of the type

Ef(xk) ≤ 0

or integrated chance constraints, where satisfaction of∫ ∞
0

P (f(xk) > s) ds ≤ α

is required, often lead to a convex representation (see [23] for a survey).
For further analysis it is convenient to rewrite the chance constraint (5.1) in the form

P (f(w, θ) ≤ 0) ≥ 1− α, (5.2)

where w is a random vector and θ is a vector of optimization variables. For a Gaussian
random variable, this constraint turns out to be convex if the function f is affine
individually in w and θ (i.e., f is bilinear). In particular, the constraint translates to

1Some mild technical assumptions are needed here. An obvious set of assumptions might require that
the disturbance sequence is i.i.d. with P (wk ∈ G) > 0 for every set open set G, the pair (A,F ),
where Ewkw

T
k = FFT , is reachable, and the set {x | f(x) > 0} has nonempty interior.

47



5. Recursive feasibility via invariant sets

an affine constraint if it is affine jointly in (w, θ) and a second-order cone constraint
if it is affine individually in w and θ, but not jointly in (w, θ), which is shown in the
following Lemma.

Lemma 5.1. If w ∼ N (0, FF T ) then

P (aT θ + bTw + θTCw + d ≤ 0) ≥ 1− α (5.3)

is equivalent to
aT θ + d+ Φ−1(1− α)||F T (b+ CT θ)||2 ≤ 0. (5.4)

Proof.

P (aT θ + bTw + θTCw + d ≤ 0) = P ((bT + θTC)Fw̃ ≤ −aT θ − d)

= Φ

( −aT θ − d
||F T (b+ CT θ)||2

)
,

where w̃ ∼ N (0, I). The last equality follows from the fact that (bT + θTC)Fw̃ is a
zero-mean Gaussian random variable with the variance ||F T (b+ CT θ)||22.

The result now immediately follows. �

Note that the constraint (5.4) is a second-order cone constraint for C 6= 0 (and
α < 0.5) and an affine constraint for C = 0 in the optimization variable θ, which is in
accordance with the preceding discussion.

If the distribution of w is not Gaussian, it is still possible to obtain a representation
of the constraint (5.3) as

aT θ + d+ γ ≤ 0, (5.5)

where γ is the smallest value such that P ((bT + θTC)w ≤ γ) ≥ 1 − α, i.e, γ =
F−1

(bT+θTC)w
(1 − α), where F−1

(bT+θTC)w
(·) is the left quantile function of (bT + θTC)w.

The quantile γ can be obtained, for instance, by a Monte Carlo simulation, which leads
to a tractable affine representation for C = 0 since then γ is independent of the opti-
mization variable θ. This observation can be used to construct a recursively feasible
stochastic MPC algorithm for a broad class of control policies, which is carried out in
detail in Section 5.2.

5.1.1. Joint chance constraints

So far only individual chance constraints, i.e., constraints with f(w, θ) scalar, have been
discussed. In practice, however, joint chance constraints, where f(w, θ) is a vector, are
of equal importance. Unfortunately in this case an exact tractable representation does
usually not exist even if the constraint is convex, since mere evaluation of the constraint
requires a computation of a multivariate integral, which becomes prohibitive in higher
dimensions.
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5.2. Strongly feasible stochastic MPC

The simplest way to approximate a joint chance constraint of the form (5.2), where

f(w, θ) =
[
f1(w, θ), . . . , fm(w, θ)

]T
, is by employing the Boole’s inequality to get an

approximation by individual constraints as

P (f(w, θ) � 0) = P

(
m⋃
i=1

fi(w, θ) > 0

)
≤

m∑
i=1

P (fi(w, θ) > 0). (5.6)

Now if αi, i = 1, . . . ,m are chosen such that

P (fi(w, θ) > 0) ≤ αi, i = 1, . . . ,m (5.7)

and
∑m

i=1 αi = α, equations (5.7) clearly give a conservative approximation of the
original constraint (5.2).

A typical choice for αi’s is αi = α/m, i = 1, . . . ,m. However, conservatism of this
approximation can be significantly reduced if the αi’s are included in the optimization
problem as free variables with the only constraint that they be nonnegative and sum
to α, which is the idea of risk allocation introduced in [8]. In the setting of Lemma 5.1
this leads to a convex representation if C = 0 and α ≤ 0.5, since Φ−1(x) is convex on
[0.5, 1].

The requirement that α does not exceed 0.5 is typically not a practical limitation,
since for α > 0.5 the expectation of f(w, θ) is allowed to be positive, which is a rare
situation.

On the other hand, the loss of convexity for C 6= 0 pose a real problem and has
to be tackled. In practice, the optimization variable θ can usually be partitioned as
θ = [θT1 , θ

T
2 ]T and the constraint (5.3) written as

P (aT θ1 + bTw + θT2 Cw + d ≤ 0) ≥ 1− α. (5.8)

A simple alternating convex optimization scheme can now be adopted to approximately
solve an optimization problem with a constraint of the form (5.8). First the prob-
lem is solved in variables (θ1, θ2) with αi fixed to α/m, then solved with variables
(θ1, α1, . . . , αm) and θ2 fixed to the corresponding part of the optimal solution of the
previous problem, and then again solved in variables (θ1, θ2) with αi fixed from the
optimal solution of the previous problem, and so on. The constraint is now convex in
each iteration of this scheme, and only one or two iterations are usually enough to get
a solid improvement.

5.2. Strongly feasible stochastic MPC

In this section we develop a systematic approach to ensure recursive feasibility of
stochastic model predictive control problems using invariant set techniques. The recur-
sive feasibility will be enforced only through constraints, and consequently the resulting
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5. Recursive feasibility via invariant sets

stochastic MPC problems will actually be strongly feasible (see Definition 5.1). Two
approaches are developed; the first one employs a terminal constraint, whereas the
second one constrains the first predicted state. The second approach turns out to be
completely independent of the policy in question and moreover it is least-restrictive in
the sense that it produces the largest feasible set amongst all admissible policies (see
Definition 5.2).

We consider the linear time-invariant stochastic dynamic system

xk+1 = Axk +Buk + wk, k ∈ N0

with the state xk ∈ Rn, the control uk ∈ Rm, and the i.i.d disturbance sequence
wk ∈ Rn. It is assumed that the state xk is known at time k for all k ∈ N0, and that
the pair (A,B) is stabilizable.

Our aim is to develop a systematic approach to ensure that the closed-loop state
trajectory satisfies the probabilistic constraints

P (gTj xk ≤ hj) ≥ 1− αj , k ∈ N, j ∈ Nr1, (5.9)

while minimizing some cost function and satisfying hard input constraints

uk ∈ U := {u ∈ Rm | ||u||∞ ≤ Umax}, k ∈ N0. (5.10)

The allowed probability of violation αj ∈ [0, 1] typically comes directly from application
requirements, but it can also be viewed as a tuning parameter tracing a trade-off curve
between constraint violation and incurred cost.

The polyhedral intersection of the individual constraints gTj x ≤ hj is referred to as
the constraint set and denoted by

X := {x ∈ Rn | Gx ≤ h}, (5.11)

where gTj and hj form the rows of G ∈ Rr×n and h ∈ Rr respectively.

To ensure satisfaction of (5.9), it is sufficient to guarantee that

P (gTj xk+1 ≤ hj | xk) ≥ 1− αj , j ∈ Nr1, (5.12)

for all k ∈ N0. In the sequel, we will focus on developing techniques to render the
constraint recursively feasible, that is, to guarantee its feasibility under a given control
policy at each time k ∈ N0.

Remark 5.1. The presented approach exhibits a certain degree of conservatism since
satisfaction of (5.12) for all k ∈ N0 is only sufficient for (5.9). However, (5.12) offers
a tractable and straightforwardly implementable condition, in contrast to (5.9), which
generally cannot be exactly accommodated in a cost-minimization procedure.
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5.2. Strongly feasible stochastic MPC

We let
u := [uT0 , . . . , u

T
N−1]T , w := [wT0 , . . . , w

T
N−1]T

denote the predicted input sequence and the disturbance sequence along the horizon
N , respectively.

The recursive feasibility is considered with respect to the affine disturbance feedback
policy

u = η +Kw =


η0

η1
...

ηN−1

+


0 0 . . . 0

K1,1 0 . . . 0
...

. . .
. . .

KN−1,1 . . . KN−1,N−1 0

w, (5.13)

applied in a receding horizon fashion.
In the presence of independent unbounded disturbances additively entering the sys-

tem, it is impossible to ensure recursive feasibility at all times. Hence we assume that
the common distribution of the disturbance sequence wk, k ∈ N0 is supported on the
compact set

W = {w ∈ Rn | ||w||∞ ≤ ∆ <∞}, (5.14)

and we let w denote any random variable having the same distribution as wk, k ∈ N0.

Remark 5.2. The presented approach can immediately be generalized to polytopically
or quadratically bounded disturbances, still giving rise to tractable convex optimization
problems. We, however do not, consider more general disturbance specifications for the
sake of brevity.

In what follows we consider the optimization problem

minimize
η,K

J(η,K) := E

{
||QNxN ||pp +

N−1∑
k=0

||Qkxk||pp + ||Rkuk||pp

}
subject to u = η +Kw structured as in (5.13)

P (gTj xk+1 ≤ hj) ≥ 1− αj , j ∈ Nr1
u ∈ UN
xk+1 = Axk +Buk + wk

(5.15)

Remark 5.3. The particular form of the cost function J does not affect the theoretical
discussion of this section, because here we are interested only in the feasibility properties
of (5.15) which are independent of J . We, however, employ the above cost function in
the example of Section 6.2.

A receding horizon application of (5.15) gives rise to a time-invariant state-feedback
control policy (in fact a whole family of them) π(x) = η0(x), where η0(x) can come from
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5. Recursive feasibility via invariant sets

any feasible point of (5.15), (η,K), with the initial state x0 = x. The corresponding
closed-loop trajectory

xk+1 = Axk +Bπ(xk) + wk (5.16)

then satisfies (5.12) for all k ∈ N0 as long as the problem (5.15) stays feasible at all
times.

Remark 5.4. Note that only the first-step (k = 0) probabilistic constraint in (5.15) is
important for closed-loop satisfaction of (5.12). This is exploited in Section 5.3.2 to
derive a least-restrictive formulation (see Definition 5.2).

Our primary goal is to ensure strong feasibility of the problem (5.15), or its version
with only the first-step probabilistic constraint.

Definition 5.1 (Strong feasibility [34]). A stochastic model predictive control problem
is said to be strongly feasible if for every feasible initial state the closed-loop trajec-
tory remains feasible due to any admissible disturbance realization and any sequence of
feasible control inputs generated in a receding horizon fashion.

Our secondary goal is to derive a problem that is least-restrictive.

Definition 5.2 (Least restrictiveness). A stochastic model predictive control problem
is said to be least-restrictive if it is strongly feasible and there is no initial state x0

outside its feasible set and no policy satisfying the input constraints such that the
closed-loop trajectory generated by the policy, starting from x0, satisfies the proba-
bilistic constraint (5.12) for all k ∈ N0 and for all admissible disturbance realizations
{wk ∈ W}∞k=0.

5.3. Main results

Two approaches to assert recursive feasibility are presented, both of which are based on
robust controlled invariant sets that have become a standard tool in receding horizon
control [9]. We begin with the definition of the feasibility region of the constraint (5.12),
which plays a crucial role in what follows.

Definition 5.3 (Stochastic feasibility set). The stochastic feasibility set of the con-
straint (5.12) is

Xf := {x | ∃u ∈ U s.t. P (gTj (Ax+Bu+ w) ≤ hj) ≥ 1− αj ∀ j ∈ Nr1}.

Being a projection of a polyhedron, this set is polyhedral as well. Indeed, we have

Xf = {x | ∃u ∈ U s.t. FgTj w (hj − gTj (Ax+Bu)) ≥ 1− αj ∀ j ∈ Nr1}
= {x | ∃u ∈ U s.t. gTj (Ax+Bu) ≤ hj − F−1

gTj w
(1− αj) ∀ j ∈ Nr1}, (5.17)
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5.3. Main results

where FgTj w (·) and F−1
gTj w

(·) are respectively the cumulative distribution and left quantile

function of gTj w .

Remark 5.5. The quantiles F−1
gTj w

(1 − αj), j ∈ Nr1 are the only quantities that need

to be computed before standard algorithms for the construction of invariant sets can
be employed. They can be computed offline to virtually arbitrary precision for any
reasonable distribution of w , for instance, by means of Monte Carlo techniques.

Note also that the stochastic feasible set Xf is, in general, neither a subset nor a
superset of the constraint set X (see numerical example).

5.3.1. Terminal constraint

First we adopt a dual mode paradigm where the affine disturbance feedback policy
(5.13) is used for predictions in mode 1, that is, at times k = 0, . . . , N − 1, and any
stabilizing state feedback in mode 2, that is, at times k ≥ N [37].

In mode 1 we have, given xk,

P (gTj xk+1 ≤ hj | xk) = P (gTj (Axk +Buk + wk) ≤ hj | xk), j ∈ Nr1.

Thus to ensure satisfaction of (5.12) we require that

gTj (Axk +Buk) ≤ hj − F−1
gTj w

(1− αj), j ∈ Nr1, k ∈ NN−1
0

for all possible states xk reachable at time k by the disturbance sequence up to this
time, wk−1

0 := (w0, . . . , wk−1), under a given policy in mode 1. Employing the definition
of the affine disturbance feedback (5.13) on the left-hand side, we get

gTj (Axk +Buk) = gTj [A(Akx0 + Bk(η +Kw) + Ckw) +B(ηk +Kkw)]

= gTj (Ak+1x0 + Bk+1η) + gTj (Bk+1K +ACk)w,

where
Bk = [Ak−1B, . . . , B, 0, . . . , 0], Ck = [Ak−1, . . . , I, 0, . . . , 0],

and ηk and Kk denote k-th block rows of size m. Thus, considering the worst-case value
of the uncertain term over all disturbances,

max
w∈WN

gTj (Bk+1K +ACk)w = ||gTj (Bk+1K +ACk)||∞∆, (5.18)

we get a sufficient condition for recursive feasibility in mode 1

gTj (Ak+1x0 + Bk+1η) ≤ hj − ||gTj (Bk+1K +ACk)||∞∆− F−1
gTj w

(1− αj), (5.19)

for all k ∈ NN−1
0 and j ∈ Nr1.
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5. Recursive feasibility via invariant sets

Remark 5.6. Although there is the disturbance sequence over the whole horizon w in
the above computation, only the disturbances wk−1

0 contribute to the worst-case value
due to the structure of the matrices Bk and Ck.

In mode 2 we use a stabilizing state feedback uk = Ksxk with the corresponding
strictly stable feedback dynamics matrix Â = A+BKs. One step predictions in mode 2
now read

gTj xN+i+1 = gTj (Âi+1x̂N + Âi+1(BNK + CN )wN−1
0 + ÂĈkwi−1

N + wN+i),

where x̂N = ANx0 + BNη and Ĉi = [Âi−1, Âi−2, . . . , I]. Thus considering worst case
values over wN+i−1

0 we get a sufficient condition

gTj Â
i+1(ANx0 + BNη) ≤ hj − ||gTj Âi+1(BNK + CN )||∞∆ (5.20)

− ||gTj ÂĈi||∞∆− F−1
gTj w

(1− αj)

for all j ∈ Nr1 and i ∈ N0.

This infinite number of constraints can be expressed in terms of the maximum robust
invariant subset of the feasibility region with respect to the closed-loop dynamics xk+1 =
(A + BKs)xk + wk, hard input constraints ||Ksxk|| ∈ U and the chance constraint
P (gTj (A+BKs)xk + wk ≤ hj) ≥ 1− αj . In other words, we a employ a set XKsr ⊂ Xf
such that for all x ∈ XKsr

(A+BKs)x+ w ∈ XKsr , (5.21)

||Ksx||∞ ≤ Umax,

gTj (A+BKs)x ≤ hj − F−1
gTj w

(1− αj) ∀w ∈ W ∀ j ∈ Nr1.

It is assumed that the set is polyhedral and nonempty in the form XKsr = {x ∈ Rn |
Sx ≤ z}. If the set were nonempty but not polyhedral, an inner approximation that is
polyhedral can always be constructed. See Appendix B and [9, 27] for some algorithms
to construct (controlled) invariant sets or their polyhedral approximations.

Recursive feasibility is now ensured by the requirement that the state xN lands
robustly inside XKsr , that is,

ANx0 + BNη + (BNK + CN )w ∈ XKsr ∀w ∈ WN ,

which is equivalent to

sTj (ANx0 + BNη) ≤ zj − ||sTj (BNK + CN )||∞∆ ∀ j ∈ Nr′1 , (5.22)

where sTj and zj are the rows of the matrices S ∈ Rr′×n and z ∈ Rr′ defining XKsr .
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Hard input constraints are enforced explicitly in mode 1 as

|ηi|+ ∆||Ki||∞ ≤ Umax, i = 1, . . . ,mN, (5.23)

and implicitly in mode 2 through the relation (5.21). Here the subscript i denotes i-th
row (not block row) of the corresponding matrix.

Hence we have arrived at the following theorem.

Theorem 5.1. For the stochastic model predictive control problem

minimize
η,K

J(η,K)

subject to u = η +Kw structured as in (5.13)

xk+1 = Axk +Buk + wk, k ∈ NN−1
0

(5.19), (5.22), (5.23)

(5.24)

the following holds:

I. The problem is strongly feasible.

II. The closed-loop state trajectory satisfies (5.9) and (5.12).

Proof. I. Given any feasible solution (η,K) (structured as in (5.13)) at time zero, we
are guaranteed to have a feasible point (η̃, K̃) at time one with (η̃, K̃) constructed
as

η̃ =


η1 +K1,1w0

η2 +K2,1w0
...

ηN−1 +KN−1,1w0

ηL

 , K̃ =

 0 0

K̂ 0
KL 0

 ,
where

K̂ =

 K2,2 0 . . . 0
...

. . .
. . .

KN−1,2 . . . KN−1,N−1 0

 .
The last block rows ηL and KL can be determined from the fact that KsxN defines
a feasible input at time N provided that the previous inputs were generated by
the policy u = η +Kw. Thus for the last block rows we have

ηL = Ks(A
Nx0 + BNη) +Ks[(BNK + CN )]1:n · w0

KL = Ks[BNK + CN ]n+1:nN ,

where [A]p:q denotes the sub-matrix of a matrix A consisting of columns p through
q. Strong feasibility now follows by induction.
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II. Satisfaction of probabilistic constraints on the state at the next time instant using
any feasible input is ensured by (5.19) with k = 0. Hence the constraints (5.9)
and (5.12) are satisfied if the problem is strongly feasible, which is guaranteed
by I.

�

5.3.2. First-step constraint

An alternative approach to assert strong feasibility is to constrain at each time step
only the predicted state at the very next time instant to a certain invariant set, in our
case the maximum stochastic robust controlled invariant set (see Definition 5.5). This
type of technique was recently introduced in the context of nominal as well as robust
model predictive control [26, 41].

Definition 5.4. A set Xrc ⊂ Rn is a stochastic robust controlled invariant set if it
satisfies the following condition:

∀x ∈ Xrc ∃u ∈ U s.t. : Ax+Bu+ w ∈ Xrc ∀w ∈ W, (5.25)

P (gTj (Ax+Bu+ w) ≤ hj) ≥ 1− αj ∀ j ∈ Nr1.

Definition 5.5 (MSRCI set). The maximum stochastic robust controlled invariant
set (MSRCI) is the largest set X ∗rc ⊂ Rn that is stochastic robust controlled invariant
according to Definition 5.4. The MSRCI set can be explicitly defined as

X ∗rc =
{
x0 ∈ Xf | ∃φ : Rn → Rm s.t. xk+1 = Axk +Bφ(xk) + wk,

P (gTj Axk +Bφ(xk) + w ≤ hj) ≥ 1− αj ,
φ(xk) ∈ U ∀ j ∈ Nr1 ∀ k ∈ N0 ∀ {wk ∈ W}∞k=0

}
. (5.26)

Remark 5.7. It is clear that the MSRCI set X ∗rc is a superset of the maximum robust
controlled invariant subset of X for any choice of αj ∈ [0, 1]. However, it is not true in
general that the two sets coincide when αj = 0 for all j, but rather X ∗rc is then equal to
the set from which the maximum robust controlled invariant subset of X can be reached
in one step. This implies that those states in X ∗rc (for αj = 0) that are not in the
maximum robust controlled invariant subset of X must be outside X . See the numerical
example in Section 6.2.

Using the same argument as with the stochastic feasibility set (5.17), the stochastic
robust controlled invariance condition (5.25) can be expressed as

∀x ∈ Xrc ∃u ∈ U s.t. : Ax+Bu+ w ∈ Xrc ∀w ∈ W,

gTj (Ax+Bu) ≤ hj − F−1
gTj w

(1− αj) ∀ j ∈ Nr1,
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which shows that these sets can be determined by standard algorithms for construction
of (maximum) robust controlled invariant sets. Consequently, all of the results for
maximum robust controlled invariant sets hold. In particular the set can be expressed
as an intersection of possibly infinite number of polyhedra. Hence, the set is convex,
and moreover if Xf is compact, so is X ∗rc [9].

Again, it is assumed that the MSRCI set X ∗rc is polyhedral and nonempty in the
form X ∗rc = {x | S̃x ≤ z̃}. If the set were nonempty but not polyhedral, an inner
approximation that is stochastic robust controlled invariant and polyhedral can always
be constructed (see Appendix B and [27]). This approximation is no longer maximum,
rendering the problem more restrictive than the original one, yet still strongly feasible.

Thus, given the initial state x0, the only necessary constraints to ensure strong
feasibility and satisfaction of the probabilistic constraints are

Ax0 +Bη0 + w ∈ X ∗rc ∀w ∈ W,

P (gTj (Ax0 +Bη0 + w) ≤ hj) ≥ 1− αj ∀ j ∈ Nr1,
η0 ∈ U ,

which translates to

s̃Tj (Ax0 +Bη0) ≤ z̃j − ||s̃Tj ||∞∆ ∀ j ∈ Nr̃1, (5.27)

gTj (Ax0 +Bη0) ≤ hj − F−1
gTj w

(1− αj) ∀ j ∈ Nr1, (5.28)

||η0||∞ ≤ Umax, (5.29)

where s̃Tj and z̃j are the rows of the matrices S̃ ∈ Rr̃×n and z̃ ∈ Rr̃ defining X ∗rc.
The following theorem now summarizes these observations.

Theorem 5.2. For the stochastic model predictive control problem

minimize
η,K

J(η,K)

subject to u = η +Kw structured as in (5.13)

xk+1 = Axk +Buk + wk, k ∈ NN−1
0

(5.27), (5.28), (5.29)

(5.30)

the following holds:

I. The problem is strongly feasible.

II. The problem is least-restrictive with the feasibility set equal to the associated
MSRCI set X ∗rc.
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5. Recursive feasibility via invariant sets

III. The closed-loop state trajectory satisfies the probabilistic constraints (5.9) and
(5.12).

Proof. I. Given constraints (5.27), (5.28), (5.29), strong feasibility follows immedi-
ately by construction of the MSRCI set as follows. Given initial state x0 ∈ X ∗rc
and any feasible point (η,K) at time zero, the constraint (5.27) guarantees that
the state at the next time instant stays robustly in X ∗rc after application of the
first control move η0. The result now follows by induction.

II. The least-restrictivness follows from the equivalent characterization of X ∗rc (5.26).
The fact that X ∗rc is the feasible set of the problem is clear from the maximality
of the MSRCI and the problem constraints.

III. Satisfaction of the probabilistic constraint (5.12) (and hence (5.9)) along the
horizon follows from the constraint (5.28) and from strong feasibility.

�

5.3.2.1. Mode 1 constraints

Theorem 5.2 tells us that if the stochastic maximum robust controlled invariant set
is employed, the problem is feasible at time zero (and then by induction at all times)
if and only if x0 ∈ X ∗rc. Even though constraints (5.27), (5.28) and (5.29) are suffi-
cient, it may be beneficial for the sake of cost minimization to also include the mode 1
constraints (5.19) and (5.23). This can, however, unnecessarily reduce the size of the
feasible set. Indeed, the additional constraints employ explicitly the affine disturbance
feedback policy, whereas X ∗rc is maximum with respect to all policies. A remedy pro-
posed in [41, 26] is to relax the additional constraints in a minimal way such that the
feasible set remains unchanged. This amounts to replacing (5.19) and (5.23) with

gTj (Ak+1x0 + Bk+1η) ≤ hj − ||gTj A(BkK + Ck)||∞∆− F−1
gTj wk

(1− αj) + ζj , (5.31)

and
|ηi|+ ∆||Ki||∞ ≤ Umax + ξi (5.32)

where ζ = [ζ1, . . . , ζr]
T and ξ = [ξ1, . . . , ξmN ]T are minimal in some sense (e.g., in the

2-norm) such that the feasible set does not shrink. It is shown in [26] that computation
of such a minimal relaxation gives rise to a convex problem where enumeration of all
vertices of X ∗rc is necessary, which can quickly become prohibitive in larger dimensions.
If this is the case, one can, however, always resort to a soft relaxation, that is, to keep
ζ and ξ as optimization variables, and add regularization terms to the cost. If the
2-norms of ζ and ξ are of interest, this approach leads to the cost of the form

J̃(η,K) = J(η,K) + γ1||ζ||22 + γ2||ξ||22 (5.33)
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with some positive γ1 and γ2.

5.3.2.2. Structural constraints

The second approach is particularly useful when additional structure is imposed on the
matrixK and/or η in order to reduce the number of decision variables, and consequently
the computational burden. A typical structure of the matrix K might be block-banded,
i.e., allowing only a limited recourse via the disturbance sequence in the sense that
Ki,j = 0 for j < i − j0 for some fixed j0 ≥ 0. Another viable structure is a diagonal
one for which Ki,j = Ki+1,j+1. See [41] for a comparison of various blocking strategies
in the context of robust model predictive control.

It can be seen from the proof of Theorem 5.1 that this additional structural con-
straint cannot be easily accommodated within the first approach. On the other hand,
the MSRCI set in the second approach, and hence its feasibility properties, remain
completely unaffected as long as the first control move is free. This is a major advan-
tage of the second approach since it allows for a trade-off between performance and
complexity of the resulting problem while retaining (least-restrictive) strong feasibility.
This is in fact one of the motivations behind the results of [26, 27] in the context of the
standard move-blocking strategies widely employed in receding horizon control.

5.3.3. Nonlinear feedback

In this section we outline how to extend both of the presented approaches to the case
of a nonlinear disturbance feedback of the form

u = η +Ke(w), ||e(w)||∞ ≤ ε. (5.34)

First note that the second approach is completely independent of the policy in ques-
tion as long as the additional mode 1 constraints (5.19) and (5.23) are not used. In fact,
the MSRCI set depends only on the probabilistic constraints (5.9), the disturbance set
W and the set of admissible controls U .

When the nonlinear disturbance feedback is employed in the framework of the first
approach or when the mode 1 constraints are included in the second approach, all of the
calculations in Section 5.3.1 remain valid with ∆ replaced by ε in (5.23) and (5.27), and
an appropriate change in (5.18) and (5.22) according to the kind of nonlinear function
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5. Recursive feasibility via invariant sets

e(w) employed. The worst-case value in (5.18) can be upper-bounded as

max
w∈WN

gTj (Bk+1Ke(w) +ACk(w)) ≤ (5.35)

≤ max
w∈WN

|gTj (Bk+1Ke(w)− Bk+1Kw)|

+ max
w∈WN

|gTj (Bk+1K +ACk)w|

≤ ||gTj Bk+1K||∞ sup
w∈WN

||w − e(w)||∞ + ||gTj (Bk+1K +ACk)||∞∆. (5.36)

The only unknown term in the above expression is the supremum, which can, however,
be easily evaluated exactly or upper-bounded for the most common choices of the
nonlinear function e(w). For instance, if e(w) is a componentwise saturation with
ε = ||e(w)||∞ < ∆ we get

sup
w∈WN

||w − e(w)||∞ = ∆− ε.

Thus, both approaches readily extend to the case of a nonlinear disturbance feedback.

5.3.4. Discussion

Theorem 5.2 states that the feasible set of the second approach is maximal amongst all
admissible policies. Thus the feasible set of the first formulation is necessarily a subset
of, or equal to, the feasible set of the second one. On the other hand, construction of
the robust invariant set with respect to the linear state feedback in the first approach is
substantially less computationally demanding than the construction of the maximum
robust controlled invariant set in the second problem. At this point it should, however,
be emphasized that both sets are computed offline.

In conclusion we note that the recursively feasible chance constraint (5.9) translates
to affine constraints on η and K regardless of the disturbance distribution, which is
in sharp contrast to the traditional ‘open-loop’ chance constraints that lead to second-
order-cone constraints for Gaussian disturbances (with the affine disturbance feedback)
and have typically no exact representation otherwise [39, 1]. This is not completely
unexpected since in (5.12) the stochastic nature of the problem comes into play at the
last step only (from k to k + 1), whereas all of the previous disturbances have to be
treated robustly.
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6.1. Numerical implementation

There are several aspects of the algorithms presented in Chapter 3 that may require
special care in a practical implementation. First of all, the affine-like policies the
Chapter is dealing with may lead to considerably larger optimization problems than
the traditional certainty-equivalent model predictive control gives rise to, limiting the
class of potential applications. This can, however, be ameliorated by exploiting the
problem structure and by a sensible choice of optimization tools. A closely related
problem is the fact that although convex, the problems encountered are not amenable
to be solved by standard cone solvers (e.g. Sedumi [55]) due to the special functions
involved. The last hindrance is the potential nondifferentiability of the cost function,
which arises from the problem formulation itself since the p-norm is nondifferentiable.
However, this is a place where the stochastic nature of the problem is actually helpful,
rendering the problem smooth through the action of the expectation operator.

The problem of large size is briefly discussed first. Throughout the thesis the affine-
like policies of the form

u = η +Ke(w) =

 η0
...

ηN−1

+


0 0 . . . 0

K1,1 0 . . . 0
...

. . .
. . .

KN−1,1 . . . KN−1,N−1 0

 e(w), (6.1)

were of the main concern. The number of optimization variables (not including slack
variables associated with input constraints) is determined by the number of nonzero
elements in the matrices η and K. If, n, m and N denote, as usual, the state-space
dimension, the number of inputs and the optimization horizon length respectively, the
number of optimization variables is

mn
N(N − 1)

2
≈ mnN

2

2
.

Furthermore, the input constraint

|ηi|+ ε||Ki||∞ ≤ Umax, i = 1, . . . ,mN
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or equivalently
|ηi|+ ε||KT

i ||1 ≤ Umax, i = 1, . . . ,mN

introduces another mnN
2

2 slack variables when represented as

ηi + ε1T ti ≤ Umax, i = 1, . . . ,mN

−ηi + ε1T ti ≤ Umax, i = 1, . . . ,mN

−ti ≤ KT
i ≤ ti, i = 1, . . . ,mN,

where ti, i = 1, . . . ,mN , are vectors of slack variables, 1 denotes a vector of ones and
the last inequality is componentwise. The total number of variables is thus approxi-
mately mnN2. This number can grow quite rapidly, quickly giving rise to problems
intractable for solvers that need to evaluate an exact Newton step at some point [10].
Indeed, a moderate-size problem with n = 4, m = 2 and a longer horizon N = 48 leads
to a problem with approximately 18 500 variables and 9 000× 9 000 dense block of the
Hessian, which, although still solvable, results in prohibitively long computation time
of the Newton step, let alone memory consumption on the order of several hundred of
megabytes.

Thus it is necessary to resort to an approximate computation of the Newton step,
preferable one where there is no need to actually form the Hessian. Although there are
other possibilities (see [40]), here we chose the conjugate gradient method as a tool to
solve a large system of equations with a positive definite matrix [40]. The key feature
of the method is the fact that it only needs to evaluate the product of the Hessian and
a vector, allowing for a dramatic speed-up in computation of the Newton step while,
when tuned properly, returning excellent search direction compared to the first order
gradient method. A downside of the method is higher problem dependence and the
need for more careful tuning and/or preconditioning.

Using the conjugate gradient method, the key point of the implementation becomes
a fast evaluation of the product of the Hessian and a vector. Recall the expressions for
the Hessian derived in Lemma 3.2:

Hess(f) = ∇µ
[
∂2f

∂µ2
∇µ+

∂2f

∂µ∂σ
∇σ
]T

+∇σ
[
∂2f

∂σ2
∇σ +

∂2f

∂σ∂µ
∇µ
]T

+
∂f

∂σ
Jac(∇σ),

with

Jac(∇σ) =

[
0 0

0 1
σC

T
(
I − (a+Ck)(a+Ck)T

σ2

)
C

]
.

This is a very convenient form for a multiplication by a vector since the first two terms
translate to a vector-vector multiplication and the only matrix-vector multiplication
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is the one with Jac(∇σ), which can again be very fast if carried out properly. From
Eq. (3.33) or (3.35) we see that the matrix C in the above expression has dimension
nN × 1

2mnN(N − 1). Thus, denoting the vector to multiply with by v, and letting
ṽ := Cv, evaluation in the order

CT
(
ṽ − 1

σ2
(a+ Ck)[(a+ Ck)ṽ]

)

will essentially amount to two multiplications of C and one multiplication of CT by a
vector, all of them being fast since the first dimension of C is modest.

As far as the problem of special functions present in the optimization problem, prob-
ably the only solution is to use a general (nonlinear) convex solver (e.g., IPOPT [57]).
In our case we got by with a handwritten Matlab implementation of a primal-dual
solver [20] with the exact Newton step replaced by the conjugate gradient one.

The problem of nondifferentiability is probably the least severe one as it can occur
only on the rare occasion of zero variance of one of the terms of the cost. In fact it
follows from Eq. (3.33) that, as a result of causality, it cannot happen for the qTikxk
terms if the noise is not degenerate (i.e., the noise covariance matrix has full rank).
On the other hand it could occur for rTikuk terms if the optimal solution were such
that the k-th block row of K was zero, i.e., there was no recourse at time k. There
are several ways to deal with this situation. For instance, one can fix the troublesome
input to zero and optimize only over the remaining nonzero block-rows of K. This may,
however, seem a little impractical since the situation must be detected and adjusted
for online, leading to potential bursts in computation time. A more practical heuristic
approach adopted here is to smooth the cost function as at the end of the proof of
Lemma 3.2. This can be done just by replacing the 2-norm in the expression for the
standard deviation σ(η, k) in (3.33) or (3.35) by a smoothed version

||x||2 ≈
√

1

j
+
∑
i

x2
i

for some appropriately large j.

6.2. Numerical examples

Four numerical examples are presented to illustrate the methods developed in the thesis.
Numerical simulations for some results on mean-square stability can be found at the
end of Sections 4.3 and 4.4.
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6.2.1. Finite horizon

First we consider a fixed horizon stochastic control optimal problem. For the system
matrices and the noise covariance matrix we chose

A =

[
1 −0.4

0.1 1

]
, B =

[
0.6
0.4

]
, Σw = I ⊗

[
8 5
5 6

]

with wk zero-mean jointly Gaussian. We set the weighting matrices to Q = I and
R = 0.1, the input constraints to Umax = 30, the initial state to x0 = [1, −1]T and
the optimization horizon to T = 12. The function e(w) was chosen as the elementwise
saturation that saturates the disturbances at 4

√
max(diag(Σw)) = 11.31. We compared

our method (with Nc = N = T ) with the standard certainty equivalent MPC (Nc = 1,
N = T ) and with the shrinking horizon CE-MPC (Nc = 1, N(k) = T − k, k =
0, . . . , T − 1). Furthermore, we tried out the proposed method with K = 0 against
the certainty equivalent open loop control (i.e., CE-MPC with Nc = N = T ). For
the sake of completeness we tried out our method in the shrinking horizon mode with
Nc = 2, N(k) = T − k as well. The respective objective functions were evaluated using
1000 Monte Carlo runs. The results for the p-norm minimization using the upper-
bounds (3.37) are summarized in Table 6.1, which shows that our method (without
shrinking) outperforms the others by a significant margin except perhaps for SH-MPC
where the difference is smaller and, naturally, our method in the shrinking horizon
mode. On the other hand, unlike with MPC strategies, there is no need for online
optimization with our method in this setting. It is also worth noting that our method
with K = 0 (i.e., an open loop policy) slightly outperforms the certainty equivalent
open loop control, which is in contrast with the quadratic cost case where this strategy
is optimal in the class of open loop policies. Finally, we evaluate the improved version of
the bound (3.52), which yields β̃ = 4.5 · 10−5 showing that the solution found by (3.31)
is in this case basically optimal in (3.6) for p = 1. For p > 0 no conclusions about
the suboptimality of the solution can be made, although the superior performance
compared to the CE-MPC suggests that it be should very small.

Table 6.1.: Comparison of control policies over the optimization horizon T = 12.

p SH-(3.31) (3.31) SH-MPC MPC (3.31),K = 0 OL

1 85.9 90.3 98.3 120.0 140.5 144.2

1.5 73.3 76.8 85.0 102.7 115.2 118.0

2 70.5 74.1 80.1 96.0 110.9 113.7
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6.2.2. Receding horizon

Our second example compares the proposed method with the certainty equivalent MPC
in a receding horizon regime. In this example we consider the respective matrices

A =

[
1 1
−0.5 0

]
, B =

[
0
1

]
, E{wiwTj } =

[
8 5
5 6

]
δij

with wk zero-mean Gaussian and independent, where δij is the Kronecker delta. The
weighting matrices were set to Q = I and R = 0.1I, the input constraints to Umax = 10,
and the initial state to x0 = [1, −1]T . We compared our control policy with N = 12,
Nc = 4 against CE-MPC with N = 12, Nc = 1 in a receding horizon mode over the
simulation time T = 100. Again, we used the 4-sigma rule to get ε = 13.9. Figure 6.1
shows the accumulation of the cost over the simulation time, while Figure 6.2 depicts the
evolution of the state’s 2-norm-square expectation suggesting its boundedness, which
was to be expected since ρ(A) =

√
2/2 < 1. 100 Monte Carlo runs were used to evaluate

the expectations in the costs.
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Figure 6.1.: Comparison of costs over the simulation time T = 100 in a receding
horizon regime with N = 12 and Nc = 4 for our policy and Nc = 1
for CE-MPC. Final costs are 824.7 for our control scheme and 921.1 for
CE-MPC.

6.2.3. Recursive feasibility

6.2.4. Invariant set demonstration

Our third example examines the strongly feasible model predictive control algorithm of
Section 5.2. We compared both the terminal (AD-T) and the first-step (without mode 1
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Figure 6.2.: Evolution of E||x||22 under our receding horizon control policy with N =
12, Nc = 4 and CE-MPC control policy with N = 12, Nc = 1.

constraints) (AD-F) affine disturbance feedback polices against the perturbed linear
state feedback stochastic MPC (P-SMPC) of [36] and the robust affine disturbance
feedback (AD-R). The additional parameters for the P-SMPC policy are N̂ = 40 and
n∗ = 1 (see [36] for the meaning of the parameters). As the first step constraint for
AD-R we used the MSRCI set with a zero probability of violation (i.e., αj = 0 for all
j), X ′rob, which is in general not the maximum robust controlled invariant subset of X ,
Xrob (see Remark 5.7 and Figure 6.3).

We consider the system given by the matrices

A =

[
1.25 −0.15
0.25 1.02

]
, B =

[
0.14
0.12

]
,

where wk is an i.i.d. sequence obtained by truncating the standard normal distribution
at ∆ = ||wk||∞ ≤ 3. The weighting matrices were set to Q = I and R =

√
1.1 and

the input constraints to Umax = 250. We chose a quadratic (p = 2) cost function J ,
which can be evaluated exactly for all of the policies considered. The constraint set X
is given by two constraints gT1 x ≤ h1 and gT2 x ≤ h2 with g1 = [−0.41, 1]T , h1 = 31 and
g2 = [−0.7593, 1]T , h2 = 43.494, and the allowed probability of violation α1 = α2 = 0.1.
All of the policies were applied in a receding horizon fashion with the prediction horizon
N = 8. We chose Ks = [1.7303, −13.1020] as the mode 2 controller for AD-T as well as
the base policy for P-SMPC. Note that the LQ optimal state feedback cannot be used in
this case since then XKs

r turns out to be empty and as a consequence both policies are
globally infeasible. For the sake of comparison we also included the LQ-optimal policy
itself. The initial state x0 = [13.34, 42.46]T was chosen to lie on the boundary of X ′rob.
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All of the (invariant) sets considered and the initial state are depicted in Figure 6.3.
Performance and constraint violation was evaluated over 500 Monte Carlo runs. The

accumulation of the cost over the simulation horizon T = 20 is depicted in Figure 6.4
and the final costs are listed in Table 6.2. The two proposed strongly feasible MPC
formulations outperform the P-SMPC and AD-R policies and, naturally, perform worse
than the LQ-optimal policy. We also observe tight satisfaction of the chance constraint
at the time k = 1 with our policies; the constraint violation is 9.6 % for both, which
is close, but within, the prescribed 10 % limit. The P-SMPC and AD-R policies are
more conservative here, exhibiting zero violation. The LQ-optimal control, in contrast,
violated the constraint in 89.0 % of the 500 runs performed. Violations at other time
steps were zero or negligible for all investigated policies.

x1

x2

x0

@
@R

Figure 6.3.: Constraint set X (below solid black line), feasible set Xf (below solid red
line), MSRCI set X ∗rc (light blue interior), linear state-feedback positively
invariant set XKsr (dark blue interior), maximum robust controlled invari-
ant set Xrob (dashed yellow boundary), zero violation (αj = 0) MSRCI
set X ′rob (blue solid boundary). Note that X ∗rc 6⊂ X and Xrob 6= X ′rob, but
Xrob ⊂ X ′rob ⊂ X ∗rc ⊂ Xf and Xrob ⊂ X .
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Figure 6.4.: Comparison of costs over the simulation time T = 20 for the five investi-
gated strategies.

Table 6.2.: Comparison of control policies over the optimization horizon T = 20. First
row: percentage increase over the LQ-optimal policy. Second row: the
probability of violating the state constraints at time one. The final cost of
the LQ-optimal policy, JLQ, is 1.6795 · 105.

Policy LQ AD-F AD-T AD-R P-SMPC

100
J−JLQ

JLQ
0 2.132 2.298 9.277 9.431

P (gT1 x1 > h1) 0.89 0.096 0.096 0 0

6.2.5. Long-run constraint violations

In the previous example, there are no constraint violations when stationarity is reached.
The next example shows that it is possible to achieve repeated constraint violations
in stationarity, and thus to obtain significant performance improvement compared to
the robust MPC by fully exploiting the probabilistic nature of constraints over a long
period of time. We consider the system

xk+1 = Axk +Buk + wk =

[
1 0
1 1

]
xk +

[
1
2

]
uk + wk,
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with the noise sequence wk having the standard normal distribution truncated at ∆ = 3.
The initial state is x0 = [5, 5]T . The only constraint on the state is P (x2 ≥ 0) ≥ 1−α,
whereas the control authority is bounded by Umax = 12. Simulations were carried out
for four values of the allowed probability of constraint violation: α = 0.1, α = 0.2,
α = 0.3 and α = 0.4. We compared the first-step affine disturbance feedback (AD-F)
with the robust affine disturbance feedback policy (AD-R) and the LQ optimal policy.
The prediction and control horizons were N = 8 and Nc = 1 for both disturbance
feedback policies.

Instead of Monte Carlo analysis, we examined constraint violations over a single,
but very long, trajectory. Simulation results are depicted in Figures 6.5, 6.6 and 6.7.
Table 6.3 then summarizes the results. For all four values of α, the closed-loop trajec-
tory under the first-step affine disturbance feedback tightly satisfies the probabilistic
constraint, and as a result achieves a significant performance improvement over the
robust affine disturbance feedback policy. The LQ optimal policy, which is oblivious
to all constraints, naturally outperforms both policies, but violates the probabilistic
constraint substantially.

Table 6.3.: Comparison of control policies over the optimization horizon T = 10000

policy LQ α = 0.4 α = 0.3 α = 0.2 α = 0.1 Robust

J/JLQ 1 1.07 1.29 1.73 2.68 10.23

#violations 4920 3916 2942 1983 992 0
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Figure 6.5.: Simulation results over a time period T = 1000. Left: cost functions.
Right: sample path of the x2 for LQ and robust control policies.
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Figure 6.6.: Simulation results over a time period T = 1000. Left: sample path of x2

for α = 0.4. Right: sample path of x2 for α = 0.3.
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Figure 6.7.: Simulation results over a time period T = 1000. Left: sample path of x2

for α = 0.2. Right: sample path of x2 for α = 0.1.
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7. Conclusion

In this thesis we investigated three areas of stochastic optimal control and constrained
model predictive control of linear systems with additive noise and bounded control
inputs.

`p stochastic optimal control First, we dealt with the expectation of the p-norm
stochastic optimal control problem with perfect as well as imperfect state information.
For both problems we developed an approximate solution technique ensuring bounded
control inputs in the presence of Gaussian disturbances. The approximation technique
leads to a tractable convex optimization problem without resorting to sampling tech-
niques, thus keeping acceptable computational requirements. Moreover, we constructed
a suboptimality bound of our method in a certain class of nonlinear feedback control
policies.

Stability of linear stochastic systems Second, we discussed mean-square stabilizabil-
ity of linear stochastic systems with bounded control authority. To a large extent, the
problem has already been solved in recent years, and the remaining open problems
of stabilization of marginally unstable systems or the existence of a stabilizing static
state-feedback policy for the marginally stable case seems to be far from trivial. Nev-
ertheless, we developed simplified proofs of existing results, and proved mean-square
stabilizability of positive (or negative) parts of marginally unstable systems. We also
proved the existence of a mean-square stabilizing Markov policy for marginally stable
systems. The question of mean-square stabilizability of marginally unstable systems
remains open, and the answer (whether positive or negative) will most likely require
different techniques than those of this text, at least in dimensions greater than two.

Recursive feasibility We developed a systematic approach to ensure recursive feasi-
bility of a set of probabilistic constraints under affine as well as nonlinear disturbance
feedback policies. The first approach employs the well established notion of terminal
constraints, whereas the second one takes advantage of the more recently developed
first-step constraint. Both of them turn out to have direct analogies in a stochastic
environment carrying over their advantages and disadvantages. In particular the first
approach is policy-dependent and hence not amenable to imposing additional struc-
tural constraints on the feedback matrix. In contrast, the second approach is policy-
independent and results in the largest feasible set amongst all admissible policies. There
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is still a certain degree of conservatism since the recursive feasibility is enforced via
one-step conditional probabilities. Future research should focus on reducing this con-
servatism by allowing for larger excursions outside the constraint set with predefined
(low) probability.
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List of Symbols

2S Power set of a set S, page 22

bdiag(·, . . . , ·) Block diagonal matrix composed of the arguments, page 25

Nji Set of consecutive integers {i, . . . , j}, page 35

E Expectation of a random variable, page 5

E(· | Y) Conditional expectation given Y, page 6

Eπ Expectation under a policy π, page 40

ε Bound on the nonlinear function e(·), page 16

Hess(·) Hessian matrix of a twice differentiable function, page 17

1A Indicator function of a set A, page 41

Jac(·) Jacobian matrix of a differentiable function, page 17

‖·‖p p-norm of a column vector or induced p-norm of a matrix, page 20

N0 The set of nonnegative integers, page 31

R The set of real numbers, page 15

N (µ,Σ) Normal distribution with the expectation µ and covariance matrix Σ,
page 17

µ⊗ ν Product measure of measures µ and ν, page 22

∇(·) Gradient of a differentiable function, page 17

1 Column vector of ones, page 62

Σv Joint covariance matrix of the measurement noise along the prediction
horizon, page 25

Σw Joint covariance matrix of the process noise along the prediction hori-
zon, page 15
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tr(·) Trace of a matrix, page 33

vec(·) Vectorization of a matrix, page 21

A⊗B Kronecker product of matrices A and B, page 21

l Output dimension, page 25

m Input dimension, page 15

N Optimization or prediction horizon, page 15

n State-space dimension, page 15

P Probability measure, page 22

P π Probability measure under a policy π, page 39

x+ Positive part of a real number x, page 45

mod Modulo operation, page 42
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A. Kummer’s confluent hypergeometric
function

A brief description of some of the Kummer’s confluent hypergeometric function com-
putational methods is given here. Only the methods 1 and 2 of the article [38] are
outlined since only these were employed in the framework of this thesis. Kummer’s
confluent hypergeometric function is defined as

M(a, b, x) =
∞∑
i=0

(a)i
(b)i

xi

i!
, (A.1)

where the rising factorial (a)i is given by

(a)i =
i−1∏
k=0

(a+ k).

In the algorithms used in the thesis, the first two arguments a and b are constant
and small in magnitude, and x is always negative. Then the analysis of the article [38]
shows that it is effective to use the (truncated) defining series (A.1) for small x (approx.
|x| < 20) and the asymptotic expansion

M(a, b, x) ≈ Γ(b)(−x)−a

Γ(b− a)

N∑
i=0

(1 + a− b)i(a)i
i!(−x)i

(A.2)

for x < −20.
Both of these approximations can be evaluated recursively, usually requiring only

several terms of the respective sums to get a good enough approximation. Furthermore,
depending on p only, the values of Γ(b) and Γ(b−a) can be precomputed. The maximum
approximation error for M1, . . . ,M4 in (3.19) is typically on the order of 10−8 around
x = −20 and much smaller otherwise. The computation time proved to be negligible
in the context of the overall algorithm.
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B. Construction of controlled invariant sets

A brief description of most common algorithms for construction of controlled invariant
sets is given here. Given a system

xk+1 = Axk +Buk + wk

and a polyhedral set X , we seek the maximum robust controlled invariant subset, i.e.,
the largest set X ∗rc ⊂ X such that

∀x ∈ X ∗rc ∃u ∈ U s.t. : Ax+Bu+ w ∈ X ∗rc ∀w ∈ W, (B.1)

where U is a polyhedral input constraint set.
The first algorithm constructs a nested sequence of supersets of X ∗rc as follows [9].

Set X0 := X and define recursively for i ≥ 1

Xi := {x ∈ Xi−1 | ∃u ∈ U s.t. Ax+Bu+ w ∈ Xi−1 ∀w ∈ W}.

Then clearly Xi+1 ⊂ Xi for all i ≥ 0 and

X ∗rc =

∞⋂
i=0

Xi.

In particular X ∗rc = Xi whenever Xi = Xi+1, in which case X ∗rc is polyhedral.
The second algorithm on the other hand starts from any robust controlled invariant

subset of X and constructs an increasing sequence of subsets of X ∗rc [27]. If possible, the
initial invariant set can be taken as the invariant set with respect to a stabilizing linear
state feedback. Thus we assume that a robust controlled invariant subset Y0 ⊂ X is on
hand and define recursively for i ≥ 1

Yi := {x ∈ X | ∃u ∈ U s.t. Ax+Bu+ w ∈ Yi−1 ∀w ∈ W}.

Due to the invariance of Y0, each set Yi is also invariant and Yi ⊂ Yi+1 for all i ≥ 0.
Hence1

X ∗rc =
∞⋃
i=0

Yi,

1To be precise, the closure of the union must be taken to obtain X ∗rc if Yi+1 6= Yi for all i.
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and X ∗rc = Yi whenever Yi = Yi+1.
Main advantage of the second algorithm is the fact that it produces a robust con-

trolled invariant set at each step, which is not the case for the first algorithm.
When the maximum set is not finitely determined or its complexity is prohibitive,

the first algorithm can serve as a stopping criterion for the second one. For all i we
have

Yi ⊂ X ∗rc ⊂ Xi,
and thus, for instance, the Hausdorff distance between Xi and Yi

ρH(Xi,Yi) = sup
x∈Xi

inf
y∈Yi
||x− y||2

can be used as a basis for a stopping criterion [27].
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