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Abstract

The thesis describes the development of a system for automatic aircraft observation
and recording using ADS-B surveillance system. The system process ADS-B messages
acquired from aircrafts using suitable receiver and plots them on the map, allowing
user to choice the plane he would like to capture through the built-in touchscreen.
Furthermore it determines its own position on the Earth with GPS and its magnetic
heading required for successful aircraft tracking. After selecting the aircraft desired
to watch, servomotors try to smoothly and precisely move the camera so the object is
recorder to the video file. The system is powered by batteries and is assembled to the
mobile plastic board capable of mounting to a tripod—to allow the system be used on
any place.
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Introduction

Nowadays, planespotting is one of a many hobbies favoured by aviation enthusi-
atists. They are coming to airports with desire to watch aircrafts departing and landing.
Eventually, they are equipped with cameras and take photos and videos of aircrafts,
which later share with the aviation community. In the next section my commentary
about current possibilities for plane spotters can be found, including my inspiration for
the thesis.

My task is to build a device that enhances spotter’s job. The system tracks nearby
aircrafts using Automatic Dependent Surveillance - Broadcast (ADS-B) technology, the
most precise surveillance system for civil Air Trafic Control (ATC). It gives operator a
choice which airplane he would like to capture on the virtual radar screen with displayed
aircrafts, automatically points the camera towards the target, and records the video.
The quality of capture should be remarkable, so the spotter could later process images
and share them with others. There are also more possibilities of application—with the
internet connection, air traffic sharing sites could be feeded with the received data, or
even the view of a camera could be provided for the whole community by streaming a
video directly on the internet.

The work is divided into two major parts. Firstly, possibilities of physical comple-
tion must be surveyed. I must decide which is the best solution of individual subprob-
lems for me to make the system correctly functioning. These include receiving ADS-B
packets from aircrafts, determining my own position, choosing a computational device,
its power supply, and motorized camera holder. Even during a hardware picking, I
have to bear in a mind how is the part operated from the software’s side. In the end,
all components should be assembled onto a mobile platform.

Secondly, the software responsible for the aircraft observation must be implemented.
It should be able to quickly process received aircraft’s data and data from sensors, plot
aircrafts on the map, and smoothly move the camera towards chosen airplane. The
precision of aircraft tracking with ADS-B is also analyzed.

Finally, the system has been tested near the Prague’s airport. Its performance and
results are discussed in the third chapter with possibilities for further improvement.

Inspiration

My interest in the aviation led me to survey the internet for Do It Yourself
(DIY) projects related to the aviation. The first project that caught my attention
was the creation of a cheap ADS-B radar at home (project details can be found
on http://www.rtl-sdr.com/adsb-aircraft-radar-with-rtl-sdr/). That sounds
like amazing thing having own aircraft tracker.

The question is what could I do with all positional information about aircrafts.
Many people support air traffic sharing sites with their captured data and thanks to
them now almost everybody can watch live air traffic around their cities. Most popular
ones are https://www.flightradar24.com/ and https://flightaware.com/live/.
Watching airplanes fly can be enhanced with listening ATC communication that is also
available to everybody on the website http://www.liveatc.net/.

Furthermore, there are various nice projects providing live video from air-
port’s runways allowing people at home observating aircrafts during take
offs and landings. The best view of Prague’s Vaclav Havel airport is on
http://slowtv.playtvak.cz/planespotting-0pr-/planespotting.aspx?c=

A150624_164934_planespotting_cat. The great idea was combination of re-
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ceiving ADS-B messages and making video of airplanes, by Simon Aubury—
his project Pi Plane was recording flights over his house in Australia and
streaming video on the Internet. Details of the project are on the website
http://simonaubury.com/the-pi-plane-project1-introduction/ and its de-
sign is in the Figure 1.

I have found this project very interesting and immediately I was thinking how can I
improve the idea—I do not live by runway, so I want the project to be mobile. Aircrafts
are pretty far away thus better camera’s zoom is required. I want the device to behave
like radar screen—all captured information should be displayed including aircrafts. And
the camera should follow the plane smoothly to improve the quality of the video. Also
combination of the live view from the runway and precise aircraft tracking sounds like
it could take the viewer’s experience to the new level. These thoughts encouraged me
to do this bachelor thesis.

Figure 1: Simon Aubury’s Pi Plane project.
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1. Hardware implementation

In this chapter, construction of the system is analyzed with considering many as-
pects during the solution. The system consists from more individual components,
connected together in the software. Illustrated in the Figure 1.1, I have divided the
problem into logical blocks each having a different task. The brief description of these
parts is following:

• a core of the project, some kind of a computer, is required for communicating
with sensors and controlling actuators,

• an ADS-B receiver is the essential part for tracking aircrafts,

• to correctly rotate the camera my position and heading have to be known,

• a platform that is capable of moving camera in two axes—called Pan/Tilt,

• a camera itself with lens,

• a way to interact with the system, and

• a power supply to make the system mobile.

Figure 1.1: The scheme of system’s components.

1.1 ADS-B Receiver

To begin with, I have to decide how I will receive and decode ADS-B packets and
the rest of the system will adjust to such a choice. But firstly let me take a look at a
brief history of surveillance systems, resulting in an invention of the ADS-B technology.

History of surveillance systems

The need of airplane tracking for military and civil purposes resulted in a creation
of few technologies that are capable of doing this job. The first one now called Primary
Surveillance Radar (PSR), uses technology invented during Second World War. The
ground radar’s transmitter sends electromagnetic waves that are reflected from objects

5



and received by radar’s receiver. The distance between the radar and the object is
calculated using the time-of-flight principle. Radar’s antenna also continously rotates,
so the object bearing could be known. This system is independent from the object’s
behavior and can detect anything what reliably reflects electromagnetic waves. Metal
airplane’s frames have very good reflective properties making such system very effi-
cient. However, both military and civil controllers would like to know more details
about aircraft, not only that there is one—for example identification, altitude, veloc-
ity. Although some information radars could find out themselves, it is much more
complicated. This led to invention of Secondary Surveillance Radar (SSR).

SSR is basically PSR with additional device onboard called transponder that sends
additional aircraft information to SSR after ground radar’s pulse detection. That
means the transponder has to have all electronics for signal modulation and demodula-
tion. There are more ways how could transponder react to a signal detection from the
ground’s radar. This process is called interrogation and includes Mode A and Mode
C interrogation types. Mode A sends 4-digit octal aircraft identification code—known
as a Squawk; aimed to recognize aircrafts on the radar screen. Mode C is responsi-
ble for transmitting pressure-altitude of the aircraft. Later, Mode S transponder was
developed with the 24-bit identification address (but still capable of Mode A and C in-
terrogation), now known as International Civil Aviation Organization (ICAO) address
that is unique for every transponder in the world. Furthermore Mode S has brought
additional features that make use of the ability to communicate with SSR and other
aircrafts, like Traffic Collision Avoidance System (TCAS) to provide more safety for
increasing volume of air traffic. These valuable information are taken from the article
[33].

Finally, ADS-B has been developed, greatly improving air traffic controlling, surveil-
lance coverage, and safety. It uses modified Mode S transponder that no longer trans-
mits data after ground radar’s pulse detection, but does it automatically—‘Automatic’.
The necessary navigational information, as position and velocity aircraft gathers from
Global Positioning System (GPS) and provides to ground stations and other aircrafts—
‘Surveillance’. From their point of view these data are dependent on functioning of
the aircraft’s systems and no longer on ground station’s equipment—that makes ‘De-
pendent’ in the system name. Transponder broadcasts messages twice a second—
‘Broadcast’— at frequency 1090 MHz. Messages are neither encrypted nor authenti-
cated, thus the content could be read by anybody with a proper receiver. Without this
possibility my thesis could not be done. However, ATC ground stations never rely only
on a one source of the data. There is always SSR, or PSR, to authentificate position
of aircrafts in case of misuse.

Advantages of this system are for instance much less operational cost compared
to complicated radar systems and, as I have noticed, improved air traffic controlling.
ADS-B provides more accurate aircraft positioning, so the spacings between aircrafts
could be smaller resulting in a better traffic flow, shorter approaches, safer parallel
landings, and other air traffic enhancements. In last years ADS-B has been implemented
by aviation organizations all over the world, as papers from [2] or [3] indicates.

Receiver choice

Radio receiver that can tune to frequency 1090 MHz with proper Mode S demodu-
lation hardware—Mode S downlink uses Pulse Position Modulation (PPM)
[9]—is required to succesfully receive and decode ADS-B messages. There are many
options on the market how to obtain such a device.

Flightradar24 and FlightAware, largest applications for live air tracking, send re-
ceivers built by them for free to people that can improve their air traffic coverage [11].
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That is unfortunately not my case, because Prague is already greatly covered.

A second option is to buy a receiver from a company that specialises in flight
tracking. Favourite ones are for example Kinetic Avionics SBS-3, or AirNav RadarBox.
These devices come with a software that already acts as a real time virtual radar screen,
which I certainly do not require. The biggest disadvantage of these products is their
price—they often starts from 600e.

A third option is to make use of a device called Software Defined Radio (SDR), pop-
ular wide band radio scanner nowadays. The difference from classic radio is that the
signal processing has moved from a hardware layer to a software layer. That means the
signal modulation and demodulation is not limited by electronics in the receiver, but is
implemented in the software [26]. There are many SDR on the market, however, excep-
tional idea was turning a USB DVB-T receiver with Realtek RTL2832U chipset into a
SDR. This has been done by finding out, that raw data captured by receiver could be
directly accessed and demodulated with modified driver. This dongle—receiver with
modified driver—is called RTL-SDR and is the cheapiest, but very sufficient option cur-
rently on the market for wide band radio receiving, including ADS-B listening. Thanks
to its convenient price around 20e and a comparable performance with advanced re-
ceivers, it has been a choice for my project. Further information and applications could
be find on the website of RTL-SDR [26].

My RTL-SDR contains tuner Rafael Micro R820T with frequency range 24 MHz–
1766 MHz. For the communication with a computer it uses USB and requires also
special driver. Reported power consumption is circa 300 mA. In the Figure 1.2 receiver’s
design is shown.

Figure 1.2: RTL-SDR receiver.1

ADS-B messages receiving and decoding software

Mode S decoder compatible with RTL-SDR is required to acquire ADS-B messages.
The choice in this case is simplier, because there is a software specifically designed for

1Picture taken from http://www.dozimetry.eu/product.php?id_product=67.
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this task—dump1090 [4]. It is minimalistic, robust, and fast decoder with very de-
cent performance. Besides many capabilities of dump1090, like dynamically displaying
captured aircraft’s data to console or plotting aircrafts on the webserver’s map, the
function I am using is listening to TCP port, where software serves all decoded data.
One possibility is to receive raw, undecoded packets and write program that will take
care of all translations to meaningful data. Second one is to receive already decoded
data in a special format, which I will discuss later. Now I will try to manually de-
code ADS-B message for better understanding of the format with instructions from the
article published by [29].

Raw message format

Generally, Mode S message could be either 56 or 112 bits long, but ADS-B has
always 112 bits. Figure 1.3 shows the composition of an ADS-B message.

• Downlink Format (DF) [bits 0–4] tells us the type of the message. I am looking for
ADS-B message type (DF=17), but it could be for example Mode S transponder
reply, or air-to-air message within TCAS.

• Message Subtype (CA) [bits 5–7] has no role in ADS-B messages.

• ICAO [bits 8–31] is the unique transponder idenitification number.

• DATA [bits 32–87] frame contains necessary data.

• PARITY [bits 88–111] bits serve to check if the message passed through a com-
munication channel with no errors.

Message DF CA ICAO DATA PARITY

Figure 1.3: ADS-B message content.

One of messages I have captured with RTL-SDR is

0x8D4064422015A672CCA320BB799F.

The message is decomposed in the following Table 1.1. With DF=17 the ADS-B type

Table 1.1: Decoded ADS-B message.

DF CA ICAO TC DATA PARITY
10001 101 0x406442 00100 0x15A672CCA320 0xBB799F

17 5 - 4 - -

of the message is confirmed. A Type Code (TC) indicates what information is in the
DATA frame. With TC=4 an aircraft identification—callsign is contained in the packet.
Let us have a look, how callsign is coded:

HEX: 0x15A672CCA320

BIN: 000101 011010 011001 110010 110011 001010 001100 100000

DEC: 5 26 25 50 51 10 12 32

E Z Y 2 3 J L -

To translate a decimal value to a character, a special look-up table has to be used:
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

32 48 49 50 51 52 53 54 55 56 57

_ 0 1 2 3 4 5 6 7 8 9

The decoded callsign is EZY23JL. In a commercial aviation, callsign is very often
same as the flight number, which is composed from ICAO code of the airline EZY and
the flight identificator 23JL. It can give us a clue what an airline or a route it is, but
either can not. For that purpose I will have to find a way how to obtain additional
information in my software, which are not part of ADS-B surveillance. By the way,
EZY is ICAO code for the easyJet airline.

BaseStation message format

BaseStation is a software developed by Kinetic Avionics, manufacturer of popular
Mode S receivers including one I have mentioned before. Kinetic receiver streams data
in the BaseStation format and it quite became as standard for various applications
because of its popularity, and dump1090 is no exclusion. BaseStation stream from
dump1090 could look like this:

MSG,1,111,11111,4CA7B6,111111,2016/04/25,21:21:54.474,

2016/04/25,21:21:54.469,RYR34PW ,,,,,,,,,,,0

-------------------------------------------------------

MSG,3,111,11111,4BD149,111111,2016/04/25,21:23:08.459,

2016/04/25,21:23:08.458,,40000,,,49.31177,14.31828,,,,,,0

-------------------------------------------------------

MSG,4,111,11111,4BD149,111111,2016/04/25,21:23:08.464,

2016/04/25,21:23:08.459,,,435,309,,,0,,,,,0

-------------------------------------------------------

MSG,5,111,11111,3C4DCD,111111,2016/04/25,21:23:08.473,

2016/04/25,21:23:08.461,,6025,,,,,,,0,,0,0

-------------------------------------------------------

MSG,6,111,11111,3C4DCD,111111,2016/04/25,21:23:08.627,

2016/04/25,21:23:08.594,,,,,,,,1000,0,0,0,0

-------------------------------------------------------

MSG,7,111,11111,3C4DCD,111111,2016/04/25,21:23:08.687,

2016/04/25,21:23:08.660,,6000,,,,,,,,,,0

-------------------------------------------------------

MSG,8,111,11111,4BD149,111111,2016/04/25,21:23:08.859,

2016/04/25,21:23:08.852,,,,,,,,,,,,0

Every message is one of eight types, depends on what information message brings.
Description of each message type is in the table 1.2. Transponder’s ICAO address is of
course part of each message for aircraft identification and the date and the time when
message was generated and received. Note that not only ADS-B messages are received,
but also replies to SSR. There are also some ‘111’ fields in messages where should
be additional information that BaseStation software is working with, but they are not
related with aircrafts. Following aircraft attributes could be obtained from BaseStation
messages:

• Mode S hexadecimal identification number—ICAO address,

• callsign (CS),

• Mode C pressure altitude (ALT) - height is calculated relative to the standardized
air pressure at the Mean Sea Level (MSL), which is 1013.25 hPa. Resolution 25 ft,
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Table 1.2: Description of individual messages in the BaseStation format.

MSG Type DF Surveillance Description Content

1 17 ADS-B Identification CS, GND
2 17 ADS-B Surface Position GS, TRK, LAT, LON, GND
3 17 ADS-B Airborne Position ALT, LAT, LON, GND
4 17 ADS-B Airborne Velocity GS, TRK, VR, GND
5 4 Mode C Pressure Altitude ALT, ALRT, IDENT, GND
6 5 Mode A Squawk Code SQK, FLAGS
7 16 Mode S TCAS ALT, GND
8 11 Mode S All Call Reply GND

• speed over the ground (GS),

• track of the aircraft (TRK)—not heading; derived from a latitude and a longitude
change in a time,

• latitude gathered from onboard GPS (LAT),

• longitude gathered from onboard GPS (LON),

• vertical rate (VR)—resolution 64 ft/s,

• Mode A assigned Squawk code (SQK)—triggered only by SSR interrogation. If
aircraft is out of a range from any ground radar’s coverage SQK can not be
received,

• FLAGS indicating squawk has been changed (ALRT), emergency state has been
deployed (EMER), transponder IDENT has been activated (serves for ATC to
match aircraft on the SSR radar screen), and ground switch status (GND)—
indicating whether aircraft is on the ground or not.

I have two options how to decode received data by Mode S receiver. My choice is
definitely BaseStation format, because of much less decoding. Instructions for under-
standing this format were taken from [7], supported by [35].

1.2 Position and heading determination

In this section I will try to describe why and how I can determine system’s position
and heading required for a successful aircraft targeting.

Position

The system’s position is inevitable to know because of simple reason—angles that
camera is required to move are calculated from observer’s and target’s coordinations
(latitude and longitude). Most available technique for getting our location on the Earth,
which we use every day, is GPS. I will describe how GPS works in the next subsection,
but this information is not required for a correct position receiving and is here only
because of my interest in this system.
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GPS principle

GPS is the utility that provides navigational, positional, and timing services for
users fully operated by the United States Air Force. It is the fundamental of my
application, because both aircrafts use GPS for very precise positioning and the system.

GPS is the constellation of 24 satellites (also called by GPS terminology Space
Vehicle (SV)) with four on an one of a six equally-spaced orbital planes transmitting
radio signals to civil and military users 24 hours a day. Their arrangement ensures
that every user on the planet will always have signal from at least for SVs, which is the
minimum for a position determination. Satellite’s altitude is approximately 20 200 km
with orbital period 12 hrs. In case of a failure there are additional seven back-up SVs
on the Earth’s orbit. With high-quality GPS receiver the user could be located with a
precision better than 3.5 m [13].

GPS SV use two channels for a navigational communication with devices on the
ground—L1 modulated with a Pseduo-random Noise (PRN) Course/Acquisition (C/A)
and Precise (P) code carried by a wave with the frequency 1575.42 MHz and L2 mod-
ulated with just the P code on the frequency 1227.60 MHz. Civilian devices use
only L1 channel—modulating binary codes with Binary Phase Shift Keying (BPSK)
technique—with the C/A coding while military users use both channels with the P
coding that could be even encrypted to Y code. P code is more complex and have
some enhancements, hence the navigation for an army is a little bit better and more
immune to jamming. However civilian GPS is always being modernized and eventually
the precision will be equal. That is happening because of another two signal transmit-
ted that has been currently implemented in new SVs—L2C, which uses L2 channel for
civil purposes and L5, which is at the frequency 1176.45 MHz and serves as a civilian
Safety-of-Life signal.

The C/A code is unique for all SVs and is as much uncorellated as possible with
other PRN codes. These codes must be known to every GPS receiver—it must cor-
rectly distinguish different satellites. Firstly, 1023 bit C/A code is transmitted by every
SV every milisecond. Secondly, Navigational Messages (NM), low frequency signals
modulated to both L1 and L2 carriers carry all inevitable information for receiver to
determine position of SVs (orbits data are called Ephemeris), time error corrections
(for example caused by ionosphere) and, very important, a precise GPS time of mes-
sage transmission. If receiver could have synchronized clock with those on SVs, the
exact location on the Earth could be known by communication with only three trans-
mitters using trilateration method. Distances from individual SVs would be calculated
by simple formula d = c∆t, where c is the speed of light and ∆t is the time difference
between the message transmission and the reception. Yet boards inside SVs are driven
by an extremely precise atomic clocks and it would be nonsense if every GPS receiver
had expensive oscillators too, so there is always time shift and the distance calculation
have no sense then. The solution is communicating with one more SV that corrects the
time measurement inside receiver, as course from [10] says. Mathematically receiver
solves following four equations with four unknows to get the absolute position of ground
device [32]:

d1 = c(tr1 − tt1 − tc) =
√

(x1 − x)2 + (y1 − y)2 + (z1 − z)2

d2 = c(tr2 − tt2 − tc) =
√

(x2 − x)2 + (y2 − y)2 + (z2 − z)2

d3 = c(tr3 − tt3 − tc) =
√

(x3 − x)2 + (y3 − y)2 + (z3 − z)2

d4 = c(tr4 − tt4 − tc) =
√

(x4 − x)2 + (y4 − y)2 + (z4 − z)2,

where c is the speed of light,
di are true distances from SVs,
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tti are GPS times when messages were transmitted (they are part of NM),
tri are receiver’s inaccurate times when signals were received,
(xi, yi, zi) are SV’s coordinates in the time of transmission (part of NM),
i = 1, 2, 3, 4 represents each (SV),
(x, y, z) are receiver’s uknown coordinates, and
tc is the receiver’s clock time delay.

Furthermore GPS could be considered as the exact time provider everywhere on
the globe. Still the GPS time is quite different from ours, Coordinated Universal
Time (UTC). GPS time was zero on 06.01.1980 and since then it is counting weeks and
seconds. By now there is 17 seconds diffrence from UTC time because of corrections of
rotational movement of the Earth, as can be seen in the Table 1.3 [19].

Table 1.3: Comparison of current GPS and UTC time.

UTC 2016-05-01 09:39:36 Sunday day 122 timezone UTC+2
GPS 2016-05-01 09:39:53 week 1895 34793 s cycle 1 week 0871 day 0

GPS receiver

The receiver I am looking for should fulfil requirement for being low-power, small,
and precise. There are more modules commonly used by DIY community. The first
category are modules designed to be placed especially on some brand of microcomputers
offering also few enhancements. The second category are standalone GPS modules
suitable for any kind of computer—that seems as a better idea for my project as I do
not exactly know what computer model I will acquire. Interesting receivers are selled
by popular DIY manufacturer Adafruit with great quality but often for twice as much
money as Chinese manufacturer’s modules with comparable quality. The one I have
found contains chip u-blox NEO-6M, versatile high performance position engine with a
low power consumption placed on a miniature PCB with a passive ceramic antenna and
an Universal Asynchronous Receiver/Transmitter (UART) communication interface.
Package, shown in the Figure 1.4, is compatible with both 3.3/5 V level suitable for
most microcomputer systems and costs just 15e [1].

Figure 1.4: GPS module.2

Individual messages from GPS receiver follow the National Marine Electronics As-
sociation (NMEA) 0183 standard [8]. The message stream from GPS receiver could

2Picture taken from [1].
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look like this:

$GPGGA,092750.000,5321.6802,N,00630.3372,W,1,8,1.03,61.7,M,55.2,M,,*76

$GPGSA,A,3,10,07,05,02,29,04,08,13,,,,,1.72,1.03,1.38*0A

$GPGSV,3,1,11,10,63,137,17,07,61,098,15,05,59,290,20,08,54,157,30*70

$GPGSV,3,2,11,02,39,223,19,13,28,070,17,26,23,252,,04,14,186,14*79

$GPGSV,3,3,11,29,09,301,24,16,09,020,,36,,,*76

$GPRMC,092750.000,A,5321.6802,N,00630.3372,W,0.02,31.66,280511,,,A*43

$GPGGA,092751.000,5321.6802,N,00630.3371,W,1,8,1.03,61.7,M,55.3,M,,*75

For monitoring GPS receivers there is perfect application—GPS Daemon (GPSD) [12].
It translates navigational data in NMEA format from the sensor to more understandable
form and outputs them through TCP socket.

I have made some measurements to test the GPS performance. Although manu-
facturer promises precision up to 3 meters—I guess with high quality antenna that I
surely do not have—I expect worse results. In the Figure 1.5 a) is a screen shot of the
GPSD test application results. The most important for me is the latitude/longitude
and altitude information. The error calculated by GPSD seems very pesimistic, because
with such a mistake GPS seems useless. But if I compare my real position when I took
the measurement with the result position, as shown in the picture 1.5 b) the distance
between these two points is only 9.3 m. Such an offset should not disrupt aircraft track-
ing and if it do so using more quality active antenna will fix all imperfections. Another
interesting value is the altitude. Again the error ±38 m is little bit high, but in fact
when I looked to altitude maps I have found the altitude difference is only 1 m.

(a) Captured navigational data (b) Position precision comparison

Figure 1.5: GPS test results.

From the altitude and position difference could the climb, speed, and heading be
calculated. Even when my receiver was at stable position latitude and longitude values
were always changing in last two decimal place (fifth decimal place accuracy is 1.1 m
and sixth 0.11 m). It lead to misreadings that receiver is moving and climbing.

One more thing the GPS can bring to my system is precise time measurement. A
possible application is to put a time trace into videos.
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Heading

Having known the latitude, longitude, and altitude of the observer and the aircraft,
a pan and a tilt angle to point the camera towards aircraft could be calculated. The pan
angle is the angle between camera’s current and initial heading (similar to aircraft’s
yaw). The tilt angle is the angle indicating how camera’s nose is lifted up or down
(similar to aircraft’s pitch) [21].

If the camera is pointing exactly to the North, necessary pan angle will be the
bearing—the angle between the object and the direction toward the North relative to
the observer—of the aircraft. For calculating pitch angle the altitude difference and the
distance between these two points is required. Nevertheless, camera’s initial heading—
the angle where camera is pointing relative to the North—would only hardly be the
exact geographical north pole. That is why the initial heading of the system must be
known and the final pan angle appear to be the difference between desired heading and
system’s heading. In other words relative bearing of the aircraft—the angle between
object’s bearing and my heading—is how camera should pan. These angles were nicely
explained in [30] on the StackExchange and I illustrated them in the Figure 1.6:

30

12

06

24

(lat2,lon2)

(lat1,lon1)

α1
α2

Figure 1.6: Illustration of a heading, bearing, and pan angle.

• aircraft’s heading is 300 ◦,

• original system’s heading is α1,

• the bearing of aircraft from the system’s view is α2,

• relative bearing is α2−α1, which is the same angle as is required from the camera
to pan to capture aircraft.

A navigational device that shows direction relative to the magnetic North is a well-
known compass. Its electronic variant is called magnetometer. Attention must be
payed to distinct heading and magnetic heading.

Earth’s rotational axis defines geographic North and South, thus the heading indi-
cates angle relative to the this (true) North. Nextly, Earth’s magnetic field could be
approximated as the field of a simple bar magnet with the north pole near the true
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south pole. However there is an angle discrepancy circa 11.5 ◦ between the approxi-
mated bar and the rotational axis. The angle is called magnetic declination, is different
everywhere on the globe and must be applied as a correction when using magnetic
sensor for navigation. The value of declination in Prague is circa 4 ◦ E as the paper
generated by National Oceanic and Atmospheric Administration (NOAA) shows in the
attachment Figure 3.3.

Sensor

When I was buying an orientation sensor I was not sure what type of motor control
I will use, thus I have obtained 9-axis absolute orientation sensor to have a complete
feedback from the camera orientation. Such a sensor contains magnetometer, gyroscope,
and acceleromter, so is capable of sensing Earth’s magnetic field. The chip is BNO055
placed on a tiny PCB by Adafruit providing I2C and UART communication interfaces
with Python libraries (picture of the sensor is shown in the Figure 1.7. But just for
the magnetic field measurements better alternative is a plain magnetometer—digital
compass, for example Honeywell’s popular for DIY projects HMC5883L.

Figure 1.7: BNO055 9-DOF Absolute Orientation IMU Fusion Breakout.3

The magnetometer should be level to the Earth’s surface for correct heading mea-
surement, though tilt compensation methods exist. It measures the Earth’s magnetic
field in a three-dimensional vector, as shown in the following Figure 1.8.

Axes x and y, planar with Earth’s surface indicates heading and axis z is for deter-
mining of a direction and a strength of the magnetic field. The magnitude of magnetic
flux density B of Earth’s magnetic field at any point is simply calculated as

|B| =
√
B2
x +B2

y +B2
z (1.1)

and gains values from 0.3 to 0.6 G, depending on a position on the Earth (10 000 Gauss
(G) = 1 Tesla (T)).

The magnetic heading—angle between the magnetic north (vector Bxy) and the
axis x (direction of the magnetometer), θ in the Figure 1.8 is calculated depending on

3Picture taken from http://www.snailshop.cz/kombinovane-imu/1702-adafruit-9-dof-

absolute-orientation-imu-fusion-breakout-bno055.html.
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Figure 1.8: Magnetometer’s coordinate system.

a sign of Bx, respectively By, and gains value in the interval 〈0, 360) degrees:

θ =


tan−1

(
By

Bx

)
180
π , By ≥ 0, Bx ≥ 0,

180 + tan−1
(
By

Bx

)
180
π , Bx < 0,

360 + tan−1
(
By

Bx

)
180
π , By < 0, Bx ≥ 0.

(1.2)

These knowledge I have taken from the [17].

1.3 Pan/Tilt platform

A pan/tilt platform is required to move the camera in two axes discussed in the
Section 1.2. Versions on the market suitable for DIY projects are unfortunately only
few. Many of them are aimed for very small and light cameras that would definitely not
actuate the camera with a lens. Or there are systems with electronic stabilization to
hold camera’s head stable when the carrier is moving or shaking (for instance drone) for
great quality of the video. This is however not my case, because I expect the platform
is standing still and such a system would be completely overkill—with both possibilities
and costs around 500e. With an access to the 3D printer I have decided to create such
a platform for the project on my own.

The first choice I have to make is which motors I would like to use. Possible options
are brushless, stepper, brushed DC, and brushed DC servomotors:

• Brushless and brushed motors are perfect options for continual rotation applica-
tions and with a feedback sensor they could be also used for angular positioning.
They can not be directly controlled from most microcomputers, therefore control
unit is required,

• stepper motors are great for precise angular placement control but also dedicated
control unit procuding signals is inevitable,

• brushed DC servomotors allow angular position control without external control
unit because necessary electronics is included in themselves and control signals
could be produced by any microcomputer. Their disadvantage is lack of ability
to perform full rotations.

My choice is brushed DC servomotor because of much simpler control and less cost—
motors are driven by Pulse Width Modulation (PWM) signals that directly set angular
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position of the rotor [20]. The ability to fully rotate could be omitted, because in most
cases I set the camera in a way it needs only a 180 ◦ view—perpendicular to runway’s
axis to see the most of the aircraft during landing/take off (similar as in the Figure
1.6). During picking the servo I must bear in mind there might be a lens on the camera
that might cause pretty high torque. The model I have chosen is Hitec HS-5485HB,
with maximum torque 6.4 kg/cm at 6 V, ball bearing, and karbonite gears, shown in
the Figure 1.9.

Figure 1.9: Powerful Hitec servo that will actuate the camera.4

Next task is to design a 3D model of the pan/tilt specificaly for selected servos.
First step is to design the pan/tilt base with mounting holes for later assembly. It is
also a holder for the first servo that pans with the rest of the system (Figure 1.10 (a)).

Second step is to design the second servo holder. It is same as the previous one
except it lays on the side so the servo’s arm tilts the camera (Figure 1.10 (b)). In the
bottom side in the center is the shape that perfectly matches pan servo’s arm (Figure
1.10 (c)) and from inner side is a hole for screw’s head. There is also noticeable hole in
the side wall of the holder—its center is in the rotational axis of the tilt servo and ball
bearing will be placed there allowing second arm of the camera holder smooth rotation.

Third step is a creation of the camera holder itself with arms attached to rest of
the platform. My first idea was to print this part in one piece but I had troubles with
attaching it, so I have decomposed the part into three pieces. One arm of the holder
is attached on the servo’s arm (Figure 1.10 (d)). Second arm is plugged to the ball
bearing (Figure 1.10 (e)) and camera is mounted to the part in the Figure 1.10 (f) that
is attached with several screws to its arms. Only this part has to be modified to fit the
camera I desire.

The model have been printed with PLA and attributes to strengthen the construc-
tion because of large forces that may possible lens produce—50 % fill density and shell
thickness 0.8 mm. Result is high quality, robust, and strong pan/tilt platform. Major
disadvantage is particular dimension and camera’s distance from rotational axes. The
final construction is shown in the Figure 1.11.

1.4 Computer

When it actually comes to choice of a computer, control unit for external com-
ponents, there is not so much to consider. Most popular low-cost, credit-card sized

4Picture taken from http://www.peckamodel.cz/produkt/rc-modely-a-prislusenstvi/serva-a-

prislusenstvi/serva-hitec/1hi3191-servo-hs-54-85-hb.
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(a) Pan servo holder. (b) Tilt servo holder. (c) Detail of the
shape where is at-
tached servo’s arm.

(d) The arm of
a camera holder
attached to the
servo.

(e) The arm of a cam-
era holder attached
to the ball bearing.

(f) Final camera holder
where is the camera directly
attached.

Figure 1.10: Overview of individual components that is pan/tilt made of.

microcomputers for interacting with hardware are Arduino, Raspberry Pi, BeagleBone,
and Intel Edison. Arduino is mainly aimed for less complex projects, Intel Edison re-
quires Arduino header for interacting with hardware and both does not run operating
system. Both BeagleBone and Raspberry Pi runs Linux, which I require for correct
RTL-SDR functioning. BeagleBone has advantage in having more General Purpose
Input/Output (GPIO) ports, analog inputs, support for any kind of hardware, while
Raspberry Pi on the other hand has faster quad-core CPU, GPU, larger RAM and is
more suitable for software-based projects. Additionaly Raspberry has own interfaces
for camera and display, which would be a pity not to make use of. Community support
and lots of tutorials are also on the Raspberry’s side [14].

The model I am using is Raspberry Pi 2 Model B, the newest at the time I was buying
one (shown in the Figure 1.12), but now version 3 has been introduced. Probably I
would rather buy newer one because of even better performances. Also the memory
card has to be bought as a memory storage. I have decided for the 32 GB class 10 micro
SDHC card to safely store large videos.

One more important thing is the Raspberry’s power consumption. Reported max-
imum current draw under the stress could be up to 600 mA, but more likely the draw
is under 400 mA (Pi’s voltage is 5 V) without any peripherals [25].

1.5 Input/Output interface

Common ways how to interact with Pi are through Secure Shell (SSH) protocol
from another computer, or by mouse and keyboard with monitor (connected through
HDMI) if graphical interface is desired. In my case the screen is desired because of
displaying aircrafts on the map and view of the camera. Hence SSH is unusable and
bringing monitor with the system is also not quite a good solution. However Raspberry
released a 7” touchscreen with resolution 840×480 pixels to create all-in-one, integrated
projects—that seems as a best solution for me.
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33.5 m
m

10 mm

Figure 1.11: Pan/tilt platform designed in the Autodesk 123D application with desig-
nated rotational axes.

Figure 1.12: Small, inexpensive Linux-based computer Raspberry Pi 2 Model B.5

The touchscreen is connected to the adapter board supplied with the display through
Display Parallel Interface (DPI). The board converts the signal to compatible one with
the Display Serial Interface (DSI) on the computer. Power supply rated for at least
500 mA at 5 V is required for powering the display [16]. Both boards could be mounted
to the back of the display using prepared mounting holes, but a display holder is not
supplied and must be created or bought. With an advantage of having 3D printer I
have again printed the part tailored for my project. The model and display itself are
shown in the Figure 1.13. To make touchscreen running on the Raspberry only latest
operating system is required.

1.6 Camera

An image sensor—camera is certainly required to capture flying aircrafts to video.
One of the reasons I have chosen Raspberry Pi is the fact that Raspberry Pi Foundation
released a camera module especially for theirs computers with decent attributes, low
cost, and excellent compatibility. It is connected to the board through Camera Serial
Interface (CSI). If someone does not want to use this camera possible option is to
capture images with USB web camera.

The camera is equipped with 5-megapixel Omnivision OV5647 sensor capable of

5Picture taken from https://www.adafruit.com/product/2358.
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(a) The display and its adapter
board.

(b) Display holder designed in the
Autodesk 123D application.

Figure 1.13: Overview of the Raspberry Pi Official Touchscreen and its designed
holder.6

1080p30 or 720p60 video modes. However, as I expect aircrafs to be further, the lens is
inevitable accessory. The disadvantage of the official module is lack of the possibitlity to
replace the lens, but I have found manufacturers in China that produce fully compatible
cameras with a lens mount. The one I have ordered is produced by ArduCam [5] and
comes with the CS mount plus the lens (shown in the Figure 1.14 (a)). Nevertheless,
the lens are just with focal length 6 mm and I want better zooming. Reasonable choice,
again from China is 5−100 mm focal length lens aimed for a CCTV application (shown
in the Figure 1.14 (b)). Though I must consider servomotor choice because of a torque
created by such a large and heavy metal body. The camera board is however very tiny
so I have decided to print support for camera mount to release the pressure on the
module (shown in the Figure 1.14 (c)). For embedding the camera into applications
there are lot of available libraries written in many languages. The power consumption
is around 250 mA according to [25].

1.7 Power supply

The power source rated at 5 V that could reliably provide 1.5 A is required for
powering the computer and its components. My first idea was to acquire a power
bank for chraging smartphones—it should provide up to 2.1 A at 5 V and with large
capacity it seemed like long-lasting easy-rechargable compatible power source (Pi is
powered though the microUSB port). But that also means servos should be powered
individualy because of high current spikes they may drain. However when I put the
Pi under the load I quickly have found that the power bank is very unreliable power
source—the voltage drop at the Pi was almost 1 V. I think it was caused by both
resistance of the cable and not great quality of the bank.

Accumulators I have bought are model eneloop (AA NiMH, capacity 2000 mAh,
voltage 1.2 V), favoured by modeling community, in package of five pieces as shown in
the Figure 1.15 (b) (one package for one servo). After I had found that the bank can not
be used for powering I tried to make use of these two packages. The DC-DC step-down
converter (shown in the Figure 1.15 (a)) is a suitable component to drop the voltage to

6Picture of the display taken from https://www.element14.com/community/docs/DOC-78156/l/

raspberry-pi-7-touchscreen-display.
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(a) ArduCam version of a Raspberry
Pi Camera.

(b) Lens with a CS mount and a fo-
cal length 5 − 100 mm.

(c) 3D printed support for
CS mount on the camera
board.

Figure 1.14: Overview of the camera with lens used in my project.7

Pi’s 5 V. There are two possible connections of battery packs—regulate voltage from
first for the Pi and put 6 V from the second for servos, or put both packs to series
and convert 12 V to the 5 V. I have decided for the second option because converter
conserves power and the current drain at the output is x-times smaller (x = Uin/Uout,
but there is of course some error) than at the input so accumulators will last more
time allowing system work for several hours. The disadvantage is that servomotors will
produce slightly smaller torque. The voltage is stable at 5 V even during current spikes
because of large capacitors on the board.

1.8 Final assembly

The whole system is assembled to plastic board. To allow stable position during
observation I have drilled a hole in the board and put there threaded hole that matches
screw on the tripod. Also there is a breadbord on the board for better access to Pi’s
pins, connection of motor’s and Pi’s ground, and placement of a switch that turns
the power on. Unfortunately the BNO055 sensor uses I2C clock stretching which is
buggy in the Raspberry [6], therefore an USB-UART converter has to be used to allow
sensor communication with the Pi through the UART interface (Raspberry has only one
occupied already by GPS sensor). The complete scheme of the system is illustrated

7Picture of the camera taken from http://www.ebay.com/itm/OV5647-Camera-Board-w-

CS-mount-Lens-for-Raspberry-Pi-A-B-B-2-Model-B-/281212355128?hash=item4179900238:g:

s~0AAOSwqu9U7mu1, picture of the lens taken from http://www.aliexpress.com/item/New-Manual-

IRIS-CS-Mount-cctv-lens-F1-8-100mm/2043308150.html.
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(a) DC-DC Buck Converter 100 W
12 A 4.5 − 30 V to 0.8 − 30 V Step-
down.

(b) The pack of five eneloop batter-
ies providing 6 V.

Figure 1.15: The overview of used accumulators with step-down DC-DC converter.8

in the Figure 1.16 and final design of the system is shown in the Figure 1.17. The
complete list of used components:

• plastic board components are assembled on the board

• 4× rubber feet comfortable board placement on the table

• Raspberry Pi 2 Model B control unit

• Raspberry Pi Official Touchscreen interaction with the user

• 3D printed display holder holder for the touchscreen

• breadboard ZY-60 electrical connection of several parts

• Raspberry Pi Plus Breakout Pi’s GPIO pins on the breadboard

• Raspberry Pi Ribbon Cable connection of the breakout and the Pi

• RTL-SDR with an antenna reception of ADS-B packets

• GPS receiver position of the system determination

• Adafruit BNO055 magnetic heading determination

• Arduino USB2Serial Adapter convert serial signals from BNO055 to USB

• 3D printed pan/tilt holder for servos and camera

• ball bearing smooth rotation of the camera holder’s second arm

• 2× Hitec HS-5485HB servomotor moving camera in two axes

• ArduCam Raspberry Pi Camera Module capturing images

• CCTV lens 5− 100 mm improve image quality

8Picture of batteries taken from http://www.pelikandaniel.com/?sec=product&id=38077, picture
of the converter taken from http://www.ebay.com/itm/DC-DC-Buck-Converter-100W-12A-4-5-

30V-to-0-8-30V-Step-down-Module-Laptop-LED-Car-/261420678182?hash=item3cdde2fc26:g:

BRMAAOxyf1dTHtuu.
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• 10× Panasonic eneloop AA accumulator power source for the system

• DC-DC Step-down converter voltage regulation

• switch turn on/off the system

Figure 1.16: The final scheme of system’s components and communication interfaces.
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(a) System during observation. (b) Detail on the board with assembled compo-
nents.

Figure 1.17: Photos of the constructed system.
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2. Software implementation

In this chapter I will discuss solution of the problem from the software’s side. After
constructing the system, the program that interacts with individual components and
the user simultaneously has to be written in the suitable programming language. The
program’s task is to get all data from sensors and receivers, allow observer to choose
aircraft on the map, and track the selected aircraft while the video is recorded. But
firstly I must decide which operating system I would like to use with the Raspberry Pi.

There are few companies developing operating systems for ARM devices like the
Raspberry Pi. The most interesting images are officialy supported Raspbian, more
user-friendly Ubuntu MATE, or developer Internet-of-Things packages by Microsoft
and Ubuntu Snappy. As long as the Raspbian is optimized for Raspberry Pi hardware
and compatibility is my priority the choice was simple [24].

Same thoughts I can apply for selecting a programming language in which I would
like to write the code. Requirements are mainly connectivity with peripherals, support
for multithreading, socketing, and Graphical User Interface (GUI). All these specifi-
cations fulfil the Python programming language. It is a general-purpose, interpreted,
interactive, object-oriented, and high-level programming language with an excellent
documentation [31].

In the Figure 2.1 is illustrated a simplified scheme of software’s components. gps,
BNO055, picamera are Python packages for establishing communication with individual
sensors. Dump1090 and GPSD have been already mentioned as applications (section
1.1 and 1.2) that process Mode S respectively GPS signals. The software will ensure
start of these applications using Python subprocess module including later resources
release. One more decision I have to make is how I will produce PWM signals to
control servomechanisms (it could be done either with Python module or with Linux
software).

2.1 Processing ADS-B messages

For low-level networking Python’s module socket is available. The connection has to
be established with the TCP port number 30003 on the local machine where dump1090
implicitly outputs ADS-B data in the BaseStation format. Processing these messages
should be done in an individual thread to allow more tasks work simultaneously (this
is done by threading Python module). To prevent the socket from overloading while
it process messages two threads have to be implemented for correct ADS-B message
processing:

First thread receives the data from socket. If there are more ADS-B messages
stacked in one large message the thread will do necessary splitting. Also if a message
is teared up during the socket transmission the thread will repair the message. Then it
passes packets to the second thread. To safely exchange information between threads
a FIFO queue is very helpful.

Second thread decodes the message and stores the information to the structure
available to the whole program. This structure should be thread-safe so multiple thread
access will not corrupt the data. Also during the data setting/getting must be clear
which aircraft’s information are manipulated with. Actually for this purpose there is
the unique ICAO transponder address contained in every message that could act as a
key in the structure and associated value could be aircraft’s data. These data could be
holded in a special class. Such a structure is called dictionary in Python [23].
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Figure 2.1: Simplified scheme of software subtasks and designated connections with
sensors.

More aicraft information

After implementing previous step I have all necessary positional information for
tracking aircrafts. Still the most decisive attribute for spotters is probably the aircraft
type or airline. I would like to have these valuable information in my application
to draw my attention to interesting flight. Two SQLite3 databases exist which could
provide such information. One is matching callsign (flight number) with airplane’s route
(StandingData.sqb), second one knows which aircraft has assigned tracked transponder
ICAO address (BaseStation.sqb).

BaseStation database—called after BaseStation software—is the part of the pro-
gram contributing lot of additional information about the physical air frame. One nice
example what I can achieve by getting only one Mode S message:

SELECT Registration, ModeSCountry, RegisteredOwners, OperatorFlagCode,

IcaoTypeCode, Type, SerialNo FROM Aircraft WHERE ModeS = ’49D092’;

OK-NEM|Czech Republic|CSA Czech Airlines|CSA|A319|Airbus A319-112|3406

Registration number, or tail number tells us in which country is the aircraft registered
(letters before the dash). This immediately confirms next field—OK is representing
Czech’s airplanes. In the next field I can see what airline is the aircraft’s operator with
its ICAO code and finally the type of the aircraft with its ICAO code and even the
manufacturing serial number.

StandingData database is the piece of the Virtual Radar Server software. Its task
is to plot aircrafts on the Google Map caught by user’s Mode S receiver. One form of
the feeding stream for the application is the BaseStation format. To give user more
interesting flight information it uses StandingData database to match flight number
with the route data and this database is free to download from their website [34].
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Example with the captured callsign of the aircraft wearing the ICAO address analyzed
paragraph above:

SELECT

OperatorName, FromAirportLocation, FromAirportIata, ToAirportLocation,

ToAirportIata FROM RouteView WHERE Callsign = ’CSA2DZ’;

Czech Airlines|Prague|PRG|Paris|CDG

Operator name was quite obvious in this case from the callsign, but I have obtained the
destination and the beggining of the journey. In addition to knowing names of cities
there are plenty of information about airports, like the
International Air Transport Association (IATA) code. It could be used to distinguish
the airport which is the plane flying from/to in case of there are more in the city.

To query the data from SQLite3 databases Python module sqlite3 is available.

2.2 Processing GPS messages

Indicated in the Figure 2.1, access to the GPS data is acquired through the gps
module which receives data from the GPSD and translates them into final positional
information. There is no necessarity to decode the data—only global availability within
the program must be ensured to provide the position for each function. Also I have
decided to let the GPS processing run in an individual thread in loop in case the
observer’s location has been changed during the runtime. When the observer starts
capturing an aircraft the latitude, longitude, altitude, and time is taken from the thread.

2.3 Processing BNO055 data

To establish connection with the BNO055 sensor and get its reading Adafruit re-
leased a Python module. At every start of application the sensor has to be calibrated.
After calibration simply magnetic field’s vector is read and the heading is calculated
from the formula 1.2. That is done with atan2 function in the math package—
advantage of atan2 is that it returns the angle in a quadrant based on signs of ar-
guments thus cases does not have to be used.

2.4 Servo control

As I have mentioned, position of the servo is being controlled by width of pulses
sent to the servo. However Raspberry lacks the possibility to produce PWM with the
hardware and pulses generated with the software are always different because operating
system can not guarantee the exact time as we want, causing servo to jitter. The
solution is using Direct Memory Access (DMA) for precise timing [15]. I have tried the
application ServoBlaster, but under the load the width of pulses was slightly changing
resulting in servo jitter. Another interesting application that I have tried for producing
PWM is pigpio [18]. With oscilloscope I have measured very stable pulses with stable
frequency 50 Hz. The Python module is available to talk with the pigpio daemon
launched in the background—perfect option for me. Still the best way to generate
PWM is with external driver unit, but the trick with DMA seems reliable for my
application.
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2.5 Graphical User Interface

GUI’s main task is to plot aircrafts on the screen, wait for observer choice, and send
signals to control threads. A map where aircrafts will be plotted is required. Powerful
tools for geolocation management are Google Maps or OpenStreetMap APIs, but they
are mainly aimed for mobile and web services and that is not the case of my application,
so I will have to create the map by myself. There are many applications providing GUI
libraries for Python, for instance wxPython that wraps popular wxWidgets, or advanced
PyQt that is more than GUI toolkit. Still I will stick to Tkinter which is a little bit
older package, but has advantage of being included with the Python standard library
making it the most convenient and compatible toolkit to work with [22]. To have
the code as fast as possible GUI methods should be also run parallel to the rest of
the program. Tkinter main window has to be however initialized in the main thread
for proper functioning so every other thread is its ancestor, therefore it can act as a
control thread—it starts applications and threads and after the window is destroyed it
terminates the rest.

Aircrafts will be plotted on the static piece of the map I have cut from the Google
Map’s website with the center in the Prague’s airport. I have noted coordinates of its
edges to know where to plot the aircraft. Its disadvantage is that no planes outside the
area could be displayed. Algorithm of plotting is simple—every 500 ms is dictionary
with aircrafts iterated and those aircrafts that have position inside the map area are
plotted as a label with aircraft icon as an image. Additionaly, two labels are displayed
over the aircraft—aircraft’s ICAO type that must be queried to BaseStation database
and the callsign. These information help observer with aircraft identifying. The blue
dot represents system’s position acquired from the GPS. The typical look of the main
window is shown in the Figure 2.2.

Figure 2.2: The application’s main window with displayed aircraft’s and observer’s
position.

Each aircraft’s label handles the click on it as a creation of the new window where
is every information about the plane. Only one Aircraft information window can be
displayed at the time and information are refreshed every 500 ms. Example is shown
in the Figure 2.3.

In the new window there are four buttons displayed, but only one, Start preview,
is active. After click on the button following happens:
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Figure 2.3: The Aircraft information window that is diplayed after the click on aircraft’s
icon.

• Both GUI loops are stopped,

• the dictionary is flushed to overcome being too large,

• button Start recording becomes active,

• live stream from the camera is displayed on the screen, and

• algorithm responsible for aircraft tracking is started.

Camera control

A connection with the camera module is established with the object PiCamera from
picamera package immediately after pressing the button. The view of the camera is
displayed on the screen until the Stop preview button si pressed, therefore it must be
run in an individual thread to not take all CPU resources. After successful connection
red LED on the camera lights up. PiCamera also flips the view of the camera in case
it is rotated and sets the image resolution—720p as a balance between the quality and
the video size. The other button, Start recording, tells PiCamera to record the video
to a file. The file is named after Mode S address of tracked aircraft and is h264 format.

2.6 Tracking algorithm

The last task is to implement algorithm that from received ADS-B packets and
system’s position continually calculates the pan and the tilt angle and reorients camera
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to smoothly follow the selected plane. To decrease the delay between the time of actual
positional message transmission from the aircraft and the time of sending signal to a
servo the message processing should be as close as possible to the packet reception
from TCP port. And that is in the thread that normally parses data from messages
to dictionary. The thread switches to the tracking mode—continues in analyzing the
data only if ICAO address in the message is the same as address of tracked aircraft,
otherwise packet is not important and is thrown away. Received navigational informa-
tion (latitude, longitude, altitude) are stored in list structures along with time stamps
(the time when message was generated is part of BaseStation message) for later posi-
tion analyzation. These packets however may be received twice a second and that is
not sufficient for smooth aircraft observation. Therefore the state estimation has to be
implemented to have aircraft’s position continually.

Pan and tilt angles calculation

The fact that Earth is almost perfect sphere (Earth is slightly ellipsoidal, but ignor-
ing these effects brings very low error to calculations) is no suprise for anybody. To find
out the great-circle distance (the shortest distance over the Earth’s surface) between
two points with known latitudes and longitudes Haversine formula could be used:

d = 2R sin−1

(√
sin2

(ϕ2 − ϕ1

2

)
+ cosϕ1 cosϕ2 sin2

(λ2 − λ1
2

))
, (2.1)

where d is the unknown distance,
R = 6371 km is the Earth’s radius,
ϕ1,2 is the latitude of first, respectively second point in radians and
λ1,2 is the longitude of first, respectively second point in radians.

This formula is very precise—minor errors are caused only by mentioned ellipsoid
effects and computing (rounding errors, etc.) [28].

For small distances between aircrafts and receiver occuring in my project the curva-
ture of the Earth is negligible, resulting in the Equirectangular approximation. Much
higher performance will be traded for slightly decreased accuracy, which is hardly no-
ticeable [28].

By equirectangular approximation is meant shaping distances originally on the arc
to straight lines. This forms the new triangle P1XP2 on the globe, as illustrated in the
Figure 2.4.

From this triangle by Pythagoras theorem desired distance d = |P1P2| could be
calculated, but firstly distances |P1X| and |XP2| have to be known. To get |P1X|
simple formula is used (variables have the same meaning as in the previous formula
2.1):

|P1X| = R(ϕ2 − ϕ1). (2.2)

To get the size of second side of the triangle, a little bit modified formula brings the
answer

|XP2| = R cos
(ϕ2 + ϕ1

2

)
(λ2 − λ1). (2.3)

The difference in this case is that longitudenal distance between two points depends
on the latitude they have. If latitude is different the mean is taken. The fact that
these distances are rather small must be kept in mind. Finally, the angle required from
camera to tilt to capture chosen aircraft β is

β = tan−1
(h2 − h1

d

)
, (2.4)

where h1,2 is the altitude of first, respectively second point in kilometres.
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Figure 2.4: Model of the Earth with two points P1, P2 on the surface and designated
relations between them.

The angle required from the camera to pan α is

α = α2 − θ − θd = cos−1
( |P1X|

d

)
− θ − θd, (2.5)

where α2 is the bearing between system and aircraft,
θ is system’s magnetic heading, and
θd is the magnetic declination in the location of measurement.

A short program in Python will demonstrate the accuracy of equirectangular ap-
proximation on a distance between Prague and Košice:

import math

latPraha = math.radians(50.08333)

lonPraha = math.radians(14.41666)

latKosice = math.radians(48.7)

lonKosice = math.radians(21.25)

R = 6372.8

dapprox = R*math.sqrt((latKosice-latPraha)**2+

(math.cos(latPraha/2+latKosice/2)*(lonKosice-lonPraha))**2)

dhaversine = 2*R*math.asin(math.sqrt(math.sin(latKosice/2-latPraha/2)**2+

math.cos(latPraha)*math.cos(latKosice)*math.sin(lonKosice/2-lonPraha/2)**2))

print(dapprox)

518.0781837845868

print(dhaversine)

517.8584398669095

print(dapprox-dhaversine)

0.2197439176773

The error on a distance around 518 km is only 0.22 km, which is really sufficient for
most purposes.

State estimation

Aircraft’s states are attributes that exactly define aircraft’s location at the time. It
is latitude, longitude, and altitude. To know values of these states between aircraft’s
broadcasts is important for smooth aircraft observating.
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My idea is to make use of that aircraft broadcasts also velocity information—its
groundspeed, track, and climbing rate. If I know the last position of aircraft and its
velocity, simply by integrating the velocity I get its position at any time. If new position
is received, it will be set as the initial condition and integration will be repeated. The
estimation can be written as a system of three equations:

ϕ̇ =
cktsvgs cosα

R
, (2.6)

λ̇ =
cktsvgs sinα cosϕ

R
, (2.7)

ḣ = cftpsvvr, (2.8)

where ϕ is aircraft’s estimated latitude in degrees,
λ is aircraft’s estimated longitude in degrees,
h is aircraft’s estimated altitude in kilometres,
vgs is aircraft’s transmitted speed over the ground in knots,
vvr is aircraft’s transmitted vertical rate in feets per second,
ckts = 0.00051444 is constant converting velocity in knots to kilometres per second,
cftps = 0.0003048 is constant converting velocity in feets per second to kilometres per
second,
α is aircraft’s transmitted track, and
R = 6371 km is the Earth’s radius.

For integrating ordinary differential equations in Python there is available sub-
package integrate from the package scipy [27]. The function ode finds a solution y(t)
for equation ẏ = f(y, t) by numeric integration—as this equation could be all three
equations 2.6, 2.7, 2.8.

To allow integrating while the new messages are processed the integration should
be done in an individual thread. As I have mentioned, every new position acquired
sets the initial condition of the integrator. Then the new value of the state after some
time, let us say dt = 0.1 s, is calculated. The thread sleeps for the given time dt and if
afterwards no new information is available, the solution of the integrator is considered
as the current position of the aircraft resulting in new pan and tilt angles calculation
and servo movement. If new velocity information is available, the parameter of the
integrated function is changed and integration continues. This algorithm can provide
aircraft’s position almost in any time I want.

Now using the Python’s package matplotlib I will plot and compare captured coor-
dinates during the observation with those estimated by myself. In the Figure 2.5 can be
seen that estimated values of latitude are very very close to the real ones. That applies
also for the longitude estimation as can be seen in the Figure 2.6. The maximum error
of the estimation was 10 m, but mostly the error is smaller and should not cause any
big discrepancies during the observation (this can be hardly seen in graphs without
zooming). However in the Figure 2.7 can be seen that estimated altitude value goes
totally off from real values. It is caused by too high resolution of the climbing rate
sent from the aircraft—64 ft/s. This approach definitely can not be used for precise
altitude estimating. Second idea is to take two last altitude measurements and from
the time difference between them the climbing rate will be calculated. The result is
shown in the Figure 2.8. The line is much closer to real received altitudes, but there
is similar problem as with the climbing rate—the resolution of transmitted altitude is
25 ft (7.62 m) and that looks like not sufficient value for precise altitude estimating.
The plane seems to hold on one altitude and after a while it descends to another level,
but in reality it is continualy descending. However, such a error from larger distances
may have only small effect. To compare, latitude and longitude information have five
decimal places with last place’s resolution circa 1.1 m.

32



Finally after implementing this steps I should have everything prepared for the
aircraft observating with the constructed system.
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Figure 2.5: Graph indicating latitude growth during the landing with a comparison of
the estimated and real value.
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Figure 2.6: Graph indicating longitude growth during the landing with a comparison
of the estimated and real value.
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Figure 2.7: Graph indicating altitude growth during the landing with a comparison of
the estimated and real value. Climbing rate is taken from the ADS-B message.
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Figure 2.8: Graph indicating altitude growth during the landing with a comparison of
the estimated and real value. Climbing rate is calculated as an altitude difference.
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3. System test

After the final construction I have travelled to the vicinity of Prague’s airport to
test the functionality of the system (my position is shown in the Figure 3.1).

Figure 3.1: My position during the test.

The conclusion is that system worked, but was inaccurate. That means the camera
was moving with the plane but was pointing the other direction. Here is the list of
factors that may caused it:

• GPS readings were constantly changing,

• magnetometer was also showing different values in the same position. The mag-
netic heading was determined with the compass inside my smartphone,

• I have not precisely measured marginal angles of servos,

• ADS-B receiver was overloaded because of lots of broadcasts in the area, causing
delay.

Although none of this errors was significant, together they may easily caused non-
negligible error. Unfortunately, from unknown reason, I was not receiving packets from
aircrafts on the ground, therefore I could not capture take offs, which would be simpler
to follow. It was definitely not mistake in my code, but rather failure in the dump1090
software. Packets coming from landing aircrafts were correctly received. The power
supply was reliably providing the energy for the system for two hours.

The lens were causing some troubles too. Consequence of the high torque pro-
duced by them was image jittering. Solution might be applying balance mass on the
opposite site of the rotation. Furthermore, giving 6 V to servos would improve their
behaviour—resulting in less camera jittering and more fluent moving. As another big
lens disadvantage I find lack of ability to automatically focus on the target. The dis-
tance of aircraft from my position was always changing and lens were not able to focus
on the frame. Ideal position of the camera would be so the distance from aircraft does
not change much.
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Though I managed to extract one picture of a full aircraft from one of videos I have
made. The quality is slightly worse because of mentioned focus problem and weather
conditions.

Figure 3.2: Lufthansa’s Boeing 737-300 captured by the system.
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Conclusions

To conclude, the task to build a system for automatic aircraft observation and
recording based on ADS-B surveillance system has been completed. Both the con-
struction and the application act as I expected, but there is still lots of to improve.
System’s control unit is a microcomputer Raspberry Pi that communicates with ob-
server through the Raspberry Touchscreen. Software plots captured aircrafts with the
RTL-SDR receiver on the map and after a click on the plane displays all available infor-
mation about it, including those acquired from external databases. Parallel to the main
GUI window, software communicates with GPS receiver and magnetometer and tries
to determine observer’s position and orientation. The platform is so far allowed only
to be level to the Earth’s surface. After the selection of aircraft that user would like to
capture, the program reorients the Raspberry Pi Camera towards the plane by sending
signals to servomotors and shows the view of the camera on the screen. If the user likes
the image, he can record a video by simple click on the button in the application. The
system is powered by series of eneloop batteries with a voltage regulated by DC-DC
converter and can operate for more than two hours.

The test has showed that the system was inaccurate (camera was not pointed exactly
on the aircraft), but it is more important that the idea could be realized. It just requires
better calibration—more precise positional and magnetic readings and servo angular
position calibration. The software might also want optimization to be faster because of
high density of ADS-B packets transmitted in the area. Moreover, the pan/tilt platform
requires upgrade in terms of releasing the high torque caused by large and heavy lens
and full 6 V should be provided for servomotors to reduce camera jittering. Now the
position of the system must be chosen carefully with respect to possibilities of the lens
and that brings limits to the application, which I do not want. The best solution is
replacing the lens with those capable of automatic focus and motorized zoom.

Following these recommendations the performance of the system could be greatly
improved and camera could nicely follow the plane. I will continue to publish details of
the system to inspire and provide my gained knowledge for the whole DIY community
on the website https://dufiblog.wordpress.com/.
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Figure 3.3: Declination data in Prague, acquired from NOAA’s website.
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