
Linear equations over the ring of stable transfer

functions

Author: Jǐŕı Lidinský
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Chapter 1

Introduction

Speaking in broad terms, we can distinguish three main approaches to anal-
ysis and design of linear control systems.

• The classical frequency-domain methods have evolved from the anal-
ysis of frequency responses of linear dynamics systems. Their main
formal mathematical tool is the theory of functions of complex vari-
able, in particular the Laplace transform in case of continuous-time
and the Z-transform for the discrete-time systems. Systems are de-
scribed in terms of their transfer functions reflecting just the external
input-output relations, which brings about some difficulties related
to the internal stability of the closed loop and to the realization of
the compensator. The used formalism also causes that the domain
of classical methods is reduced to SISO time-invariant linear systems.
But despite these limitations, the classical methods still remain very
popular, namely in the community of practicing engineers, for their
simplicity and effectivity in many control problems encountered in in-
dustry.

The classical methods are suitable for computational processing and
a lot of software tools supporting the design process are available.

• The drawbacks of the classical approach and the increasing complex-
ity of systems to be controlled resulted in new methods of synthesis,
usually called the state-space or modern approach. The methods rely
upon the exact definition of the state that is systematically used both
for the deeper analysis of the plant (the state provides the insight into
the internal structure of the system) and for the synthesis of the com-
pensator (the knowledge of the state is employed for compensation).
The main formal tools are differential equations, vector spaces and ma-
trix theory. The modern methods are applicable to much wider class
of situations than the classical ones, e.g. to MIMO and time-varying
systems. However, they have not become so popular, namely among

5



6 CHAPTER 1. INTRODUCTION

the practicing engineers, for the necessity of finding the state-space
model and for the need of state reconstruction in case it cannot be
directly measured.

From the numerical point of view, the state-space design methods for
linear systems rely on numerical linear algebra which is a powerful tool.
Since the 50s a lot of effort has been devoted to the development of
accurate and numerically stable algorithms for linear algebra problems
encountered in a large number of scientific computations.

• The origin of the polynomial or algebraic approach is dated to the
early 70s. The polynomial matrices forming polynomial matrix frac-
tions are introduced to handle MIMO cases. Systems are described
by input-output relations, however the transfer functions are not re-
garded as functions of complex variable but as algebraic objects. The
design procedure is then reduced to algebraic operations with rational
and polynomial matrices, typically to solving algebraic Diophantine
equations. This approach not only enables to resolve many existing
control problems in a more elegant and unifying way but also provides
further insight into the structure of the control systems and shows new
relationships between various control tasks.

The algebraic methods are closely related to the Czech science. Among
many others, let us remember prof. Vladimı́r Kučera who is well
known as the pioneer of algebraic approach in the field of control theory
[8, 9, 11].

The main idea of the algebraic approach is that it gives a unified theoretic
framework for various control tasks. The appropriate algebraic object must
be chosen according to required property. The stability and properness
(or causality) are the natural requirements. While it is advantageous to
take polynomials and polynomial matrices for discrete-time systems, for
continuous-time systems the stable proper rational functions or matrices
must be considered.

A lot of work has been done in the field of polynomial algorithms in
the recent years, however only few algorithms for stable rational functions
can be found in the literature. These algorithms are not very numerically
reliable and are mostly limited to SISO arguments. Two main approaches
may be found. Algorithms that handle the arguments in the form of ratio
of two polynomials or polynomial fraction takes advantage of transfer to
polynomial problem. On the other side the algorithms that transform their
arguments into the state-space description can be found. Mostly there are
algorithms for stable coprime factorization. For instance in [13] the doubly
coprime factorization is presented. It considers knowledge of stabilizing
state-feedback and full-state observer. In [1] it is shown that computing the
stable coprime factorization is equivalent to computing state-feedback and
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full-state observer. In [17] the numerically reliable algorithm for designing
a stable coprime factorization is introduced.
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Chapter 2

Objectives

The objective of this work is to develop new algorithms for solving algebraic
equations over the ring of stable rational functions and matrices, implement
them and study numerical properties of the new and existing methods.

In section 4.1 the basic algebraic definitions and facts are introduced.
Moreover the role of algebra in the feedback control synthesis is mentioned.
In sections 4.3 and 4.4 the existing algorithms are presented for computing
the Bezout identity based on transformation to polynomial problem. The
numerical properties are tested and are discussed there. In section 4.5 a
new algorithm based on the state-space description of the system follows.
The numerical properties are also discussed. Finally, we deal with doubly
coprime factorization in the chapter 5. The existing routines and our new
method is described here.

9
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Chapter 3

Software framework

As a software framework for implementation and for testing of developed
algorithms the pre-release version 3.0 of the Polynomial Toolbox for Matlab
was taken, provided by the Polyx, Ltd. company [14]. There were several
reasons for this decision. The Polynomial Toolbox (PT) offers objects and
functions for easy manipulation with polynomials and polynomial matrices.
It offers standard functions for handling polynomials such as addition, de-
terminant, computing divisor, solving algebraic equation, etc. The PT is
moreover focused on control analysis and synthesis problems. There is con-
nection to Control systems toolbox for Matlab that was used in algorithms
that handle arguments in the state-space description.

A simple example of work with PT follows. Suppose two polynomial
matrices C and D

Example 1

>> C=[1+z,1;1-z,0], D=[1-z,1;1 1]

C =

1 + z 1
1 - z 0

D =

1 - z 1
1 1

we want to know a greatest left divisor

>> gld(C,D)

ans =

1 0
0 1

11
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thus C,D are coprime, then there exists other two polynomial matrices E
and F that satisfy CE + DF = I

>> [E,F]=axbyc(C,D,eye(2))

E =

0 0
1.0000 -1.0000

F =

0 0
0 1.0000

2

The prototype version 3.0 of the PT offers objects for matrix fractions,
namely left ldf and right rdf matrix fraction and basic operations for them.
Unfortunately there are not algorithms for computing algebraic equations
with these arguments. Thus our goal is correct this deficiency.

Now, let us try to demonstrate solving a simple example published in
[15] with PT and our function axby41 to demonstrate the integration of the
program developed under this thesis into the PT 3.0 framework.

Example 2 Suppose the system

G(s) =
1

s(s− 1)(s + 1)

[
s(s + 1)2 s(s− 1)2

s + 1 (s + 1)(s− 1)

]
.

Its stable coprime factorization reads:

N =
1

(s + 1)2

[
s(s + 1) (s + 1)(s− 2)

1 s + 2

]
,

M =
1

(s + 1)2

[
s(s− 1) 1− s

0 (s + 1)2

]
.

Enter these systems to PT:

>> N=[s*(s+1),(s+1)*(s-2);1,s+2]/(s+1)^2

N =

s + s^2 -2 - s + s^2 / 1 + 2s + s^2 0
1 2 + s / 0 1 + 2s + s^2

>> M=[s*(s-1),1-s;0,(s+1)^2]/(s+1)^2

1see section 4.4 and chapter 6 for more details
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M =

-s + s^2 1 - s / 1 + 2s + s^2 0
0 1 + 2s + s^2 / 0 1 + 2s + s^2

Functions N,M are in the form of right matrix fraction. To solve Bezout
identity NX + MY = 1 type:

>> [X,Y]=axby4(N,M)

X.numerator =

24 + 25s - 4.2s^2 -7 - 6.5s + 2s^2
-6.2 + 16s + 27s^2 2 - 5s - 8.5s^2

X.denominator =

1 + 2s + s^2 0
0 1 + 2s + s^2

Y.numerator =

-21 - 27s - 22s^2 7.5 + 8.5s + 6.5s^2
-11 - 27s 4 + 11s + s^2

Y.denominator =

1 + 2s + s^2 0
0 1 + 2s + s^2

The function axby4 was developed under this diploma thesis, see section 4.5
and chapter 6. Functions X, Y are again of the class right matrix fraction.
It is easy to convince that Bezout identity holds

>> N*X+M*Y

ans =

1.0000 0
0 1.0000

The tests of stability and of properness are to be performed

>> isstable(X) & isstable(Y)

ans =

1
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>> isproper(Y) & isproper(Y)

ans =

1

2

In the previous example the coprime factorization of the system G(s)
had to be done and then the Bezout identity was solved. In this case it is
better to solve coprime factorization together with Bezout identity. Next
the doubly coprime factorization of the system G(s) will be computed by
function dcf that was also written under this diploma thesis, see section 5.3
and chapter 6.

Example 3 Enter the system G(s)

>> G=[s*(s+1)^2,s*(s-1)^2;s+1,(s+1)*(s-1)]/(s*(s-1)*(s+1))

G =

s + 2s^2 + s^3 s - 2s^2 + s^3 / -s + s^3 0
1 + s -1 + s^2 / 0 -s + s^3

Solve doubly coprime factorization

>> [N,M,X,Y,Nt,Mt,Xt,Yt]=dcf(G,’rdf’);

Finally check the result

>> [Y, X; -Nt, Mt]*[M, -Xt; N, Yt]

ans =

1.0000 0 0 0
0 1.0000 0 0
0 0 1.0000 0
0 0 0 1.0000

and the stability and properness:

>> isstable(N) & isstable(M) & isstable(X) & isstable(Y)

ans =

1

>> isstable(Nt) & isstable(Mt) & isstable(Xt) & isstable(Yt)

ans =
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1

>> isproper(N) & isproper(M) & isproper(X) & isproper(Y)

ans =

1

>> isproper(Nt) & isproper(Mt) & isproper(Xt) & isproper(Yt)

ans =

1

2
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Chapter 4

Diophantine equations

4.1 Theory

The center of our interest in this work is the Diophantine equation, respec-
tively its special case called Bezout identity, in the ring of stable proper
rational functions or stable proper rational matrices. In this section we in-
troduce a few basic facts and definitions from algebra that cohere with our
subject. You can find more complete explanation of this problem and proofs
of presented facts in [18].

The ring, in our case, is a set of stable rational functions S or a set of
matrices M(S) with elements from S. It can be easily proved that a set
S is a commutative ring with identity, and is a domain1. A set M(S) is
noncommutative ring with identity. A set of all rational functions with real
coefficients will be denoted F and a set of all matrices with elements from
F will be denoted M(F). The set F is a field2. It is clear that the ratio
of any two elements a, b ∈ S with b 6= 0 belongs to F. Similarly suppose
A,B ∈ M(S) of appropriate dimensions with |B| 6= 0; the right fraction
AB−1 belongs to M(F). Left fraction analogously.

Definition 1 Suppose a ∈ S; then d ∈ S is a divisor of a, and a is a
multiple of d, if there exists a c ∈ S such that a = cd. Suppose a, b ∈ S then
d ∈ S is a greatest common divisor of a, b if (i) d is a divisor of both a and
b, and (ii) d is a multiple of every common divisor of a, b. Two functions
a, b ∈ S are coprime if every greatest common divisor of a, b is a unit 3 in
S. 2

For noncommutative rings, such as M(S), we define: D ∈ M(S) is a right
divisor of A ∈M(S) if there is C ∈M(S) such that A = CD. In that case

1product of every pair of nonzero elements is nonzero
2every nonzero element is a unit
3function that has an inverse in the ring

17



18 CHAPTER 4. DIOPHANTINE EQUATIONS

A is a left multiple of D. Definition of the left divisor and right multiple is
analogous.

It is clear that a unit in S is a function that has only stable zeros (includ-
ing infinity — relative degree must be zero). These functions are sometimes
called miniphase functions. Two functions a, b ∈ S are coprime if and only
if they do not have common unstable zeros and at least one of them has
relative degree zero.

Example 4 Suppose the following functions:

f1(s) =
s + 1

(s + 2)2
, f2(s) =

s− 1
s + 1

, f3(s) =
s− 1

(s + 1)2
.

We can say that only f1(s) and f2(s) are coprime. Functions f2(s) and f3(s)
have common unstable zero at +1. Functions f1(s) and f3(s) have common
zero at infinity. 2

Lemma 1 Suppose a, b, d ∈ S; then d is a greatest common divisor of a, b
if and only if there exist x, y ∈ S such that ax + by = d. Functions a, b ∈ S
are coprime if and only if there exist x, y ∈ S such that ax + by = 1. 2

The equation ax+by = d is called Diophantine and its special case ax+by =
1 is called Bezout identity.

If there exists one particular solution x̂, ŷ of the Bezout identity then
there are infinitely many solutions of the form x = x̂ + bw, y = ŷ − aw,
where w ∈ S is a parameter.

In noncommutative ring M(S) one must distinguish between left (ÃX̃ +
B̃Ỹ = I) and right (XA+Y B = I) Bezout identity. Moreover, to be able to
express all solutions that are parameterized by a parameter W ∈M(S), the
following two equations must be also satisfied: B̃A−ÃB = 0, XỸ −Y X̃ = 0.
These four equations are usually expressed as a block matrix equation:

Definition 2 (Doubly coprime factorization) Let X, Y , A, B, X̃, Ỹ ,
Ã, B̃ ∈M(S); the equation[

Y X
−Ã B̃

] [
B −X̃
A Ỹ

]
=
[
I 0
0 I

]
(4.1)

is called doubly coprime factorization. 2

Suppose there exist X̂, Ŷ ,
ˆ̃
X,

ˆ̃
Y ∈M(S) such that (4.1) holds, then there are

infinitely many solutions of (4.1) of the form X = X̂ + WB̃, Y = Ŷ −WÃ,

X̃ = ˆ̃
X +BW , Ỹ = ˆ̃

Y −AW , where W ∈M(S) is a parameter. More about
doubly coprime factorization you can find in chapter 5.

The last notion we need is coprime factorization:
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Definition 3 Suppose p ∈ F. An ordered pair (n, m) where n, m ∈ S is a
coprime factorization of p if (i) m 6= 0, (ii) p = n/m, (iii) n and m are
coprime.

For noncommutative rings: Suppose P ∈M(F). An ordered pair (N,M)
where N,M ∈M(S) is a right-coprime factorization of P if (i) M is square
and |M | 6= 0, (ii) P = NM−1, (iii) N and M are right-coprime. 2

The left-coprime factorization is defined analogously.
In the literature, the coprime factorization of the system G ∈ F is of-

ten realized in the following way. G can be expressed as a ratio of two
polynomials G = b/a, thus the coprime factorization can be computed as

N =
b

(s + 1)n
, M =

a

(s + 1)n
,

where n = max(deg a,deg b). It is not, of course, the only suitable factor-
ization. We experimented with various denominators to find the best one
in numerical point of view. Results that were achieved are presented in
section 4.4.

For multivariable systems the factorization is a little bit more compli-
cated. Reasonable algorithm may be found for instance in [15].

4.2 Stabilization

A great application of the algebraic approach is in the control theory. The
result of the fundamental importance is the ability to express all stabilizable
controllers for a given plant. The process of synthesis of a controller, robust
or optimal in certain sense, is then divided into two steps. (i) The set
of all stabilizable controllers is computed. This set is parameterized by a
free parameter W . (ii) We are looking for a parameter W such that the
requirements on behavior of the closed loop are satisfied. For more see
Kučera in [11, 10]. The concept of computing the set of all stabilizable
controllers will be introduced in this section.

Consider the standard unit feedback loop shown in figure 4.1. Let (N,M)
be a stable coprime factorization of the plant P and (X, Y ) be a stable
coprime factorization of the controller C, thus N,M,X, Y ∈ S. The closed
loop is internally BIBO4 stable if and only if the four transfer functions[

y
u

]
=

1
1 + PC

[
PC P
C −PC

] [
r
d

]
=

1
NX + MY

[
NX NY
MX −NX

] [
r
d

]
(4.2)

are stable. We can see that this is satisfied if and only if term NX + MY is
a unit in S. Thus a stabilizing controller C exists, and all controllers that

4bounded input results in bounded output
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Figure 4.1: Closed loop

stabilize a given plant are generated by all solutions of the equation

NX + MY = 1. (4.3)

So the set of controllers can be expressed in the form

C =
X̂ + MW

Ŷ −NW
, Ŷ −NW 6= 0, (4.4)

where the pair X̂, Ŷ is a particular solution of (4.3) and W ∈ S is a free
parameter.

For multivariable systems it holds similarly. Only one must distin-
guish between the left and the right coprime factorization of the plant
P = NM−1 = M̃−1Ñ , where N,M, Ñ, M̃ ∈ M(S). And the doubly co-
prime factorization (generalized Bezout identity) must be solved instead of
Bezout identity (4.3). Thus the set of all controllers can be written down as

C = ( ̂̃X + MW )( ̂̃Y −NW )−1 = (Ŷ −WÑ)−1(X̂ + WM̃), (4.5)

where functions X̂, Ŷ , ̂̃
X, ̂̃Y ∈ M(S) satisfy doubly coprime factoriza-

tion (4.1) and W ∈M(S) is a free parameter.

In the following sections, numerical algorithms for solving Bezout iden-
tity will be studied. In addition to two existing approaches, our new method
based on state-space description will be presented.

4.3 Substitution method

The following method converts the task — coprime factorization and Bezout
identity solution — from the ring S to the ring of polynomials by appropriate
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substitution. Thus it benefits from the fact that algorithms for solving
Diophantine equation in polynomials are relatively well known, see [5].

This method is popular in textbooks for its simplicity. For example in
[3] the following procedure is presented:

Algorithm 1
Input: G(s) ∈ F5

Output: N(s),M(s), X(s), Y (s) ∈ S

1. Transform G(s) to Ḡ(λ) under the mapping s = (1−λ)/λ. Write Ḡ(λ)
as a ratio of coprime polynomials Ḡ(λ) = n(λ)/m(λ).

2. Solve Bezout identity n(λ)x(λ) + m(λ)y(λ) = 1 in the ring of polyno-
mials.

3. Transform n(λ), m(λ), x(λ), y(λ) to N(s), M(s), X(s), Y (s) under
the mapping λ = 1/(s + 1).

2

This simple method is applicable also for MIMO systems.
Vidyasagar, for example, uses bilinear transformation in [18]

z =
s− α

s + α
, s = α

1 + z

1− z
, α > 0, (4.6)

in the same way. This transformation takes the extended right half plane
into the closed unit disc.

Although the above method is conceptually simple, it is not attractive
in practice because changing variables requires much calculation. Another
drawback is that the meaning of the obtained factorization is not clearly
understood, according to [15].

4.4 Polynomial method

Algorithm for solving Bezout identity that will be presented in this chapter is
based on transition from the ring of proper stable rational functions S to the
ring of polynomials. Although this method is quite straightforward and not
new, we derive it below, because its complete description in the literature is
difficult to find. We also believe that our purely algebraic derivation of the
X and Y denominators degrees is original. Moreover we studied numerical
properties of this algorithm, see 4.4.1.

Suppose N,M ∈ S are given functions; we are looking for X, Y ∈ S such
that NX +MY = 1. It is possible to write arguments N,M,X, Y as a ratio
of two polynomials

NX + MY =
nn

nd

xn

xd
+

mn

md

yn

yd
= 1. (4.7)

5field of transfer functions
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This equation can be rewritten as a polynomial equation with restriction
conditions

nnmdxnyd + mnndynxd = ndmdxdyd, (4.8)
deg xn ≤ deg xd,

deg yn ≤ deg yd,

xd, yd ∈ set of stable polynomials.

We chose denominators of X and Y as identical polynomials z = xd = yd

to obtain a polynomial Diophantine equation. How to chose polynomial z
is the crucial problem of this method. Following requirements on it must be
satisfied:

1. Stability of X, Y . Polynomial z must be of course stable to satisfy
third condition in equation (4.8).

2. Solvability. Assume that N,M ∈ S are coprime — requirement on
solvability of the Bezout identity, see section 4.1. Although coprime
functions on S cannot have common unstable zeros, common stable
zeros are not excluded. It implies that it is possible to have polynomi-
als nn, mn that are not coprime6. Let g be a greatest common divisor
of polynomials nn, mn. Polynomial g must be a factor of the right
hand side of the polynomial Diophantine equation (4.8) to guarantee
solvability of this equation. Thus g must be a factor of z. We can do
this because polynomial g is stable under initial assumption.

If N,M are a product of stable coprime factorization of some G ∈
F, then common factors can be canceled. If general arguments are
allowed, the stability of g decides about coprimeness of N,M or in
another words about solvability of Bezout identity.

3. Properness of X, Y . Polynomial Diophantine equation (4.8) will be
solved by Sylvester matrix method. It will be shown here, that the
condition on properness functions X, Y together with condition on
solvability Sylvester matrix equation gives us a lower bound on the
degree of polynomial z under the choice xd = yd = z.

First, let us simplify notation of the equation (4.8)

axn + byn = cz, (4.9)

where a = n̂nm̂d, b = m̂nn̂d, c = n̂dm̂dh, gz = xd = yd, nn = gn̂n,
mn = gm̂n md = hm̂d, nd = hn̂d. Polynomial g is a greatest common
divisor of nn, mn and polynomial h is a greatest common divisor of md,

6 in the ring of polynomials
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nd. It means that common factors was canceled in the equation (4.9).
We can rewrite equation (4.9) to the form of Sylvester matrix equation


a0 0 · · · 0 0 b0 0 · · · 0 0
a1 a0 · · · 0 0 b1 b0 · · · 0 0
...

...
...

...
...

...
...

...
0 0 · · · aδa aδa−1 0 0 · · · bδb bδb−1

0 0 · · · 0 aδa 0 0 · · · 0 bδb


︸ ︷︷ ︸

S



xn,0

...
xn,δx

yn,0

...
yn,δy


=

 cz0

...
czδcz

 ,

(4.10)

where S is a column Sylvester matrix, that is composed of coeffi-
cients of polynomials a, b and δa = deg a, δb = deg b, . . . Polynomials
a and b are coprime, thus the Sylvester matrix S is nonsingular, see
[7]. According to this, number of columns of S must be at least the
same as number of rows to guarantee solvability of the equation (4.10).
Precisely

rows (S) = deg c + deg z + 1
= deg a + deg x + 1 = deg b + deg y + 1,

columns (S) = deg x + deg y + 2,

rows (S) ≤ columns (S). (4.11)

From (4.11) and from condition on properness X, Y we obtain

deg z ≥ deg a + deg b− deg c− 1, (4.12)
deg z ≥ deg x = deg c + deg z − deg a, (4.13)
deg z ≥ deg y = deg c + deg z − deg b. (4.14)

Now two situations may appear: (i) functions N,M both have relative
degree zero. Then deg a = deg b = deg c. Degree of z can be chosen
as deg z := deg a − 1 (the lowest value in the inequality (4.12)). It is
obtained from inequalities (4.13),(4.14) that condition on properness
of functions X, Y is satisfied under this choice, because deg x = deg z,
deg y = deg z. (ii) Now assume that deg a < deg c = deg b. It cor-
responds to situation that function N is strictly proper7. The choice
deg z := deg a− 1 fails because

deg x = deg c + deg z − deg a < deg z ! (4.15)

Thus X is not proper. The equation (4.15) must be relaxed: deg x =
deg c + deg z − deg a + ∆, where ∆ > 0. Situation where M is strictly

7N(∞) = 0; only one of N, M may be strictly proper to be coprime
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proper and deg b < deg c = deg a is similar. So the following estima-
tions of degrees of unknown polynomials z, xn, yn are obtained:

deg z = max(deg a,deg b)− 1, (4.16)
deg xn = deg z, (4.17)
deg yn = deg z. (4.18)

If we satisfy all of the previous given limitations, the polynomial z can be
chosen arbitrarily. Finally the Sylvester matrix equation (4.10) is solved to
obtain polynomial xn, yn.

Follows a summary of the method.

Algorithm 2
Input: N,M ∈ S.
Output: X, Y ∈ S, such that NX + MY = 1.

1. Compute a greatest common divisor g = gcd (nn,mn).

2. If g is not stable, then Bezout identity doesn’t have solution.

3. Compute polynomials a = n̂nmd, b = m̂nnd, c = ndmd.

4. Let δz = max(deg a,deg b)− 1, δx = δz, δy = δz.

5. Compute z = (s + 1)δz.

6. Compose and solve Sylvester matrix equation (4.10)

7. Finally compute X = xn/(zg), Y = yn/(zg).

2

Following two examples demonstrate the described algorithm.

Example 5 Suppose system G(s) = 1/s; we are looking for a set of all
stabilizable controllers. Let us factorize the system as G(s) = N/M where
N = 1/(s + 1), M = s/(s + 1). Polynomial z may be chosen as z = 1.
Equation (4.9) reads

xn + syn = s + 1.

Solve the Sylvester equation (4.10)[
0 1
1 0

] [
xn,0

yn,0

]
=
[
1
1

]
.

The solution is X = 1, Y = 1. The set of all stabilizable controllers is

C =
1 + s

s+1W

1− 1
s+1W

, W ∈ S.

2
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Example 6 Now let us have the functions

N(s) =
s + 3

(s + 1)(s2 + 0.5s + 1)
, M(s) =

s(s + 3)
s2 + 0.5s + 1

.

We are looking for functions X, Y ∈ S such that NX + MY = 1. Although
given functions have common factor, for instance U = (s + 3)/(s + 1), they
are coprime because U is a unit8 on S. Greatest common divisor of nn,mn

is g = s + 3. Equation (4.9) is of the form

(s + 3)xn + s(s + 3)(s + 1)yn = (s + 1)(s2 + 0.5s + 1)z.

Degree of z must be at least 2 because

δz = max(deg a,deg b)− 1 = max(1, 3)− 1 = 2,

and z has to be a multiple of (s+3). Our choice is for instance z = (s+3)2.
Thus the polynomial Diophantine equation is obtained

(s + 3)xn + (s3 + 4s2 + 3s)yn = s5 + 7.5s4 + 19.5s3 + 23.5s2 + 19.5s + 9.

Diophantine equation will be solved by Sylvester method

3 0
1 3 3 0

1 3 4 3 0
1 1 4 3

1 4
1





x0

x1

x2

y0

y1

y2


=



9
19.5
23.5
19.5
7.5
1


.

The result is:

X =
−3s2 + 3
(s + 3)2

, Y =
s2 + 3.5s + 5.5

(s + 3)3
.

Please note that the common factor of a and b need not be canceled which
is beneficial from the numerical point of view. 2

4.4.1 Numerical experiments

It was shown in section 4.2, that the first step in the process of controller
synthesis is the choice of appropriate stable coprime factorization of a given
system. In the previous section 4.4, we saw that during solving Bezout
identity the appropriate stable denominator polynomial had to be chosen.
The question is, what is an appropriate choice, how to place zeros of this
polynomials. Should it depend on zeros and poles of a given system? The
only condition, from the theoretical point of view, is that this zeros must

8has an inverse
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lie in the stability area. In this section the results of numerical experiments
will be presented. They demonstrate two things: numerical properties of the
method described in the previous section, and the results of our effort to find
appropriate polynomials that are to be chosen. Criterion is the numerical
efficiency. It will be shown that the choice of appropriate stable polynomial
has a big influence on numerical accuracy.

For discrete-time systems the region of stability is a unit disc. In this
area, the one significant point can be found. This point is the origin of the
complex plane. The polynomial that has multiple zero in origin has the
form zn, where n is the multiplicity. This polynomial is advantageous for
computations. Unfortunately for continuous-time systems, where the region
of stability is the open left half plane, such convenient point doesn’t exist.
In the literature the polynomial (s + 1)n is widely used for this purpose
without a word of explanation.

Suppose a second-order polynomial p(s) = s2 + 2ζωns + ω2
n, then ωn is

natural frequency and ζ is relative damping. In the following, four types
of testing polynomials will be used: (P1) all zeros have the same natural
frequency ωn and uniformly varying relative damping ζ, (P2) zeros have
the same ζ and varying ωn, (P3) multiple real zeros, (P4) zeros are taken
randomly. Figure 4.2 illustrates these four cases. If stable polynomial is
required, the only stable part of this patterns will be taken.

First experiment: the dependence of numerical results on the degree of
input arguments was tested. Tested systems N,M are generated as follows:
numerators were random polynomials of degree δ, polynomials of type P4,
and denominators were a polynomials of degree δ with natural frequency
ωn = 1 and relative damping 1 ≤ ζ ≤

√
2/2, thus polynomials of type P2.

The Bezout identity NX + MY = 1 was solved for various δ. As a measure
of numerical efficiency the norm r = ‖NX + MY − 1‖∞ was taken. The
results are presented in table 4.1.

δ 5 6 7 9 10 13
r 0 8.6e-11 8.9e-9 2.0e-8 3.8e-7 > 1

Table 4.1: Results of the first experiment

Second experiment: how numerical results depend on chosen stable fac-
torization was studied. Tested systems G(s) = n(s)/m(s) were generated as
follows: Zeros of polynomial n(s) had the same natural frequency ωn = α,
relative damping was from interval ζ ∈ 〈−1, 1), polynomial of type P1. Ze-
ros of polynomial m(s) had the same relative damping ζ =

√
2/2, real parts

of poles were from interval 〈−α, α〉, polynomial of type P2. Both of these
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Figure 4.2: Patterns of testing polynomials P1–P4

polynomials were unstable. Tested system was factorized:

G(s) =
N(s)
M(s)

, N(s) =
n(s)
z(s)

, M(s) =
m(s)
z(s)

,

where z(s) is a stable polynomial of the type P1 with ωn = β or P2 with
ζ =
√

2/2 and real parts of zeros ∈ (−β,−0.1) or P3 with multiple zero in
−β. Finally the Bezout identity NX + MY = 1 was solved for various α,
β and for various types of z(s). As the measure of numerical efficiency was
the norm

r = ‖NX + MY − 1‖∞. (4.19)

The whole table of results, (490 × 4 entries), is on the attached CD-ROM.
The data presented in table 4.2 contains the maximum degree δ for each
combination of α and β such that r < 1e− 4.

It is obvious, from the experiments, that this algorithm is efficient for
systems G(s) of degree less than seven, with poles and zeros in absolute
value close to 1. Hence we can say that for this algorithm a quite appropriate
choice is (s+1)n as commonly used in literature. Of course this leads to the
Sylvester system of equations Sx = b with S ill conditioned due to the tight



28 CHAPTER 4. DIOPHANTINE EQUATIONS

α 0.1 0.1 0.1 0.1 0.1 0.1 0.1
β 0.1 0.32 1 3.2 10 32 100
maxz(s)∈P1 δ 6 10 6 4 2 2 2
maxz(s)∈P2 δ 6 10 6 4 4 2 2
maxz(s)∈P3 δ 6 10 6 4 2 2 2
α 0.32 0.32 0.32 0.32 0.32 0.32 0.32
β 0.1 0.32 1 3.2 10 32 100
maxz(s)∈P1 δ 6 14 10 6 4 2 2
maxz(s)∈P2 δ 8 10 12 8 4 4 4
maxz(s)∈P3 δ 6 14 10 6 4 2 2
α 1 1 1 1 1 1 1
β 0.1 0.32 1 3.2 10 32 100
maxz(s)∈P1 δ 6 12 16 8 4 4 2
maxz(s)∈P2 δ 6 10 16 8 6 4 4
maxz(s)∈P3 δ 6 12 14 6 4 2 2
α 3.2 3.2 3.2 3.2 3.2 3.2 3.2
β 0.1 0.32 1 3.2 10 32 100
maxz(s)∈P1 δ 6 6 10 8 4 4 2
maxz(s)∈P2 δ 6 6 10 8 6 4 4
maxz(s)∈P3 δ 6 6 10 6 4 2 2
α 10 10 10 10 10 10 10
β 0.1 0.32 1 3.2 10 32 100
maxz(s)∈P1 δ 2 6 6 6 4 4 2
maxz(s)∈P2 δ 2 4 6 6 6 4 4
maxz(s)∈P3 δ 2 6 6 6 4 2 2
α 32 32 32 32 32 32 32
β 0.1 0.32 1 3.2 10 32 100
maxz(s)∈P1 δ 2 2 6 6 4 4 2
maxz(s)∈P2 δ 2 2 4 6 6 4 4
maxz(s)∈P3 δ 2 2 6 6 4 2 2
α 100 100 100 100 100 100 100
β 0.1 0.32 1 3.2 10 32 100
maxz(s)∈P1 δ 2 2 2 6 4 4 2
maxz(s)∈P2 δ 2 2 2 2 6 4 4
maxz(s)∈P3 δ 2 2 2 6 4 2 2

Table 4.2: Results of the second experiment
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alternating magnitudes of the combinator numbers in the (s+1)n expansion.
Nevertheless, as experimentally proved, equally numerical difficulties appear
for other alternative denominator patterns as well.

To evaluate the norm (4.19) the Matlab command

r = norm(NX+MY-1,inf)

was normally used. However, in certain cases (namely for higher degrees),
the computation of NX + MY − 1 failed and we used the control systems
toolbox function nyquist to evaluate estimation of this norm instead.

4.5 State-space based algorithm

Here we present a new algorithm for computing Bezout identity based on
state-space description of the systems. The main idea is, that Bezout iden-
tity represents serial and parallel connection of four systems. The task is to
find two of them, such that the overall system has transfer function equal
to identity. This algorithm is applicable to MIMO systems without any
restrictions.

Consider state-space representation of the systems in the form

ẋ(t) = Ax(t) + Bu(t), (4.20)
y(t) = Cx(t) + Du(t).

State matrices A,B, C, D will be marked by the index M,N,X, Y to be
clear which system they stand for.

Figure 4.3: Schema that illustrates the main idea

Thus assume that equation G(s) = N(s)X(s)+M(s)Y (s) = I represents
serial and parallel connection of four systems. System matrices of the overall
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system G(s) are composed of the connected system matrices in this way

AI =


AX 0 0 0

BNCX AN 0 0
0 0 AY 0
0 0 BMCY AM

 , (4.21)

BI =


BX

BNDX

BY

BMDY

 , (4.22)

CI = [DNCX CN DMCY CM ] , (4.23)
DI = DNDX + DMDY , (4.24)

and we require that this overall system has transfer function G(s) = I. It
implies that overall system cannot have any dynamics. But we can see (4.21)
that poles of G(s) are given by the poles of the systems M,N,X, Y . There-
fore we must find systems X(s), Y (s) ∈M(S) such that dynamic of G(s) is
hidden. It means that poles of the system are unobservable and/or uncon-
trollable. So we are going to deal with controllability and observability of
the G(s) in the next paragraph.

Lemma 2 [7] Suppose system G(s) and its state-space description (4.20).
Than the order of the controllable part of this system is

n1 = rank C,

the order of the observable part is

n2 = rank O,

and the order of the controllable and observable part of this system is

n3 = rank OC,

where C is controllability matrix and O is observability matrix of the system
G(s). 2

The overall system G(s) cannot have any controllable and observable part,
n3 = 0, and therefore the product of the observability and controllability
matrix must be a zero matrix OC = 0. Definition of the controllability and
observability matrix is

O =


CI

CIAI

CIA
2
I

...

 , C = [BI AIBI A2
IBI · · · ] ,
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and the product OC

OC =


CIBI CIAIBI · · ·

CIAIBI CIA
2
IBI · · ·

CIA
2
IBI CIA

3
IBI · · ·

...
...

. . .

 .

Thus we obtained a system of matrix equations of the form

CIA
i
IBI = 0. (4.25)

The power of the matrix AI can be rewritten as

An
I =


An

X 0 0 0∑n−1
i=0 Ai

NBNCXAn−1−i
X An

N 0 0
0 0 An

Y 0
0 0

∑n−1
i=0 Ai

MBMCY An−1−i
Y An

M

 ,

and the product CIA
n
I BI reads

CIA
n
I BI = DNCXAn

XBX +

+ CN

n−1∑
i=0

Ai
NBNCXAn−1−i

X BX +

+ CNAn
NBNDX + DMCY An

Y BY +

+ CM

n−1∑
i=0

Ai
MBMCY An−1−i

Y BY +

+ CMAn
MBMDY . (4.26)

Let us present two simple examples that bring little light into equations we
have presented above and indicate a further way.

Example 7 Suppose we have the following task: find all stabilizable con-
trollers that stabilize the system which is composed of two serial connected
integrators G(s) = 1/s2. First we must factorize given system:

G(s) =
1
s2

=
1

(s+1)2

s2

(s+1)2

=
N(s)
M(s)

.

Second step, find a state-space representation of the systems N(s),M(s).
We choose this one:

AN =
[
−1 1
0 −1

]
, BN =

[
0
1

]
, CN = [ 1 0 ] , DN = 0,

AM =
[
−1 1
0 −1

]
, BM =

[
0
2

]
, CM = [ 1/2 −1 ] , DM = 1.
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Now the system matrices AX , AY must be chosen. It is the same operation
as choosing denominators in previous algorithm, see section 4.4. System
matrices must be stable and a minimum size must be at least one, see 4.5.1.
Our choice is

AX = −1, AY = −1.

From equation (4.24) we obtain

DI = DNDX + DMDY = 0DX + 1DY = 1⇒ DY = 1.

Next the system of equations (4.26) will be solved

CIBI = CY BY − 2 = 0⇒ CY BY = 2,

CIAIBI = −3CY BY + DX + 3 = DX − 3 = 0⇒ DX = 3,

CIA
2
IBI = CXBX + 6CY BY − 2DX − 4 = 0⇒ CXBX = −2.

So we have matrix DX = 3, and products CXBX = −2, CY BY = 2. But
this is all we need to compose transfer functions of systems X(s), Y (s)

X(s) =
CXBX

s + 1
+ DX =

3s + 1
s + 1

,

Y (s) =
CY BY

s + 1
+ DY =

s + 3
s + 1

.

It is easy to verify that this is a solution of the Bezout identity. All stabi-
lizable controllers can be obtained from (4.4). 2

The whole calculation was very simple because the system matrices AX , AY

were scalar. Let us investigate a little bit complicated situation.

Example 8 The task will be changed to obtain systems X(s) and Y (s) of
order two. For instance let us take

N(s) =
1

(s + 1)(s + 2)
, M(s) =

s2

(s + 1)2
.

State-space description of the systems N(s) and M(s) is

AN =
[
−1 0
0 −2

]
, BN =

[
1/2
1/2

]
, CN = [ 2 −2 ] , DN = 0,

AM =
[
−1 1
0 −1

]
, BM =

[
0
2

]
, CM = [ 1/2 −1 ] , DM = 1.

Choose systems matrices AX , AY

AX = AY =
[
−1 1
0 −1

]
.
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From (4.24) we obtain

DI = 0DX + 1DY = 1⇒ DY = 1.

Next solve the system of matrix equations (4.26)

CIBI = CY BY − 2 = 0,

CIAIBI = DX + CY AY BY − 2CY BY + 3 =

= DX − 3CY BY + CY

[
0 1
0 0

]
BY + 3 = 0,

CIA
2
IBI = CXBX − 3DX + CY A2

Y BY − 2CY AY BY + 3CY BY − 4 =

= CXBX − 3DX + 6CY BY − 4CY

[
0 1
0 0

]
BY − 4 = 0,

CIA
3
IBI = −4CXBX + CX

[
0 1
0 0

]
BX + 7DX − 10CY BY +

+ 10CY

[
0 1
0 0

]
BY + 5 = 0,

CIA
4
IBI = 11CXBX − 5CX

[
0 1
0 0

]
BX − 15DX +

+ 15CY BY − 20CY

[
0 1
0 0

]
BY − 6 = 0.

We took advantage of the Jordan form of the matrices AX a AY . Let matrix
U be a square matrix with ones above the diagonal

U =
[
0 1
0 0

]
,

and λ be an eigenvalue of the matrix AX , we obtain:

AX = λI + U, A2
X = λ2I + 2λU.

The result of the system equations is

CXBX = 1, CXUBX = −2, DX = 3,

CY BY = 2, CY UBY = 0.

This is, similarly to the previous example, all we need to compute the trans-
fer functions X(s), Y (s).

X(s) = CX(sI −AX)−1BX + DX = CX
adj (sI −AX)
det(sI −AX)

BX + DX =

=
CXadj

[
s + 1 1

0 s + 1

]
BX

(s + 1)2
+ DX =
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=
(s + 1)CXBX + CXUBX

(s + 1)2
+ 3 =

=
3s2 + 7s + 2

(s + 1)2
,

Y (s) =
s2 + 4s + 3

(s + 1)2
.

It is easy to proof that these functions X(s), Y (s) satisfy the Bezout identity
N(s)X(s) + M(s)Y (s) = 1. 2

Let us try to generalize results from previous examples. We are looking
for matrices AX , BX , CX , . . . such that Bezout identity is satisfied. First step
is the choice of system matrices AX , AY . This step corresponds to the choice
of denominator in the previous transfer-function method see section 4.4. The
matrices must be chosen such that eigenvalues lie in the stability region. In
the previous examples we can see that it was important to have the matrices
in Jordan canonical form. We consider further that we can choose AX , AY

as a one Jordan block (it is not always possible, in the previous method we
have seen that sometimes it is necessary to eliminate common stable zeros
see section 4.4). Later we will show extension for more than one Jordan
block.

It is known that power of a matrix in Jordan canonical form can be
written out as a sum of matrices:

Jn =
k∑

i=0

(
n

i

)
λn−iU i, (4.27)

where k = min(δA − 1, n), λ is eigenvalue of J and U is a square matrix of
the appropriate size with ones above the diagonal

U =


0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .

 ,

System of equations (4.26) is generally nonlinear in unknowns BX , CX ,
DX , BY , CY . However, powers of system matrices AX , A2

X . . . can be rewrit-
ten according to (4.27) to obtain a system of linear equations in unknowns
BXCX , BXUCX , BXU2CX , . . . that we are able to solve. Transfer functions
of the resulting systems X, Y could be obtained from equation

X(s) = CX(sI −AX)−1BX + DX =

= CX
adj (sI −AX)
det(sI −AX)

BX + DX =

=
∑δ−1

i=0 (s− λ)δ−1−iCXU iBX

det(sI −AX)
+ DX , (4.28)
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where δ is a size of AX . Transfer function of the system Y (s) can be obtained
similarly.

Now consider system matrices of X and Y in the multi-block Jordan
form:

AX = AY =


J1

J2
. . .

Jm

 , BX,Y =


B1

B2
...

Bm

 ,

CX,Y = [C1 C2 · · · Cm ] ,

(4.29)

where Ji is a Jordan block related to eigenvalue λi. The term CXAn
XBX

falls apart
CXAn

XBX = CX1J
n
1 BX1 + CX2J

n
2 BX2 + · · · , (4.30)

term CY An
Y BY similarly. Thus the only extension of algorithm for system

matrices AX , AY build of more than one Jordan block lies in more unknowns.
The summary of the suggested algorithm follows in the form of a step-

by-step procedure.

Algorithm 3
Input: matrices N,M ∈M(S) of appropriate dimensions
Output: matrices X, Y ∈M(S) such that NX + MY = I

1. Transform matrices N,M into state-space form.

2. Choose system matrices AX , AY in Jordan canonical form, such that
eigenvalues lie in the stable area. Denote the size of these matrices δ.
Size of these matrices see 4.5.1.

3. Compose system of linear matrix equations (4.26) using (4.27), such
that unknowns are CXBX , CXUBX , CXU2BX , . . . , CXU δBX , CY BY ,
CY UBY , . . .CY U δBY , DX , DY .

4. Solve the system of equations

5. Compute transfer matrices of X, Y according to (4.28)

2

4.5.1 Degree estimation of system matrices AX , AY

The minimal size of these matrices can be derived from the theory of state
stabilization of the systems. For SISO systems we can imagine the system
G(s) = N/M that can be stabilized by a controller of order n−1, where n is
the order of the system G(s). This controller is composed from a reduced-
order observer and a state-feedback. For MIMO system the reasoning is
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similar and the minimal order of the controller is n − rank C, where C is
output matrix of the state-space description of system G(s), see [7]. Thus
the minimal order of system matrices AX and AY must be n− rank C.

4.5.2 Numerical experiments

We will show numerical properties of the presented algorithm by a simple
experiment. Tested system G(s) was generated as a random system of order
δ, with two inputs and two outputs by Matlab commands:

A = rand(d); B = rand(d,2);
C = rand(2,d); D = rand(2,2);
G = ss(A,B,C,D);

System was factorized as G(s) = NM−1, where N,M ∈M(S) are coprime.
In Matlab:

[N,M,X,Y,Ntilde,Mtilde,Xtilde,Ytilde] = dcf(G);

where dcf is our doubly coprime factorization function, see section 5.3 for
details. Finally the Bezout identity was solved by function axby4 that is the
implementation of this algorithm:

[X,Y] = axby4(Mtilde,Ntilde);

The results for orders δ = 2, . . . , 13 are presented in table 4.3. As a measure

δ 2 3 4 5 6 7
R 0 3.9e-15 2.4e-13 3.7e-14 1.5e-13 3.3e-10
δ 8 9 10 11 12 13
R 6.3e-08 8.1e-07 1.1e-07 1.7e-03 > 1 > 1

Table 4.3: Results of the numerical test

of numerical performance the infinity norm R = ‖NX + MY − I‖∞ was
chosen.

Although this method is original and can handle MIMO systems, it is
obvious from the test that it is satisfactory usable for systems of order less
than eleven. So this method does not significantly outperform the polyno-
mial algorithm of section 4.4 in the SISO case, nevertheless, it works for
MIMO systems in the contrast. As we will explain in this paragraph, this is
not coincidence because the cause is similar. Let Sx = b be a matrix expres-
sion of the systems of equations (4.26), where unknowns x are CXU iBX and
CY U iBY . The entries of matrix S are build from powers of stable matrices
and it can be seen from equation (4.27), that we can express them as a sum
of combination numbers. Consequence is, that the difference between the
elements of matrix S may be huge and such matrix is typically ill condi-
tioned. This situation illustrates graph 4.4 where the one typical matrix S
is vizualized. Its condition number with respect to inversion is 5.17e + 20.
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Chapter 5

Doubly coprime factorization

We found, during the work on Bezout identity, that there is a related and
in a sense more general task called Doubly coprime factorization (DCF) or
sometimes generalized Bezout identity [13, 18]. This task connects coprime
factorization of a given system together with Bezout identity in a block
matrix equation. It seems to be more efficient and sensible to compute DCF
than to compute coprime factorization and Bezout identity separately.

5.1 Theory

In the following theorem the existence conditions of DCF are presented.

Theorem 1 ([18] The existence of doubly coprime factorization)
Suppose system G(s) ∈M(F), and let G(s) = NM−1 = M̃−1Ñ be any right
(respectively left) coprime factorization of G(s). Suppose X, Y ∈ M(S)
satisfy XN + Y M = I. Then there exist X̃, Ỹ ∈M(S) such that[

Y X
−Ñ M̃

] [
M −X̃
N Ỹ

]
=
[
I 0
0 I

]
. (5.1)

The ordered pair of left hand side matrices in (5.1) is referred to as a doubly
coprime factorization. 2

Let us refer to a few notes

1. It is obvious that the block matrix equation (5.1) contains a left G(s) =
M̃−1Ñ (respectively right G(s) = NM−1) coprime factorization of
G(S), a left ÑX̃ +M̃Ỹ = I (respectively right XN +Y M = I) Bezout
identity and a left C(s) = X−1Y (respectively right C(s) = Ỹ X̃−1)
coprime factorization of the stabilizable controller.

2. One must appreciate that DCF is more then four separate equations,
because once N,M, Ñ, M̃ have been selected, every X, Y such that
XN + Y M = I determines a unique X̃, Ỹ such that (5.1) holds.

39
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3. The existence of stable coprime factorization of the system G(s) =
M̃−1Ñ = NM−1 implies that the system G(s) must be stabilizable
and observable.

5.2 Existing algorithms

In [15] an algorithm is described for computing DCF that is based on the
transfer matrix of a given system G(s). The main idea of this algorithm is
as follows. Suppose, we can solve generalized Bezout identity of a system
G(s) in the ring of polynomial matrices[

Q −Ũ
P Ṽ

] [
V U
−P̃ Q̃

]
=
[
I 0
0 I

]
,

where P,Q,U, V, P̃ , Q̃, Ũ , Ṽ are polynomial matrices and G(s) = PQ−1 =
Q̃−1P̃ . Then DCF is obtained in four steps:

Algorithm 4
Input: system G(s) ∈M(F)
Output: systems N,M,X, Y, Ñ , M̃ , X̃, Ỹ ∈M(S)

1. Find polynomial matrices Q0 and Q̃0 such that N = PQ−1
0 ,M =

QQ−1
0 , Ñ = Q̃−1

0 P̃ , D̃ = Q̃−1
0 Q̃ gives a proper stable factorization of

G(s).

2. Compute N,M, Ñ, M̃ .

3. Compute polynomial matrices R and E such that

(s + 1)τQ0U = R(s + 1)τ D̃ + E,

where τ is max. degree in Q̃. Let X = (s + 1)−τE

4. Compute

Y = Q0V + RÑ, Ỹ = Ṽ Q̃0 + NR, X̃ = ŨQ̃0 −DR.

2

Algorithms for computations with polynomial matrices are required. Namely
the generalized Bezout identity solver and a procedure for division of two
polynomial matrices.

In contrast, another factorization method presented in [13, 18] is fully
based on state-space description and on state-space methods. We have a
system G(s) with the state-space description:

ẋ(t) = Ax(t) + Bu(t), (5.2)
y(t) = Cx(t) + Du(t).

The following theorem shows connection between stabilizable state-feedback,
full-observer and DCF.
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Theorem 2 [18] Given system (5.2), suppose the pairs (A,B), (A,C) are
stabilizable and detectable. Select constant matrices F and K such that the
matrices Ac = A − BF , Ao = A − KC are both Hurwitz1. Then G =
NM−1 = M̃−1Ñ and[

Y X
−Ñ M̃

] [
M −X̃
N Ỹ

]
=
[
I 0
0 I

]
, (5.3)

where

Ñ = C(sI −Ao)−1(B −KD) + D,

M̃ = −C(sI −Ao)−1K + I,

X̃ = F (sI −Ac)−1K,

Ỹ = (C −DF )(sI −Ac)−1K + I,

N = (C −DF )(sI −Ac)−1B + D,

M = −F (sI −Ac)−1B + I,

X = F (sI −Ao)−1K,

Y = F (sI −Ao)−1(B −KD) + I.

2

In the next section a numerically reliable algorithm for computing DCF will
be developed that uses theorem 2.

We found that a function for computing DCF is implemented in software
SciLab [6]. Name of this function is dcf and it is a component of the robust
toolbox. It is also based on theorem 2 and uses pole-placement algorithm.
The right coprime factorization G(s) = NM−1 and the right Bezout identity
XN + Y M = I is computed separately from the left coprime factorization
and the left Bezout identity. It means that pole-placement algorithm must
be executed four times. Therefore this procedure is less effective than ours,
described in 5.3, because we compute pole-placement only twice. Moreover
generally it is not possible to compute the left and the right part of DCF
separately, see theorem 1. The equation (5.1) holds, in this case, only if
F = F̃ and K = K̃, where F,K are stabilizable state-feedback matrices
computed for the left factorization and F̃ , K̃ for the right factorization.

5.3 A Schur method

In the theorem 2 it was shown how to compute DCF if we find stabilizable
state-feedback matrices F and K. We will present, in this section, sequential
pole-shifting algorithm using the real Schur form that solve this problem.
This algorithm was presented by Varga for pole assignment problem in [16]

1A matrix is Hurwitz if all its eigenvalues have negative real parts
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and for computation of coprime factorizations of rational matrices in [17].
The main idea is that a matrix in the Schur form is triangular with its eigen-
values on the diagonal. Moreover, it is possible to arrange the eigenvalues in
an arbitrary sequence, see [4]. Numerical reliability is due to the fact that
only orthogonal transformations are used.

We extended this pole-shifting algorithm for the DCF task. Our exten-
sion lies in the following. It is necessary to compute the state-feedback F
and the full-observer matrix K in separate processes because during compu-
tation of the matrix K the eigenvalues must be ordered in reverse direction
(contrary to the matrix F ). As a consequence, at the end of the pole-shifting,
we obtain two stable systems, expressed in different bases. So we have to
keep using orthogonal transformations to be able to compose DCF finally.

Let us suppose a system G(s) and its state-space representation (5.2).
Consider the state matrix A in the ordered real Schur form

A =
[
A11 A12

0 A22

]
, B =

[
B1

B2

]
. (5.4)

It means that A is a real block upper triangular matrix with 1× 1 and 2× 2
blocks on the diagonal. The 1 × 1 blocks contain the real eigenvalues of A
and the 2 × 2 blocks contain the complex conjugate pair of eigenvalues of
A. Ordered means that the block A22 is 1× 1 or 2× 2 and the eigenvalues
don’t lie in the stability region. Now we can find stabilizable state-feedback
matrix F in the form F = [0, F2] such that the eigenvalues of the matrix
A22+B2F2 lie in the stable region. The matrix with closed loop, in addition,
stay in the real Schur form.

A + BF =
[
A11 A12 + B1F2

0 A22 + B2F2

]
. (5.5)

It is advantageous because we can find orthogonal matrix Q such that Q(A+
BF )QT is again in ordered real Schur form. Therefore it is possible to repeat
previous steps until we have a stable state matrix.

The same process can be used to find a stabilizable full-observer matrix
K. Consider state representation (5.2) of a system G(s), where system
matrix A is in the ordered real Schur form

A =
[
A11 A12

0 A22

]
,

C = [C1 C2 ] , (5.6)

however now the ordered means that eigenvalues of the block A11 (size 1×1
or 2 × 2) don’t lie in the stable region. So we can find observer matrix in
the form K = [KT

1 , 0]T , such that the eigenvalues of the matrix A11 + K1C1

lie in the stable region. The system matrix with closed loop remain in the
real Schur form.

A + KC =
[
A11 + K1C1 A12 + K1C2

0 A22

]
. (5.7)
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At the end of this process we obtain two stable systems[
sI − U(A + BF )UT UT B

CU D

]
and

[
sI − V (A + KC)V T V T B

CV D

]
,

where U and V are accumulated orthogonal similarity transformations. The
problem is that these systems are expressed in different bases. Therefore we
have to store similarity transformations used during the stabilization to be
able to transform systems from one base to another. Finally we can apply
theorem 2 to compose DCF. The ideas enlightened above give rise to the
following procedure.

Algorithm 5
Input: system G(s) ∈M(F)
Output: systems N,M,X, Y, Ñ , M̃ , X̃, Ỹ ∈M(S)

1. Compute the orthogonal matrix Q such, that QAQT is in the ordered
real Schur form.

2. Find stabilizing state-space feedback F .

(a) Set Ac = QAQT , Bc = QT B, Cc = CQ, F = 0, W = I, q = 0

(b) If q = n go to step 3

(c) Let A22 be the last elementary block of the matrix Ac of size k
(k = 1 or 2) and let B2 be the last k rows of the matrix Bc. If
‖B2‖ < ε (ε a given tolerance) then q ← q + k and go to step 2b.
(unstabilizable and uncontrollable eigenvalue).

(d) If the eigenvalue of A22 is not stable than compute F2 such that
A22 + B2F2 is stable.

(e) Compute Ac← Ac + Bc[0, F2], F ← F + [0, F2].

(f) Compute orthogonal matrix U to move next eigenvalue to the
last diagonal position of matrix Ac. Next update Ac← UAcUT ,
Bc← UT Bc, Cc← CcU , q ← q + k, W ←WU . Go to step 2b.

3. Find stabilizing observer K.

(a) Set Ao = QAQT , Bo = QT B, Co = CQ, K = 0, q = 0.

(b) If q = n go to step 4.

(c) Let A11 be the first elementary block of matrix Ao of size k (k = 1
or 2) and C1 be the first k columns of the matrix Co. If ‖C1‖ < ε
(ε a given tolerance) then q ← q + k and go to step 3b. (Not
observable eigenvalue).

(d) If the eigenvalue of A11 is not stable, then compute K1 such that
the A11 + K1C1 is stable.
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(e) Compute Ao← Ao + [KT
1 , 0]T Co, K ← K + [KT

1 , 0].

(f) Compute orthogonal matrix V to move next eigenvalue on the
first diagonal position of the matrix Ao. Update Ao← V AoV T ,
Bo← V T Bo, Co← CoV , q ← q+k, W ← V T W . Go to step 3b.

4. Compute

N =

[
sI −Ac Bc

Cc + DF D

]
, Ñ =

[
sI −Ao Bo + KD

Co D

]
,

M =

[
sI −Ac Bc

F I

]
, M̃ =

[
sI −Ao K

Co I

]
,

X =

[
sI −Ao K

FW T O

]
, X̃ =

[
sI −Ac W T K

F O

]
,

Y =

[
sI −Ao Bo + KD

−FW T I

]
, Ỹ =

[
sI −Ac −W T K

Cc + DF I

]
.

2

Some notes follow:

1. It is clear that an arbitrary region of stability can be chosen. It must
be of course symmetrical with respect to real axis to preserve realness
of the involved systems. For instance this method could be used for
discrete systems where the region of stability is a unit disc.

2. Numerical reliability of this algorithm is due to the use of orthogonal
transformations.

3. Next numerical advantage rises from the fact that only unstable poles
are handled. Stable poles are left without any change.

A first few steps that cohere with ordering of the real Schur form will be
explained in the following example

Example 9 Consider system2

G(s) =
1

s(s− 1)(s + 1)

[
s(s + 1)2 s(s− 1)2

s + 1 (s + 1)(s− 1)

]
,

and its minimal state-space representation:

A =

−1 0.4082 0.1543
0 0 0.378
0 0 1

 , B =

 0.1091 0.5455
0.2673 −0.5345
−0.7071 0

 ,

C =
[
−2.619 1.069 −2.828

0 −1.871 −0.7071

]
, D =

[
1 1
0 0

]
.

2this system was used as example in [15]
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We can see, that system matrix A is already in the real Schur form. Diagonal
entries are poles of system G(s): -1, 0, +1. Thus the system is unstable. At
first, we are looking for a matrix F such that matrix A + BF is stable. The
lower right entry, A22 = 1, contains an unstable eigenvalue, thus the matrix
A is in the ordered real Schur form. Now it is easy to stabilize it:

A22 + B2F2 = 1 + [−0.7071 0 ]
[
f1

f2

]
= −1.

The result is for example F2 = [ 2.828 0 ]T . The resultant eigenvalue, in
case -1, must be chosen inside the stable region. So the state matrix is:

A← A + BF =

−1 0.4082 0.4629
0 0 1.134
0 0 −1

 ,

and must be reordered. We must compute orthogonal matrix U to swap
eigenvalues to the following position:

A← UAUT =

−1 2.665e− 15 0.6172
0 −1 −1.134
0 0 0

 ,

such U is

U =

 1 0 0
0 −0.75 0.6614
0 0.6614 0.75

 .

Moreover all system matrices must be transform B ← UT B, C ← CU ,
W ← WU . Now the unstable eigenvalue 0 is on the position A22 and it
must be stabilize. The same process is to be performed to obtain a full-
state observer matrix F , only the system matrix must be ordered in reverse
direction. 2

5.3.1 Implementation

A few notes about the implementation of the Schur algorithm. Algorithm
was implemented under Matlab [12] and Control systems toolbox. We used
two matrix functions that could have a fundamental influence on numerical
results: a standard real Schur decomposition and function for swapping
diagonal blocks in the real Schur form. For Schur decomposition we used a
Matlab built-in function named schur. For swapping diagonal blocks, the
algorithm presented in [2] was implemented.

Now let us consider, we are going to swap two blocks, A11 and A22, in a
matrix

A =
[
A11 A12

0 A22

]
.
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In the presence of rounding errors, the biggest concern in this algorithm is
solving the Sylvester equation:

A11X −XA22 = γA12.

It could possibly be ill-conditioned if A11 and A22 are close eigenvalues. In
the extreme case, if A11 and A22 have the same eigenvalues, the Sylvester
equation is singular and the solution X may be infinite. The suitable scalar
γ should prevent this problem.

So the care must be taken in the process of deciding which eigenvalues
swap next. It is obvious that if eigenvalues for stabilization will be taken in
the order from bottom-right to top-left, during the stabilization, and from
top-left to bottom-right, during the full-observer computing, only the stable
and unstable eigenvalues will be swapped in each step. As a consequence,
the worse case comes for systems that have stable and unstable poles close
to the bound of stability.

5.3.2 Numerical experiments

Eigenvalues close to stability bound test. To ensure that the numerical prob-
lem discussed in previous section was successfully solved we present this test.
Let

A =


5 8.686e− 1 4.165e− 1 8.308e− 1 3.578e− 1 4.458e− 1
0 −5e− 4 5.706e− 1 1.764e− 1 5.749e− 1 7.142e− 1
0 0 −5e− 4− ε 3.917e− 1 8.285e− 1 3.285e− 1
0 0 0 −5e− 4 + ε 6.478e− 1 1.897e− 1
0 0 0 0 −5e− 4 3.551e− 1
0 0 0 0 0 −5e− 4− ε


be a system matrix of the tested system G(s). Where ε = 2.2204e − 16.

Other system matrices was taken randomly

B = rand(6,2);
C = rand(2,6);
D = zeros(2,2);
G = ss(A,B,C,D);

The doubly coprime factorization was computed by the Matlab command:

[N,M,X,Y,Nt,Mt,Xt,Yt] = dcf(G,eps,0.5e-3);

Stability bound was moved to −5e − 4. The infinity norms of computed
results are:

‖XN + Y M − I‖∞ = 7.538172e− 09,
‖ÑX̃ + M̃Ỹ − I‖∞ = 1.922672e− 09,

which are quite good and proves the reliability of the ordered Schur method.
Numerical efficiency test. We tried to find dependence of results accu-

racy on the degree of input system. Tested systems were generated randomly
with two inputs and two outputs by Matlab commands:
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A=rand(d); B=rand(d,2);
C=rand(2,d); D=rand(2,2);
S=ss(A,B,C,D);

where d is the required degree. The doubly coprime factorization was com-
puted:

[N,M,X,Y,Nt,Mt,Xt,Yt]=dcf(S);

Finally the result norm was evaluated:

R_1=norm(Nt*Xt+Mt*Yt-eye(2),inf);
R_2=norm(X*N+Y*M-eye(2),inf);

You can see the results in table 5.1 for degrees δ = 1, 2, . . . , 30.

δ 1 2 3 4 5 6
R1 1.3e-16 2.6e-14 1.3e-15 3.0e-13 1.9e-13 7.2e-14
R2 1.3e-16 1.9e-14 1.3e-15 9.9e-14 5.6e-14 4.1e-14
δ 7 8 9 10 11 12
R1 4.0e-13 1.3e-13 1.0e-12 4.1e-11 1.3e-11 1.7e-11
R2 8.7e-13 4.5e-13 4.1e-12 2.8e-11 5.7e-11 7.4e-11
δ 13 14 15 16 17 18
R1 5.6e-12 5.4e-10 1.4e-10 1.0e-10 2.2e-09 1.7e-07
R2 5.5e-10 4.8e-08 2.2e-10 1.1e-09 1.6e-09 9.8e-08
δ 19 20 21 22 23 24
R1 2.1e-09 9.5e-08 4.8e-08 6.2e-09 1.2e-07 5.9e-06
R2 2.6e-09 1.3e-05 9.5e-08 4.4e-08 5.8e-07 3.9e-07
δ 25 26 27 28 29 30
R1 4.8e-07 4.7e-04 1.3e-04 4.9e-09 8.4e-06 9.1e-07
R2 1.3e-04 2.0e-02 7.1e-03 3.9e-08 2.8e-06 9.4e-06

Table 5.1: Results of numerical efficiency test

We can see from the table that this method is numerically efficient even
for high degrees of input system. It is obvious from comparison with al-
gorithms that solve Bezout identity, that it is much more advantageous to
solve doubly coprime factorization instead of computing stable coprime fac-
torization plus Bezout identity, if there is such possibility.
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Chapter 6

Implemented functions

In this chapter, the list of implemented functions will be presented. All
functions were written under the Matlab 6.0 and require the Polynomial
Toolbox 3.0 (PT) and Control Systems Toolbox. You can find them on the
attached CD-ROM.

• [X,Y]=axby3(A,B)
This function computes Bezout identity AX + BY = 1 over the ring
S, thus only SISO systems are supported. Region stability is open
left-half complex plane. It is implementation of algorithm described
in section 4.4. Arguments A,B must be of a ldf or rdf class of PT
or lti system of Control Systems toolbox.

• [X,Y]=axby4(A,B)
Solves Bezout identity AX + BY = I over the M(S). Region sta-
bility is also open left-half complex plane. Implemented algorithm is
described in section 4.5. Arguments A,B must be of a ldf or rdf
class of PT or lti system of Control Systems toolbox.

An auxiliary function test_axby4 is associated with axby4. It involves
all problematic examples we have collected. It is served for testing
functionality and for testing suitable tolerances.

• [N,M,X,Y,Nt,Mt,Xt,Yt]=dcf(G,output_type,tol,stab_bound)
Solves a doubly coprime factorization[

Y X
−Nt Mt

] [
M −Xt
N Y t

]
=
[
I 0
0 I

]
,

where G ∈ M(F), all output arguments are from M(S). Used algo-
rithm is described in section 5.3. Class of input argument must be
lti from control systems toolbox or a polynomial fraction ldf, rdf.
Region of stability is open left-half complex plane. Bound of stability
could be moved by optional argument stab_bound, default is 0 (bound
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is imaginary axes). Optional argument output_type specify a class
of output arguments and may be ’tf’, ’ss’, ’zpk’, ’ldf’ or ’rdf’,
default is ’ss’.

The purpose of the function test_dcf is the same as that of test_axby4,
it tests some properties of function dcf.



Chapter 7

Conclusion

Numerical solvers for Diophantine equation over the ring of proper stable
rational functions and proper stable rational matrices were studied in this
thesis. The achieved results can be summarized as follows:

• First we considered a known algorithm for solving Bezout identity.
This one handles only SISO arguments and takes advantage of easy
transfer to polynomial problem. The numerical properties therefore
intimately cohere with properties of used polynomial methods. We
determined that the stable coprime factorization must be performed
carefully if it is required, because it has a big influence on numerical
stability. Suitable choices of denominators were considered and ex-
posed to extensive numerical testing. See section 4.4.1 and tables in
the files on the attached CD-ROM.

• Although there is potential possibility for extension to MIMO case for
previous method, the limitation on SISO arguments taken us to devel-
oping a new algorithm based on state-space representation. The nu-
merical stability was studied and is comparable with previous method.
Unfortunately the method assumes coprimeness of input arguments in
wide sense, because the coprimeness in MIMO case wasn’t fully un-
derstood.

• Despite the fact that Bezout identity may be used for general argu-
ments, if we deal with controller synthesis, the stable coprime factor-
ization must be performed first. In this case it is better to compute
doubly coprime factorization. In the chapter 5 we proposed a new al-
gorithm, that uses real Schur form of the state matrix and orthogonal
transformations. The good numerical properties were demonstrated
by computer experiments.
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