
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering
Department of Cybernetics

Bachelor’s Thesis

Fast Learning in Bayesian
Optimization Algorithm

Matěj Vasilevski
Study programme: Cybernetics and Robotics

August 2020
Supervisor: Ing. Petr Pošík, Ph.D.





BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

474605Personal ID number:Vasilevski MatějStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and RoboticsStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Fast Learning in Bayesian Optimization Algorithm

Bachelor’s thesis title in Czech:

Rychlé učení v Bayesovském optimalizačním algoritmu

Guidelines:
Algorithms ECGA (extended compact genetic algorithm) and BOA (Bayesian optimization algorithm) are population-based
optimization algorithms. They are among the most powerful methods for optimization of complex black-box optimization
problems with binary representation. Each generation they build a model of the structure of dependencies among individual
solution components. Model learning is a time-consuming operation. For ECGA, an efficiency enhancement was proposed
recently that allows to simplify and accelerate the learning without any negative effect on the algorithm performance. The
goal of this project is to implement a similar method of model learning for algorithm BOA and evaluate the potential positive
and negative effects on the algorithm performance.
1) Learn the principles of algorithms ECGA and BOA.
2) Explore the method used in ECGA to accelerate the model learning.
3) Apply the method to algorithm BOA adequately.
4) On a set of benchmark problems, compare the original and the modified algorithms with respect to the number of
objective function evaluations required to find the solution, and with respect to the time required to run the algorithm.

Bibliography / sources:
[1] Duque, Thyago S.P.C., Goldberg, David E., Sastry, Kumara: Enhancing the Efficiency of the ECGA. PPSN 2008,
Dortmund.
[2] Pelikan, M. Hierarchical Bayesian Optimization Algorithm. Springer, 2005.

Name and workplace of bachelor’s thesis supervisor:

Ing. Petr Pošík, Ph.D., Analysis and Interpretation of Biomedical Data, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 14.08.2020Date of bachelor’s thesis assignment: 09.01.2020

Assignment valid until: 30.09.2021

_________________________________________________________________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
doc. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Petr Pošík, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1





Acknowledgement / Declaration

I would like to thank my advisor, Ing.
Petr Pošík Ph.D., for his advices, correc-
tions and valuable insights. Also, huge
thanks belongs to my family and friends
for the moral support.

I declare that the presented work
was developed independently and that
I have listed all sources of information
used within it in accordance with the
methodical instructions for observing
the ethical principles in the preparation
of university theses.

Prague, date 14.08.2020

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

v



Abstrakt / Abstract

Evoluční algoritmy, které modelují
řešený problém pomocí diskrétního
pravděpodobnostního rozdělení, jsou
mocné optimalizační algoritmy navr-
žené pro řešení těžkých problémů ob-
sahujících závislosti mezi proměnnými.
Takové problémy nejde spolehlivě řešit
běžnými genetickými algoritmy. Bohu-
žel tyto pravděpodobnostní modely jsou
výpočetně náročné a tyto algoritmy
tak bývají pomalejší. T. Duque navrhl
úpravu pro Extended compact genetic
algorithm (ECGA), která je schopná
1000x zrychlit běh algoritmu na 4096bi-
tové Trap4 funkci. V první části této
práce jsme tuto úpravu úspěšně ověřili.
V druhé části jsme tuto úpravu apliko-
vali na Bayesian optimization algorithn
(BOA). Nicméně tato úprava BOA al-
goritmu nepřinesla očekávané výsledky.
Je potřeba provést další testy, abychom
mohli říct, zda a jak lze BOA zrychlit.

Klíčová slova: ECGA, BOA, stavba
modelu, hladový algoritmus, extended
compact genetic algorithm, bayesian
optimization algorithm, replikace

Estimation of distribution algorithms
are powerful optimization algorithms
designed to solve hard problems with
linkage that regular genetic algorithms
cannot reliably solve. However, this de-
sign, which employs probability models
to describe the dependencies between
variables, is what makes them rather
slow. T. Duque et al. proposed a
speedup method for the Extended com-
pact genetic algorithm (ECGA), and
stated that the method achieved a 1000x
speedup on a 4096-bit Trap4 problem.
In the first part of this thesis, we have
successfully replicated the results of
the proposed speedup method. In
the second part, we have implemented
the proposed method for the Bayesian
optimization algorithm (BOA). This
modification, however, did not result in
the expected speedup. Further tests are
required to determine whether and how
the BOA can be sped up.

Keywords: ECGA, BOA, model
building, greedy search , extended
compact genetic algorithm, bayesian
optimization algorithm, replication

vi



/ Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . .1
2 From Genetic Algorithms to Es-

timation of Distribution Algo-
rithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

2.1 A simple genetic algorithm
on a simple problem . . . . . . . . . . . . .2
2.1.1 Generic template for

genetic algorithms . . . . . . . . .2
2.1.2 Performance check on

OneMax problem . . . . . . . . . .3
2.2 The motivation for the Esti-

mation of Distribution Algo-
rithms . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

3 Extended Compact Genetic Al-
gorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

3.1 How ECGA learns the struc-
ture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

3.2 Improving the speed of ECGA . .7
4 Bayesian Optimization Algo-

rithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
4.1 Bayesian networks . . . . . . . . . . . . . . .9

4.1.1 Metrics for Bayesian
networks . . . . . . . . . . . . . . . . . . . .9

4.2 Speeding up the search . . . . . . . . 10
4.2.1 Note on used imple-

mentation . . . . . . . . . . . . . . . . 11
5 Experiments . . . . . . . . . . . . . . . . . . . . . . 12
5.1 Test Functions . . . . . . . . . . . . . . . . . 12

5.1.1 OneMax . . . . . . . . . . . . . . . . . . 12
5.1.2 Equal Pairs . . . . . . . . . . . . . . . 12
5.1.3 Sliding Xor . . . . . . . . . . . . . . . 12
5.1.4 Trap function . . . . . . . . . . . . 13

5.2 Bisection method . . . . . . . . . . . . . . 13
5.3 Experiment procedure . . . . . . . . . 14
5.4 Experiment on ECGA . . . . . . . . . 14

5.4.1 Conclusion from exper-
iment on ECGA. . . . . . . . . . 15

5.5 Experiments on BOA . . . . . . . . . . 18
5.5.1 Experiment conclusion . . 18

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 22
References . . . . . . . . . . . . . . . . . . . . . . . . 23

A Attachment content . . . . . . . . . . . . . . 25

vii



Tables / Figures

5.1. ECGA results on 400-bit
problems . . . . . . . . . . . . . . . . . . . . . . . . 15

5.2. BOA results on 400-bit prob-
lems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2. SimpleGA on OneMax . . . . . . . . . . .4
2.3. SimpleGA on Trap4 . . . . . . . . . . . . . .5
2.4. SimpleGA on Trap4 with hint . . .5
5.2. Comparison of ECGA vs im-

proved ECGA on Onemax . . . . . 16
5.3. Comparison of ECGA vs im-

proved ECGA on EqPairs4 . . . . 16
5.4. Comparison of ECGA vs im-

proved ECGA on SlidingXor4 . 17
5.5. Comparison of ECGA vs im-

proved ECGA on Trap4 . . . . . . . 17
5.6. Comparison of BOA vs im-

proved BOA on OneMax . . . . . . 19
5.7. Comparison of BOA vs im-

proved BOA on EqPairs4 . . . . . . 20
5.8. Comparison of BOA vs im-

proved BOA on SlidingXor4 . . . 20
5.9. Comparison of BOA vs im-

proved BOA on Trap4 . . . . . . . . . 21

viii



Chapter 1
Introduction

Bayesian optimization algorithm (BOA) is a popular probabilistic algorithm belong-
ing to the class estimation of distribution algorithms, which themselves are part of a
broad family of genetic algorithms. Those are potent optimization algorithms used
in optimization tasks, state space search, and machine learning. Estimation of dis-
tribution algorithms are especially powerful because they employ statistics to create
an explicit model of the solved problem. However, the statistics are computationally
quite expensive. This work aims to explore a speedup method proposed for ECGA
(Extended compact genetic algorithm) and see if it is applicable to the BOA. Speeding
up BOA would enable us to use it on larger problems, or even solve problems which
were previously computationally intractable.

Genetic algorithms (GAs) were started in the 1960s by John Holland. He saw them
as a model of adaptation. At the same time, Ingo Rechenberg and Hans-Paul Schwefel
started solving real-valued problems using methods inspired by evolution. This ap-
proach evolved into a subfield called Evolutionary strategies. Concurrently to all this,
Lawrence Fogel saw the means for solving artificial intelligence in evolving a popula-
tion of finite state machines; this is called Evolutionary programming. Although these
approaches share the inspiration in nature and evolution, they continued to develop
independently of one another. That changed in the 1990s when the three approaches
have been merged under the name Evolutionary Computation. Book [1] describes the
history in greater detail.

So, genetic algorithms are here and solve problems in diverse fields, such as chemistry,
operations scheduling, and electronics design. Nevertheless, they lack a significant
feature - linkage learning. Linkage (also epistasis) is the dependency of one variable
on some other variables. In other words, the effect of one variable depends on other
variables. Because GAs are generally not aware of the linkage between variables, they
will often unknowingly break possibly good linkage groups. This makes it hard, if not
outright impossible, for GAs to solve particular problems. One possible solution is to
implement the GA in such a way that it will not break linkage. But this solution would
be too tedious and impractical.

This is where Estimation of distribution algorithms (EDAs) come into play. They
create an explicit model of the problem, which can have the form of a Bayesian network,
or simply grouped variables with a joint probability distribution for each group. These
groups, in theory, should mimic linkage groups in the solved problem. In short, the
explicit model should make the algorithm aware of the linkage and enable it to solve
problems that regular GAs could not. However, calculating the probability distribution
is a demanding task. The algorithm has to go through the whole population and count
frequencies for all possible combinations of variables from a group, making EDAs rather
slow.

The speed issues bring us back to the goals of this work. First, we want to replicate
the results of the proposed speedup method for ECGA. Second, we want to apply the
proposed method to BOA and compare the modified BOA with the original BOA.

1



Chapter 2
From Genetic Algorithms to Estimation of
Distribution Algorithms

Evolutionary algorithms (EAs) are optimization algorithms inspired by Charles Dar-
win’s theory of evolution. Usually, they are used for black-box optimization tasks in
both discrete and continuous space. In black-box optimization, the algorithm knows
nothing about the structure of the optimized function; it can only evaluate it. EAs
are very suitable for problems about which we know nothing. They can also handle
dynamic problems, where the optimum changes over time.

In the first part of this chapter, we will examine a typical genetic algorithm and check
its performance on a counting-ones (OneMax) problem. The second part contains a test
of the typical GA on a more difficult problem, which will show why were Estimation of
Distribution Algorithms (EDAs) invented and what they solve.

2.1 A simple genetic algorithm on a simple problem
Here we will describe how genetic algorithms generally work, implement an example
algorithm, and see how it performs on the OneMax problem. The implemented example
algorithm will be called simpleGA. Book [2] was used as a reference on GAs.

2.1.1 Generic template for genetic algorithms
Genetic Algorithms (GAs) are perhaps the most well-known subset of EAs. GAs typi-
cally work with binary strings of fixed length, but other problem encodings are possible
too. The binary string here means a vector of 1s and 0s.

GAs generally maintain a set of candidate solutions called a population of individuals.
The population is then evolved in generations. During a single generation, the algorithm
selects the fittest individuals for reproduction, using the optimized function as the
definition of fitness. Then it generates a set of offspring individuals using operations
like crossover and mutation. Finally, the newly generated offsprings are incorporated
into the starting population. Pseudocode for this procedure is below. Now let us have
a closer look at the single steps.

population = create_population();
generation = 0;
while (not termination_criteria(population)){

parents = selection(population);
offsprings = mutate(crossover(parents));
population = merge(population, offsprings);
generation += 1;

}
return population.best_individual;

The selection promotes higher fitness individuals for reproduction; it is the exploita-
tion part of the search process. There are many methods for selection, such as tourna-
ments, truncation, linear ranking. Here the tournament selection with replacement was

2



. . . . . . . . . . . . . . . . . . . . 2.2 The motivation for the Estimation of Distribution Algorithms

implemented because it will be used later in ECGA too. Tournament selection of size
k randomly picks k individuals from the population and only the fittest one advances.
With replacement means that each individual can be chosen multiple times.

Crossover is a reproduction operator; it is the exploration part of the search process.
By mixing parts of two high-fitness individuals, we hope to generate new, even better
individuals. Again, more variants of crossover exist, such as 1-point, 2-point, and n-
point crossover. Here we will describe and use the 2-point crossover. It works by
selecting two random points that define a vector slice. Then the slices are exchanged
between the two parents, which creates two new offsprings. A mutation operator can
be optionally applied to these new offsprings. Mutation implemented in our example
GA walks through the offsprings and flip each bit with a probability of 1/l, where l is
the length of a single individual.

101 1 1000

110 1 0010

10

1 1

100

011

0 1

001

0

Figure 2.1. Crossover operator.

The two standard approaches for merging offsprings are generational replacement
and steady-state replacement. The generational approach replaces the old population
with the new offsprings. The steady-state approach replaces only a fraction of the
population in every generation. Here the generational approach was chosen, mainly for
the ease of implementation.

2.1.2 Performance check on OneMax problem
SimpleGA with population size 160 has been tested on a 40-bit instance of the OneMax
problem (see eq. (5.1) in chapter 5 for the definition). We can see in fig. 2.2 that Sim-
pleGA managed to solve OneMax easily. This is the expected result because OneMax
is a somewhat primitive problem; it is used as a sanity check that the algorithm under
test optimizes. Running the algorithm 100 times and averaging the achieved fitness
yields 40.0, which means the optimum was found every time.

2.2 The motivation for the Estimation of Distribution
Algorithms

We have seen that simpleGA handled the OneMax problem smoothly. Now we will try
a more difficult n-bit Concatenated Trap4 problem (n-bit Trap4), see eq. (5.4) for the
definition.

From figure 2.3, we can see that simpleGA failed to reach the optimal solution; averag-
ing results from 100 runs gives only 48.04. This is because Trap4 contains dependencies
between variables (all bits in one block must be zero to achieve the optimum) and sim-
pleGA does not know about them. Let us modify the crossover operation to exchange
only whole blocks of size 4 between the parents, so simpleGA will not unintentionally
break optimal blocks of all 0s.

Figure 2.4 shows that simpleGA did a bit better with the modified crossover. Average
over 100 runs is 49.07, which is an improvement. However, tailoring the crossover to
specific problems is not always feasible because the problem structure may not be
known. And uncovering the problem structure is why the Estimation of Distribution

3



2. From Genetic Algorithms to Estimation of Distribution Algorithms . . . . . . . . . . . . . . . . . . .

0 5 10 15 20 25
Generations / -

24

26

28

30

32

34

36

38

40
Fit
ne
ss
 v
al
ue
 / 
-

OPTIMUM

BSF
AVG

Figure 2.2. Simple GA with population size 160 on 40-bit instance of OneMax problem.

Algorithms (EDAs) were developed. EDAs create an explicit probability model of the
population, enabling them to solve previously difficult problems efficiently. One can
also gain insight into the problem by inspecting the model during evolution. A generic
pseudocode for EDAs is below.

population = create_population();
while (not termination_criteria(population)){

parents = selection(population);
model = create_model(parents);
offsprings = sample(model);
population = merge(population, offsprings);

}
return population.best_individual;

4



. . . . . . . . . . . . . . . . . . . . 2.2 The motivation for the Estimation of Distribution Algorithms

0 5 10 15 20 25 30 35 40
Generations / -

30

35

40

45

50
Fit

ne
ss
 v
al
ue

 / 
-

OPTIMUM

BSF
AVG

Figure 2.3. SimpleGA with population size 160 on 40-bit Trap4.

0 10 20 30 40 50
Generations / -

30

35

40

45

50

Fit
ne

ss
 v
al
ue

 / 
-

OPTIMUM

BSF
AVG

Figure 2.4. SimpleGA with population size 160 and modified crossover on 40-bit Trap4.

5



Chapter 3
Extended Compact Genetic Algorithm

Extended Compact Genetic Algorithm (ECGA) is a discrete EDA that uses Marginal
Product Model (MPM) to represent dependencies between variables. In this chapter,
we will see how ECGA works first. Then we will look at a relaxed version of the greedy
search by T. Duque, which lowers the run time of ECGA.

3.1 How ECGA learns the structure
In order to learn linkage, ECGA creates an MPM model of the population. A greedy
search is used to rebuild the model from scratch in every generation. In this section,
we will describe two criteria that form a model evaluation metric and the greedy search
for the best model.

MPM is a probability model that divides variables into partitions (groups) and de-
termines joint probability distribution for each partition. Figure 3.1 shows an example
population and the accompanying model. The joint probability distribution of the first
partition, which contains variables 1 and 2, is calculated by counting the occurrences
of every possible combination (of variables 1 and 2) and dividing the counts by pop-
ulation size. For example, a combination ’01’ of the first two variables is not present
in the population, therefore the probability of combination ’01’ is 0. Both of the two
partitions left contain only a single variable, so the probability is a count of 0s (1s)
divided by the population size.

population

1010

1111

1011
1110

[1, 2] [3] [4]

model

p('00') = 0

p('11') = 0.5
p('10') = 0.5
p('01') = 0

p('0') = 0
p('1') = 1

p('0') = 0.5
p('1') = 0.5

Figure 3.1. Example population and corresponding model.

The model is evaluated using the Combined Complexity Criterion (CCC), which
we are trying to minimize. CCC consists of two parts: Model Complexity (MC) and
Compressed Population Complexity (CPC). Equation (3.1) defines the MC; N is the
population size, I is a partition, and SI is its size (number of variables in the partition).
Equation (3.2) defines the CPC; MI is the joint probability distribution from partition
I. The CPC represents population compression using entropy. Here the entropy of joint
probability distribution is

∑
−p log2(p), where ps are nonzero probabilities of respective

combinations.

MC = log2(N + 1)
∑

I∈partitions
(2SI − 1) (3.1)

6



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Improving the speed of ECGA

CPC = N
∑

I∈partitions
entropy(MI) = N

∑
I∈partitions

∑
p∈MI

−p log2(p) (3.2)

ECGA uses a greedy search to find the best model of the population in one generation.
The search starts by putting each variable in its own partition. ECGA then goes through
every possible pair of partitions and tries to merge it to see the CCC difference. After
that, the pair that reduces CCC the most is then merged in the model. This procedure
is repeated until it is no longer possible to reduce CCC by merging two partitions. After
this, we can end the search and sample the final model to create a new population. In
the next generation, the model is again built from the beginning. Figure 3.2 shows the
greedy search procedure.

Initial Model CC
[1] [2] [3] [4] 32.1

Model CC
[1 2] [3] [4] 29.7
[1 3] [2] [4] 36.5
[1 4] [2] [3] 28.4
[1] [2 3] [4] 33.3
[1] [2 4] [3] 35.1
[1] [2] [3 4] 30.6

Model CC
[1 2 4] [3] 25.2
[1 3 4] [2] 26.3
[1 4] [2 3] 27.4

Figure 3.2. Greedy search evaluating all possible pairs.

Selection is the last notable part of ECGA. After sampling a new population from
the model, there are no correlations between variables from different partitions. It is
the selection’s role to recorrelate specific combinations of genes that correlate with high
fitness [3].

3.2 Improving the speed of ECGA
Model building is the main reason why ECGA is so computationally expensive. Let us
take a look at the search’s pseudocode below and analyze its time complexity. In the
worst case, the algorithm will merge partitions until it ends with one large partition
with all variables. Because we start with n partitions (one partition per variable) and
one iteration of the while loop reduces the number of partitions by one, the while loop
will be executed n− 1 times at most (to get to one large partition). In the body of the
while loop, all pairs of partitions are merged. That is m ∗ (m− 1)/2 merges, where m
is the number of partitions in a particular iteration. Summing the merges over all loop
iterations gives us

n−1∑
k=0

1
2(n− k)(n− k − 1) =

n∑
l=1

1
2(n− l + 1)(n− l)

=
n∑
l=1

n2 − 2nl + l2 + n− l

= n3 − 2nn(n+ 1)
2 + n(n+ 1)(2n+ 1)

6 + n2 − n(n+ 1)
2

= 1
6n

3 + 1
3n (3.3)

7



3. Extended Compact Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thus the greedy search is O(n3).

// greedy search procedure
initialize partitions - one partition per variable
repeat:

for (each pair of partitions):
merge the pair and evaluate CCC

if an improvement is possible: update model with the best pair
else: end the search

Duque, Goldberg, and Sastry suggested an improved model building procedure to
reduce the time complexity fromO(n3) toO(n2) [4]. The proposed pseudocode is below.
They achieved about 10 times speedup for a 32-bit instance of Trap4 and more than
1000 times speedup for a 4096-bit instance. Instead of evaluating all pairs of partitions,
one partition is chosen to be fixed and merged with other partitions. Pseudocode for
this is below. The fixed partition is selected using a round-robin policy. The breaking
probability P starts at 0.01 and is cooled down by 10 % every loop iteration.

// improved greedy search
initialize partitions - one partition per variable
repeat:

choose a partition A
for (each other partition B):

merge A and B
evaluate CCC
undo the merge

merge the best pair if there was one
with some probability P, break a random partition
cool down the probability P
end the search if no improvement is possible

8



Chapter 4
Bayesian Optimization Algorithm

Bayesian Optimization Algorithm (BOA) is an EDA that uses Bayesian networks to
model the dependencies among variables. In this chapter, we will start by reviewing
Bayesian networks and their scoring metrics. Then we will look at the modification of
BOA’s model search procedure.

4.1 Bayesian networks
Bayesian Network (BN) is a probability model that captures conditional probabilities
between variables. BN is described by a Directed Acyclic Graph (DAG), an acyclic
graph without directed cycles. Each node in the DAG represents a single variable, and
the edges represent dependencies between variables. However, DAG is not everything; it
only describes the structure of BN. The other half of BN are conditional probabilities of
every node and its parents. Formally, the BN encodes a joint probability distribution
of random vector X = (X1, X2, . . . , Xn), whose variables Xi satisfy the conditional
dependencies and independencies described in the DAG. πi in eq. (4.1) is a set of Xi’s
parent variables.

p(X) =
n∏
i=1

p(Xi|πi) (4.1)

4.1.1 Metrics for Bayesian networks
There are two types of scoring metrics for BNs: Bayesian metrics and Minimum descrip-
tion length metrics. Bayesian-Dirichlet (BD) metric is a Bayesian metric that estimates
the likelihood of a Bayesian network B for a given data D. In our case, the data are
the individuals in BOA’s population. BD(B) is given by eq. (4.2), where:

. Γ is the Gamma function (Γ(x) = (x− 1)!).. p(B) is the prior probability of a network being the network B. It can be used to
bias the search.. The last product over xi runs over all possible values for xi. Here we operate on
binary strings, so the possible values are only 0 and 1.. The product over πi runs over all possible combinations of values of parents from Πi.. m(πi) is the number of instances where the parents are the specific combination πi.. m(xi, πi) is the number of instances where Xi = xi and Πi = πi.. m′(πi) and m′(xi, πi) are prior information about m(πi) and m(xi, πi), respectively.

BD(B) = p(B)
n∏
i=1

∏
πi

Γ(m′(πi))
Γ(m′(πi) +m(πi))

∏
xi

Γ(m′(xi, πi) +m(xi, πi))
Γ(m′(xi, πi))

(4.2)

Here we will use the K2 metric, which is a special case of the BD metric, where we
substitute m′(xi, πi) = 1 and m′(πi) =

∑
xi
m′(xi, πi). Because xi has only two possible

9



4. Bayesian Optimization Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
values, we can simplify it to m′(πi) =

∑
xi=1,2 1 = 2. Eq. (4.3) is the K2 metric after

substituting the equations above. We can also take a log of the K2 metric (eq. (4.4))
to make the metric computation less CPU intensive.

K2(B) = p(B)
n∏
i=1

∏
πi

1
(m(πi) + 1)!

∏
xi

m(xi, πi)! (4.3)

log(K2(B)) = log(p(B)) +
n∑
i=1

∑
πi

(
− log((m(πi) + 1)!) +

∑
xi

log(m(xi, πi)!)
)

(4.4)

An example of the Minimal description length metric is Bayesian Information Crite-
rion (BIC). It is very similar to the CCC used in ECGA. Eq. (4.6) defines BIC, where
H is a conditional entropy (eq. (4.5)), and N is the population size.

H(Xi|Πi) = −
∑
xi,πi

p(xi, πi) log2(p(xi|πi)) (4.5)

BIC(B) =
n∑
i=1

(
−H(Xi|Πi)N − 2|Πi| log2(N)

2

)
(4.6)

4.2 Speeding up the search
A greedy search is used to build the Bayesian network in BOA. The search procedure
is akin to the one in ECGA. The search starts with an empty graph (no edges) and
performs elementary graph operations on all pairs of nodes until it is no longer possible
to improve the metric. Elementary operations are edge addition, edge removal, and edge
reversal. The search procedure should also limit the number of incoming edges into a
single node when applying edge addition and reversal. This prevents the creation of too
complex networks because Bayesian metrics often have higher sensitivity and capture
random dependencies from noise. Minimum description length metrics, on the other
hand, tend to favor overly simple models [5].

----------------------- Greedy search in BOA ---------------------------
B = initialize bayesian network B to an empty net
repeat:

for each node:
for each other node:

try graph operations on the node pair and compute metric(B)
if (it was possible to improve metric(B)):

apply the best operation to B
else:

return the network B

BOA, unfortunately, suffers the same fate as ECGA. It is rather slow because estimat-
ing probabilities from the population is quite demanding on the computer. However, we
can try the same improvement as we did with ECGA in section 2.2. Here the improved
search procedure randomly selects a node and applies the graph operations to it. This
should reduce the search complexity as it did with ECGA and make BOA run faster.

10



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Speeding up the search

------------------- Improved greedy search in BOA -----------------------
B = initialize bayesian network B to an empty net
repeat:

randomly select a node
for each other node:

try graph operations on the node pair and compute metric(B)
if (it was possible to improve metric(B)):

apply the best operation to B
else:

return the network B

4.2.1 Note on used implementation
In this work, I implemented the search modification for BOA on top of a simple im-
plementation of BOA from Martin Pelikan [6]. This simple BOA allows only edge
additions. Most of the algorithm parameters were left on default, except for parame-
ters like population size and problem size, which we need to change.

11



Chapter 5
Experiments

In this chapter, we will review 4 test problems and a bisection method. Those will be
useful in the experiments on both regular and improved version of ECGA and BOA,
where we will assess the algorithms’ performance from the bisection results.

In order to avoid typing concatenated over and over again, we will establish a con-
vention that names like n-bit EqPairs4/SlidingXor4/Trap4 mean n-bit concatenated
EqPairs4/SlidingXor4/Trap4. For example, n-bit concatenated trap4 is a function com-
posed of n/4 blocks of Trap4 in series. See figure 5.1 for a graphic explanation.

5.1 Test Functions

5.1.1 OneMax
OneMax is an elementary optimization problem. It serves more as a test that given
algorithm works correctly and optimizes. The optimal solution is a vector of all 1s.

fOneMax(x) =
n∑
i=1

xi, where x = (x1, . . . , xn) is an input vector of length n (5.1)

5.1.2 Equal Pairs
N-bit Equal Pairs (EqPairsN) function, as its name suggests, calculates the number of
equal pairs of bits in the input vector. The interactions between variables are rather
weak; the optimal value for each bit is influenced by the previous bit. EqPairsN has
two optima: vector of all 0s and vector of all 1s.

fEqPair(x, y) =
{

1, if x = y
0, if x 6= y

fEqPairsN (x) = 1 +
N∑
i=2

fEqPair(xi−1, xi) (5.2)

5.1.3 Sliding Xor
N-bit SlidingXor (SlidingXorN) is composed of two functions: AllEqual and Xor of 3
variables. AllEqual evaluates to 1 only for input vector of either all 0s or all 1s. Xor of
3 variables returns 1 if logical xor of the first two variables is equal to the third variable.
Optimum of SlidingXorN is a vector of all 0s.

fAllEqual(x) =
{

1, if x = (0, 0, . . . , 0) or x = (1, 1, . . . , 1)
0, if x 6= y

12



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Bisection method

fXor(x, y, z) =
{

1, if x⊕ y = z
0, otherwise

fSlidingXorN (x) = 1 + fAllEqual(x) +
N∑
i=3

fXor(xi−2, xi−1, xi) (5.3)

5.1.4 Trap function

The TrapN is a deceptive function. It takes a vector of length N and outputs the sum
of 1s (like OneMax), except when the vector is all 0s, then the output is N+1.

fTrapN(x) =
{
N + 1, if x is all 0s∑N

i=1 xi, otherwise (5.4)

1 1 1 100 101 1 10 1 10 01 0000 10 01 1 10 01 1 101 1010 0 0

2 3 2 2 2 4 2 3 1 5+ + + + + =++++=fitness 26

Figure 5.1. Evaluation of 40-bit Concatenated Trap4 function.

5.2 Bisection method
The bisection method searches for the minimum population size required to find the
optimum of the problem 24 times out of 25 runs. The bisection works by maintaining
an upper and lower population limits. These limits together form an interval that is
repeatedly halved until the limits are close enough. The search starts by finding the
upper limit, with which the tested algorithm can find the optimum in all 25 runs. The
lower limit is set to some minimal value (for example, 1). Then the bisection averages
the two limits and runs the algorithm 25 times with population size set to the average.
If the optimum is found at least 24 times, the upper limit is set to the average, or else
the lower limit is set to the average. Then this process repeats until the limits are not
close enough, e.g., the difference between upper and lower limit is less than 1 % of their
average.

Output of the bisection method is a set of parameters that describe an algorithm’s
runtime on a given problem. The parameters are averaged over the 25 runs when the
algorithm runs with the minimal popsize. Minimal popsize is the smallest population
size required to find the optimal solution in 24 out of 25 runs. Fitness evaluations
(fitevals) is the number of evaluations of the problem function. Fitevals is an essential
criterion because the fitness function can be resource-intensive. Also, the number of
fitness evaluations can be used to compare two or more algorithms directly. CCC
evaluations is the number of model evaluations using CCC. It enables us to track the
computational complexity of the greedy search. Lastly, the duration is the time an
algorithm needs to find a solution.

--------------------------- Bisection Method ---------------------------
lower_limit = 1
upper_limit = 1
repeat:

run the algorithm 25 times with population_size = upper_limit
if (the alg. finds the optimum every time) then break
else double the upper_limit

13



5. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
repeat:

average the upper and lower limits
run the algorithm 25 times with population_size = the average
if (the alg. finds the optimum at least 24 times)

then upper_limit = average
else lower_limit = average
if (upper and lower limit are too close) then break

return averaged data from the last 25 runs

5.3 Experiment procedure
In the experiments, we will run the tested algorithm 25 times through the bisection
method on all 4 problems (OneMax, EqPairs4, SlidingXor4, Trap4) and average the
results. This averaging is being done to obtain more accurate estimates of minimal
popsize and the other parameters. We will also run a single bisection on 400-bit in-
stances of the problems above, to gain insight into how the improved algorithm scales
with problem size.

5.4 Experiment on ECGA
In this experiment, we aim to replicate the speedup results from [4]. We should achieve
speedup of about 10 on a 32-bit Trap4 and more than 1000x speedup on 4096-bit Trap4.
However, running bisection on 4096-bit Trap4 is very slow. That is why we use only
400-bit problem instances to see how the speedup scales, because even those 400-bits can
take up to a full week to finish one bisection. Running the 4096-bit problem instances
seemed intractable on a relatively new desktop computer (CPU is AMD Ryzen 5 3600).

Figures 5.2-5.5 show averaged bisection results for all 4 fitness functions we have
yet introduced: OneMax, Trap4, EqPairs4, SlidingXor4. Table 5.1 presents results of
single bisection run on 400-bit instances of problems mentioned above to gain insight
into how the improved greedy search scales with problem size.

Figure 5.2 shows the results on the OneMax problem. Minimal popsizes for ECGA
and improved ECGA are within the same order of magnitude, and so are the fitness
evaluations. CCC evaluations show clearly that the greedy search complexity dropped
from O(n3) to O(n2). As the problem size increases by an order (from 101 to 102), the
CCC evals increase by 3 and 2 orders of magnitude, respectively. Finally, the duration
shows a speedup of about 13 on 40-bit OneMax. On 400-bit OneMax, the speedup is
about 200. These numbers indicate speedup even greater than expected, but let us not
forget that the original article measured speedup on Trap4, while this is OneMax. We
can conclude that on the OneMax problem, the improvement works and scales well.

Figure 5.3 shows the results on the EqPairs4. The minimal population size grows
faster for the improved ECGA, but it is not a concern as long as the duration is shorter
than that of regular ECGA. The fitness evaluations are more or less the same, which
is neither good nor bad. There is about 10x speedup on 32-bit EqPairs4 while keeping
fitness evaluations more or less the same. On a 400-bit EqPairs4, the fitness evaluations
for improved ECGA are within the same order as the regular ECGA, but there is a 45x
speedup. The decision to benchmark on 400-bits instead of 4000-bits makes it difficult
to gauge the speedup effect, but qualitatively we can conclude that the improvement
works and scales well on EqPairs4.

Results from the SlidingXor4 are in figure 5.4. The minimal population size for
improved ECGA grows faster than that of regular ECGA. But the speedup is here:

14



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4 Experiment on ECGA

1.5x on 32-bits, about 30x on 400-bits. The fitness evaluations grow faster for the
improved ECGA; however, it seems the difference might plateau on larger problem
sizes - improved ECGA keeps 10x the fitness evaluations on both 100-bit and 400-bit.
Here the conclusion is the same as for EqPairs4, the speedup qualitatively works and
scales with problem size.

It is interesting that even though the EqPairs4 should be an easier problem than
SlidingXor4, ECGA seems to handle the SlidingXor4 better - the number of fitness
evaluations is lower and the duration is shorter.

Figure 5.5 shows results on the Trap4. Here it looks that not much has changed.
The minimal population size and fitness evaluations are slightly larger for the improved
ECGA, but it is in the same order of magnitude. The durations are about the same.
However, there is a 32x speedup on 400-bit Trap4, while the fitness evaluations are only
doubled for the improved ECGA.

parameter OneMax EqPairs4
Popsize / - 133 226 1.98e3 7.94e3
Fitevals / - 1.87e3 3.90e3 3.99e5 5.46e5
CCC evals / - 1.07e8 3.54e5 4.04e8 1.25e6
Duration / s 94.9 0.5 3.22e3 71.6

parameter SlidingXor4 Trap4
Popsize / - 242 726 6.85e3 2.04e4
Fitevals / - 4.30e3 4.34e4 1.93e5 3.94e5
CCC evals / - 1.46e8 6.56e5 1.78e8 7.48e5
Duration / s 184.7 6.2 3.16e3 97.4

Table 5.1. Results of one bisection run on 400-bit problem instances. The left column is
for regular ECGA, the right is for improved ECGA.

5.4.1 Conclusion from experiment on ECGA

In the end, we can conclude that the proposed improved greedy search qualitatively
works. The number of fitness evaluations is within the same order of magnitude as the
number for regular ECGA, except for 400-bit SlidingXor4 (improved ECGA required
10x more fitness evaluations). Also, the significant drop in CCC evals matches the
results from the original article.

The speedup was not always noticeable at smaller problem sizes (10 to 100 bits),
but it certainly is here. However, it is hard to say if the speedup matches the declared
1000x on 4096-bit Trap4 because of the rather unfortunate decision to benchmark on
400-bits instead of 4096-bits. Perhaps a better solution would be to reduce the number
of runs in one bisection (e.g., from 25 to 10) to get at least some results from 4096-bits.
Maybe ask if there is a stronger computer available/what to do, or simply start the
tests early enough so they would finish before thesis deadline. Furthermore, different
scaling of the speedup can be explained by various factors. The article is 12 years old
and both HW (CPUs, memory speeds) and SW (compilers) have progressed. Plus, the
speedup depends on the implementation.

15



5. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

101 102

Problem size / bits
2 × 101

3 × 101

4 × 101

6 × 101

M
in

im
al

 p
op

siz
e 

/ -

101 102

Problem size / bits

102

Fi
tn

es
s e

va
lu

at
io

ns
 / 

-

101 102

Problem size / bits

102

103

104

105

106

CC
C 

ev
al

ua
tio

ns
 / 

-

101 102

Problem size / bits

10 4

10 3

10 2

10 1

Du
ra

tio
n 

/ s

A Comparison of ECGA vs improved ECGA on OneMax Problem
ECGA improved ECGA

Figure 5.2. Averaged bisection results of ECGA and improved ECGA on OneMax problem.

101 102

Problem size / bits

102

103

M
in

im
al

 p
op

siz
e 

/ -

101 102

Problem size / bits

102

103

104

105

Fi
tn

es
s e

va
lu

at
io

ns
 / 

-

101 102

Problem size / bits

102

103

104

105

106

CC
C 

ev
al

ua
tio

ns
 / 

-

101 102

Problem size / bits

10 3

10 1

101

Du
ra

tio
n 

/ s

A Comparison of ECGA vs improved ECGA on EqPairs4
ECGA improved ECGA

Figure 5.3. Averaged bisection results of ECGA and improved ECGA on EqPairs4 problem.

16



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4 Experiment on ECGA

101 102

Problem size / bits

102

103

M
in

im
al

 p
op

siz
e 

/ -

101 102

Problem size / bits

103

104

Fi
tn

es
s e

va
lu

at
io

ns
 / 

-

101 102

Problem size / bits

102

103

104

105

106

CC
C 

ev
al

ua
tio

ns
 / 

-

101 102

Problem size / bits

10 3

10 2

10 1

100

Du
ra

tio
n 

/ s

A Comparison of ECGA vs improved ECGA on SlidingXor4
ECGA improved ECGA

Figure 5.4. Averaged bisection results of ECGA, improved ECGA on SlidingXor4 problem.

101 102

Problem size / bits

102

103

M
in

im
al

 p
op

siz
e 

/ -

101 102

Problem size / bits

103

104

Fi
tn

es
s e

va
lu

at
io

ns
 / 

-

101 102

Problem size / bits

102

103

104

105

106

CC
C 

ev
al

ua
tio

ns
 / 

-

101 102

Problem size / bits

10 3

10 2

10 1

100

Du
ra

tio
n 

/ s

A Comparison of ECGA vs improved ECGA on Trap44
ECGA improved ECGA

Figure 5.5. Averaged bisection results of ECGA and improved ECGA on Trap4 problem.

17



5. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
parameter OneMax EqPairs4
Popsize / - 726 234 889 8.9e3
Fitevals / - 2.3e4 6.2e3 9.0e4 9.0e5
K2 evals / - 1.5e7 3.5e6 4.8e7 2.1e7
Duration / s 20.9 4.3 67.9 220.1

parameter SlidingXor4 Trap4
Popsize / - 4.5e3 6.1e3 1.2e4 3.0e4
Fitevals / - 2.2e5 4.4e5 3.5e5 3.0e6
K2 evals / - 2.8e7 2.0e7 1.8e7 3.2e7
Duration / s 185.9 124.2 282.7 1.2e3

Table 5.2. Results of one bisection run on 400-bit problem instances. The left column is
for regular BOA, the right is for improved BOA.

5.5 Experiments on BOA
In this experiment, we aim to reproduce the speedup results from [4], but this time on
BOA. For tests on BOA, we will use the same procedure we used for ECGA (described
in section 5.3).

Figure 5.6 shows a comparison of BOA vs. improved BOA (BOA with improved
greedy search) on the OneMax Problem. Improved BOA seems to run faster with fewer
fitness evaluations; the speedup is about 10x on 100-bit OneMax. Nevertheless, looking
at table 5.2, we can see that the speedup rather diminishes; it dropped from 10x to
5x. If we run the bisection on 1000-bit OneMax, we can see that the speedup drops to
4x. This is concerning because the speedup is somewhat small (4-10x), and it does not
scale with problem size.

Figure 5.7 shows results on the EqPairs4 problem. There is a 10-15x speedup on
smaller problem sizes, but all parameters of improved BOA suddenly worsen at 80-bits.
It has been measured multiple times to verify it is not a random perturbation. Table
5.2 shows that is does not get better with larger problem sizes. In fact, regular BOA is
3 times faster than the improved BOA on 400-bit EqPairs4; the fitness evaluations are
also 1 order of magnitude smaller.

Results on SlidingXor4 (fig. 5.8) are quite even. Runtime duration is almost the
same for both algorithms, and so are the minimum popsizes and fitness evaluations.
Table 5.2 shows that there is a slight speedup of 1.5, for the cost of double the fitness
evaluations. The growth of K2 evaluations is about the same for both regular and
improved BOA, which is not what we expected. Thus the improvement does not work
on SlidingXor4.

Finally, the results on Trap4 are not great either (fig. 5.9). Duration and minimal
popsize of the improved BOA seems to be on a par with the regular BOA. Fitness
evaluations are about 4 times bigger on a 100-bit problem instance for the improved
BOA. Furthermore, K2 evals are the worst here; they seem to grow slightly faster for the
improved BOA. On 400-bit Trap4, the improved BOA fails to catch up with the regular
BOA (tab. 5.2. It requires 10x more fitness evaluations, 2x more K2 evaluations, and
is 4x slower than the regular BOA.

5.5.1 Experiment conclusion
It is clear from the experiment results that the improved BOA does not function as
expected. It performs worse than the regular BOA on EqPairs4 and Trap4. The 1.5x

18



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 Experiments on BOA

speedup on SlidingXor is rather negligible, and it comes with the price of double the
fitness evaluations. Only OneMax showed some meaningful speedups (10x on 100-bit
OneMax), but it diminishes with larges problem size. So, the improved BOA works
neither from the outside (no speedup) nor the inside (K2 evals did not decrease).

One possible explanation is that the search procedure has been impaired too much,
so the model search has to run a lot longer to reach the final model, which cannot be
further improved. At that point it matches the performance of regular greedy search,
if not worse. Another explanation is that the current BOA implementation is too
simple. First, it can only add edges; there are neither edge removals nor edge reversals.
Second, the implemented improved search is somewhat shallow. It selects a node and
then searches among edges ending in the selected node. But it could very well search
among the edges starting from the selected node. This possibility has, unfortunately,
slipped my mind.

101 102

Problem size / bits

101

102

M
in

im
al

 p
op

siz
e 

/ -

101 102

Problem size / bits

102

103

Fi
tn

es
s e

va
lu

at
io

ns
 / 

-

101 102

Problem size / bits

102

103

104

105

K2
 e

va
ls 

/ -

101 102

Problem size / bits

10 4

10 3

10 2

10 1

Du
ra

tio
n 

/ s

A Comparison of BOA vs improved BOA on OneMax Problem
BOA improved BOA

Figure 5.6. Averaged bisection results of BOA and improved BOA on OneMax problem.

19



5. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

101 102

Problem size / bits

101

102

103

M
in

im
al

 p
op

siz
e 

/ -

101 102

Problem size / bits

102

103

104

105

Fi
tn

es
s e

va
lu

at
io

ns
 / 

-

101 102

Problem size / bits

102

103

104

105

106

K2
 e

va
ls 

/ -

101 102

Problem size / bits

10 4

10 2

100

Du
ra

tio
n 

/ s

A Comparison of BOA vs improved BOA on EqPairs4 Problem
BOA improved BOA

Figure 5.7. Averaged bisection results of BOA and improved BOA on EqPairs4 problem.

101 102

Problem size / bits

101

102

103

M
in

im
al

 p
op

siz
e 

/ -

101 102

Problem size / bits

102

103

104

Fi
tn

es
s e

va
lu

at
io

ns
 / 

-

101 102

Problem size / bits

102

103

104

105

106

K2
 e

va
ls 

/ -

101 102

Problem size / bits

10 4

10 3

10 2

10 1

100

Du
ra

tio
n 

/ s

A Comparison of BOA vs improved BOA on SlidingXor4 Problem
BOA improved BOA

Figure 5.8. Averaged bisection results of BOA and improved BOA on SlidingXor4 problem.

20



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 Experiments on BOA

101 102

Problem size / bits

101

102

103

M
in

im
al

 p
op

siz
e 

/ -

101 102

Problem size / bits

102

103

104

105

Fi
tn

es
s e

va
lu

at
io

ns
 / 

-

101 102

Problem size / bits

102

103

104

105

106

K2
 e

va
ls 

/ -

101 102

Problem size / bits

10 4

10 3

10 2

10 1

100

Du
ra

tio
n 

/ s

A Comparison of BOA vs improved BOA on Trap4 Problem
BOA improved BOA

Figure 5.9. Averaged bisection results of BOA and improved BOA on Trap4 problem.

21



Chapter 6
Conclusion

The goal of this work was twofold. The first part was about replicating the speedup
method for ECGA proposed by Duque et al. In the second part, we applied the same
method on BOA and aimed to reproduce the speedup.

The first replication part was successful. The improved ECGA shows a significant
drop in CCC evaluations on all 4 problems, which confirms that the model building
procedure has reduced complexity. The speedups were confirmed on all the tested
problems, while the original paper tested only the Trap4 function. Plus, the improved
ECGA managed to keep the number of fitness evaluations at the levels of regular ECGA
(except for SlidingXor4), which is great. The only shortcoming is that we did not
replicate the 1000x speedup on 4096-bit Trap4 because of the computational complexity.
Our strategy here has been to estimate the speedup from results on 400-bit problems,
which I would say worked, but it does not strictly verify the declared results.

In the second part, the speedup method has been applied to BOA. However, this
improved BOA failed to meet expectations. Neither did it run faster than regular BOA,
nor did the number of K2 evaluations drop. The easy explanation for this failure would
be that the improved BOA simply lost its ability to create a model of the problem,
and would require the model search to run much longer to solve the problems. The
fact that improved BOA runs slightly faster than regular BOA on OneMax, but slower
on anything else, supports this. Another explanation is that the implementation of
improved BOA lacks two edge operations (removal and reversal), and tries to connect
only incoming edges to the selected node. More tests, with the missing features above,
have to be done to see if BOA can be sped up.

22



References

[1] Jong, Kenneth A. De. Evolutionary computation. 2006 ed. Cambridge: MIT Press,
2006. ISBN 9780262041942.

[2] Luke, Sean. Essentials of Metaheuristics. second ed. Lulu, 2013. ISBN 978-1-300-
54962-8.
https://cs.gmu.edu/˜sean/book/metaheuristics/.

[3] Harik, Georges R., Fernando G. Lobo, and Kumara Sastry. Linkage Learning
via Probabilistic Modeling in the Extended Compact Genetic Algorithm (ECGA).
Scalable Optimization via Probabilistic Modeling. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, pp. 39-61. Available from DOI 10.1007/978-3-540-34954-
93.
http : //link.springer.com/10.1007/978− 3− 540− 34954− 9 3.

[4] Duque, Thyago S.P.C., David E. Goldberg, and Kumara Sastry. Improving
the efficiency of the extended compact genetic algorithm. Proceedings of the 10th
annual conference on Genetic and evolutionary computation - GECCO ’08 . New
York, New York, USA: ACM Press, 2008, Vol. 2008, pp. 467-. Available from DOI
10.1145/1389095.1389181.
http://portal.acm.org/citation.cfm?doid=1389095.1389181.

[5] Pelikan, Martin. Hierarchical Bayesian Optimization Algorithm. Berlin: Springer,
2005. ISBN 978-3-540-23774-7.

[6] Pelikan, Martin. A Simple Implementation of the Bayesian Optimization Algo-
rithm (BOA) in C++ (version 1.0).
https://web.archive.org/web/20200125101323/http://medal-lab.org/files/
99011 . pdf. The source code is available at https://web.archive.org/
web/20170327084810/http://medal-lab.org/files/sBOA.tar.gz .

23

https://cs.gmu.edu/~sean/book/metaheuristics/
http://dx.doi.org/10.1007/978-3-540-34954-9_3
http://dx.doi.org/10.1007/978-3-540-34954-9_3
http://link.springer.com/10.1007/978-3-540-34954-9_3
http://dx.doi.org/10.1145/1389095.1389181
http://portal.acm.org/citation.cfm?doid=1389095.1389181
https://web.archive.org/web/20200125101323/http://medal-lab.org/files/99011.pdf
https://web.archive.org/web/20200125101323/http://medal-lab.org/files/99011.pdf




Appendix A
Attachment content

The following files are in the attachment.

. benchmarking: a small python library for benchmarking. CMakeLists.txt: cmake file used to compile programs. Instructions are in readme.md.. eigen: a math library used in the ECGA (chapter 3) code. It is under the MPL2
license.. grafy.py: a python helper script to automatically generate and save figures to pdf. moje ecga: my implementation of ECGA for the chapter 3. pcg-cpp: a random number generator library for C++. It is under the MIT license.. pelikan simple boa: M. Pelikan’s simple BOA implementation in C++.. pybind11: a C++ library used to create Python bindings. pyeda: a small program that takes both ECGA and BOA in C++ and exposes them
in Python.. readme.md: file with compile instructions. requirements.txt: file with Python packages requirements.. run benchmarks.py: a Python script that uses pyeda and benchmarking to run bench-
marks on ECGA and BOA. simplega: my implementation of the simpleGA used in chapter 2

25


	TITLE
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	From Genetic Algorithms to Estimation of Distribution Algorithms
	A simple genetic algorithm on a simple problem
	Generic template for genetic algorithms
	Performance check on OneMax problem

	The motivation for the Estimation of Distribution Algorithms

	Extended Compact Genetic Algorithm
	How ECGA learns the structure
	Improving the speed of ECGA

	Bayesian Optimization Algorithm
	Bayesian networks
	Metrics for Bayesian networks

	Speeding up the search
	Note on used implementation


	Experiments
	Test Functions
	OneMax
	Equal Pairs
	Sliding Xor
	Trap function

	Bisection method
	Experiment procedure
	Experiment on ECGA
	Conclusion from experiment on ECGA

	Experiments on BOA
	Experiment conclusion


	Conclusion
	References
	Attachment content

