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Abstract

Motion planning is one of the fundamental problems in robotics. This thesis combines
the advances in motion planning and shape matching to improve planning speeds in static
environments. The first part of this thesis covers current methods used in object similarity
evaluation and motion planning. The middle part describes how these methods are used
together to improve planning speeds by utilizing prior knowledge about the environment, along
with additional modifications. In the last part, the proposed methods are tested against other
state-of-the-art planners in an independent benchmarking facility. The proposed algorithms
are shown to be faster than other planners in many cases, often finding paths in environments
where the other planners are unable to.

Keywords: motion planning, sampling-based planners, guided planning, 3D object
similarity, library

Supervisor: Ing. Vojtéch Vondsek, Ph.D.

Abstrakt

Planovani pohybu je jednim z podstatnych problémi robotiky. Tato prace kombinuje pokroky
v planovani pohybu a hodnoceni podobnosti objektl za icelem zrychleni planovani ve static-
kych prostredich. Prvni ¢ast této prace pojednava o soucasnych metodach pouzivanych pro
hodnoceni podobnosti objektii a planovani pohybu. Prostredni ¢ast popisuje, jak jsou tyto
metody pouzity pro zrychleni planovani s vyuzitim ziskanych znalosti o prostiedi. V posledni
¢asti jsou navrzené metody porovnany s ostatnimi planovaci v nezavislém testu. Nami navrzené
algoritmy se v experimentech ukazaly byt ¢asto rychlejsi v porovnani s ostatnimi pldnovadi.
Také casto nachazely cesty v prostredich, kde ostatni planovace nebyly schopny cestu nalézt.

Klicova slova: planovani pohybu, pravdépodobnostni planovace, informované planovani,
podobnost 3D objektt, knihovna

Preklad nazvu: Randomizované planovani pohybu s vyuzitim knihoven trajektorii
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Chapter 1

Introduction

Motion planning is one of the fundamental problems and a widely studied area in robotics.
The problem consists of finding a path for a manipulated object through a specified environ-
ment. One famous example is the Piano Mover’s Problem, where a path of a piano through
a house is searched for, such that no walls or other obstacles are hit. Engineers come across
many other real-world problems, where an object needs to move through a given environment
without colliding with obstacles, ranging from the navigation of autonomous cars (Figure 1.1a)
[1] and drones [2] to the analysis of tunnels within a protein structure (Figure 1.1b) [3].

Path candidates

>

1st lane center

L) 2" |ane center
(a) : Lane changing of an autonomous car. Image (b) : Tunnels (orange) leading from protein sur-
courtesy of [1]. face to the active site. Image courtesy of [3].

Figure 1.1: Motion planning is a widely studied area in robotics with many real-world applications,
such as car navigation (1.1a) and protein analysis (1.1b).

Motion planning is an NP-hard problem [4]. One of the main approaches, which has recently
been very successful, is to use sampling-based algorithms. They aim to find the path
by iteratively sampling random configurations (position and rotation) of the manipulated
object and checking for collisions. When enough valid configurations are found, a path
through the environment is constructed [4]. Many algorithms have been developed to address
specific problems arising from using sampling-based methods. One such problem is moving
an object through a narrow passage (illustrated in Figure 1.2). In the narrow passage, the
object’s movement needs to be very precise. Therefore, using uniform sampling methods
may require a lot of time to sample enough configurations that do not result in collisions.
By identifying the narrow passages prior to the planning, we can increase the sampling rate
inside the narrow passage. This consequently increases the probability of finding a path
through the narrow passage.
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narrow
passage

Figure 1.2: To pass through the narrow passage (red) without collision, the manipulated object
(blue) needs to be moved very precisely.

Modifying the sampling probability is the idea of guided planning methods such as Guided
Rapidly exploring Random Tree (RRT-Path) [5] or Rapidly exploring Random Trees with
Inhibited Regions (RRT-IR) [6]. Guiding-based planners utilize so called guiding paths — paths
through the workspace that are available for the planner and serve as hints of possible paths
through the environment. Such paths can be found by analyzing the workspace geometry
(e.g., the Voronoi diagram [5]), or by planning under relaxed constraints (e.g., scaled-down
object [6]). The computed paths consequently guide the planner when solving the original
problem by increasing the sampling probability along them.

. 1.1 Goals

The goal of this thesis is to understand modern sampling-based motion planning and
shape matching methods, with the purpose of combining them to improve the efficiency
of sampling-based motion planners.

We propose a novel method named Rapidly exploring Random Trees with Library of Trajectories
(RRT-LIB), consisting of two phases. In the preparation phase illustrated in Figure 1.3, we
compile a library containing paths' for multiple object classes. The paths are generated
using a planner able to quickly approximate paths through a static environment with narrow
passages. This prior knowledge is then leveraged by the planner in the planning phase,
illustrated in Figure 1.4. When a path for a new object is required, we retrieve the paths
of the most similar object in the library. These paths will serve as guiding paths, hinting at
the possible paths through the environment.

With the proposed method, we aim to improve the speed of the sampling-based planners,
particularly in situations when we plan in the same workspace repeatedly. In the case that the
planner will be given multiple tasks in a known set of static environments, we aim to increase
the chances of success by collecting information about the environment prior to the planning.
This knowledge, in the form of possible paths, is saved to the library and retrieved when a
new planning task is given to the planner.

More precisely, trajectories (configurations of an object over a period of time) are contained in the library —
hence the name, Library of Trajectories. However, we are mainly interested in the configurations of the object
moving through the environment. Therefore, the word “path” will be used further in this thesis, indicating
that we are not considering the time aspect of the movements.
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Figure 1.3: The preparation phase of the RRT-LIB algorithm. Multiple paths through the
environment are iteratively computed by the RRT-IR planner. Using the already found paths as
an input to the planner increases the probability of finding distinct paths. After enough distinct
paths are found, the planning is terminated, and the found paths are saved into the library.

Object & Paths &
Environment Correspondences Guiding paths Final path

Output
Precomputed paths
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Figure 1.4: The planning phase of the RRT-LIB algorithm. The input consists of a manipulated
object and an environment. Based on the inputs, paths computed for the most similar object
in the library are loaded. After transforming the paths to account for possibly different positions
of the manipulated object and the object from the library, we gain paths hinting at the possible
paths through the environment. Increasing the sampling rate along these guiding paths should
increase the probability of finding a solution.
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. 1.2 Thesis structure

Chapter 1 serves as an introduction to the areas of concern and outlines the structure of this
thesis. The motivation and the goals of this thesis are presented. We also introduce a novel
method RRT-LIB, aiming to achieve the specified goals — specifically, improve the efficiency
of the sampling-based planners in environments where a narrow passage is present.

A Dbrief description of motion planning is presented in Chapter 2. We define the motion
planning problem and all needed terms, along with a more in-depth description of various
sampling-based motion planning methods.

A crucial part of the proposed solution is selecting an object from the library, which is the most
similar to a given object. In Chapter 3, we describe current approaches to shape matching
and measuring the similarity of objects. We identify the capabilities of the current methods,
mainly aimed at features that will allow us to reach the specified goals.

In Chapter 4, we present the structure of the library. The library is designed with convenience
in mind, allowing us to retrieve useful data efficiently. We also propose modifications to the
selected sampling-based planner RRT-IR, allowing us to generate multiple distinct paths and
store them in the library. However, the object in the library might be represented in a different
coordinate system than the manipulated object. Therefore, the paths from the library cannot
be used immediately as guiding paths for a similar object. This issue is discussed and solved
by finding a transformation that aligns the two objects, ensuring the guiding path gives
a reasonable estimate of the searched path.

Three of the shape matching methods presented in Chapter 3 are implemented and tested
in Chapter 5. Based on the test results, we select one method that meets our criteria.
We further test this method to ensure that no problems will arise when selecting the most
similar object from the library. One such problem which would need to be addressed during
the planning phase would be the dependence of the result on the query object scale.

Implementation details are presented in Chapter 6, along with experimental results. The cor-
rect implementation is verified, and we show that the planner with all proposed modifications
does indeed exhibit the expected behavior.

To test whether the proposed methods really improve the planning runtime, we implement
our planner in an open-source planning library OMPL. Using OMPL benchmarking module,
we compare our RRT-LIB planner to other state-of-the-art planners. This comparison is
covered in Chapter 7.

Achieved results and possible improvements are further discussed in Chapter 8, which also
serves as an overall summary of this thesis.



Chapter 2

Motion planning

In motion planning, we are given an object and search for a way to move it through an envi-
ronment without colliding with obstacles. This chapter defines the motion planning problem
and presents basic sampling-based methods.

. 2.1 Problem definition

We denote the manipulated object (or robot, agent) A. The space through which is the object
A moved is represented by a world W (usually a subset of R? or R3). An obstacle region O
C W represents the obstacles in the environment we are planning in. In this thesis, A will be
a non-deformable object and the world W will be R3.

A configuration q of a non-deformable body in the standard three-dimensional Euclidean
space uniquely describes the object’s position P € R? and 3D rotation R € SO(3) (the
group of all possible 3D rotations). We denote A(q) the set of all points occupied by the
object in the configuration q. Many parametrizations of SO(3) exist. Among the most
commonly used are FEuler angles — three angles describing the object rotation with respect
to a chosen fixed coordinate system. Using Euler angles simplifies the visualization and
manipulation of robots using the Denavit-Hartenberg (DH) notation. It also allows for
a straightforward rotation matrix generation. However, problems arise when a metric or
interpolation between two rotations needs to be defined, both crucial in motion planning [4].
Considering the disadvantages of the Euler angles, quaternions were used in this thesis. While
sacrificing the intuitive visualization, we gain a well-defined metric (covered in Section A.1)
and an interpolation technique (Spherical Linear Interpolation) [7].

Configuration space C is defined as the set of all possible object configurations. In our case,
C is the special Euclidean group SE(3) = R? x SO(3) with elements ¢ = ((z,y, 2), (a, b, ¢, d)).
Two specific configurations are defined — g¢start, Specifying the starting position of the
object, and ggoq;, the target object position. We denote Crree € C, gfree € Cpree the subset
of all configurations, where the manipulated object does not collide with the environment
(Ciree = {q € C | A(g) N O = 0}). Conversely, Cops = C \ Cfpee contains the colliding
configurations. We also define Cyou1 € C, qgoar € Cgoar as the set of configurations we consider
similar enough to the target configuration to be acceptable as a goal.

Path 7 is a sequence of n waypoints {¢; € Cfrec | © = 1,...,n}, defining a collision-free
movement of the manipulated object through the environment. The task of path planning is

to find a path 7, such that ¢1 = gstert and ¢, € Cypar-

5
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B 22 Sampling-based motion planning

There exist two main principles of finding a solution to a motion planning problem. The
first one is combinatorial motion planning, which aims to find a path through the continuous
space without using approximations of the object, obstacles, or collisions. This approach
allows for complete algorithms — algorithms that will find a solution if one exists, otherwise
correctly evaluate that no such solution is available. Combinatorial planners can be based
on Voronoi diagrams [8] or visibility graphs [9]. However, combinatorial motion planning
needs an exact definition of the problem to properly evaluate interactions of the object with
the obstacles (e.g., the obstacle representation needs to be explicit, which can be done using
polygons). Creating such a representation is reasonable only when solving low-dimensional
tasks (a point or a circular robot moving through a 2D world).

To allow for planning in more complex environments, we encapsulate the interaction evaluation
in a collision detection module, which uses approximations to evaluate object collisions.
This is the idea of sampling-based motion planning [4]. The collision detection module takes
a configuration as an input and returns whether the manipulated object in this configuration
collides with the obstacles. We need a way to select the configurations tested for collisions.
In low-dimensional problems, choosing a resolution and performing an exhaustive (grid) search
could be a viable solution. However, due to the configuration space being multidimensional,
grid search becomes both time and memory consuming, often even impossible due to the
latter. Therefore, the defined configuration space is sampled randomly, and a graph containing
collision-free configurations is built. The alleviation of the constraints placed on the resolution
allows finding paths where high-precision movement is needed [4].

Two of the most commonly used sampling-based methods, Probabilistic Roadmaps [10] and
Rapidly-exploring Random Trees [4], are described below in Section 2.2.1 and Section 2.2.2,
respectively. Many modifications of the RRT method have been developed, allowing better
utilization of knowing the target configuration (Bidirectional RRT [4] in Section 2.2.3) or
having additional info about the configuration space from previous searches (RRT with
Inhibited Regions [6] in Section 2.3.1). A detailed survey of other RRT and PRM variants can
be found in [11].

Il 2.2.1 Probabilistic Roadmaps

The Probabilistic Roadmap algorithm (PRM) [10] works by randomly sampling the configu-
ration space until a specified number of non-colliding configurations is found. A roadmap
is then constructed by connecting subsets of the configurations (e.g., k-nearest neighbors
or all neighbors in a specified distance). In the original implementation [10], the connec-
tion is made only if it connects two different roadmap components. However, a simplified
version is used more often, where connections in the same component are allowed [12].
After all configurations are processed, the construction phase (the simplified version shown
in Figure 2.1 and Alg. 1) is completed, and the query phase follows (Figure 2.2 and Alg. 2).
During the query phase, the start and goal configuration pair is connected to the roadmap,
and a path between them is found by a standard graph algorithm (such as the Dijkstra’s
shortest path or A*)[4].
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(a) : PRM roadmap with 50 (b) : PRM roadmap with 100

vertices. vertices. vertices.

Figure 2.1: PRM construction phase. 2D configuration space C is randomly sampled, with
non-colliding samples from the free configuration space Cy.. being added to the roadmap G (gray),
avoiding the obstacle region O (black).

Algorithm 1: PRM construction phase

Input: Configuration space C, Desired roadmap size N
Output: Roadmap G

1 G = sample_free(C, N) // Sample N non-colliding configurations
2 foreach ¢ in G do

3 foreach g,cqr in neighborhood(G, q) do // e.g., k-nearest neighbors

4 if can__connect(q, qnear) then

5 L | G.add_edge(q, qnear)

6 return ¢

Algorithm 2: PRM query phase

Input: Roadmap G, Configurations gstqrt and ggoa:
Output: Path 7 from gssert 10 ggoar Or empty list

1 G.add_vertex(qstart) // Add ¢4+ and connect to other vertices
2 foreach ¢ in neighborhood(qsiqr:) do
3 if can__connect(qstart, q) then

4 L g~addiedge(q$ta7'tv Q)

G.add_vertex(qgoal) // Same for ggoal
foreach ¢ in neighborhood(qgoq) do
if can_ connect(qgoar, q) then

L g addf@dQE(q‘qoal ) Q)

if G.same__component(qstart, Ggoar) then
10 L return G.find_path(qstart; dgoal) // e.g., Dijkstra’s shortest path

o N o o«

©

11 return {} // Empty list when no path found

One of the most significant advantages of roadmaps is their reusability — once we compute
the roadmap for a given environment, we can find paths for multiple query pairs with the
runtime constrained only by the graph search algorithm. However, in many implementations,
the connectivity of the roadmap is not checked during its creation. This can lead to a graph
which does not form a single connected component (Figure 2.2).

7



2. Motion planning

(a) : Path succesfully found. (b) : Failed to find path.

Figure 2.2: PRM query phase. A query consists of the start configuration gstq,+ (green) and
goal configuration ggeq; (red). After connecting them to the roadmap, a path is searched for
by a selected graph algorithm. In 2.2a, a path between ggiqr+ and gepnq is successfully found (blue).
However, due to the graph not forming a single connected component, a path for the second query
in 2.2b is not found.

B 2.2.2 Rapidly-exploring Random Trees

The Rapidly-exploring Random Tree (RRT) [4] algorithm starts, contrary to PRMs, with
a specified initial gsier¢ and target ggo configurations. A single tree starting from ggiqare
is built by adding new, non-colliding configurations to the previously found ones. In each
iteration, a random configuration ¢..,q € C is generated, and the nearest configuration
in the tree gneqr is found. A straight line is constructed from gneqr tO @rand, on which a
non-colliding configuration gy, is found and added to the tree. The growth of the search
tree is illustrated in Figure 2.3. After adding a configuration near the goal to the search tree,
the path from the start to the goal is found easily by reverse tracking vertices in the tree
(Figure 2.3c). If no such configuration is found after a specified number of iterations I,,,qz,
the search is terminated. The pseudocode of the RRT algorithm is listed in Alg. 3.

Algorithm 3: RRT
Input: Configuration space C, Configurations gsqrt and ggoal
Params: Maximum iterations I,,q:
Output: Path 7 from ggiart t0 ggoqr O empty list

Initialize T (gstart) // Search tree seeded at (siqrt
for iteration = 1, ..., I qe do
Grand = sample__random(C)
Gnear = nearest_point(T, Grand)
Gnew = stopping _configuration(gnears Grand)
if gnew # Gnear then
T .add_vertex(qnew)
T.add_edge(qnear; Gnew)
if is_near_goal(qner ) then
10 L return Path 7 from gstart 10 Ggoal

© 00 N O ok W N

11 return {} // Empty list when no path found
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-
s 3
[ ] [ ]
=l =L
(a) : RRT search tree after 100 (b) : RRT search tree after 300 (c) : RRT search tree after
iterations. iterations. reaching goal.

Figure 2.3: Illustration of the progress of the RRT algorithm in a 2D configuration space C.
The obstacle region O is marked by black, C¢.. by white pixels. The search tree is expanded
from the starting configuration gsqr+ (green) until the goal ggoq (red) is reached. The path 7
(blue) is found by reverse tracking vertices in the tree.

B 2.2.3 Bidirectional RRT

A basic RRT modification uses the knowledge of g4 and starts building two search trees
from both gstars and ggoqr, returning a path when the two trees meet [4]. This usually
results in a faster runtime, especially when one of the start or goal configurations is located
in an enclosed space (e.g., the bug trap problem shown in Figure 2.4). The pseudocode of the
Bidirectional RRT algorithm is listed in Alg. 4.

Algorithm 4: Bidirectional RRT

© 0N oA W N =

e o =
A W N R O

=
(S

16

17
18

19

Input: Configuration space C, Configurations ggtqr+ and ggoal
Params: Maximum iterations I,,,q.
Output: Path 7 from ggtare t0 ggoar Or empty list

Initialize T4 (gstart) // Search tree seeded at Qstart
Initialize Tp(qgoal) // Search tree seeded at (¢goqi
for iteration = 1, ..., I 4 do

Grand = sample__random(C)

Qnear = neareSt_POim(fz, QTand)

Anew = StoppingfConﬁguration(qnear7 QT’and)

if gnew 7 Gnear then

To-add_vertex(gnew)

%-add_edge(Qnemw Qnew)

Groar = nearest_point(Ty, qnew) // Expand towards the nearest
Qe = Stopping__configuration(ql,e.,, dnew) // vertex in the second tree

if q;’Lew # q;lear then
Tp-add_vertex(q,e.,)
Ty-add_edge(dpears dnew)
if Gnew = ¢eq, then // When the trees meet,
L return Path 7 from qstart 10 Ggoal // construct and return a path
if |Ty| > |7.| then // Ensure that the trees are expanded equally
| swap(Ta, To) // by expanding the smaller tree
return {} // Empty list when no path found
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(a) : Two search trees seeded at gstart and ggoai- (b) : Final path.

Figure 2.4: Bidirectional RRT. Two search trees are built, starting from gstqr+ (green) and Qgoal
(red). In each iteration, the algorithm expands the smaller tree and tries to make a connection
to the nearest node of the other tree, returning a path (blue) on success.

B 23 Guided planning

Standard sampling-based planners sample the configuration space uniformly. This makes
generating a collision-free path challenging in situations where the critical areas have a
tiny volume. One such situations are narrow passages — small collision-free regions in the
configuration space, that contain a part of the solution. Due to their low volume (compared
to the volume of the configuration space), the probability of generating uniformly distributed
samples in them is low. Consequently, the presence of narrow passages requires to significantly
increase the number of samples, which increases the runtime. From the practical point of
view, the narrow passages make the planning problem more difficult. Guiding-based planners
aim to modify the sampling probability inside the key areas by introducing so called guiding
paths. By increasing the sampling rate along the guiding paths, the probability of generating
valid configurations in the key regions is increased (Figure 2.5).

Qnear (Qrand

Figure 2.5: Guided planning. The guiding path (dark blue) is used to guide the expansion of the
search tree (grey). The sampling rate is increased around the active waypoint 7 (blue area). The
tree attempts to grow towards the random sample gqnq (light blue) generated around the active
waypoint. After the tree approaches the active waypoint (e.g., to a predefined distance), the active
waypoint is moved along the guiding path (to the waypoint 8).

10
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When solving a low-dimensional problem (i.e., problem with less then 3 degrees of freedom),
the medial axis of the workspace [13] or a path through the environment [5, 6] can be used as
the guiding path. In [5], the guiding path is computed from the Voronoi diagram of a 2D
workspace. Guiding paths for a high-dimensional problem can be obtained by relaxing the
problem constraints [14, 15, 16]. In [14], the size of the robots or obstacles is modified to
widen the narrow passage for the robot, making the problem easier to solve. The path found
for the easier problem is then used to guide the planner when solving the original problem.

However, most of the approaches utilize only one guiding path. This can lead to problems
when the solution belongs to a different homotopy class than the guiding path. Utilizing more
guiding paths from different homotopy classes should increase the planner’s performance.
However, evaluating path homotopy becomes very challenging in spaces with more dimensions
than 2D. Furthermore, approaches that use only one guiding path can fail when the solution
is far from the guiding path. This can be also avoided by using multiple guiding paths.

B 2.3.1 RRT with Inhibited Regions

Inhibited regions are an extension to the RRT algorithm (described in Section 2.2.2) proposed
in [6], aiming to speed up the planning when a narrow passage is present. Inhibited regions
are subsets of the configuration space, where the exploration is suppressed. By imposing such
restrictions around already found paths, the planner is forced to find different paths through
the environment. The main idea of this method is to find multiple guiding paths.

First, the manipulated object is scaled down, making it easier for the planner to find a path
through the narrow passage. The waypoints of each computed path generate inhibited regions,
and the planner tries to avoid these regions when searching for additional paths. Then, after
multiple paths through the environment are found, the manipulated object is returned to its
original scale, and the search is started again. During the subsequent search, the paths are
used to guide the planner by increasing the sampling probability along them.

In the algorithm outlined in Alg. 5, the standard RRT planner loop presented in Alg. 3 is
expanded. With the probability pyqs, the samples are chosen around the guiding paths G.
To track the search progress along each guiding path, active waypoints v; are introduced,
representing the first point of the i-th guiding path that has not yet been reached. In the
case that the expansion towards the sampled configuration enters an inhibited region, it is
not terminated directly (doing so would permit finding paths in environments where different
paths need to go through the same bottleneck, as shown in Figure 2.6). Instead, entering the
inhibited region is controlled by the following probability function

_BGEAY S
P exp ( - ) if A(i,j)=0 (2.1)
0 otherwise,
where
A(1, 7) = max(ai ), B(i, j) = max(ai) (2:2)

and asym is the total number of attempts to enter the inhibited regions.

11
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(a) : Each path generates inhibited regions (b) : Sometimes, paths are forced to go through
around its configurations (yellow). the same bottleneck (red).

Figure 2.6: RRT with Inhibited Regions. When searching for the guiding paths, each new path
generates inhibited regions, in which the exploration is suppressed (2.6a). In environments where
different paths go through the same bottleneck (2.6b), permitting the planner from entering the
inhibited regions would result in the planner failing to find multiple paths. This is solved by
introducing the probability Eq. 2.1.

Algorithm 5: RRT-IR find path

Input: Configuration space C, Configurations gstert and ggoqr, Guiding paths G = (g1, ..., gm),
Inhibited regions R = (71, ..., ")

Params: Inhibited region radius d;,ps,, Maximum iterations I,,,4,, Guiding bias ppiqs

Output: Path 7 from ggar¢ t0 ggoar Or empty list

1 Initialize T (gstart) // Search tree seeded at ggiqrt
vp=0fori=1,..,m // Index of active waypoint on guiding path g;
3 a;=0fori=1,..,n;j=1,..,n; // Number of attempts to enter the j-th

// configuration in the inhibited region r;

N

4 Qgym = 0 // Total attempts to enter all regions
5 for iteration = 1, ..., I do
6 if |G| and random(0, 1) < ppiqs then
7 i=random 1 <i<m
8 gv; = active waypoint on path P;
9 Qrand = sample__around(C, q,,)
10 else
11 | Grana = sample_random(C)
12 Gnear = nearest_point(T, ¢rand)
13 f]new = Stopping_conﬁguraﬁon(qnear, qrand)
14 if gnew 7é Gnear then
15 Penter = 1
16 if |R| > 0 then
17 Qinhibs 1, ] = nearest_point(R, qnew) // Nearest configuration in R
/1 Ginniv = 7TilJ]
18 if diSt(anu; Qneur) < dinhib then
19 a;; =a;; +1
20 Asym = Gsym + 1
21 Penter = p(i7j7a7 asum) // Eq 2.1
22 if |R| = 0 or random(0, 1) < penter then
23 T .add_vertex(qnew)
24 Tﬂddf@dge(%ear, q”ew)
25 if is_near_goal(qpe ) then
26 L return Path T from qgiart 10 Qgoal
27 if is_near(qnew, ¢v;) then
28 | vi=wv +1 //Progress to the next waypoint
29 return {} // Empty list when no path found
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2.4. Motion planning with experience database

B 2.4 Motion planning with experience database

In a series of papers published under Kavraki Labs', researchers aimed to exploit the experience
of robots performing tasks in a mostly static workspace (e.g., mobile robots used for shelf
stacking in a warehouse) to improve their performance over time. The experience of a
robot working in an environment is saved to a database in the form of paths or roadmaps.
When a new planning task is given to the robot, planning guided by the data from the
database is used in combination with planning from scratch. If the raw planning is successful,
a new experience is created, expanding the database. Otherwise, the prior knowledge is used
to support the planner.

In [17], Experience-Driven Random Trees (ERT) are proposed. When a robot is given multiple
planning tasks in an environment, the solution paths are saved into a database. Over time,
multiple paths are accumulated in the database, representing the robot’s experience gained
by moving through the environment. During consequent planning tasks, the saved paths
are fetched from the database and split into multiple segments (micro-experiences as named
by the authors), representing high-level robot movements. The algorithm tries to expand the
search tree by these segments or small deformations of them, as illustrated in Figure 2.7. This
allows to grow the tree by larger segments instead of expanding by a single configuration.

3

[ |
Yo Sgoal
Cini end R 0,1]

Figure 2.7: Tllustration of the Ezperience-Driven Random Trees proposed in [17]. The experience
from the database {p : o € [0, 1] = Cfree is mapped onto the current planning problem given by the
start and the goal configurations s and Sgeqi. This mapped experience £ : o € [0, 1] — Cyree,
€5(0) = Sstart and E5(1) = sgoq is split into multiple segments — micro-experiences. One such
segment ¢¥p = &5 (Qins, Qena) is shifted (illustrated by colors) and sheared (illustrated by dotted
lines). The algorithm then tries to expand the search tree with the deformed segments. Image
courtesy of [17].

In [18], the experience is a movement through a specific obstacle region (e.g., a robot’s arm
moving through a shelf of a bookcase). The workspace is divided into smaller obstacle regions
(local primitives). At first, a standard sampling-based planner (RRT, PRM, etc.) is used
to find a path through the obstacle region. When the robot comes across a similar local
primitive during consequent planning, its experience is used to guide the planner locally.
However, to use this approach, an explicit model of the obstacles in the workspace is needed
to create the local primitives. Because the experience depends on both the robot and the
workspace, this method is suited for situations where one robot repeatedly works in the same
environment.

"http://www.kavrakilab.org/nsf-ri-1718478.html
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2. Motion planning

The results show improvements over other sampling-based planners that start each planning
task from scratch. However, the proposed algorithms work with the assumption that the
same robot is used for all tasks. The database is filled gradually by the robot’s experience
gained by finishing specific tasks in the environment. In the case that a different robot would
be used, the experience gained by the original robot would not have to stay valid. This thesis
also aims to create a database of paths, serving as the planner’s experience. However, our
goal is to design a method that will improve the planner’s performance even when planning
for an object different from the one used to generate the experience.

B 25 Summary

In this chapter, motion planning was described, along with the definition of needed terms.
From the most common methods developed to solve the motion planning problem, the sampling-
based approach was presented. Sampling-based algorithms such as Rapidly Exploring Random
Trees (Section 2.2.2) and Probabilistic Roadmaps (Section 2.2.1) work by randomly sampling
the configuration space and using the collision detection module to evaluate the collisions
between the manipulated object and the obstacles.

Sampling-based algorithms can become inefficient when a narrow passage is present. In such
environments, we need to find a specific configuration in which the manipulated object
does not collide with the obstacle region. When the sampling is uniform, the probability
of generating samples in narrow passages is low, which increases the runtime. To ad-
dress this issue, guiding-based methods such as RRT-Path [5] or RRT-IR [6] can be used.
First, approximate paths through the narrow passage are found under relaxed conditions
(e.g., a scaled-down object). By increasing the sampling rate along these paths, we guide the
planner and increase the probability of finding the specific configuration needed. However,
the computation of the guiding paths introduces a considerable overhead and needs to be
done prior to every search.

A considerable amount of research has been performed on including the prior experience of a
robot into consequent planning tasks, with the goal to increase the planning speed [17, 18].
Although this research tries to leverage the prior experience and is therefore similar to our
thesis, an important difference needs to be pointed out. In the research mentioned, the
experience was generated for a specific robot, and the same robot should be used during the
consequent planning. On the other hand, we aim to use the gained experience when planning
for objects that are not necessarily the same. Our goal is to use guiding paths computed for
similar objects. We create a library containing information about the objects and their paths
through various environments. To solve the path planning problem for a particular object, we
first find the most similar object in the library and use its paths to guide the search for the
manipulated object.

14



Chapter 3

Shape matching

Guiding paths can be used to overcome the inefficiency of sampling-based planners when
the manipulated object needs to pass through a narrow passage as mentioned in Chapter 2.
This thesis aims to further utilize the concept of guiding paths by using paths that have
already been computed for a different object. However, using paths computed for an arbitrary
object could lead to problems when the manipulated object is of a completely different shape.
Therefore, to select an appropriate (i.e., the most similar) object from the library, we need
a way to evaluate the shape similarity. In this chapter, we present methods for matching
3D objects and computing their similarity, with the goal to identify and understand current
capabilities.

. 3.1 Problem definition

In shape matching, the problem is to find a correspondence map between two objects. This
has many applications in fields such as computer graphics (motion interpolation [19]) and
medical imaging [20]. The area of our concern will be 3D shape matching, where we search
for a map between two 3D objects represented by their meshes. The methods can be divided
into two main categories, depending on the type of the output correspondence map. Dense
maps assign each vertex from one object a counterpart from the other object. Sparse maps,
on the other hand, connect only a subset of the object vertices. This difference is visualized
in Figure 3.1.

Figure 3.1: When evaluating vertex-to-vertex correspondence, either sparse or dense maps can be
computed. Dense maps match all vertices between the two objects (illustrated by vertex color).
With sparse maps, only a subset of all vertices is selected and matched instead (illustrated by
points and lines). Image courtesy of [21].

The correspondences are often found as a result of a minimization task, meaning a measure
of the match quality needs to be defined. One common technique comes from the idea
of analyzing the change of the geodesic distance. The geodesic distance between two points
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3. Shape matching

on an object is the shortest path along the object surface. Since we are working with discrete
mesh representations, the search for the shortest path along a surface is reduced to finding
the shortest path in a graph and can be solved by the Dijkstra’s shortest path algorithm.
Under isometric transformations (transformations where the distances and angles on the
object surface are preserved), the geodesic distance between any two points does not change.
Therefore, when a correspondence map for which the geodesic distance between points stays
unchanged is found, we know that the two objects are isometric transformations of each other,
and we found the best correspondence map.

As an example, in [22], a subset of vertices S = {s;} from one (source) mesh and 7 = {t;}
from the other (target) mesh are matched, both of size N. The goal is to find a bijection
¢ : S — T minimizing the Average Isometric Distortion, defined as

Diso Z dzso Sz; 7 (31)
\<f>| (55578
1
diso(sia tj) ‘fb/’ Z |dg(3ia Sl) - dg(tjv tm)|7 (32)
sl: €¢/

where dy is the geodesic distance and ¢’ is a set of all corresponence pairs except the one,
which contribution is calculated (¢' = ¢\ {(si,¢;)})-

. 3.2 Methods

Shape comparison and matching is a complex task for which many algorithms have been
developed. A broad and detailed comparison of the available methods is presented in [23] and
[24]. Some examples are described below.

B 3.2.1 Symmetric Flips Tracking

A common problem in shape matching occurs when the shapes contain symmetrical parts
(e.g., the left and the right arm of a human) [21]. Often, the symmetrical parts are matched
incorrectly to each other — in the example of the human model, the left arm in the initial
human shape is matched to the right arm in the target shape (Figure 3.2).

In [21], the author tries to handle the symmetric flip problem by tracking multiple corre-
spondence maps up to a level of detail. This approach works in most cases but is very slow
compared to other methods. The increased runtime comes from the fact that dense maps
are computed instead of subsampling and finding correspondences between a small number
of vertices.

B 3.2.2 Mébius Voting

In [25], subsets of vertices are sampled and mapped to a complex plane. Random triples from
both subsets are iteratively selected, and three correspondence pairs are generated. In each
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3.2. Methods

Figure 3.2: When using sparse maps, the sampled subsets can contain vertices symmetric in terms
of geodesic distances. On the left image, matching arms left to right (green) and right to left (blue)
does not change the average geodesic distance. By tracking multiple correspondence maps, the
ambiguities can often be resolved. Thanks to the added vertices on the right arm (cyan), the arms
are correctly matched (left to left in green and right to right in blue). Image courtesy of [21].

iteration, a Mobius transformation that maps one triplet to the other is found (a closed-form
is guaranteed to exist — three points on a plane can be mapped to the other three points
with a Mobius transformation unambiguously). All other points are also transformed, and the
deformation error (how far are the transformed vertices from the target vertices) is calculated.
When the error is low (the transformed vertices are close to the target vertices), the three pairs
(or some of them) are likely to be correct. Visualization of the embedding and transformation
is shown in Figure 3.3.

Mbobius Voting outputs a measure of shape similarity (Eq. 3.1) and the corresponding vertex
pairs. However, it suffers from the symmetric flip problem due to sparse sampling and is
restricted to a sphere topology.

B d
j
-
fi v

Figure 3.3: In [25], the objects are embedded into the extended complex plane. Triplets of points
from both objects are sampled randomly, each time defining a unique M&bius transformation
mapping the first triplet to the other. When the deformation error is low, the pairs are likely to
be correct. Image courtesy of [25].
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3. Shape matching

Il 3.2.3 Deep Deformations

In [26], deep learning approaches are used to match an input shape to a template representing
a specific class of shapes. Namely, an encoder-decoder style deep neural network Shape
Deformation Network is used. For each shape class, a template is created. The encoder
creates a feature embedding of the input shape. This feature embedding and the template
are fed into the decoder, which deforms the template into a shape similar to the input shape.
By comparing the deformed template to the input, we gain correspondences between the two
shapes.

~ R

Figure 3.4: Using Deep Deformations [26], an unknown shape (left) is matched to one of the
class templates (middle). Correspondences with the template are then evaluated (right). Image
courtesy of [26].

Although the result quality was shown to be very high, this method comes with multiple
downsides. As with other deep learning applications, a lot of hand-crafted training data is
needed. For that reason, it is optimized mainly for human models, for which many high-quality
datasets are available. Moreover, the class of the input shape needs to be specified. Therefore,
this method can not be used to label unknown objects.

B 3.2.4 Genetic Algorithms with Adaptive Sampling

One of the recent methods presented in [22] uses genetic algorithms to find the correspondence
map between two objects (summary presented in the SHREC’19 contest paper [27]).

Genetic algorithms are inspired by the process of natural selection. First, a subset of all
possible solutions to the given problem (initial population) is selected. In each iteration, the
candidates are evaluated by a fitness function measuring the solution quality. The goal can
be to maximize this function (e.g., achieved score in a game) or to minimize it (e.g., obstacles
hit by a car). The fittest candidates are then used to create a new generation of candidates
(Figure 3.5). After a terminating condition is met (e.g., a specified number of iterations
elapsed), the candidate with the highest fitness value is declared as the solution [22].

Here, a candidate represents a bijection between vertices sampled from the initial and target
shape (a correspondence map). The goal is to find a bijection that minimizes the fitness
function — in this case, the average isometric distortion (Fq. 3.1). After a satisfying solution is
found, the sampled points are further moved by alternating optimization (Adaptive Sampling
as named by the author), which should result in even better correspondences.
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3.3. Summary

DR g
J2 N SAN|

Selection . Crossover

Figure 3.5: Illustration of shape matching using genetic algorithms. We search for a map between
the vertices of two meshes (black). A solution candidate is a bijection between the vertices
(colored lines). The green, red, and blue lines represent three different solution candidates in one
generation. The fittest candidates in the generation are selected (green and blue). From these,
a new generation is created by crossovers (swapping parameter values between the candidates)
and mutations (random perturbations of the values). The correct solution appears in the new
generation (indicated by the green checkmark).

i i

B 33 Summary

This chapter introduced the problem of shape matching and current approaches to solving
this task. We identified that utilizing shape matching methods can provide us with two
key capabilities when working with 3D objects. First, the similarity of two objects can be
evaluated, giving us information about how similar or different the two objects are. This also
means we are able to select among multiple objects the most similar to a specified object.
Second, a list of corresponding points between two objects can be generated up to a variable
level of detail. Both abilities will become useful in the following chapters.
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Chapter 4

Proposed solution

In [6], it was shown that using approximations of possible paths can improve the inefficiency of
the sampling-based planners when planning in environments with narrow passages. However,
computing the approximations prior to every planning introduces a considerable overhead and
slows the planning process. To solve this issue, we propose a novel method named RRT-LIB,
consisting of two main phases, the preparation phase and the planning phase. The main idea
is to store the already computed paths in a library and use them during later searches.

At the beginning of this chapter, the structure of the library used to store the precomputed
paths is specified. We also introduce modifications to the state-of-the-art sampling-based
planner RRT-IR described in Chapter 2, which allows us to fill the library in the preparation
phase of RRT-LIB.

Storing the paths computed for multiple objects allows us to use them as hints during the
planning phase, when a path for a query object is searched for. We use the shape matching
methods presented in Chapter 3 to select an object from the library, which is the most similar
to the query object. Finally, we introduce a method to transform the paths from the library
into the guiding paths for the query object.

B a1 Library of Trajectories

At first, the structure of the underlying path library needs to be defined. The library will
serve as the foundation for our subsequent work by providing paths precomputed for multiple
different objects. These paths will be used as a suggestion to the planner of the possible paths
through the given environment (Figure 4.2).

The main idea is to save the paths which have already been computed in a structure that
allows for easy querying. Each path has two important parameters, the object, and the
environment, which we will use to index our database. A composite index' raises the question
of key ordering. We can choose the object most similar to the query object and look at
whether the library contains computed paths for that object through the given environment.
The second option is first to select the required environment and then choose the most similar
object among the objects for which paths through the environment are available.

! Also known as Multiple-Column Index in SQL languages https://dev.mysql.com/doc/refman/8.0/en/
multiple-column-indexes.html
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4. Proposed solution

Object & Paths &
Environment Correspondences Guiding paths Final path

Precomputed paths
RRT-LIB Planning phase

----- o O O O

\ 4

Library of Trajectories Genetic Algorithms 1CP RRT-IR
(Section 4.1) (Section 3.2.4) (Section 4.4) (Section 2.3.1)

Figure 4.2: For each environment, the library contains precomputed paths for multiple objects.
These paths will be used to guide the planner when planning for a different object, hinting at the
possible paths through the environment.

The answer comes quite naturally after analyzing the selection workflow. The former option
would not be advantageous because in case the library does not contain paths through the
required environment for the most similar object, we do not gain any valuable knowledge.
Considering the latter option, first selecting the environment and then selecting the most
similar object is more convenient. Even in case the library does not contain paths for an
object particularly similar to the query object, we still get paths giving us an estimate of
possible paths through the environment. The library structure is illustrated in Figure 4.3.

Figure 4.3: Structure of the library. For each environment (green), paths for different objects
(vellow) are computed and saved. During the RRT-LIB planning phase, the paths are retrieved
from the library and used as guiding paths.
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4.2. Tracking path diversity

B a2 Tracking path diversity

Since the probability of finding similar paths during the first phase is nonzero (due to
the probability Eq. 2.1), some method of tracking path diversity needs to be implemented.
Otherwise, we would end up with groups of paths being similar to each other, which would
result in a decreased efficiency of the second phase, where speed is crucial. One such method is
presented in [28], a modification of which is used here. By combining the diversity tracking with
the RRT-IR algorithm presented in Section 2.3.1, we are able to fill the library (Figure 4.4).

Multiple
Path distinct paths
Planner k ; Similarity A i Library

Evaluation

L IR v
b ! 0L an
BT &
- I 2 A
b A& rm
Inhibited regions
RRT-LIB Preparation phase
)

O \ O‘ """
RRT-IR Path diversity Library of Trajectories

(Section 2.3.1) (Section 4.2) (Section 4.1)

Figure 4.4: Path generation is the main part of the preparation phase of the RRT-LIB algorithm.
Each path found by the RRT-IR algorithm is compared to the paths that have already been
computed during the search. By filtering the paths by their similarity, only distinct paths are
saved to the library. This increases the efficiency of the RRT-LIB planning phase.

The distance between paths 71 and 7 can be calculated as the average distance between each
waypoint in the first path and the nearest waypoint in the second path

1 *
p(r,m) = — Y plar, 45) (4.1)
|7—1| qET]L
¢ = arg min p(q1, G2)- (4.2)
q2€T2

The distance of a path 7 from a set containing multiple paths 7 = {7y, 79, ..., 7,} can then be
computed as

p(7,T) = min max{p(r,7:), p(7i, T)}. (4.3)

i=1,....,n

In order for a path to be considered distinct from the paths already found, its distance to
the set containing the paths needs to be higher than a specified threshold. One reasonable
threshold value, and the one that will be used, is the d;,p;, radius.

Tracking the diversity of the guiding paths comes with two advantages. Adding a nondistinct
path to the set of guiding paths would not give us any new information. Removing such
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4. Proposed solution

paths results in a smaller number of guiding paths, preserving the diversity. This improves
the speed of the second phase, where the guiding paths are used to guide the path search.
However, to enforce searching for new, distinct paths, the nondistinct path is still added to
the inhibited regions.

The second advantage comes from the fact that searching for new guiding paths can be
automatically stopped when the path diversity reaches a plateau, in contrast to having to
specify the number of guiding paths manually prior to the search phase. In reality, stopping
as soon as the first nondistinct path is found could lead to missing more complicated paths.
Therefore, a parameter ngiversity patience 1S introduced, and the search is terminated once no
distinct path has been found in the last ngiversity patience Steps.

Of course, methods that use a heuristic to decide whether two paths are distinct come with
some issues. In our case, using the average distance between paths, even two homotopic
paths (i.e., paths that can be continuously deformed from one to the other without passing
through the obstacle region) [4] can be declared distinct, if they are far enough in the free
space. Among the more advanced methods for filtering paths based on their path through
the environment is topological clustering [29]. Using such methods could lead to further
improvements. However, it is out of the scope of this thesis.

Combining the RRT-IR find path method presented in Section 2.3.1 with a control loop, we
get the final algorithm for the RRT-LIB preparation phase outlined in Alg. 6.

Algorithm 6: RRT-LIB preparation phase
Input: Configuration space C, Configurations gstqrt and ggoai
Params: Diversity patience ngiversity patience, Inhibited region radius d;npnis,
Safe distance dsq e
Output: Set 7 containing paths 7; from ¢gsqr¢ tO Ggoal OT empty set

1 T={} // Generated paths

2 R=1{} // Inhibited regions

3 Nggme = 0 // Number of iterations no distinct path was found

4 while Nsame < Ndiversity_patience do

5 T = find_path(gstart, 4goals {}, R) // Restrict planning around R (Alg. 5)
6 if 7 # {} then

7 dist = p(1,T) // Eq. 4.3

8 if dist > d;npip then

9 T.add(T) // Add 7 to T only if distinct enough
10 Nsame = 0

11 else

12 L Nsame = Msame T 1

13 B R.add({q € 7| dist(q, gstart) > dsafe N dist(q, goal > dsafe)})

14 return T
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4.3. Mesh similarity

B 43 Mesh similarity

After the library is filled by the computed paths, we need to have a way to choose the most
similar object to the query object among the available ones (Figure 4.5).

Object & Paths &
Environment Correspondences Guiding paths Final path
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Library of Trajectories = Genetic Algorithms ICP RRT-IR

(Section 4.1) (Section 3.2.4) (Section 4.4) (Section 2.3.1)

Figure 4.5: The most similar object to the input object is selected by a 3D shape matching
method. Its paths through the input environment will provide us with an estimate of the possible
paths.

We will base the selection of an appropriate method for evaluating the shape similarity on
the following criteria:

1. the input is a pair of objects represented by their triangulated meshes,
2. one of the outputs is some form of a similarity metric, a number that allows for comparison,
3. another output is a list of corresponding vertices,

4. the method is reasonably fast and reliable.

The first requirement is given by the structure of our data. If the input object representation
was different than the representation of our data, a complicated conversion would need to
be implemented. The second and third requirements come from the presumed use cases.
Similarity evaluation will be used to label an unknown object by comparing its similarity with
multiple labeled objects. After finding the most similar object, a transformation between the
two objects could lead to further improvements. Therefore, both the similarity metric and
the correspondences are required. In Chapter 5, we implement and test three shape matching
methods. Based on the results, one will be selected and used to evaluate the mesh similarity
in the RRT-LIB pipeline.
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4. Proposed solution

B aa Using guiding paths for similar objects

The RRT-IR algorithm (Section 2.3.1) with modifications proposed in Section 4.2 allows us to
compute a diverse set of paths. These paths can then be used as guiding paths when planning
for a similar object. However, using paths precomputed for a different object works only when
the object coordinates are in the same reference frame and the objects have a similar rotation.
This is a strong assumption, which in reality will not be met. The most natural way could be
to represent all objects with respect to their “center of gravity”. However, this method allows
only translation and will fail when objects are rotated differently. In this section, we alleviate
these constraints by presenting a method of transforming the paths retrieved from the library
before using them as guiding paths (Figure 4.6).

Object & Paths &
Environment Correspondences Guiding paths Final path

Output

RRT-LIB Planning phase
----- O O O ® >

Library of Trajectories Genetic Algorithms ICP RRT-IR
(Section 4.1) (Section 3.2.4) (Section 4.4) (Section 2.3.1)

Figure 4.6: After the most similar object is selected from the library, we need to evaluate its
position relative to the input object. Using the ICP algorithm, we compute a transformation
minimizing the mutual distance between the two objects. By transforming the paths from the
library, we can use them as guiding paths for the planner.

Let two 3D objects be represented by their meshes M; € R™3 and My € R™*3, where
n and m are the numbers of vertices of the first and the second object, respectively. The
problem consists of finding a 3D transformation that minimizes the mutual distance between
the objects. Therefore, we are searching for a rotation matrix R* and a translation vector t*
satisfying

d(Mp, M) = min{d(My, MEY) | R € R¥3 t € R?Y, (4.4)
where M*t is a mesh formed by transforming each point from M
MBt = (mf’t, . ,m,lj’t) mf’t = Rm; +1 (4.5)

and d is a mesh distance metric (e.g., mean squared difference). Multiple methods for solving
(or finding an approximate solution to) such a problem have been proposed.

In this thesis, Iterative Closest Point (ICP) [30] will be used. ICP is an iterative algorithm
that for a given source and target mesh finds a transformation of the source mesh, such
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4.4. Using guiding paths for similar objects

that the mesh distance (e.g., the sum of squared differences between the closest points) is
minimized. In each iteration, the closest point in the target mesh is found for each point
in the source mesh. A transformation is then found, which minimizes the sum of squared
distances between the matched points’. These steps are iterated until the meshes are close
enough or a specified number of iterations has elapsed.

ICP is primarily used for correcting small transformations, and it is recommended to provide
the algorithm with an initial guess of the transformation. We can extract this initial guess
from the similarity evaluation presented in Section 4.3. From the output correspondences
between the meshes, a rigid transformation minimizing the squared distance between the
corresponding vertices can be found. This is, in fact, another iteration of ICP, where the
correspondences in the first step are specified. By finding a transformation between the
source and target mesh, we can use this information to transform the guiding paths. The
algorithm is outlined in Alg. 7, with an illustration shown in Figure 4.7. By adding the ICP
transformation into the planner, we get the RRT-LIB planning phase outlined in Alg. 8.

Algorithm 7: ICP with initial guess

Input: Source mesh S = (s1, $2, ..., $), Target mesh T = (11, T2, ..., T), List of initial
correspondences L = [(S¢,, Tey )s (Sens Ten)s ++os (Seys Tey )]

Params: Maximum number of iterations N, Minimal error €,,;,

Output: Rotation matrix R*, Translation vector t*

R*, t* = ming, Zézl |1 7e; — (Rse, +1)]2 // Compute the initial guess
e = iz llres = (Bsee + 1)1

=

2

3n=20

4 while n < N and ¢ > ¢,,;, do

5 fori=1, ..., ndo // Find the nearest vertex

6 L Ts; = nearest_point(s;, T) // to each vertex in the source mesh

~

R*, t* =ming,; > ., ||7s;, — (Rs; +1)||> // Compute the optimal transformation
e =iy 7, — (Rsi + )2
n=n+1

©

10 return R*, t*

Algorithm 8: RRT-LIB planning phase

Input: Object O, Map M, Configurations gstqr+ and ggoai, Library of Trajectories £
Output: Path 7 from gssert 10 ggoar Or empty list

1 Og, G, L = L.get_guiding_paths(O, M) // Retrieve paths for similar object in L
// L - list of O and Og correspondences
2 R, t = ICP(O, Og, L) // Find the mutual transformation
// between O and Og (Alg. 7)
3 align_objects(O, Og, G, R, t)
4 7 = find_path(qstart, goats G, {}) // Plan along the guiding paths (Alg. 5)
5 return 7

2Because the problem is formulated as the minimization of a sum of squares, a closed form solution exists
and can be found by the method of least squares.
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4. Proposed solution

(a) : Initial position and rotation.  (b) : Source transformation af- (c) : Final source transformation.
ter the first iteration.

Figure 4.7: Tllustration of the ICP algorithm. As an input, the source mesh (in blue) and the
target mesh (in red) are provided. ICP iteratively tries to find a transformation that maps the
source mesh to the target mesh.

B a5 Summary

In this chapter, we introduced a sampling-based motion planning method named RRT-
LIB, which consists of two phases. During the preparation phase outlined in Alg. 6, paths
for multiple object classes are computed by the modified RRT-IR algorithm described in
Section 2.3.1. The paths are stored in a library to use them later when planning for a similar
object. The choices made when designing the library’s structure were covered in Section 4.1.
In Section 4.2, we proposed a method to filter the paths by their similarity, saving only
distinct paths in the library. A decreased number of redundant paths should increase the
efficiency of the second phase.

When a path for a new query object in the same environment is required during the planning
phase, we retrieve the paths of the most similar object in the library. The most similar object
is selected by a 3D shape matching method, as described in Section 4.3. The retrieved paths
are transformed into guiding paths for the query object using the ICP algorithm covered
in Section 4.4 in combination with the correspondences found during the shape matching
phase. Transformation of the paths is needed to resolve the possible discrepancy between the
coordinate system of the query object and the object saved in the library. Finally, the guiding
paths are used by the RRT-IR algorithm to guide the search tree. This is done by increasing
the sampling probability along the guiding paths, hinting at the possible paths through the
environment. The complete RRT-LIB planning phase pseudocode is listed in Alg. 8.
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Chapter 5

Selecting the shape matching method

In Chapter 4, we presented the RRT-LIB algorithm. The similarity of two 3D objects needs to
be evaluated as a part of the planning phase, when the most similar object to a given object
needs to be selected from the library. In this chapter, we test the available state-of-the-art
shape matching methods and select one meeting the criteria specified In Section 4.3. The
selected method will be used in our implementation of the RRT-LIB algorithm.

Three methods were selected and implemented': Mdbius Voting (MV) [25], Symmetric Flips
Tracking (SFT) [21], and Genetic Algorithms with Adaptive Sampling (GA) [22]. All the
methods take a pair of triangulated meshes as the input and output both a similarity metric
and a list of corresponding vertices. Since the similarity will need to be evaluated at every
run of the RRT-LIB planner, our first concern will be the time and memory requirements.

Two datasets containing triangulated meshes were used for testing, TOSCA? [31] and PSB*
[32]. TOSCA contains isometric transformations of human and animal meshes, PSB contains
non-isometric transformations of meshes divided into 19 categories. Examples of found
correspondences can be seen in Figure 5.1.

(a) : Human model — 10 sampled (b) : Human model — 20 sampled (c) : Horse model — 10
vertices. vertices. sampled vertices.

Figure 5.1: Visualization of the corresponding vertices found by the Genetic Algorithms on the
TOSCA database.

!Some parts of the author’s implementation publicly available from https://user.ceng.metu.edu.tr/~ys/
pubs/ were used during the implementation of the SFT and GA methods.

% Available from http://tosca.cs.technion.ac.il/book/resources_data.html (TOSCA high-resolution)

3 Available from https://shape.cs.princeton.edu/benchmark
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5. Selecting the shape matching method

. 5.1 Runtime

To evaluate the runtime, the algorithms are run on objects with different vertex counts and
under different settings. The results are shown in Table 5.1.

For some settings, memory constraints (MV for vertex count ~5500) or time constraints (GA
for N=40 and higher vertex count) were exceeded. The reason for the increased runtime when
increasing the vertex count in MV and GA methods is that a sample of vertices (of size N)
has to be found prior to the main correspondence search. SF'T works with all vertices, the
runtimes are therefore higher and depend heavily on the original object vertex count.

We see that MV and SFT are usable only for models with a low vertex count, while GA speed
is kept high despite increasing the model quality (while leaving N low).

Vertices MV (10) MV (20) MV (40) GA (10) GA (20) GA (40) SFT

~5500 - - - ) 15 - 980
~4000 102 110 120 3 8 - 860
~2500 48 54 55 3 7 - 925
~1250 15 18 20 2 5) - 220
~500 4 4 10 1 5 2380 47
~100 0.6 0.8 6 1 4 230 4

Table 5.1: Runtime comparison for selected methods (in seconds).

. 5.2 Reduced number of vertices

Due to the runtime limitations, the number of vertices needs to be reduced prior to running
additional tests. However, this could lead to a worse result quality for the GA method, which
is able to cope even with high vertex count meshes. To see how reducing the number of
vertices in an object changes the quality of the output correspondences, a model is selected
and downsampled by Blender’s Decimate geometry feature.

The results are shown in Figure 5.2 and Figure 5.3. Even though the result changes depending

on the number of vertices, there is no clear trend that would indicate a change in the result
quality. The results on the low vertex count versions are compared to SF'T in Figure 5.4.
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5.2. Reduced number of vertices
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Figure 5.2: Average distortion in mesh units (defined in Eq. 3.1) for different number of mesh
vertices.

(d) : ~5.5k vertices (original) (e) : ~1k vertices (f) : ~100 vertices

Figure 5.3: GA results on downsampled objects.

(b) : ~100 vertices

(a) : ~100 vertices

Figure 5.4: SFT results on downsampled objects.
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5. Selecting the shape matching method

. 5.3 Selected method

The Genetic Algorithms method results are generally better than the results of the two other
methods. Moreover, the GA method is faster in all cases, even on higher vertex count meshes,
where the other two methods fail. Considering the test results, it will be the method of our
choice for further testing.

. 5.4 Transformation invariance

To examine how the GA method reacts to different object transformations, we rotate and
scale the target object while keeping the initial object unchanged. For each transformation,
the algorithm is run and the found correspondences are evaluated.

We see that the resulting correspondences found between the initial and the target object are
not affected by either rotation (Figure 5.5) or scaling (Figure 5.6).

(a) : Target rotated by —45° around x-axis. (b) : Target rotated by 45° around y-axis.

Figure 5.5: Matching under rotation. We observe that the rotation of the object does not change
the result.

(a) : Target scaled 0.5x (b) : Target scaled 2x

Figure 5.6: Matching under scaling. We observe that the scale of the object does not change the
result.
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5.5. Similarity evaluation

B 55 Similarity evaluation

In addition to vertex matching, the similarity needs to be evaluated to label an unknown
object. GA implements the maximum isometric distortion (maxlso) metric. This metric is
suitable only for isometric or nearly isometric deformations. However, the objects in PSB
are not isometric deformations of each other — a more suitable approach is to compute the
average over the vertices. Therefore, we use the average isometric distortion (avglso). Using
this metric, the results are improved — full results can be found in the appendix (Section A.2).
Two examples of objects mislabeled by the maxlso metric are presented in Figure 5.7, one
where switching to avglso helped and one where the label stayed wrong.

(b) : Table x Plane (maxIso = 0.123, avglso
= 0.053) = 0.111)

(c) : Plane x Plane (maxIso = 0.194, avglso (d) : Plane x Teddy (maxIso = 0.110, avglso
= 0.159) = 0.073)

Figure 5.7: Examples of mislabeled pairs. In the first row, the table is labeled as a plane by the
maxlso metric (Figure 5.7b). After switching to avglso metric, it is correctly labeled as a table
(Figure 5.7a). In the second row, the plane is reported to be more similar to a teddy (Figure 5.7d)
than to another plane (Figure 5.7¢) by both metrics.

B 56 Summary

In this chapter, we tested three 3D shape matching methods, namely Mdbius Voting, Symmetric
Flips Tracking, and Genetic Algorithms with Adaptive Sampling. From these three, the Genetic
Algorithms have shown to be the fastest with a high result quality. In the other tests, we have
shown that the results do not change when one of the objects is scaled and rotated, which is
a very convenient feature — we do not have to transform the objects prior to the matching
for them to have similar sizes or positions. The last test proved that the selected method can
be used to label an unknown object by selecting the most similar object from a list. The test
results were satisfactory, leading us to the decision that the Genetic Algorithms method will
be implemented as a part of the RRT-LIB pipeline.
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Chapter 6

Experimental verification

In this chapter, the proper function of the RRT-LIB method proposed in Chapter 4 is tested.
The tests are designed to confirm a correct implementation of the algorithms and validate the
expected behavior.

First, we test whether the method of tracking the path diversity proposed in Section 4.2
(Alg. 6) helps the RRT-IR algorithm to find distinct paths. We also test whether transforming
the paths from the library by the ICP algorithm presented in Section 4.4 (Alg. 7) makes the
paths more relevant for the current planning.

Finally, we combine all methods and test the complete RTT-IR planning phase by running the
planner in the test environments. Some test results contain runtimes, however, measuring the
precise runtime is not the purpose of the tests presented in this chapter. Due to the overhead
introduced by logging and saving planner progress, the runtimes are only indicative but are
still included to give the reader a notion of the time required. An extensive comparison with
other planners is presented in Chapter 7.

B 6.1 Data preparation

All implemented methods are tested using objects from the PSB dataset [32] and manually
created maps. Objects and maps are represented as triangulated meshes. To make the results
comparable, each object is scaled so that its bounding box fits into a cube with an edge size of
2 map units. From three categories, 11 objects in total were selected: four desks', four chairs,
and three teddy bears. Subscripts will be used when referencing a specific model in the text
(e.g., desk; and chairg). The models are shown in Figure 6.1, along with their bounding box
dimensions.

Width and depth of each map is 10 units, the height is 5 units. In the first two scenarios,
the wall contains one window that is traversable by all objects. This is to test the correct
implementation of the planning algorithms and to provide a benchmark for further testing. In
the third scenario, the wall contains three windows, each traversable by only some test objects.
To increase the planning difficulty, a single test with two walls 3 units apart is introduced.
The maps are shown in Figure 6.2, where the window dimensions are given in (x, y, z) format.
Each window has a depth of 1 unit (depth of the walls), the width and height are specified by
the y and z dimensions, respectively.

'The word “desk” is used instead of “table” to prevent possible ambiguities with data tables.

35



6.EXperimenta/VerificationllllllllllllIllllllllllllllllllllllllll

TT = -

(a) : desk; (1.1 0.80.9) (b) : desks (1.6 1.6 0.7)  (c) : desks (2.0 2.0 0.6) (d) : desks (0.8 1.6 0.7)

-

(e) : chair; (0.9, 0.8, 2.0) (f) : chairp (0.7, 1.1, 2.0) (g) : chairs (0.9, 2.0, 2.0) (h) : chairy (0.9, 0.9, 2.0)

(i) : teddy; (0.7, 1.4, 1.7)  (j) : teddys (0.7, 1.2, 1.9) (k) : teddys (0.9, 1.1, 1.8)

Figure 6.1: Test objects with bounding box dimensions (x, y, z — depth, width, height) indicated
in map units.

e dd

(a) : map: (1.0 2.0 2.0) (b) : maps (1.0 1.5 1.5)
(c) : maps (1.0 1.4 1.4), (d) : maps (Combination of map; and maps)

(1.0 0.7 2.1), (101008)

Figure 6.2: Maps with window dimensions (x, y, z — depth, width, height) in map units.
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6.2. Results

. 6.2 Results

The following algorithm implementations were used for the tests.

To detect collisions (needed in Alg. 5, line 13), the Robust and Accurate Polygon Interference
Detection (RAPID) library was used [33]. This library allows for fast collision checking
between objects represented as triangulated meshes. The nearest point from a list to a given
point needs to be found in Alg. 5 (lines 12 and 17) and Alg. 7 (line 6). A naive implementation
of the nearest neighbor search (i.e., computing the distance to each tree node and selecting the
node with the lowest value) would be extremely slow and inefficient. Instead, k-d trees [34] are
used — a multidimensional data structure used for efficient k-nearest neighbor searches. The
nanoflann library [35] was selected due to its high speed, easy integration and modification,
and popularity. Many open-source implementations of the Iterative Closest Point algorithm
used in Alg. 8 (described in Section 4.4) exist. In this work, the library LIBICP [36] is used.

B 6.2.1 Generating guiding paths

The manipulated object is first scaled down to find the guiding paths. Making the object
smaller will increase the planning speed and the path diversity [6]. To evaluate the efficiency
of the diversity tracking method proposed in Alg. 6, 20 paths for the scaled-down desk; are
generated first without evaluating their similarity. The planner is then run again, with the
paths filtered by their similarity (the parameter ngiversity patience S€t to 10). The progress of
the distinct path count with increasing iterations is shown in Figure 6.3, and the comparison
to the method without filtering is made in Table 6.1. Found paths are visualized in Figure 6.4.

It is also worth mentioning that even though some paths look similar in the 3D visualization,
they might be different due to the rotation being also included in the metric evaluation as
defined in Section A.1 (see Figure 6.5). This behavior turns out to be useful because often
the manipulated object can pass through the window only under a very specific rotation,
which could be different than the scaled-down object rotation. Therefore, having more paths
increases the probability of finding the right one allowing the object to pass through.

All paths Filtered by diversity

Total found paths [-] 20 44
Kept paths [-] 20 9
Cumulative time [s] 24.53 33.51
Average time per path [s] 1.23 0.73
Visualization Figure 6.4a Figure 6.4b

Table 6.1: Guiding paths search runtime for a search without filtering (left) and with filtering
(right). The runtime is affected mainly by outliers (i.e., runs taking exceptionally long to finish).
In this case, three runs taking over two seconds have occurred during the search without filtering,
compared to four that occurred during the search with filtering. This random nature is the cause
of the average time per run being lower for the search with filtering.
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Figure 6.3: As the planner continues searching for new paths, the distinct paths are added to
the guiding path set. After multiple (9) distinct paths are found, no new paths are classified as
distinct in the last ngiversity patience (10) steps, and the search is stopped.

(a) : Without filtering (nguiding_paths = 20). (b) : Filtered by diversity (ndiversity_patience = 10).

Figure 6.4: Guiding paths were generated for a scaled-down desk; through a map with three
windows in the wall (maps, Figure 6.2¢), first with the number of paths specified prior to the
search (6.4a), then with filtering the paths by their diversity (6.4b). Keeping only the distinct
paths results in fewer paths in total, which will increase planner efficiency when planning for
similar objects.

(a) : The first path. (b) : The second path.

Figure 6.5: Even though the two paths 6.5a and 6.5b are similar in 3D, they are different in 6D
due to the object rotation.
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6.2. Results

Bl 6.2.2 Using ICP to transform the similar object

In the previous section, it was assumed that the two objects (the original, for which the guiding
paths were computed, and the similar, for which a path is searched) would be represented
in the same reference frame and, moreover, would be positioned similarly in this frame. In
this section, we show that when this assumption does not hold, the raw guiding paths from
the library cannot be used unless a transformation between the two objects is found and the
similar object is transformed accordingly.

First, the time complexity of the ICP algorithm needs to be analyzed. Because it is a part of
the RRT-LIB planning phase, the time needed to transform the paths from the library into
the guiding paths is counted towards the total planning time. Therefore, ICP needs to be
fast enough not to substantially affect the resulting search duration. The time complexity
depends on the number of vertices in the source mesh ng, vertices in the target mesh n; and
iterations n;. In each iteration, the closest point in the target mesh to each point in the
source mesh needs to be found. By utilizing kd-trees, the nearest neighbor search complexity
reduces to O(logn;) [37] for one vertex. Therefore, the time complexity of one iteration
is O(nslogn;) and the total time complexity is O(n; nslogn;). This relationship can be
observed in Figure 6.6a. We see that even for a mesh with a large number of vertices (15 000),
the transformation is found in a matter of seconds, which is acceptable.

The result error is calculated as the sum of squared distances between corresponding vertices
(Alg. 7, line 8). In Figure 6.6b, we see that ICP is able to correct a small transformation of
the same object while also being able to transform a similar object to fit the original object
in around 15 iterations.

2 -
100 ¢
—n, = 1.500
ns = 8.000 \‘Q(\
ns = 15.000 —
1.5+ =
2
© g 107°
E 1 2
= = Same object
% Similar object
0.5 =) Different object
A
10710¢
0 ——v—/_—d-‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 0 10 20 30 40 50
Iteration [-] Iteration [-]
(a) : The ICP runtime linearly increases with (b) : The difference metric (in mesh units) grad-
the increasing number of iterations. For this ually decreases and converges in the first 15 iter-
experiment, the same target mesh with n; = ations. For the same object (blue), zero error is
10000 has been used for all tests. achieved. Final errors for a similar object (red)

and a completely different object (yellow) are
higher. This can be expected since the transfor-
mation is isometric and cannot deform the target
object in any way.

Figure 6.6: Testing the ICP time (6.6a) and result quality (6.6b) over time.
To determine how the result is affected by the initial transformation, another test is performed.
The magnitude of a transformation can be determined by adding the magnitude of the

translation and the rotation making up the specific transformation. In order for the magnitude
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6. Experimental verification

of rotation to be measured, the axis-angle rotation representation is used. In Figure 6.7, we
see that without the initial guess, the error increases when increasing the transformation
magnitude. When the initial guess extracted from the similarity evaluation presented in
Section 4.3 is used, the results are greatly improved, as shown in Figure 6.8. An illustration
is shown in Figure 6.9.
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(a) : The target mesh is same as the source. (b) : The target mesh is similar to the source.

Figure 6.7: The result difference metric increases with increasing transformation magnitude for
the same object (both in mesh units). The spikes show that ICP is sensitive to initial conditions.

10° "
Translation r :
Rotation Trans%atlon
Combined Rotatllon
Combined
4 \__—A
5 __/\/\-A-WAC—\/{/\'\ I~
10— 10-5 /&_—-\/\/ AL\ = \/

Difference metric [m)]
Difference metric [m]

A
10710 /v—‘wvﬁ—ﬁdww 10710

0 1 2 3 0 1 2 3
Transformation magnitude [m)] Transformation magnitude [m]
(a) : The target mesh is same as the source. (b) : The target mesh is similar to the source.

Figure 6.8: When an initial guess of the transformation obtained from the similarity evaluation is
provided, ICP results are better and more consistent.

A similar object to the original object used in Section 6.2.1 is selected and its mesh is
transformed by a random transformation. Thanks to the fact that the similarity evaluation
method is invariant to affine transformations, as shown in Section 5.4, the corresponding
vertices are not affected by the random initial transformation. Using methods from Section 4.4,
a transformation mapping the similar object to the original is found (visualization is shown in
Figure 6.10). The planner is first run without using the found transformation (Figure 6.10a).
Due to the difference in position and rotation, the guiding paths do not guide the object
through the windows and go through the wall instead (Figure 6.11a). As expected, no solution
is found in the 2-minute limit. Then, the similar object is transformed prior to performing a
search (Figure 6.10b). Transforming the object makes the guiding path relevant (Figure 6.11D),
and a solution is found very quickly (in under two seconds).
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6.2. Results

(a) : Initial position and rotation of the source (b) : Final source transformation when the initial
(blue) and target (red) objects. guess is not specified.

(c) : Source after the initial guess gained from (d) : Final source transformation.
similarity evaluation.

Figure 6.9: Tllustration of the ICP algorithm in 3D with additional knowledge gained from the
similarity evaluation. The source mesh (in blue) and the target mesh (in red) are provided as the
input, along with a list of the corresponding vertices (6.9a). First, a transformation minimizing the
distance between corresponding vertices is found and used as an initial guess of the transformation
(6.9¢). Then, ICP iteratively tries to find a transformation that maps the source mesh to the target
mesh (6.9d). Without the initial guess, the results are much worse (6.9b).

(a) : Initial position. (b) : After transformation.

Figure 6.10: The initial and final position of the original (red) and the similar (blue) object. The
guiding paths were computed for the original object. To use them, the similar object needs to be
mapped to the original and transformed accordingly.

(a) : When the manipulated object (blue) is (b) : By considering the mutual transformation
placed at the waypoint of the guiding path (grey), between the guiding objects, the manipulated ob-
it is far from the guiding object (red) due to their ject (blue) is placed on the guiding path (grey).
mutual transformations.

Figure 6.11: When the mutual position and rotation of the guiding object (red) and the similar
object (blue) are not taken into account, the guiding paths become useless because they guide the
similar object through the wall instead of the middle window (6.11a). After the guiding paths are
transformed, planning along them becomes viable (6.11b).
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B 6.2.3 Finding paths for similar objects

After the guiding paths for the scaled-down desk; are generated, we can use them to guide
the planner searching for a path for similar, fully scaled objects. Desks and desks are used
in this example. Both can fit through the middle window, desks can also tightly fit through
the larger (top-left) window. The results are presented in Table 6.2 and in Figure 6.12. We
see that the planner successfully finds a path in a reasonable time. When the planner is run
without using the guiding paths, the planning is terminated after two minutes without finding
a path.

desks  desks

Runtime [s] 26.58  1.42

Table 6.2: Path search runtime guided by already found paths.

(a) : The path found for desk,. (b) : The path found for desks.

(c) : Detailed view of 6.12a. (d) : Detailed view of 6.12b.

Figure 6.12: A valid path is found in a reasonable time even though the objects desky and desks
barely fit through the window, thanks to the paths found for a similar, scaled-down object (desky).
Without the guiding paths, it would be very hard for the planner to find a path through.

B 6.2.4 Specifying a guiding path

By specifying one guiding path, we can effectively choose a path for the manipulated object
to follow. As an example, one path for each of the three windows is selected and used as a
guiding path for the desky. Even though the guiding path is specified, there exists a nonzero
probability that a path not following this guiding path will be found — this probability is
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6.2. Results

affected by the pp;us value. By setting ppiqs to 1.0, the probability of finding a path similar to
the guiding path should be theoretically maximized. However, since the original object was
scaled down and had a different shape, setting pp;qs to 1.0 (forcing the planner to plan only
around the guiding paths) could result in a failure to find a path. Practically, values around
0.8 — 0.9 yield better results. The experiment results are shown in Figure 6.13 and Table 6.3.

(a) : Guiding paths found for the original object through the large window (green), the middle window
(blue) and the small window (red).

(b) : Resulting path for the (c) : Resulting path for the (d) : Resulting path for the
guiding path 1. guiding path 2. guiding path 3.

Figure 6.13: By specifying a guiding path from the paths found for a similar object (6.13a), the
path for the manipulated object can be successfully selected most of the time (6.13b and 6.13c).
However, due to a possible difference in the required rotation or the existence of easier paths, the
planner can still find a path different from the guiding path selected (6.13d).

Path 1 Path 2 Path 3

Runtime [s] 0.80 0.73 5.46

Table 6.3: Runtime of finding the resulting paths.

When searching along paths 1 and 2 (the largest and the middle window), we see that a path is
found in a short time. However, when the third guiding path was used (the smallest window),
the planner was not able to find a solution and went through one of the larger windows
instead. By visualizing and comparing the configuration of the guiding and the manipulated
object along the guiding path (Figure 6.14), we can understand why a path could not be
found. Even though the guiding path went through the smallest window, the rotation of the
guiding object is far from the rotation needed for the manipulated object to pass through
(as shown in Figure 6.5). By manually selecting a guiding path with a correct rotation in
addition to going through the smallest window and setting ppi.s to 0.99, the planner can find
a path through the smallest window in a reasonable time of 12.30 s (Figure 6.15).
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(a) : Rotation of the guiding object following the (b) : Rotation of the manipulated object follow-
guiding path. ing the guiding path.

Figure 6.14: Planner guided by a selected guiding path is unable to find a solution. This happens
because the rotation needed for the manipulated object to pass through the smallest window is
substantially different from the rotation proposed by the guiding path.

2

(a) : The path found for desky. (b) : Detailed view of 6.15a.

Figure 6.15: By manually selecting a guiding path going through the smallest window with the
correct rotation, the desired path is found (6.15a), even though the manipulated object barely fits
through the window (6.15b).

N 63 Summary

In this chapter, we tested the correct implementation and behavior of all parts of the RRT-
LIB planner. Although the tests confirmed our initial ideas, they can not provide us with
the confirmation of improved efficiency compared to other state-of-the-art planners. This
comparison is presented in the following chapter.
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Chapter 7

Comparison with other planners

To compare the performance of our RRT-LIB planner with other planners, The Open Motion
Planning Library (OMPL) [38] and its benchmarking facilities [39] were used. OMPL is an
open-source software library for testing various sampling-based planners. In recent years,
it has become widely used for comparing new sampling-based planners in the literature
[40, 41, 42]. Our planner needed to be rewritten using data structures from the OMPL library
(state representation, nearest neighbors, etc.). A collision checking function also needed to be
implemented, taking our data as input and determining the validity of the sampled states.

By implementing the planner directly into the library and compiling from the source, the
results are not affected by different compilers and possible optimization. Moreover, using
the same validity checking function and nearest neighbor libraries eliminates the influence of
external libraries on the planner results.

B 7.1 Selected planners

The OMPL library offers multiple implemented and preconfigured planners', which will be
used in the benchmark. Among the algorithms are Rapidly-exploring Random Trees (RRT)
described in Section 2.2.2 along with multiple modifications. The standard Probabilistic
roadmaps (PRM) method described in Section 2.2.1 could not be used due to the incom-
patibility of the implementation with the compiler used. Therefore, only a modified variant
(LazyPRM) is included. Compared algorithms are listed in Table 7.1.

More available planners could be used in the benchmark. However, it needs to be considered
that many algorithms do not terminate immediately when a path is found. Instead, algorithms
such as RRT* or SPARSE aim to find the optimal (typically the shortest) path by improving
the solution until a satisfactory one is found or a specified time limit is reached. Because we
are mostly interested in the runtime, the comparison with optimizing planners is not relevant
as they have a different planning objective.

!The list of available planners can be found at https://ompl.kavrakilab.org/planners.html
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Abbreviation Name

RRT-LIB RRT with Library of Trajectories

RRT Rapidly-Exploring Random Trees [4]

RRTConnect Bidirectional RRT [43]

Lazy RRT Lazy vertex and edge evaluation RRT [44]

LazyPRM Lazy vertex and edge evaluation PRM [45]

KPIECE Kinematic Planning by Interior-Exterior Cell Exploration [46]
BKPIECE Bidirectional KPIECE [46]

LBKPIECE Lazy vertex and edge evaluation KPIECE [46]

EST Expansive Space Trees [47]

BIiEST Bidirectional EST [47]

SBL Single-query Bi-directional Lazy collision checking planner [48]
STRIDE Search Tree with Resolution Independent Density Estimation [49]

Table 7.1: Planners used in the benchmark.

. 7.2 Parameter and environment setup

The parameter settings for our RRT-LIB planner are listed in Table 7.2. The default”
configuration is used for all other planners.

Parameter Name Value
Dgoal Goal bias 0.05
Dhias Path bias 0.80
dguide Guiding radius 0.50
dinhibited Inhibited radius 1.20
dsafe Safe distance 0.80

Table 7.2: Default parameters for the RRT-LIB planner

For each object and map pair, a benchmark test is run. Each planner is run 10 times with
a 2-minute time limit, computing the average time after all 10 runs have finished. Since
we are benchmarking 12 planners on 22 scenarios’, with each planner run 10 times for a
maximum of 2 minutes for each scenario, the upper time estimate for the benchmark is
12-22-10-2 = 5280 min = 88 h. To make such computation more manageable, the
benchmarks were run on a computing grid MetaCentrum, allowing to run each benchmark
scenario independently. The specifications of one computational node are listed in Table 7.3,
along with the resources reserved for each job.

2 As of version 1.5.2 available at https://github.com/ompl/ompl/releases/tag/1.5.2.
311 objects in 2 maps
“https://www.metacentrum.cz/cs/

46


https://github.com/ompl/ompl/releases/tag/1.5.2
https://www.metacentrum.cz/cs/

7.3. Preparation

Parameter Value Reserved for one job
CPU 4x14 CPU Intel Xeon Gold 5120 1 thread

RAM 768 GB RAM 8 GB

0S Debian10 —

Table 7.3: Specifications of one MetaCentrum node used to run the benchmarks.

B 73 Preparation

Before running the benchmarks, we need to generate the guiding paths and save them in the
library (the RRT-LIB preparation phase, Alg. 6). From each object category (desk, chair, and
teddy, as described in Section 6.1), one object is selected as the category representative. For
scaled-down” versions of the objects, the guiding paths are computed in two maps: maps and
mapy. These maps were selected because they offer various paths through the wall, and the
window dimensions are designed to make the problem challenging enough, but still solveable.
The number of guiding paths for each map and guiding object are listed in Table 7.4 and
visualized in Figure 7.1. We see that our proposed method of generating guiding paths is
able to generate distinct paths quite well. However, no guiding path was found through the
smallest window in Figure 7.1b and through the middle window in Figure 7.1f. Missing a
possible path through the environment is one of the drawbacks of using a sampling-based
planner to generate the guiding paths. The guiding path generation takes approximately 20
seconds per object and map.

el

(a) : chaira & maps (b) : desk; & maps (c) : teddy: & maps
(d) : chairy & mapy (e) : desk; & mapy (f) : teddy; & mapy

Figure 7.1: Guiding paths for the three guiding objects. Generated as a part of the RRT-LIB
preparation phase.

®Objects were scaled-down to 40% of their original size.
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Guiding paths

Object

maps mapy
chairy 7 4
desky 7 6
teddy1 6 )

Table 7.4: Number of computed guiding paths.
B 7.4 Benchmark results

The guiding paths were computed for scaled-down objects by our RRT-LIB planner and stored
in the library. In each benchmark scenario, a query object and a map are given as inputs to the
planners. At first, our method selects the most similar object from the library and computes
the mutual correspondences. The similarity evaluation takes on average one second per object
in the library — therefore, in our case, it adds approximately 3 seconds to each planning
task. The correspondences for three query objects are illustrated in Figure 7.2. In all cases,
the genetic shape correspondence algorithm [22] presented in Chapter 5 successfully selected
the guiding object belonging to the same class as the query object. The paths computed for
the similar object are retrieved from the library, and a transformation between the similar
object and the query object is found by ICP to ensure the objects have a similar position and
rotation (Section 4.4). Finding the transformation using ICP is not time demanding and it
takes less than a second to compute. The paths from the library are then used as the guiding
paths for the planner, increasing the sampling probability along them (Alg. 5). If no solution
is found after two minutes, the run is terminated.

The result of each benchmark test is presented on the following pages, with a bar graph
representing the success rate of each planner (in how many of the ten runs was a path
successfully found) and a box graph containing the time needed to find a solution (capped
at the 2-minute threshold). It needs to be noted that the time needed to precompute the
guiding paths (approximately 20 seconds) is not accounted for in the graphs. Moreover, due
to the OMPL implementation, only the time used by the planner is measured and shown in
the graph. Therefore, the overhead introduced by selecting the similar object from the library
and transforming the object (~ 3 s) needs to also be taken into account.

@%\\

(a) : chairy (b) : desk; (c) : teddy:

Figure 7.2: For every query object (left on each image), the most similar object from the library
is selected (right on each image). The correct guiding object was selected every time. The
correspondences between the objects are illustrated by the colored lines.
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7.4. Benchmark results

B 7.4.1 Easy scenarios

In the easier benchmarks (Figure 7.3 and Figure 7.4), most of the tested planners are able to
find a solution within the time limit. The runtime of our planner is similar to the runtime of
the standard RRT planner.
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(@) : Inputs and the (b) : Success rate (c) : Runtime
guiding paths
Figure 7.3: desk; & map; (easy)
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(a) : Inputs and the (b) : Success rate (c) : Runtime
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Figure 7.4: desk; & mapy (easy)

B 7.4.2 Medium scenarios

By using larger objects, the difficulty is increased. The benchmarks with medium difficulty
are shown in Figure 7.6, Figure 7.7, and Figure 7.8. Our planner retains the 100% success
rate, and the results show that guiding paths for a similar object usually help to achieve
greater speed and consistency, compared to the standard RRT. However, in some cases
(Figure 7.8), RRT achieves faster runtime. This can happen when the guiding paths are far
from the possible paths of the query object. Detailed view of three runtime results is shown
in Figure 7.5. Considering the time added by generating the guiding paths in the preparation
phase and selecting the most similar object from the library, using one of the other planners
would be faster than using our planner in some cases.
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(a) : Detail of Figure 7.6. (b) : Detail of Figure 7.7. (c) : Detail of Figure 7.8.

Figure 7.5: Detailed view of three benchmark results. The runtime of our RRT-LIB planner is
compared to the standard RRT and the bidirectional variant (RRTConnect).
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Figure 7.7: chairy, & maps (medium)
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Figure 7.8: chairy, & map, (medium)

50



7.4. Benchmark results

B 7.4.3 Hard scenarios

Tests depicted in Figure 7.9, Figure 7.10, Figure 7.11, and Figure 7.12 are substantially harder
and show the real advantage of using guiding paths. The objects barely pass through only
one of the windows. Therefore, it is hard for the planners to find a path through. We can see
that our planner is still able to find a solution most of the time, while the other planners fail
every time. In Figure 7.11, our planner failed to solve the problem in the time limit during
two of the ten runs. This can be attributed to the randomness of the sampling-based planners.
Even though the guiding paths guide the expansion of the tree, the sampling is still random,
and situations where a solution is not found in a specified time can occur. In the other tests,
the success rate remains 100%.
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Figure 7.9: desks & maps (hard)
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Figure 7.10: desky & map, (hard)
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Figure 7.11: desks & maps (hard)
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Figure 7.12: desks & mapy (hard)

B 75 Summary

In this section, we compared our RRT-LIB planner with other state-of-the-art planners.
The comparison was made using the benchmarking facilities of the OMPL library [39]. We
introduced tests with an increasing level of difficulty: easy, medium, and hard.

The RRT-LIB pipeline consists of multiple steps. In the preparation phase, the guiding
paths for multiple objects are computed. In the planning phase, a similar object from the
library needs to be selected first. Then, a transformation between the query object and the
object from the library is found by the ICP algorithm. Once the transformation is found, the
sampling-based planning begins.

The overhead introduced by the various steps in the pipeline needs to be considered when
evaluating the usefulness of the RRT-LIB planner given a specific task. When the problem is
simple, the time required to select the similar object and find the mutual transformation is
considerably longer than the time needed for the planning. Even though the planner finds
the solution almost immediately thanks to the guiding paths, no significant amount of time is
saved compared to the standard RRT planner.

The advantage of using the guiding paths computed for similar objects is shown in the medium
and hard benchmarks. In most cases, our RRT-LIB planner achieves faster runtime compared
to the other state-of-the-art planners. Moreover, it successfully finds paths even in the tasks
in which the other planners fail.

However, the library needs to contain computed paths, and the computation of guiding paths
in the RRT-LIB preparation phase requires a considerable amount of time. Making such an
effort is reasonable only when we plan for similar objects in the same environment repeatedly.
If we know that the planning will be performed multiple times with a defined set of static
environments and object classes, devoting the time to compute paths to store in the library
will prove advantageous in the long run. However, when the planning task is unique and will
not be repeated, it is better to use other approaches.
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Chapter 8

Conclusion

This thesis dealt with the task of motion planning for 3D objects. Motion planning is
an NP-hard problem and is most commonly addressed by the sampling-based methods [4].
However, sampling-based planners struggle with situations in which a narrow passage is
present. In such environments, guiding paths (i.e., available paths through the environment)
can be used to improve the planning speed [6].

We introduced a novel RRT-LIB algorithm that aims to improve the efficiency of sampling-
based planners by creating a library which stores already computed paths in an environment
with narrow passages. These paths are then used as guiding paths for other, similar objects.
To retrieve a set of paths that has the highest potential of correctly guiding the planner, a
query system able to choose the most similar object to a given object was designed. By using
paths that were computed for a similar object, the planning can get considerably faster.

The first step is to understand and correctly define the areas of concern. Introduction to
motion planning and shape matching was presented in Chapter 2 and Chapter 3, along with
current approaches to tackling these problems.

The Rapidly-Exploring Random Trees with Inhibited Regions (RRT-IR) [6] proved to be
a robust algorithm for both path generation and guided planning. Using the RRT-IR capability
to generate guiding paths allowed us to design and implement a library containing precomputed
paths for objects through a specified environment, as described in Chapter 4. To increase
the efficiency of the library, a novel method to evaluate and track the path similarity was
proposed. By tracking and filtering paths by their diversity, we were able to quickly find
different guiding paths through the environment. This variability consequently helped us
with finding a path for similar objects. However, implementing a more complex path filtering
method, such as methods based on topological clustering, could lead to improved results
in more types of environments.

To select the most similar object in the library, a state-of-the-art 3D shape matching algorithm
was used. This gave us the ability to decide which known object from the library is the most
similar to an unknown object, also outputting a list of corresponding vertices between the
two objects. To ensure that the original and the similar object are positioned similarly in
the coordinate frame used, a transformation between them is found by the ICP algorithm.
This transformation is also used to modify the guiding paths.

Multiple tests were proposed in Chapter 5 to choose a specific shape matching method. In the
end, a method utilizing Genetic Algorithms [22] was used, which for two triangulated meshes
outputs a similarity metric and a list of corresponding vertices. This approach turned out
to be both fast enough and precise enough to allow further development. In comparison, the
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8. Conclusion

other two tested methods were both very slow for meshes with a higher number of vertices
and the matching quality was comparable to or even worse than the Genetic Algorithms
method.

In Chapter 6, we showed that our methods are able to leverage the prior knowledge about the
environment in the form of precomputed guiding paths. Moreover, being able to specify the
guiding paths and choose favorable object paths can be useful in numerous fields, including
robotics.

After verifying the correct behavior of our algorithm, it was compared to other state-of-the-art
path planning methods to see whether we have achieved some improvements. For that,
a third-party open-source planning library OMPL [38] was used. The benchmarks have shown
that having multiple precomputed paths through the environment for a similar object can
substantially decrease the time needed for planning. More importantly, our RRT-LIB planner
is able to find paths even in the tasks in which the other planners fail. The results are
presented in Chapter 7.

Due to the fact that computing the guiding paths in the RRT-LIB preparation phase takes
a considerable amount of time, our approach is suited for situations when the planning is
repeated in the same environment. When the task is to plan in a given environment once,
devoting the time to build the library is unnecessary, and other approaches will yield better
results. However, when we know ahead that the planning will be conducted multiple times
in a set of static environments, filling the library with paths prior to planning can lead to
increased speed and success rate of the planner.
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Appendix A

Appendix

. A.1 Metric

A metric definition is needed for motion planning. The metric is a real valued function p
measuring the distance between two configurations in C. The most common metrics come
from the L, metric family, defined for R” and p > 1 as

p(z,y) = Lp(z,y) = (Zn: |z — yz-lp> (A1)

For p € {1,2, 00}

1. Li: The Manhattan metric
2. Lo: The Fuclidean metric
3. Lgo:

pla,y) = lim Ly(z,y) = max {|z; —y[} (A.2)

The Euclidean metric is commonly used when planning in R3. However, as we work with
both translation and rotation, we need to extend the metric to SE(3).

First, a SO(3) metric needs to be defined. Using quaternions, one such metric comes from
the angle between two quaternions, computed from their inner product

ps(hl, hg) = cos_l(alag + b1by + 10 + d1d2). (A3)
Because h and —h represent the same rotation, the SO(3) metric is given by

p(h1, ho) = min{ps(h1, ha), ps(h1, —h2)}. (A.4)

When working with Cartesian products of metric spaces (R? x SO(3) in our case), a metric
can be simply defined as a linear combination of the metrics from the underlying metric
spaces. Therefore, the distance between two configurations ¢; = (1, h1), g2 = (12, ho) can be
computed as

p(q1,q2) = c1p1(r1,m2) + capa(hy, ha), (A.5)

where p; is the R? Euclidean metric and ps is the SO(3) metric defined in Eq. A.5. Coefficients
c1 and ¢ can be any real positive constants (with a common value being 1, which will be
used in this thesis) [4].
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A. Appendix

| W Object labelling test

Multiple tests were concluded to verify the selected algorithm for selecting the most similar
object from the library. The method which uses genetic algorithms was presented in Chapter 3
and selected as a suitable method in Chapter 5. In the implementation used, the mazimum
isometric distortion metric is computed. To see whether this metric can be used to compare
objects and label them accordingly, three samples from each category are selected and
compared to the category representatives — one for each category. The label of the object for
which the mazimum isometric distortion is minimal is selected as the label for the unknown
object.

Using this method, we are able to correctly identify the label of most isometric deformations
from the TOSCA dataset (Table A.1). The only exception happens for the second model of a
wolf. However, this model is labeled as a dog, which is still satisfactory. The algorithm failed
for the models of a gorilla because the mesh does not form a connected component. The
result quality for non-isometric deformations from the PSB dataset is worse (Table A.2). This
is the result of calculating the maximum over the sampled subset of vertices, which can be
suitable for isometric or nearly isometric deformations. However, the objects in PSB are not
isometric deformations of each other — a more suitable approach is to compute the average
over the vertices. Using the average isometric distortion (avglso), we see that our results
have improved (Table A.2).
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Ry

0.000 0.271 0.207 0.173 - 0.156 0.157
§ 0.170 0.264 0212 0.170 - 0.120 0.213
& 10036 0261 0.167 0209 - 0191 0210
Ry
7 10.347 0.021 0286 0.186 - 0205 0.424
™ o275 0081 0216 0135 - 0.173 0.251
R
10305 0.055 0.322 0.206 - 0.178 0.209
0.229 0.314 0.000 0.344 - 0.221 0.179
U 0199 0.307 0.023 0.211 - 0.224 0.191
% 10252 0.265 0.041 0224 - 0174 0.231
RS

0176 0.233 0.226 0.087 - 0.092 0.121
&

" 10.103 0.257 0273 0.049 - 0.110 0.115
#0116 0210 0.509 0.060 - 0.126 0.073
:I.,T%:—.-.'.

4 _ - - - - . .
SN

g_}\n,/ - - - - - - -
R

110180 0182 0.236 0.090 - 0.000 0.104
&

% 10.133 0209 0403 0106 - 0.054 0.149
R
V10181 0.242 0420 0.136 - 0.024 0.088

0.080 0.360 0.488 0.089 - 0.139 0.060
o
1 0.128 0.387 0.154 0.048 - 0.138 0.075
10149 0177 0428 0.095 - 0.129 0.038

Table A.1: Labelling test data from the TOSCA database. All objects except one are labelled
correctly. The gorilla models are not connected, which is a prerequisite for the algorithm to work.
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— - \ {4 ) _// L N = \‘ f' ; __// L N
©10.000 0.222 0.154 0.204 0.185 ~10.000 0.083 0.082 0.086 0.075
© 10194 0279 0.169 0278 0110 | 0.159 0.124 0.058 0.068 0.073

0227 0.122 0.126 0.057 0.102  |0.122 0.110 0.055 0.056 0.089
Lf,d xﬂr

0.363 0.000 0.109 0.207 0.121 " 10.153 0.000 0.054 0.063 0.074
1 \{

0.149 0.116 0.152 0.197 0.120 ' |0.112 0.041 0.057 0.047 0.053

y 0.248 0.017 0.102 0.239 0.278 J 0.123 0.015 0.059 0.073 0.082

J 0.436 0.205 0.000 0.288 0.237 j 0.149 0.117 0.000 0.094 0.073
’F/ ‘f/
# 10.164 0.228 0.094 0.300 0.118 » 10.127 0.130 0.061 0.098 0.076
0.123 0.160 0.160 0.296 0.178 "' 0.111 0.092 0.053 0.074 0.059
0.146 0.194 0.118 0.000 0.154 0.131 0.074 0.096 0.000 0.120
\ 0.347 0.108 0.204 0.062 0.112 0.179 0.100 0.107 0.054 0.089
A A
: 0.214 0.172 0.206 0.100 0.076 . 0.103 0.105 0.049 0.040 0.043
= e
0.269 0.143 0.196 0.154 0.000 0.133 0.116 0.063 0.051 0.000
LN DN
0.070 0.244 0.213 0.224 0.150 0.065 0.173 0.079 0.092 0.055
oY 4
) 0.115 0.142 0.154 0.163 0.076 ) 0.112 0.103 0.076 0.046 0.037

Table A.2: Using the maxIso (left) x avglso (right) metric to label unknown objects. We see
that the result improves when using the avglso metric.
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Appendix B

Attachments

The attached file code.zip contains a collection of the software used in this thesis, along
with examples of the data. To install and use the software, follow the respective README . md
files in the attached folders.

genetic-algorithms-master/ contains scripts used to evaluate object similarity and corre-
spondences.

rrt_lib-master/ contains code of the RRT-LIB algorithm, both as a standalone version and
as a part of the OMPL library. It also contains used maps and objects.
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