
Bachelor Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Application of Predictive Coding for
Visuo-Tactile Sensory Integration

Adrián Pitoňák

Supervisor: Ing. Zdeněk Straka
Supervisor–specialist: Mgr. Matěj Hoffmann, Ph.D.
Field of study: Cybernetics and Robotics
May 2020



ii



BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

474380Personal ID number:Pitoňák AdriánStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and RoboticsStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Application of Predictive Coding for Visuo-Tactile Sensory Integration

Bachelor’s thesis title in Czech:

Aplikace prediktivního kódování pro vizuo-taktilní integraci

Guidelines:
1. Study selected literature on predictive coding, multisensory integration and peripersonal space representations.
2. Create suitable dataset with visuo-tactile stimuli in Neurorobotics platform - objects approaching or receding from a
simulated sensory array and observed by the robot camera.
3. Train a predictive coding based neural network (you will receive it from your supervisor) on this dataset with only visual
inputs (next frame video prediction).
4. Propose how the neural network can be extended to the tactile modality: predicting the contact through the activation
of appropriate tactile sensors.
5. Evaluate and analyze the proposed extensions.
6. Compare and discuss the properties of the neural network employed in this work with selected multisensory integration
models and peripersonal space representations.

Bibliography / sources:
[1] Ursino, Mauro, Cristiano Cuppini, and Elisa Magosso. "Neurocomputational approaches to modelling multisensory
integration in the brain: a review." Neural Networks 60 (2014)
[2] Cléry, Justine, et al. "Neuronal bases of peripersonal and extrapersonal spaces, their plasticity and their dynamics:
knowns and unknowns." Neuropsychologia 70 (2015)
[3] Noel, Jean-Paul, et al. "Neural adaptation accounts for the dynamic resizing of peripersonal space: evidence from a
psychophysical-computational approach." Journal of neurophysiology 119.6 (2018)
[4] Rao, Rajesh PN, and Dana H. Ballard. "Predictive coding in the visual cortex: a functional interpretation of some
extra-classical receptive-field effects." Nature neuroscience 2.1 (1999)
[5] Straka, Zdenek, and Matej Hoffmann. "Learning a peripersonal space representation as a visuo-tactile prediction task."
International Conference on Artificial Neural Networks. Springer, Cham, (2017)

Name and workplace of bachelor’s thesis supervisor:

Ing. Zdeněk Straka, Vision for Robotics and Autonomous Systems, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Mgr. Matěj Hoffmann, Ph.D., Vision for Robotics and Autonomous Systems, FEE

Deadline for bachelor thesis submission: 22.05.2020Date of bachelor’s thesis assignment: 19.12.2019

Assignment valid until: 30.09.2021

_________________________________________________________________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
doc. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Zdeněk Straka
Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1



III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1



Acknowledgements

First of all, I wish to express my sincere
thanks to my supervisor Ing. Zdeněk
Straka and my supervisor-specialist Mgr.
Matěj Hoffmann, Ph.D. for their enthu-
siasm for the project, for their support,
encouragement and patience. Further, I
would like to thank the faculty, for provid-
ing me with all the necessary facilities for
the research. To conclude, I cannot forget
to thank my family and close friends for
all the unconditional support throughout
the study.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

In Prague, 21. May 2020

v



Abstract

The main goal of this thesis is to train a
neural network based on predictive coding,
that is capable of representing periper-
sonal space by learning from images and
tactile sensors. The PreCNet neural net-
work for next frame video prediction,
based on predictive coding, was used for
this task and extended with the tactile
modality. For training the network, I de-
signed experiments in the Neurorobotics
Platform, in which an object is approach-
ing the humanoid robot iCub with tactile
sensors on the torso. This object conse-
quently hits or misses the robot. Trained
neural networks were evaluated by their
ability to predict looming stimulus tem-
porally and spatially, both quantitatively
and qualitatively. In the designed exper-
iments the neural network was able to
implement visuo-tactile integration. I an-
alyzed the drawbacks of this model and
put forward improvements for future work.
Achieved results indicate that a network
based on predictive coding is capable of
multisensory integration, which is neces-
sary for the representation of peripersonal
space.

Keywords: peripersonal space,
predictive coding, multisensory
integration

Abstrakt

Cieľom tejto práce je natrénovať neuró-
novú sieť založenú na prediktívnom kó-
dovaní, ktorá je schponá reprezentovať
peripersonálny priestor, učením z obráz-
kov a taktilných senzorov. Neurónová sieť
PreCNet, určená na predickiu ďalšieho
snímku videa, založená na prediktívnom
kódovaní, bola po rozšírení o taktilnú mo-
dalitu, použitá pre túto úlohu. Na učenie
tejto siete som vytvoril datasety v Neu-
rorobotickej Platforme, v ktorých sa na
humanoidného robota iCuba s taktilnými
senzormi na trupe, posutpne približuje
objekt. Následne tento objekt robota zasi-
ahne alebo minie. Naučené neurónvé siete
boli kvantitatívne a kvalitatívne vyhodno-
tené, na základe ich temporálnej a pries-
torovej schopnosti predikovať prichádzaj-
úci stimul. V navrhnutých experimentoch
neurónová sieť dokázala implementovať
vizuo-taktilnú modalitu. Zanalyzoval som
nedostatky siete a navrhol možné riešenia
pre budúcu prácu. Dosiahnuté výsledky
naznačujú, že sieť založená na prediktív-
nom kódovaní je schopná multisenzornej
integrácie, ktorá je nevyhnutná pre repre-
zentáciu peripersonálneho priestoru.

Klíčová slova: peripersonální prostor,
prediktivní kódování, multisenzorní
integrace

Překlad názvu: Aplikace prediktivního
kódování pro vizuo-taktilní integraci
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Chapter 1

Introduction

This thesis focuses on the implementation of visuo-tactile multisensory inte-
gration in neural network PreCNet [SSH20] based on Predictive Coding—a
popular theory from neuroscience—extended by tactile modality. Since mul-
tisensory integration, the process of combining information from different
modalities, of tactile and visual senses stands in the root of peripersonal
space (space immediately surrounding an agent’s body) representation such
a neural network could be used to represent peripersonal space in humanoid
robots. Creating a real-world dataset might be very time consuming and very
complex from the beginning when one cannot estimate the behaviour of the
network. Therefore I designed an experiment in the Neurorobotics Platform
[Pro] [FVA+17], which is highly adjustable and preserves the structure of
tactile sensors on iCub’s [MNN+10] torso. In the experiment, the camera in
the robot’s eye is observing the approaching ball, until it hits tactile sensors
located on the torso, thus activating them. Images and tactile activations
obtained from this experiment are then used as a dataset to train the neural
network. Simulation of the experiment in a virtual environment makes it
possible to create several datasets, that could explain strategies for predicting
incoming stimuli.

The thesis is structured as follows. In Chapter 2, I will describe the periper-
sonal space representation and the importance of multisensory integration in
it, following dynamical properties of peripersonal space representation. After
that, I will outline some computational models of peripersonal space. In
Chapter 3, I will describe related predictive coding models, such as the general
schema of predictive coding proposed by Rao and Ballard, the used neural
network PreCNet and outline some other networks that use predictive coding.
At the end of this chapter, I will introduce the extension of PreCNet network

1



1. Introduction .....................................
for tactile modality. Chapter 4 describes the task of this work, experiments
from which datasets were generated and structure of these datasets, learning
parameters of the network and the system I proposed for the evaluation of
the results. I will present the results and their interpretation in Chapter
5. In Chapter 6, I will discuss the results of trained networks and provide
suggestions for future improvements. Finally, in Chapter 7, I will summarize
the achieved results of the whole work.
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Chapter 2

Multisensory integration and peripersonal
space representation

Multisensory integration is the process of combining information from various
sensory channels (e.g., [SSR09]). Visuo-tactile neurons are activated when
stimulated with tactile, but also with visual stimuli, close to the same body
part independently (see, for example, [RSMG81] [DCG98]). Multisensory
integration is very closely related to peripersonal space, that is the space
immediately surrounding the body (see Figure 2.1), where the interactions
between the body and the environment occur (see e.g., [NBMS18] [GC06]
[SNG+15]).

Figure 2.1: Peripersonal space is the space immediately surrounding the body.

3



2. Multisensory integration and peripersonal space representation ...............
Protecting the space close to one’s body from external stimuli like objects

or living beings is essential for survival. It is concluded, that brain areas
involved in the peripersonal space representation are also responsible for
protecting the space close to our body by encoding a safety body margin
[CGWH15] [NBMS18]. As an example of encoding safety body margin serves
a study conducted on monkeys [GC06]. In their experiment brain areas linked
to peripersonal space representation (see Section 2.2) were stimulated and
triggered defensive-like behaviour.

The next section describes the main properties of peripersonal space. Fur-
ther, it describes the dynamic properties and the effect of approaching objects
to the peripersonal space of the subject and mentions a few experiments per-
formed on this matter. Finally, the last section outlines some computational
models of peripersonal space representation.

2.1 Properties of peripersonal space
representations

At the beginning of this chapter, I will describe visuo-tactile neurons that
are essential in peripersonal space representation. These neurons were identi-
fied, for example, in brain areas F4 and VIP of parietal-premotor network
[RFFG97] [FGF+96] [CDG93].

Receptive fields (RFs) of visuo-tactile neurons are body-part-centered
[SNG+15] [dPLF97]. In other words, peripersonal spaces around the specific
body part move with this body part. Combination of these receptive fields
encodes peripersonal space representation [RSMG81], “serving the definition
of safety body margin contributing to the definition of self (as a whole) with
respect to the external world” [CGWH15]. Vulnerable body parts as the
head or arms are over-represented to protect this body margin from external
aggression (e.g., [CGWH15]).

Another important property of receptive fields is that they change dynam-
ically according to the velocity of looming stimuli (they enlarge with the
increasing velocity of the stimuli) (see, for example, [NBMS18] [CGWH15]).
These dynamical properties are further described in the next section.

4



........................ 2.2. Dynamic properties of peripersonal space

2.2 Dynamic properties of peripersonal space

An important point is that stable stimuli in our peripersonal space are not
as significant as stimuli looming towards us since they could pose a possible
threat [CGWH15] [GC06] [Gib72]. Receptive fields of neurons that encode
peripersonal space are dynamical, as they grow with increasing velocity of
the looming object. To detect objects in space relative to the subject, both
low-level cues, namely area, contrast, edges, visual depth [ZOS08] and high-
level cues, like the apparent size of the detected object, based on experience
must be perceived [CGWH15].

Ball and Tronick performed 2 experiments on this phenomenon [BT71]. In
the first experiment, 24 infants reacted with avoidance and upset to expanding
shadows, representing approaching objects, whereas ignoring shadows acting
as shrinking objects or objects that could not possibly hit them. Besides that,
in the second experiment, “seven infants defensively reacted to the approach
of a real object except when it was on a miss path” [BT71].

Another experiment was performed on monkeys, observing multisensory
integration for dynamic stimuli looming towards the face. According to
this experiment multisensory integration indicates the highest activity when
tactile stimulus can be predicted from the visual stimulus and these stimuli are
spatially and temporally (in regard to space and time) related [CGWBH13]
(for more detailed discussion see [CGWH15]). Authors of this study further
emphasize that the parietal-premotor network mentioned in Section 2.1 was
significantly activated during this experiment, especially when the stimuli were
predicted. Furthermore, they suggest, that this network belongs most likely
to a “larger functional network involving lower-level visual areas” [CGWH15].

2.3 Computational models of peripersonal space

As it was depicted in Section 2.1, visuo-tactile neurons are body specific
and create peripersonal space representation around specific body parts. To
simulate the peripersonal space representation around the right and left hands
a neural network was proposed that implements visuo-tactile multisensory
integration [MZS+10]. More specifically, this neural network is composed of
two network parts that represent the left and right hemisphere, meanwhile,
they are reciprocally interconnected. Each of these hemispheres further
consists of three populations of neurons. Two populations are unimodal—

5



2. Multisensory integration and peripersonal space representation ...............
visual and tactile. They interact with the third visuo-tactile multimodal
population via feedforward and feedback connection. The model was built to
better understand relations between the described populations.

Another neural network designed to represent peripersonal space by visuo-
tactile integration consists of a Restricted Boltzmann Machine for encoding
the position and velocity of visual stimulus and a feedforward neural network
for predicting the tactile stimulus [SH17]. This model aimed to predict the
tactile stimulus from the position and velocity of a looming stimulus in the
2D scenario.

The most related model to our work [RHP+16] is trained on real iCub
humanoid robot [MNN+10]. It uses two cameras, joint angles and artificial
skin not only on the torso but also other body parts (i.e., fingers, palms,
forearms) to compute the likelihood of collision with the corresponding tactile
sensor. The main goal of this model is to learn body-centred peripersonal
space representation with dynamical receptive fields by self-touch or tactile
interaction with other objects. After the tactile activation occurs, the model
tracks the stimulus back in time to update the corresponding likelihood.

6



Chapter 3

Predictive coding network for visuo-tactile
integration

As the network used in this experiment is a modification of the Predictive
Coding Network (PreCNet) [SSH20] that is based on predictive coding, it
is important to first understand the general concept of predictive coding
and the basic structure of PreCNet. Apart from this, I will here introduce
other related models based on predictive coding. Above all, I will introduce
our proposed extension of PreCNet with tactile modality, which is used for
peripersonal space representation learning in our work, in Section 3.2.

3.1 Related predictive coding networks

At the beginning of this section, I will describe the concept of predictive
coding. The Predictive Coding Network (PreCNet), the state-of-the-art
implementation of the general schema proposed by Rao and Ballard, is
described in separate Section 3.1.2, as it is the network that was modified
for this work. Next to this, I will introduce several other implementations of
predictive coding.

7



3. Predictive coding network for visuo-tactile integration ...................
3.1.1 Predictive coding

Predictive coding is a brain theory that helps us understand the redundancy
reduction of the nervous system. By learning the statistical regularities of the
environment and the data, provided through sensory channels, the network
can achieve more efficient coding by removing the predictable components
of the input [HR11]. Further in this section, I will describe the mechanisms
of predictive coding proposed by Rao and Ballard [RB99] and presents their
general schema and generative model of predictive coding.

General schema by Rao and Ballard

Rao and Ballard suggested a general schema of predictive coding [RB99], with
hierarchically organized Predictive Estimators (PE). Feedback pathways (also
known as top-down or higher to lower-order connections) in each level carry
predictions of the neural activity of the lower level PE. On the lowest level,
the neural activity corresponds to the sensory inputs. These predictions are
subtracted from the actual response in each layer, producing residual errors.
Feedforward (also known as bottom-up or lower to higher-order) pathways
are then responsible for carrying these residual errors of lower-level activities
to the higher level to improve the prediction [RB99] (see Figure 3.1b).

Predictive estimator

In the generative model [RB99] designed by Rao and Ballard, there are several
levels of predictive estimators (see Figure 3.1b). This section describes one
unit of a predictive estimator.

A ’top-down’ prediction estimate of an internal representation vector rtd

from higher level is subtracted by current internal representation vector r
(see Figure 3.1a). This residual error is sent to higher level, as well as it
is used for updating the current state of r, along with residual error from
lower level encoded with weight matrix UT. The state r is additionally sent
down, decoded by weight matrix U, following f activation function (i.e., tanh)
producing prediction estimate for lower level1 (see Figure 3.1a).

1In the first iteration, prediction estimates are initialized randomly on each level

8



........................... 3.1. Related predictive coding networks

Figure 3.1: (a) Components of a PE module, composed of feedforward
neurons encoding the synaptic weights UT, neurons whose responses r main-
tain the current estimate of the input signal, feedback neurons encoding U and
conveying the prediction f(Ur) to the lower level, and error-detecting neurons
computing the difference (r – rtd) between the current estimate r and its top-
down prediction rtd from a higher level. (b) General architecture of the
hierarchical predictive coding model. At each hierarchical level, feedback
pathways carry predictions of neural activity at the lower level, whereas feedfor-
ward pathways carry residual errors between the predictions and actual neural
activity. These errors are used by the predictive estimator (PE) at each level to
correct its current estimate of the input signal and generate the next prediction.
(c) Components of a PE module of PreCNet architecture (see Section
3.1.2). Figures (a), (b) and (c) taken from [SSH20], in which (a) and (b) are
redrawn from [RB99].

3.1.2 PreCNet – Predictive Coding Network

The Predictive Coding Network (PreCNet) was used for next frame video
prediction [SSH20]. Importantly, to make predictions of future frames, the
neural network must possess an internal representation of the scene and its
dynamics, leading on to self-supervised learning (without labelled dataset)
of such internal representation [MCL15]. In other words, the information
about the environment is provided to the network by only using actual visual
sensations. The network is trained by minimizing the weighted sum of errors
through error units in each module, through modules, then through individual
frames in sequences and finally through sequences (see Equations 3.1 and 3.2)

9



3. Predictive coding network for visuo-tactile integration ...................
using gradient descent [LKC16] [SSH20].

Ltrain =
M∑

m=1
Lseq(m) (3.1)

Lseq(j) =
T∑

t=1
µt

N∑
l=0

λl

nl

nl∑
i=1

Et
l (i) (3.2)

where Ltrain is the loss of one episode, Lseq is the loss of one sequence, M is
the number of sequences in the train dataset, T is the length of each sequence,
N + 1 is the number of modules and nl is the number of error units in each
module. Et

l (i) is the error of i-th unit in block l (see Algorithm 1). µt is time
constant and λt is module constant.

To update the representation state, the neural network uses convolutional
LSTM (convLSTM) modules [XCW+15] [HS97], which are defined as follows
(see Equations 3.3 – 3.7).

it = σ(Wxixt +Whiht−1 +Wci ◦ ct−1 + bi) (3.3)
ft = σ(Wxfxt +Whfht−1 +Wcf ◦ ct−1 + bf ) (3.4)
ct = ft ◦ ct−1 + it ◦ tanh(Wxcxt +Whcht−1 + bc) (3.5)

ot = σ(Wxoxt +Whoht−1 +Wco ◦ ct + bo) (3.6)
ht = ot ◦ tanh(ct) (3.7)

where t denotes actual time step, t-1 denotes previous time step. W represents
weight matrix, x is the input to convLSTM block and b represents the bias.
The memory cell is marked as c and its two inputs are weighted with input
gate i and forget gate f. Final state2 h is influenced by the output gate o. The
operations used between the matrices are convolutions, σ is sigmoid function3

and ◦ is element-wise multiplication.

In the next section, I will provide a more detailed description of PreCNet.

2Later in the work the final state is referred to as the representation state r.
3PreCNet uses hard sigmoid function instead of sigmoid function

10



........................... 3.1. Related predictive coding networks

PreCNet schema

PreCNet adjusts internal representation states in order to minimize future
prediction errors. For this purpose, it is organized hierarchically according to
the general schema of predictive coding proposed by Rao and Ballard, yet
using modern deep learning tools. As can be seen from Figure 3.1, PreCNet
neural network and generative model by Rao and Ballard have a very similar
structure.

Figure 3.2: PreCNet schema based on PreCNet (see Algorithm 1). In the
article [SSH20] RGB images were used as an input for the network.

On the top-down path, (see “Predictions Go Down” in Figure 3.2; for
further details see the first for loop in Algorithm 1) a prediction estimate
rtd from higher layer is subtracted by pooled (downsized by 2) internal
representation state r from previous time step. This residual error gets

11



3. Predictive coding network for visuo-tactile integration ...................
upsampled (by 2) and serves as input to convLSTM block [XCW+15] [HS97],
together with representation states from the last time step. ConvLSTM
updates the current state of r. After that, r is decoded by convolutional
layer, producing prediction estimate for lower layer4 (see Figure 3.2c).

Conversely, on the bottom-up path (see “Errors Go Up” in Figure 3.2;
for further details see the second for loop in Algorithm 1), an internal
representation state r is updated, by inputting the residual error from lower
layer to convolutional LSTM layer. This prediction estimate r is pooled
and subtracted by prediction estimate rtd from higher level, producing the
residual error for higher layer (see Figure 3.2c).

Building blocks of predictive estimator and structure

Each time step starts with the top-down flow (see “DOWN START” in Figure
3.2) and continues down, until the prediction of the input image is produced.
After that, the error from the lowest layer (see “UP START” in Figure 3.2)
is propagated to the highest layer.

Each layer of PreCnet consists of 5 main building blocks.

.Representation Layer – it consists of two convolutional LSTMs (con-
vLSTM) [XCW+15] [HS97] (see Equations 3.3 – 3.7), which share cell
state C and representation state5 R (see green RC bubbles in Figure
3.2).

States R and C are generated by convLSTMmodule on the top-down path,
with the R and C states from the previous time step and upsampled error
(see Upsample Layer). At the highest level, the network uses directly the
highest ’bottom-up’ error state from the previous time step (see Figure
3.2). On the bottom-up path are R and C states updated by another
convLSTM module, using R and C states generated on the top-down
path and error from the same layer.

The convLSTM module uses hard sigmoid activation for the input, forget
and output gates. Hyperbolic tangent is used for the calculation of the
cell state C and representation state R.

4In the first iteration, prediction estimates are initialized to zero on each level.
5representation state R is in convLSTM layers better known as ’h’. However R corre-

sponds to the representation state r in Figure 3.1
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........................... 3.1. Related predictive coding networks

Algorithm 1 Calculate PreCNet states at time t, assume N > 0. Algorithm
provided by Zdenek Straka from [SSH20].

Require: Image It, previous (t− 1) hidden and cell states Rt−1
l , Ct−1

l of the
representation layers l ∈ {0, 1, . . . , N}, previous error state Et−1

N of the
(top) module N , maximum pixel value pixmax.
for l = N,N − 1, . . . , 0 {Iterate top-down through the modules} do
if l == N {Update the states in the top module} then
Rt

l , C
t
l ← convLSTMdown

l (Rt−1
l , Ct−1

l , Et−1
l )

Ât
l ← convl(Rt

l)
Et

l ← ReLU({Ât
l − pool(Rt−1

l−1),pool(Rt−1
l−1)− Ât

l})
end if

if l 6= N and l 6= 0 {Update the states in the “middle” module l} then
Rt

l , C
t
l ← convLSTMdown

l (Rt−1
l , Ct−1

l , upsample(Et
l+1))

Ât
l ← convl(Rt

l)
Et

l ← ReLU({Ât
l − pool(Rt−1

l−1),pool(Rt−1
l−1)− Ât

l})
end if

if l == 0 {Update the states in the bottom module} then
Rt

l , C
t
l ← convLSTMdown

l (Rt−1
l , Ct−1

l , upsample(Et
l+1))

Ât
l ← min{convl(Rt

l), pixmax}
Et

l ← ReLU({Ât
l − It, It − Ât

l})
end if

end for

for l = 0, 1, . . . , N {Iterate bottom-up through the modules} do
if l == 0 then
Rt

l , C
t
l ← convLSTMup

l (Rt
l , C

t
l , E

t
l )

end if

if l 6= 0 and l 6= N then
Et

l ← ReLU({Ât
l − pool(Rt

l−1),pool(Rt
l−1)− Ât

l})
Rt

l , C
t
l ← convLSTMup

l (Rt
l , C

t
l , E

t
l )

end if

if l == N then
Et

l ← ReLU({Ât
l − pool(Rt

l−1),pool(Rt
l−1)− Ât

l})
end if

end for
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3. Predictive coding network for visuo-tactile integration ...................
. Error Layer – this layer receives higher layer prediction estimate Â and

pooled (see Max-pooling Layer) representation state R̂. These two states
are subtracted in both orders (Â - A, A - Â) and concatenated together,
followed by the ReLU activation function.

This is done twice per time step. On the top-down path, when the
network takes the representation state R from the previous time step.
Then on the bottom-up path with the representation state R from the
current time step is used.

.Decoding Layer – is a convolutional layer applied on the representation
state R on the top-down path, followed by ReLU activation function. It
produces prediction estimate state Â that is sent to the lower layer.

.Upsample Layer – this layer upscales the input by 2 by nearest neigh-
bour interpolation.

.Max-pooling Layer – this layer downscales the input by 2.

3.1.3 Other predictive coding models

In this section, I will outline several other models inspired by the idea of
predictive coding.

PredNet – Predictive Neural Network

PredNet was designed for predicting next frame video prediction. Inspired
by Rao and Ballard model (see Section 3.1.1), each layer of PredNet makes
local predictions, but unlike the model, it forwards deviations from these
predictions. In other words, excluding the first input layer, PredNet tries
to predict the target error from the lower layer at each level. PredNet also
added connection between representation blocks from different layers contrary
to Rao and Ballard model [LKC16]. These are also the main distinctions
between PredNet and PreCNet networks.

Besides the above, PreCNet and PredNet have many properties in common.
Mainly the structure of basic building blocks (e.g., convolutional LSTMs in
representation layer and error computation) (for a more details see [SSH20]).
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........................... 3.1. Related predictive coding networks

Figure 3.3: Predictive Neural Network (PredNet) schema. Left: Illustra-
tion of information flow within two layers. Each layer consists of representation
neurons Rl), which output a layer-specific prediction at each time step (Âl),
which is compared against a target (Al) [Ben14] to produce an error term (El),
which is then propagated laterally and vertically in the network. Right: Module
operations for the case of video sequences. Images and their captions taken from
[LKC16].

PCN – Predictive Coding Network

Another neural network inspired by Rao and Ballard model (compare Figure
3.4a-Right with 3.1b) built for image classification is Predictive Coding
Network (PCN) [WHS+18]. Unlike PreCNet and PredNet, PCN uses labeled
datasets for classifying images. Therefore the main goal of the network is to
minimize the error of classification, not the prediction error.

In their article, the authors compared several models with only feedforward
connections to models with feedforward and additional recurrent and feedback
connections, which “always outperformed its feedforward-only counterpart”
[WHS+18]. Furthermore, PCN managed to deliver comparable results to
networks with much more layers on classification with benchmark datasets.

DPCN – Deep Predictive Coding Networks

One other notable neural network build for processing video sequences is Deep
Predictive Coding Networks (DPCN) [CP13]. DPCN was designed to classify
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3. Predictive coding network for visuo-tactile integration ...................

Figure 3.4: Predictive Coding Netwrok (PCN) schema. a) An example
PCN with 9 layers and its CNN counterpart (or the plain model). b) Two-layer
substructure of PCN. Feedback (blue), feedforward (green), and recurrent (black)
connections convey the top-down prediction, the bottom-up prediction error,
and the past information, respectively. c) The dynamic process in the PCN
iteratively updates and refines the representation of visual input over time. PCN
outputs the probability over candidate categories for object recognition. The bar
height indicates the probability and the red indicates the ground truth. Images
and their captions taken from [WHS+18]

short video sequences containing one of three possible shapes. The main goal
of the network is to dynamically adapt to the context of the data. Top-down
connections are trying to predict the representation in the layer below, “using
the top-down information from the layers above and temporal information
from the previous states” [CP13]. Bottom-up connections are extracting key
features with sparse states and pooling them, therefore classifying the video.

3.2 Proposed architecture - extension of PreCNet
with tactile modality

Since the original PreCNet model uses only images as an input to the network,
the first change in the network was made by proposing the 4th tactile channel
(see Figure 3.5). In the 4th channel, the state of the tactile modality is encoded
as 1-channel image (see the “tactile image” in Fig. 3.5). The source code for
the network is available at [PS20c] or on the enclosed CD (see Appendix A).

As our task is to predict the tactile activations caused by looming stimuli,
it is much more important to penalise errors for not activating a tactile sensor,
when the stimulus already occurred, than penalise errors for falsely predicting
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............. 3.2. Proposed architecture - extension of PreCNet with tactile modality

Figure 3.5: Difference between the input of PreCNet and input of
extended PreCNet. - In the article [SSH20] 3-channel RGB images were used
as an input for the network. The extended version of PreCNet uses 4-channel
frames, adding tactile modality, encoded as a 1-channel image, to the last channel
(see Section 4.1.2).

the stimulus (see Figure 3.6). In fact, the network is expected to predict the
stimulus before it occurs, hence strongly penalising the network for activating
the sensors, when there is no activation yet, is unwilling. Though some
penalisation for making false-positive errors in predictions should limit the
network in activating too many sensors.

Accordingly, the original PreCNet network [SSH20] was modified to set
weights to false-negative and false-positive tactile prediction errors. This was
achieved by introducing two parameters, namely tactile false positive (in short
’fp’) and tactile false negative (in short ’fn’), that allow us to set weights to
the corresponding tactile errors (see changes in Algorithm 2).

Algorithm 2 Changes made in PreCNet algorithm [SSH20]. Algo-
rithm 1 describes original PreCNet. Changes are highlighted by green color.
Subscript img denotes that first 3 channels from the array were used, whereas
subscript tact denotes the last channel. Curly braces without function before
them, symbolize concatenation along the third channel axis. ’fp’ is tactile
false positive parameter and ’fn’ is tactile false negative parameter.
if l == 0 {Update the states in the bottom module} then
Rt

l , C
t
l ← convLSTMdown

l (Rt−1
l , Ct−1

l , upsample(Et
l+1))

Ât
l ← min{convl(Rt

l), pixmax}
Et

l,img ← ReLU({Ât
l,img − It

img, I
t
img − Ât

l,img})
Et

l,tact ← {fp · ReLU(Ât
l,tact − It

tact), fn · ReLU(It
tact − Ât

l,tact)}
Et

l ← {Et
l,img, E

t
l,tact}

end if
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3. Predictive coding network for visuo-tactile integration ...................

Figure 3.6: False-negative and false-positive tactile errors. The tactile
modality with its activations (see the actual and predicted “tactile images”)
is encoded as 1-channel image (see Section 4.1.3). Upper: When the actual
sensor was not activated (the value is 0.5) and the activation at this sensor
was predicted (the value is 1) the error at this pixel is set to zero since ReLU
sets all negative values to zero while preserving all positive values producing
false-negative errors. Lower: Similar principle applies to false-positive errors.
Both: After separating these errors their weights can be set by adjusting tactile
false negative and tactile false positive parameters. In this example the network
was more penalized for not predicting some of the tactile sensors, by setting the
’fn’ to 25 and ’fp’ to 1.

As it was described in Section 3.1.2, error layer makes the differences be-
tween the prediction and the actual response for each channel (prediction−
actual, actual − prediction). Taking into account how the tactile data
is represented (see Section 4.1.3), subtracting actual − prediction and
applying ReLU activation function yields false-negative errors 6 (see Figure
3.6). Oppositely, subtracting prediction−actual yields false-positive errors
which can be interpreted as falsely identified stimulus or in other words redun-
dant activated sensors (see Figure 3.6). As these errors are now separated, we
can set weights to these errors by multiplying them with tactile false positive
and tactile false negative parameters and concatenate them to the image
errors. In this way, the network can be more penalized for not predicting
the incoming stimuli than for falsely identifying incoming stimuli (see higher
value of tactile false negative than tactile false positive parameter in Figure
3.6).

6When the actual sensor was not activated (the value is 0.5) and the activation at this
sensor was predicted (the value is 1) the error at this pixel is set to zero since ReLU sets all
negative values to zero
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Chapter 4

Task description

The main motivation for this work is to learn peripersonal space representation
through self-supervised learning, that is to say, using only unlabeled data
from tactile sensors and camera. More specifically, a predictive coding based
network PreCNet is trained to predict tactile stimulation, closely before an
object hits the torso, using visual and tactile inputs (see Figure 4.1).

Figure 4.1: Experiment illustration. The ball is looming towards iCub and
hits the torso. (upper sequence). Information about the environment is gathered
using a camera implemented in iCub’s eye and tactile sensors on the torso (Actual
– middle sequence). PreCNet neural network is predicting the actual visual and
tactile response in each frame (Predicted – lower sequence). In the best-case
scenario, the actual activation is predicted, before it occurs (Frame B). Image
provided by Zdenek Straka.
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4. Task description ...................................
To receive input from tactile and visual modalities, I created an experiment

in a simulated environment, namely in the Neurorobotics Platform. In this
experiment, balls are looming towards the model of humanoid robot iCub
[MNN+10], extended with tactile sensors on the torso. These balls can either
hit its torso or miss it, eventually hit its other part of the body (i.e., arm).

Next section describes, how data generated in the Neurorobotics Platform
are processed to be compatible with PreCNet neural network. After that, I
will describe the parameters of the neural network used in this experiment.
In the final section, I will describe the procedure for evaluating the results

4.1 Description of the experiment

Motivated by the experiment conducted on monkeys, according to which the
highest activity was observed when tactile stimulus could be predicted from
the visual stimulus and both stimuli were spatially and temporally related
[CGWBH13] (see Section 2.2 for details), I created a framework for designing
experiments in the Neurorobotics Platform (online version) [Pro] [FVA+17].
The source code1 for the experiment is available at [PS20b] or on the enclosed
CD (see Appendix A).

The basic model of iCub, available in the Neurorobotics Platform, was
extended with tactile sensors floating above its torso, preserving the same
layout as in the real model with artificial tactile modality2 [CGN17]. Yet the
complicated high-resolution sensors were simplified with spheres. Apart from
this tactile modality, visual information is gathered via a 12 fps camera located
in iCub’s eye with resolution 120x90 (w x h). Since our model uses video
sequences from only one eye, low-level cues related to the visual depth which
are critical in object detection, like binocular disparity information [CGWH15],
might be missing. Nevertheless, as the object—ball—is simple and its size
is constant, this simplification should not influence the experiment in a
significant way, as well as the memory requirements for such implementation,
would be significantly higher.

In these experiments a ball is randomly spawned on a plane (see the green
plane in Figure 4.2) and follows a trajectory along a line to a random point

1Parameters described in this Section (e.g., spawn plane, target plane, velocity, frame
rate) can be changed (see ‘README.md‘). The online version of the Neurorobotics Platform
was used, so no download nor installation is required

2Script for processing the tactile modality was made in cooperation with Jiří Štěpanovský
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............................. 4.1. Description of the experiment

on a target plane (see the red plane in Figure 4.2) on iCub’s torso. In some
sequences the ball hits iCub’s torso with sensors, meanwhile, in the others
the ball might possibly miss the torso. After the ball hits or misses the target,
it floats through the air for a while, and another sequence starts.

Figure 4.2: Design of the experiment. The green plane indicates possible
points, where the ball can randomly spawn. The red plane indicates possible
target points, where the ball will head.

Part of the data pre-processing for the network is splitting sequences that
are longer than the the length of an input sequence T (see Equation 3.2) in
PreCNet into smaller sequences with the length T . In figure 4.3, there is an
example of splitting sequences for a network with T = 5.

Figure 4.3: Splitting sequences from the experiment for the dataset.
Let’s say that the network has the length of input sequence T set to 5. A
sequence from the experiment with 7 frames would be split to 3 sequences with
the length of 5.
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4. Task description ...................................
4.1.1 Variants of the experiment

The first two experiments maintain a constant velocity of the ball across all of
the sequence. The sequence lengths are adjusted so that a 12 fps camera can
track the movement of the ball while keeping individual sequences around
15-20 frames in the first experiment and around 15-30 frames in the second
experiment. In the first experiment, the ball is slightly bigger than in the
others and hits iCub’s torso each time. In the second experiment, the ball
misses the torso in roughly 10% of the sequences. The purpose of the second
experiment is to reduce bias in time steps, where the tactile activation is
expected. Therefore when the length of an input sequence T (see Equation
3.2) in PreCNet is set to 15 frames, after the extraction of all 15 frames
subsequences from each 15-30 sequence (see Figure 4.3), the tactile activation
can occur not only by the end of the sequence, but also at the beginning of it.

In another two experiments, the velocity of the ball across sequences was
randomly generated. These experiments were designed with the goal to explore
dynamical properties of peripersonal space representation, hence dynamical
properties of safety body margin. The first experiment was intended for
PreCNet with the sequence length of 8 frames. The second one for PreCNet
with the sequence length of 15 frames. In the first experiment, the ball misses
the iCub torso in around 15% of the sequences, meanwhile, in the second it
is around 10%.

To sum up, four experiments were created:

. Experiments with static velocity across sequences

. 1. Sequence lengths 15-20, all balls are looming towards iCub’s
torso (final dataset contains 3560 sequences). The ball is slightly
bigger than in other experiments.. 2. Sequence lengths 15-30, in 10% of sequences the ball misses
iCub’s torso (final dataset contains 11100 sequences)

. Experiments with changing velocity across sequences

. 3. Sequence lengths 8-12, in 5% of sequences the ball misses iCub’s
torso (final dataset contains 8260 sequences). 4. Sequence lengths 15-30, in 10% of sequences the ball misses
iCub’s torso (final dataset contains 13520 sequences)
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............................. 4.1. Description of the experiment

4.1.2 Dataset generation

Raw csv images and tactile activations, from each experiment (see Section
4.1.1), are processed using parse_input_files.py [PS20c]. The script syn-
chronizes visual and tactile data by their sequence numbers, producing arrays
of images and tactile activations (see Figure 4.5).

Figure 4.4: Input of the network. Raw .csv data are synchronized by
parse_input_files.py and furthered processed with make_dataset.py to cre-
ate input frames for the PreCNet network (see Figure 3.2)

These arrays must be further processed with make_dataset.py [PS20c]
(see Section 4.1.3) in order to be compatible with PreCNet neural network.
Each input data frame has 4 channels of 2D arrays. First 3 channels, are
composed of the RGB image and optional zero paddings on the sides3. The
last channel is used for the tactile data (see Figure 4.4).

Figure 4.5: Format of one frame from the input dataset. Each sequence
has 4 channels of 2D arrays. First 3 channels are composed of RGB image with
offsets on the right side and down side, that are filled with zeros. The last channel
has zeros everywhere, but the skin map (see Section 4.1.3). The position of
the skin map is determined by the LEFT SKIN OFFSET and the UP SKIN OFFSET
parameters.

3see __define_basic_grid() in make_dataset.py [PS20c]
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4. Task description ...................................
Finally, each dataset is split, providing 90% of the sequences for training,

5% for validation and 5% for testing.

4.1.3 Description of tactile data

The parsing script make_dataset.py [PS20c] allows the user to create the
2D data representation of the tactile modality that will be referred to as ’skin
map’.

Data from tactile arrays are then filled to the 2D skin map (see the last
channel in Figure 4.4) according to their numbers as follows4:

. 0 – no tactile sensor

. 0.5 – no activation of the sensor

. 1 – sensor was activated

At first .xlsx file is created, that maps tactile activations to a skin map. All
of the experiments (see Section 4.1.1) used the default mapping (see Figure
4.6) based on the placement of sensors in the experiment. The file is then
converted into 2D NumPy array and can be further modified5. In most of
the experiment, the default mapping was resized by the nearest neighbour
interpolation to be 25x50 (width x height). One can set the zero offsets to
each side of the image and therefore define the positioning of the image within
the grid. It is important, that both dimensions of the final grid are divisible
by 4 (i.e., Figure 4.4) due to the pooling and upsampling layers. Finally, the
created skin map is placed within the grid by deciding, where the left upper
pixel of the skin map will be put, by modifying the LEFT SKIN OFFSET and
UP SKIN OFFSET parameters.

4Since PreCNet normalizes the input by dividing all values in the array by 255, skin
map is multiplied by 255 after mapping to their corresponding values

5When the original array is modified, a user must also define inverse operations, that
will be performed on the output of the network. See ‘README.md‘ [PS20c] for further
details.
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................................. 4.2. Learning parameters

Figure 4.6: Default mapping of tactile sensors. (a) Placement of sen-
sors in the experiment on iCub’s torso (b) Default mapping in .xlsx
file

4.2 Learning parameters

To better understand the strategies of the network for tactile stimuli prediction,
I ran the training on each dataset several times, while changing the tactile
false negative parameter, described in Section 3.2. Apart from this parameter,
all other parameters remained the same during all experiments. Structure of
the network remained the same as in the article [SSH20] (see Table 4.1).

convi convLSTMi
up/down

module weight λi #chan. filter size #chan filter size
i=0 1 3 3 60 3
i=1 0 60 3 120 3
i=2 0 120 3 240 3

Table 4.1: Parameters defining the structure of PreCNet. Table taken with
permission from [SSH20]. λi is module constant (see Equation 3.2). In all
convolutions (inc. convLSTM), padding was set to keep the original shape
(’same’ option)

Each input array is normalized to the range [0,1] by dividing it by 255.
Since the structure and dynamics of the surroundings are far simpler than
in the KITTI dataset [GLSU13], using images from the real-world camera
as in the article [SSH20], I trained the networks on 100 episodes, which was
sufficient in each training run. The network was trained with learning rate
0.001, using Adam optimizer with default parameters (β1 = 0.9, β2 = 0.999)
[KB14]. In some cases, when the loss started to diverge, the learning rate
was reduced to 0.0001 after the first 15 episodes. Length of input sequences

25



4. Task description ...................................
T were 15 for all experiments, except the experiments with changing velocity,
in which sequences were around 8-12 frames (see Section 4.1.1), where the
length of sequences T was set to 8. The time constant (see Section 3.2) µt

was set to 0 for the first frame and 1
nt−1 for all other frames.

4.3 Evaluation description

The authors of PreCNet used widely known metrics (i.e., MSE, SSIM, PSNR)
to evaluate how well can PreCNet predict images [SSH20]. These metrics
are still used to evaluate images, outputted by the network. However, these
metrics cannot be applied to the constructed skin map (see Section 4.1.3).
Increasing the tactile false negative parameter described in Section 3.2 strongly
influences how early the network predicts the stimuli, but also how many
redundant tactile sensors are activated. By trying several configurations,
one cannot effectively rely only on the visualisation of the results. Since the
network should predict the tactile stimuli both temporally (with respect to
time), but also spatially (with respect to space), I created 2 tables described
below, for each instance of the network. Finally, the network creates prediction
plots for each tested sequence, for both visual and tactile data, comparing
actual and predicted response in each time step. In addition, one can use
visualisation application (see Section 4.3.3) with the files created by the
evaluation script6.

4.3.1 Evaluating temporally

By predicting the tactile stimuli temporally, we understand that the network
should predict the tactile stimuli in the actual time of activation. If the
prediction in the actual time of activation is not possible, the network should
predict the stimulus rather earlier than later. To evaluate, how well can
PreCNet predict the stimuli temporally, the Algorithm 3 (see Table 4.2) is
proposed. It compares the frame from time step, in which the first tactile
prediction occurred to the frame with the actual first tactile activation.

If the network predicts the tactile stimulus in the frame, when the actual
stimulus occurred, this sequence is marked as 0. When the network activates
earlier than the actual first tactile stimulus, the sequence is labelled with a
negative number depicting how many frames ahead did the network activated.

6Evaluation script is available at ’icub_evaluate.py’ [PS20c]
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.................................4.3. Evaluation description

Algorithm 3 Temporal evaluation of the network. n is the number
of sequences, function fisttact(s) gets the index of the time step, when the
first tactile activation in the sequence s occured. As denotes the actual
s-th sequence, Âs denotes the predicted s-th sequence. The operation ’/’ is
elementwise division. Lastly the etemp indicates, that the error is temporal.
etemp = 0
for s = 0, . . . , n do
i = firsttact(Âs)− firsttact(As)
etemp(i)← etemp(i) + 1

end for
etemp ← etemp/n

Eventually, when the network predicts activation after the actual tactile
stimulus, the sequence is marked with a positive number denoting the delay
of our activation. Finally, the sequences from testing dataset in each category
are summed up and divided by the total number of sequences.

i -4 -3 -2 -1 0 1
et(i) 1% 5% 19% 43% 24% 9%

Table 4.2: Example of temporal tactile evaluation of a trained PreCNet
network instance. In this example, the first tactile activation was predicted
in the same time step as the first actual activation in 24% of the sequences. In
43% of the sequences the model predicted the first tactile activation one time
step before it actually occurred (similar for -2, -3 and -4 columns). In 9% of all
sequences, the model predicted the first tactile activation one time step after it
happened.

For sequences, in which the activation did not occur (the ball missed iCub’s
torso), the evaluation script marks if any tactile sensor was activated during
the sequence. This part of a table will be marked as ’MISS’.

4.3.2 Evaluating spatially

In order to find out if some redundant sensors were activated in the prediction
or eventually some sensors should have been activated but were not, the
network is evaluated by means of its ability to predict the tactile stimuli
spatially. As it is desired that the network predicts the tactile stimulus before
it actually happens, it would make no sense to compare the predicted skin
map, with the actual skin map, which has no activation, in the corresponding
time step. For this reason, all predictions of tactile stimulation that occur
before the actual first tactile activation are compared to the first skin map, in
which some activation is detected. After that, all other predicted skin maps
are compared with the actual tactile skin maps from the corresponding time
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4. Task description ...................................
step (see Figure 4.7). For this task, I propose an algorithm (see Algorithm 4)
that evaluates the tactile predictions spatially.

Figure 4.7: Explanation of spatial evaluation. Predicted tactile activations,
that occurred before and at the during the actual tactile activation are subtracted
by the first tactile activation frame, whereas other frames are paired with the
activation from corresponding time step. This produces false-positive and false-
negative errors

This yields false-positive errors and false-negative errors7 for each time
step, relatively to the time step of the first actual tactile activation.

Finally, for each relative time step i, the errors are summed and divided by
the counts of sequences in each of these relative time steps ni. These mean
errors for each time step relative to the first tactile activation i are put into a
table (see example Table 4.3).

Type -2 -1 0 1 2 3 4 5
epos 3.777 2.560 3.208 2.536 1.019 0.196 0.050 0.003
eneg 0.636 0.929 1.194 0.048 0.001 0.000 0.000 0.000

Table 4.3: Example of spatial tactile evaluation of a trained PreCNet
network instance.

Important note: While the final code does the spatial evaluation after
rounding the values in the tactile map to the values {0, 0.5, 1}, most of the
networks were evaluated with the script without this rounding. By default,
it is meant that there was no rounding in the spatial evaluation. The only
networks evaluated with rounding are the networks from Table 5.4.

7This categorization of false-positive and false-negative errors is similar as it was described
in Section 4.1.3.
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Algorithm 4 Spatial evaluation of the network. n is the number of
sequences, ni is the number of sequences, that were summed into error e(i).
Function fisttact(s) gets the index of the time step, when the first tactile
activation in the sequence s occurred. Oppositely lasttact(s) gets the index
of the time step, when the last tactile activation in the sequence s occurred.
As denotes the actual s-th sequence, Âs denotes the predicted s-th sequence.
As(i) is i-th frame in the the actual s-th sequence, Âs(i) denotes the i-th frame
in the predicted s-th sequence. SUM() function, sums all the values in the
map. The operation ’/’ is division. Lastly the epos stands for false positive
error and eneg stands for false negative error.
epos = 0
eneg = 0
for s = 0, . . . , n do
a = firsttact(As)
for p = firsttact(Âs), . . . , lasttact(Âs) do
i = p− a
if i <= 0 then
epos(i)← epos(i) + SUM(ReLU(Âs(i))−As(a))
eneg(i)← eneg(i) + SUM(ReLU(As(i))−Âs(a))

else
epos(i)← epos(i) + SUM(ReLU(Âs(i)−As(i)))
eneg(i)← eneg(i) + SUM(ReLU(As(i)−Âs(i)))

end if
end for

end for
for each i do
epos(i)← epos(i)/ni

eneg(i)← eneg(i)/ni

end for

4.3.3 Qualitative Evaluation

After evaluating the test dataset with the metrics mentioned above, generated
images and tactile activations are put into visualisation application8. As can
be seen in Figure 4.8, the application offers side by side comparison of actual
response, predicted response and difference between these 2 responses.

8Visualisation application is available at visualise_data.py [PS20c]
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4. Task description ...................................

Figure 4.8: Visualisation application – actual (left), predicted (right) tactile
and visual responses. Difference in tactile responses (middle)

4.3.4 Common strategies for predicting tactile stimulation

After a few trained models, I observed that three strategies are repeating
very often with slight modifications. In this section, I will describe the main
characteristics of these strategies that can be recognized from the quantitative
and qualitative evaluation. I named these strategies consequently:

. Copy Previous Frame Strategy. Fixed Map Strategy. Visuo-tactile Strategy

The first strategy was named Copy Previous Frame Strategy, as it only
copies the actual tactile response from the previous frame (see Figure 4.9).
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.................................4.3. Evaluation description

Therefore all tactile stimuli are activated one frame after the actual tactile
activation. This can be seen from the temporal evaluation (see Table 4.4)

Figure 4.9: Copy Previous Frame Strategy – PreCNet only copies the
previous actual frame to the output.

-2 -1 0 1 2
0% 0% 0% 100% 0%

Table 4.4: Typical values of the Copy Previous Frame Strategy – Tem-
poral evaluation table, commonly observed in networks implementing the Copy
Previous Frame Strategy.

Another strategy is called Fixed Map Strategy, because it applies a fixed
’map’ of activations, in time steps where the activation is expected (where the
activation mostly occurs), which is same for all sequences (see Figure 4.10).
It is very often combined with the Copy Previous Frame Strategy. Typically
it predicts the actual stimulus many frames ahead (see Table 4.5), producing
big false positive errors.

Figure 4.10: Fixed Map Strategy – PreCNet applies a fixed skin map to the
time steps, where the activation is expected, besides copying the previous actual
activation

-12 to -7 -6 to -1 0 1
1% to 7% ea. 10% to 14% ea. 6% 1%

Table 4.5: Typical values of Fixed Map Strategy – Temporal evaluation
table, commonly observed in networks implementing the Fixed Map Strategy.

The last strategy was named ’Visuo-tactile Strategy’. The name of
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4. Task description ...................................
this strategy, came from the observations since the network in most cases
predicted the tactile stimulus closely before it actually occurred (see Figure
4.11), without placing fixed maps as in the ’Fixed Map Strategy’. This
strategy will be furthered discussed in Section 6.

Figure 4.11: Visuo-Tactile Strategy – PreCNet predicts the incoming stimu-
lus before it occurs. Notice that in the third sequence, the first predicted tactile
activation (timestep 7) is produced before “experiencing” the actual tactile
activation in this timestep.
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Chapter 5

Results and their interpretation

In Section 4.1.1, I described four experiments created in the framework running
on the Neurorobotics Platform [Pro] [FVA+17]. These datasets were then
used for training extended PreCNet neural networks with various parameters.
In order to evaluate these network quantitatively, while preserving most of
the information about the behaviour of the network, by means of temporal
and spatial prediction, an evaluation system was proposed (see Section 4.3).
Since this evaluation system is not standard, the reader may find it hard to
interpret the results just by looking at the tables. Therefore, I will interpret
these results after presenting them. I would like to note, that I will leave out
some columns replacing them with ’..’ or merge them, to maintain readability.
Full list of evaluated models, with prediction plots for some of them (see an
example in Figure 5.1) is published online [PS20a]1.

Figure 5.1: Example of prediction plots – Visual data in upper sequence
containing the actual images in the upper row and predicted images in the lower
row. Tactile data in lower sequence containing the actual tactile stimulation in
the upper row and predicted in the lower row.

After training a few models I noticed that the predicted images are main-
taining the popular structural similarity index (SSIM) [WBSS04] around

1Evaluation of the networks can also be found on the enclosed CD.
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5. Results and their interpretation .............................
0.97-0.98, whereas 1 is the maximum value. Qualitative evaluation of these
models confirmed that the network has no issues predicting images. For this
reason, I will evaluate the trained models by their ability to predict tactile
stimuli, although the network had to predict images as well. Nevertheless,
for those interested these values can be found for some of the networks in the
same folder as their prediction plots, published online [PS20a].

Since tactile strategies of the trained models showed very similar character-
istics, I decided to put these strategies in three groups, namely the ’Previous
Frame Strategy, ’Fixed Map Strategy’ and the ’Visuo-Tactile Strategy’. All
of these strategies are described in Section 4.3.4. The value of tactile false
positive – ’fp’ parameter (see Section 3.2) was set to 1 in all models, except
the those in Experiment 4 (Section 5.2.2), where it is explicitly noted (i.e.,
fn80_fp2).

5.1 Experiments with constant velocity of the
looming object across sequences

5.1.1 Experiment 1

Data from the first experiment was used for training PreCNet with the length
of input sequences T (see Equation 3.2) set to 15. tactile map was resized
to 25x50 (width x height). Neural networks produced following results for
various tactile false negative – ’fn’ parameters (see Section 3.2).

fn -4 -3 -2 -1 0 1 2
1 99% 1%
12 100%
15 100%
22 2% 6% 28% 53% 11%
27 1% 4% 8% 34% 43% 9%
30 1% 5% 19% 43% 24% 9%

Table 5.1: Temporal evaluation of the first experiment. First three
models with tactile false negative – ’fn’ parameter set to 1, 12 and 15 predicted
all of the tactile activations one frame later than it actually occurred. Further
increasing the ’fn’ parameter helped to change the strategy of the network, as
it predicted the tactile stimulus when it actually occurred or even before it
occurred.
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..........5.1. Experiments with constant velocity of the looming object across sequences

fn type -4 -3 -2 -1 0 1 2 3 4 5 6 ..
1 pos 0.23 0.34 0.13 0.10 0.08 0.03

neg 0.25 0.73 0.43 0.12 0.06 0.03
12 pos 0.86 1.74 1.93 1.53 1.17 0.79

neg 0.40 0.41 0.33 0.41 0.38 0.33
15 pos 0.22 1.25 0.92 0.56 0.22 0.07

neg 0.26 0.07 0.05 0.06 0.04 0.04
22 pos 1.88 1.33 0.89 5.53 1.80 1.43 1.04 0.62 0.28 0.13

neg 2.73 1.43 1.07 0.57 0.12 0.04 0.00 0.01 0.00 0.00
27 pos 2.61 4.64 2.16 1.50 5.84 1.99 1.42 1.00 0.60 0.25 0.09

neg 2.58 1.62 1.79 1.01 0.55 0.05 0.03 0.00 0.01 0.00 0.00
30 pos 9.61 4.93 2.81 3.89 7.42 5.71 3.67 2.10 1.23 0.70 0.45

neg 1.25 1.54 1.43 0.80 0.31 0.04 0.03 0.00 0.01 0.00 0.00

Table 5.2: Spatial evaluation of the first experiment. Increasing the
tactile false negative – ’fn’ parameter increases also the false positive errors of
the network, because the network activates more sensors earlier.

Here the first 3 networks implemented the ’Copy Previous Frame Strategy’.
Further increasing the ’fn’ parameter helped the network to change the default
’Copy Previous Frame Strategy’ to the ’Visuo-Tactile Strategy’. Especially in
the network with ’fn’ set to 22, only 11% of all sequences were not predicted
in time (see Table 5.1). Further increasing the ’fn’ parameter, decreased the
number of sequence, that were predicted too late, by 2% (see Table 5.1) and
reduced the false-negative error. Nonetheless, it increased the false-positive
error, in some cases doubling it by activating more tactile sensors (see Table
5.2). Figure 5.2 illustrates some of the episodes of the model, with ’fn’
parameter set to 22. All prediction plots from test dataset can be found
online at [PS20a].

Figure 5.2: Some sequences of tactile activity of network fn22 – Actual
and predicted tactile activations of fn22 network. In the upper sequences, the
network predicted the tactile stimulus correctly. In the sequences below, the
network made the prediction of tactile activity too late.
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5. Results and their interpretation .............................
In most of the sequences, the model predicted the tactile stimulus closely

before the actual stimulus or at the time of the actual stimulus (see Figure
5.2), without activating the same sensors in all sequences as in the ’Fixed
Map Strategy’. It also activated more sensors when the first actual tactile
stimulus was most likely to occur. This can be also observed from Table 5.2,
as the false-positive error increases in the 0th frame.

5.1.2 Experiment 2

The same parameters of the network as in the previous experiment were used
to train the network on sequences from the second experiment. These are
the results of various tactile false negative – ’fn’ parameters.

HIT MISS
fn -12 -11 -10 -9 -8 -7 .. -3 -2 -1 0 1 FALSE TRUE
45 100% 100%
50 100% 100%
55 100% 100%
60 4% 23% 19% 16% 38% 74% 26%
70 1% 3% 8% .. 13% 14% 13% 8% 2% 100%
80 1% 2% 8% 1% 3% 8% .. 15% 15% 12% 7% 1% 100%

Table 5.3: Temporal evaluation of the second experiment. This table is
similar as Table 5.1, but since the ball missed iCub’s torso in some sequences,
these sequences are evaluated separately (see end of the Section 4.3.1). Note:
In the frames between -7 and -3 the last two networks had around 12% in each
column.

fn type -10 -9 -8 to -5 -4 -3 -2 -1 0 1 2 3 4 ..
45 pos 0.4 0.3 0.3 0.1

neg 0.4 0.2 0.1 0.0
50 pos 0.4 0.3 0.3 0.1

neg 0.4 0.2 0.1 0.0
55 pos 0.4 0.3 0.3 0.1

neg 0.4 0.2 0.1 0.0
60 pos 1.3 0.3 1.7 2.9 2.5 2.7 2.0 1.5 1.0

neg 3.0 0.9 0.4 0.4 0.1 0.2 0.1 0.0 0.0
70 pos 5.8 3.1 – 4.3 3.8 3.4 3.9 4.5 4.5 4.3 3.0 2.3 1.4

neg 0.8 ∼ 0.5 0.5 0.4 0.3 0.2 0.0 0.1 0.0 0.0 0.0
80 pos 4.0 7.0 3.0-4.4 4.1 3.5 4.0 4.9 5.1 4.6 3.0 2.4 1.4

neg 0.0 0.6 0.3-0.4 0.4 0.4 0.3 0.2 0.1 0.0 0.0 0.0 0.0

Table 5.4: Spatial evaluation of the second experiment – Note: Before
calculating the spatial errors, predicted tactile activations were rounded to 0,
0.5, 1 (see Section 4.3.2)

The first 3 models implemented the ’Copy Previous Frame Strategy’. These
models “wait” for the tactile activation to occur and after that copy it to the
new predicted frame. Therefore in sequences, where the activation did not
occur, the models did not activate any tactile sensor. For this reason, they
predicted all of the sequences, where the activation did not happen correctly
(see MISS part in Table 5.3).

The network with ’fn’ parameter set to 60 did not implement any of the
“undesirable” strategies, rather it implemented the ’Visuo-Tactile Strategy’.
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..........5.1. Experiments with constant velocity of the looming object across sequences

In some sequences, predicted sensors were activated closely before the actual
stimulus or at the time of the actual stimulus. The false-positive error is
slightly higher in the -1st and 0th frame (see Table 5.4), thus in the frames
where the activation is most likely to happen what can be seen in prediction
plots as well in Figure 5.3. This is similar to the network from Experiment 1
(see Table 5.2). Moreover, this model correctly predicted 26% of sequences,
which did not activate any sensor on iCub’s torso (see Table 5.3) or activated
only a few sensors with lower certainty as in Figure 5.4.

Finally, last 2 models with the ’fn’ parameters set to 70 and 80 implemented
the ’Fixed Map Strategy’ (see Section 4.3.4), what can be seen from very
early predictions with very high false-positive errors (many redundant sensors
were activated).

Figure 5.3: Some sequences of tactile activity of the network fn60 –
Actual and predicted tactile activations of fn60 network. In the upper sequences,
the network predicted the tactile stimulus correctly. In the last correct sequence,
the network correctly predicted, that the ball will not hit the torso. In the
sequences below, the network made the prediction of tactile activity too late.
In the last sequence, network predicted a stimulus with lower certainty than in
other sequences, meanwhile, the ball missed iCub’s torso.

For another result of this experiment, I will use the same table as Table 5.3,
but with higher precision, showing only the frames after the first actual tactile
activation (see Table 5.5). With increasing ’fn’ parameter by implementing
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5. Results and their interpretation .............................
the ’Fixed Map Strategy’ models further minimized the false negative error
of time steps after the first actual activation. This point will be considered
later in the discussion (see Section 6).

fn type 0 1 2 3 4 5 6 7 8
45 pos 0.362 0.265 0.349 0.138 0.043 0.096 0.057 0.063

neg 0.370 0.171 0.082 0.044 0.064 0.074 0.069 0.015
50 pos 0.362 0.265 0.349 0.138 0.043 0.096 0.057 0.063

neg 0.370 0.171 0.082 0.044 0.064 0.074 0.069 0.015
55 pos 0.362 0.265 0.349 0.138 0.043 0.096 0.057 0.063

neg 0.370 0.171 0.082 0.044 0.064 0.074 0.069 0.015
60 pos 2.474 2.684 2.043 1.491 0.974 0.600 0.644 0.422 0.193

neg 0.097 0.177 0.091 0.037 0.012 0.037 0.040 0.026 0.000
70 pos 4.461 4.255 3.038 2.295 1.402 0.789 0.641 0.518 0.271

neg 0.043 0.064 0.009 0.007 0.011 0.004 0.013 0.000 0.000
80 pos 5.147 4.636 3.022 2.351 1.440 0.999 0.759 0.471 0.197

neg 0.060 0.031 0.015 0.013 0.002 0.010 0.010 0.002 0.000

Table 5.5: Spatial evaluation of the second experiment (part 0 to 8
frames—after the first tactile activation) – Note: Before calculating the
spatial errors, predicted tactile activations were rounded to 0, 0.5, 1 (see Section
4.3.2)

5.1.3 Prediction strategies from experiment 1 and
experiment 2

Results from the first two experiments indicate that increasing ’fn’ parameter
leads from the ’Copy Previous Frame Strategy’ to ’Visuo-Tactile Strategy’
and finally to the ’Fixed Map Strategy’.

To sum up the different network strategies on these two datasets, let me
highlight 4 trained models in Table 5.6.

Dataset fn -3 -2 -1 0 1 Strategy
1. [ep15-20] 15 100% previous frame
1. [ep15-20] 22 2% 6% 28% 53% 11% visuo-tactile
2. [ep15-30] 60 4% 23% 19% 16% 38% visuo-tactile
Dataset fn -12 to -7 -6 to -1 0 1 Strategy
2. [ep15-30] 80 1% to 7% ea. 10% to 14% ea. 6% 1% fixed map

Table 5.6: Temporal evaluation of highlighted networks – The network
implemented 3 different strategies (see Section 4.3.4). In the last row, some
columns were merged to preserve space.
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......... 5.2. Experiments with changing velocity of the looming object across sequences

5.2 Experiments with changing velocity of the
looming object across sequences

The network was also tested on a dataset, where the velocity of the ball
was generated randomly within a certain range. Experiments were intended
for PreCNet networks with sequence lengths 8 and 15. Additionally to
the previous experiments, datasets from these experiments were created by
resizing the skin map to different values not only to 25x50.

5.2.1 Experiment 3

Skin maps from the third experiment were resized to 25x50 and 63x91 (w x
h). For both datasets, I used sequence length T set to 8. Training on these
datasets produced the following results.

HIT MISS
fn -3 -2 -1 0 1 FALSE TRUE
12 100% 100%
20 100% 100%
22 100% 100%
23 6% 22% 36% 34% 2% 100%
25 6% 22% 36% 34% 2% 100%
30 6% 22% 36% 34% 2% 100%
40 6% 22% 36% 34% 2% 100%

Table 5.7: Temporal evaluation of the third experiment – skin 25x50

In general, the results of trained models on both datasets were very similar.
The models at first implemented the ’Copy Previous Frame Strategy’ for
lower ’fn’ values and then switched to the ’Fixed Map Strategy’ with higher
’fn’ values afterwards (see Tables 5.7 and 5.9). Differing from the experiments,
where the velocity of the ball was constant across episodes (see Section 5.1),
the gap between these two strategies with increasing ’fn’ value is much smaller
(compare Tables 5.8 and 5.10 with Table 5.2 or 5.4). For example, in the
dataset with skin map size 25x50 changing the value of ’fn’ parameter from
22 to 23, changed the strategy completely. Similarly to the experiments with
constant speed, with increasing ’fn’ parameter value the models minimized
false-negative errors, while increasing false positive by activating more sensors
and activating them earlier.

As an illustration for the implemented strategy, let’s look at Figure 5.4. Here
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5. Results and their interpretation .............................
fn type -3 -2 -1 0 1 2 3 ..
12 pos 1.03 0.72 0.09

neg 0.06 0.00 0.00
20 pos 1.04 0.74 0.09

neg 0.06 0.00 0.00
22 pos 1.15 0.87 0.18

neg 0.06 0.00 0.00
23 pos 3.27 3.78 2.56 3.21 2.54 1.02 0.20

neg 0.27 0.64 0.93 1.19 0.05 0.00 0.00
25 pos 5.68 5.53 4.47 5.29 4.60 2.64 0.60

neg 0.13 0.38 0.59 0.77 0.03 0.00 0.00
30 pos 7.57 7.01 5.94 7.02 5.97 2.87 0.60

neg 0.10 0.27 0.41 0.55 0.03 0.00 0.00
40 pos 9.86 9.05 6.79 9.18 6.67 2.72 0.58

neg 0.07 0.17 0.26 0.37 0.03 0.00 0.00

Table 5.8: Spatial evaluation of the third experiment – skin 25x50

HIT MISS
fn -3 -2 -1 0 1 FALSE TRUE
25 100% 100%
27 6% 22% 36% 34% 2% 100%
30 6% 22% 36% 34% 2% 100%
40 6% 22% 36% 34% 2% 100%

Table 5.9: Temporal evaluation of the third experiment – skin 63x91

fn type -3 -2 -1 0 1 2 3 4 5
25 pos 1.01 0.73 0.07 0.01 0.00

neg 0.06 0.00 0.00 0.00 0.00
27 pos 6.01 6.48 4.50 5.80 4.60 1.75 0.22 0.04 0.00

neg 0.11 0.28 0.49 0.75 0.03 0.01 0.00 0.00 0.00
30 pos 6.27 5.82 5.03 5.78 5.26 3.30 0.79 0.13 0.01

neg 0.15 0.38 0.56 0.71 0.03 0.00 0.00 0.00 0.00
40 pos 8.24 7.43 6.55 7.56 6.74 3.66 0.37 0.03 0.00

neg 0.10 0.25 0.36 0.49 0.03 0.00 0.00 0.00 0.00

Table 5.10: Spatial evaluation of the third experiment – skin 63x91

the network placed 2 static skin maps in the middle 2 frames implementing the
’Fixed Map Strategy’, combining it with the ’Copy Previous Frame Strategy’.
Since the original dataset consisted of sequences with frames in the range
of 8-12 frames, the actual tactile activation occurred in the 3rd frame from
the left rarely and the model did not predict this tactile stimulus. As a
consequence of placing a static activation frame in the 4th frame, the model
never predicts the tactile activation earlier than 3 frames before it actually
occurs (see Table 5.7 and 5.9).
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......... 5.2. Experiments with changing velocity of the looming object across sequences

Figure 5.4: Some sequences of tactile activity of the network fn22
trained on the dataset with changning velocity and skin map resized
to 25x50 – Actual and predicted tactile activations of the fn22 network. The
network implemented the ’Fixed Map Strategy’, with fixed skin maps in 2 middle
frames, together with the ’Copy Previous Frame Strategy’.

5.2.2 Experiment 4

For this experiment, I trained networks with sequence lengths T set to 15.
Skin maps were used with their default size 9x13, but they were also resized
to 25x50 and 63x91 (w x h). Training of the networks yielded the following
results.

HIT MISS
params -9 -8 -7 -6 -5 to -1 0 1 FALSE TRUE
fn40 100% 100%
fn80 3% 6% 8% 10% 11% ea. 9% 10% 100%
fn80_fp2 100% 100%
fn80_fp5 100% 100%
fn80_fp20 100% 100%

Table 5.11: Temporal evaluation of the fourth experiment – skin 9x13

In all three datasets the networks implemented the ’Copy Previous Frame
Strategy’ and changed to the ’Fixed Map Strategy’ with increasing ’fn’
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5. Results and their interpretation .............................
params type -9 -8 to -5 -4 -3 -2 -1 0 1 2 3 4 ..
fn40 pos 0.6 1.1 0.8 0.2

neg 0.1 0.0 0.0 0.0
fn80 pos 8.8 6.5-8 ea. 5.2 4.4 5.0 7.0 8.1 6.6 4.9 3.0 1.6

neg 0.4 0.5-0.6 ea. 0.6 0.6 0.6 0.6 0.6 0.1 0.0 0.0 0.0
fn80_fp2 pos 0.6 1.1 0.7 0.2

neg 0.2 0.0 0.0 0.0
fn80_fp5 pos 0.5 1.0 0.6 0.1

neg 0.2 0.0 0.0 0.0
fn80_fp20 pos 0.5 1.0 0.6 0.1

neg 0.2 0.0 0.0 0.0

Table 5.12: Spatial evaluation of the fourth experiment – skin 9x13

HIT MISS
params -9 -8 -7 -6 -5 to -1 0 1 FALSE TRUE
fn60 100% 100%
fn69 100% 100%
fn80 3% 6% 8% 10% 11% ea. 9% 10% 100%
fn80_fp2 100% 100%
fn80_fp5 100% 100%
fn80_fp20 100% 100%

Table 5.13: Temporal evaluation of the fourth experiment – skin 25x50

params type -9 to -5 -4 -3 -2 -1 0 1 2 3 4 ..
fn60 pos 0.9 1.4 1.1 0.5

neg 0.1 0.0 0.0 0.0
fn69 pos 0.7 1.2 0.9 0.3

neg 0.2 0.0 0.0 0.0
fn80 pos 6.4-7.3 ea. 4.8 3.8 4.3 5.1 5.8 5.5 5.6 4.6 3.0

neg 0.3-0.5 ea. 0.5 0.5 0.6 0.7 0.9 0.1 0.0 0.0 0.0
fn80_fp2 pos 0.5 1.0 0.6 0.1

neg 0.2 0.0 0.0 0.0
fn80_fp5 pos 0.4 1.0 0.6 0.1

neg 0.2 0.0 0.0 0.0
fn80_fp20 pos 0.4 0.6 0.2 0.0

neg 0.2 0.1 0.0 0.0

Table 5.14: Spatial evaluation of the fourth experiment – skin 25x50

HIT MISS
fn -10 -9 -8 -7 -6 -5 to -2 -1 0 1 FALSE TRUE
80 100% 100%
100 3% 6% 8% 10% 11% ea. 11% 9% 10% 100%
120 3% 6% 8% 10% 11% 11% ea. 9% 7% 3% 100%

Table 5.15: Temporal evaluation of the fourth experiment – skin 63x91

fn type -10 -9 to -6 -5 -4 -3 -2 -1 0 1 2 3 4 ..
80 pos 0.5 1.0 0.6 0.1

neg 0.2 0.0 0.0 0.0
100 pos 9.0-9.5 7.9 6.1 6.4 6.9 7.5 8.2 7.8 7.8 6.6 5.0

neg ∼0.2 0.3 0.3 0.3 0.3 0.4 0.5 0.0 0.0 0.0 0.0
120 pos 10.2 10.1-10.7 9.1 7.9 8.1 8.5 8.8 9.2 8.7 8.4 7.1 5.4

neg 0.3 0.3-0.4 0.3 0.3 0.3 0.4 0.4 0.5 0.0 0.0 0.0 0.0

Table 5.16: Spatial evaluation of the fourth experiment – skin 63x91

parameter (see Tables 5.11, 5.13 and 5.15). In datasets 9x13 and 25x50, I
also increased the value of tactile false positive parameter. These models
again implemented the ’Copy Previous Frame Strategy’. Spatial evaluations
of these networks are provided in Tables 5.12, 5.14 and 5.16.
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......... 5.2. Experiments with changing velocity of the looming object across sequences

5.2.3 Prediction strategies from experiment 3 and
experiment 4

In all instances, the network implemented either the ’Copy Previous Frame
Strategy’ or the ’Fixed Map Strategy’. To find out why any of the networks
did not implement the ’Visuo-Tactile Strategy’ as in the experiments in
Section 5.1, I observed the predicted images. In contrast to the datasets,
where the ball velocity remained the same across all sequences and the
network predicted the ball position correctly, the ball in sequences with
varying velocity was very blurry or vanished completely in some images (see
Figure 5.5). Surprisingly in the case of PreCNet with 15 sequences, the
network managed to predict the ball correctly, after it bounced from iCub’s
torso (see Figure 5.5c). This blurriness was not observed among images
from experiments, where the velocity was constant. In Figure 5.5, I also
included metrics for the comparison of actual and predicted image. Mean
Square Error (MSE) should remain as low as possible, while the Structural
Similarity Index (SSIM) [WBSS04] – whose values are between 0 and 1, and
Peak signal-to-noise ratio (PSNR), the metric related to the MSE, should be
as high as possible.

Figure 5.5: Comparison of trained networks on datasets with varying
and constant velocity. On the right side, there is a network evaluation on the
whole test dataset (MSE – Mean Square Error, SSIM – Structural Similarity
Index [WBSS04], PSNR – Peak signal-to-noise ratio). a) Constant velocity
throughout all sequences. b) Varying velocity through sequences. c) Same
dataset as in b) – the network predicts images after the bounce from iCub’s
torso correctly. d) Varying velocity through sequences. PreCNet with sequence
length 8.
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Chapter 6

Discussion and future work

The main goal of this thesis was to train a neural network model based
on predictive coding to predict tactile stimulation from visuo-tactile data,
specifically images and tactile activations. For this purpose, the state-of-
the-art neural network PreCNet [SSH20] extended for tactile modality (see
Section 4.1.2) was trained with default parameters. Using default parameters
led to a strategy, that predicted the tactile stimulus too late, by only copying
tactile activation from the previous time step to the output (see ’Previous
Frame Strategy’ in Section 4.3.4).

To improve this strategy to predict the tactile stimulus earlier, the network
was extended with the ability to set weights to false-positive and false-negative
errors in tactile predictions (see Section 3.2). Increasing weights of false-
negative errors for not predicting a tactile stimulation (tactile false negative
or ’fn’ parameter described in Section 3.2), while preserving the tactile false
negative parameter led, in general, to earlier predictions and activation of
more tactile sensors. I’d like to add that penalizing the network for not
predicting the stimulus might hypothetically correspond to receiving painful
stimulus after an unpredicted collision of an animal or human with an object.
As the collision is predicted by the agent, it might be possible to prevent it
or minimize its consequences (see Section 2.2).

In Section 5.1, I presented several models trained on a dataset with constant
speed across episodes. Modifying the tactile false negative parameter across
these models led to three different tactile prediction strategies described
in Section 4.3.4, from which two strategies, namely the ’Previous Frame
Strategy’ and ’Fixed Map Strategy’ are “undesirable”, as they predict the
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6. Discussion and future work...............................
tactile stimulus too late or activate too many redundant sensors. Importantly
in the last ’Visuo-Tactile Strategy’, the neural network predicted the tactile
stimulation closely before it actually occurred, additionally activating more
sensors, when the first actual activation was expected to occur. I propose,
that implementation of such a strategy cannot be achieved by using only the
information from a tactile modality, rather the prediction must be influenced
by visual modality as well. Alternatively stated, the network accomplished
improvement in predicting the tactile stimulation by visuo-tactile integration.

Admittedly, the tactile stimulus was not predicted in all sequences. Some
errors in predictions might be caused by bias in the datasets. By way of
example, less interactions occur by the beginning of the sequence than in the
middle or by the end of it. Also, in each experiment, the ball misses iCub’s
torso in very few sequences. Another issue observed in Section 5.2.1. In Table
5.5, it was observed that further increasing the weight of tactile false-negative
error did in fact decreased the false-negative error of sequences after the
initial activation by implementing the ’Fixed Map Strategy’. Considering
the initial activation lasts only one frame, whereas the later activation can
last roughly 2-4 frames, it is indeed better strategy to apply this strategy to
minimize the false-negative error in each time step. The issue is that if the
network should predict the stimulus before it hits the body or in the time
of actual activation, it should prominently be penalized for not predicting
the stimulus in the time of collision. One solution to this problem would be
to increase the penalty of false-negative error in the frame of the first actual
tactile activation.

In Section 5.2, I presented models that were tested on datasets created from
experiments, in which the velocity of the ball was changing across sequences.
In these models, only two common strategies (described in Section 4.3.4) for
tactile predictions were observed, leaving out the ’Visuo-Tactile Strategy’.
Additionally, the ball in predicted images was blurry or completely missing. I
believe this blurriness is connected with uncertainty about the new position
of the ball, thus the network applies the default background image instead of
predicting the ball position. This uncertainty also led to much bigger fixed
maps of possible activations, within the networks that implemented the fixed
map strategy.

Using higher camera frame rate, bigger ball, lower velocity or changing
some parameters of the network could bring improvements, especially in the
dataset with changing velocity. The network could be further extended by
using images from both cameras instead of just one camera. In this way, the
network could use the binocular disparity information to increase confidence
in visual prediction as it was outlined in Section 4.1. It is also important to
note that raising some of these parameters (e.g., adding a camera, adding
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more layers to the network, increasing the number of input sequences T ) will
significantly increase memory requirements for the network.

To my knowledge, created model is the first model that applies the predictive
coding model for peripersonal space representation. The proposed model uses
raw images and tactile data from 3D space, in comparison to other models
described in Section 2.3, which inputs require further processing to obtain
physical quantities (i.e., position, velocity, distance from the tactile sensor).
The model further differs from these models [SH17] [RHP+16] [MZS+10] in
setting different weights to false-positive and false-negative tactile errors.
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Chapter 7

Conclusion

In this work, I created a framework for generating datasets with visual and
tactile modality, using the Neurorobotics Platform [Pro] [FVA+17]. With
this framework, I created several experiments and parsed them into datasets,
which basically consist of frames with 4 channels with an actual image in the
first 3 channels and the tactile activations in the last channel. These datasets
were used to train several PreCNet [SSH20] neural networks extended for
tactile modality. This network was slightly modified to set weights of the
errors caused by tactile activations that were not predicted and errors caused
by predicting excessive number of tactile activation (see Section 3.2). Setting
different error weights yielded different tactile prediction strategies. Using
proposed quantitative evaluation and observing the tactile predictions of the
network I propose that the network improved its tactile prediction strategy
with visual information. Therefore, the network managed to implement
multisensory integration which is an important part of peripersonal space
representation.
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Appendix A

Contents of the enclosed CD

. iCub Peripersonal Experiment – code for generating experiment in the
Neurorobotics Platform. This code is accessible online via [PS20b]..Multisensory PreCNet – code for processing csv data from the Neuro-
robotics Platform up to the evaluation script. This code is accessible
online via [PS20c].. networks.xlsx – Evaluated PreCNet models. This file is accessible online
via [PS20a]
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