

Erasmus Mundus Programme - SpaceMaster

Diploma Thesis

Estimation of Angular Positions of a UAV from Inertial Measurements

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Control Engineering

Luleå Tekniska Universitet

Author: Antonio Francisco Valenca de Affonseca
Year: 2008

 1

Acknowledgments

The success of this project would not be possible without the help of Tomáš Haniš
who helped with the understanding of his mathematical model of the plane. To
Jaroslav Žoha for teaching me some tricks and tips using Eagle. I would like to
especially thank Martin Rezac who helped me since the beginning of the project in
anything that I needed at anytime.

 2

ABSTRACT

This project consists of the design and development of a navigational unit for a UAV
(Unmanned Air Vehicle). The purpose is to design from scratch a device that would
use three accelerometers, three gyroscopes, a magnetometer and a GPS to provide an
estimation of the angular position of the UAV. The tasks involved selecting
appropriate sensors, designing a circuit board, assembling the board, connecting the
sensors and testing them. A mathematical model of the plane dynamics was also
provided to increase the accuracy of the measurement. One extra task was to
translate this model, provided in MatLab, into C code.

 3

INDEX

Table of Contents

1 INTRODUCTION ...8

1.1 OBJECTIVE .. 8

1.2 MOTIVATION... 9

2 LITERATURE REVIEW .. 10

2.1 GPS .. 10

2.1.1 Differential GPS (DGPS) ... 10

2.1.2 NAVILOCK NL-504ETTL .. 11

2.2 ADIS16350 .. 11

2.2.1 Gyroscope ... 12

2.2.2 Accelerometer .. 13

2.3 HMR3300 ... 13

2.4 EAGLE Software .. 14

3 DEVELOPMENT ... 15

3.1 Hardware .. 15

3.2 Software ... 19

3.2.1 Low-Level ... 20

3.2.2 High-Level .. 25

3.2.3 Program Schematics .. 28

4 RESULTS .. 30

4.1 Hardware .. 30

4.1.1 EAGLE and PCB .. 30

4.1.2 LPC2119 .. 31

4.2 Software ... 31

4.2.1 Low Level ... 31

4.2.2 High Level .. 33

4.2.3 Combining Low Level with High Level ... 34

5 DIFFICULTIES ... 35

5.1 Difficulties ... 35

5.1.1 Hardware .. 35

5.1.2 Software .. 36

5.1.3 Third Party .. 36

6 CONCLUSION .. 37

5 FUTURE CHALLENGES .. 39

7 BIBLIOGRAPHY ... 41

8 APPENDICES .. 43

APPENDIX 8. 1 - Declination Angles .. 43

APPENDIX 8. 2 - NMEA Protocol ... 47

APPENDIX 8. 3 - MTK Protocol ... 50

APPENDIX 8. 4 - nelinvyvojP Function example MatLab .. 51

APPENDIX 8. 5 - nelinvyvojP Function example in C .. 52

APPENDIX 8. 6 - Substituce1 Function example MatLab .. 53

APPENDIX 8. 7 - Substituce1 Function example in C ... 54

APPENDIX 8. 8 - ModelLetA Function example MatLab .. 54

APPENDIX 8. 9 - ModelLetA Function example in C ... 55

 4

TABLE OF FIGURES

Figure 1 - Rotational Axis ...8

Figure 2 - Board Schematics .. 16

Figure 3 - Board Layout .. 17

Figure 4 - Final Board .. 18

Figure 5 - CPOL and CPHA configuration ... 21

Figure 6 - SPI Data Sequence .. 22

Figure 7 - Velocity Vector and Heading .. 23

Figure 8 - Declination Map for 2000 ... 24

Figure 9 - Maximum rounding error ... 27

Figure 10 - Program Schematics ... 30

Figure 11 - HMR3300 Block Diagram .. 33

 5

TABLE OF TABLES

Table 1 - Example of GGA Data Format (Europe, NaviLock) 11

Table 2 - GYROSCOPE SENSITIVITY (ADIS16350) ... 12

Table 3 - HMR3300 accuracy (HMR3300) .. 14

 6

LIST OF ACRONYMS

GPS Global Positioning System

3D Three dimensions

INS Inertial Navigation System

NU Navigation Unit

PCB Printed Circuit Boar

DGPS Differential GPS

MEMS Microelectromechanical systems

FIR Finite Impulse Response

UART universal asynchronous receiver/transmitter

TTL Transistor–Transistor Logic

GGA Global Positioning System Fixed Data

NMEA National Marine Electronics Association

PCB Printed Circuit Board

ECAD Electronic Computer-Aided Design

IC Integrated Circuit

PLL Phase Lock Loop

MOSI Master out Slave in

MISO Master in Slave out

CAN Controller Area Network

TD1 CAN1 transmitter output

RD1 CAN1 receiver input

SPI Serial Peripheral Interface Bus

SSEL Slave Select for SPI

CS Chip select for SPI

SCK Synchronous Clock

MSB Most Significant Bit

GPIO General Purpose Input Output

 7

XOR exclusive OR logic

ASCII American Standard Code for Information Interchange

IDE Integrated Development Environment

ISR Interrupt Service Request

MIPS Millions of Instructions Per Second

 8

1 INTRODUCTION

This chapter has the objective of giving the reader

some overall view of what the project is about, its

purpose and it will be accomplished.

1.1 OBJECTIVE

This project is part of a bigger project, which is the automation of an unmanned
plane. This plane possesses a gimbaled camera attached to it. The main purpose is
to lock the camera at a point on the horizon and, as the plane flies around, the camera
should automatically update its position to keep it looking at the same point while
the plane is moving. Figure 1 shows the final objective. The Navigational Unit
needs to provide the Pb, Qb and Rb angles so that the camera can apply the
corrections in order to keep pointing to the same place.

Figure 1 - Rotational Axis

 9

In order for the camera to correctly update its position, it needs to know exactly
where it is as a vector in a 3D coordinate plane and where it is supposed to be
looking at. This project focuses exclusively at how to precisely tell the plane and the
camera where they are located.

The complete project, design and implementation of a GPS aided by an INS and a
magnetometer will be the main topic of this project. This should be understood as

• the selection of the sensors for the appropriate needs,

• the design of the PCB,

• mounting of the sensors on the PCB,

• programming of the low-level functions

• programming the high level function

• doing the communication interface with the airplane.

1.2 MOTIVATION

There are innumerous different types and models of NUs constructed with different
types of sensors and different data fusion techniques. Each NU is designed
specifically for one purpose. The main purpose of the NU is to do the fusion of data
from more than one different type of sensor in order to produce one exact output
value.

The plane where this NU will be mounted is a small unmanned plane. The main
purpose of the plane is to do visualization reckoning of areas where it is possibly
dangerous for humans to go. Some places of possible utilization of the plane are:
observation of a volcano in eruption or a big fire on a forest. The plane has a simple
construction, its maximum speed is of 200 km/h, it is not capable of making
aggressive maneuvering changes.

The personal motivations for this project are that it will be possible to put in practice
many of the subjects that were thought throughout the SpaceMasters Program. Some
of these classes are, but not only, Spacecraft System Design, Space Dynamics,
Electronics in Space, Space Systems Modeling and Identification and Estimation
Filtering and Fault Detection.

 10

2 LITERATURE REVIEW

Here will be presented the basic knowledge, acquired

through the course, for the reader to understand the

project and the decisions taken throughout its design.

2.1 GPS

Global Positioning System or GPS is a U.S. Department of Defense constellation of
satellites, developed under the NAVSTAR satellite program, that provide radio
signals which with the correct equipment will give the position of the GPS antenna.
The GPS has as an average of 30 meters of precision for altitude data and 12 meters
for North and West plane accuracy and a sample rate of 1 Hz. There are two types of
GPS: the most common one has a built in Kalman filter and gives as it output the
latitude and longitude among other physical measurements. It can be viewed as a
final product to the common consumer. The second type is focused to industry and
military or space applications. It is more expensive and much harder to find than a
final user GPS. It does not have a built in Kalman filter, instead its output values are
pseudorange codes and satellites position coordinates. The pseudorange code
includes clock signals from the different satellites locked into the GPS and with the
appropriate calculations it is possible to determine your position.

 2.1.1 Differential GPS (DGPS)

If one GPS could be placed on a fixed known position, the information from this unit
could be used as a reference to nearby non-fixed GPS. This technique is called DGPS
or Differential GPS. A station with known position and a GPS transmits a
pseudorange code including corrections in real time to other GPSs receivers. These
special receivers can then apply corrections to their estimated positions. (Mohinder S.
Grewal, January 2007)

 11

 2.1.2 NAVILOCK NL-504ETTL

The NL-504ETTL is a complete GPS smart antenna receiver. It has a smart antenna
that can track up to 32 satellites at a time with a 1 Hz resolution. It uses a TTL
interface which makes it possible to directly connect the GPS with a UART port of
the microcontroller. Its speed is fixed at 9600 BPS and a built-in battery makes it
possible for the GPS to preserve system data for a rapid satellite acquisition. It has a
maximum altitude of 18000 meters and a maximum speed of 515 m/s. The GPS uses
the NMEA 0183 ver 3.01 protocol for communication.
Table 1 provides an example of the GPGGA protocol. GPGGA is part of the NMEA
protocol. APPENDIX 8. 2 has more information about NMEA protocol.

Table 1 - Example of GGA Data Format (Europe, NaviLock)

$GPGGA,053740.000,2503.6319,N,12136.0099,E,1,08,1.1,63.8,M,15.2,M,,0000*64

Name Example Units Description

Message ID $GPGGA GGA protocol header
UTC Time 053740.000 hhmmss.sss
Latitude 2503.6319 ddmm.mmmm

N/S indicator N N=north or S=south
Longitude 12136.0099 dddmm.mmmm
E/W Indicator E E=east or W=west
Position Fix
Indicator

1 See Table 5.1-3

Satellites Used 08 Range 0 to 12
HDOP 1.1 Horizontal Dilution of Precision
MSL Altitude 63.8 meters
Units M meters
Geoid Separation 15.2 meters
Units M meters
Age of Diff. Corr. second Null fields when DGPS is not

used
Diff. Ref. Station ID 0000
Checksum *64
<CR> <LF> End of message termination

2.2 ADIS16350

The ADIS16350 is a complete solution for an INS. It is built by Analog Devices and it
has a complete triple axis gyroscope and triple axis accelerometer. The ADIS16350 is
a MEMS sensor, or Microelectromechanical systems. Sensors are mass manufactured
at sub-millimeter scales. At such small scale the ratio of surface area to volume

 12

becomes very big, making electrostatic forces significant. Vibration frequencies also
scale up making coriolis gyroscopes very effective at MEMS scales. (Mohinder S.
Grewal, January 2007)

The ADIS16350 is a highly integrated solution, providing calibrated, digital inertial
sensing. An SPI port provides

• X,Y, Z axis angular rates

• X, Y, Z axis linear acceleration

• internal temperature

• power supply

• auxiliary analog input

 The inertial sensors are precision aligned across axes, and are calibrated for offset
and sensitivity. An embedded controller dynamically compensates for all major
influences on the MEMS sensors; thus maintaining highly accurate sensor outputs
without further testing, circuitry, or user intervention. (ADIS16350)

 2.2.1 Gyroscope

The gyroscope from the ADIS16350 can change its digital dynamic range from ± 75, ±
150 or ± 300 ˚/sec. This means that the maximum rotation that the device can detect
is for example 300˚/sec, if that was the selected option. As a trade-off the higher the
dynamic range value the smaller the sensitivity will be. Table 2Error! Reference

source not found. provides the sensitivity values for the determined dynamic range.

Table 2 - GYROSCOPE SENSITIVITY (ADIS16350)

Dynamic Range Sensitivity

± 300 ˚/sec 0.07326 ˚/s/LSB

± 150 ˚/sec 0.03663 ˚/s/LSB

± 75 ˚/sec 0.01832 ˚/s/LSB

As it can be seen the sensitivity doubles every time the dynamic range is lowered one
step. The UAV was designed as a recon vehicle. His normal operating flight mode is
very constant and straight forward. It was not designed to make any drastic
movements like a missile or a jet fighter, thus it possible to use the dynamic range of
± 75 ˚/sec. This option increases the sensitivity of the sensor by four times when

 13

compared with ± 300 ˚/sec. This will be very important as the sampling frequency
will be relatively low, as explained later in this paper.

Each sensor’s signal conditioning circuit has an analog bandwidth of approximately
350 Hz. A Bartlett Window FIR filter is available in ADIS16350, which provides an
extra noise reduction.

 1

The frequency response relationship for the filter can be seen in equation 1. N is the
number of taps, as a power-of-two step sizes. The use of the filter and its
characteristic will be discussed later on this paper. (ADIS16350)

 2.2.2 Accelerometer

The accelerometer in the ADIS16350 has a measurement range of ±10g and a
resolution of 2.52mg. This resolution cannot be altered and no options can be set.
The only available adjustable parameter of the accelerometer is a linear acceleration
origin alignment.

2.3 HMR3300

The Honeywell HMR3300 is an electronic compassing solution. These
magnetoresistive sensors can be used to provide reliability and accuracy to any solid
state compass design. All information sent by the HMR3300 uses ASCII format and
the sensor itself can be easily connected to a system using UART or SPI interface.
The HMR3300 is a three-axis, tilt compensated compass that uses a two-axis
accelerometer for enhanced performance up to a ±60˚ tilt range. (HMR3300)

The HMR3300 when connected through the SPI interface can provide heading
information with a resolution of 0.1 degrees. Table 3 shows the complete possibilities
of accuracy for the HMR3300 depending of the inclination angle of the sensor.

 14

Table 3 - HMR3300 accuracy (HMR3300)

Accuracy Tilt Typical Units

 Level 1.0 Deg RMS

 0˚ to ±30˚ 3.0 Deg RMS

 ±30˚ to ±60˚ 4.0 Deg RMS

The HMR3300 will send two bytes of data in response to an ASCII “H” or “h.” These
two bytes represent the integer value equal to 10*Heading. So a value received of
1830 means the heading is actually 183.0˚.

2.4 EAGLE Software

The Eagle software is ECAD software designed by CADSoft, a German company. It
is a simple and complete program for designing PCBs. It is divided mainly into two
parts. The first one is a schematic editor which is used for drawing the circuit
diagrams. The second part is a PCB layout editor. It contains a vast library of
commonly used components and ICs and the possibility of making new components
for the library. More than 1/3 of the time spent doing this project was in learning
how to properly use the EAGLE software. This includes designing the entire PCB,
for the integration of the sensors, creating new library pieces and waiting for the
board to be manufactured. (CADSoft)

 15

3 DEVELOPMENT

This chapter will show how the development of the

project was implemented.

3.1 Hardware

The Philips LPC2119 is an ARM7 type microcontroller. It uses a 10 MHz crystal and
through PLL it is able to increase this clock to up to 60 MHz. The LPC2119 has seven
input power sources. It is very important that every capacitor, of the corresponding
input power source, be placed as close as possible of the microcontroller’s input pin.
This rule should be applied to every device that has an input power source. If this
rule is not followed the device may not work properly or even not work at all. There
are three different regulated power sources on the PCB: 1.8V, 3.3V and 5V. The
LPC2119 uses 1.8V as the core power supply for the internal circuitry and 3.3V for
the pad power supply, or supply voltage for the I/O ports. The 5V is used by the
other peripherals on the PCB. (NXP)

Because most of the peripherals on the PCB use 5V logic, like the ADIS16350, the
HMR3300, the GPS and the CAN, a voltage translator had to be used. This is
necessary because even though the LPC2119 can have an input of 5V, it cannot give
an output of 5V, its maximum output is of 3.3V. This voltage level could be
misinterpreted by the receiving peripheral. To avoid this possibility, the MAX3379
was used to lift the voltage from 3.3V to 5V. Only the lines leaving the LPC2119 to
the peripherals input have the voltage lifted to 5V.

 16

Figure 2 - Board Schematics

 17

The LPC2119 has two SPI ports. SPI1 was exclusively designated for the ADIS16350.
This was chosen because the ADIS16350 is in fact six sensors at the same time. They
are also the ones that are used the most, the 3 accelerometers and the 3 gyroscopes,
requiring a lot of communications between the ADIS16350 and the LPC2119. The
ADIS16350 works as a slave SPI, so the LPC2119 is set as the master. For the
HMR3300, at first instance, the SPI0 port was selected. The HMR3300 works as a
master SPI, which means that the LPC2119 needs to be setup as a slave for the SPI0.
(NXP) This also means that the lines between MISO and MOSI in the LPC2119 need
to be switched between them. There is the possibility of placing the HMR3300 in the
UART0 in case more information is needed from the HMR3300.

Since the GPS works with TTL, it could be directly connected to the UART1 of the
LPC2119. The maximum communication speed of the GPS is of 19200 BPS. It will
send its GPGGA and GPVTG chain of information every second.

Figure 3 - Board Layout

It is very important to place the GPS, HMR3300 and the ADIS16350 facing the same
direction. This will make the software programming a lot easier since they have the

 18

same sign value. For example if the ADIS16350 and GPS are oriented in opposite
directions, one would be showing a negative velocity in comparison with the other.

It was selected to use CAN interface for communication with outside peripherals.
CAN1 was used but since there is a possibility that the NU will be located far from
the outside computer, the RD1 and TD1 had to be connected to PCA82C250 which is
a CAN controller interface. It makes the interface between the CAN protocol
controller and the physical bus. It will give a differential transmit capability to the
bus and differential receive capability to the CAN controller. This will protect the
bus against transients in the environment.

Figure 4 - Final Board

The PCB board layout was finished, after innumerous redesigns, fixes and changes,
on 16/04/2008. It was delivered from production on 24/04/2008. With all
components in hand the board was finalized and test for use on 26/04/2008. Figure
2 shows the complete board schematics, including the filtering capacitors of the line
voltage feeds. All the soldering of the components including the microcontroller was
done by hand by the author. A lot of practice was done during the month before in
preparation for soldering the final board. The final board can be seen on Figure 4,
note that the ADIS16350 can be seen as the white box on the right top corner. Many
small details had to be carefully implemented of the board layout. Some of the
specifications include; no 90˚ corners on the signal wires and the smallest distances
possible from the filtering capacitors and the voltage input lines. The final board was
implemented in 5 different zones. This kept the board clean and easy to understand.
Also, regulating voltage devices and capacitors are kept far from sensitive parts, like
the sensors. Figure 3 shows the board layout and its division by sectors. The
components inside the yellow square are dedicated to voltage regulation. The green
section concerns the CAN communication. The red box contains the microcontroller,
its crystal and filtering capacitors. It also has the connector used to program the
microcontroller. The blue box has the electronics concerning the ADIS16350 and the
pink box the electronics for the magnetometer. The pink box also includes the GPS
port but that is simply a UART port so no extra electronics were necessary.

 19

3.2 Software

The software section will be divided into two subsections. The first part will deal
with low level programming, setting up the sensors and putting the data on the
correct format. The other will deal with the algorithm for the data fusion and
MatLab simulations. In order to program the microcontroller it is needed to place
the microcontroller into its boot mode. To do this a special connector is needed that
connects pin1 to pin2 of the CONPGM connector located in the lower part of the red
box in Figure 3. After that the reset button on the yellow box needs to be pressed.

Half of the program, specifically the low level programming, was written directly on
a Linux machine preloaded with a university written software to compile the
program and write it and run it through the RAM of the microcontroller. This
provided a fast way of testing small pieces of the program in real-time situations,
saving time and life cycles of the microcontroller, since the microcontroller has a
limited number of writings to the flash memory. The drawback is that the RAM
memory of the LPC2119 is very small if compared with the flash memory. The
LPC2119 has up to 16Kb of RAM and 256 Kb of flash memory. More about this will
be explained at the end of this section after the high level programming is explained.

The second part of the program is defined as the high level programming, or the
simulation and modeling of the airplane. This part involves translating the MatLab
file of the model and simulation into C code. This will be better explained on High
Level section below. This part does not actually need any real data from the sensors
in order to simulate the output so a more user friendly program was used to write it
than the Linux gcc. The program chosen was DeV-C++, a free IDE for programming
C/C++. It runs exclusively on windows. This software provides easy debugging
functions and screen visualization of step by step line execution of the code. This
provided a very useful and powerful tool for comparing results between the original
MatLab model and the C translated code. The main problem when changing the
code from the Dev-C++ to the Linux program, in order to test the final software
inside the microcontroller, was that the size of the RAM was too small to fit all the
code. Public functions like cosine and sine, included in libraries like MATH.h or
other, provided a particular strain on memory resources. These functions are very
general and need to have a lot of special programming in order to work in every
code, making it a very big sized function. This added to the fact that the code uses
many 22x22 matrices made it impossible to use the RAM for testing. Another
approach had to be considered. It was needed to actually write the program into the

 20

flash memory. For this it was necessary to debug and save the file in HEX format
with the Linux software and use windows software to write it into the flash which
became very time consuming.

 3.2.1 Low-Level

The HMR3300 is the master in the SPI interface. This means that the SSEL0, which is
the pin that puts the SPI0 in the LPC2119 as master or slave, needs to be pulled
down. This is accomplished by connecting the CS of the HMR3300 together with the
SSEL0. So when the CS is lower so will SSEL0 be lowered. This will at the same time
set the LPC2119 SPI0 to slave mode and select the HMR3300 ports. Since the
HMR3300 is the master, it will select the clock speed automatically. To ask for the
heading it is needed to send an “h” character to the HMR3300. This will write the
“h” to the register in the HMR3300. The HMR3300 operates with SCK idle low. Data
output comes after the falling edge of SCK. Data sampled comes before rising edge
of SCK. This is simply done by adjusting the CPOL and CPHA registers of the SPI0
port both to 0. Figure 5 shows the possibilities of configuring the CPHA and CPOL
registers.

As soon as CS of the HMR3300 is lowered, the HMR3300 will send an “s” character
to the LPC2119. In response the LPC2119 must send an “h” character back. After
this the HMR3300 will start sending the heading data at regular intervals.

Contrary to the HMR3300 the ADIS16350 is a slave SPI sensor. It uses the LPC2119
as a master.

Because of this a number of setups need to be done in order for the ADIS16350 to
work properly. First the ADIS16350 sets both CPOL and CPHA to 1. This means
that the first data comes with the first SCK falling edge. Other data driven with SCK
falling edge and the data sampled with SCK rising edge.

 21

Figure 5 - CPOL and CPHA configuration (NXP)

It was decided to use a SCK of 600 KHz with 8 bits data, no parity bit with one stop
bit, with MSB and interrupt enabled. This can be simply done by setting:

S1SPCCR=24;

And

S1SPCR=0xB8;

Besides these configurations it is only necessary to pull-up the CS pin of the sensor
with an ordinary GPIO pin from the LPC2119. For more information on the registers
and how to calculate the baud rate and other configurations see (NXP).

Both HMR3300 and ADIS16350 use the same function to receive and or send data. It
simply stores a value and an address to a registry. After it is sent it uses an interrupt
function to receive the data from the prior command sent. Figure 6 shows exactly
how the information sent through SPI works. This example is from the ADIS16350
but the same can be applied to the HMR3300 with some minor changes already
mentioned.

 22

Figure 6 - SPI Data Sequence (ADIS16350)

One timer is used to set a fixed sampling frequency for the sensors. TIMER0 was set
to make an interrupt every 0.1 seconds or 10Hz. When TIMER0 interrupts it sets a
flag that runs a routine to acquire the data from all the sensors from the ADIS16350.
The 10 Hz frequency was selected because it is a reasonable good number of points
taking into consideration the heavy matrix multiplication that will go on in such a
weak processor.

The GPS uses the NMEA protocol for sending data to the host device as mentioned
before. In order to program the GPS it’s needed to use the MTK protocol. It has the
same exact format as the one shown in Table 1 except that instead of having the
header $GPXXX (where XXX correspond to the desired output data) it has $PMTK.
All writing commands and acknowledgement commands from the GPS use the
header $PMTK. This provides a way to differentiate what is GPS data from what is
configuration data. Like the NMEA protocol, MTK protocol also has a checksum at
the end of every command. This checksum is a simple consecutive XOR of the first
character after the “$” until the last character before “*.” In order to calculate this
checksum a simple program was developed to automatically calculate the checksum
of the command line and add this value to the two characters after “*”. Also every
command line should end with a <CR><LF> which is nothing more than a 0x0D and
0x0A from the ASCII table. APPENDIX 8. 3 has more information about MTK
protocol and commands.

The GPS was then configured to transmit at 19200 BPS which is the maximum baud
rate of the GPS. The GPS was set to send only $GPGGA and $GPVTG strings every

 23

second. The GGA format will provide an altitude value and a corresponding time.
Equation 2 can be used to derive the Z-axis velocity.

 2

The GPVTG string will provide heading information with respect to either Magnetic
or True North. Both options are available. It will also provide the ground speed
with respect to its heading. Figure 7 - Velocity Vector and Heading provides a good
visualization for the relationship between the ground speed and the heading angle H
or velocity vector over a 2D plane or XY plane.

Figure 7 - Velocity Vector and Heading

Using simple mathematics, seen on equations 3 and 4 it is possible to break down the
velocity vector VelXY into two orthogonal vectors, VelX and VelY.

 3

 4

Initially the HMR3300 was going to be connected through the SPI interface but
because of the complexity of the SPI slave mode for the LPC2119 and complex timing

 24

diagrams for the HMR3300 it was decided to use the UART0 interface. With this the
same UART functions for receiving values or writing values could be used for
acquiring or sending information for the HMR3300, saving a lot of designing time.
Also as it was found out that the HMR3300 needs to be setup with a declination
angle correction for the place where it will be used. The declination angle is the
angle between your local magnetic field, also known as the North direction end of
the compass needle, and the True North. Magnetic declination varies from one place
to another and from time to time, Figure 8 provides the declination map for the year
2000. If for example the plane was set for Prague but flew to Warsaw it would have
an error in its heading of 2 degrees. For a list of world capital cities declination
angles see APPENDIX 8. 1 (Timex).

During the last 15 days of the project it was noticed that the Magnetometer was not
working properly. It was sending correct data structure but the values were not
coinciding with what it should be. After doing some test it was found out that the
Magnetometer was not correctly calibrated. Since there was no time to go fix it, the
code was changed to use the heading provided by the GPS. But the code from the
Magnetometer is ready for when it gets fixed.

Figure 8 - Declination Map for 2000

 25

 3.2.2 High-Level

After all the low level is software is run the following sensor data is available from
the ADIS 16350 sensor:

• X acceleration

• Y acceleration

• Z acceleration

• X angular speed

• Y angular speed

• Z angular speed

From the GPS and Magnetometer it is possible to acquire X velocity, Y velocity, Z
velocity and heading.

The high-level program consists of the implementation of a model of the plane where
the Navigational Unit will be installed. The model was developed by Tomáš Haniš
and consists of five files. Each file was translated from MatLab into C code. This
procedure took about two weeks. Every file became a function and all main matrices
were declared as global. The first one was “substituce1.” This file consists mainly of
the A matrix from the model. It was the hardest file to translate. The following
problems appeared during the translation process:

• Use of extremely big integers that were not supported by the “float” type.

For example: 6707078289772873775 / 9511602413006487552

• Use of extremely complex equations that resulted into the following error
message from the gcc “equation is too complex.” For example the equation
for one element A[3][22] had a total of 15700 characters. This is equivalent to
almost 5 full pages using font 11.

• Multiple use of exponential, sine and cosine functions.

• Just this file, A matrix, took 0.089 seconds to be set up using a Core2Duo 2GHz
computer. This is almost 0.1 second which is the total time allowed for one
entire main loop to occur.

The total size of Matrix A was of 57300 characters which is the equivalent of 28 pages
- the matrix required extreme optimization. The first step was to replace the division
between two very big integers by one float value. So that
6707078289772873775/9511602413006487552 became 0.705147040271720. This not

 26

only dealt with the size of the integer which was too big to fit in a “float” type but it
also reduced the matrix by one less division step. After that many simpler division
operations were also substituted by their final value. This was by far the most time
consuming part of the code translation. It took around 6 days just to convert Matrix
A into C code and optimize it.

Since the matrix A is updated only every cycle loop, the sines, cosines and
exponential functions use the same angles. Knowing this it is possible to calculate
the sine, cosine and exponential functions only once at the beginning of the function
and store the values as constants. This procedure was not only done to sine, cosine
and exponential functions but also squared and cubic functions were substituted by a
constant and later used to substitute multiple appearances of the same value in the
matrix. A cascade technique was used where smaller constants were substituted
inside bigger constants and these into bigger constants.

After the optimization was finished the matrix A size was reduced to 11200 character
or the equivalent of 8 pages long. More important than the size, the time to setup
matrix A was reduced from 0.089 seconds to 0.016 seconds which is 5.56 times faster
than the original code. The maximum rounding error found during simulations was
on the order of 3.5*10-5 which is totally acceptable. Figure 9 below provides the
maximum round error found during simulations using around 6000 steps. An
example comparing the results with MatLab file and the translated C code can be
seen in APPENDIX 8. 6 and APPENDIX 8. 7. For this random input the files have
perfect match up to four significant digits.

The second file that became the second function is the nelinvyvojP which is simply
the update of matrix P, the covariance matrix, using the equation 5.

P=P+(A*P+P*A'+Q)/deltaf/10 5

where deltaf is the sampling time. In APPENDIX 8. 4 and APPENDIX 8. 5 there is
the result of the function nelinvyvojP both for MatLab and with its C translated code.
As it can be seen the results are exactly the same.

The third file is the NaplnMSC, also this file is the simple Direct Cosine Matrix. The
next file is the ModelLetA. This function is the actual model of the plane. The

 27

function contains all constants and inputs to the states. In the APPENDIX 8. 8 and
APPENDIX 8. 9 it is possible to compared the output of the ModelLetA function both
in MatLab and its translated code in C. One more time the functions are identical up
to four decimal places.

The last file is the ExKalman2A, this is the main function and calls all the other
functions. The Kalman filter is always implemented in this file. The key trick in this
file is whether the loop that is running has new GPS data or not. More will be
explained later. One of the most difficult parts in translating the code from MatLab

to C was the function that solves the inverse of a Matrix or . This can be seen on
equation 6, seen below, or the Kalman gain of the model of the plane.

L = Pd*Cgps'*inv(Cgps*Pd*Cgps'+Rdgps) 6

The solution was to use the Cholesky process. This decomposes a symmetric
positive-definite matrix into a Lower Triangular matrix and the transpose of this
Lower Triangular Matrix. A positive-definite matrix is defined by having all
Eigenvalues of the matrix to be positive. Symmetric is defined by a square matrix

that is exactly the same as its transpose,

Figure 9 - Maximum rounding error

 28

Equation 6 can be simplified to:

 7

This could be finally be rewritten into

L*A=B 8

Where A is the matrix to be decomposed, L is the unknown variables and B the
solution to the equation. From equation 8 the Cholesky decomposition technique can
be directly applied. It states that to solve A*X = B it is possible to first compute the
Cholesky decomposition A = L*LT, then solve L*Y = B for Y, and finally solve LT*X =
Y for X. Assuming that matrix A is a symmetric positive-definite matrix.

Two different gains could be calculated, one if there was new GPS information, that
would run once every second, and one when there was no GPS information, which
would run 9 times per second. A simple “flag” variable was used to determine
whether or not new data was available in the UART buffer and select the GPS path;
otherwise the non-GPS data would run.

3.2.3 Program Schematics

As explained before the program is mainly divided into a low level section and a
high level section. The follow through of the program as it goes from startup would
be equivalent to Figure 10. The first six steps, from Initialize Libraries to
Setup GPS Protocol, only happens once at startup. Initialize Libraries
contains the main libraries for the program to run, including math.h, stdio.h,
can.h, uart_zen.h among others. Declare Global Variables contains the
main variables from the low level programs as well as all major matrices and
constants from the high level code. All the functions designed specifically for the NU
are declared on the main coding file under Declared Functions. Initialize

 29

Peripherals consists of all LPC2119 initialization. This includes the UART, SPI,
CAN, GPIOs, Levels, Baud Rates, interrupts and timers setups.

The main loop start includes the “GPS Flag = 1?” section. It will keep looping
without doing anything until it receives the ADIS16350 flag=1. Just the ADIS flag=1
will enable the code to treat the data from the sensor and to run the filter option
without the GPS data. This process occurs once every 0.1 seconds. In case the GPS
sends data the UART interrupt will be enabled. This will save the data from the GPS
and treat it. It will also enable the GPS new data flag and as soon as the ADIS16350
flag is set the path for running the filter with GPS data will be enabled, and at the
same time the path without GPS data will be disabled. After both filter processes are
complete flags from the GPS and from the ADIS are set to zero. The program enters
an idle while loop until one of the flags is activated again.

 30

Figure 10 - Program Schematics

4 RESULTS

Brief description of the final results obtained as well as

the results of smaller individual topics that

contributed to the overall project. .

As this project consisted of many different independent parts many results were
obtained. Most trials were successful; others are still on the way to be finalized as the
report is being written. As part of the project was to actually acquire some deeper
knowledge on a more specific topic related to the master course, the knowledge
acquired by the author will also be presented.

4.1 Hardware

4.1.1 EAGLE and PCB

The hardware portion of the project can be said to be the most successfully
accomplished part of the project. In terms of the educational gain the author
acquired a full understanding of the EAGLE software where before he had
absolutely no knowledge of the software about any other technique for building
PCBs. The ability to almost master the software is one of the most important
accomplishments on the author’s viewpoint. Besides building the schematics to a
PCB there is also the complexity of designing the board by itself. Another point was
the necessity of learning how to design new hardware components since the
ADIS16350 is a new sensor and its library was not yet available.

 31

 4.1.2 LPC2119

The ARM7 LPC2119 microcontroller is not an easy microcontroller to learn how to
use. It has complex ways of dealing with different types of interrupts. For example
an interrupt needs to have an address and a priority level over other interrupts. This
address will point to a designated place of your code where the ISR, or the code you
want to run when interrupt is activated, is placed. After executing you need to clean
the interrupt flag and use another address to tell the program that the ISR is over and
that it should return to the place it was prior to the interrupt and continue with
normal execution. Different interfaces such SPI, CAN and UARTs had to be learnt
along how timers work.

The LPC2119 was not the only new electronic component with which the author had
to familiarize himself. ICs like the CAN differential converter and voltage translators
had to be learned.

As a final result the PCB and all the hardware are fully operational.

4.2 Software

4.2.1 Low Level

 4.2.1.1 GPS

With the use of a computer, the GPS was programmed to have a baud rate of
38400BPS. This is also the same baud rate used by UART0 so the same function
prototype could be used for both UARTs. This baud rate is saved on its flash
memory and a battery is used to keep the last track of the satellites in order to have a
fast restart. At every startup the GPS is reconfigured to send only the GPGGA and
the GPTGV strings. This is not necessary because this information is also saved on
the flash memory but it was added as an extra security measurement. With these
two strings and basic mathematics it is possible to acquire all three axis velocities and
a heading value, in case the Magnetometer does not work. A UART interrupt reads
the data from the GPS every second and functions activated by flags treat the data.
The device should be initialized on an open area so it can have a satellite lock in less

 32

time. After the signal is locked it can move to denser areas since it has a sensitivity of
-146dBm for acquisition but increases to -158dBm for tracking.

 4.2.1.2 ADIS16350

The ADIS16350 was successfully programmed to send all three linear accelerations
and all three angular velocities. A timer with interrupt every 0.1 seconds samples the
data at this same frequency. Functions, activated by the timer interrupt, transform
the values from the sensor in actual accelerations and velocities. At every startup a
30 seconds calibration of the ADIS16350 will take place. For these 30 seconds the
device should not have any type of movement. These 30 seconds is also used to give
some extra time for the GPS to acquire a signal.

 4.2.1.3 HMR3300

As mentioned before the magnetometer was not working properly at the moment of
writing this paper. Nonetheless its initialization software and data acquisition was
completed. Every time it is initialized it is configured to send data at its maximum
baud rate, 19200BPS. After data acquisition/transfer the HMR3300 is placed into idle
mode where it sends data only when requested which will be once per second.
When GPS interrupt occurs it will activate a flag that will ask for data from
HMR3300. Figure 11 can be used to follow the options from the acquisition of
heading angle. The HMR3300 will send data through the UART1 which will activate
a receiving interrupt. Another flag will tell the filter to use the HMR3300 heading
data. If the flag is not activated, the sensor is broken or missing, so that the program
will use the GPS heading data. After that the code continues normally into calculate
the orthogonal velocities Vel-X and Vel-Y.

 33

Figure 11 - HMR3300 Block Diagram

 4.2.2 High Level

The high level consisted of translating the simulation model of the plane from
MatLab into a C code program. Small parts of the MatLab code were translated to
smaller functions in C using an IDE program. Like this it was possible to test
multiple small parts of the code independently. After this these small function were
optimized by various methods described previously and again tested individually.
The maximum rounding errors of each step on a 6500 steps simulation can be seen on
Figure 9. After testing they were put together into bigger functions and tested
independently one more time. If the functions were working they were put together
into even bigger functions until only the five original MatLab files could be
represented by their cloned C functions. This procedure was very time consuming
but assured that each part of the code would work independently and also together
with other functions. This was very important because of the use of many global
variables common to different functions.

 34

 4.2.3 Combining Low Level with High Level

To the moment of the writing of this paper the interface between the high level and
low level software was not completely tested on the board. This was because of
incompatibilities between the Dev-C++ and the Linux gcc. The Linux gcc does not
accept some simple commands that were accepted by the Dev-C++ compiler. For
example the setting up of interrupts is completely different on the Linux gcc from the
others IDE windows based compilers. Besides this there is also the problem
described before with the saturation of the RAM memory and all the long process
needed for programming the flash memory of the LPC2119. The combination of Low
and High level functions is thought to be trivial since the interface requires simply
passing ten sensor outputs from the data acquisition step to the ExKalman function.

Using emulators and non-real data the programs runs continuous. The last problem
found on the project is definitely the worst one. The incompatibilities mentioned
above are do not only to the saturation of the RAM when the program is written in
the RAM for testing. Also when the program is written to the flash it needs to store
its variables into the RAM so it can use it through the program. The LPC2119 has
16Kb of RAM. This means that the total size of variables at one single time during
process cannot be bigger than 16Kb. Only from the matrices used by the model of
the airplane the total needed space is greater than 38Kb. This is because of the
multiple temporary matrices needed of different sizes. Also the options of using GPS
signal or no GPS signal also increases the number of matrices. An estimative of the
number of matrices just in the high level part of the program is something in the
order of 15 to 20 matrices of 22x22 floating variables. This is the same as 20*22*22*4
(one float equals 4 bytes) which equals approximately 39Kb. Making a wrought
estimate that the total size of RAM needed to run the program is in the order of
60Kb. Not forgetting that the RAM is not only used for storing the global variables
but also of new incoming and changing variables.

 35

5 DIFFICULTIES

A dedicated chapter to explain the difficulties that

were found during the development of the project that

did not receive detailed attention on previous

chapters.

5.1 Difficulties

 5.1.1 Hardware

The problems in developing the hardware were mainly on learning how to deal with
sensors and a microcontroller that were never used before by the author. The first
problem was time – only three months were available for the project. Besides the
problem of time the project faced the normal problems of a project that is starting
from scratch. Many different types of sensors must be analyzed before a decision can
be made to buy one. Sometimes it was even needed to change the sensor because a
better one was found or because the one selected was not available. Every time the
sensor was changed it was necessary not only to restart writing the code again but
also to change the board schematics.

The complications in learning a new microcontroller family from scratch should not
be underestimated. It took approximately 1 month to fully understand the LPC2119
microprocessor. After that it took even more time to understand the different
protocols from the different communication processes available from the
microcontroller. This includes SPI, CAN, UART, INTERRUPTS and TIMERS
interfaces and protocols.

Studying different voltage levels from different sensors and correctly connecting
them. In the board there are four different voltage levels. From the input that can
vary from 7V to around 30V, to 5V for the GPS, 3.3V for the LPC2119 peripherals and

 36

1.8V for the LPC2119 core. To identify which sensors use TTL or where information
is sent at 3.3V but received at 5V took a lot of time.

Integrating everything described above into one full fully functional board using
Eagle was another challenge. Just to learn how to use Eagle took around one month.
Innumerous different types of boards were developed and redeveloped. Each one of
them had some sort of incompatibility with other components. Small mistakes
ranged from too small clearance space between one line and the ground to a too big
distance between the capacitor and the sensor. Also learning how to make new
devices in EAGLE was quite a challenge.

 5.1.2 Software

From the software section most of the problems were already discussed on the above
sections. They include but are not restricted to:

• Different compilers’ incompatibility

• Lack of one main integrated IDE program that could program both with RAM
or with FLASH using just one Operating System.

• Learning GPS protocols like NMEA and PMTK with incomplete datasheets.

• Studying the sensors and selecting appropriate filters and calibration methods.

5.1.3 Third Party

Most of the problems that occurred were due to the lack of time. Most of this lack of
time happened because of small things that could not be controlled by the author.
After the sensors were selected and they actually arrived, it took an extra 10 days to
actually receive a connector so the sensor could be connected to a evaluation board.
Some very important details about the programming of the GPS were not found on
the datasheets from the manufactures’ website. A complete datasheet was only
provided by the manufacture on the 22nd of April. The PCB was received from
production only on the 24th of April. By the 26th of April the board was completely
assembled and tested. But it left only 27 days until the deadline for this paper.

 37

6 CONCLUSION

A brief description of what was accomplished and

what was not accomplished

From the hardware point of view the project is a success. The board is ready and
fully tested. All the hardware works perfectly and all the sensors except the
magnetometer are properly installed and configured. From the original proposal the
only thing that has changed is that the magnetometer will connect to the main board
through the UART0 and not through the SPI interface. But as mentioned in the
beginning of the project this possibility was reserved as an option. Unfortunately the
magnetometer is not properly calibrated so for the moment the heading is being
provided by the GPS.

The low level software provides ten different measurements. They are:

• Vel-X

• Vel-Y

• Vel-Z

• Acc-X

• Acc-Y

• Acc-Z

• Gyro-X

• Gyro-Y

• Gyro-Z

• Heading.

This part is also ready and tested. The high level is ready and has been tested with
pseudo data. To the present moment both parts of the program have been blended
together but not yet fully tested. With the completion of the last part the values
acquired from the low level will be applied to the model of the plane and from the
model not only the angular position will be available, as a final result. The following
measurements will be available to the UAV if needed:

 38

• Vxc - velocity along X axis

• Vyc - velocity along Y axis

• Vzc - velocity along Z axis

• Ox - angular velocity along X axis

• Oy - angular velocity along Y axis

• Oz - angular velocity along Z axis

• theta - angle along Z axis

• gama - angle along X axis

• psi - angle along Y axis

• xg - distance to target

• h – attitude

• zg - side distance from course line

• Ogx - Ox gyro drift

• Ogy - Oy gyro drift

• Ogz - Oz gyro drift

• Ax - X accelerometer drift

• Ay - Y accelerometer drift

• Az - Z accelerometer drift

• Vax - integration of X accelerometer drift = Vx drift

• Vay - integration of Y accelerometer drift = Vy drift

• Vaz - integration of Z accelerometer drift = Vz drift

• uu - wind shaping filter state

Through emulation programs and fake data strings it was possible to test that the
program works. Unfortunately the project the way it is now cannot be feasible. Do
to the memory limitation and/or complexity of the plane model, the full program
cannot be implemented. On the next session there are possible future correction and
fixes to make the project feasible.

 39

5 FUTURE CHALLENGES

Ideas for possible future implementations with the
purpose of improving of the project.

An idea for a good Bachelors graduation thesis would be to study the results of the
Navigational Unit and propose better error matrixes.

Blend the Navigational Unit to the Observation Camera in the UAV and program the
interaction between them. As the plane moves the camera should correct its position.

Acquire a better GPS that uses pseudorange code and program the Navigational Unit
with it. The pseudorange code has the capability of predicting where the future lock
position will be, this would increase accuracy and also allow faster speeds for the
plane.

Create a flag that tells the Navigational Unit that the GPS data is corrupted. This
would be necessary because the GPS keeps sending data even if it has no satellites
locked. It will send a string with zero values.

The easiest and cheapest possibility to fix the project would be to use a much simpler
model of the plane. One possibility would be to use only the basic equations of
movement as the model. The second approach would be to substitute.

Possible substitutes for the LPC2119:

LPC2106 – This processor has 60Kb of built in RAM but it does not has a CAN
 interface. Using a multiplex it would be possible to use one of the
 UARTs as a communication port. It has only one SPI so the
 Magnetometer needs to be on a UART port. It also has the same
 maximum frequency of 60 MHz.

LPC2210FBD144/01 – Mostly differs (focusing on the projects goals) from the LPC2106
 because it has 2 SPI. Also has 64Kb of RAM.

LPC2220FBD144 – Only differs from the LPC2210FBD144/01 because it has a slightly
 higher clock frequency of up to 75MHz.

LPC2468FBD208 – One of the most powerful ARM7 type from NXP. Goes to 72MHz, has
 up to 70Kb for RAM, total of 96Kb of RAM. Also has 2xCAN, 1xI2S,
 4xUART, 3xI2C, 3xSPI. It also has an SD/MMC interface which could be
 used for storing the data during flight for later analyses.

 40

Another alternative is to jump to an ARM9 type processor. Most of the ARM9
processors from NXP have 60Kb or more of RAM, besides they all run at superior
speed, which would improve accuracy and sampling rate.

A good option would be the TMS320F28235 or TMS320F28235 from Texas Instruments.
It has 68Kb of RAM, runs at 150MHz. It has 1 SPI, 2 CAN, 3 UARTS and 512Kb of flash.
It also has the option of 256Kb of flash.

 41

7 BIBLIOGRAPHY

ADIS16350, A. D. ADIS16350 - Tri axis Inertial Sensor. Analog Devices.

Bijker, J. (2006). A Low-Cost Integrated GPS/INS Navigation System for the Land Vehicle. A
Low-Cost Integrated GPS/INS Navigation System for the Land Vehicle.

CADSoft. (s.d.). CADSoft Online. Fonte: http://www.cadsoft.de/.

Cai, J. W. A Low-Cost Integrated GPS/INS Navigation System for the Land Vehicle. Beijing,
China: School of Electronics and Information Engineering.

Chang-sun Yoo, l.-k. A. LOW COST GPS/INS SENSOR FUSION SYSTEM FOR UAV
NAVIGATION. Daejon, Korea: Korea Aerospace Research Institute.

Europe, N. (2006). MTK NMEA Packet User Manual.

Europe, N. NL-504ETTL User Manual.

Gade, K. Introduction To Inertial Navigation. Forsvarets Forksningsinstitutt.

Gerais, F. U. (s.d.). http://www.4shared.com/file/40698941/d7f7eb11/Apostila_-
_Curso_Linguagem_C_-_UFMG.html. Fonte: File:Apostila_-_Curso_Linguagem_C_-
_UFMG.

HMR3300, H. HMR3300 Tri axis Magnetometer.

JÚNIOR, M. F. (2006). IMPLEMENTAÇÃO DE CENTRAL INERCIAL. Brasilia:
Universidade de Brasilia.

Mayhew, D. M. Multi-rate Sensor Fusion for GPS Navigation. Virginia: Virginia Polytechnic
Institute.

Mohinder S. Grewal, L. R. (January 2007). Global Positioning Systems, Inertial Navigation
and Integration. Wiley.

Moore, J. B. Direct Kalman Filtering Approach for GPS INS Integration. Canberra,
Australia: The Australian National University.

NXP, P. LPC21xx User Manual.

Scarlett, J. Enhancing the Performance of Pedometers Using Single Accelerometer. Norwood,
MA: Analog Devices.

Smith, A. S. Microelectrônica. Makron Books.

 42

Suh, Y. S. Attitude Estimation Using Low Cost Accelerometer and Gyroscope. Ulsan, Korea:
Scholl of Electrical Enginnering.

Timex. (s.d.). http://www.timex.ca/en/html/watch_inst_comp_DAI.html. Fonte:
http://www.timex.ca/en.

 43

8 APPENDICES

APPENDIX 8. 1 - Declination Angles
(Timex)

DECLINATION

ANGLES
Location Capital Declination

Afghanistan Kabul 2-E
Albania Tirana 3-E
Algeria Algiers 1-E
Andorra Andorra la Vella 1-W
Angola Luanda 6-W
Antigua and Barbuda Saint John's 14-W
Argentina Buenos Aires 6-W
Armenia Yerevan 5-E
Australia Canberra 12-E
Austria Vienna 2-E
Azerbaijan Baku 5-E
Bahamas, The Nassau 7-W
Bahrain Manama 2-E
Bangladesh Dhaka 0
Barbados Bridgetown 15-W
Belarus Minsk 6-E
Belgium Brussels 1-W
Belize Belmopan 1-E
Benin Porto-Novo 4-W
Bhutan Thimphu 0-E
Bolivia La Paz (administrative) 4-W
Bolivia Sucre (legislative/judiciary) 6-W
Bosnia and Herzegovina Sarajevo 2-E
Botswana Gaborone 15-W
Brazil Brasília 19-W
Brunei Bandar Seri Begawan 0
Bulgaria Sofia 3-E
Burkina Faso Ouagadougou 4-W
Burma Rangoon 0.5-E
Burundi Bujumbura 0
Cambodia Phnom Penh 1-E
Cameroon Yaoundé 3-W
Canada Ottawa 14-W
Cape Verde Praia 12-W
Central African Republic Bangui 1-E
Chad N'Djamena 1-E
Chile Santiago 5-E
China Beijing 6-W
Colombia Bogotá 4-W
Comoros Moroni 6-W
Congo (Brazzaville) Brazzaville 1-W
Congo (Kinshasa) Kinshasa 3-W
Costa Rica San José 0
Côte d'Ivoire Yamoussoukro 7-W
Croatia Zagreb 2-E

 44

Cuba Havana 3-W
Cyprus Nicosia 3-E
Czech Republic Prague 2-E
Denmark Copenhagen 1-E
Djibouti Djibouti 1-E
Dominica Roseau 14-W
Dominican Republic Santo Domingo 10-W
Ecuador Quito 1-E
Egypt Cairo 3-E
El Salvador San Salvador 3-E
Equatorial Guinea Malabo 3-W
Eritrea Asmara 2-E
Estonia Tallinn 6-E
Ethiopia Addis Ababa 1-E
Fiji Suva 13-E
Finland Helsinki 6-E
France Paris 1-W
Gabon Libreville 4-W
Gambia, The Banjul 9-W
Georgia T'bilisi 5-E
Germany Berlin 1-E
Ghana Accra 5-W
Greece Athens 3-E
Grenada Saint George's 14-W
Guatemala Guatemala 3-E
Guinea Conakry 9-W
Guinea-Bissau Bissau 9-W
Guyana Georgetown 15-W
Haiti Port-au-Prince 8-W
Holy See Vatican City 1-E
Honduras Tegucigalpa 1-E
Hong Kong Hong Kong 2-W
Hungary Budapest 4-E
Iceland Reykjavík 19-W
India New Delhi 1-E
Indonesia Jakarta 1-E
Iran Tehran 3-E
Iraq Baghdad 3.5-E
Ireland Dublin 6-W
Israel Jerusalem 3-E
Italy Rome 1-E
Jamaica Kingston 6-W
Japan Tokyo 7-W
Jordan Amman 3-E
Kazakhstan Astana 9-E
Kenya Nairobi 1-E
Kiribati Tarawa 10-E
Korea, North P'yongyang 8-W
Korea, South Seoul 7-W
Kuwait Kuwait 2-E
Kyrgyzstan Bishkek 5-E
Laos Vientiane 1-E
Latvia Riga 5-E
Lebanon Beirut 3-E
Lesotho Maseru 21-W
Liberia Monrovia 8-W
Libya Tripoli 1-E
Liechtenstein Vaduz 0-E
Lithuania Vilnius 5-E
Luxembourg Luxembourg 0

 45

Macedonia, The Former Yugoslav Rep. of Skopje 3-E
Madagascar Antananarivo 15-W
Malawi Lilongwe 5-W
Malaysia Kuala Lumpur 1-E
Maldives Male 3-W
Mali Bamako 6-W
Malta Valletta 1-E
Marshall Islands Majuro 8-E
Mauritania Nouakchott 8-W
Mauritius Port Louis 19-W
Mexico Mexico City 6-E
Micronesia, Federated States of Palikir 6-E
Moldova Chisinau 5-E
Monaco Monaco 0
Mongolia Ulaanbaatar 3-W
Montenegro Podgorica 3-E
Morocco Rabat 3-W
Mozambique Maputo 18-W
Namibia Windhoek 14-W
Nauru Yaren District (no capital city) 9-E
Nepal Kathmandu 0
Netherlands Amsterdam 1-W
New Zealand Wellington 22-E
Nicaragua Managua 1-E
Niger Niamey 3-W
Nigeria Abuja 2-W
Norway Oslo 0
Oman Muscat 1-E
Pakistan Islamabad 2-E
Palau Koror 1-E
Panama Panama 2-W
Papua New Guinea Port Moresby 6-E
Paraguay Asunción 11-W
Peru Lima 1-E
Philippines Manila 1-W
Poland Warsaw 4-E
Portugal Lisbon 5-W
Qatar Doha 1-E
Romania Bucharest 4-E
Russia Moscow 9-E
Rwanda Kigali 0
Saint Kitts and Nevis Basseterre 14-W
Saint Lucia Castries 14-W
Saint Vincent and the Grenadines Kingstown 14-W
Samoa Apia 11-E
San Marino San Marino 1-E
Sao Tome and Principe São Tomé 5-W
Saudi Arabia Riyadh 2-E
Senegal Dakar 0
Serbia Belgrade 3-E
Seychelles Victoria 5-W
Sierra Leone Freetown 9-W
Singapore Singapore 0
Slovakia Bratislava 2-E
Slovenia Ljubljana 2-E
Solomon Islands Honiara 10-E
Somalia Mogadishu 1-E
South Africa Bloemfontein (judiciary) 21-W
South Africa Cape Town (legislative) 23-W
South Africa Pretoria (administrative) 17-W

 46

Spain Madrid 3-W
Sri Lanka Colombo 3-W
Sudan Khartoum 2-E
Suriname Paramaribo 17-W
Swaziland Lobamba (legislative) 19-W
Swaziland Mbabane (administrative) 18-W
Sweden Stockholm 3-E
Switzerland Bern 0
Syria Damascus 3-E
Taiwan T'ai-pei 3-W
Tajikistan Dushanbe 4-E
Tanzania Dar es Salaam 2-W
Tanzania Dodoma (legislative) 2-W
Thailand Bangkok 0
Togo Lomé 5-W
Tonga Nuku'alofa 13-E
Trinidad and Tobago Port-of-Spain 14-W
Tunisia Tunis 1-E
Turkey Ankara 4-E
Turkmenistan Ashgabat 4-E
Tuvalu Funafuti 11-E
Uganda Kampala 0-E
Ukraine Kiev 6-E
United Arab Emirates Abu Dhabi 1-E
United Kingdom London 3-W
United States Washington, DC 10-W
Uruguay Montevideo 8-W
Uzbekistan Tashkent 5-E
Vanuatu Port-Vila 12-E
Venezuela Caracas 10-W
Vietnam Hanoi 1-E
Yemen Sanaa 1-E
Zambia Lusaka 6-W
Zimbabwe Harare 8-W

 47

APPENDIX 8. 2 - NMEA Protocol

(Europe, NL-504ETTL User Manual)

 48

 49

 50

APPENDIX 8. 3 - MTK Protocol

(Europe, MTK NMEA Packet User Manual, 2006)

 51

APPENDIX 8. 4 - nelinvyvojP Function example MatLab

Row\Colum 1 2 3 4 5 6 7 8 9 10 11

1 2.687 2.7801 2.5325 2.5091 2.1887 2.7315 3.1143 2.2112 2.592 1.7803 2.8613

2 2.5447 2.9328 1.9591 2.2706 2.6964 3.0327 2.3453 2.7237 2.3265 1.8324 2.6623

3 2.0439 2.9463 2.8092 2.249 2.8651 3.1588 2.6651 2.7459 1.9049 2.6345 2.8229

4 2.2429 2.6267 2.8432 2.2459 1.8022 2.301 3.0797 2.3494 2.1382 2.2356 2.856

5 2.0808 3.0542 2.5125 1.6148 1.5426 2.7793 3.0941 2.4806 2.4845 1.8127 2.4147

6 2.1936 2.7952 2.526 2.4736 2.1067 2.1168 2.6079 2.0299 1.859 1.8789 2.0408

7 2.0156 2.9549 2.7181 1.9719 2.0269 2.9585 3.3331 2.6944 2.4754 1.7074 2.0905

8 1.6992 2.7774 2.5319 1.9858 1.6708 2.9154 2.667 2.4684 2.1018 1.814 2.4313

9 1.8908 2.2009 2.2235 2.175 2.594 2.1697 2.4892 2.2324 1.8038 1.5317 2.2926

10 1.525 2.65 1.7383 2.0301 1.9829 2.0667 1.9067 2.3039 1.7619 1.4956 2.2731

11 1.5729 2.355 2.2815 2.1286 1.8727 2.1391 2.6916 2.8825 2.46 1.578 2.2322

12 2.1112 2.4743 2.0656 1.9271 1.7627 2.6497 2.9147 2.8502 2.2914 1.9517 1.9913

13 1.9851 3.2324 2.0926 2.64 2.5931 3.03 3.3757 2.9482 2.1088 2.2463 3.0254

14 2.2521 2.8194 2.7212 2.2517 2.1283 2.9249 2.6287 2.5726 2.0804 1.7185 2.9379

15 1.8146 2.7347 2.0844 2.0828 1.7272 2.9257 2.9182 2.663 1.7822 1.7293 2.7846

16 2.7349 2.8525 2.5193 1.9453 2.5233 2.4878 2.9138 2.9185 2.2353 1.8369 2.3264

17 2.2316 2.4946 1.8194 1.3695 2.0963 2.2688 2.008 2.4984 2.2966 1.7458 2.6013

18 1.8518 2.3857 1.8945 2.2908 2.2959 2.3375 2.5759 2.0856 2.1343 1.7097 2.6886

19 1.8757 2.3764 2.0521 2.242 2.3291 2.7023 2.1908 2.5195 1.8853 2.2539 1.9005

20 1.7248 2.9851 2.0346 1.7124 2.4665 2.6471 2.8657 2.6885 2.3534 1.7814 2.0669

21 2.5314 2.8761 2.0319 1.5438 2.4267 1.9743 2.6589 2.9673 2.407 2.1659 2.2666

22 2.585 3.2809 2.3858 2.0483 3.0176 3.2878 3.0752 2.9923 2.4508 2.1694 2.5766

Row\Colum 12 13 14 15 16 17 18 19 20 21 22

1 2.4074 2.9298 2.8708 1.9804 2.7579 2.0235 2.578 2.7204 2.6975 1.6981 2.4937

2 2.6572 2.4399 2.3258 2.1538 2.4144 2.5309 2.106 2.2656 2.7489 1.5763 2.3184

 52

3 2.6224 2.3685 2.5329 2.8135 2.6624 3.0303 2.2439 2.6654 3.1558 2.6055 2.6108

4 2.6039 2.3278 2.4523 2.3943 2.2556 2.7293 1.9977 2.935 2.5301 2.0295 1.9982

5 2.0416 2.7283 2.5413 1.7869 1.8255 1.7417 2.0687 2.4558 2.7096 1.4996 1.9143

6 2.2471 2.6046 2.5665 2.1508 2.6143 2.4364 2.8399 2.6651 3.066 1.7277 2.499

7 2.7132 2.7418 2.5941 2.6223 2.8552 2.6635 2.2924 2.2717 2.4917 2.236 2.2196

8 2.6898 2.546 2.3022 1.9691 2.1902 2.2211 2.6391 2.5441 2.7097 1.893 2.4011

9 1.9008 2.4115 2.0675 2.4828 2.3113 2.4421 2.3825 2.0655 2.6445 1.7087 1.9993

10 2.351 2.6082 1.8173 1.9128 1.9509 2.4813 1.4783 1.8497 2.1059 1.8788 2.1962

11 1.9256 2.5583 2.1457 2.3099 2.2085 2.7371 2.1383 2.63 2.4579 2.4346 2.6481

12 1.8925 2.4691 1.7119 1.7435 2.3539 2.2626 2.4546 2.0179 2.8348 1.7698 2.0898

13 2.6823 3.1601 2.2276 2.6648 2.5739 2.9023 2.5218 3.2404 2.7924 1.923 2.5045

14 2.6636 2.5823 2.5958 2.5246 2.2623 2.5949 2.4865 3.0088 2.3325 1.7411 1.9652

15 1.9411 1.9892 2.5992 2.7039 2.2545 2.2556 2.4424 2.4042 2.2023 1.5648 2.6888

16 2.1323 2.6424 2.1282 2.3332 2.3238 2.0635 2.2402 2.4294 2.2307 1.8817 2.6138

17 1.7507 2.7442 1.9053 1.4084 1.8166 2.6951 2.1961 1.9864 2.4687 1.5214 2.6497

18 2.4078 2.3792 2.7149 1.7684 1.9375 2.7135 1.7519 1.9717 2.7466 1.7957 1.969

19 1.9336 2.7452 2.4782 1.6644 2.0021 2.3146 2.3132 2.2206 2.1124 1.8894 1.9482

20 1.7744 2.1183 2.0206 2.0367 2.559 1.7231 2.0953 2.2234 2.7752 1.4643 2.6115

21 1.634 2.1792 1.8474 2.5108 2.236 2.2639 2.2303 1.8261 2.2824 1.692 2.1428

22 2.3208 2.7467 2.4864 2.0516 2.2559 2.5249 2.4685 2.4189 2.3689 1.6484 2.9633

APPENDIX 8. 5 - nelinvyvojP Function example in C (10-4)

 53

APPENDIX 8. 6 - Substituce1 Function example MatLab

Row\Colum 1 2 3 4 5 6 7 8 9 10 11

1 -0.1114 -0.3975 0 0 -10 10 -2.78 0 0 0 0.0008

2 0.4436 -5.1817 1 10 0 -100 -5.08 0 2.34 0 0.0004

3 -0.0601 -1 -0.6011 -10 100 0 7.916 0 1.5 0 0.0006

4 -0.4051 0.5941 -1.3308 -21.2605 -0.3897 0 0 0 0 0 0.0035

5 -0.0252 -0.0937 -0.2883 -0.577 -1.2278 0.4 0 0 0 0 0.0003

6 1.8665 2.8879 0 0 -1.1053 -6.8407 0 0 0 0 -0.0206

7 0 0 0 0 0.8415 0.5403 0 0 0 0 0

8 0 0 0 0 1.9047 -2.9665 0 0 0 0 0

9 0 0 0 1 1.8265 -2.8446 0 0 0 0 0

10 0.1533 0.988 0.0187 0 0 0 52.27 -14 -9.7 0 0

11 -0.9589 0.1533 -0.2387 0 0 0 25.48 0 -3.9 0 0

12 -0.2387 0.0187 0.9709 0 0 0 -81.4 -25.4 9.52 0 0

13 0 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0 0 0 0 0

19 0 0 0 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0 0 0 0 0

22 0 0 0 0 0 0 0 0 0 0 0

Row\Colum 12 13 14 15 16 17 18 19 20 21 22

1 0 0 0 0 0 0 0 0 0 0 -0.2697

2 0 0 0 0 0 0 0 0 0 0 -3.4818

3 0 0 0 0 0 0 0 0 0 0 -1.109

4 0 0 0 0 0 0 0 0 0 0 -0.1787

5 0 0 0 0 0 0 0 0 0 0 -0.2395

6 0 0 0 0 0 0 0 0 0 0 1.4872

7 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0.7051

11 0 0 0 0 0 0 0 0 0 0 0.3325

12 0 0 0 0 0 0 0 0 0 0 0.7057

13 0 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0 0 0 0 0

19 0 0 0 0 1 0 0 0 0 0 0

20 0 0 0 0 0 1 0 0 0 0 0

 54

21 0 0 0 0 0 0 1 0 0 0 0

22 0 0 0 0 0 0 0 0 0 0 -0.1515

APPENDIX 8. 7 - Substituce1 Function example in C (10-4)

APPENDIX 8. 8 - ModelLetA Function example MatLab

Row\Colum 1 2 3 4 5 6 7 8 9 10 11

1 -0.818 4.5242 0.3865 -25.061 0.0474 -14.44 -0.2 -0.3 -0 0.6 0.129

11 12 13 14 15 16 17 18 19 20 21

0.129 0.0252 0.0469 0.0469 0.0469 0.0312 0.03 0.03 0 0 0.0002

 55

APPENDIX 8. 9 - ModelLetA Function example in C (10-4)

