
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Control Engineering

Model-based predictive control for industrial
melting furnace

Filip Vodňanský

Supervisor: ing. Petr Havel, Ph.D.
Supervisor–specialist: doc. ing. Zdeněk Hurák, Ph.D.
Field of study: Cybernetics and robotics
May 2023



ii



MASTER‘S THESIS ASSIGNMENT 

I. Personal and study details 

475397 Personal ID number:  Vodňanský  Filip Student's name: 

Faculty of Electrical Engineering Faculty / Institute: 

Department / Institute:    Department of Control Engineering 

Cybernetics and Robotics Study program: 

Cybernetics and Robotics Branch of study: 

II. Master’s thesis details 

Master’s thesis title in English: 

Model-based predictive control for industrial melting furnace  

Master’s thesis title in Czech: 

Prediktivní řízení založené na modelu pro průmyslovou tavicí pec  

Guidelines: 

Goal of the thesis is to design a model-based predictive controller (MPC) for a melting furnace with the control objective 
to continuously prepare output melt at desired mass flow and temperature for further processing. At the same time cost 
for energy should be minimized, utilizing time-dependent electricity price during a day (or a longer period), possibility of 
natural gas vs. electricity energy source dynamic substitution, and thermal accumulation capabilities of the process. The 
controller should be implemented in MATLAB/Simulink programming environment on a provided furnace dynamic model. 
Instructions: 
1. Get familiar with a provided furnace dynamic model and melting fundamentals for industrial furnaces. 
2. Formulate an MPC optimization task specific for this type of industrial process, i.e., transform given technological 
requirements to specific optimization objective and constraints. 
3. Choose an appropriate way of implementation in MATLAB/Simulink so that various scenarios of operation and control 
can be simulated. 
4. Perform simulations of MPC control and evaluate results for a given set of scenarios (e.g., different energy prices cases, 
various requirements on temperature control quality, different constraints on refractory thermal stress etc.) 

Bibliography / sources: 

[1] Borrelli, F., A. Bemporad, a M. Morari. Predictive Control for Linear and Hybrid Systems. Cambridge University Press, 
2017. 
[2] Raković, S. V., a W. S. Levine, ed. Handbook of Model Predictive Control. Birkhäuser, 2019. 
[3] Rawlings, J. B., D. Q. Mayne, a M. M. Diehl. Model Predictive Control: Theory, Computation, and Design. 2. vyd. Nob 
Hill, 2017 

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 1 from 2 CVUT-CZ-ZDP-2015.1 



Name and workplace of master’s thesis supervisor: 

Ing. Petr Havel, Ph.D.    Optimwise s.r.o.  

Name and workplace of second master’s thesis supervisor or consultant: 

doc. Ing. Zdeněk Hurák, Ph.D.    Department of Control Engineering  FEE 

Deadline for master's thesis submission:   26.05.2023 Date of master’s thesis assignment:   19.01.2023 

Assignment valid until:   
by the end of summer semester 2023/2024 

___________________________ ___________________________ ___________________________ 
prof. Mgr. Petr Páta, Ph.D. 

Dean’s signature 
prof. Ing. Michael Šebek, DrSc. 

Head of department’s signature 
Ing. Petr Havel, Ph.D. 

Supervisor’s signature 

III. Assignment receipt 
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 2 from 2 CVUT-CZ-ZDP-2015.1 



Acknowledgements

Děkuji své rodině a přátelům za jejich
podporu, bez které bych náročné studium
nezvládl. Dále také děkuji Petru Havlovi
a Jiřímu Řehořovi za veškerou pomoc s
psaním této práce.

I thank my family and friends for
their support without which I would
not be able to cope with the demanding
studies. I would also like to thank Petr
Havel and Jiří Řehoř for their help with
the writing of this work.

Declaration

Prohlašuji, že jsem předloženou práci
vypracoval samostatně, a že jsem uvedl
veškerou použitou literaturu.

I declare that I wrote this work in-
dependently and that I have listed all the
literature used.

In Prague, 25. May 2023

v



Abstract

In this work we design and implement
in MATLAB a controller for an indus-
trial melting furnace that is capable of
satisfying different constraints on inputs
(heating electrodes and natural gas burn-
ers), output (temperature), energy con-
sumption, average electricity power and
minimize the financial cost. The chosen
controller is a model predictive controller
and it is implemented in MATLAB. Two
different formulations of this controller
are implemented (simultaneous and se-
quential), compared and some problems
encountered during implementation such
as large computational complexity are
adressed. Several different test scenarios
are then simulated to test the resulting
controller and show its capabilities.

Keywords: model predictive control,
MATLAB, industrial melting furnace,
mathematical optimization

Supervisor: ing. Petr Havel, Ph.D.

Abstrakt

V této práci navrhujeme a implementu-
jeme regulátor pro průmyslovou tavicí pec,
který by zvládl splnit různá omezení na
vstupy (elektrody and plynové hořáky),
výstup (teplotu), spotřebovanou energii,
průměrný elektrický výkon a minimalizo-
val náklady na energie. Vybraný typ řízení
je prediktivní regulátor založený na mo-
delu a tento regulátor je implementovaný
v MATLABu. Implementujeme a porov-
náváme dvě různé formulace tohoto regu-
látoru (simultánní a sekvenční) a dále se
věnujeme různým problémům, jako napří-
klad velké výpočetní složitosti, na které
jsme narazili při implementaci. Nakonec
ukazujeme chování výsledného regulátoru
na několika testovacích scénářích.

Klíčová slova: prediktivní řízení,
MATLAB, průmyslová tavicí pec,
matematická optimalizace

Překlad názvu: Prediktivní řízení
založené na modelu pro průmyslovou
tavicí pec
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Chapter 1

Introduction

Model predictive control (MPC) originated around 1970s in process control,
which is also our focus in this work. The reason was that these controllers can
be very computationally intensive and in process control there are many slow
processes, which give the controller plenty of time for solution computation.
Today with faster computers and advances in solvers and other techniques for
solving the optimization problem such as explicit MPC, the control strategy
can also be applied to much faster systems such as drones and automotive. In
survey conducted in 2018 it was shown that MPC is regarded as the second
highest impact control strategy in the industry (PID was first) [1].

In this work we focus on controlling the temperature in an industrial melting
furnace and the goal is to satisfy many different constraints, while keeping
the temperature around the reference and minimizing the financial cost. The
constraints used are limits on inputs (heating electrodes and natural gas
burners), output (temperature) and weighted sum of electric and natural gas
inputs over fixed time windows.

Various different controllers are used for industrial melting furnaces tem-
perature control such as MPC [2] but also fuzzy control [3] or adaptive
control, namely neuro-PID [4]. One reason while our approach may be more
suitable to this problem than other non predictive controllers is that other
controllers cannot handle that well all the constraints while minimizing the
financial cost of inputs when the price is also time varying and known ahead
of time.
Processes in industrial melting furnaces are also typically very slow with time
constants in hours and sometimes with large dead time. Because of this,
predictive control and specifically model predictive control is ideal for these
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1. Introduction .....................................
situations.

Nowadays model predictive control is growing in popularity and is being
used for many different purposes such as controlling electrical power grids [5],
controlling drones [6] and even for dynamic hedging of financial options [7].

1.1 Introduction to used math

In this work we will often refer to some math concepts which a reader unac-
quainted with MPC or control theory in general may not recognize. Without
any mathematical rigor we will attempt to briefly introduce them.

First let us define the identity matrix I ∈ Rn×n. This is a diagonal ma-
trix with ones on the diagonal. We will often write I or other matrices with
a subscript such as IN which means the matrix is I ∈ RN×N , for example

I2 =
(

1 0
0 1

)
. (1.1)

Next we need to define a math operation called a Kronecker product denoted
by ⊗. It operates on two matrices and produces a block matrix as an output.
Let A ∈ Rm×n and B ∈ Rp×q. Then

A ⊗ B =

a11B · · · a1nB
... . . . ...

am1B · · · amnB

 (1.2)

Mathematical models used in control theory are in the form of ordinary
differential equations

ẋ(t) = f(x(t), u(t))
y(t) = g(x(t), u(t)),

(1.3)

where x is system state, u is the system input, y are the measurements we
get, f describes the evolutions of the state in time and g the dependence
of y on the state and input. If f is nonlinear then we often linearize the
system around some chosen operating point xp. The model of this linear
time invariant (LTI) system is then

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t),

(1.4)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, n is the number of states,
m the number of inputs, p the number of outputs and D is the feedforward

2



...............................1.1. Introduction to used math

matrix.
This model can then be discretized to get model in discrete times k ∈ N

xk+1 = Axk + Buk

yk = Cxk + Duk.
(1.5)

The process of linearization, discretization and further details are beyond the
scope of this work and we refer the reader to some literature on introductory
control theory.
In the text we will often refer to in general matrix weights as scalars, for
example for the matrix weight Q we may say Q = 10. The matrix weights
in MPC are usually diagonal and by saying this we just mean that all the
diagonal elements are the same, equal to 10. This is for convenience and
clarity so that we do not have to repeat and write out the whole matrix.

3
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Chapter 2

Problem description

The controlled system is an industrial melting furnace with several heating
electrodes and natural gas burners. Raw material enters the furnace where it
is heated to some temperature, melted and the melt then exits. Temperature
is measured in some places inside the furnace and in the tube through which
the melt exits the furnace. This exit temperature is the most important as
the following process requires the melt to have some desired viscosity and
other properties which may differ at different temperatures. The path which
is taken through the furnace is also not so simple. To heat the material evenly
it is mixed and loops around the furnace.

Control requirements..1. Temperature at the exit of the furnace must be controlled to reference
with adjustable margins...2. Average power to heating electrodes over fixed 15 minutes windows must
be lower than some upper limit. This is due to the fact that the process
consumes potentially huge amounts of energy, so we must somehow
constraint it to not disrupt the electrical network. This limit is also part
of a contract with electricity supplier and violation leads to financial
penalty...3. Energy consumed by gas burners over 24 hours from 6:00 am to 6:00

5



2. Problem description..................................
the next day must be lower than some upper limit. We get a certain
amount of gas each day by contract and using more than that will result
in penalty. The rest of the process also consumes gas and if the furnaces
exceeds its limit there could be shortage of gas elsewhere leading either
to increased costs or worse product...4. The burners power cannot exceed upper limit. This is just a physical
limitation on how much power they can produce...5. Price of electricity and gas is varying and the financial cost of our control
must be minimized while satisfying all the other requirements.

These requirements further support our controller choice but also indicate
that for our controller to be truly effective we should use predictions up to 24
hours from now. This complicates the design and causes some computational
and numerical problems as we will see and which we will address in the
implementation chapter.

2.1 System model

An accurate nonlinear model describing the furnace is very complicated as
it is modeled using computational fluid dynamics giving us a set of partial
differential equations [8]. This full model is however not very practical as
we would need to obtain possibly thousands of parameters and even then
these equations would be far too complicated for any control strategy. Model
predictive control does numerical optimization so the required model must
be relatively simple depending on the rate at which the controller runs.

The model used was part of the assignment and has been identified us-
ing step tests.
All the heating electrodes are modeled as one input Uel and all the gas burners
as second input Ugas. This is somehow justified by the mixing of the material
inside the furnace, in the end all these burners have similar effect whether
they are at the beginning or the exit of the furnace. The temperatures inside
are then ignored and only the output one is controlled, which is the only
system model output Y .
The transfer of energy from burners to output is then modeled by two first
order delayed transfer functions (2.1), one for each input.

Hel(s) = Y (s)
Uel(s) = e−τd1 s K1

τ1s + 1

Hgas(s) = Y (s)
Ugas(s) = e−τd2 s K2

τ2s + 1

(2.1)

6



.................................... 2.1. System model

The delays (dead times) τd1 and τd2 account for the fact that it takes some
time for the material to travel to the exit of the furnace. The gains K1 and
K2 are how much in °C the output temperature rises for 1 kW rise in burner
power. Finally τ1 and τ2 are time constants which are times for the step
response to reach 63% of the steady state value.
The electricity gain is larger than the gas gain K1 > K2, the electricity time
constant is shorter τ1 < τ2 and the electricity delay is also shorter τd1 < τd2 .
The differences in gains is because gas has lower efficiency around 70% while
electricity has close to 100%. This is important to remember to understand
the graphs presented in this work.
For system with parameters from table 2.1 the step responses can be seen in
figure 2.1.

K1 K2 τ1 [min] τ2 [min] τd1 [min] τd2 [min]
0.2 0.14 60 90 120 180

Table 2.1: System parameters

Figure 2.1: Step response from heating electrodes and gas burners to furnace
temperature

Converting (2.1) to state space and ignoring time delays for now we get a
continuous LTI model (1.4) which we will discretize using zero order hold and
sampling rate Ts = 300 s to get a discrete LTI (1.5) where n = 2, m = 2 and
p = 1. The output is measured in °C and the inputs are in kW. This system
is a multiple input, one output (MISO) system with state space matrices

A =
(

0.92 0
0 0.946

)
, B =

(
2.2488 0

0 1.1399

)
C =

(
0.0071 0.0066

)
, D =

(
0 0

)
.

(2.2)

The state space system we got is linearized around an operating point. This
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2. Problem description..................................
means that the output temperature and also the inputs are differences from
their values in the operating point so they can be both positive and negative.
Temperature of −10 °C is really the operating point temperature minus 10
and input of −100 kW is the operating point input minus 100.

Time delays can be added to the model by augmenting (1.5) and adding more
virtual states. Assume that τd1

Ts
= nd1 and τd2

Ts
= nd2 are integers. The delays

can then be modeled by adding nd1 + nd2 virtual states

xk+1 =



0 0 0 0 0
Ind1

0 0 0 0
0 0 0 0 0
0 0 Ind2

0 0
0
0

1
0

0
0

0
1 A


xk +



b1,1
0

b2,2
0
0
0


uk. (2.3)

The resulting model has n + nd1 + nd2 states, which is a significant increase
but the matrix A is very sparse which can be exploited as will be shown
with the different MPC formulations in the next chapter. Depending on
the length of delay, there can be significant differences between the different
formulations.

8



Chapter 3

MPC description

General model predictive control is solving the optimal control problem (3.1)
over a finite horizon N ∈ N where x =

(
x1

T · · · xN
T
)T

,

u =
(
u0

T · · · uN−1
T
)T

and h describes some general constraints on the
system. This formulations allows both linear and nonlinear models and any
even non-convex constraints.

min
x,u

J(x, u)

s.t. xk+1 = f(xk, uk)
yk = g(xk, uk)
h(x, u) ≤ 0
x0 = x(t)

(3.1)

By solving this mathematical program we get open loop control u as a se-
quence of inputs over the prediction horizon u0, u1 · · · uN−1. To get feedback
control we can solve this program at every time step to adjust for possible
disturbances, noise or inaccurate model. After a solution is obtained we apply
only the first one, discard the rest and repeat the procedure. It’s also possible
to apply more than one input and not solving the program as often but that
is less robust. An illustration of this scheme is in figure 3.1.

Since this approach is numerically solving the optimization problem, it is very
easy to formulate and add to the program constraints, different at different
times, track reference trajectory, minimize any criterion and use linear or
nonlinear system model. It may seem that MPC is the perfect control strategy
and nothing else is needed, but that is not the case.

9



3. MPC description ...................................

Figure 3.1: A discrete MPC scheme By Martin Behrendt - Own work, CC
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7963069,
retrieved on 30.4.2023

The first and often the biggest problem is that we need a good system
model. We are using it to predict future system behavior and guarantee
constraints satisfaction and wrong model can even lead to instability. Other
methods where the control law can be described with analytical formula can
use various methods such as frequency domain analysis, Lyapunov method
etc. to achieve (robust) stability and performance. With MPC that is not
so easy [9]. Also the full state is typically not available and may not even
have physical meaning, so we need to design a state observer. The model
describing our system should be complex enough to capture all the important
dynamics, but also simple enough so that the optimization problem can be
solved in required time. As Albert Einstein (may have) said: "Things should
be as simple as possible, but not any simpler."

Second problem is feasibility. When we constraint the furnace tempera-
ture to some range around the reference it may happen, due to disturbance or
measurement noise, that we get temperature outside this range. The problem
will then be infeasible and we will not obtain any control as a solution.

Finally another problem is with the resulting controller stability and ro-
bustness. There are ways to make sure the resulting inputs stabilize the
system but they are not perfect. One of them is using terminal constraints
on state xk+N = 0 [9]. This is however not feasible for many systems in
practice and for shorter prediction horizon N the resulting program may
not have a solution. A variation on this approach that is more usable is
constraining the final state to some set x ∈ Ω where we switch to a differ-
ent linear controller that guarantees (asymptotic) stability [10]. Finally a
third approach to solving this problem is increasing the prediction horizon
since in the case where N = ∞, J can be chosen as Lyapunov function and
we have a stable controller. Of course we cannot usually do that and still
get a solvable problem, but it seems that increasing N ’enough’ also works [11].

10
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....................................3. MPC description

We will focus on linear MPC since we are developing MPC mainly for process
control where linear model around some operating point is usually enough.
Criterion will be the standard quadratic criterion so the resulting program
will be a quadratic program (QP).

The model used is the discrete state space model as defined in (1.5). Substi-
tuting this model to (3.1) with quadratic criterion and ignoring constraints
other than the state equation constraints for now, we get

min
x,u

1
2xN

TPxN + 1
2

N∑
i=1

xT
i Qxi + uT

i Rui

s.t. xk+1 = Axk + Buk

yk = Cxk + Duk,

(3.2)

where Q ∈ Rn×n, P ∈ Rn×n and R ∈ Rm×m. The matrix Q weighs the states
that we want to regulate and R weighs the inputs so that they do not become
too large. We also separate the weight P on the last state because this matrix
is often set to special value, different from the rest of Q, we will see why later.
In the form (3.2) without constraints this problem has analytical solution,
which we will now derive. First let us start by expressing state x as a function
of input u:

x = Su + Tx0, (3.3)
where

S =


B

AB B
...

... . . .
AN−2B AN−3B · · · B
AN−1B AN−2B · · · AB B

 , T =


A
A2

...
AN−1

AN

 ,

S ∈ R(N ·n)×(N ·m) and T ∈ R(N ·n)×n. Then substitute x into the criterion
doing a so called state condensing.

J(x, u) = 1
2xN

TPxN
T + 1

2

N∑
i=1

xi
TQxi + ui

TRui =

= 1
2xTQx + 1

2uTRu =

= 1
2(Su + Tx0)TQ(Su + Tx0) + 1

2uRu =

= 1
2uTHu + x0

TFTu + const,

(3.4)

where

Q =
(

IN−1 ⊗ Q 0
0 P

)
, R =

(
IN ⊗ R

)
H = (STQS + R), F = TTQS.

(3.5)

11



3. MPC description ...................................
Now our criterion is quadratic only in the input u and to obtain its minimum
we set its gradient to zero.

∇J(u) = Hu + x0
TFT = 0

=⇒ u = −H−1Fx0
(3.6)

Equation (3.6) shows us that in this simple case without any constraints, the
solution is linear state feedback.

We also introduce matrices H and F since most QP solvers need the program
in the form

min
z

1
2zTHz + Fz

s.t. Ãz = b̃
Gz ≤ W.

(3.7)

Notice that the matrix F as we defined it is a bit different, we don’t include
x0 as a part of it.

3.1 MPC and LQR

We mentioned earlier that the weight P on the final state is somehow special.
Notice that if the prediction horizon was increased to infinity, then (3.2)
defines unconstrained infinite horizon discrete time optimal control problem
with a LTI system model, which gives us a linear quadratic regulator(LQR)
control as a solution. LQR problem has known solution in the form u = −Kx,
where

K = (R + BTPB)−1BTPA (3.8)

and P is the unique positive definite solution to the discrete time algebraic
Ricatti equation (DARE).

P = ATPA − ATPB(R + BTPB)−1BTPA + Q. (3.9)

Let X∞ be the set of states x where all constraints are satisfied. X∞ grows
with N . Then if we set the terminal weight equal to the DARE solution P,
the constrained MPC will be equal to constrained LQR in X∞ [12].

This way of making MPC equal to the optimal LQR can be improved using
the set X∞ as a terminal state constraint xN ∈ X∞ which now makes MPC
equal to constrained LQR everywhere where the MPC problem is feasible.

It is interesting that just setting the terminal weight equal to P we effectively

12



............................... 3.2. Tracking output reference

get infinite horizon regulator. Using X∞ as a constraint may perhaps be too
difficult in practice (this constraint may reduce the domain of feasibility),
but assuming that after N steps the constraints will not be violated can be a
reasonable assumption.

3.2 Tracking output reference

So far we have only been talking about regulation, but we also want to be
able to control the system to reference signals. For that an extension of the
(3.2) equation is needed.
The difference from regulation is that when tracking output reference, the
inputs may need to be nonzero to stay on it. Nonzero steady state inputs
can be achieved by weighting the input differences ∆u instead of u. The
problem is then formulated like this:

min
u, x

1
2eN

TPeeN + 1
2

N∑
i=1

ei
TQeei + ∆ui

TR∆∆ui

s.t. ek = yk − rk

xk+1 = Axk + Buk

yk = Cxk + Duk,

(3.10)

where r =
(
r1

T · · · rN
T
)T

is the reference signal we want to track. The

difference of output from the reference is e =
(
e1

T · · · eN
T
)T

and its
weights are Pe and Qe. The input differences weight is R∆. Now we get
∆u as a solution of the program (3.10) which may be undesirable and makes
further extensions and constraints setup more difficult. To use the differences
but get directly u as a solution we use the following transformation

∆u = Uu + Mu−1, (3.11)

where

U =


Im

−Im Im
. . . . . .

−Im Im

 , M =
(

Im
0

)

U ∈ R(N ·m)×(N ·m), M ∈ R(N ·m)×m and u−1 is the previous input. The

resulting tracking criterion where z =
(

x
u

)
is then

J(x, u) = 1
2zTHz + Fz + const (3.12)
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where

Qe =
(

IN−1 ⊗ Qe 0
0 Pe

)
, R∆ =

(
IN ⊗ R∆

)
H =

(
CTQe C

UTR∆U

)
, F =

(
−rTQe C

u−1
TMTR∆U

)
,

(3.13)

and if we do the state condensing from equation (3.3) it’s

J(u) = uT
(

STCTQCS
UTRU

)
︸ ︷︷ ︸

H

u +

 r
u−1
x0


T −QCS

MTRU
TTCTQCS


︸ ︷︷ ︸

F

u, (3.14)

where
C = IN ⊗ C (3.15)

These two criterions describe theoretically the same program, but as we will
see in the next section there are some differences between them.

In the figure 3.2 there is an example simulation of tracking showing how this
extension to the base MPC problem works. System used for this simulation
is the one defined in equation (2.1). The predictivness of MPC allows the
controller to start increasing the output even before the reference changes.
From the figure it can also be seen that the steady state error is zero. The
controller is capable of tracking even (non)linearly changing reference without
any modification which is another advantage compared to the classical PID
control.

3.3 Different formulations

In previous section we saw how the MPC problem is formed and how solution
is obtained in the simple case without any constraints. To get the solution,
we expressed state x as a function of input u and substituted it doing a so
called state condensing. But in more complicated situations we have to solve
the program numerically. Whether to keep x as a optimization variable with
the state equation as a constraint or express it using u is a decision we now
have to make. If we decide to keep it as a variable we get so called dense
(sequential) MPC and in the other case sparse (simultaneous) MPC.
Which of these two formulations should be used is dependent on many factors
and one is generally not better than the other.

14



.................................3.3. Different formulations

Figure 3.2: An example of reference tracking in MPC

There is also third formulation possible that is a combination of both of
these. It is sometimes called sparse condensed approach [13] or MPC with
variable level of sparsity [14]. The basic idea is that we don’t have to condense
the state vector at each time step along the prediction horizon but only at
some and keep it as an optimization variable in others. The advantage is that
by changing how many and which states are condensed, we can take advantage
of both MPC formulations. The disadvantage is that this complicates design
and weights tuning as there is yet another parameter (level of sparsity) to
optimize. However the speed up and better numerical properties may make it
worth it, there is even a way to use input blocking with this sparse condensed
approach [15].

3.3.1 Dense

The dense approach used to be more popular and considered better than
the other, as it can be solved by any generic QP solver and doesn’t require
the solver to exploit any sparsity patterns. But that’s no longer the case,
nowadays both approaches are used and each one is better suited to some
situations.
The problem with the dense formulation are the powers of matrix A in
the prediction matrix S and T. We are computing powers of A up to N ,
which can cause ill-conditioning for large N, especially when A has unstable
eigenvalues. To solve this ill-conditioning, a pre-stabilizing control can be
used [16]. This is however not a problem for us, as the system considered is
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stable.

The best scenarios where dense MPC performs better are those where pre-
diction horizon is not very long (usually 30 steps and smaller), n is large
and n

m is large. The memory requirements grow with N2 and computational
complexity grows cubically with N3 [17]. Specifically using the primal-dual
interior point algorithm the computational complexity is O(N3m2(L + m))
and memory requirements O(N2m(L + m)), where L is the number of in-
equality constraints [13].

Our desired prediction horizon N may even be around 300 which is defi-
nitely an extremely long horizon for dense MPC. On the other hand if we
have a significant delay, that adds many states to the system and relaxing the
constraints as is described in chapter 4 adds even more states. With input
blocking or hierarchical MPC, which are also described later, we may then
reduce the number of predicted inputs making the dense formulation possibly
better than the other.

3.3.2 Sparse

Here we will use criterion as seen in equation (3.4) before x is substituted
into it or (3.14) in the case of tracking.
To get to the solver formulation (3.7) we must vectorize the state equation
from (1.5) to the form Az = b over the prediction horizon N .
Let

x = Ax + Bu + Âx0, (3.16)
where

A =


0
A 0

. . . . . .
A 0

 , B =


B

B
. . .

B

 , Â =


A
0
...
0

 (3.17)

and A ∈ R(n·N)×(n·N), B ∈ R(n·N)×(m·N) and Â ∈ R(n·N)×n. Then

Ãz = b̃, (3.18)

where

Ã =
(
A − IN ⊗ In B

)
, z =



x1
...

xN
u0
...

uN


, b̃ = −


A
0
...
0

x0 (3.19)
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and Ã ∈ R(n·N)×(n·N+m·N), z ∈ R(n+m)·N and b̃ ∈ R(n·N)×n.

Compared to the previous formulation, this sparse one is better suited to
problems with smaller number of states, lower n

m and handles larger predic-
tion horizons better. Memory requirements grow with N and computational
complexity also with N [17], specifically using the primal-dual interior point
algorithm the computational complexity is O(N(m + n)2(L + m + n)) and
memory requirements O(N(m + n)(L + m + n)) [13].

Sparse formulation would be preferred if we didn’t use systems with delay,
didn’t have too many relaxed constraints or didn’t use program dimension
with hierarchical approach or input blocking.

3.3.3 Dense and sparse MPC comparison

After careful consideration we decided to use the dense approach for our final
controller implementation. The reasons are first that we have significantly
increased the number of states by including virtual states to account for delay
and also by adding slack variables to relax some constraints and second the
dimension of the problem was significantly reduced by input blocking. There
are still high powers of A in the prediction matrix S but at least A is stable
so it’s not such a big problem.

This choice is further supported by simulations. Using the full system from
(2.1) with all constraints turned on, N = 300, using input blocking and using
the solver quadprog we found that the dense MPC runs 6.4 times faster
than sparse MPC. Relevant matrices were converted to the sparse matrix
format in MATLAB and the sparsity pattern was exploited, still the dense
MPC outperformed the sparse one. However it is possible that with a different
solver such os the popular OSQP we would get a different result.

Next it may be interesting to run a simulation without relaxed constraints for
a system without delays to see whether the previous theory is supported by
experiments. Using the same setup as previously but without delays and soft
constraints we found that in this case the dense MPC performs 1.8 times
slower than the sparse approach.
Finally let us try running a simulation again without delays and soft con-
straints but this time also without input blocking. This should in theory
make the difference in performance between the two formulations even larger
and the simulation confirmed it. The dense approach was in this case 10.4
times slower then sparse one.
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All these experiments show that the theory on when one approach out-
performs the other may be correct, but mainly it supports our choice of dense
MPC.

3.4 Contraints

We will now discuss used constraints and show how to convert them to the
solver formulation Gz ≤ W as defined in (3.7).

3.4.1 Input constraints

Limiting inputs is the most natural constraint as inputs can’t be unlimited.
The lower constraint can be typically zero or in the case of linearized system,
low enough so that we keep close to the operating point. The limits are
umin ≤ u ≤ umax and they are easily converted into the desired form.

dense

(
Im·N

−Im·N

)
︸ ︷︷ ︸

G

u ≤
(

umax
−umin

)
︸ ︷︷ ︸

W

(3.20)

sparse

(
0n·N Im·N
0n·N −Im·N

)
︸ ︷︷ ︸

G

z ≤
(

umax
−umin

)
︸ ︷︷ ︸

W

(3.21)

Example simulation constraining inputs to ±300 kW and model from (2.1)
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with parameters in table 2.1 can be seen in figure 3.3. Gas price is set to be
more expensive than electricity, so gas reaches lower the limit. Electricity
reaches the upper limit only during one peak, otherwise it is kept a bit lower
as its gain is higher than gas.

Figure 3.3: An example simulation showing the usage of input constraints

3.4.2 Output constraints

Too large deviations from our desired output (zero or the reference signal)
are generally undesirable so we introduce output constraints that restrict the
set of possible outputs to some range around 0 (reference). These constraints
ymin ≤ y ≤ ymax are easier formulated using sparse formulation.
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dense

For dense approach we will use the equation (3.3)

y = Cx = C(Su + Tx0)

→
(

CS
−CS

)
u ≤

(
ymax

−ymin

)
+
(

−CTx0
CTx0

)
,

(3.22)

where C = IN ⊗ C

sparse

(
C 0m·N

−C 0m·N

)
z ≤

(
ymax

−ymin

)
(3.23)

Funnels

Funnels are basically just time varying output constraints. When changing
reference the funnels can be used to make the controller less aggressive, allow
some overshoot and control how close to the reference the temperature has to
be controlled. By making these limits wider at some point gives the controller
more room to perform optimization and improves its behavior.

When using funnels, the reference tracking cost Qe is often set to zeros
or to some small number. This is because they are used in different situations,
when controlling for example position to some specific value we may want to
be as precise as possible, while when controlling temperature to reference we
may not care about 1 °C deviations if it means significant money saving. The
funnels also allow the system to potentially accumulate energy and move to
the upper limit to save cost, this will be further discussed and illustrated later.

An example of such simple funnels can be seen in the figure 3.4, where
one input is fixed to zero to better see the change when funnels are used.
Model used is again from the equation (2.1) but without delays. In the
figure 3.4 the tracking weight Qe is set to 0 and R∆ = 1, but the funnels still
keep the output close the reference as quickly as we set it and as the input
constraints allow. For comparison, the usual approach with weight Qe = 10
and R∆ = 1 can be seen in figure 3.5.
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Figure 3.4: An example funnels usage in MPC

3.4.3 Integral constraints

Finally we get to a more complicated and less common constraints. The
motivation for these constraints comes from the fact that in many systems
there are constraints on energy or the average power. These can’t be expressed
as easily as the others.
We will consider two possible variants depending on whether the sum uses
sliding window or fixed window to compute the sum to limit. Sliding window
is easier to do, since the constraint is the same in each time k, it can even
be analytically expressed as an integrator summing signal minus the same
but delayed signal. The formula for the sliding window is ∑l+N

k=l ak ≤ amax,
where l is the current time, a is some variable which sum we want to limit
or possible even a function of some variables and amax is the integral limit.
Fixed window is similar, but the sum is only over specified times, for example
over one day from midnight to midnight.
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Figure 3.5: MPC tracking without funnels

These constraints will be further discussed later in chapter 4 section 4.
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Chapter 4

MPC implementation

In previous chapter we saw how to formulate the MPC problem with various
constraints as a quadratic program (QP). The focus of this chapter is first
showing how to deal with different problems encountered during implementa-
tion and then implementing the formulations and constraints for our system.
For the simulations in this chapter we use the system model as described
in the first chapter in (2.1) but without delays so that the results are easier
understood.

4.1 Feasibility of the QP

Common problem we may encounter during implementing MPC for a real
system is that the QP may not be feasible, meaning we don’t get a solution.
The QP could be altered and recomputed, but a solution may still not be
obtained. Another solution is switching to a different controller, but that’s
obviously not optimal as there’s a need for another controller to be ready
and implemented on the system and without accounting for this switching
the resulting behavior of the system will deteriorate. What’s the reason for
the infeasibility?
The obvious one are too strict constraints that cannot all be satisfied. Unfor-
tunately it’s hard to say when this is the case. For more complex systems
and constraints such as integral constraints, it’s hard to say whether there
exists some state from which the QP doesn’t have a solution. Disturbances,
measurement errors and noise are also possible sources of infeasibility. For
example when using strict funnels (funnels implemented as strict constraints)
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these could push the system out of the funnel.

To guard against these we turn constraints that could cause infeasibility
from strict constraints in the form x ≤ xmax to x ≤ xmax + ϵ. This ϵ is called
a slack variable and it’s also added to the criterion with some weight Qϵ to
minimize it J = ... + ϵTQϵϵ. When there are L constraints we get a vector of
slack variables and the matrix added to the criterion is diagonal

J = ... +
(
ϵ1 · · · ϵL

)Qϵ1
. . .

QϵL


ϵ1

...
ϵL

 . (4.1)

Which constraints can or should still remain strict? Typically the input
constraints as there can be physical limits on them and these limits cannot
be broken, other constraints can usually be as we do here relaxed. It’s also
important to set the weight on the slack variables to a reasonable number,
big differences in weights scales can also lead to numerical instability.

While helping reduce the infeasibility problems coming from constraints,
adding these slack variables to the program causes a problem of its own.
They increase the dimension of the program so the computational complexity
significantly increases. L soft constraints means the dimension of the program
increases by L. Because of the increased dimension we should relax only the
constraints that really need to be soft.

4.2 Large computational complexity

As we are using very long prediction horizon and extending the system with
more virtual states because of time delay, the time needed to compute a
solution dramatically increases. Together with all the constraints it may
happen that we can’t compute a solution during one time step and the
controller won’t work. We tried two different approaches to reducing the
computational complexity, splitting our controller to two MPCs connected in
series and reduce the problem dimension by input blocking.

4.2.1 Hierarchical MPC

Hierarchical control approach seems natural as we could use one ’faster’ con-
troller for the ’faster’ dynamics and constraints and one ’slower’ for 24 hours
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cost optimization and gas constraint satisfaction. One of them will have
faster sampling rate Ts,fast of few minutes and prediction horizon long enough
to cover around 2 hours, we will call this the fast (short) MPC. The other
will have sampling rate Ts,slow around 1 hour and prediction horizon long
enough to cover 24 hours, this will be the slow (long) MPC. It is desirable for
all the constraints to work well to have the longer sampling rate Ts,slow an
integer multiple of the shorter sampling rate Ts,fast and the time covered by
fast MPC longer than Ts,slow. Because the prediction horizon is here greatly
reduced we used the dense approach for both controllers.

What is not immediately obvious is how to connect these controllers to-
gether. The first approach may be to use the inputs from the slow MPC
as reference inputs which the fast MPC should roughly follow. This can be
added to the criterion as follows

J(x, u) = · · · + 1
2(u − uref )TRh(u − uref ) =

= · · · + 1
2uTRhu − uref

TRhu,
(4.2)

where Rh ∈ Rm×m is the "input tracking" weight and uref is the tracked
reference input. This addition to the criterion allows by tuning the weight
Rh for the fast MPC to roughly follow the reference inputs, while also do
some short horizon optimization which the slower MPC can’t do because of
the long sampling period. The advantage of the hierarchical approach is that
we don’t add increase the dimension or the number of constraints and the
disadvantage is that we get another weight that needs tuning.

Another approach and the one we preferred is to add a constraint telling the
fast MPC that it has to supply over one slow MPC sampling period as much
energy as the slow MPC. This constraint is perhaps better understood after
we describe in detail the integral constraints later in this chapter, interested
reader may skip ahead and read that section now.

Figure 4.1 shows how this hierarchical constraint might work, it visualizes how
the MPCs would calculate future inputs in one time step. In the example in
figure 4.1 we assume that Ts,slow

Ts,fast
= 3, so the fast MPC has to supply the same

amount of energy as slow MPC every 3 time steps. This is visualized in the
graph by black vertical lines. We can see that the fast MPC inputs differ from
the slow ones, but the energy supplied is preserved. This energy constraint has
the effect that the inputs of the slow MPC are also somehow tracking the ref-
erence inputs like in the previous reference inputs hierarchical MPC approach.

The constraint in the form of a sum is

Ts,fast

3600

Ts,slow
Ts,fast∑

i=1
(uel,i + ugas,i) ≥ Ts,slow

3600 (ũel,1 + ũgas,1),

25



4. MPC implementation .................................

Figure 4.1: Hierarchical MPC through energy constraint

where ũ is the reference input from the slow MPC in current step and it is
implemented as a sliding window. The formula can be further simplified as

Ts,slow
Ts,fast∑

i=1
(uel,i + ugas,i) ≥ Ts,slow

Ts,fast
(ũel,1 + ũgas,1)

and now if we read the section on integral constraints we really see the
similarity with the gas constraint and it should be obvious how to implement
it. The energy constraint hierarchical control has the disadvantage of adding
yet another constraint to the system and if it is relaxed then we also increase
the dimension. But when trying to satisfy the gas constraint, this approach
seems better suited to that compared to the input tracking. We implemented
both approaches but for the next simulations we chose to use the energy
constraint MPC.

Using the model defined in equation (2.1) without delays and parameters
from table 2.1 and constant prices, the resulting controller can be seen in
action in figure 4.2. The simulation used in the figure 4.2 uses N = 300 for
the sparse MPC and for the hierarchical approach Nfast = 12 for the fast one
with Ts,fast = 300 s and Nslow = 26 for the slower one with Ts,slow = 3600
s. The dense MPC weights are Qe = 100 and R∆ = 5 and the hierarchical
approach weights Qe = 100 and R∆ = 1.
In this simple case we can see that there isn’t that big a difference between
the temperatures trends.
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Figure 4.2: Comparing hierarchical and dense approach

However using the hierarchical approach we managed to speed up the compu-
tation 23.44 times compared to the normal dense approach.

Next we run several simulation to test whether this hierarchical approach
converges to the non hierarchical one. The setup of the simulations can be
seen in table 4.1 and the simulation in the figure 4.3. We can see that indeed
the hierarchical approach converges to the sparse MPC.

long Ts [s] 300 900 1800 3600

Table 4.1: Setup of hierarchical MPC correctness simulation

It seems the implemented hierarchical structure works, but in the end we
decided against using it and switched to input blocking which is the topic of
the next section. The problem with this approach is reduced optimality, the
slow MPC may push inputs up because of some future change, while the fast
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Figure 4.3: Simulating hierarchical MPC correctness

one tries to push them down to optimize cost on the short horizon.
Another one is having more parameters and options to setup. There appears
another weight matrix Rh which must be chosen, another prediction horizon
and possibly different tracking weights Qe and input differences weights R∆
for both of them. In the end we decided against hierarchical control and
moved to input blocking which is described next.

4.2.2 Input blocking

Input (move) blocking has become a standard practice in MPC that can
greatly reduce the computational complexity by reducing the degrees of free-
dom [18] but also improve controller robustness, performance and feasibility
[15].
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The idea is that as we move toward the end of prediction horizon we fix the
inputs to be constant over several time steps as can be seen in figure 4.4.
The input is constant over steps 1-2, then 3-5 and 6-7, we say that there are

Figure 4.4: Input blocking example

Nb = 3 blocks of size 1, 3 and 5. The requirement is then for these blocks to
cover the whole prediction horizon. That means that the sum of the blocks
sizes must be equal to N .

For our long prediction horizon we use similar block sizes, where as the
prediction time goes forward, the block sizes increases. Since in the first
few time steps the controller action may be important and predictions are
probably accurate, the blocks are often in the beginning set to size 1, so that
there isn’t any blocking. Then as time progresses and the prediction accuracy
worsens we don’t want the control action to be overly aggressive and change
too much so we increase the size of the blocks.

To implement blocking we need to transform both the criterion and con-
straints. Let nb ∈ RNb be a vector of block sizes where ∑N

i=1 nb(i) = N . The
criterion and constraints can then be augmented using the transformation

u = Ubub, (4.3)
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where ub ∈ RNu are the blocked inputs and Ub is the transformation matrix
given by

Ub =



1
...
1

nb(1)

1
...
1

nb(2)

. . .
1
...
1

nb(N)



. (4.4)

This transformation matrix definition may look complicated by its just a
block diagonal matrix where each matrix block is a column vector of ones of
size corresponding to the number of blocks nb.

Let’s say we have a sampling period Ts = 300 s, then to have predictions
for at least the next 24 hours we need N > 288, we will use N = 300. An
example block sizes setup is then in 4.5, where we successfully reduced the
prediction horizon from 300 to 39.

Using blocking we managed to speed up the computation 10.5 times com-
pared to the normal dense MPC. Blocking is slower than hierarchical MPC
as expected but the speed up is still sufficient; blocking is easier implemented
and yields better results.

Figure 4.5: An example sizes of blocks

30



..............................4.3. Minimizing the financial cost

4.3 Minimizing the financial cost

The cost of inputs together with the gas constraint are the two reasons why
using long prediction horizon is not only beneficial but also needed in our case.
The implemented MPC as shown in this work may be run in the industry on
various processes and the financial cost may be the most important thing to
consider right after quality of tracking (regulation).
The price of gas is assumed to be constant each day and electricity is assumed
to follow one trajectory during the working week, another on Saturday and
yet another on Sunday. As it turns out this is a pretty good model. There
will always be some error when predicting the price for the day but for our
controller we really only need a rough idea of where the price is going.
An example of price development during one day during the working week
(Wednesday) is in the figure 4.6, during Saturday in figure 4.7, during Sunday

Figure 4.6: Electricity price during Wednesday (15.3.2023), taken from https:
//www.ote-cr.cz/cs/kratkodobe-trhy/elektrina/denni-trh

in figure 4.8 and during the whole week in figure 4.9. From the last figure 4.9
it is probably best seen how the weekend price development is different from
the working week and why it might be important to differentiate these two
when trying to predict future prices. However the modelling of electricity
price development is not the topic of this work. We will assume that we have
a perfect knowledge of future price. As is seen in the figure 4.9, the price
follows some pattern so this may not be such a big assumption.

Adding the information about costs to the problem statement can be done by
adding a linear term to the criterion where each input at each time is weighted
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Figure 4.7: Electricity price during Saturday (25.3.2023), taken from https:
//www.ote-cr.cz/cs/kratkodobe-trhy/elektrina/denni-trh

Figure 4.8: Electricity price during Sunday (26.3.2023), taken from https:
//www.ote-cr.cz/cs/kratkodobe-trhy/elektrina/denni-trh

relative to the cost at that time. Since the costs for gas and electricity are in
the same units and the inputs too, we can use scalar multiplication of each
cost with the corresponding input.
This linear term is then multiplied by some constant Qeur telling the controller
how much we care about money compared to other terms in the criterion such
as weight on reference tracking and input changes. As mentioned previously,
it’s important for all these numbers to not differ too much to not cause
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..............................4.3. Minimizing the financial cost

Figure 4.9: Electricity price during the week (20.3.2023 - 26.3.2023), taken from
https://www.ote-cr.cz/cs/kratkodobe-trhy/elektrina/denni-trh

numerical problems. The term added to the criterion is

J = ... + Qeur(uel · cel + ugas · cgas), (4.5)

where cel is the electricity price, cgas the gas price, uel the electricity input
and ugas the gas input.
Simulation with financial (economic) optimization turned on for very simple,
just illustrative example, can be seen in figure 4.10. System used is furnace
model (2.1) but without delays and the input are constrained to ±300 kW.
In the upper plot there are the inputs. The input differences weight R∆ was
set relatively low for both inputs, allowing them to change quite quickly. As
we can see gas is being used to its limits. In the lower part there are the fuels
prices. To show that this addition to the criterion works we first assume a
very simple price development, where the electricity is first expensive in the
morning, cheap during the day and then again expensive in the night.

Next let’s try simulating our controller with real price development. Prices
are once again taken from https://www.ote-cr.cz/cs/kratkodobe-trhy/
elektrina/denni-trh for the day 15.3.2023, all the price developments in
the rest of the work are also from this source. The simulation can be seen in
figure 4.11. In both of these figures we also calculate and show fuels consump-
tions and costs in the figure title. Since we are using linearized system, the
consumptions and costs are relative to the operating point, that’s why they
can be negative. Consumption that’s lower than zero means we save on some
energy by for example using the more efficient heating electrodes. Negative
cost is then how much money is saved compared to the inputs staying at their
operating point values.
In this case we managed to save 251 € during one day just by switching the
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Figure 4.10: Simulating MPC with financial optimization with simple test prices

two inputs based on their respective prices.

4.4 Integral constraints

Integral constraints were only described as a sum, the formulation in the
solver form (3.7) wasn’t shown as that is more difficult and dependent on
the specific problem. As described in the first chapter we want to limit the
natural gas energy expenditure and average electricity power both using fixed
windows. In the next two parts detailing these constraints we will use dense
MPC because there are only constraints on input and this approach is also
the one used in the final chapter. Sparse MPC would just add zeros to the
matrix G.

34



.................................. 4.4. Integral constraints

Figure 4.11: Simulating MPC with financial optimization with real prices

We also describe another integral constraint that isn’t part of the prob-
lem but that may still be useful to use, namely the constraint on overall
energy supplied. This energy constraint can then be seen in action in the
final chapter in simulations using energy accumulation.

4.4.1 Gas energy limit

Gas energy from 6:00 to 6:00 should not exceed some upper limit Emax
gas [kWh].

It is however not a strict constraint, even if it somehow happens that we
run out of the reserved amount we don’t want to turn the furnace off. In
fact just turning it off might very well be impossible. The penalization for
violating it will be just set to some very high number, so that it happens only
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if absolutely necessary.

Let N24 = 24·3600
Ts

be the number of time step Ts in an 24 hours. Then
the gas constraint in the form of a sum is 24

N24
·
∑N24

i=1 ugas,i ≤ Emax
gas [kWh].

Let’s now formulate this constraint in the form needed for our solver. Blocking
is assumed to be disabled for now. Since our prediction horizon covers at
least a day but not two or more, the matrix W will have only two rows

W =
(

Emax
gas − Eused

gas

Emax
gas

)
. (4.6)

There is a variable Eused
gas which is reset to zero at 6:00 and incremented by

24·uk,gas

N24
every time step k. Eused

gas is the running sum of energy used from
6:00 which is subtracted from the limit. Already we see that the matrix W is
different at every time step, so this constraint is not trivial to implement.
Next the matrix G which sums the inputs.

The first row of G is different as we are summing less and less future
inputs closer to 6:00. The number of inputs to the next 6:00 assuming i = 1
corresponds to initial 6:00 and we are currently at i > 1 is

N24,i = m · (N24 − i mod N24),

The first row of G is then

Grow1 =
(
0 1 · · · 0 1︸ ︷︷ ︸

N24,i

0 · · · 0︸ ︷︷ ︸
m·N−N24,i

)
,

the second row

Grow2 =
(
0 · · · 0︸ ︷︷ ︸

N24,i

0 1 · · · 0 1︸ ︷︷ ︸
m·N−N24,i

)
,

and the matrix is just

G =
(

Grow1

Grow2

)
.

This may look complicated but it is really just summing inputs to the next
6:00 in the first row and summing the rest in the second row.

If we now add blocking what changes is the number of inputs summed
N24,i. In the first row of G we sum as many inputs as needed to get to 6:00.
The specific number is dependent on the sizes of blocks nb, it is possible that
we cannot sum exactly enough inputs to get to 6:00 and we have to sum a
bit more or less because of a larger block.

Let’s now run a simulation to test the implementation. To test them,
we will use the constraint as a strict one and also lower the gas price enough
so that without limit on gas consumption, the system would keep gas on its
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Figure 4.12: Testing gas constraints

upper limit the whole time.
The result can be seen in figure 4.12. In the upper plot there’s temperature,
reference and both prices. In the lower plot besides the inputs there is also a
dashed line visualizing remaining gas. Since we have a linearized model and
our inputs can be negative, we shift them by their lower limit and only then
calculate the gas consumption and the remaining gas for better visualization.
Since the gas price is so low, we would expect for the gas to be used as much
as possible without violating its constraint. The gas remaining line ends at
zero, so the constraint was satisfied and gas was used as much as possible.

4.4.2 Electricity average power limit

Now that we got over fixed window integral constraint with gas, electricity
should be much easier. It is the exact same concept, just not from 6:00 to
6:00 but over 15 minutes windows. Expressed in minutes over one hour the
windows are 0-15, 15-30, 30-45 and 45-60. This electricity constraint will
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also be relaxed for the same reasons as the previously described gas constraint.

Let N15m = 15·60
Ts

be the number of time steps Ts in 15 minutes. Then
the constraint in the form of a sum is 1

N15m

∑N15m
i=1 uel,i ≤ P max

el [kW]. The
matrix W just has more rows but the structure stays the same

W =


P max

el − uused
el

P max
el
...

P max
el

 . (4.7)

The variable uused
el is reset every 15 minutes and incremented every time step

k by uel,k

N15m
. The number of inputs to the next 15 minute reset is

N15m,i = m · (N15m − i mod N15m) (4.8)

and if we restrict N to be divisible by N15m, G is

G =


0 1 · · · 0 1︸ ︷︷ ︸

N15m,i
0 1 · · · 0 1︸ ︷︷ ︸

N15m
. . .

0 1 · · · 0 1︸ ︷︷ ︸
N15m

 (4.9)

What’s more complicated here is the formulation with blocking, since
the blocks will definitely eventually cover more than 15 minutes. First the
approach is the same as previously, sum as many inputs as needed to cover
15 minutes. After nb(i) · Ts > 15 · 60, one blocked input is kept for longer
than 15 minutes so the constraint changes to simple input constraint where
the upper limit is P max

el .

4.5 Minimum energy limit

Limit on minimum energy supplied is another constraint that we found to be
useful in certain situations. Let’s say we don’t need to stay on the reference
all the time and we want to save money. What could happen is that the
temperature would just stay on the lower limit all the time and save money
this way. Using this constraint if set to zero energy as minimum allows the
system to go below the reference for some time, but then it always has to go
above it to keep the overall energy supplied to the system positive.
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We implemented it as an upper limit on the sum of energy from electricity
and gas over 24 hours. In the form of a sum that is

24
N24

·
N24∑
i=1

(K1 · uel,i + K2 · ugas,i) ≥ 0,

where K1 and K2 are respectively the electricity and gas gain and the other
parameters are the same as in the gas constraint section. The implementation
should be straightforward now that we defined the gas energy constraint,
so we won’t elaborate on it any further. The only difference is that we are
summing both inputs.

Of course the time over which the energy is constrained doesn’t have to
be 24 hours. It can even be for example only 2, which would allow only
short deviations. We will use this constrain later in the simulations chapter,
specifically to allow energy accumulation.
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Chapter 5

Simulated scenarios and their results

The purpose of this chapter is testing the capabilities and correctness of the
designed controller. For that we use several test scenarios and comment the
results.

First let us summarize all the MPC constraints and extensions from the
previous chapters. The final criterion to be minimized is

J = 1
2eTQee + ∆ui

TR∆∆ui + ϵTQϵϵ + Qeur(uel · cel + ugas · cgas), (5.1)

where e is the deviation of temperature from the reference (setpoint) and
is weighted by Qe, ∆u is the change in the electricity and gas input and is
weighted by R∆, ϵ is by how much are the relaxed constraints (all except
inputs and energy limits) violated and the weights is Qϵ and uel cel, ugas
and cgas are respectively the electricity input, electricity price, gas input and
gas price and the cost is weighted by Qeur.

The constraints are on limits on inputs, output (temperature), 24 hours
gas energy consumption, possible 24 hours energy consumption and 15 min-
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5. Simulated scenarios and their results...........................
utes average electricity power, these are respectively formulated as

umin ≤ u ≤ umax

ymin ≤ y ≤ ymin

24
N24

·
N24∑
i=1

ugas,i ≤ Emax
gas

24
N24

·
N24∑
i=1

(K1 · uel,i + K2 · ugas,i) ≥ 0

1
N15m

N15m∑
i=1

uel,i ≤ P max
el .

(5.2)

We also use input blocking with block sizes from figure 4.5.

The model used is the one from the equation (2.1) with parameters from
table 2.1

Hel(s) = Y (s)
Uel(s) = e−7200s 0.2

3600s + 1

Hgas(s) = Y (s)
Ugas(s) = e−10800s 0.14

5400s + 1 .

(5.3)

For the coming simulations we sometimes used output constraints to limit
temperature to some range around 0, so that the temperature can go below
the 0 reference. This is done because as the price of electricity oscillates it
may be cost effective to sometimes accumulate energy and preheat the system
to a higher temperature. The weight Qe is then set to zeros as there is no
need for it with these constraints. For comparison we also show simulation
without these constraints and where Qe is set to high values so that the
temperature stays on reference. The reference stays at zeros in all simulations;
changing reference is nice for some initial testing but in practice it doesn’t
change very often.
To make the results easier to understand the plotted gas price is recalculated
to account for its lower efficiency. The gas efficiency is 70% so the gas price
is divided by 0.7.

5.1 Varying electricity prices without energy
accumulation

First let us try simulating 7 days with varying prices, but without any sig-
nificant energy accumulation. The weights setup is in table 5.1. Of course
the weights can be matrices but in that case we just assume they’re diag-
onal and all the elements are equal. The inputs are both constrained to
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...................5.1. Varying electricity prices without energy accumulation

the interval ±300 kW. The electricity prices are taken again from https:
//www.ote-cr.cz/cs/kratkodobe-trhy/elektrina/denni-trh. Because

Qe R∆ Qeur Qϵ

100 0.02 45 103

Table 5.1: Weights setup

our focus is now on how the controller optimizes the financial cost, we will
first simulate it using system with time constants equal τ1 = τ2 = 3600 s and
without delays. Otherwise the resulting behavior might be confusing for first
inspection and verification. The resulting simulation is in figure 5.1

Figure 5.1: Simulation with varying prices, τ1 = τ2 = 3600 s, τd1 = τd2 = 0

Let us once again remind the reader that we are using linearized model where
all the values are relative to the inputs staying at zero. This week gas was
on average more expensive than electricity, hence the lower consumption of
−23 668 kWh and the saving of −1 929 €. Electricity on the other hand was
cheaper so it was used more than gas, it cost (relative to staying at zero) 865
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5. Simulated scenarios and their results...........................
€ more and the energy supplied was 16 553 kWh. The total consumption
being −7 115 kWh makes sense because gas has lower gain (efficiency) than
electricity. But more importantly we managed to save with these prices 1 064
€ over this week which is significant saving compared to the case where both
inputs would be kept at a constant value.

Next let’s run the simulation exactly as before but with different time constant
τ1 = 3600 s and τ2 = 5400 s and delays τd1 = 7 200 s and τd2 = 10 800 s.
Result is in figure 5.2.

Here we can see that the inputs differ a little from the first simulation
using the simplified system. Because of different time constants and delays
gas is a bit more compared to the first simulation and the overall saving is
also lower as expected.

Figure 5.2: Simulation with varying prices, using full system model

Notice how the fuels cost develop over weekend. Electricity is really cheap
compared to gas, but there are some peaks where the price surges up for a
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few hours before it falls back down. What if we preheated the system and
then used less electricity during these peaks? This is the main idea of energy
accumulation which will be explored in the next section.

5.2 Varying electricity prices with energy
accumulation

Now let us experiment with the energy accumulation. The setup of the
simulations will be the same as in the previous section, just the tracking
weight Qe will be set to zero and replaced by output constraints keeping
the temperature above -0.5°C. As we can see in figure 5.3 some small accu-

Figure 5.3: Simulation with varying prices with accumulation
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5. Simulated scenarios and their results...........................
mulation happened during the week where the price oscillations increased.
But the overall saving increased by only 42 €. Can we do better? Through
experimentation we found that in this case wide output constraints together
with energy constraint works much better as will be shown in the next figure
5.4.

Again the weights are the same, but we constraint the temperature to the
range of -5°C to 20°C and set 0 as minimum energy. This way we allow the
temperature to go below zero but it has to then compensate for it by going
wbove zero. The energy constraint effectively pushes the system to energy
accumulation. The result can be seen in figure 5.4.

Figure 5.4: Simulation with varying prices with accumulation with energy
constraint

Here energy accumulation is clearly utilized much more compared to the
figure 5.3. The accumulation of energy during lower prices is clearly utilised
as we managed to save additional 106 € compared to the simulation in 5.3.
Do not bee confused by the total consumption being negative, electricity and

46



................................. 5.3. Using only electricity

gas have different gains and we constraint the actual energy used to heat the
system. If we recalculate the consumption using these gains the total energy
is positive as it should be. It can also be seen from the temperature as the
sum of differences from zero should be higher or equal to zero.

Of course the reference tracking is worse when using the energy accumulation,
exact range where the temperature should be kept and whether this saving is
worth it has to be determined for the specific use case. Just switching gas
and electricity based on their prices already saves a lot of money. How well
would this accumulation work in practice is also dependent on how well the
future price development is known.

5.3 Using only electricity

Nowadays electricity may be preferred to natural gas due to some sustain-
ability and CO2 emissions and newly built factories may only use heating
electrodes. Because of that we will now simulate how the system will behave
when the only available power is from electricity.

The big difference is that the only way we can save money is by accu-
mulating energy as there is no second source to switch to when the price
of electricity is high. For the next simulation we again use the energy and
output constraint, set up just like in the last simulation in the previous section.

The simulation is in figure 5.5. Through accumulation we still managed
to 110 €, even with only one input and the overall energy consumption is
positive, the energy constraint satisfied.
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Figure 5.5: Simulation with varying prices, only electricity
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Chapter 6

Conclusions

In this work we described for industrial melting furnace the linear model
predictive control formulations (simultaneous and sequential) and some ex-
tensions such as reference tracking, input blocking and hierarchical approach.
Then we implemented the described controller and simulated it on several test
scenarios which are realistic for the operation of the furnace. The scenarios
show that the implemented controller behaves as expected.

The two formulations of MPC described and implemented are simultaneous
(dense) and sequential (sparse), both are better in some situations depending
on for example the number of states and prediction horizon. Hierarchical
MPC and input blocking was implemented because of the large computational
complexity of our problem, we used very long prediction horizon.

The implemented constraints are as follows:

. inputs (heating electrodes and gas burners) constraints,. output (temperature) constraints,. dynamically changing output (temperature) constraints (funnels),. constraint on gas energy consumption over 24 hours from 6:00 to 6:00,. constraint on average electricity power over every 15 minutes,. constrain on overall energy consumption over some time (here over 24
hours)

49



6. Conclusions .....................................
and the implemented extensions to the basic MPC problem:

. reference tracking,. soft constraints,. hierarchical approach,. input (move) blocking,. financial cost optimization.

Further extensions could be discussing and implementing more advanced
variants of the controller such as nonlinear MPC or MPC with variable level
of sparsity as described in section 3.3. When describing the general MPC
problem in (3.1) we also showed, that it can be used with nonlinear models.
Nonlinear MPC is another big topic, since all the theory on stability and
robustness then needs to be extended and solvers capable of solving these
nonlinear programs need to be found. The model used in this work can still
be used, but of course in reality the furnace is described by complicated
nonlinear model and if such a model could be found and used it could improve
the controller behavior and possibly even cost.
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