Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Cybernetics

Global Localization of Mobile Robot Using
Randomly Placed Artificial Markers

Bc. Can Gundogdu

Supervisor: Ing. Karel Kosnar, Ph.D.
December 2021

ii

L MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

l. Personal and study details
4 ™
Student's name: Gundogdu Can Personal ID number: 490535

Faculty / Institute: ~ Faculty of Electrical Engineering
Department / Institute: Department of Control Engineering

Study program: Cybernetics and Robotics

Branch of study: Cybernetics and Robotics

Il. Master’s thesis details

e ™
Master’s thesis title in English:

Global localization of mobile robot using randomly placed artificial markers

Master’s thesis title in Czech:

Globalni lokalizace mobilniho robotu nahodné umisténymi umélymi znackami

Guidelines:

1. Study different visual SLAM approaches

2. Study properties of RealSense T265

3. Design and implement global localization method using artificial markers randomly placed in environment
4. Verify functionality and measure presicion under reference localization system(vicon)

5. Evaluate properties and precision of the designed method

Bibliography / sources:
[1] Raul Mur-Artal and Juan D. Tardos. 2017. ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and
RGB-D Cameras. IEEE Transactions on Robotics 33, 5 (2017), 1255-1262.
[2] Dominik Schlegel, Mirco Colosi, and Giorgio Grisetti. 2018. ProSLAM: Graph SLAM from a Programmer’s Perspective.
In Proceedings of IEEE International Conference on Robotics and Automation (ICRA). 1-9.
[3] Rafael Munoz-Salinas and Rafael Medina Carnicer. 2019. UcoSLAM: Simultaneous Localization and Mapping by Fusion
of KeyPoints and Squared Planar Markers. arXiv:1902.03729.
[4] Giorgio Grisetti, Rainer Kiimmerle, Cyrill Stachniss, and Wolfram Burgard. 2010. A Tutorial on Graph-Based SLAM.
IEEE Transactions on Intelligent Transportation SystemsMagazine 2, 4 (2010), 31-43.

Name and workplace of master’s thesis supervisor:

Ing. Karel Kosnar, Ph.D., Intelligent and Mobile Robotics, CIIRC

Name and workplace of second master’s thesis supervisor or consultant:

Date of master’s thesis assignment: 03.02.2021 Deadline for master's thesis submission: 04.01.2022

Assignment valid until:
by the end of winter semester 2022/2023

Ing. Karel Ko$nar, Ph.D. prof. Ing. Michael Sebek, DrSc. prof. Mgr. Petr Pata, Ph.D.

Supervisor’s signature Head of department’s signature Dean’s signature

lll. Assignment receipt

The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

iv

Acknowledgements

I would like to express my gratitude and
appreciation to my supervisor Ing. Karel
Kosnar, Ph.D. in preparation for the the-
sis. His experience, knowledge and profes-
sionalism in the robotics field is the rea-
son I wanted to work with him. I couldn’t
have completed the thesis without his ef-
forts and brilliant ideas which lead me to
the solution. The moments I faced adver-
sity he helped and supported me which I
never will forget.

The hospitality of the Intelligent and
Mobile Robotics department also en-
hanced my performance. I would like to
thank everyone who helped me in the de-
partment.

I couldn’t have conducted this work in
the Czech Technical University without
the extreme support and help from my
mother Zehra Hayal Gundogdu and my
father Ahmet Salih Gundogdu. They have
been supporting me all my life in any way.
I'm certainly grateful to have them.

Declaration

I declare that this work is all my own work
and I have cited all sources I have used in
the bibliography. Prague, December 2021

Prohlasuji, zZe jsem predlozenou
pracivypracoval samostatné, a ze jsem
uvedlveskerou pouzitou literaturu.V
Praze, . prosinec 2021

Abstract

The thesis is based on implementing a
localization technique using randomly
placed artificial markers. In order to sup-
plement the localization part, the obsta-
cle avoidance techniques are studied, de-
veloped and finally tested in simulation.
The state of art localization is presented
and various simultaneous localization and
mapping (SLAM) techniques are exam-
ined in detail. In addition, a localization
method using artificial markers is then de-
veloped. The localization method consists
of two stages: artificial marker detection
and Extended Kalman Filter (EKF) to
improve the precision of the implemented
method. The localization system is tested
in both simulation and with a real mobile
robot utilizing an Intel RealSense camera
while ground truth positions are provided
by the Vicon motion capture system.

Keywords: artificial marker,localization,
obstacle avoidance, SLAM, EKF| Intel
RealSense, Vicon

Supervisor: Ing. Karel Kosnar, Ph.D.
CIIRC B:322, Jugoslavskych partyzani
1580/3 160 00 Praha 6, Dejvice, Czech
republic

vi

Abstrakt

Préce je zalozena na implementaci loka-
liza¢ni techniky pomoci ndhodné umis-
ténych umélych markeri. Pro doplnéni
lokaliza¢ni ¢asti jsou studovany, vyvijeny
a nakonec testovany v simulaci techniky
vyhybani se prekazkam. Je prezentovan
stav lokalizace a podrobné jsou zkoumany
ruzné techniky simultanni lokalizace a ma-
povani (SLAM). Déle je pak vyvinuta
metoda lokalizace pomoci umélych mar-
keru. Metoda lokalizace se skladé ze dvou
fazi: detekce umélych markert a rozsite-
ného Kalmanova filtru (EKF) pro zlepseni
presnosti implementované metody. Loka-
lizac¢ni systém je testovan jak v simulaci,
tak se skute¢nym mobilnim robotem vyu-
zivajicim kameru Intel RealSense, zatimco
pozemni pravdivé pozice poskytuje sys-
tém Vicon motion capture.

Klicova slova: umély fix,vyhybani se
prekazkam, lokalizace, SLAM, EKF,
Intel RealSense, Vicon

Preklad nazvu: Globalni lokalizace
mobilniho robotu ndhodné umisténymi
umélymi znackami

Contents

1 Introduction 1l
2 State of Art Obstacle Avoidance
in Mobile Robots
2.1 Various Obstacle Avoidance
Techniques
2.1.1 Artificial Potential Field
Algorithm [
2.1.2 Vector Field Histogram

2.1.3 Smooth Nearness Diagram . .
2.2 Implemented Obstacle Avoidance

Techniques
2.2.1 Dynamic Window Approach
2.2.2 Bug Algorithms............
2.3 Experimental setup for Obstacle
Avoidance...................... 17
2.4 Experimental results of Obstacle
Avoidance methods 19
2.4.1 Bug- 0 Algorithm Results ...
2.4.2 DWA Algorithm Results
2.4.3 Obstacle Avoidance Algorithms
Comparison...................
3 State of Art Localization in
Mobile Robots

3.1 Various Localization Techniques
3.1.1 Tterative Closest Point SLAM [26
3.1.2 Oriented FAST and rotated

BRIEF 2 SLAM (ORB-SLAM 2

3.1.3 GraphSLAM
3.2 Implemented Localization Method
3.2.1 AprilTag Markers
3.2.2 Experimental Setup
3.2.3 Apriltag Localization
3.24 EKF Fusion
325 Results 48]
4 Conclusion and Future Work
Bibliography 57

vii

Figures
1.1 Map utilized for testing
implemented localization technique in

simulation.
1.2 TurtleBot mobile robot used in the
experiments. 2]

1.3 Different types of artificial markers

[Cera]

1.4 Intel RealSense T265 camera [2].

2.1 Local minimum of the potential

field caused by symmetry..........
2.2 Local minimum of the potential

field caused by a concave obstacle. .
2.3 Building the two-dimensional

histogram grid map [7]............ 9
2.4 Active cell mapping on the Polar
Histogram[7]..................... 9
2.5 Representation of one-dimensional
polar histogram [7].
2.6 Representation of regions, valleys
and gaps for SND [10].

2.7 DWA trajectory selection while
moving toward the green goal (simple
robot simulation)................

2.8 Bug-0 Algorithm behavior
Algorithm with 2 unknown
obstacles.

2.9 Bug-0 Algorithm behavior inside a

complex map.
2.10 Turtlebot Burger used in
Simulation.
2.11 Rwviz tool: Laser scanner and
Camera visualization. 18]
2.12 Utilized map for obstacle
avoidance testing.
2.13 Bug-0 Algorithm behavior inside
the utilized map.
2.14 Bug-0 Algorithm "follow the wall"
stage is active. 20|
2.15 Bug-0 Algorithm "move towards
goal" stage is active..............

2.16 DWA Algorithm trajectory
selection (blue circle) captured from
Rviz tool.

2.17 DWA algorithm behavior inside
the utilized map.

2.18 Points A, B and C are the
designated destinations points for
evaluation.,

3.1 Two registered point cloud scans,
ICP matching [I8]...............

3.2 Feature detection of far points
(blue) and the close points (green)

&

0], ..o 29
3.3 ORB-SLAM 2 architecture [20]. 30
3.4 ORB-SLAM 2 architecture [20]. 31
3.5 GraphSLAM illustration [22]. .. [31]
3.6 AprilTag generated tag family

[25]. oo 33
3.7 AprilTag process flowchart [24].. (34

3.8 AprilTag image processing steps

£
B

3.9 AprilTag detection via Intel

RealSense D435 camera. 35
3.10 Visualization of small map
utilized for localization testing. . ..

3.11 Visualization of larger map
utilized for localization testing. .
3.12 TurtleBot 2 Factory D1men81ons

3.13 Intel NUC integrated to
TurtleBot. 38|
3.14 Intel RealSense D435 camera [2].
3.15 Depth Image (left) and Color
Image (right) captured via Intel
RealSense D435. 39
3.16 Reflective marker (left) and Vicon
tracking camera (right).
3.17 Area equipped with Vicon Motion
Capture System.
3.18 Transformation tree visualization
after static broadcasting of artificial
markers. oo i
3.19 The comparison of ground truth
(blue line) and Apriltag Localization
method (red line) for the x-axis in
simulation.
3.20 The comparison of ground truth
(green line) and Apriltag Localization
method (orange line) for the y-axis in
simulation. 44

3.21 The comparison of ground truth
(pink line) and Apriltag Localization
method (purple line) for yaw in
simulation.

3.22 Root Mean Square Error (RMSE)
computed for the x-axis in
simulation.

3.23 Root Mean Square Error (RMSE)
computed for the y-axis in
simulation.

3.24 Root Mean Square Error (RMSE)

computed for yaw in simulation.
3.25 Visualization of estimated robot
pose via Rviz software tool.
3.26 The two-dimensional trajectory
(x,y) results from the Gazebo
simulation. 49

3.27 The small testing area with the
Apriltags placed (approximately
Am2).
3.28 The large testing area with the
Apriltags placed (approximately
30m2). o
3.29 The two-dimensional trajectory (x
and y axis) results from the small
environment test. [51]
3.30 The two-dimensional trajectory (x
and y axis) results are obtained from
the larger environment test.
3.31 The two-dimensional trajectory (x
and y axis) results are obtained from
the large environment test........
3.32 The graph of the total root mean
square error of the x and y axis is
acquired from the small environment

ix

Tables

2.1 Results of Bug-0 and DWA
algorithm arriving to the destination
point A. ...

2.2 Results of Bug-0 and DWA
algorithm arriving to the destination
point B.

2.3 Results of Bug-0 and DWA
algorithm arriving to the destination

point C.
3.1 Intel NUC specifications.

Chapter 1

Introduction

In the past few decades, the conventional applications of mobile robots
expanded on an immense scale. There are a variety of fields utilizing mobile
robots such as medical facilities, customer service, rescue missions, agriculture,
warehousing and delivery resulting in the creation of numerous mobile robot
models. Localizing and navigation is a crucial task for most mobile robots.
There is a wide range of developed techniques and implementations to solve
the localization and navigation issues in mobile robots. These are mentioned
as SLAM (Simultaneous Localization and Mapping) algorithms where each
technique consists of different approaches. In this work, localization of the
mobile robot using artificial markers will be implemented and proposed.
Artificial markers are placed on the walls of the environment and global
positions of the markers are known. The mobile robot is expected to localize
itself in the environment while moving, which is achieved by estimating the
position of the robot in the environment within the global coordinate frame.
The simulation scene is illustrated below.

Figure 1.1: Map utilized for testing implemented localization technique in
simulation.

1. Introduction

The proposed work is tested with TurtleBot mobile robot depicted in Fig.
1.2/ and on the Gazebo simulation. The algorithms and localization nodes are
developed in Gazebo simulation. The final testing is executed on the real
TurtleBot within the Vicon [28] equipped environment. The environment
is an arena equipped with Vicon motion capture camera system, off-board
computing workstations for design, tests and verification using aerial and
ground robots. Vicon is one of the leaders in optoelectronic motion capture
systems based on reflective markers. The main advantage of the Vicon setup
is the accuracy of the motion detection system allowing to obtain very precise
ground truth positions.

Figure 1.2: TurtleBot mobile robot used in the experiments.

Detection and identification while using artificial landmarks referred to as
fiducial markers is a common utilization in Computer Vision applications
and Augmented Reality applications [27]. There are a variety of fiducial
markers available for developers such as ARToolkit, ARTags and AprilTags.
The visualizations of the different artificial markers (tags) are shown below

in Figl.3.
CIES

(a) ARToolkit (b) ARTag (¢) AprilTag

®

(d) RUNE-Tag (e) Intersense

Figure 1.3: Different types of artificial markers [27].

1. Introduction

The circular tags are less efficient than square tags because having four
corners establishes efficient, robust and reliable localization of the markers
using camera vision. Due to AprilTags being up to date in terms of software
and its compatibility with the ROS (Robotics Operating System), the use of
AprilTags is decided for the proposed work.

The mobile robot used for this work was equipped with Intel RealSense
T265 [2] a high technology camera designed for computer vision application
which is a tracking camera using a combination of MU and fish eye lenses.
The field of view provided by the camera is even greater than the human
field of view at 163°. Additionally, the T265 camera is equipped with an
Intel RealSense V-SLAM visual processing unit. This unit allows the camera
to synchronize the information provided by the IMU and the lenses in real-
time. The processor runs V-SLAM algorithms for environment recognition
and trajectory calculations. The T265 camera can be used simultaneously
with other cameras in the Intel D400 series to develop various robotic vision
applications such as 3D mapping, SLAM and obstacle avoidance applications.
With the advice from my Supervisor, the camera is alternated to Intel
RealSense D435. The key features of the T265 camera, such as V-SLAM
and the wide-angle, will be not be utilized in the project. The intentional
exclusion of the camera is due to the complications it causes in the fiducial
marker detecting system because too many markers are detected in the same
frame resulting in inconsistent localization of the markers.

Figure 1.4: Intel RealSense T265 camera [2].

The proposed work is prepared in the ROS (Robot Operating System),
which is a set of software libraries and tools that help build robot applications
[1]. It was first developed by Ph.D. students Eric Berger and Keenan Wyrobe
at Stanford University. Later on, they joined Willow Garage to continue
developing ROS. Despite the platform’s name, it is not a conventional oper-
ating system, it requires Linux Operating System to install ROS. After the
installation of ROS, it achieves low-level device control, message interface
for communication between nodes, package management, visualization tools,

3

1. Introduction

debugging and hardware extraction similar to other operating systems. ROS
is a language agnostic, which means that the subprograms written (nodes)
could be implemented in programming languages such as Python and C++
applications. In the proposed work, Python language is utilized.

Chapter 2

State of Art Obstacle Avoidance in Mobile
Robots

Safe navigation is one of the significant aims of a mobile robot. In recent years,
mobile robots are expected to autonomously navigate in the environment they
are placed in. Autonomous navigation could be generalized in four stages:
sensing, localization, planning and actuation. In the sensing stage, the mobile
robot’s sensors collect data from the surroundings and process the data in a
way that this information becomes vital for the next stages. The localization
stage consists of using the information from the sensing stage to determine
the position of the robot in the global frame within a prior map. Once the
robot position has been calculated, then the sequence of actions to reach
the desired destination can be computed in the planning phase. Finally, the
actuation stage executes the plan.

Local obstacle avoidance techniques frequently use a parallel process of
the planning phase. The primary objective is to modify the global plan in
order to avoid obstacles while stationed in an unknown map. In this work
the obstacle avoidance usage is slightly different, generally the prior map of
the environment is provided for autonomous navigation although prior map
is not available for the obstacle avoidance implemented. Thus, there isn’t any
global planning method in this work. Local planning is utilized to avoid the
obstacles within the map.

There are plenty of various algorithms for local obstacle avoidance meant
for mobile robots. Each technique has a different approach to the obstacle
avoidance concept. Some of them are barely reactive while others use the
information provided by the global planner to alternate the path followed by
the mobile robot. In this work, different types of local planning algorithms
have been studied and compared.

B 2.1 Various Obstacle Avoidance Techniques

This section is intended to analyze and describe three techniques of obstacle
avoidance for mobile robots. The first technique is the Artificial Potential
Field Algorithm, the second is the Vector Field Histogram and the last is the
Smooth Nearness Diagram. These techniques have the common attributes of

5

2. State of Art Obstacle Avoidance in Mobile Robots

using the on-board sensors to locate the obstacles around the close proximity
of the mobile robot and afterward utilizing this information to navigate to
the destination point. In the following subsections, the obstacle avoidance
techniques are described.

B 2.1.1 Artificial Potential Field Algorithm

The local obstacle avoidance by using artificial potential fields was first
proposed by O.Khabib [4] in 1995. This method is characterized by a simple
and powerful approach. The mobile robot (MR) is considered a particle
engaged in a potential field generated by the obstacles and the destination
goal. The goal establishes an attractive potential for MR. On the other hand
the obstacles detected from the environment establish a repulsive potential
for MR. This potential field can be interpreted as an energy field and thus
it is gradient, meaning at each point is a force. The MR immersed in the
potential, drives to the goal due to the attractive potential results from the
gradient of attractive potential field caused by the goal. Meanwhile, the
obstacles generate gradient repulsive potential field to repel the robot away
from the obstacles leading MR to a safe path to the goal. The gradients
can be thought of as forces acting on the positively charged MR, therefore
the negatively charged goal is attracting the MR despite positively charged
obstacles resulting in repulsive forces for MR.

The MR is considered as a moving particle in an n-dimensional space R™.
For the sake of simplicity, the MR is moving in a 2-axis coordinate frame
(x,y) and the position of the robot is represented by ¢. Then the artificial
potential field where the robot moves is a scalar function denoted as U(q).
Thus the generated superposition of attractive and repulsive potentials can
be described by [6];

U(q) = Uatt(Q) + Urep(Q) (2.1)

The Artificial Potential Field Algorithm’s (AFPA) attractive potential is
assumed to be zero at the goal point and to increase as the robot is far away
from the goal. The repulsive potential, associated with each obstacle, is very
high (infinity) in the close vicinity of the obstacles and decreases when the
distance to the obstacle increases [5].

F(Q) = Fatt(q) + Frep(Q) = _VUatt(Q) - VUrep(Q) (22)

U(q) is assumed to be differentiable thus at each ¢, the gradient of the
potential field can be described as VU (q) which is a vector that points in
a direction that U(g) maximally increases. F; is also a vector, points in a
direction that each ¢ point maximally decreases the VU(q).

Uair(@) = i (00 (23

2.1. Various Obstacle Avoidance Techniques

Uat(q) is the standard parabolic that increases quadratically while the
distance to the goal decreases. Where kq; and ggoq is a scaling factor,
dgoai(q) = 1|¢ — qgoal|| Parameter is the Euclidean distance from the robot to
the goal.

v[](zzft (Q) = katt(q - ngal) (24)

VUai(q) is a vector depending on the difference of ¢ and ggoq that is
pointing away from the ggoq;. When the distance from the goal is expanding,
then the magnitude of the attractive potential field is also increasing.

%kobsti(m - %)2 Zf dobsti(Q)

< 0
. (2.5)
0 Zf : dobsti (Q) =0

Urep, (Q) = {

Minimal distance from ¢ to the obstacle i is denoted as dopst, (¢) , do is the
obstacle influence threshold and ks, is the scaling factor. The negative of
the gradient of the repulsive potential is Fy.p,(q) given as:

st (@) dobst

_ (26)
0 Zf: dobsti(Q) 2 do

kfo st 1 — L 1 d—dobst - . do ot < d
Frep, (q) = { b t'b(dobsti (@) do)d if bst; () 0

The APFA is a simple, robust technique for local obstacle avoidance. The
main principle behind this approach is energy fields types. When the MR
is using this technique in an unknown environment for obstacle avoidance it
might not be ideal depending on the environment. The major drawback of
this technique is in some situations MR can get stuck in local minima. These
issues may arise from the symmetry of the environment and the concave
obstacles as well as the MR oscillation while traveling in narrow passages

depicted in Fig.

F repulsive-1
\ S

F attraction g Goal
[}

> >
F repulsive-2

Figure 2.1: Local minimum of the potential field caused by symmetry.

2. State of Art Obstacle Avoidance in Mobile Robots

“ q g Goal
Robot path - >

Local Minimum Point

Figure 2.2: Local minimum of the potential field caused by a concave obstacle.

In Fig. 2.2/ the MR is approaching the concave obstacle and the goal is
attracting the MR. Then at the point g the attractive force to the goal is
symmetric to the repulsive force generated from the obstacle. This occasion
results in MR achieving local minima and MR can’t reach the goal.

B 2.1.2 Vector Field Histogram

The Vector Field Histogram (VFH) is an on-line obstacle avoidance technique
that prevents collision within unknown obstacles and environments. The
technique takes advantage of the measurement instruments mounted on the
mobile robot (MR) and with the information forwarded from the sensors such
as a laser scanner that will be used in detecting the objects around the MR.
Meanwhile the MR is steering to reach the destination point and avoiding
the obstacles in the environment. This technique was first mentioned by
Borenstein and Korem [7] in 1991.

The VFH technique utilizes the two-dimensional Cartesian histogram grid
as a world model only considering the x and y axis. The world model is
continuously updated according to the range data sampled from the MR’s
on-board laser scanner. The VFH uses a two-step process for data reduction
in order to compute the velocity commands to be forwarded to the robot to
reach the goal point. The first step consists of establishing a constant sized
two-dimensional histogram grid from the current location of the robot which is
then reduced to one-dimensional polar histogram establishing computational
advantage. Each sector of the polar histogram is a value served as polar
obstacle density in that direction. In the second step, the VFH method selects
the most suitable sector in all polar histograms with a low polar density,
meaning the safest direction to the goal according to the data received from
the sensors.

The application of the VFH is generally finalized in three stages: the first
stage is building the two-dimensional Cartesian histogram grid representation

8

2.1. Various Obstacle Avoidance Techniques

for the obstacles retrieved from the sensors. The data from sensors such as
laser scanners or ultrasound sensors used to construct the occupancy of the
cells that correspond to the distance d is incrementally updated, increasing
the certainty value of the cells. This phenomenon is depicted in Fig.
below.

)
e
! 'is*asw"im : ObJeCt\ \ (/ Object’,
\ THr / 1& //
Od\ﬂﬂ ﬂﬂﬂ\ﬂﬂﬁl! 00000 0/0MI0!D
olololololoolo oo olo/o/olnldjolalolotsl |
0 olo+10.0[0 ol0lololo L
AR ARANARA shhaoeEiin
gno\oannooo/o olololnlalalgalalojo
\ \ Certainty \ /
\\ values /

\
\ \\,30"_001@/
\
\
Measured \
distance d \ / \
\
\ \

\
\ Direction Direction
\ of motion of maotion
‘ .
\—==Sonar previous— = current
reading reading

Figure 2.3: Building the two-dimensional histogram grid map [7].

The second stage of the VFH exploits the two-dimensional Cartesian
histogram derived from the previous stage and transforms this histogram
grid map to a one-dimensional structure for simple computational purposes.
Utilizing the entire grid map for computation is therefore unnecessary to
preserve and to secure the information gathered from sensor data. This data
should be restricted to a window C' which is called an active window.

a7 Gertainty valugs +Active window
212512 13 113
it
—— Sz 7 $5 iLn e
3 iy sp7 —
A A — —
S==17 /
N toor;
S — = o
@ 7 ity as
= _é/éft: E /[::%%k
= = N i
— e
¥y
Active cells
R Ws

Figure 2.4: Active cell mapping on the Polar Histogram[7].

2. State of Art Obstacle Avoidance in Mobile Robots

The active window then can be transformed into a one-dimensional polar
histogram. Thus the local map of the environment could be represented
as C* and it is constantly updated according to the incoming inputs from
the sensor data. This occasion is depicted in Fig. [2.4L Active grid C* is
mapped compromising n angular sections with the width «. Partition of
angular sections is necessary for the evaluation of the one-dimensional polar

histogram.
Directions:
Polar histogram 80°
180" o°
H'(k)
270°
B c _
threshold
A
A | I I
Ml 11, L1] 11 I
0° o0° 180° 270° k
a
.) Target
T Aclive Window—— ¢
- . 1

Polart:
histogram

Figure 2.5: Representation of one-dimensional polar histogram [7].

The last stage of the VFH consists of determining the steering angle of
the MR according to the one-dimensional polar histogram. This is used
to reach the destination while simultaneously adjusting the velocity of the
MR from the obstacle polar density. The polar histogram contains "valleys'
which are the low polar density zones while "peaks" represent the high polar
density zones. The valleys with enough space for the robot to pass are
considered as candidate valleys which can be computed by a threshold value
Smaz- If the valley is higher than the threshold value then it is wide enough

10

2.1. Various Obstacle Avoidance Techniques

for the robot to pass through. This threshold can be set according to the
dimensions and kinematic constraints of the MR. The threshold should be
selected accurately and should be tuned, otherwise, this method will not be
optimal. The VFH method can overcome some issues that are present in
Potential Field Algorithm (PFA). This technique solely relies on the on-line
input from the sensor data due to non-existent attractive or repulsive forces.

B 2.1.3 Smooth Nearness Diagram

The Smooth Nearness Diagram (SND) is a local obstacle avoidance technique
that was inspired by and improved version of the Nearness Diagram (ND)
presented [9] in 2004. ND was the first reactive navigation approach based on
gaps. The ND approach is simple and not computationally demanding. ND
avoids collision and local trap occasions without determining which areas of
the environment are connected. It reduces the local minima problem which
some local obstacles avoidance techniques tend to have.

The SND is an improved edition of the ND and they both utilize the
concept of gaps. The method was first introduced in 2008 by J. W. Durham
and F. Bullo [I0]. SND corrects the oscillatory motion of the robot which
was present on the ND algorithm. The gaps mentioned are the discontinuities
in the depth of obstacles in the close vicinity of the robot which illustrates
the potential free paths in the blocked areas of the environment.

A gap is created at an angle where two adjacent depth measurements are
separated by r the diameter or one of the measurements can’t detect obstacles
in the range. In Fig. [2.6/it’s observed that the (a) and (b) are the gaps in
the environments. The left gap is indicating the obstacle measured is on the
left side of the robot, also there might be a blocked area on the left gap. The
opposite is declared for the right gap.

-

Figure 2.6: Representation of regions, valleys and gaps for SND [10].

The different regions of the environment can be defined by the consecutive
gaps, the objective is to select the "valley" that represents the open space for
the robot to traverse. The valley can be located on the left gap, that is left

11

2. State of Art Obstacle Avoidance in Mobile Robots

side of the robot or can be located in the right gap that is the right side of the
robot. Then all the regions are assembled, after that comparison of regions for
the selection of the optimal path is considered. The valley containing the gap
with the best heading to reach the goal is selected for non-collision path. The
major difference between ND and SND is, SND considers the safety distance
from the robot meaning the threat of hitting obstacles will arise while getting
closer. In return, this threat factor measured from obstacles will allow the
SND to compute the desired heading angle to follow the obstacle free path.

B 22 Implemented Obstacle Avoidance Techniques

For the proposed work two obstacle avoidance techniques are described and
implemented. The first method is the Dynamic Window Approach and the
other one is Bug-0 Algorithm. They both are popular and effective techniques
for obstacle avoidance. This section is meant for explanations and illustrations
of the obstacle avoidance techniques implemented. The techniques are tested
and results are compared in the next section.

B 2.2.1 Dynamic Window Approach

The Dynamic Window Approach (DWA) is a robust and efficient technique
for local obstacle avoidance purposes. This method was first mentioned in
1997 by D. Fox, W. Burgard and S. Thrun [I1I]. The DWA is based on the
dynamic motion of the MR. The technique utilizes kinematic constraints to
determine the optimal velocities and the accelerations of the robot. The
algorithm is summarized two by phases, the first is the generation of the
search space and the second phase is selecting the optimal path from the
search space retrieved from the first phase.

In order to begin DWA it’s necessary to define various parameters that
will be used throughout the algorithm. These time-invariant parameters
are robot radius, maximum speed of the robot and other robot dependent
information. After that, inputs from the sensor data (laser scanner data)
should be obtained also including the global position. Then the program goes
to an infinite loop until it’s terminated or reached the goal. Meanwhile, with
each reading from the sensors: the laser data, position and current velocity is
updated.

After setting the initial parameters the next step is to generate a search
space of angular velocity and linear velocity pairs. For this step equations
below are proposed in order to compute the minimal and maximal velocities
of the robot which is a restriction of the minimum and maximum speed of
the mobile robot used.

Umaz = Ve + Vas Umin = Ve — Vp (27)

12

2.2. Implemented Obstacle Avoidance Techniques

Wnar = We + Wa, Wnin = We — Wh (28)

The parameters in the equations above (Eq. [2.7-2.8) are denoted as
maximal translation v,, rotational acceleration w,, current linear velocity
v. and angular velocity w. and maximal deceleration v, executable by the
motors. Upgz and Wy, are the maximum linear velocity and angular velocity,
on the other hand v,,,;;, and w,,;, are the minimum linear velocity and angular
velocity, all of the parameters are derived from the robot dynamics.

The DWA takes directly the dynamics of the robot into account. Thus the
parameters should be tuned precisely for different robot models used or for
different maps used. The tuning of the parameters is mandatory as long as
optimal results are expected from the robot motion.

After the parameter initialization, the motion model of the MR is computed
from the Eq. [2.942.11] below, allowing to predict the robot position in time
with the robot dynamics defined. This robot position later provides the active
dynamic window of the robot which describes robot motion in the future time,
allowing to compare the possible trajectories in order to select the optimum
trajectory to reach the destination. Meanwhile, dynamic window is computed
from the dynamic specifications of the robot from the Eq. [2.7,2.8| then these
dynamic windows are restricted to robot capabilities so the final dynamic
window result is the admissible speed of the robot that can be reached within
a short time interval given the limited accelerations of the robot. Which
is then compared with obstacles retrieved from the sensors to find a safe
trajectory and label trajectories as collision path or free path.

2(tn) = z(to) + ttnv(t).cosé(t).dt (2.9)
y(tn) = y(to) + ttn v(t).sinb(t).dt (2.10)
0t) = 0(to) + [w(t).dt (2.11)

The obstacles are retrieved from a 360-degree scanner and it’s partitioned
to different regions incremented by 16 degrees. The average range value of the
regions is computed for simplicity. Furthermore, the angles of the obstacles
are calculated with respect to the global frame. The angle and the range
information of the obstacle allow predicting the position of the obstacles in
terms of point in a two-dimensional coordinate frame . A naive but effective

13

2. State of Art Obstacle Avoidance in Mobile Robots

approach is implemented for obstacle avoidance, the obstacles are perceived as
a point thus the MR radius is compared to the distance to obstacles ensuring
if the difference is smaller than the robot radius then the collision is inevitable
then the trajectory is calculated and labeled as collision path then discarded.
This process is recursive thus each trajectory is compared to each obstacle
generated from the laser scanner for labeling.

The collision free paths are appended to the list. Then paths are charac-
terized by the three parameters: velocity (vye;) , clearance (Ugeqrance) and
target heading (vang). The velocity refers to the speed of the trajectory, if
fast motion is expected then the velocity parameter should be higher on the
other hand clearance is a parameter that describes the lack of obstacles in
that path thus for a safer path the parameter should be kept higher. And
the last parameter to be considered is the target heading of the robot, this
parameter ensures the robot is moving towards the goal location to decrease
the detouring of the robot. It is maximal if the robot moves directly towards
the target and the distance to the goal is not prolonged in this case. The
parameters are mentioned in the paragraph are utilized to select the optimal
path for the desired motion of the MR, for each safe trajectory the parame-
ters are calculated then the objective function is generated to integrate the
parameters for optimal trajectory selection. The objective function is shown
below.

SCO’F@(U, w) =)\angvang +)\velvvel +)\clearancevclearance (212)

With the highest sum, the optimal trajectory is chosen wpest and vpest
and the robot starts moving with these parameters. Fig. [2.7 describes the
selection of the optimal path of DWA in a very simple simulation. The yellow
lines are possible trajectories and the red trajectory is determined as the
optimal trajectory to reach the green goal.

-

Figure 2.7: DWA trajectory selection while moving toward the green goal (simple
robot simulation).

14

2.2. Implemented Obstacle Avoidance Techniques

B 2.2.2 Bug Algorithms

Bug algorithms are inherited from the classical Piano Mover’s problem which
consists of expecting the robot to arrive at the destination point without
colliding with the obstacles in a known environment [12]. But when the
environment is unknown the approach is not sufficient to resolve the complexity
of the environment. At this point Pledge algorithm proposed by John Pledge
succeeds to resolve the issues with Piano Mover’s problem nevertheless still
needs improvements due to its poor functionality caused by infinite loops

(traps).

The Bug algorithms come in handy to correct its ancestor’s approach. The
name is inspired by how bugs (cockroaches, etc.) in nature navigate in an
environment using their antennas and other senses to collect information
about their surroundings and navigate to their destination point. The concept
of Bug-0, Bug-1 and Bug-2 algorithms were introduced by Lumelski and
Stepanov [13].

The Bug Algorithms are simple non computationally demanding methods
that solely rely on the local sensor data to determine a safe path to the
destination point in two-dimensional space. The method utilizes small memory
space allowing robust and practical computation. Bug-0, Bug-1 and Bug-2
algorithms are an efficient solution to reaching the global destination point
that uses the local sensor information (laser scanner) from the sensor mounted
on the MR. All of the Bug algorithms are based on the same principle that
the robot moves towards its destination when the obstacle is visible within the
sensors then the robot circulates around the obstacles without any collisions
to continue to drive towards the goal.

The main objective of the Bug algorithm is to follow the boundaries of
the obstacle without colliding and to arrive at the global destination point.
In addition, the Bug algorithms generally hold these three assumptions:
the MR achieves perfect localization, the MR is considered as a point in
two-dimensional space, the data from the sensors are impeccable [14].

B Bug-0 Algorithm

The Bug-0 algorithm is a primitive planner, which doesn’t demand any
memory space. The mobile robot (MR) initially has the knowledge of its
starting point Sysr(x, y) and the destination point G prg(x, y) which are points
in a two-dimensional Cartesian coordinate system. The Bug-0 algorithm can
be summarized in the steps described below.

Step 1: If the following conditions are not met, go directly to Gr

Step 1.1 : Destination reached, stop the process

Step 1.2 : Obstacle encountered, then apply Step 2

15

2. State of Art Obstacle Avoidance in Mobile Robots
Step 2: If the following conditions are not met, then follow the wall in the
selected direction (clockwise or counter-clockwise)
Step 2.1 : Destination reached, stop the process

Step 2.2 : Mobile robot’s heading is towards the goal point and no
obstacles in the way then apply Step 1

The robot’s motion behavior when the Bug-0 algorithm is present is depicted
below in Fig. 2.8, The red lines imply the path followed by the robot while
avoiding the obstacles when encountered.

Figure 2.8: Bug-0 Algorithm behavior Algorithm with 2 unknown obstacles.

The black lines indicate a path that might cause the robot to get stuck in
an infinite loop. The concave obstacles in the map might be problematic for
the robot to navigate towards the goal. Labyrinths and complex maps are
not ideal for this algorithm because they can get stuck also. However, the
map used in this work is not as complicated as Fig. |2.9| thus implemented
algorithm works properly as intended.

SJIR

Lﬂ

Figure 2.9: Bug-0 Algorithm behavior inside a complex map.

16

2.3. Experimental setup for Obstacle Avoidance

B 23 Experimental setup for Obstacle Avoidance

This section consists of describing the results and compares results obtained
from the tests conducted. Both algorithms are tested under the same cir-
cumstances the time is tracked for a mutual comparison. The behavior of
the mobile robot with two different obstacle avoidance technique are also
described in this section.

The implemented local obstacle avoidance algorithms are tested in the
same environment and scene using the Gazebo Simulation which is one of the
software backbones of Robot Operating System (ROS). The Gazebo simulation
utilizes a robust physics engine contributing realistic results allowing the
users to easily adapt the robot to real-world testing.

The robot that will be used is the TurtleBot Burger model. The dimensions
of the robot are a small size robot (Size: 138mm x 178mm x 192mm) but
indeed equipped with a laser scanner sensor allowing the robot to depict
the close vicinity environment from the laser readings and the odometry
information is provided by the Gazebo simulation.

Figure 2.10: Turtlebot Burger used in Simulation.

The experiments are based on placing the MR in an unknown environment
without a prior map. The MR is expected to reach a global destination
point selected by the user while avoiding any collisions with obstacles. A
laser scan capable of 360-degree measurement, is used for sensor data. Rviz
is a 3D visualizer for the Robot Operating System (ROS) framework. It
is convenient to utilize Rviz to debug or at least visualize the sensor data

17

2. State of Art Obstacle Avoidance in Mobile Robots

for better comprehension of the simulation. Also, the destination point is
selected from the Rviz tool (2D-nav goal) by clicking a point inside the grid
map. Fig. demonstrates laser scanner data from the MR visualized by
the Rviz tool.

onlysim.rviz* - RViz

File Panels Help

‘[“_“‘/ Interact ‘ " Move Camera [_jSelect <f+FocusCamera T=Measure .~ 2D Pose Estimate " 2D Nav Goal @ Publish Point o= @

[pisplays

- & Glo...
Fix... odom
Bac... M 48;48; 48
Fra... 25
Def... v

r v Glo...

Y TE W

@ Grid (v

b A La.. VY

» & Ro v

Add |

| Displays | Views
Image

Figure 2.11: Rviz tool: Laser scanner and Camera visualization.

The environment below is used for the experiments on the Gazebo Simula-
tion for the purpose of testing local obstacle avoidance techniques developed
in this proposed work. The map dimensions is 5m by 5m.

Figure 2.12: Utilized map for obstacle avoidance testing.

Obstacle avoidance techniques implemented are tested in the experiment
setup described which is constant for the rest of the tests.

18

2.4. Experimental results of Obstacle Avoidance methods

B 24 Experimental results of Obstacle Avoidance
methods

The implemented Bug-0 and DWA techniques are tested under the same
circumstances in the Gazebo Simulation. The same robot model and map, are
preserved for better comparison of the methods. The robot motion behavior
is explained for both algorithms. The results are discussed and the tables of
results are presented at the end of the chapter.

Bl 2.4.1 Bug- 0 Algorithm Results

The implemented Bug-0 algorithm is tested according to the setup explained
previously. The Bug-0 algorithm consists of two general methods. The first
method is moving towards the destination and if the obstacle is encountered
then the second method prevails which is the "follow the wall" method. Until
the followed wall is cleared the robot will continue to circulate around the
obstacle detected. After bypassing the obstacle the robot will integrate the
first method "move towards goal". Switching between the two methods covers
the main loop of the algorithm and MR is able reach the goal by interchanging
between the methods. This is a brief description of the method implemented.

Figure 2.13: Bug-0 Algorithm behavior inside the utilized map.

Fig. above is presenting MR motion with Bug-0 algorithm integrated.
The MR is placed at its starting position as in the figure then the red point
is selected for the destination. The yellow lines are trajectory followed by the
MR. The robot moves directly until the obstacles are noticed then the "follow

19

2. State of Art Obstacle Avoidance in Mobile Robots

the wall" method is activated. It’s clear that the MR rotated left instead of
right, which is certainly is not optimal considering the right side has a shorter
distance to the goal. Nevertheless, the solution converges to one referring to,
solution exist thus time is not a massive factor as long as solution exists in
the Bug-0 algorithm.

Figure 2.14: Bug-0 Algorithm "follow the wall" stage is active.

The Fig. above represents the robot motion while "follow the wall"
method is activated.

Figure 2.15: Bug-0 Algorithm "move towards goal' stage is active.

The Fig. above represents the robot motion while "move towards goal"
method is present.

20

2.4. Experimental results of Obstacle Avoidance methods

B 2.4.2 DWA Algorithm Results

The DWA algorithm is also tested in the same map as the Bug-0 algorithm,
the robot is placed in the same starting position and asked to move to the
designated goal point without collisions. The Fig. below is depicting the
selected trajectory (blue) by the MR in action.

Figure 2.16: DWA Algorithm trajectory selection (blue circle) captured from
Rviz tool.

The DWA algorithm is based on many parameters as explained earlier
and they need adjusting in order for MR to have optimal and non-collision

motion. The Fig. below illustrates the path followed by MR while DWA
algorithm is present.

Figure 2.17: DWA algorithm behavior inside the utilized map.
The DWA is an effective obstacle avoidance method. The solution converges

to one although the path is obviously not optimal caused by the loop motion
of the MR. The reason behind that unnecessary motion is the MR can’t find

21

2. State of Art Obstacle Avoidance in Mobile Robots

a clear path to the target even though there is enough space for robot to pass.
Thus MR continues the motion with admissible safe trajectories until the
robot rotated enough to confirm the clear path and drives towards it. The
desired agile and smooth motion of the robot can be achieved by improving
the obstacle recognition approach which then will lead to flawless obstacle
avoidance technique.

B 2.4.3 Obstacle Avoidance Algorithms Comparison

The DWA and the Bug-0 algorithms are configured in the same map with
the same robot model. Fig. illustrates the three destination points
denoted as A, B and C. The robot is expected to reach the destination and
the duration are collected for each run and described in Table 2.142.3. The
destination points are tested with each algorithm numerous runs to gather
time data.

Figure 2.18: Points A, B and C are the designated destinations points for
evaluation.

The DWA is a more complex and technical approach to the Bug-0 algorithm
due to the dependency on the dynamics of the MR. Thus DWA is expected to
be more agile and robust although only in destination A the DWA algorithm
prevails. B and C destination points are reached with Bug-0 faster and more
reliable than DWA algorithm. The DWA algorithm is unpredictable and
sometimes inconsistencies occur in the motion of the robot which leads to
massive changes in the duration. Nevertheless, both methods provided two
different solutions to obstacle avoidance techniques, the Bug-0 algorithm is
perceived as the more reliable and robust method due to inconsistencies of
the DWA algorithm.

22

2.4. Experimental results of Obstacle Avoidance methods

Destination A
t min | t max | t exp | Success Rate
DWA | 152s | 22.7s | 17.8s 80%
Bug-0 | 38.1s | 44.0 40.3 s 100%

Table 2.1: Results of Bug-0 and DWA algorithm arriving to the destination
point A.

Destination B
t min | t max | t exp | Success Rate
DWA | 21.8s | 409s | 36.3s 70%
Bug-0 | 17.1s | 20.5s | 184 s 100%

Table 2.2: Results of Bug-0 and DWA algorithm arriving to the destination
point B.

Destination C
t min | t max | t exp | Success Rate
DWA | 44.8s | 55.0s | 48.1s 95%
Bug-0 | 2945 | 33.6s | 309s 100%

Table 2.3: Results of Bug-0 and DWA algorithm arriving to the destination
point C.

23

24

Chapter 3
State of Art Localization in Mobile Robots

Localization is one of the backbones of mobile robot (MR) applications. For
the MR to operate safely and effectively, an accurate and robust localization
system is critical. The main objective of localization is determining the MR
position with respect to a global reference frame generally referred to as "map”.
The localization of the robot is essential for deciding what to do further. The
following motion of the robot is depending on the localization data and if it
isn’t precise enough then the motion is not executed as planned. Thus for
the majority of MR, the MR applications rely on a robust localization.

Generally, information for estimating the robot location is collected from on-
board sensors of the MR which are then utilized to perceive the surroundings
and its own motion. There are plenty of possibilities for sensor selection and
algorithm selection to localize the robot. Moreover, sensors include GPS
(Global Positioning System), camera, laser scanner, ultrasonic sensor, wheel
encoder, IMU (Inertial Measuring Unit), etc. The MR that is equipped
with one or more of the sensors previously mentioned is able to compute an
estimate of its location relative to where it’s started if a mathematical model
of the motion is known. The term is called odometry or dead reckoning.

The errors present in the sensor measurements and the motion model,
generates robot location estimates obtained from dead reckoning more and
more unreliable as the robot navigates in its environment [I5]. The formulation
of the localization problem depends on the sensors equipped by the MR or the
map of the environment. In one example, the map is an form of occupancy
grid that allows to differentiate between occupied or free spaces of the map.
Alternative example is, partial map of the environment is used such as feature
map or landmarks present in environment, then used to localize the robot
from the readings transferred by the sensors to find accurate positions.

In this chapter, three different localization techniques are studied and de-
scribed such as GraphSLAM, ICP-SLAM and ORB SLAM 2 also localization
types are explained. Further on a localization technique is developed that
incorporates artificial markers that are presented in the next sections.

25

3. State of Art Localization in Mobile Robots

B 3.1 Various Localization Techniques

There are multiple techniques available for localizing the MR. The following
subtitles explain the types of localization techniques. The localization imple-
mented using artificial markers is a static environment passive localization
technique.

® Passive or active localization

The active localization is achieved by on-board sensors (sensing) of the
MR being able to alternate the robot motion in the environment. On
the other hand, passive localization relies on sensors for estimating robot
position although it doesn’t affect robot motion.

® Known map or unknown Map localization

If the MR is given a known map of the environment prior to localizing
it is referred as a known map. It allows utilizing the map to compute
estimated position by extracting features of the map and also the sensor
inputs. In unknown map which is generally a SLAM (Simultaneous
Localization and Mapping) problem. The MR is expected to generate a
map of the environment while it’s exploring the map by its sensor data.

® Dynamic or static environment

The dynamic environment consists of moving objects and obstacles which
the MR must perceive then react with the alternating trajectory of MR to
achieve non-collision motion. The static environment is more predictable
and generally the map is constant. In rare cases of moving objects in a
static environment, the motion of the object should be known beforehand.

B 3.1.1 Iterative Closest Point SLAM

One of the most commonly utilized methods is the Iterative Closest Point
(ICP) SLAM developed by Mckay and Besl [16] in 1992. The technique takes
advantage of transformation between the two overlapping point clouds in
estimation of MR position. It recursively computes the registration by finding
transform parameters that minimize the Euclidean distance of corresponding
points, which are assumed to be the nearest neighbor points [I7]. The major
drawback of this technique is its high demanding computational power and
speed caused by the closest point detection.

26

3.1. Various Localization Techniques

The method consist of three stages. At first as an input point set of
unregistered scan P = {p1,p2,pn} p;i € R? and X = {x1,20,7,} 2; € R>
which refers to the base scan retrieved to align P against.

The first stage is finding corresponding point x, in X for every p; to find
the minimal distance from point set X. This process can be explained in the
formulation below.

d(p,A) = min(d(p,a;)) : i €{1,2,..N} (3.1)

The second stage integrates the set of correspondences achieved previously
to obtain a transformation A(q,t) , "q" referring to quaternion and "t" for
translation vector. The transformation obtained must minimize the distance
between the corresponding points. Mean square error function implemented
to ensure the minimization using Eq. 3.2l N, refers to the number of
correspondences.

1 &)
e(g,t) = N > |wi — R(q)pi — t| (3.2)
P =1

The third stage utilizes the Eq. [3.3] to acquire the optimal transformation
(alignment) between point sets.

Ag,t) = argqglin(e(q, t)) (3.3)

The transformation matrix obtained is represented as below. T is a four by
four matrix while t is one by three, and R is three by three rotational matrix.

R t
T = [ot 1] (3.4)

The ICP algorithm is finalized by merging the stages one through three
and loops until the program stops executing. The Fig. |3.1| below depicts the
before and after results of the ICP matching.

27

3. State of Art Localization in Mobile Robots

Figure 3.1: Two registered point cloud scans, ICP matching [I8].

Algorithm 1 ICP Algorithm
INPUT: input X = {x;}, to align, reference points Y = {y;},to align to and
R, t are the initial alignment.

ey
2: Compute distance threshold for inliers d;,; <y— rQq(p) where Qq(p) is
the p-quantile of distances d; = ||z; — yil|, (i, i) € C amd r > 0 is a
multiplier.
3: Construct set of inliers C" < {(x;, v;)|, (i, i) € C AN d; < diy}-
4: Solve absoulute orientation < [1] C’, for the inliers.
5: Go to line 1 if not done.

1. Establish correspondences C' < {(x, argmin [|[Rx; +t — yH)} |z e X.

OUTPUT: Alignment R,t average distance for inliers , inlier indicators
a; = [di < dip).

B 3.1.2 Oriented FAST and rotated BRIEF 2 SLAM
(ORB-SLAM 2

The ORB-SLAM 2 is an enhanced version of the ORB-SLAM which is a
feature-based monocular SLAM system operating in real-time. The ORB-
SLAM was developed by Raul Mur-Artal, J. M. M. Montiel and Juan D.
Tardos in 2015 [19]. The method is proven to be robust and efficient localiza-
tion via monocular SLAM.

The ORB-SLAM 2 is proposed by Raul Mur-Artal and Juan D. Tardos
in 2017 in order to improve the first ORB-SLAM technique. The method
simultaneously works on tracking, local mapping, loop closing. The technique
consists of two main components, the FAST key feature detector and the
BRIEF feature descriptor [20]. These components are the backbones of the
technique and are explained further.

FAST is a robust corner detection implementation utilized in ORB-SLAM
2. Assume p is a pixel to be analyzed by FAST feature, then Bresenham circle
radius is defined as four. Then, all pixels enclosed by the Bresenham circle are

28

3.1. Various Localization Techniques

sorted by three variations according to the estimated intensities. Variations
are intensity higher than p, intensity lower than p and finally similar intensity
to pixel p. The results obtained from analyzing the pixel, depends on the
eight consecutive pixels, if the pixels have higher or lower intensity than p,
the pixel is conceived as FAST feature.

The original is image transformed into a pyramid allowing to resolve the
scale variance which is prone to errors. Each level of the image is then down
sampled (zoomed) of the previous iteration. Thus the FAST features are
extracted from the constructed pyramid rather than features extracted from
the original image. This method annihilates the problems caused by scale
variance and the computation time is decreased. The Fig. illustrates the
ORB-SLAM 2 feature detection of the close and far points from an image
captured.

Figure 3.2: Feature detection of far points (blue) and the close points (green)

[20].

The computation of the corner orientation pixel density is at the moment
of p + ¢ order is described by the Eq. below. The u and v are the pixel
coordinates and I(u,v) is the pixel density of the pixel analyzed. After that
pixel orientation is computed with ease via the Eq. below.

o0

Mpq = Z Z ufv (3.5)

U= U=—0CC

0= atan2(m01, mlo) (36)

The BRIEF component utilizes the FAST feature output to transform it to
a binary feature vector denoting the N-bit binary string. The binary string
analysis is performed as BRIEF selects N random pixels pairs p, and p, in
the close neighborhood of pixels. The formulation is described in Eq.
below. After that, the entire binary string is recursively created from the Eq.

3.8.

29

3. State of Art Localization in Mobile Robots

O N
N

f(n) = Z2i_lT(pmpy) (3.8)
=1

The optimization problem is formulated below. Assuming m is the number
of points in a three-dimensional space, x; is a point and n is the number of
the camera views [2I]. The camera matrix is represented by M; therefore the
Bundle adjustment is obtained from the Eq. [3.9.

mml ; mj:ci ;
mmZZ)+ (5) (3.9)

ziM, T 4= 15=1 m3$2 m3$i

The ORB-SLAM 2 process and steps are illustrated in the Fig. [3.343.4.
The technique takes advantage of three parallel processes. The first process
is tracking which allows finding key features matching of each frame via local
Bundle adjustment. The second process constructs a local map with the local
Bundle adjustment and the third process achieves global Bundle adjustment.

TRACKING
Initial Pose Estimation
Extract |, Track New KeyFrame
N from last frame or ¥
Frame (=»r| ORB i Relocalisation Local Map Decision
v
Map Initialization MAP
PLACE MapPoints -
eyFrame
RECOGNITION 4

Insertion
Recent
MapPoints
Covisibility gll?r:;
Recognition Graph

ONIddYIN T¥207

Database Spanning New Points
Tree Creation
p Detection Local BA
! Optimize - Local
i||Essential || 9P v Candidates | | KeyFrames
i Graph Fusion Sim3 Detection | [f Culling
L

LOOP CLOSING

Figure 3.3: ORB-SLAM 2 architecture [20].

30

3.1. Various Localization Techniques

.:NE'I:T: el Steneo =
Lt Extract | | Stereo Keypoints
. Image ORE Mat::lhmg MW"F
| Right Ewtract L
H imnn ORB
I<t_|el-.5|_r.5.t1.e:'.ell:l RGE-D Smﬁ
! | Extract Gl:nt:r:llc - Keypmmg
IMAgE | opp
i Cuntmnate
HE L II'I‘t‘E-
Depth-
map

Figure 3.4: ORB-SLAM 2 architecture [20].

3.1.3 GraphSLAM

In recent years there is a variety of SLAM techniques have been developed

with different approaches.

One of the significant robust techniques is the

GraphSLAM presented by Sebastian Thrun and Michael Montemerlo [22]
in 2006. Even though there are some techniques implementing graph-like
representation, GraphSLAM is an optimized and enhanced version. The
technique has similarities to the literature on Lu and Milios’s (1997) seminal
algorithm. The GraphSLAM provides an immense scale of mapping the
environment thus proving the robustness and effectiveness in the urban
environment.

X, — gy, x)T R [— gy, x,)]

T
I“ QU x() E\.‘KZ

.
.
[}
-
.
.
.

[z, —h(m,, x)]) Q7' [z, —him,, x)] %

[z, = h0m,)1 Q' [z, —himy, x)] =" %,

= gty x)) R [x, = g1y, ;)] |

[= g Gt)" Ry

Figure 3.5: GraphSLAM illustration [22].

31

2, —himy.x,)] Q' [z, — him,, x,)]

2z, = himy, x,)]" Q 'z, = h(m,, x,))

[x, = gl x)]" R [x, = gu,. x;)]

3. State of Art Localization in Mobile Robots

The Fig. [3.5] is illustrating the algorithm. The graph is extracted from the
four poses of the MR denoted as x1, ..., z4 and the two map features denoted
as mq, my. There are two ares utilized for this approach. First is motion ares,
links any consecutive poses. The second is the measurement ares which links
the features measured in the particular location. The edges in the graph is
representing the non-linear motion constraint. The non-linear constraints
are assumed to be the negative log-likelihood of the motion model and the
measurements. The constraints are then added to the graph because of the
of low computational demand. The sum of the constraints results in the
non-linear least-squares problem. The Eq. [3.10 for the sum of all constraints
is depicted below.

JGraphsram = x4 Qoo + Z [z — g(ug, e-1)]" R [z — g(ug, zo1))]

+ Z [Zt - h(mct’ $t)]T Q_l [Zt - h(mct’ xt)]

(3.10)

The estimate of the map posterior linearizes the constraints. The result
obtained is a sparse information matrix and information vector [22]. After
this information, variable elimination is conducted resulting in a much small
graph that consists of mobile robot poses. Finally, the path posterior map is
estimated from the standard inference techniques.

B 32 Implemented Localization Method

Artificial markers are becoming significantly popular in the past couple of
years. Due to the fact, there are a variety of methods and approaches it can
be integrated into. In this proposed work the artificial markers are utilized for
the localization of a MR. The implemented localization technique is different
from SLAM techniques previously mentioned considering there is no mapping
process, unlike SLAM definition. The position of the markers in the global
map frame are known. The robot is expected to move around the constructed
map meanwhile localizing itself effectively in the unknown environment.

State of art localization techniques consists of two integrated methods to
achieve robust localization. The first method is the localization of the MR via
placed fiducial markers in the unknown environment. The second technique is
fusing the information from the artificial marker localization and applying an
Extended Kalman Filter. The final result obtained is the estimated position
of the MR in the global frame which the is the definition of the localization.

The localization technique described above is tested in simulation and

32

3.2. Implemented Localization Method

also in physical MR. The following sections of the proposed work explain
implemented localization technique in-depth and the components of the
localization technique are clarified.

B 3.2.1 AprilTag Markers

There is a variety of fiducial markers generated for integration in vision-based
applications. After conducting research on the different fiducial markers,
the ideal marker for the proposed work is decided as AprilTag [25] due to
the robustness and agility of the visual fiducial system compared to other
artificial markers.

TagCircle21h7 TagCircle49h12 TagCustom48h12

Figure 3.6: AprilTag generated tag family [25].

The AprilTag is an advanced visual fiducial system developed by E.Olson
[23] in 2011 which is still supported and updated. The major advantages of
the AprilTag to its opponents are the vast quantities of different pre-generated
tags, the ability to detect more than one tag in the same frame, preciseness of
square planers orientation detection, high-speed computation and outstanding
compatibility with ROS.

The AprilTag detection system can be summarized in two steps, the first
step is the detection of the marker which involves estimating the relative
position of the marker with respect to the camera frame, second is extracting
information from the payload.

Fig. 3.8 illustrates the detection scheme in stages. Fig. 3.8(a) is the input
image observed from the camera. The process begins with detection of line
segments in the image. The gradient direction and magnitude are computed
at every pixel referring to Fig. 3.8(b)-(c). Further on, a graph based method
is integrated to find similar gradient magnitude and direction for clustering
components as shown Fig. |3.8(d). The second stage is finding AprilTag
square and line segments [24]. The weighted least squares are implemented

33

3. State of Art Localization in Mobile Robots

Image N Lowpass Filter and N Detect line
involved-tag compute gradient segments

Out'put the . Obtain the . Compu'Fe H ‘_ Segment
relative-pose ID of the tag matrix the tag

Figure 3.7: AprilTag process flowchart [24].

in Fig. 3.8(e) to fit line segments in the pixels of each component formed
in the previous step. In the final Fig. 3.8(f), the intersection of lines allows
obtaining pixel’s coordinates which are at the center of every minor quad in
the AprilTag marker. The process described is already implemented in the
AprilTag library and has compatibility with ROS.

(e)

Figure 3.8: AprilTag image processing steps [24].

The AprilTag is an easy-to-use agile library that conducts the image
processing and the resulting information is then published to ROS topics.
The resulting information includes tag ID, position in 6-DOF (Degrees of
Freedom), detected image, etc. In order to use the library some configurations
are required to be set such as size of the tags number of tags used, specify
the family of tag utilized (Tag36hl11 is selected), assign camera intrinsic
parameters, and the subscribe to ROS topic of camera image output. After
acquiring the configurations of the library the entire computation is handled by

34

3.2. Implemented Localization Method

the "apriltag continuous__localization__node” then the results are published
to preset topics. The illustration below is depicting detected markers from
the camera image.

Figure 3.9: AprilTag detection via Intel RealSense D435 camera.

B 3.2.2 Experimental Setup

The experiments of the implemented Apriltag localization method are tested
in both simulation and real environments. The setup for the experiments is
explained in the following subsections.

B Simulation Setup

The implemented localization technique is tested in the simulation environ-
ment provided by Gazebo Software. The exact mobile robot model is used
as mentioned in the Section however the map is modified by placing the
AprilTag markers on the wall and also a smaller map (size 2m by 2m) was
generated for the purpose of improving the accuracy of the AprilTag detection
system.

The MR is placed inside the unknown map, it’s expected to move around
the map while achieving exceptionally accurate localization results. The maps

used are depicted in Fig.

35

3. State of Art Localization in Mobile Robots

Figure 3.11: Visualization of larger map utilized for localization testing.

B Real Mobile Robot Setup and Components

Real testing involves many components and devices to conduct the experi-
ments. In the following subsections, the different types of key components of
the experiment are explained in depth.

8 Turtlebot

36

3.2. Implemented Localization Method

The real mobile robot used in the experiment is TurtleBot 2. Which
is a popular robot model for education and research due to, open-
source software, low cost and compatibility with ROS. The Turlebot
was manufactured at Willow Garage and designed by Melonee Wise and
Tully Foote in 2010. The robot is a cylindrical shape similar to robotic
vacuum cleaner models on the market. The size of the model is 354 mm x
354 mm x 420 mm (Length x Width x Height) , allowing the ideal size for
navigation in small environments. The maximum transnational velocity
generated by TurtleBot 2 is 0.65 m/s and the maximum rotational
velocity is 3.14 rad/s. The maximum payload weight it is able to carry
is 5 kg on hard surfaces 4 kg on soft surfaces such as carpet. Fig.
illustrates the factory production dimensions of TurtleBot 2.

354 mm

[14in]

1
£T
— : = |.ssmﬁs‘“'
#9mm [6in])
PR -‘aﬁw [:i!l\n] |
RONT
TOP (a)Top view

(b)Front view

354 mm
[14in]

317.6 mm
125in]

(c)Side view \’TA

420 mm
[16.5in]

[

_ - 1

Figure 3.12: TurtleBot 2 Factory Dimensions [29].

| Intel NUC

Intel NUC mini PC is integrated onto the TurtleBot 2. The processing
and all of the computation is depending on the Intel NUC. It is the
backbone of the robot setup. The compact size and high-performance
components of the device resulting in the one of the best options for
CPU (Central Processing Unit) in MR. The ROS is installed on the Intel
NUC which handles the ROS threading and communication between the
nodes. The Table below presents the specifications of the Intel NUC
model used.

37

3. State of Art Localization in Mobile Robots

Processor Intel(R) Core(TM) i5-7260U CPU 2.20GHz
RAM 8 GB

GPU Intel Iris Plus Graphics 640 (Kaby Lake GT3e)
Storage 100 GB

ROS Version Kinetic

Ubuntu Version | 16.04 LTS

Table 3.1: Intel NUC specifications.

Figure 3.13: Intel NUC integrated to TurtleBot.

Intel RealSense-D435 Camera

Initially the Intel Realsense T265 [2] was the decided camera for the
experimental setup. Although by taking the advice of my Supervisor it
is changed to RealSense D435 [2] which provided the ideal results for the
experiment.

Intel RealSense D435 is high technology stereo depth camera with a
built-in IMU. The camera is integrated with a color image of output
640x360 pixels on the other hand the depth image output is 848x480
pixels. The depth image is visualized as a depth map, meaning the pixels
represents the distance instead of color and intensity thus it is significant
convenience to utilize the camera for obstacle avoidance techniques
instead of using lidar. The software is easy to use and the compatibility
with ROS is outstanding.

38

3.2. Implemented Localization Method

Right Imager IR Projector Left Imager RGB Module

Figure 3.15: Depth Image (left) and Color Image (right) captured via Intel
RealSense D435.

® VICON Motion Capture System

The Vicon Motion Capture System [28] is a high-end motion tracking
system specially developed for robot, gaming and film sectors. The
objective of the system is to track and record any desired component
inside the detection area of the Vicon System. The synchronized special
light-emitting cameras are placed throughout the Vicon System allowing
360-degree coverage of the environment, conducting detection of reflective
Vicon Markers which can be attached to any surface. After detection of
the reflective markers, the system is able to estimate the global position
and orientation of each reflective marker inside the Vicon System. The
tracking is extremely precise thus system can be used as a comparison
of almost perfect localization (error < lem). With the help of a ROS
node, the communication between Vicon Motion Capture System and
ROS Master is activated allowing to receive the estimated position and
orientation of markers obtained from Vicon Motion Capture System.
The TurtleBot contains four reflective markers allowing for full range

39

3. State of Art Localization in Mobile Robots

detection and orientation of the MR. The reflective markers are also
utilized to estimate the position and orientation of the artificial markers
placed on the wall. Fig. below is depicting on the left side is small
reflective markers that can be placed on any surface in order to track the
desired objects, and on the right side special camera of Vicon is present.

Figure 3.16: Reflective marker (left) and Vicon tracking camera (right).

Fig. below illustrates the area which is equipped with the Vicon
Motion Capture System. The mobile robot’s motion is tracked by the
cameras attached to the metal frame on the ceiling.

—
——: - g -
L — _,“5&. |/

_ Vi .ﬁ!ﬁ?" i

Figure 3.17: Area equipped with Vicon Motion Capture System.

40

3.2. Implemented Localization Method
B 3.2.3 Apriltag Localization

The Apriltag Lozalization is the implemented technique to achieve precise
MR localization. The implemented technique requires the AptilTag library
to be installed in order to detect and identify the fiducial tags. Subsequently,
this technique takes advantage of the ROS libraries and tag detection system
to transform the information and to estimate the position and orientation of
the robot in the global coordinate frame. The technique is described in-depth
in the following paragraphs.

Before Apriltag Localization technique begins, the artificial markers are
placed around the testing environment. The position and orientation of
the markers need to be measured with respect to the global coordinate
frame. After placing the AprilTags on the wall, the positions in three-
dimensional space (x,y and z axis) and the rotation are measured in roll,
pitch and yaw notations. This configuration is then imported to a YAML
file. The YAML file is utilized by the Apriltag Localization technique to
reach the global parameters of the markers used in the experiment. Then
to broadcast the information stored in the YAML file, a script is created
"tag_broadcaster.py" which reads the YAML file data and statically broadcasts
the "map" and "tag_ID" transformation according to the global position of the
tags included in the YAML file data. Subsequently, by executing the command
"rqt__tf tree" this leads to Fig. [3.18 below. The obtained transformation
tree is an independent component at first although later on will be connected
to the general transformation tree. The rest of the method relies on this
transformation tree to conduct a process to compute an estimated position
of the MR in the environment.

Recorded at time: 1639167134.0254147
(“map
‘Broadcaster: tag_broadcaster ‘Broadcaster: tag_broadcaster ‘Broadcaster: tag_broadcaster ‘Broadcaster: tag_broadcaster Broadcaster: tag_broadcaster Broadcaster: tag_broadcaster Broadcaster: tag_broadcaster Broadcaster: tag_broadcaster
‘Average rate: 10.996 Average rate: 10.993 Average rate: 10.992 ‘Average rate: 10.99 ‘Average rate: 10.989 Average rate: 10.987 Average rate: 10.985 Average rate: 10.984
Buffer length: 1.0 Buffer length: 1.001 Buffer length: 1.001 Buffer length: 1.001 \Buﬂ!l length: 1.001 \Bnﬂer length: 1.001 \Bnﬁur length: 1.001 \Buffer length: 1.001
1639167133.962| 1639167133.962 1639167133.963 M 1639167133.963 _‘m‘l recent transform: 1639167133.¢
Oldest transform: 1639167132.961 Oldest transform: 1639167132.961 Oldest transform: 1639167132.961 Oldest transform: 1639167132.962 i Idest transform: 1639167132.962 Idest transform: 1639167132.962 1639167132.962

Figure 3.18: Transformation tree visualization after static broadcasting of
artificial markers.

The rest of the estimation processes in the method are handled by the
python script "robot__pose_ broadcaster.py". At the beginning of the script is
the initialization of the fundamental parameters necessary for pose estima-
tion such as different coordinate frames. Subsequently, the transformation
between the frames is observed and tracking of transformation is achieved by
the "tf" ROS package. The package provides the relationship between the
coordinate frames in a tree structure buffered in time and allows the user
to transform points, vectors, etc. between two coordinate frames for any
point at any time. The package delivers massive convenience due to geometry

41

3. State of Art Localization in Mobile Robots

computations that are implemented in the package therefore the user doesn’t
have to compute matrix transformations. Nevertheless, comprehending the
concept of transformation between the frames is crucial because if the desired
transformation between frames is not clearly understood then the results
might be trivial. The concept behind the transformations is explained further
on.

The homogeneous coordinates are utilized in order to compute the transfor-
mation matrix. Any point P in the three-dimensional space R3 can explicitly
be described in the homogeneous coordinate notation, the formulation below
is the mathematical representation. The first three rows are x, y and z axis
coordinates of the point and the last row is denoted as the scale factor which
is 1 in the proposed work.

(3.11)

=
Il
_ N e 8

Consecutively the rotation matrix (R) and translation matrix (t) are the key
components of the transformation matrix. The rotation and the translation
matrix are described below in the general form. By using the two matrix forms
the transformed coordinates of any rotated point in the three-dimensional
space can be obtained. The general rotation matrix is formulated in the
quaternion (q) representation in Eq. 3.13.

i1 T2 T13 x
R=|ro1 roo rog|,t= |y (3.12)
31 T32 T33 z

1-2(y2+2%) 2(zy —w2) 2(zx + wy)
R(q)=| 2(@y+wz) 1-2z2+2%) 2(zy—wx) (3.13)
2(zz 4+ wy) 2(zy +wz) 1-2(y? +2?)

q=rty;tztw (3.14)

While the x, y and z variables are the imaginary components of the
quaternion and the w is the real component of the quaternion representation
in Eq. [3.14] . After setting all the notations above one can obtain the
transformation matrix 7" as illustrated below.

R 23 U3z
Thza = [(8%3 3 31 11 (3.15)

42

3.2. Implemented Localization Method

Once the rotation and translation matrix are configured between frames
then with the Eq. [3.16 below it’s possible to find the transformed vector (P')
coordinates in three-dimensional space as :

P =1pP (3.16)

The concepts and notations introduced are utilized in the Apriltag Local-
ization method. The localization is initiated soon as the detections from the
AprilTags are received. First, the ID of the tag is stored and the relative
position of the tag with respect to the camera is stored. The transformation
between the camera frame and the tag frame of the robot is estimated by the
AprilTag detection system. After that series of operations are conducted to
describe the MR pose in the global coordinate frame.

The transformation between the base of the robot and the camera frame
is used to transform the position of the marker in the base frame of the
robot by obtaining the transformation matrix T and by using the Eq. [3.16
the transformed marker pose is estimated with respect to the robot base
frame. The transformation matrix between the frames is retrieved from the
"lookup__ transform" function.

The next transformation is the base frame with respect to the marker
frame. Which is the inverse of the last achieved transformation. The inverse
of the transformation matrix is the desired parameter.

There on, the transformation matrix of the robot base with respect to the
map frame is constructed at the beginning of the section by broadcasting
the ground truth positions of the markers. Thus the connection of the
transformation tree is satisfied. The result gives the coordinates of the robot
base in the map frame. Although the results are not in desired number format
it’s stored in an array. The same process applies to every detected marker.
Nevertheless, the localization process is ongoing in the further steps.

The array is filled with tag poses with respect to the map frame. The
mean average of the x and y axis coordinates of the poses are calculated for
an estimated position since the MR is placed on the ground, the z-axis is
assumed to be zero. The orientation of the base frame is calculated from the
first detected artificial marker. Finally, the stored poses array is reduced to
a pose to be transformed last time and the transformation leads to highly
accurate estimation of the robot pose in the global frame. The standard
deviation of the errors is computed as: 0.0959 cm for x-axis, 0.0524 for y-axis
and 0.5388 for the yaw angle in the simulation system. For testing, the MR
executes a circular trajectory the results of the Apriltag Localization method
are represented by the Fig. 3.19:3.24] .

43

3. State of Art Localization in Mobile Robots

Figure 3.19: The comparison of ground truth (blue line) and Apriltag Localiza-
tion method (red line) for the x-axis in simulation.

Figure 3.20: The comparison of ground truth (green line) and Apriltag Local-
ization method (orange line) for the y-axis in simulation.

Figure 3.21: The comparison of ground truth (pink line) and Apriltag Localiza-
tion method (purple line) for yaw in simulation.

44

3.2.

Implemented Localization

0,004 ol [

N .
o 10 20 30 a0 50

Figure 3.22:
simulation.

0.016

0.002

o
o

Figure 3.23:
simulation.

60 70 80 % 100

0.05
0.045 ‘

0.04 M
0.035

0.03 I
0.025 \“I M‘
0.02 /‘ ‘/‘
0.015

0.01
0.005

)

n .
| nn
(- W /"'JF

WY
|

f.\ / ‘l/“\'v“ﬁ"\ / Je \\A \f | | I

0 20 40

60

80 100

Method

Root Mean Square Error (RMSE) computed for the x-axis in

Root Mean Square Error (RMSE) computed for the y-axis in

Figure 3.24: Root Mean Square Error (RMSE) computed for yaw in simulation.

45

3. State of Art Localization in Mobile Robots

The process after this is not available for the real robot but it’s a visual-
ization modification via the Rviz software in the simulation. Meanwhile, the
processes described are ongoing the transformation of the map to odometry
frame is being broadcasted and updated each loop. Thus the robot pose and
orientation can be viewed in the map frame. The visualization shows the
robot pose is fluctuating and unstable therefore the localization via Apriltag
needs to be improved even though the estimated pose is highly accurate.

fvinteract | ©7Move Camera [Select <FocusCamera CmMeasure . 2DPoseEstimate . 2DMavGoal @ Publish Point P = @

2 pisplays. Lo
~ # Global O... e
Backgro... W48;48;48
FrameR... 25
Default ... V.
= v Globals.
v Fixed... OK
» - TE]
» @ Grid v
»_+. LaserSc... v
Fixed Frame
Frame into which all data is transformed before being displayed.

Add

Displays = Views

|@ Image

Figure 3.25: Visualization of estimated robot pose via Rviz software tool.

B 3.2.4 EKF Fusion

The previously implemented localization technique standalone can’t provide
a precise localization. The irregularities are eliminated by applying an
Extended Kalman Filter (EKF). The previous technique’s output is one of
the inputs for the EKF. The EKF technique is one most popular filtering for
pose estimation which is the nonlinear version of the Kalman Filtering that
linearizes an estimate of current mean and covariance. Even though EKF is
not guaranteed to achieve optimal results. The MR motion in the experiment
is nonlinear and the Kalman Filter is not sufficient. Thus the EKF is the
ideal selection of filtering for this proposed work.

It is assumed that the x and y axis are the global coordinate system for the
filtering. The TurtleBot 2 consists of two independent motorized differentials
wheels and two dummy wheels for stability. The motors work independently
thus the kinematic model equation of the robot can be estimated as:

Uy = V1 + vy = (L ;””) (3.17)
Wy = W1 + W = r(vr d_ vl) (3.18)

46

3.2. Implemented Localization Method

The vy, is denoted as linear velocity , v, and v; are the right and left wheel
speed, r is the wheel radius, d is the distance between two wheels. and finally
Wy 1S the angular velocity of the robot. Then the current state of the MR
can be calculated as :

Tt Ti—1 ASt COS(etfl + Aet)
ye| = |y—1| + | Asysin(0—1 + Aby) (3.19)
0 011 AB,

The As; is the difference in translational distance and A#; is the angular
difference.

The system and measurement equations for discrete-time Extended Kalman
Filter as follows [26]:

xp = fr—1(Th—1, ug—1, Wk) (3.20)

Yk = hi (g, ug, vk) (3.21)

The fr_1 and hy are non linear functions of state transition vectors. The wy,
and vy are the process noise and measurement noise the values are considered
to be zero mean Gaussian. The EKF consists of two stages. The first stage
is the prediction of the estimated state and the second stage is updating
the estimated state according to the measurement observed. The stages are
explained further on.

B Prediction Stage

The stage is activated soon as the robot motion is executed. The callback
functions are implemented in the script which directs the input for the
fr—1 function. The current state prediction is computed from the dynamic
constraints of the robot via Eq. [3.22. Then the state covariance matrix is
estimated as in Eq. |3.23|

Ty = fro—1(Tp—1, up—1, W) (3.22)

Py =Fr1Pe1 By + L1 Q1 Li (3.23)

The parameters referred as Lj_; is the Jacobi-an Matrix of the function
fr—1 which is differentiated with the respect to the input variable, Qx_1 is
the input covariance matrix.

47

3. State of Art Localization in Mobile Robots

B Update Stage

The update stage takes advantage of the predicted state estimation in the
previous stage then utilizes the information each time the measurements
are conducted. Thus in order to apply the update stage, measurements are
necessary. The stage initializes with computing the update coefficient which
is obtained from the Eq. [3.24] Where z; is the observation state acquired
from the measurements.

€ = 2k — hk(xk, uk,vk) (3.24)

Then the the kalman gain K} is computed below. The Hj is Jacobi-an
Matrix of function h, which is differentiated with the respect to the state
variables.

Ky, = PoH{ (H P H] + Ry,) ™! (3.25)

After the calculations, the new state equations are updated in Eq. [3.26
thus the covariance matrix is also updated as Eq. 3.27| thus concluding the
EKF iteration.

T = xp + e K, (326)

Py = (I — Kj,Hy)Py_y (3.27)

B 3.2.5 Results

The results are obtained according to the experimental setup described in the
Section [3.2.2, The robot is moving in a circular trajectory while the Apriltag
Localization method is estimating the pose of MR, the EKF is using that
information for the final accurate pose computation. The graphs below are
illustrating the experiment scheme. The robot ground truth pose is compared
with EKF and Apriltag Localization method results. The results are shown
in two categories: simulation environment and real environment. In the real
environment tests, the ground truth position is provided by the Vicon motion
capture system.

B Simulation Results

The Gazebo simulation’s trajectory results are depicted below in Fig. [3.9.
The blue line indicates the Apriltag Localization method, the green line is for
the EKF result and the red line which is overlapping with the green line is
ground truth. The Apriltag Localization method achieves very high accuracy

48

3.2. Implemented Localization Method

in a stable position meaning no force should be exerted from the motors. The
method solely relies on the image provided by the camera. The motion of the
MR causes some complications such as the screen capture time is significantly
dropped while moving thus the image is less clear for marker detection leading
to inconsistent estimate positions. The EKF fusion comes in handy to resolve
the data inconsistencies. The estimated position computed from dynamics of
MR and Apriltag Localization method results are fed to the EKF concluding
with an accurate estimate of positions compared to the ground truth.

T T T T T T T
07 0.6 0.5 04 03 0.2 0.1

Figure 3.26: The two-dimensional trajectory (x,y) results from the Gazebo
simulation.

B Real Mobile Robot Results

The tests for the mobile robot are conducted in two different conditions:
constant small circular trajectory in the small environment (Fig. 3.27) and
larger trajectory in the larger environment (Fig. 3.28). The small environment
consists of nine AprilTags (14 cm Tag36h11) placed around the environment
for precise AprilTag detection and for smoother EKF results, the markers are
detected continuously meaning there isn’t a camera frame without an AprilTag
marker detected thus AprilTag localization is estimated constantly within the
small environment. The large environment consists of six AprilTags (9 cm
Tag41h12) and they are placed further from each other, the robot is moved
around arbitrary in the area by the user controlling the robot motion, the
AprilTags are detected discretely meaning the EKF is computed constantly
when the marker is detected then EKF measurement is updated according to
the measurement observed. In the following paragraphs, the experiments will

49

3. State of Art Localization in Mobile Robots

be discussed and the results are displayed in the Fig. .

Figure 3.27: The small testing area with the Apriltags placed (approximately
4m?).

Figure 3.28: The large testing area with the Apriltags placed (approximately
30m?).

50

3.2. Implemented Localization Method

WiGround Truth (Vicon)

MEKF

WApriltag Localization
Odometry

T T T T T T T
-02 0 02 0.4
XY Plot

Figure 3.29: The two-dimensional trajectory (x and y axis) results from the
small environment test.

The Fig. [3.29| depicts the results obtained in the small environment, the
pink line refers to ground truth provided by the Vicon System, the green line
is EKF results, the orange line is the odometry calculated by the TurtleBot,
the blue line is the Apriltag Localization results which is extremely noisy due
to the vibrations in the camera frame caused by the bumps on the surface or
sudden acceleration and declaration lead to blur in the camera output image.
Thus the detection is not conducted in the optimal conditions resulting in
fluctuations in the measurement data. Although this factor was not apparent
in the simulation. Nevertheless, Apriltag Localization data is then smoothed
via EKF, the results of the EKF are the combination of measurements of
AprilTag and the robot pose is estimated from the motion model kinematic
equations. The EKF results are less accurate compared to simulation results
due to the Apriltag Localization result’s inconsistencies. Nevertheless, the
EKF is filtering the results obtained from the Apriltag Localization method
for precise estimation of the position.

o1

3. State of Art Localization in Mobile Robots

4.5

Figure 3.30: The two-dimensional trajectory (x and y axis) results are obtained
from the larger environment test.

Fig. |3.30 above, illustrates the results acquired in the larger environment
testing and larger trajectory. The robot is steered by the user in an arbitrary
trajectory. The red line refers to the ground truth computed from Vicon
System, while the green line refers to the EKF result. The noise of the
EKF is increased compared to the previous small environment tests due
to the reason, the markers are placed at a larger distance away from each
other thus the effective working range of the AprilTag markers is exceeded
which is approximately 1.8 meters in the experimental setup described earlier.
The EKF results are depending on the results obtained from the Apriltag
Localization method and the results are fluctuating more than the previous
tests causing the EKF results to deteriorate as well. Fig. |3.31| displays the
gold lines that refer to Apriltag Localization results conducted in the larger
environment. Nevertheless, the EKF is able to smooth the inconvenient
results provided by the Apriltag Localization method.

52

3.2. Implemented Localization Method

45

Figure 3.31: The two-dimensional trajectory (x and y axis) results are obtained
from the large environment test.

The real environment tests have a tendency for noise, lighting in the
environment is a indeed major factor. Even though Intel Realsense D435
is an outstanding device, that has adequate resolution optimal for this task
but slight movements in the camera frame lead to inconsistent EKF results.
Enlarging the AprilTag markers might improve the accuracy or decreasing
the distance to the marker can enhance the overall detection accuracy.

0.3

0.25

———

| |]~
01l | / \[

0.05 ““\ /

0

0 50 100 150 200

Figure 3.32: The graph of the total root mean square error of the x and y axis
is acquired from the small environment test.

53

3. State of Art Localization in Mobile Robots

The general accuracy is determined by the average error of the axes and
the overall root mean square error for x and y axis. The average error is
computed as 7.22 cm for x-axis and 3.47 cm for y-axis in the total average of
5.34 cm in the small environment. The larger environment error is estimated
as 16.38 cm for the x-axis and 9.82 cm for the y-axis leading to a 13.1 cm
total average error. The Fig. [3.32]is retrieved from the small environment
representing the overall root mean square error (RMSE) which is the sum of
root mean square error of x and y axis divided by two. The error significantly
increased when the larger environment test is conducted the reason for it is
the increased distance of the artificial markers in the environment resulting
in inaccurate position readings from the visual AprilTag markers.

o4

Chapter 4

Conclusion and Future Work

The main objective of the thesis is to implement a localization method for a
mobile robot using artificial markers. To supplement the localization part,
studies of obstacles avoidance are initially presented and two methods are
implemented and tested in the simulation environment. The results of the
DWA and Bug-0 algorithms are illustrated in Tables[2.142.3| Interestingly the
results propose that the Bug-0 algorithm is more reliable and efficient even
though it is developed to be simple and computationally efficient. The DWA
algorithm on the other hand relies on the motion kinematic of the mobile
robot thus expected to be more precise due to extensive calculation compared
to Bug-0 algorithms. DWA also demands to adjust plenty of parameters.
Nevertheless, the results could have been alternated if a different map is
utilized.

In the second part, state of art localization and SLAM techniques are
described and a method utilizing artificial marker is implemented. The
general localization system consists of two processes. The first being Apriltag
Localization which solely relies on image detection. Eventually, this method
needed improvement in accuracy thus the localization result is fused with the
second process, EKF, to achieve high-level precision. The system is tested
in both simulation and with a real robot (TurtleBot-2). The results are
presented in Fig. 3.2943.32 and the average accuracy is determined. The
final EKF results differed from the simulation results because the Apriltag
Localization method was affected by the blur in the image due to vibrations
caused by the motion; therefore, the real environment testing is noisier and
has more unpredictable factors. Nevertheless, the mobile robot localization
via artificial markers is established and improved, final results prove the
system to be highly correlating with the thesis goal.

For future work, the obstacle avoidance algorithms developed could be
implemented in a real robot that relies on the results of the localization
system developed. Since algorithms are tested in the simulation environment
with few alternations of parameters, the script can be easily adapted to the
TurtleBot 2. For the future, it is a good idea to integrate localization method
and obstacle avoidance techniques.

55

56

1]

Bibliography

Robotic Operating official website (ROS).
https://wiki.ros.org/ROS/Introduction

Intel RealSense official web-site.
https://www.intelrealsense.com

Daneshmand, Morteza. (2013). Path Planning and Obstacle Avoidance of
Mobile Robots via Potential Field Based Fuzzy Controlling.

O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” International Journal of Robotics Research, vol. 5, no. 1, pp.
90-98,1995.

Maria Isabel Ribeiro,1 Navigation/Collision Avoidance 1:1 Introduction
Obstacle Avoidance, 2005.

Oroko J. A., Nyakoe G. N. Obstacle avoidance and path planning schemes
for autonomous navigation of a mobile robot: a review, in Proc. 2012 Me-
chanical Engineering Conference on Sustainable Research and Innovation,
vol. 4, 2012, pp. 314-318.

J. Borenstein and Y. Koren, “The vector field histogram - fast obsta-
cle avoidance for mobile robots,” IEEE Transaction on Robotics and
Automation, vol. 7, no. 3, pp. 278 — 288, 1991.

Zohaib, M., Pasha, Mustafa, Riaz, Raja Ali, Javaid, Nadeem, Ilahi,
M.,Khan, Rahim. (2013). Control Strategies for Mobile Robot With
Obstacle Avoidance. 3. 1027-1036.

J. Minguez and L. Montano, “Nearness diagram (ND) navigation: Colli-
sion avoidance in troublesome scenarios,” IEEE Transactions on Robotics
and Automation, vol. 20, no. 1, pp. 45-59, 200.

[10] J. W. Durham and F. Bullo, "Smooth Nearness-Diagram Navigation,"

2008 TEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, 2008, pp. 690-695, doi: 10.1109/IR0OS.2008.4651071.

[11] D. Fox, W. Burgard and S. Thrun, The Dynamic Window Approach to

Collision Avoidance.=, Robotics and Automation Magazine, IEEE, 1997.

o7

4. Conclusion and Future Work

[12] Choset H, Lynch KM and Hutchinson S. Principles of Robot Motion:
Theory, Algorithms, and Implementations. ABD: M.I.T. Press, 2005.

[13] Lumelsky VJ and Stepanov A. Dynamic path planning for a mobile au-
tomaton with limited information on the environment. IEEE Transaction

Automatic Control 1986; 31: 1058-1063.

[14] Jom Kandathil, Robins Mathew, and SomashekharHiremath. “Modified
bug-1 algorithm based strategy for obstacle avoidance in multi robot

system”. MATEC Web of Conferences144 (Jan. 2018).
[15] Webster, J.G., Huang, S. and Dissanayake, G. (2016). Robot Localization:

An Introduction. In Wiley Encyclopedia of Electrical and Electronics Engi-
neering, J.G. Webster (Ed.). https://doi.org/10.1002/047134608X.W8318

[16] P. Besl and H. McKay, “A method for registration of 3-d shapes,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 2,
1992, pp. 239 —256.

[17] Tiar, R. and Lakrouf, Mustapha and Azouaoui, O.
ICP-SLAM for a bi-steerable mobile robot in large environments. 1-6.
10.1109/ECMSM.2015.7208683.

[18] Pawel Stowak, Piotr Kaniewski, "LIDAR-based SLAM implementation us-
ing Kalman filter," Proc. SPIE 11442, Radioelectronic Systems Conference
2019, 114420N (11 February 2020); https://doi.org/10.1117/12.2564818.

. (2015). FAST

[19] Mur-Artal, Raul, J. M. M. Montiel and Juan D. Tardés. “ORB-SLAM:
A Versatile and Accurate Monocular SLAM System.” IEEE Transactions

on Robotics 31 (2015): 1147-1163.

[20] R. Mur-Artal and J. D. Tardés, "ORB-SLAM2: An Open-Source SLAM
System for Monocular, Stereo, and RGB-D Cameras," in IEEE Trans-
actions on Robotics, vol. 33, no. 5, pp. 1255-1262, Oct. 2017, doi:
10.1109/TRO.2017.2705103.

[21] Milan Sonka, Vaclav Hlavac, and Roger Boyle. Image processing, analysis,

and machine vision. Thompson Learning, 3 edition, 2008.

[22] Thrun, Sebastian and Montemerlo, Michael. (2006). The Graph SLAM
Algorithm with Applications to Large-Scale Mapping of Urban Structures.
I. J. Robotic Res.. 25. 403-429. 10.1177/0278364906065387.

[23] E. Olson, AprilTag: A robust and flexible visual fiducial system. Robotics
and Automation (ICRA), 2011 IEEE International Conference on. IEEE,

2011: 3400-3407.

[24] Guo, Zhenglong and Fu, Qiang and Quan, Quan. (2018). Pose Estimation
for Multicopters Based on Monocular Vision and AprilTag. 4717-4722.

10.23919/ChiCC.2018.8483685.
o8

4. Conclusion and Future Work

[25] AprilTag Official Website.
https://april.eecs.umich.edu/software/apriltag

[26] Dan Simon. Optimal state estimation: Kalman, H and nonlinear ap-
proaches. Wiley-Interscience, pp. 407-410, 2006.

[27] Jin, Pengju, Pyry Matikainen and Siddhartha S. Srinivasa. “Sensor
fusion for fiducial tags: Highly robust pose estimation from single frame
RGBD.” 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) (2017): 5770-5776.

[28] Vicon Motion Capture System Official Website.
https://www.vicon.com

[29] Turtlebot Official Website.
https://www.turtlebot.com

99

	Introduction
	State of Art Obstacle Avoidance in Mobile Robots
	Various Obstacle Avoidance Techniques
	Artificial Potential Field Algorithm
	Vector Field Histogram
	Smooth Nearness Diagram

	Implemented Obstacle Avoidance Techniques
	Dynamic Window Approach
	Bug Algorithms

	Experimental setup for Obstacle Avoidance
	Experimental results of Obstacle Avoidance methods
	Bug- 0 Algorithm Results
	DWA Algorithm Results
	Obstacle Avoidance Algorithms Comparison

	State of Art Localization in Mobile Robots
	Various Localization Techniques
	Iterative Closest Point SLAM
	Oriented FAST and rotated BRIEF 2 SLAM (ORB-SLAM 2
	GraphSLAM

	Implemented Localization Method
	AprilTag Markers
	Experimental Setup
	Apriltag Localization
	EKF Fusion
	Results

	Conclusion and Future Work
	Bibliography

