České vysoké učení technické v Praze Fakulta elektrotechnická

DIPLOMOVÁ PRÁCE

Výukový model solárního vytápění

Praha, 2008

Autor: Hynek Frauenberg

Prohlášení

Prohlašuji, že jsem svou diplomovou práci vypracoval samostatně a použil jsem pouze podklady uvedené v přiloženém seznamu.

V Praze dne _____

podpis

Poděkování

Děkuji především vedoucímu diplomové práce Ing. Richardu Šustovi, Ph.D. za trpělivý a profesionální přístup a podnětné návrhy k realizaci projektu. Dále bych chtěl poděkovat Ing. Zdeňku Hurákovi, Ph.D. a Ing. Petru Huškovi, Ph.D. za konzultace v oblasti teorie řízení.

A v neposlední řadě bych rád poděkoval zejména své rodině za neúnavnou psychickou i materiální podporu při studiích. Děkuji také svým dlouholetým přátelům, spolužákům, studentům a budoucím inženýrům za spolupráci při studiích.

Abstrakt

Cílem této práce bylo vytvořit matematický model a softwarové prostředí, koncipované pro výuku předmětů zaměřených na návrh průmyslových regulátorů. Práce je součástí projektu euSophos 2C06010 zadaného Ministerstvem školství. Simulační jádro využívá služeb Control Toolboxu z Matlabu a postihuje model topné soustavy v malém domku s elektrickým kotlem a solárním kolektorem. Byl vytvořen nástroj pro pozorování vlivu solárního panelu na tepelnou bilanci domu v širokém spektru pracovních podmínek. Veškeré simulace jsou založeny na reálných datech z Českého hydrometeorologického ústavu. Práce vychází ze základních fyzikálních zákonů, jsou uvažovány parametry reálných kolektorů a tepelné vlastnosti budovy dle ČSN. V programu je implementováno síťové rozhraní a je možno aktivovat distribuovaný výukový systém. Grafický výstup je realizován pomocí knihovny OpenGL a výsledná vizualizace v třírozměrném prostoru interaktivně demonstruje strukturu topného okruhu i dynamiku soustavy.

Abstract

This diploma thesis covers design of a mathematical model and a software environment drawn up for the education of industrial controllers design. The diploma thesis is the part of euSophos 2C06010 project granted by the Ministry of Education. The simulation core applies the services of The Matlab Control Toolbox and simulates a bivalent heating system in a small house. The project represents the observing utility for solar energy effect in the all year house heating rate. All implemented simulations are based on the real data from measurements of the Czech Hydrometeorological Institute. The mathematical model is based on the physical thermodynamic laws, it reflects real collector parameters and the house isolation material properties, according to ČSN. The developed application contains the network interface for the distributed educational system. The graphic interface is based on the open source of the graphic library OpenGL. The advanced 3D visualization techniques demonstrate the heating circle structure and the dynamism of the system by the interactive way. Katedra řídicí techniky

Školní rok: 2006/2007

ZADÁNÍ DIPLOMOVÉ PRÁCE

Student: Hynek Frauenberg

Obor: Technická kybernetika

Název tématu: Výukový model solárního vytápění

Zásady pro vypracování:

1. Prostudujte možné způsoby modelování solárního vytápění v malém domku.

2. Navrhněte a vyzkoušejte model v Matlabu.

3. Model naprogramujte ve tvaru vhodném pro simulaci na výukovém serveru.

4. Doplňte k modelu vhodnou vizualizaci.

Seznam odborné literatury: Dodá vedoucí práce.

Vedoucí diplomové práce: Ing. Richard Šusta, Ph.D.

Termín zadání diplomové práce: zimní semestr 2006/2007

Termín odevzdání diplomové práce: leden 2008

prof. Ing. Michael Šebek, DrSc. vedoucí katedry

Njar.

prof. Ing. Zbyněk Škvor, CSc. děkan

Obsah

Se	Seznam obrázků										
Se	znan	n tabu	ılek	xi							
1	Úvo	od		1							
2	Ana	alýza v	ytápěcích systémů	3							
	2.1	Úvod	do vytápění	. 3							
	2.2	Tepelı	ná bilance staveb	. 4							
	2.3	Solárn	ní systémy	. 5							
	2.4	Meteo	prologická data	. 7							
3	Mat	temati	cký model	9							
	3.1	Zaved	ení systému a definice pojmů	. 9							
	3.2	Defini	ce struktury modelu	. 10							
	3.3	Labor	atorní měření	. 12							
	3.4	Obecn	ný tepelný objekt	. 14							
	3.5	Identi	fikace z naměřených dat	. 16							
		3.5.1	Elektrický kotel	. 16							
		3.5.2	Solární panel	. 18							
	3.6	Teplot	tní přístup	. 18							
		3.6.1	Protiproudý deskový výměník	. 19							
		3.6.2	Směšovací ventil	. 25							
		3.6.3	Třícestný ventil	. 26							
		3.6.4	Rozbočovací člen	. 27							
		3.6.5	Doplňující elementy	. 29							
		3.6.6	Výsledky simulací	. 29							
	3.7	Energ	etický přístup	. 30							

		3.7.1	Analýza subsystémů	•	31					
		3.7.2	Vnitřní popis modulů	•	34					
		3.7.3	Zdroje tepelné energie	•	36					
		3.7.4	Regulační obvod	•	39					
		3.7.5	Alternativní režim zdrojů	• •	46					
4	Virt	tuální :	model		53					
	4.1	Počíta	čová grafika v oblasti řízení		53					
	4.2	Grafic	ká knihovna		54					
	4.3	Konce	pce projektu		56					
	4.4	Analýz	za možných řešení		56					
	4.5	Modul	ly SW projektu		57					
		4.5.1	Model domu (House)		59					
		4.5.2	Vytápěcí soustava (Heating)		59					
		4.5.3	Virtuální svět (3d World)		62					
		4.5.4	Počasí (Weather)		63					
	4.6	Síťové	rozhraní	•	64					
	4.7	Simula	ační mód		65					
	4.8	Uživat	elské prostředí - ovládání		66					
	4.9	Nástro	oje pro výuku	•	67					
5	Záv	ěr			71					
	5.1	Možno	osti rozšíření projektu	•	72					
\mathbf{Li}	terat	ura			75					
\mathbf{A}	Měr	rné tep	pelné ztráty		I					
в	Dat	ová vě	eta síťového rozhraní		III					
С	Obe	ah nři	loženého CD		\mathbf{V}					
- -					•					
D	Pou	žitý S	W		VII					
\mathbf{E}	Použité zkratky IX									

Seznam obrázků

2.1	Ilustrace komerční aplikace Weather Simulator	7
2.2	Průběh teploty vzduchu za rok 2006	8
2.3	Průběh hemisférického ozáření za rok 2006	8
3.1	Přehledový nákres struktury soustavy	10
3.2	Principielní blokové schéma teplotního modelu	11
3.3	Naměřené vývoje výstupní teploty akumulační nádoby 	13
3.4	Obecné náhradní zapojení	14
3.5	Výkonový vazební graf pro obecný objekt	15
3.6	Blokové simulační schéma obecného objektu	15
3.7	Přechodové charakteristiky identifikovaných systém ů $\ \ .\ .\ .\ .\ .\ .$	19
3.8	Ilustrační struktura zapojení zdrojů	20
3.9	Struktura deskového výměníku	21
3.10	Přechodová charakteristika tepelného výměníku	24
3.11	Nákres směšovacího ventilu	25
3.12	Nákres třícestného ventilu	27
3.13	Nákres rozbočovacího členu	28
3.14	Blokové schéma rozšířené sériové vazby	29
3.15	Výstupy regulovaného teplotního modelu	30
3.16	Nákres energetického modelu	31
3.17	Přechodová charakteristika akumulační nádoby	34
3.18	Uvažované bloky popisu modelu	35
3.19	Blokové simulační schéma základní regulované soustavy	40
3.20	Ekvitermní křivka	41
3.21	Geometrické místo kořenů otevřené smyčky	43
3.22	Vývoj okamžitých výkonů regulované soustavy	44
3.23	Vývoj teplot regulované soustavy	45

3.24	Ztrátová převodní charakteristika	46
3.25	Vývoj teploty vzduchu pro Ruzyni 1.1.2006	47
3.26	Průběh výkonu v systému	48
3.27	Vývoj výstupních teplot	49
3.28	Vývoj teplot regulované soustavy \hdots	49
3.29	Blokové simulační schéma bivalentní regulované soustavy $\ .\ .\ .\ .$	50
3.30	Činnost solárního panelu v závislosti na výkonu	50
3.31	Ztráty domu pro rok 2006	51
3.32	Četnost vytápění zdrojů pro rok 2006	51
3.33	Procentuální podíl zdrojů na vytápění za rok 2006	52
4.1	Bloková struktura grafických standardů	54
4.2	Vizualizační proces prostřednictvím 3d studia	57
4.3	Grafické moduly aplikace	58
4.4	Ilustrace prázdného domu	59
4.5	Ilustrace struktury vytápěcí soustavy	60
4.6	Detail stavů radiátoru	61
4.7	Prvky tepelného systému	61
4.8	Ilustrace plné grafické engine	62
4.9	Ilustrace atmosférických podmínek za bílého dne	63
4.10	Ilustrace atmosférických podmínek v noci	63
4.11	Ilustrace srážky	64
4.12	Filozofie potvrzované komunikace	64
4.13	Struktura uživatelské nabídky	66
4.14	Postranní panel - simulační rozhraní	67
4.15	Formulář pro editaci konstant regulátoru	68
4.16	Mapa implementovaných simulací 	69

Seznam tabulek

3.1	Základní struktura modelu	10
3.2	Mapa měření na laboratorním modelu	12
3.3	Vnitřní stavy, vstupy a výstupy tepelného výměníku 	23
3.4	Numerické porovnání výsledků identifikace	37
4.1	Význam vstupních parametrů simulací	70
4.2	Přehled výstupních grafů dostupných simulací	70

xii

Kapitola 1

Úvod

Problematika vytápění je v našich zeměpisných podmínkách velmi živým tématem. S ohledem na ztenčující se zásoby fosilních paliv a devastaci životního prostředí stále nabývají na významu dostupné alternativní zdroje energie. Od 1.ledna 2008 vstupuje v platnost tzv. ekologická daň, jež je součástí zákona 261/2007 o stabilizaci veřejných rozpočtů. Její výše se bude odvíjet od míry zátěže životního prostředí. Tato práce je také součástí projektu euSophos 2C06010 zadaného Ministerstvem školství.

Tepelné systémy obecně vedou na velmi komplikovaný matematický popis s rozprostřenými parametry. Tato skutečnost je jedním z důvodů, proč se obvykle nezařazují do výuky ve větším měřítku, což je další motivací k práci tohoto typu. Dále se zaměříme na sestavení matematického popisu, který bude vystihovat dynamiku tepelné soustavy a odpovídat reálným podmínkám. V kapitole 2 je ve stručnosti provedena analýza vytápěcích systémů a uvedení potřebných meteorologických dat, jimiž je práce podložena. V kapitole 3 vymezíme členy tepelného obvodu, jejich popis, syntézu a parciální výsledky simulací.

V druhé části práce se budeme zabývat vytvořením vizuálního uživatelského prostředí. V nejširším významu můžeme pojmem vizualizace vědeckých dat rozumět libovolnou metodu pro vyjádření hodnoty či fyzikálního jevu pomocí grafických nástrojů. V oblasti počítačové grafiky výkon současných grafických karet je natolik vysoký, že lze pomocí přiměřeného úsilí dosáhnout ohromujících výsledků. Podrobnější analýza řešení a ilustrace vytvořeného grafického rozhraní je uvedena v kapitole 4.

Kapitola 2

Analýza vytápěcích systémů

V této kapitole bude stručně připravena znalostní základna k vytápěcím systémům. Rozebereme jednotlivé přístupy a zvolíme vyhovující model. Dále se budeme věnovat tepelným ztrátám budov, solárním panelům a prostřednictvím meteorologických dat si ukážeme potenciál solární energie v reálném případě.

2.1 Úvod do vytápění

Naše práce je lokalizována do České republiky, tedy mírného klimatického pásu. V těchto podmínkách je nezbytností instalovat do domů otopné systémy. Topná sezona není jednoznačně stanovena, podle vyhlášky začíná, jakmile je průměrná teplota počínaje prvním zářím alespoň tři dny po sobě pod třinácti stupni nad nulou. Otopné období v nízkoenergetických domech se zkracuje na dva až čtyři měsíce, z toho v některých dnech se vůbec netopí. K tomu stačí například správně navržená (rozměrem a parametry) okna na jižní straně domu, akumulační schopnost podlahy a stěn.

Volba zdroje tepelné energie je klíčovým bodem návrhu soustavy. Je třeba zohledňovat tepelné ztráty domu, požadované teploty, klimatické podmínky a řadu dalších aspektů. Zdrojem tepla může být např. elektřina, plyn, biomasa, fosilní paliva nebo jejich kombinace. Pro model virtuálního domu budeme s ohledem na laboratorní model a zadání uvažovat bivalentní systém, kde zdroji tepelné energie bude solární kolektor a elektrická patrona.

V reálných podmínkách lze solární kolektor k vytápění budovy použít pouze ve zvláštních případech, kdy energie zachycená v letních měsících je dlouhodobě akumulována pro vytápění v zimě.¹ Podle knihy [1] si tato koncepce žádá zásobník o objemu 1/3 až 1/2 objemu vytápěných místností, což je velmi ambiciózní požadavek. Díky tepelnému čerpadlu lze efektivněji využívat akumulovanou energii a objem zásobníku by bylo možné snížit až o 30%. Takovýto exotický systém nachází uplatnění v osaměle stojících budovách, u kterých je priorita ekologický provoz a finanční stránka nehraje žádnou roli. Je dobré podotknout, že dlouhodobá akumulace energie implikuje nízkoteplotní soustavu, která ve výsledku vykazuje velmi dlouhé časové konstanty. Pro náš model tato skutečnost není příliš šťastná, protože chceme docílit rychlejší dynamiky systému, při níž i krátkodobá sluneční aktivita bude mít prokazatelný vliv na chování systému. Rovněž budeme zohledňovat proporce laboratorního modelu. U soustavy s krátkodobou akumulací energie nutně dochází k přebytku energie v měsících mimo topnou sezónu, tuto skutečnost může být s výhodou vyřešena zařazením alternativního spotřebiče, který bude využívat tepelnou energii i mimo topnou sezonu. Podrobné analýze vytápěcích systémů je věnována řada publikací, další informace k problematice vytápěcích systémů lze najít např. v knize [1], nebo na portálu Technická zařízení budov [12].

2.2 Tepelná bilance staveb

Výpočet tepelných ztrát je klíčovým bodem návrhu tepelné soustavy. Provádí se na základě norem ČSN 060210, ČSN 060310 a s uvažováním tepelně technických vlastností jednotlivých stavebních prvků ohraničujících vytápěné prostory. Zjednodušený výpočet lze provést na základě údajů dle přílohy A. Vybereme odpovídající typ budovy a pro výpočtovou teplotu a rok výstavby odečteme tabulkovou hodnotu měrné tepelné ztráty.

V této fázi bylo využito výsledků diplomové práce [9], kde celkové tepelné ztráty modelu byly stanoveny ve výši 688W. Tepelné ztráty budovy dále závisí na uvažovaných teplotách uvnitř a vně vytápěných prostor. V další části práce budou ztráty místností veličinou závislou na teplotě uvnitř místností v domu T_{IN} a teplotě vzduchu okolního prostředí T_{OUT} .

Pro úplnost věnujme ještě pozornost energetickým potřebám v širším časovém horizontu. Roční potřeba tepla představuje množství energie, dodané do objektu za jeden

 $^{^1 \}mathrm{Dal}$ í možností vytápění budov jsou tzv. energetické střechy, které plní funkci kolektorů a současně výměníků tepla.

 rok

$$Q_r = Q_{\text{VYT}r} + Q_{\text{TUV}r} + Q_{\text{VZT}r} + Q_{\text{TECH}r} \qquad [\text{Wh}], \qquad (2.1)$$

kde Q_r je roční potřeba tepla, $Q_{\text{VYT},r}$ roční potřeba tepla pro vytápění, $Q_{\text{TUV},r}$ roční potřeba tepla pro ohřev TUV, $Q_{\text{VZT},r}$ roční potřeba tepla pro ohřev vzduchu ve vzducho-technických zařízeních a $Q_{\text{TECH},r}$ roční potřeba tepla pro technologii.

Pro další práci vztah (2.1) zjednodušíme a budeme uvažovat pouze roční potřebu tepla pro vytápění a v letním období budeme uvažovat ohřev vody v bazénu, tedy jistá modifikace členu $Q_{\text{TUV},r}$. Roční potřebu tepla pro vytápění můžeme vyjádřit vztahem

$$Q_{\text{VYT}r} = \frac{24Q_C \varepsilon D}{t_{is} - t_e} \qquad [\text{Wh}], \qquad (2.2)$$

kde Q_C [W] je tepelná ztráta objektu dle ČSN 060210, ε [-] opravný součinitel na snížení teploty (zkrácení doby vytápění), D [d·K] počet denostupňu, t_{is} [°C] průměrná výpočtová vnitřní teplota², t_e [°C] výpočtová venkovní teplota (stanovuje se dle tepelné oblasti). Opravný součinitel ze vztahu (2.2) se vypočte podle vzorce

$$\varepsilon = \frac{e_i \cdot e_t \cdot e_d}{\eta_0 \cdot \eta_r}, \qquad (2.3)$$

kde e_i je nesoučastnost tepelné ztráty infiltrací a tepelné ztráty prostupem (obvykle se volí v rozmezí 0.8 až 0.9), e_t snížení teploty v místnosti během dne resp. noci³, e_d zkrácení doby vytápění u objektů s denními přestávkami v provozu (volí se v rozmezí 0.8 až 1.0), η_o účinnost rozvodu (dle provedení se volí v rozmezí 0.95 až 0.98), η_r účinnost dle možnosti regulace soustavy (0.9 až 1.0). Tato problematika je pochopitelně mnohem širší, jako možný zdroj dalších informací může posloužit portál Technická zařízení budov [12].

2.3 Solární systémy

Vytápění se solárními kolektory je v našich podmínkách luxus, který si zpravidla dopřávají nadšenci nebo lidé se silným smyslem pro ekologický styl života. Z čistě ekonomického hlediska se přidání solárních kolektorů do sytému zpravidla nevyplatí (cena energie ze dřeva

 $^{^2\}mathrm{Průměrnou}$ vnitřní teplotu lze určit odborným odhadem, ale pro obytné budovy se obvykle uvažuje v rozmezí 18.2 až 19.1°C.

 $^{^{3}}$ V některých objektech je vlivem vhodné regulace možno snížit teplotu po určitou část dne. Součinitel e_{t} se volí v rozmezí 0.8 např. pro školy s polodenním vyučováním až po 1.0 pro nemocnice, kde vyžadujeme 100 % výkon otopné soustavy po celých 24 hodin.

a nočního proudu je nízká), technicky je to ale elegantní a výhodné řešení. Pro splnění energetických požadavků v našich klimatických podmínkách však samostatné kolektorové pole nestačí a je třeba realizovat kombinovaný (bivalentní systém). Ten je velice flexibilní, optimálně využije výhody všech zdrojů energie a eliminuje jejich nevýhody. Akumulační nádrž zde představuje jakousi centrálu do níž se ukládá energie ze všech zdrojů a podle potřeby se čerpá na vytápění nebo na ohřev teplé užitkové vody.

Energetická hustota slunečního záření ve vzdálenosti 150 miliónů kilometrů je přibližně 1367 $\mathrm{Wm^{-2}}$. Při průchodu atmosférou se část sluneční energie ztratí. Kolem 300 $\mathrm{Wm^{-2}}$ se absorbuje v atmosféře, kolem 100 $\mathrm{Wm^{-2}}$ se rozptýlí. Jako standardní energetická hustota slunečního záření pro absorbující plochy se používá hodnota 1000 $\mathrm{Wm^{-2}}$.

Pro přeměnu sluneční energie budeme uvažovat vakuové solární kolektory. Pro popis kolektoru je nutné znát *tepelnou účinnost⁴*, *časovou konstantu* (určuje vliv tepelné kapacity kolektoru) a *modifikátor úhlu dopadu* (určuje vliv úhlu dopadu slunečního záření). Účinnost solárního kolektoru je závislá na oběhové teplotě media, nejlepší panely dosahují 90% a s rostoucí teplotou účinnost klesá. Kapitola 6 v knize [2] je podrobně podáno vysvětlení k energetické bilanci solárního kolektoru. Základní energetickou rovnováhu plochého kolektoru popisuje rovnice

$$Q_u = A_C \left[S - U_L \left(T_{pm} - T_a \right) \right] \qquad [W], \tag{2.4}$$

kde A_C [m²] je plocha absorbéru, S [W/m²] absorbované záření v jednotkové ploše, U_L [W/m²C] představuje ztrátový koeficient solárního kolektoru, T_{pm} [°C] je střední teplota povrchu absorbéru a T_a [°C] teplota okolního prostředí. Ztrátový koeficient U_L je dán součtem ztrát čelní plochy, bočních stěn a hran solárního panelu. Podle výsledků příkladů 6.4.1 až 6.4.3 z knihy [2] můžeme tyto ztráty v našem případě zanedbat a dostaneme vztah

$$Q_u = \eta A_C G_T, \tag{2.5}$$

kde η reprezentuje účinnost kolektoru [-], A_C je plocha absorbéru [m²] a G_T bude hemisférické ozáření [Wm⁻²]. Problematika solárních kolektorů je velmi rozsáhlý obor. Mnoho informací lze získat z portálu Technická zařízení budov [12] nebo komplexnější informace lze najít v knize [2].

 $^{^4}$ Účinnost kolektoru je definována jako poměr absorbované energie ku celkovému množství energie, jíž byla ozářena uvažovaná plocha.

2.4 Meteorologická data

Pro přiblížení našeho projektu reálným podmínkám jsme kontaktovali Český hydrometeorologický ústav s žádostí o naměřená data za kalendářní rok 2006 v lokalitě Praha – Ruzyně. Pro simulace systému se solárním panelem potřebujeme znát průběh hemisférického ozáření G_h , teplotu vzduchu T_a a případně srážky. Získat průběh veličiny G_h není snadné, protože meteorologické stanice tyto údaje zpoplatňují. Licence pro výzkumné (školní) účely na jeden rok vychází na několik tisíc korun a pro komerční účely jsou náklady o řád vyšší.

Nám se podařilo získat naměřené⁵ hodnoty průběhu teploty vzduchu a index slunečního svitu pro rok 2006 v Praze – Ruzyni. Na obrázku 2.2 je uveden hodinový průběh teploty vzduchu. Křivka byla aproximována polynomem 4. stupně. Na základě informací z kapitoly 2.3 a indexu slunečního svitu byl tedy vypočten referenční vývoj intenzity slunečního záření a výsledný graf znázorňuje obrázek 2.3.

Existují sofistikované programy pro simulaci počasí na základě mnoha vstupních parametrů, ale jsou obtížně dostupné a pro požadovanou lokalitu nemají podporu. Např. lze zmínit projekt Weather Simulator - Interactive Local Atmospheric Model (pro USA). Pro ilustraci je na obrázku 2.1 ukázka několika obrazovek simulačního softwaru počasí.

🖏 Data Entry			_ _ X
File Print Options Customize Loc	ation Import Parameter	s <u>O</u> utput Menu <u>S</u> tart <u>H</u> el	p
Mo/Da/Yr Time DST Thu 8/17/2000 10:38 \⊄	Site Name Lat Norman 35.2	Lon Ltz Elev N 97.2W 90W 1100M	N.Min N.Max N.DP N.W.T t 67 92 64.4 79.8
Surine Surinel Surinel Surinel Surinel Surial Surial <thsurial< th=""> <thsurial< th=""> <thsurial< th=""><th>Clouds: X Coverag Level X 1 2 3 4 5 1 1</th><th>e Opacity 4 > 0 4 > 0</th><th>Direction (from) N E S W N 4</th></thsurial<></thsurial<></thsurial<>	Clouds: X Coverag Level X 1 2 3 4 5 1 1	e Opacity 4 > 0 4 > 0 4 > 0 4 > 0 4 > 0 4 > 0 4 > 0 4 > 0 4 > 0 4 > 0 4 > 0	Direction (from) N E S W N 4
Dew Pt &RH Wet Bulb H.I. Barometric Pressure 30.04	None	ne None	Clear 100
C mb C in.Hg C in.Hg C sea Level Wind: Seed 6 C km/hr Use Letters C knots C	✓ Auto Cumulus ▲ Auto Stratus ✓ Auto Haze Dew/Frost: Default ▲	Haze: auto H Fog: Default R def S Haze: auto H Haze: a	eat Island: rural 25 urrent Precip Yes No lecent Precip Yes No now/Ice Cover Yes No lecent Temps Yes No
	Potential Dew Point 62.0 F	Approximate Visibility S 13 mi = 21 km S	ea Breeze OK ite to West Yes No Yes No

nu Interr	upts <u>P</u> a	use	Einish										
DATE	TIME	TEN	IP W	IND I	R.HUM	W.DIR	WCF	SN.DPT	H ADV	RT WEATH	ER	_	Int Code
Dec 12	2:00	ā.	18.7			280	19	0.0	0.0	CLEAR		*	Int Code
Dec 12	3:00	n -	18.3				18	0.0	0.0	CLEAR			Sky Cover
Dec 12	4:00	R	17.9			275	18	0.0	0.0	CLEAR		1	•
Dec 12	5:00	R	17.6			274		0.0	0.0	CLEAR		2	•
Dec 12	6:00	Ā	17.5			276		0.0	0.0	CLEAR		3	•
Dec 12	7:00	Ä	20.2					0.0	0.0	CLEAR		4	•
Dec 12	8:00	ā.	22.9					0.0	0.0	CLEAR		5	•
Dec 12	9:00	R	24.7			80		0.0	0.0	CLEAR			Precip Inte
Dec 12	10:00	R	25.9			80		0.0	0.0	CLEAR			in/hr mr
Dec 12	11:00	R	26.9			80		0.0	0.0	SURINY			0.00 0.0
Dec 12	12:00	P	27.5			80		0.0	0.0	SURINY			0.00 0.0
Dec 12	1:00	P	27.7					0.0	0.0	SURINY			4
Dec 12	2:00	P	27.6					0.0	0.0	SURINY			in Total r
Dec 12	3:00	P	27.4					0.0	0.0	SURINY		1	0.00 0
Dec 12	4:00	P	27.0					0.0	0.0	SURINY			0.00
Dec 12	5:00	P	26.4					0.0	0.0	SURINY			Wind Sud
Dec 12	6:00	P	25.5					0.0	0.0	CLEAR			
Dec 12	7:00	P	24.3			80		0.0	0.0	CLEAR			Thk 5670
Dec 12	8:00	P	22.7			80		0.0	0.0	CLEAR		-	4
mó						Sat			Su	n	Mon	7 vst	Contraction of the local division of the loc
				1111				111111				oh	Bepeal
	inter-					A-			1	1		00	Tobee
	7	\sim		1111	1				1	<u>n</u>	1	7	
											1	25	
			1				1		11-	the former	······ /	1 1	Start Fre
\sim ,				~				\sim			~//	now depth	
<u>نے ا</u>				-				-				ولي الجمع	
													0.3

Obrázek 2.1: Ilustrace komerční aplikace Weather Simulator

 $^{^5}$ Meteorologické stanice obvykle provádějí měření s periodou 1 hodina. Pro jeden kalendářní rok máme tedy k dispozici 8760 měření.

Obrázek 2.2: Průběh teploty vzduchu za rok 2006

Obrázek 2.3: Průběh hemisférického ozáření za rok 2006

Kapitola 3

Matematický model

Tato kapitola bude věnována podrobné analýze kombinovaného vytápěcího systému v modelovém domku. V první části vymezíme strukturu modelu a sestavíme blokové schéma celého systému. V následující části se budeme věnovat sestavení popisů k jednotlivým subsystémům. Využijeme teoretických znalostí, laboratorního měření a výsledky budeme konfrontovat s parametry reálné technologie.

Odvození jsou provedena dvěma metodami. Nejdříve se zaměříme na koncept, při němž je klíčovou veličinou teplota (*teplotní přístup*). V kapitole 3.7 pak provedeme zobecnění a přejdeme k tzv. *energetickému modelu*, budeme se věnovat návrhu regulátorů a uvedeme výsledky simulací.

3.1 Zavedení systému a definice pojmů

V této práci se zaměříme na zjednodušený model vytápěcí soustavy. Při popisu tepelných systémů můžeme vycházet z mikrostruktury, neboli částicové struktury látek a tepelné jevy vykládáme na základě neuspořádaného pohybu částic a jejich vzájemného působení. Tento přístup využívá zejména disciplíny *matematická statistika* a *teorie pravděpodobnosti*. Pro popis jevů zavádí fyzika střední hodnoty veličin (např. střední kinetická energie, střední volná dráha molekuly).

Druhou možností je makroskopický přístup, při němž využíváme fyzikálních veličin tlak, teplota, objem a teplo. Pro účely této práce bude výhodnější zvolit tento přístup. Tepelné soustavy nejsou příliš oblíbeným tématem, neboť modely přenosu tepla vedou na řešení parciálních diferenciálních rovnic a simulace plošného (v horším případě objemového) vývoje teplot klade značné nároky na výpočetní výkon. Takto komplexní přístup je však nad rámec této práce a proto zde zavedeme značná zjednodušení.

3.2 Definice struktury modelu

Prvotní představu o struktuře tepelného okruhu pro tuto práci přehledně vystihuje obrázek 3.1. Obvod obsahuje elektrický kotel, solární panel, akumulační nádrž a dominantní spotřebiče tepelné energie, což jsou dvě místnosti. Značení v obrázku zavádí tabulka 3.1. V této fázi pouze zavádíme pojmy, podrobná analýza jednotlivých elementů je uvedena v části 3.6.

Obrázek 3.1: Přehledový nákres struktury soustavy

Symbol	význam	popis
F	Furnace	elektrický kotel
S	Storager	zásobník (energie) teplé vody
P	Panel	solární panel
RA_1	Radiator 1	topné těleso v 1. místnosti
RA_2	Radiator 2	topné těleso v 2. místnosti
SP	Swimming Pool	topná spirála bazénu
P_S	Pump - solar	čerpadlo pro solární okruh
P_R	Pump - radiator	čerpadlo pro radiátorový okruh
P_{SP}	Pump - pool	čerpadlo pro okruh bazénu

Tabulka 3.1: Základní struktura modelu

Uveď
me v krátkosti funkci systému dle obrázku 3.1. Do zásobníku teplé vod
y ${\cal S}$ je

přiváděna teplá voda ze elektrického kotle F, resp. solárního panelu P. Ohřáta voda ze zásobníku je dále distribuována prostřednictvím radiátoru RA_1 do první místnosti, resp. z radiátoru RA_2 do druhé místnosti. V radiátorech se voda ochladí a proudí zpět do zásobníku. Jednotlivé větve okruhu je možno zavírat/otevírat pomocí příslušných ventilů a čerpadel.

Podrobnou analýzou systému dle obrázku 3.1 bylo odvozeno odpovídající blokové schéma, které dává představu o principu funkce matematického modelu. Schéma je uvedeno na obrázku 3.2 a v této části se budeme ještě věnovat stručné charakteristice systému, jakožto celku. Podrobnější informace a odvození dílčích subsystémů bude provedeno v kapitole 3.6.

Obrázek 3.2: Principielní blokové schéma teplotního modelu

Jádro celého systému tvoří protiproudý deskový výměník G_E . Vstupy výměníku jsou elektrický kotel G_F , solární panel G_P a chladné médium na výstupu systému G_Y . Výstup výměníku a chladné médium z radiátorů jsou v třícestném ventilu G_{3V} sloučeny a získáváme tak vstup do systému potrubí G_{WS1} . Výstup bloku G_{WS1} reprezentuje teplotu teplého konce¹ u obou radiátorů, tedy RA_1 respektive RA_2 . Chladná voda z radiátorů se odvádí do směšovacího ventilu G_M , dále pokračuje potrubím G_{WS2} do tepelného výměníku, resp. do třícestného ventilu, a tím se okruh uzavírá.

¹Teplým koncem radiátoru bude označován přítok tělesa s vysokou teplotou média. Přítok je v modelu i ve skutečnosti umístěn v horní části radiátoru.

V této práci je odvození matematického popisu provedeno *metodou rozkladu*. Celý systém dekomponujeme do samostatných bloků a s ohledem na globální požadavky popíšeme. Pokud naším cílem je sledovat náklady na vytápění, není nezbytně nutné dekompozici provádět příliš podrobně, nicméně takto komplexní přístup vede k přesnějšímu popisu dynamiky systému.

Předchozí odstavec a obrázek 3.2 předesílají, že tento model uvažuje některé vnitřní vazby systému. Jmenovitě jde o cirkulaci vody v hlavním okruhu a vzájemné vazby mezi primárními zdroji energie a tepelným výměníkem. Avšak ve skutečnosti by takovýto model byl mnohem složitější a pro realizaci této úlohy je nutné provést řadu předpokladů a omezení.

3.3 Laboratorní měření

Na modelu inteligentního domu v laboratoři K09 byla provedena série měření, jejichž výstupem jsou přechodové charakteristiky otopného systému pro několik konfigurací soustavy. Konkrétní přehled provedených měření mapuje tabulka 3.2.

č.měř.	ČR	ČР	Р	F	$T_s[s]$
s1	1	1	0	1	30
s2	1	0	0	1	60
s3	1	1	1	0	30

Tabulka 3.2: Mapa měření na laboratorním modelu

Legenda:

- ČR radiátorové čerpadlo, hodnota 1-zapnuto/ 0-vypnuto,
- ČP čerpadlo pro solární okruh, hodnota 1-zapnuto/ 0-vypnuto,
- P solární panel, hodnota 1-zapojen/ 0-odpojen,
- F elektrický kotel, hodnota 1-zapojen/ 0-odpojen,
- T_s perioda měření.

Výstupem měření byly vývoje teplot T_1 - teplota odcházející vody z kotle, T_2 - teplota přicházející vody do kotle a T_3 - teplota vody v solárním panelu. Na obrázku 3.3 jsou gra-

ficky zachyceny nejdůležitější naměřené hodnoty, které budeme potřebovat pro odvození matematického popisu v kapitole 3.5.

Obrázek 3.3: Naměřené vývoje výstupní teploty akumulační nádoby

Křivka T_{F1} , resp. T_{F2} přísluší k případu s1, resp. s2 (dle tabulky 3.2), kdy soustava je ohřívána elektrickým kotlem. Výstup systému² pro aktivní solární kolektor popisuje průběh T_P .

Poznámka: Naměřená data pro identifikaci byla převzata z výsledku semestrální práce provedené na lab. modelu na katedře řídící techniky.

 $^{^2 {\}rm výstupem}$ systému je v tomto případě míněna teplota na výstupu akumulační nádoby

3.4 Obecný tepelný objekt

Nyní se omezíme na pomyslný objekt O, který budeme zkoumat z hlediska tepelných vlastností. Úkolem tedy bude odvodit závislosti mezi výše uvedenými veličinami. V první fázi je nutné stanovit náhradní zapojení tohoto objektu. V tomto případě lze pomyslný objekt poměrně dobře interpretovat pomocí rozšířeného RC článku, dle obrázku 3.4. Vstupem obvodu je tepelný zdroj U s výstupní teplotou T_0 a tepelným tokem Φ_{R_v} . Tepelný odpor R_v představuje ztráty ve vedení do objektu, C je tepelná kapacita a R_z jsou svodové ztráty uvnitř objektu.

Obrázek 3.4: Obecné náhradní zapojení

Pro sestavení diferenciální rovnice využijeme nástroj výkonový vazební graf. Bližší informace k této problematice lze najít v knize [4].

Zaveď me tedy značení T - úsilí (teplota), Φ - tepelný tok a symbolem SE (Source effort) bude míněn zdroj úsilí. V tomto modelu SE reprezentuje elektrický kotel, nebo solární kolektor. Výsledný graf je uveden na obrázku 3.5. Je tvořen zdrojem úsilí, třemi základními prvky, uzlem typu 1 a uzlem typu 0. S ohledem na použité proměnné při konstrukci grafu, je třeba zdůraznit, že se jedná o *pseudo-výkonový vazební graf.* Souvisí to s tím, že součin tepelného toku a úsilí by měl rozměrově představovat výkon, což v takto zavedeném systému neplatí a proto onen prefix *pseudo*. Další informace k použití výkonových grafů u termodynamických systémů lze vyhledat v knize [4, strana 34].

Obrázek 3.5: Výkonový vazební graf pro obecný objekt

Pro jednotlivé uzly na obrázku 3.5 budou platit rovnice

$$T_0 - T_{R_V} - T_C = 0, \qquad \Phi_{R_V} - \Phi_C - \Phi_{R_Z} = 0.$$
(3.1)

Z těchto uzlových rovnic vyjádříme členy T_{R_V} a Φ_C , načež můžeme nakreslit blokové simulační schéma, které je uvedeno na obrázku 3.6.

Obrázek 3.6: Blokové simulační schéma obecného objektu

V dalším kroku zavedeme stavovou proměnnou $x_1 = T_C$, vstup $u = T_0$ a výstup $y = T_C$. Nyní je vše připraveno k zápisu diferenciální rovnice.

$$\dot{x}_1(t) = -\left(\frac{1}{CR_V} + \frac{1}{CR_Z}\right) x_1(t) + \frac{1}{CR_V} u(t), \qquad y(t) = x_1(t).$$
(3.2)

Ze stavové rovnice (3.2) jsou zřejmé stavové matice

$$\mathbf{A} = \left[-\left(\frac{1}{CR_V} + \frac{1}{CR_Z}\right) \right], \mathbf{B} = \left[\frac{1}{CR_V}\right], \mathbf{C} = [1], \mathbf{D} = [0].$$
(3.3)

Pro úplnost ještě s pomocí vztahu odvozeného v literatuře [11, strana 37] vyjádříme z vnitřního popisu vnější přenosovou funkci

$$G(s) = \mathbf{C} \left(s\mathbf{I} - \mathbf{A}\right)^{-1} \mathbf{B} + \mathbf{D} = \frac{R_Z}{CR_V R_Z s + R_Z + R_V}.$$
(3.4)

3.5 Identifikace z naměřených dat

Pomocí identifikačního toolboxu v Matlabu můžeme na základě naměřených dat přímo získat popis daného systému. K provedení identifikace je nutné mít sadu vstupních dat, výstupních dat a uvažovat vzorkovací periodu měření. Podle tabulky 3.2 máme k dispozici dva případy ohřevu kotlem a jedno měření pro solární panel. Při měření *s1* je energie dodávána elektrickým kotlem a aktivní jsou čerpadla v obou okruzích, radiátorovém i solárním. Kotel je zdrojem i pro měření *s2*, avšak v provozu je pouze radiátorové čerpadlo. K využití solární energie je nutné aktivovat čerpadlo v solárním okruhu, stejně tak i radiátorové čerpadlo, aby byla dodaná energie využita. Takto byl nastaven model při měření *s3*.

V následující části budou diskutovány širší souvislosti provedených měření a provedeme identifikaci významných případů. Řešení se nám tedy větví na dvě varianty, konkrétně s1, s2 spojíme s popisem elektrického kotle a s3 se solárním panelem. Ve všech případech bude jako vstupní signál uvažován jednotkový skok.

3.5.1 Elektrický kotel

Jestliže jsou aktivní obě čerpadla, část energie dodaná elektrickou patronou je znehodnocována v solárním okruhu, systém bude vykazovat delší časovou konstantu a v neposlední řadě to bude mít negativní dopad i na ekonomickou stránku vytápění. Přenosová funkce, kterou v této části určíme bude vyjadřovat vztah mezi jednotkovým vstupem odporové spirály a výstupní teplotou akumulační nádrže (měřená teplota T_1). Výsledný navržený matematický model je

$$G_{F1}(s) = \frac{127}{12643s + 1} \,. \tag{3.5}$$

Jak již bylo předesláno, tak skutečně časová konstanta vyšla velmi vysoká. Vzhledem k tomu, že výstupem je teplota, tak je nutné zmínit nesrovnalost v ustáleném zesílení. Teplota 127°C by teoreticky připadala v úvahu pro případ vyššího tlaku, což ale není případ laboratorního modelu ani praktických topných systémů. Tento nesoulad výsledku identifikace může být způsoben činností obou čerpadel, což přechodový děj znatelně tlumí a ve výsledku je změřený interval příliš krátký pro správné vyvození popisu.

Tuto skutečnost je tedy nutné korigovat na základě znalostí o konkrétní topné soustavě. Přestože v laboratorním modelu je elektrický kotel reprezentován topnou spirálou s poměrně malým výkonem, při návrhu popisu elektrického kotle ve virtuálním modelu se budeme inspirovat parametry reálných kotlů, dle nabídky firmy MORA TOP s.r.o.. Maximální teplota topné vody u těchto kotlů je $T_{max} = 85^{\circ}$ C, což použijeme jako apriorní znalost pro korigovanou identifikaci a získáme přenosovou funkci podle vztahu (3.6). Průběh korigované přenosové³ funkce $G_{F1k}(s)$ je uveden v souhrnném grafu 3.7 na konci kapitoly.

$$G_{F1k}(s) = \frac{85}{6746s + 1}.$$
(3.6)

Přejděme k situaci s2, tam je aktivní pouze čerpadlo v radiátorovém okruhu. Pak lze konstatovat, že vyrobená energie bude využita hospodárněji, než v prvním případě a měli bychom dospět k rychlejšímu průběhu přechodové charakteristiky. Vstupně-výstupní specifikace bude u této varianty identická. Výsledný navržený matematický model je

$$G_{F2}(s) = \frac{100}{7020s+1}.$$
(3.7)

Časová konstanta pro jednoduchý topný okruh vyšla oproti předchozímu případu (vztah (3.5)) více než o 40% kratší. Toto je jednoznačný důkaz, proč dbát na správnou konfiguraci vytápěcí soustavy. Ustálené zesílení přenosu zde vyšlo věrohodněji, nicméně z praktického hlediska je teplota topné vody na bodu varu rovněž neobvyklá. Proto i zde

 $^{^{3}}$ Korekcí přenosové funkce je zde míněna identifikace s využitím apriorní znalosti o reálných kotlích. V tomto případě konkrétně budeme provádět v identifikačním toolboxu identifikaci při níž ručně nadefinujeme konstantu v čitateli a *estimací* je stanovena pouze časová konstanta.

provedeme normalizaci přenosu na $T_{max}=85^{\circ}\mathrm{C}$ a ze vztahu (3.7) dostáváme

$$G_{F2k}(s) = \frac{85}{5009s+1} \,. \tag{3.8}$$

Průběh korigované přenosové funkce $G_{F2k}(s)$ je uveden v souhrnném grafu 3.7 na konci kapitoly.

3.5.2 Solární panel

Pro stanoveni popisu solárního panelu využijeme data z měření s3. Vzhledem k tomu, že solární panel je oproti topné spirále samostatné těleso, můžeme provést jednak identifikaci vlastního kolektoru a pak extrahovat přenos z hemisférického ozáření plochy absorbéru na výstupní teplotu akumulační nádrže. S pomocí identifikačního toolboxu v Matlabu získáváme popis samostatného panelu (3.9) a pro přenos ze vstupu panelu na výstup akumulační nádoby (3.10).

$$G_{Pa}(s) = \frac{85}{23796s + 1}, \qquad (3.9)$$

$$G_{Pb}(s) = \frac{85}{28861s + 1}.$$
(3.10)

Souhrnný srovnávací graf pro všechny výše provedené identifikace je uveden na obrázku 3.7.

Poznámka: U přechodových charakteristik z obrázku 3.7 je nutné podotknout, že se jedná o teoretický vývoj teploty. Pro reálný případ by bylo nutné zahrnout do simulace počáteční podmínky, neboť z mnoha důvodů není možné připustit v otopném systému takto nízké teploty. \Box

3.6 Teplotní přístup

Při odvozování popisu tepelného systému budeme pracovat s veličinami $\Phi[W]$ - tepelný tok, $C[JK^{-1}]$ - tepelná kapacita, $R[W^{-1}K]$ - tepelné ztráty, Q[J] - teplo a konečně T[K] (alternativně [°C]) - teplota. Pro názornost je použita analogie k elektrickým obvodům, nicméně obrázky i vztahy jsou spjaty s tepelnými veličinami.

Obrázek 3.7: Přechodové charakteristiky identifikovaných systémů

3.6.1 Protiproudý deskový výměník

V laboratorním modelu je instalována nádoba o objemu 40 l, v níž je ponořena topná spirála a současně do ní přímo vstupuje teplonosné médium ze solárního kolektoru. Pro laboratorní model je toto řešení velmi výhodné. V reálných domech je běžnější použití samostatného elektrického kotle. Dosahuje vysoké účinnosti a přispívá k modularitě systému. Podobně nevýhodné je to i pro vytvoření virtuálního modelu metodou rozkladu. Jsme totiž v situaci, kdy je potřeba sestavit popis dvou nezávislých zdrojů, pracujících v komplementárním režimu. Pak s výhodou pro analýzu dílčí subjekty oddělíme do samostatných bloků a ve finále budou provázány, čímž vznikne uzavřený tepelný systém.

Při konstrukci matematického modelu je klíčovou otázkou, "jak sčítat příspěvky energie od elektrického kotle a solárního kolektoru". Popisovaný koncept názorně vystihuje obrázek 3.8.

S ohledem na předeslané souvislosti bude uvažován deskový výměník. V praxi jsou různé konstrukce výměníků, možným způsobem dělení je na výměníky rozebíratelné a nerozebíratelné. Základní princip však spočívá v přenosu tepelné energie z primárního

Obrázek 3.8: Ilustrační struktura zapojení zdrojů

okruhu na sekundární, při minimalizaci ztrát a oddělení teplonosných látek. Tohoto je dosaženo cirkulací teplonosného média v systému kanálků o minimálním objemu a maximální přestupové ploše. Podrobnější rozbor funkce výměníků je nad rámec této práce, proto jim nebude věnována větší pozornost. Možný zdroj dalších informací je internetová stránka http://bcb-plzen.eu firmy BCB Plzeň. Pro další výpočty budou uvažovány parametry reálného protiproudého rozebíratelného deskového výměníku od firmy ALFA LAVAL.

Při odvození budeme vycházet ze zákona zachování energie(ZZE) a pro případ bivalentního systému uvažujme strukturu dle obrázku 3.9.

Elektrický ekvivalent pro takovýto systém by mohl být např. transformátor se dvěma primárními vinutími. U tepelného výměníku však objemy V_{1P} , V_{1K} mají význam primárních okruhů, kde V_{1P} přísluší k solárnímu panelu a V_{1K} k elektrickému kotli. Prostor V_2 představuje akumulátor energie, z něhož cirkuluje voda o teplotě T_{2o} a průtoku q_2 . Výstupní tepelný tok akumulátoru je Φ_{2o} , což je výslednice součtu energie vstupu Φ_{2i} , energie od solárního panelu Φ_{1P2} a elektrického kotle Φ_{1K2} .

Obrázek 3.9: Struktura deskového výměníku

Pro odvození tepelné bilance akumulační nádoby budeme uvažovat předpoklady

Podle obrázku 3.9 a ZZE můžeme pro tepelné toky v soustavě sestavit rovnice

(a)
$$\Phi_{1K} = \Phi_{1Ki} - \Phi_{1K2} - \Phi_{1Ko},$$

(b) $\Phi_{1K} = \Phi_{1Pio},$
(c) $\Phi_{1P} = \Phi_{1Pi} - \Phi_{1P2} - \Phi_{1Po},$
(d) $\Phi_{1P} = \Phi_{1Pio},$
(e) $\Phi_{2} = \Phi_{1P2} + \Phi_{1K2} + \Phi_{2i} - \Phi_{2o}.$
(3.12)

Rovnice (a) je bilancí tepelných toků pro objem V_{1K} , (b) pak je k této doplňkovou rovnicí. Podobně je v případě (d) doplňkovou rovnicí k popisu toků (c) od panelu. Poslední rovnice (e) patří k akumulační nádobě V_2 na výstupu.

Když vezmeme v úvahu vztah pro energii $Q = mc\Delta T$, který lze upravit do podoby tepelného výkonu $\Phi = \rho cq\Delta T$, tak rovnice (3.12) můžeme vyjádřit v diferenciálním tvaru a dostaneme soustavu rovnic (3.15). Pro zjednodušení vztahů budeme uvažovat, že hustota ρ a měrná tepelná kapacita c budou ve všech částech systému totožné. Pro odvození budeme uvažovat další zjednodušení. Na obrázku 3.9 je v každém ze tří těles vyznačen puntík, který bude reprezentovat bodovou teplotu uvnitř příslušného objemu. Tepelné toky uvnitř systému budou vztaženy právě k těmto bodům. Bodové teploty ještě svážeme s vstupními teplotami a budou tedy platit rovnosti

$$T_{1Pi} = T_{1P}, \qquad T_{2o} = T_2, \qquad T_{1Ki} = T_{1K}.$$
 (3.13)

V případě, že by nebylo zavedeno toto zjednodušení, teplota by byla rozprostřeným parametrem a řešení by vedlo na velmi složitou soustavu parciálních diferenciálních rovnic v daném objemu (tedy 3D síť teplot). Tak složitý model však sahá nad rámec této práce a bez obtíží vystačíme se zavedenými bodovými teplotami.

$$\rho c V_{1K} \frac{dT_{1K}(t)}{dt} = \rho c q_{1K} \Delta T_{1Ki}(t) - \rho c q_{1K} \Delta T_{1Ko}(t) - k S_K \Delta T_{1K2}(t),$$

$$\rho c V_{1K} \frac{dT_{1Ko}(t)}{dt} = \rho c q_{1K} \Delta T_{1Ko}(t),$$

$$\rho c V_{1P} \frac{dT_{1P}(t)}{dt} = \rho c q_{1P} \Delta T_{1Pi}(t) - \rho c q_{1P} \Delta T_{1Po}(t) - k S_P \Delta T_{1P2}(t),$$

$$\rho c V_{1P} \frac{dT_{1Po}(t)}{dt} = \rho c q_{1P} \Delta T_{1Po}(t),$$

$$\rho c V_2 \frac{dT_2(t)}{dt} = \rho c q_2 \Delta T_2(t) + k S_K \Delta T_{1K2}(t) + k S_P \Delta T_{1P2}(t).$$
(3.14)

Indexy jednotlivých elementů vypovídají o přesné pozici a orientaci veličiny v obrázku 3.9. Čísla označují primární 1, resp. sekundární 2 okruh, a přesněji elektrický kotel K, resp. solární panel P. Symboly i, resp. o označují vstup, resp. výstup patřičné části výměníku.

Cleny $\Delta T_{...}$ vyjadřují teplotní rozdíl mezi dvěma body v prostoru a jsou přímo úměrné výslednému tepelnému toku. Pro teplotní rozdíly z rovnic (3.15) sestavíme podle nákresu následující vztahy

$$\Delta T_{1Ki} = T_{1Ki} - T_{1K} , \quad \Delta T_{1Ko} = T_{1K} - T_{1Ko} , \quad \Delta T_{1K2} = T_{1K} - T_2,$$

$$\Delta T_{1Pi} = T_{1Pi} - T_{1P} , \quad \Delta T_{1Po} = T_{1P} - T_{1Po} , \quad \Delta T_{1P2} = T_{1P} - T_2, \quad (3.15)$$

$$\Delta T_2 = T_{2o} - T_{2i}.$$

Dále je třeba nadefinovat vstupy \mathbf{U} , výstupy \mathbf{Y} a vnitřní stavy systému \mathbf{X} . Tato definice, společně s uvážením vztahů (3.13), je souhrnně uvedena v tabulce 3.3. Po provedení substituce a jednoduché úpravy dostáváme soustavu stavových diferenciálních rovnic
i	1	2	3	4	5
x	$T_{1K} = T_{1Ki}$	T_{1Ko}	$T_{1P} = T_{1Pi}$	T_{1Po}	$T_2 = T_{2o}$
u	T_{1Ki}	T_{1Pi}	T_{2i}		
У	T_{2o}				

Tabulka 3.3: Vnitřní stavy, vstupy a výstupy tepelného výměníku

$$\begin{aligned} \dot{x}_{1}(t) &= -\frac{q_{1K}}{V_{1K}} \left(u_{1}(t) - x_{2}(t) \right) - \frac{kS_{K}}{\rho c V_{1K}} \left(u_{1}(t) - x_{5}(t) \right), \\ \dot{x}_{2}(t) &= \frac{q_{1K}}{V_{1K}} \left(u_{1}(t) - x_{2}(t) \right), \\ \dot{x}_{3}(t) &= \frac{q_{1P}}{V_{1P}} \left(u_{2}(t) - x_{4}(t) \right) - \frac{kS_{P}}{\rho c V_{1P}} \left(u_{2}(t) - x_{5}(t) \right), \\ \dot{x}_{4}(t) &= \frac{q_{1P}}{V_{1P}} \left(u_{2}(t) - x_{4}(t) \right), \\ \dot{x}_{5}(t) &= \frac{q_{2}}{V_{2}} \left(x_{5}(t) - u_{3}(t) \right) + \frac{kS_{K}}{\rho c V_{2}} \left(u_{1}(t) - x_{5}(t) \right) + \frac{kS_{P}}{\rho c V_{2}} \left(u_{2}(t) - x_{5}(t) \right). \end{aligned}$$
(3.16)

Pro vlastní implementaci simulací v softwarové části práce 4, je vhodné tyto rovnice ještě převést do spojitých stavových matic

$$\mathbf{A} = \begin{bmatrix} 0 & \frac{q_{1K}}{V_{1K}} & 0 & 0 & \frac{kS_K}{\rho cV_{1K}} \\ 0 & -\frac{q_{1K}}{V_{1K}} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{q_{1P}}{V_{1P}} & \frac{kS_P}{\rho cV_{1P}} & \\ 0 & 0 & 0 & -\frac{q_{1P}}{V_{1P}} & 0 \\ 0 & 0 & 0 & 0 & \frac{q_2}{V_2} - \frac{kS_P}{\rho cV_2} - \frac{kS_K}{\rho cV_2} \end{bmatrix}, \\ \mathbf{B} = \begin{bmatrix} -\frac{q_{1K}}{V_{1K}} & 0 & 0 \\ \frac{q_{1K}}{V_{1K}} & 0 & 0 \\ 0 & -\frac{q_{1P}}{V_{1P}} - \frac{kS_P}{\rho cV_{1P}} & 0 \\ 0 & \frac{q_{1P}}{V_{1P}} & 0 \\ \frac{kS_K}{\rho cV_2} & \frac{kS_P}{\rho cV_2} - \frac{q_2}{V_2} \end{bmatrix}, \quad (3.17)$$

Při řešení popisu výměníku byl v prvním případě uvažován model rozměru 3×3 . Byly zavedeny tři stavy, které odpovídaly teplotám v dílčích částech systému. Tento přístup působil komplikace při vyjádření jednotlivých tepelných toků a po provedení simulací v Matlabu bylo zjištěno, že odvozený model je nestabilní, a tím nevhodný. Připadaly v

úvahu dvě možné příčiny, nevhodně nastavené parametry modelu nebo nedostatek ve filosofii odvození. Ukázalo se, že problém spočíval ve sloučení vnitřních stavů u primárních okruhů výměníku. Pro stavové proměnné dle tabulky 3.3 již model má všechny módy v levé polorovině a systém je vnitřně stabilní.

Výstup simulace odvozeného modelu protiproudého deskového výměníku tepla dokumentuje graf na obrázku 3.10. Vystihuje přechodovou charakteristiku diskretizovaného systému (vzorkovací perioda $T_s = 10$ s) vypočtenou iterativním řešením stavových rovnic. Průběh je vypočten pro případ, kdy teplota v okruhu elektrického kotle dosahuje 80°C, v okruhu solárního panelu 70 °C a zpětná větev sekundárního okruhu přivádí médium o teplotě 40 °C.

Obrázek 3.10: Přechodová charakteristika tepelného výměníku

Vlastností odvozeného teoretického modelu je, že výstupní teplota sekundárního okruhu není přímo závislá na jeho vstupu. Praktický důsledek této skutečnosti je zřejmý. Zdroje tepelné energie jsou natolik výkonné, že ztráty vlivem chladného přívodního média jsou zanedbatelné. Odvození deskového výměníku bylo inspirováno diplomovou prací [3]. **Poznámka:** Odvození je pro názornost provedeno spojitě, avšak simulace v Matlabu a ve Virtuálním modelu je realizována pomocí diskretizového systému.

3.6.2 Směšovací ventil

Ve směšovacím ventilu dochází k mísení dvou kapalin o různých teplotách. V navrženém modelu, dle obrázku 3.2 jsou směšovány kapaliny vytékající z radiátorů. Obecně platí, že výstupní teploty obou radiátorů se liší, tedy

$$T_{RA1o} \neq T_{RA2o}.\tag{3.18}$$

Při odvození matematického modelu budeme postupovat obdobně, jako v kapitole 3.6.1. Výsledný model v tomto případě bude však výrazně jednodušší. Nákres ventilu a použité parametry zavádí obrázek 3.11, z něhož budeme dále vycházet. Veličiny indexované 1i a 2i popisují přítoky a o je výslednice směšování.

Obrázek 3.11: Nákres směšovacího ventilu

Zde vystačíme pouze s jedním stavem $x = T = T_o$ pro bodovou teplotu objemu V, dvěma vstupy $u_1 = T_{1i}$, $u_2 = T_{2i}$ a výstupem $y = T_o$. Pro obrázek 3.11 zřejmě musí platit rovnováha mezi průtoky vstupů a výstupním průtokem

$$q_o - q_{1i} - q_{2i} = 0. aga{3.19}$$

Z rovnice pro tepelné toky v bodě T vyjádříme diferenciální rovnici, jejíž výsledná

podoba bude

$$\dot{x}(t) = \frac{q_{1i}}{q_o} \left(-x(t) + u_1(t) \right) + \frac{q_{2i}}{q_o} \left(-x(t) + u_2(t) \right), \qquad y(t) = x(t).$$
(3.20)

Spojité stavové matice pro směšovací ventil budou v podobě

$$\mathbf{A} = \begin{bmatrix} -\frac{q_{1i}}{q_o} - \frac{q_{2i}}{q_o} \end{bmatrix}, \mathbf{B} = \begin{bmatrix} \frac{q_{1i}}{q_o} & \frac{q_{2i}}{q_o} \end{bmatrix}, \mathbf{C} = \begin{bmatrix} 1 \end{bmatrix}, \mathbf{D} = \begin{bmatrix} 0 \end{bmatrix}.$$
(3.21)

Poznámka: Odvození je pro názornost provedeno spojitě, avšak simulace v Matlabu a ve Virtuálním modelu je realizována pomocí diskretizového systému.

Z výsledných vztahů lze snadno učinit závěr, že velikost výstupní teploty směšovacího ventilu je dána poměrem vstupních průtoků k výstupnímu průtoku.

3.6.3 Třícestný ventil

U klasických vytápěcích systémů se obvykle do obvodu vkládá třícestný ventil. V radiátorovém okruhu se zavádí tzv. *zpátečka*. V případech, kdy je velmi nízký odběr tepelné energie, třícestný ventil přepíná cirkulační okruh do vratného režimu. Teplota na výstupu radiátorů je ještě dostatečná k vytápění a je zbytečné ji ohřívat, proto se *zpátečkou* tato energie ještě "recykluje", čímž jsou snižovány náklady na vytápění. S ohledem na využití solární energie, třícestný ventil v této práci nabývá dalšího významu. To bude však diskutováno v kapitole 3.7.5.

Poznámka: Zvýrazněné číslice v nákresu 3.12 u vstupů doplňují konkrétní zapojení v navrženém modelu, dle obrázku 3.2. Do vstupu č.1 je přivedena teplá voda z tepelného výměníku a vstup č. 2 je zpátečka.

Nákres tohoto prvku, společně se zavedením značení, je na obrázku 3.12. Princip funkce je obdobný jako u směšovacího ventilu diskutovaného v kapitole 3.6.2. Rozšíření u třícestného ventilu spočívá v proměnném poměru vstupních průtoků. Parametr vyjadřující tento poměr je v konvenci dle nákresu na obrázku 3.12 označen k.

Definice 3.1 (Parametr třícestného ventilu): Mějme třícestný ventil se dvěma vstupními průtoky parametrizovanými parametrem k, pro který platí $0 \le k \le 1$. Parametr kpak specifikuje procentuální podíl vstupu číslo 2 ve výstupním průtoku.

Obrázek 3.12: Nákres třícestného ventilu

Pro sestavení popisu je možné využít výsledků z kapitoly 3.6.2 a rozšířit je o parametr třícestného ventilu. Rovnováha průtoků z rovnice (3.19) bude ve tvaru

$$q_o - (1 - k)q_{1i} - kq_{2i} = 0. ag{3.22}$$

Dosazením parametru do diferenciální rovnice (3.20) získáme rovnice

$$\dot{x}(t) = (1-k)\frac{q_{1i}}{q_o} \left(-x(t) + u_1(t)\right) + k\frac{q_{2i}}{q_o} \left(-x(t) + u_2(t)\right), y(t) = x(t),$$
(3.23)

jimž odpovídají stavové matice

$$\mathbf{A} = \begin{bmatrix} -(1-k)\frac{q_{1i}}{q_o} - k\frac{q_{2i}}{q_o} \end{bmatrix}, \mathbf{B} = \begin{bmatrix} (1-k)\frac{q_{1i}}{q_o} & k\frac{q_{2i}}{q_o} \end{bmatrix},$$

$$\mathbf{C} = \begin{bmatrix} 1 \end{bmatrix}, \mathbf{D} = \begin{bmatrix} 0 \end{bmatrix}.$$
(3.24)

3.6.4 Rozbočovací člen

Vrátíme-li se k celkové struktuře modelu (obrázek 3.2), tak objekt 3V zahrnuje dva bloky. Jednak třícestný ventil G_{3V} a pak rozbočovací modul G_Y . V rozbočovacím členu se výstupní médium z radiátorů větví do výměníku a zpět do systému. Jedná se o inverzi k směšovacímu ventilu, který byl odvozen v kapitole 3.6.2. Nákres a zavedení parametrů uvádí obrázek 3.13.

Obrázek 3.13: Nákres rozbočovacího členu

Poznámka: Zvýrazněné číslice v nákresu 3.13 u výstupů doplňují konkrétní zapojení v navrženém modelu, dle obrázku 3.2. Výstup č.1 vede do tepelného výměníku a výstup č. 2 je zpátečka směřující do třícestného ventilu.

Výstupní průtoky q_{1o} , q_{2o} jsou přímo závislé na režimu třícestného ventilu. Jestliže parametr k = 0, pak průtok zpátečkou q_{2o} bude nulový a chladné médium bude proudit přímo do výměníku, tedy $q_i = q_{1o}$. V opačném případě pro k = 1, bude průtok akumulační nádobou $q_2 = 0$ (dle obrázku 3.9) a teplonosné médium bude cirkulovat pouze v radiátorovém okruhu. Mezi těmito dvěma extrémy bude v třícestném ventilu docházet k mísení vratné větve a výstupu z výměníku. Popsané závislosti vyjadřují průtokové rovnice

$$q_{1o} = (1 - k) \cdot q_i, q_{2o} = k \cdot q_i.$$
(3.25)

Pro odvození modelu rozbočovacího členu nejdříve sestavíme diferenciální rovnice

$$\frac{dT_{1o}(t)}{dt} = \frac{q_{1o}}{V} \left(T_i(t) - T_{1o}(t) \right),
\frac{dT_{2o}(t)}{dt} = \frac{q_{2o}}{V} \left(T_i(t) - T_{2o}(t) \right).$$
(3.26)

Zavedeme-li vnitřní stavy $x_1 = T_{1o}, x_2 = T_{2o}$, vstupem systému bude medium o teplotě T_i , pak můžeme s uvážením závislostí (3.25) zapsat stavové matice

$$\mathbf{A} = \begin{bmatrix} -\frac{(1-k)q_i}{V} & 0\\ 0 & -\frac{kq_i}{V} \end{bmatrix}, \mathbf{B} = \begin{bmatrix} \frac{(1-k)q_i}{V}\\ \frac{kq_i}{V} \end{bmatrix},$$
$$\mathbf{C} = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}, \mathbf{D} = \begin{bmatrix} 0\\ 0 \end{bmatrix}.$$
(3.27)

3.6.5 Doplňující elementy

V modelu dle obrázku 3.2 jsou obsaženy ještě další členy. V přímé větvi je ještě potrubní vedení, dále radiátor a přenos místností. Potrubnímu vedení při sestavování modelu byla věnována zvláštní pozornost a byla odvozena specifická struktura pro simulace založené na výpočtu jednotných stavových rovnic. Schematicky je situace znázorněna na obrázku 3.14. Cílem bylo odvodit stavové matice sériové vazby subsystémů a informaci o vnitřních stavech přenášet na výstup soustavy. Tato úloha si žádá postupnou expanzi stavových matic, přičemž vstupní a výstupní matice musí být v každém kroku vhodným způsobem korigována. V Matlabu byl implementován script, který tuto úlohu řeší pro obecně N-rozměrný případ.

Obrázek 3.14: Blokové schéma rozšířené sériové vazby

3.6.6 Výsledky simulací

Celý teplotní model byl uzavřen do zpětnovazebního obvodu a bylo navrženo řízení v podobě PID regulátoru. Řízení je na této úrovni provedeno podle výstupní teploty uvnitř místnosti.

Grafický výstup simulace uvádí obrázek 3.15 a dokládá vývoje teploty uvnitř sekundárního objemu výměníkové stanice, v segmentovaném potrubí směrem k radiátorům (*přímé segmenty*), v obou místnostech a vývoje teplot v segmentovaném potrubí z radiátorů zpět do vstupu výměníku (*zpětné segmenty*). Graf navíc obsahuje vývoj regulační odchylky a vykreslenou žádanou hodnotu. Simulace je provedena v měřítku jednoho dne a v celkovém grafu není příliš čitelný vývoj segmentů, proto je uvnitř obrázku vložen detail počátku. Z detailního pohledu jsou zřejmé segmentované vývoje teplot. U simulace jsou nastaveny počáteční podmínky na $12^{\circ}C$, vzhledem k absenci přímé vazby systému na okolní prostředí nejdříve dochází k poklesu teploty a až po dosažení dostatečné energie na sekundární straně výměníku začne ohřev.

Obrázek 3.15: Výstupy regulovaného teplotního modelu

3.7 Energetický přístup

V kapitole 3.6 byla provedena velmi podrobná analýza tepelné soustavy a odvodili jsme komplexní matematický model, díky němuž lze simulovat vývoj teplot s ohledem na lokalitu v systému.

Pro zavedení pojmu energetická bilance soustavy je nutné provést zobecnění teplotního modelu. Základními stavebními prvky zde budou fyzikální veličiny okamžitý výkon P[W] a energie Q[J]. Při sestavování energetického modelu budou uvažovány pouze klíčové subsystémy pro přenos energie od zdroje ke spotřebiči. Tepelný zdroj (TZ) bude v této práci elektrický kotel, nebo tepelný solární panel. Akumulační nádoba (AN) je dostatečně objemná izolovaná nádrž pro akumulaci tepelné energie. Systém potrubí (WS) představuje strukturu vedení teplonosného média do radiátorů. Grafická podoba této struktury je uvedena na obrázku 3.16.

Obrázek 3.16: Nákres energetického modelu

Vstupem TZ je požadovaná hodnota w výstupního výkonu P_0 , který způsobí nárůst vnitřní energie AN. Teplá voda z AN je dále distribuována přes WS dále do soustavy.

3.7.1 Analýza subsystémů

V této části se zaměříme na vyjádření energetických popisů elementů AN a WS. Z celkového pohledu lze chování modelu popsat následovně. Vstupní elektrická(popř. solární) energie je s účinností η transformována do tepelného výkonu. S ohledem na platnost vztahu pro práci

$$Q = \int_{0}^{t} P(\tau) d\tau \tag{3.28}$$

lze říci, že činná složka výkonu navýší vnitřní energii AN (vzroste teplota) a jalová složka $(1 - \eta)$ představuje ztráty. Obdobně tomu bude i v případě přenosu energie z akumulační nádoby, potrubím do radiátorů.

Akumulační nádoba

V kapitole 3.5 byla stanovena přenosová funkce přímo pro laboratorní model. Avšak pro vyjádření energetické bilance systému je vhodné provést konfrontaci se vztahy (3.5) a (3.7). Teoretický ekvivalent uvádí příklad 3.1.

Příklad 3.1 (Časová konstanta akumulátoru): Uvažujme akumulační nádobu o objemu V = 40l, jež je napuštěna vodou s hustotou $\rho = 985$ kgm⁻³ a měrnou tepelnou kapacitou c = 4179.2 Jkg⁻¹K⁻¹. Počáteční teplota vody je $T_1 = 15^{\circ}$ C a pomocí elektrického

kotle je třeba dosáhnout teplotu $T_2 = 85^{\circ}$ C. Elektrický kotel má příkon $P_i = 2$ kW a pracuje s účinností $\eta = 0.98$. Jaký je čas potřebný k ohřátí vody?

Řešení: Pro hmotnost vody v nádrži provedeme výpočet

$$m = \rho V = 985 \cdot 0.04 = 39.4$$
kg.

Měrná tepelná kapacita je zadána v jednotkách [Ws], pro konverzi do [Wh] provedeme jednoduchý výpočet

$$c_{\rm Wh} = \frac{4179.2}{3600} \left[\frac{\rm Wh}{\rm kgK} \right] \doteq 1.161 \rm Wh.$$

Dále provedeme výpočet energie potřebné k jejímu ohřátí z teploty ${\cal T}_1$ na ${\cal T}_2$

$$E = mc_{\rm Wh}(T_2 - T_1) = 39.4 \cdot 1.161 \cdot (85 - 15) \doteq 3.202 \,\mathrm{kWh}$$

A jednoduchým výpočtem dostaneme výsledný čas

$$\tau = \frac{E}{\eta P} = \frac{3.202 \text{kWh}}{0.98 \cdot 2 \text{kW}} \doteq 1.63 \text{h} \doteq 5850 \text{s}.$$

Poznámka: Veličiny hustota a měrná tepelná kapacita jsou obecně závislé na teplotě a tlaku. Příklad 3.1 však tuto skutečnost zanedbává a pro výpočet v zadaném rozsahu teplot jsou uvažovány jejich střední hodnoty. □

Přenosová funkce AN vyjadřuje převodní vztah mezi jeho vstupním a výstupním výkonem. Pro jednoduchost budeme předpokládat, že dochází k ideálnímu mísení studené

a teplé vody a zavedeme bodovou teplotu. Pro vývoj výstupního výkonu budeme uvažovat systém prvního řádu, jehož obecný předpis vyjadřuje rovnice (3.29).

$$G(s) = \frac{b_0}{a_0 s + a_1} \tag{3.29}$$

Konstanty a_0 , a_1 , b_0 stanovíme na základě výsledků příkladu 3.1. Ustálené zesílení $\frac{b_0}{a_1}$ bude odpovídat účinnosti zdroje. V případě elektrické patrony to tedy bude $\eta = 0.98$. Rovnice $\frac{b_0}{a_1} = 0.98$ má nekonečně mnoho řešení, pro jednoduchost však zvolme $a_1 = 1$, z čehož vyplývá $b_0 = 0.98$.

Výsledný přenos s odvozenými koeficienty je

$$G_A(s) = \frac{0.98}{5850s+1},\tag{3.30}$$

jehož přechodová charakteristika je tučná křivka G_{Ft} na obrázku 3.17. Pro porovnání jsou v obrázku vykresleny i přechodové charakteristiky korigovaných přenosů kotle z kapitoly 3.5.

Z přechodových charakteristik je zřejmé, že časové konstanty se pro tyto tři případy liší. Komplexní numerické porovnání výsledků bude blíže popsáno v kapitole 3.7.3 na základě tabulky 3.4.

Potrubní systém

U teplotního přístupu (dle kapitoly 3.6) byla věnována značná pozornost implementaci uceleného modelu vedení s rozprostřenými parametry. Ale pro sestavení energetické bilance v systému postačí velmi zjednodušený přístup. Potrubí v otopné soustavě má za úkol přenést energii z AN do radiátorů při minimálních ztrátách výkonu. Budeme tedy opět vycházet z obecného popisu (3.29). Koeficienty přenosu budou stanoveny obdobným způsobem, jako v předchozí části.

S ohledem na proporce systému budeme uvažovat ztráty vedení 2% a časovou konstantu stanovíme na základě průtoku radiátorového okruhu. Numerický výpočet uvádí příklad 3.2.

Příklad 3.2 (Časová konstanta vedení): Uvažujme potrubí o vnitřním průměru d = 0.02m a délce l = 10m. V okruhu je zapojeno čerpadlo, jež zajišťuje konstantní průtok $q = 10^{-5}$ m³/s. Vypočtěte čas potřebný k naplnění potrubí.

 $\mathring{R}e\check{s}eni$: Všechny potřebné údaje jsou zadané a výsledný čas zjistíme jednoduchým výpočtem.

Obrázek 3.17: Přechodová charakteristika akumulační nádoby

$$\tau = \frac{\pi d^2 \cdot l}{4q} = \frac{\pi \cdot 4 \cdot 10^{-4} \cdot 10}{4 \cdot 10^{-5}} \doteq 314s$$

Na základě výše uvedených parametrů bude výsledná přenosová funkce potrubí pro případ soustředěných parametrů

$$G_W(s) = \frac{0.98}{314s+1} \,. \tag{3.31}$$

3.7.2 Vnitřní popis modulů

Pro model vhodný k vizualizaci je třeba uvažovat dva typy bloků. Prvním bude výkonový G_P a druhý teplotní systém G_T . Liší se v rozměru výstupní veličiny. Jejich grafickou interpretaci vystihuje obrázek 3.18.

Obrázek 3.18: Uvažované bloky popisu modelu

Před zavedením celkové struktury modelu bude vhodné uvést bližší specifikaci vnitřního popisu pro oba případy.

Energetický modul

Nejdříve napišme spojité stavové rovnice pro případ (a) z obrázku 3.18

$$\dot{\mathbf{x}}_{P}(t) = \mathbf{A}_{P}\mathbf{x}_{P}(t) + \mathbf{B}_{P}u(t), \mathbf{y}_{P}(t) = \mathbf{C}_{P}\mathbf{x}_{P}(t) + \mathbf{D}_{P}u(t).$$
(3.32)

Vstupní veličina bude výkon $[W] = [Js^{-1}]$, pak vstupní matice \mathbf{B}_P musí být bezrozměrná účinnost, vnitřní stav \mathbf{x}_P bude vnitřní energie v [J] a matice systému musí být frekvence $[s^{-1}]$. Analogicky výstupní veličina \mathbf{y}_P je výkon, výstupní matice \mathbf{C}_P bude frekvence a přímo vazební matice \mathbf{D}_P bude bezrozměrná. Ucelený matematický zápis rozměrů (3.33) pro stavové rovnice (3.32) napomáhá porozumět fyzikální podstatě výkonového bloku.

$$\begin{bmatrix} \frac{J}{s} \end{bmatrix} = \begin{bmatrix} \frac{1}{s} \end{bmatrix} \begin{bmatrix} J \end{bmatrix} + \begin{bmatrix} - \end{bmatrix} \begin{bmatrix} \frac{J}{s} \end{bmatrix},$$

$$\begin{bmatrix} \frac{J}{s} \end{bmatrix} = \begin{bmatrix} \frac{1}{s} \end{bmatrix} \begin{bmatrix} J \end{bmatrix} + \begin{bmatrix} - \end{bmatrix} \begin{bmatrix} \frac{J}{s} \end{bmatrix}.$$
 (3.33)

Teplotní modul

Zde opět nejdříve uvedeme spojité stavové rovnice pro případ (b) z obrázku 3.18

$$\dot{\mathbf{x}}_{T}(t) = \mathbf{A}_{T}\mathbf{x}_{T}(t) + \mathbf{B}_{T}u(t), \mathbf{y}_{T}(t) = \mathbf{C}_{T}\mathbf{x}_{T}(t) + \mathbf{D}_{T}u(t).$$
(3.34)

Vstupní veličina bude výkon $[W] = [Js^{-1}]$, pak vstupní matice \mathbf{B}_T musí být bezrozměrná účinnost, vnitřní stav \mathbf{x}_T bude vnitřní energie v [J] a matice systému musí být frekvence [s⁻¹]. Analogicky výstupní veličina \mathbf{y}_T bude zde naopak teplota v [K] a výstupní matice \mathbf{C}_T bude stanovena na základě vztahu (3.35). Vzorec

$$Q = mc\Delta T \tag{3.35}$$

vyjadřuje energii, která je potřebná k ohřátí tělesa o hmotnosti m a měrné tepelné kapacitě c, z počáteční teploty T_1 na teplotu T_2 .

Dále přímo vazební matice \mathbf{D}_P bude podle vztahu (3.35) $c^{-1}m^{-1}$ vynásobeno délkou časového okna, čímž dostáváme ze vstupního výkonu odpovídající teplotu v horizontu t. Ucelený matematický zápis rozměrů (3.36) pro stavové rovnice (3.34) napomáhá porozumět fyzikální podstatě *teplotního bloku*.

$$\begin{bmatrix} \frac{J}{s} \end{bmatrix} = \begin{bmatrix} \frac{1}{s} \end{bmatrix} \begin{bmatrix} J \end{bmatrix} + \begin{bmatrix} - \end{bmatrix} \begin{bmatrix} \frac{J}{s} \end{bmatrix},$$

$$\begin{bmatrix} K \end{bmatrix} = \begin{bmatrix} \frac{K}{J} \end{bmatrix} \begin{bmatrix} J \end{bmatrix} + \begin{bmatrix} \frac{sK}{J} \end{bmatrix} \begin{bmatrix} \frac{J}{s} \end{bmatrix}.$$
 (3.36)

3.7.3 Zdroje tepelné energie

Tato práce si klade za cíl navrhnout systém, jenž optimálně využívá oba zdroje, proto je nezbytné, aby jejich potenciály byly srovnatelné. Ať už v reálném, či virtuálním modelu je tento požadavek velmi důležité dodržet. Zejména je důležité vyvarovat se koncepce, kdy výkon solární soustavy není dostatečný ani při vysoké intenzitě hemisférického ozáření. Toto bude i pro nás stěžejní kritérium při návrhu, ať už na základě identifikace z dat, exaktního odvození, využití katalogových údajů průmyslové tepelné techniky, nebo kombinace zmíněných variant.

Vzhledem k tomu, že reálné tepelné systémy lze těžko izolovat⁴, tak i v případě laboratorního modelu je dynamika ovlivněna přímou vazbou na okolní prostředí. Výhodou virtuálního modelu je, že veškeré vlivy lze matematicky postihnout a pokud se zaměříme pouze na vlastní vytápěcí soustavu, tak komplikace spojené s nežádoucími vlivy odpadají. Samozřejmě rozsah modelu lze rozšiřovat a zahrnout přímou vazbu na okolní prostředí, detailně specifikovat materiálové vlastnosti atd., ale s ohledem na účel této práce je vhodné udržet jistou transparentnost celého systému. S výhodou tak můžeme využít softwarové implementace a přistupovat k modelu, jako k izolovanému systému.

Dále uveď me tabulku 3.4, která pomocí analýzy v časové oblasti porovnává změřená data, identifikované popisy a teoretický výpočet. Na základě této analýzy stanovíme

 $^{^{4}}$ Izolovaným systémem je zde míněn hypotetický dům, jehož vnitřní tepelné podmínky jsou ovlivňovány pouze instalovaným vytápěcím systémem.

finální podobu přenosu AN.

popis	au [s]	$^{42}_{26}t[s]$	$\tau_k [s]$	$^{42}_{26}t_k[s]$			
Identifikace							
kotel - $s1$	$12 \ 642$	4 000	6 746	2 203			
kotel - $s\!2$	7 020	2 242	5009	$1 \ 469$			
panel - s3b	-	-	28 861	9 130			
Měření							
kotel - $s1$	-	2 520	-	-			
kotel - $s2$	-	960	-	-			
Teoretický výpočet							
kotel - AN	$5\ 850$	1 818	-	-			

Tabulka 3.4: Numerické porovnání výsledků identifikace

Sloupec τ (resp. τ_k) vyjadřuje časovou konstantu (resp. korigovanou časovou konstantu), sloupec $\frac{42}{26}t$ (resp. $\frac{42}{26}t_k$) udává čas potřebný pro ohřátí AN z teploty 26°C na teplotu 42°C (resp. korigovaný čas). Sekce *identifikace* shrnuje výsledky z kapitoly 3.5, *měření* jsou údaje odečtené z přechodové charakteristiky na obrázku 3.3 a *teoretický* výpočet byl proveden v kapitole 3.7.1. Při další analýze se zaměříme na korigované hodnoty.

Identifikace pro elektrický kotel

Identifikovaná časová konstanta pro případ *s2* vychází přibližně o 14% menší, než teoreticky vypočtená. Očekávali jsme opačný výsledek, který by vypovídal o tom, že u laboratorního modelu je celková účinnost ohřevu AN nižší, než teoreticky uvažovaných 98% a v neposlední řadě by také zohledňoval zátěž způsobenou cirkulací vody. Možnou příčinou kratší časové konstanty u měření je nižší hladina vody v nádrži. V případě *s1* byla zapnuta čerpadla v obou okruzích a výsledná časová konstanta je oproti měření *s2*, dle očekávání o 26% delší.

Identifikace pro solární panel

Identifikace solárního kolektoru dopadla ještě o něco hůře, výsledná časová konstanta oproti teoretickému výpočtu (na základě grafu 3.17 jej považujme za střední hodnotu) vykazuje odchylku 80%. Když ještě uvážíme skutečnost, že solární panel nelze považovat

za stabilní zdroj energie, pak by využití přenosové funkce G_{Pb} dle vztahu (3.10) znamenalo velmi silné znevýhodnění tohoto ekologického zdroje.

V ideálním případě by vliv solárního kolektoru na vnitřní energii AN měl být stejný, jako u elektrického kotle. Prakticky ideálních podmínek však lze velmi obtížně dosáhnout i v případě, že maximální výkon solárního systému bude odpovídající. Významnou roli zde bude hrát délka vedení z panelů. Jak u reálných systémů, tak u laboratorního modelu bude vždy potrubí mezi akumulační nádobou a solárními panely výrazně delší, než ke kotli. Ačkoliv externí potrubí má patřičnou izolaci, tak k určitým ztrátám bude docházet. Akceptovatelný rozdíl pro realizaci simulace uvažujme řádově v jednotkách procent.

V závěru tedy připustíme dvě alternativy. V ideálním případě budeme přenos AN uvažovat stabilně podle korigovaného měření s2 a zobecněno pro výkon

$$G_{ANi}(s) = \frac{0.98}{5009s + 1} \,. \tag{3.37}$$

Jako rozšíření by případně bylo možné ideální vtah (3.37) uvažovat při aktivním radiátorovém i solárním čerpadle ve formě

$$G_{ANs}(s) = \frac{0.98}{6746s + 1} \,. \tag{3.38}$$

Režim funkce zdrojů

Jak již bylo zmíněno v úvodu této kapitoly naším úkolem je navrhnout řízení k optimálnímu bivalentnímu topnému systému. Snažíme se maximálně využít sluneční záření a elektrickým kotlem pouze kompenzovat nedostatek energie při nízké intenzitě ozáření absorbéru.

Na základě této myšlenky byl v kapitole 3.6.1 odvozen protiproudý deskový výměník, v němž by byla sčítána energie od obou zdrojů a mohl by být realizován model v komplementárním režimu. Po odvození modelu a provedení simulací pro různé výkony obou vstupů se ukázalo, že tato myšlenka selhává. Z průběhu výstupní teploty dle obrázku 3.10 vyplývá, že tímto přístupem nedosáhneme kýženého výsledku.

V případě, že sluneční podmínky nejsou dostatečné, teplota vody v solárním okruhu je nízká a dojde k aktivaci elektrické patrony. V tento okamžik se solární okruh stává pro soustavu zbytečnou zátěží, ve které dochází k nežádoucímu ochlazování teplonosného média. Tímto dospíváme k závěru, že z ekonomického hlediska je výhodnější provozovat bivalentní topný systém v alternativním režimu. Tento přístup byl konzultován s odborníky ze strojní fakulty, Ústavu techniky prostředí a je potvrzena platnost. Dále je vhodné navrhnout proporce tak, aby objemy primárních okruhů byly dostatečně malé a soustava byla schopna reagovat (krátké časové konstanty) na změny slunečních podmínek.

3.7.4 Regulační obvod

Syntézou poznatků zavedených v kapitole 3.7.1 dostáváme ucelený matematický popis soustavy dle obrázku 3.16. Cílem této kapitoly je provést vhodný návrh regulace otopného systému. S ohledem na zavedené přístupy v kapitolách 3.6 a 3.7 se nabízejí tři možná řešení, jak provést zpětnovazební regulaci pomocí klasického PID regulátoru. Rozhodující je však volba regulované veličiny

- (a) výstupní výkon P_W ,
- (b) teplota radiátoru (místnosti),
- (c) ekvitermní regulace.

Při regulaci výstupního výkonu (a), lze navrhnout řízení při němž je poměrně rychle dosaženo přesně požadovaného výkonu. Avšak s ohledem na platnost vztahu (3.28) je zřejmé, že tento koncept nebude vhodný pro vytápění prochladlé budovy. U varianty (a)by nanejvýš připadala v úvahu úloha udržení soustavy v ustáleném stavu, což však pro reálnou situaci není dostačující.

Druhou možností je navrhnout regulaci podle teploty (T_{RA+}) teplého konce radiátoru, či alternativně podle bodové teploty (T_{RM}) uvnitř místnosti. Pro LTI systém by bylo dosaženo akceptovatelných výsledků. V této práci i v reálných systémech jsou radiátorům předřazeny uzavírací ventily. Je tedy možné radiátor zcela odpojit z topného okruhu. V případě, že by teplota T_{RA+} (alternativně T_{RM}) byla zpětnovazebním signálem, došlo by k saturačnímu vybuzení zdroje tepla, ale sledovaný výstup by byl neřiditelným stavem systému. Z tohoto jednoznačně vyplývá, že varianta (b) je rovněž nepřípustným řešením.

Poslední zmíněnou možností je provést *ekvitermní regulaci*. Tato metoda je v technické praxi běžným způsobem, neboť neselhává ve výše zmíněných situacích. Tento přístup tedy zvolíme i pro virtuální model a budeme se jím podrobněji zabývat. Blokové simulační schéma regulované energetické soustavy v minimální konfiguraci je na obrázku 3.19.

Z hlediska časových konstant je dominantním prvkem regulovaného obvodu akumulační nádoba, teplovodní potrubí má časovou konstantu o řád nižší. Vyplývá to z objemových proporcí a průtoku, což bylo zavedeno v příkladech 3.1 a 3.2.

Pro realizaci alternativy (c) je však nutné mít k dispozici referenční teploty topné vody k vytápěnému objektu. Nastavení ekvitermní křivky by mělo rovněž zohledňovat

Obrázek 3.19: Blokové simulační schéma základní regulované soustavy

klimatické podmínky v dané lokalitě a požadované mikroklima v budově. Tato závislost má přímý vliv na kvalitu vytápěcí soustavy, případně úzce souvisí s ekonomickou hospodárností systému. V této práci bude použita ekvitermní křivka platná pro výměníkové stanice ve správě Tepelného hospodářství Prachatice s.r.o.. Konkrétní data jsou uvedena na internetových stránkách města Prachatice a převodní charakteristika je znázorněna na obrázku 3.20. Pro jednodušší implementaci ve virtuálním modelu byla křivka aproximována lineární funkcí o předpisu

$$T_{TV} = -1.1961 \cdot T_a + 54.804, \tag{3.39}$$

kde T_a [°C] je teplota vzduchu okolního prostředí a T_{TV} [°C] je teplota topné vody.

Pomocí vztahu (3.39) je tedy v simulaci vypočtena požadovaná teplota topné vody. Ve zpětnovazebním zapojení (obrázek 3.19) pak na základě regulační odchylky e(t) regulátor vygeneruje akční veličinu, která vyvolá ve zdroji tepla patřičnou reakci. Výstupem členu zdroj je okamžitý tepelný výkon, který způsobí nárůst vnitřní energie AN podle odvozené přenosové funkce (3.37). Stejný proces proběhne i v potrubí, jehož časová konstanta je dána výkonem čerpadla.

V případě, že jsou ventily V_1 a V_2 otevřené, čerpadlo v radiátorovém okruhu bude aktivní a energie bude distribuována do topných těles a vytápěného prostoru. Regulační obvod bude fungovat bezchybně. Pokud by však ventily byly uzavřeny, cirkulace topné vody by se zastavila a obvod by byl regulován na základě neřiditelného stavu. Došlo by tak k maximálnímu vybuzení zdroje a v nejhorším případě k poškození technologie. Z tohoto důvodu je zpětná vazba zapojena přímo z výstupu AN. Blok *teplota akumulační nádrž* na základě vztahu (3.35) určuje vývoj teploty. Vzhledem k tomu, že potrubní systém

Obrázek 3.20: Ekvitermní křivka

je statický, lze jednoduše modelovat jeho vliv. Výstupní teplota AN je tedy korigována členem *účinnost potrubí* s využitím údajů dle příkladu 3.2.

Podle značení na obrázku 3.19 má na dodávanou energii do obvodu přímý vliv regulátor a omezovací člen. Zdroj tepelné energie by teoreticky měl reprezentovat samostatný blok. Avšak úkolem této práce není modelovat velmi komplikovanou dynamiku elektrického kotle(resp. solárního panelu), proto můžeme zavést zjednodušení a zdroj tepelné energie považovat za soustavu nultého řádu. Zde je však důležité, že každý reálný zdroj má omezený výkon. Tím se dostáváme k podstatě funkce bloku *saturace* v simulačním modelu.

Zdrojem elektrický kotel

Uvažujme případ, kdy tepelnou energii do systému dodává elektrický kotel. Považujeme jej, za dokonale tvrdý zdroj tepla s výstupním výkonem omezeným na 2kW. Pro reálné kotle je toto netypicky nízká hodnota, ale předlohou této práce je laboratorní model, v němž je topná spirála tohoto výkonu. Výkonové omezení zdroje energie v navrženém schématu zajišťuje blok *saturace*.

Zdrojem solární panel

Pokud budou dobré slunečné podmínky, voda v solárním kolektoru bude ohřáta na dostatečnou teplotu a panel bude do systému dodávat výkon úměrný intenzitě slunečního záření. Okamžitý výkon kolektoru bude v závislosti na intenzitě slunečního záření kolísat od minimální hladiny dané difúzním zářením až k úrovni 2kW.

Návrh regulátoru

Základním požadavkem při návrhu regulátoru tepelné soustavy je zajištění rychlého náběhu, avšak bez překmitnutí, takže se budeme snažit dosáhnout meze aperiodicity. Vzhledem k velkým časovým konstantám by překmit znamenal jednak výrazné prodloužení regulace a v neposlední řadě by se negativně promítl i na ekonomickou stránku.

K obvodu dle obrázku 3.19 budeme navrhovat regulátor pro sériovou vazbu systémů AN a WS. Skutečnost, že zpětná vazba je uzavřena již z výstupu akumulační nádoby byla zmíněna v předchozí části. Celá soustava bude pracovat ve dvou režimech. Označme režimy, jako *aktivní vytápění* a *pohotovostní režim*. První případ je situace, pro niž je proveden návrh regulátoru a budeme jej považovat za pracovní bod. Naopak *pohotovostní režim* je stav, při němž jsou uzavřené radiátorové ventily a cirkulace v topném okruhu je zastavena, pak nejsou kladeny žádné požadavky ani na přesnost výstupní veličiny. V tomto stavu se obvod bude chovat tak, že teplota AN vzroste o hodnotu, jež odpovídá členu *účinnost potrubí*. Prakticky by tato vlastnost mohla být vítána, neboť vnitřní energie AN bude vyšší, a ve chvíli otevření ventilů by byl přechodový děj kratší. Avšak při dlouhodobém uzavření ventilů by bylo ekonomicky nežádoucí dodávat do AN udržovací energii. Zde se však otevírá prostor pro zavedení logického řízení. Takovouto variabilitu systému v tuto chvíli nebudeme uvažovat.

Pro takovýto systém zvolíme PID regulaci. Návrh konstant je proveden metodou Ziegler-Nicholse v otevřené smyčce. S ohledem na realizovatelnost byl navrhnut PID regulátor s filtrovanou derivací. Pro systém popsaný přenosy (3.31) a (3.37) má navržený regulátor přenos

$$R(s) = \frac{342.7s^2 + 2.998s + 0.000317}{s^2 + 0.0961s}.$$
(3.40)

Geometrické místo kořenů pro přímo vazební přenos s regulátorem je vykresleno v obrazku 3.21. Obrázek je v takovém měřítku, že je pro nastavené proporcionální zesílení patrná dvojice imaginárních kořenů. Z teorie vyplývá, že takovýto systém bude mít ve zpětné vazbě kmitavý charakter. Pro navrženou soustavu se kmitavost ještě neprojeví, neboť imaginární složka je příliš malá.

Obrázek 3.21: Geometrické místo kořenů otevřené smyčky

Výsledky simulací

Pro navržené řízení byla provedena série simulací, jejichž výsledky dokumentují výkonový (obrázek 3.22) a teplotní graf (obrázek 3.23). Na obrázcích je vykreslena síť přechodových charakteristik pro několik různých teplot okolního prostředí T_A . Z teploty okolního prostředí je pomocí vztahu (3.39) vypočtena požadovaná teplota topné vody. Pro snadné porovnání jsou simulace provedeny pro konstantní teplotu v místnosti. Ze simulací je patrné, že ztráty místností jsou závislé na okolní teplotě (resp. na teplotním spádu). Simulace je provedena pro konstantní okolní teploty z intervalu $-20^{\circ}C$ až $10^{\circ}C$ a počáteční teplota objektu je nastavena na $12^{\circ}C$. Jak již bylo uvedeno, matematický model neobsahuje přímou vazbu na okolní teplotu, což působí komplikace při zavádění počátečních podmínek.

Obrázek 3.22: Vývoj okamžitých výkonů regulované soustavy

Podle výkonových charakteristik na obrázku 3.22 se okamžité ztráty místností pohybují přibližně v intervalu 700W až 1300W. Převodní charakteristika okolní teploty T_A na ztráty Q_Z je vykreslena na obrázku 3.24. Byla stanovena pro stejné venkovní teploty, pro které je provedena výkonová simulace z grafu 3.22 a pak aproximována lineární funkcí.

Předchozí simulace s konstantní referencí byla rozšířena na základě reálných dat prezentovaných v kapitole 2.4. Jako ilustrativní příklad provedeme simulaci vytápění na Nový

Obrázek 3.23: Vývoj teplot regulované soustavy

rok, konkrétně v neděli 1.1.2006. Z meteorologických dat (dle obrázku 2.2) byly použity údaje pouze pro potřebných 24 hodin. Průběh teploty vzduchu uvádí obrázek 3.25 a pro doplnění je na následujícím obrázku 3.26 požadovaný průběh topné vody. Vývoj byl vypočten pomocí aproximační rovnice (3.39).

Z obrázku 3.27 je patrný vývoj výkonů v regulované soustavě. Zdroj energie pro tuto simulaci byl pouze elektrický kotel, tzn. akční veličina je omezena maximálním výstupním výkonem kotle. Z uvedené simulace není omezení příliš patrné, neboť v daný den není nutné plného výkonu k vytápění. Pouze na počátku přechodového děje se projeví derivační složka a výkon prudce vzroste. Vzhledem k tomu, že Český hydrometeorologický ústav ukládá naměřené teploty s periodou 1 hodina, reference má diskrétní charakter. Při simulaci se tato skutečnost projeví derivačními zákmity při skokové změně teploty. Ve skutečnosti je průběh teploty vzduchu spojitá křivka a stejně tak by byl průběh akční veličiny hladký.

Na obrázku 3.28 je odpovídající vývoj teplot v systému. Křivka označená *bod W*, vyjadřuje vývoj teploty topné vody na vstupu radiátorů. V obrázku je ještě doplněn vývoj teploty uvnitř místnosti. V simulaci jsou opět zavedeny počáteční podmínky pro $12^{\circ}C$.

Obrázek 3.24: Ztrátová převodní charakteristika

3.7.5 Alternativní režim zdrojů

V kapitole 3.7.3 bylo podáno vysvětlení, proč zdroje energie budou pracovat alternativně. Na obrázku 3.29 je rozšíření základního simulačního schématu (dle obrázku 3.19). Struktura modelu je zachováno, pouze původní saturační člen je zastoupen dvojicí omezení.

Saturace označená zkratkou EK náleží k elektrickému kotli a bude mít pevné limitní hodnoty, SP k solárnímu panelu a limitní hodnoty dodávaného výkonu budou závislé na intenzitě slunečního záření.

Ještě je vhodné doplnit bližší popis ke dvěma regulačním větvím. Regulace obvodu pro elektrický kotel je přirozená. Výstupní výkon kotle je možné regulovat⁵ v rozsahu jeho konstrukčních omezení, avšak u solárního panelu nemusí být regulace na první pohled zřejmá. Výkon solárního panelu je závislý na intenzitě slunečního záření, což je stochas-

⁵Vlastní regulace výkonu kotle se v praxi nedoporučuje. Každý kotel je konstruován na funkci při jmenovitém výkonu, při němž dosahuje maximální účinnosti. Snižováním výkonu pak klesá i účinnost. Snižováním výkonu kotle také hrozí nebezpečí, že by vnitřní teplota mohla klesnout na úroveň rosného bodu. Při teplotě rosného bodu začíná uvnitř kotle kondenzovat voda a dochází ke korozi a snižování životnosti zařízení. Regulace výstupního výkonu zdroje se obvykle řeší s využitím třícestného ventilu, který byl odvozen v kapitole 3.6.3.

Obrázek 3.25: Vývoj teploty vzduchu pro Ruzyni 1.1.2006

tický faktor. Možnost regulace se nabízí v podobě korekce výkonu čerpadla v solárním okruhu. Zvýšením průtoku se sníží energie předaná teplonosnému médiu za jednotku času, tzn. výstupní výkon bude nižší.

Úloha vyvážení zdrojů spočívá ve správné volbě řídícího kritéria přepínače SW. Pokud bude preferován elektrický kotel, vzrostou celkové náklady a solární panel nebude efektivně využit. V opačném případě může vzniknout výkonový deficit. Pro simulace bude zavedeno velmi jednoduché přepínací kritérium

$$P_{SP} > P_W - P_h \tag{3.41}$$

kde P_{SP} je okamžitý výkon dodávaný solárním panelem, P_W je požadovaný výkon a P_h bude vyjadřovat hysterezi. Úrovní hystereze budeme nastavovat prioritu solárního vytápění. Grafickou interpretací této jednoduché nerovnosti je obrázek 3.30, který v ploše výkono-spotřeby vymezuje oblast, kde solární kolektor je dostačujícím zdrojem energie.

Podle převodní charakteristiky z obrázku 3.24 byl pro modelovaný dům vypočten vývoj ztrát za rok 2006, průběh je znázorněn na obrázku 3.31.

Pro bivalentní systém byla provedena simulace vytápění za rok 2006. Průběh intenzity slunečního záření dle obrázku 2.3 je přepočten na výstupní výkon a podle nerovnosti (3.41)

Obrázek 3.26: Průběh výkonu v systému

je rozhodováno o činnosti zdrojů. Konkrétní výsledky vypovídající o podílu zdrojů na vytápění vyjadřuje obrázek 3.32.

Na závěr uvádíme ještě obrázek 3.33, který je výstupem simulace pro 365 dní a dokládá procentní podíl solárního panelu a elektrického kotle pro jednotlivé dny. Zelenou čarou je v grafu vyznačeno topné období, jež bylo charakterizováno v kapitole 2.1. Nejde o procentní veličinu, ale pro názornost byla vykreslena do tohoto obrázku. Dle očekávání období s nejvyšší sluneční aktivitou je mimo topnou sezónu. U systémů s krátkodobou akumulací energie nejsme schopni nadbytek tepla využít pro pozdější vytápění.

Obrázek 3.27: Vývoj výstupních teplot

Obrázek 3.28: Vývoj teplot regulované soustavy

Obrázek 3.29: Blokové simulační schéma bivalentní regulované soustavy

Obrázek 3.30: Činnost solárního panelu v závislosti na výkonu

Obrázek 3.31: Ztráty domu pro rok 2006

Obrázek 3.32: Četnost vytápění zdrojů pro rok 2006

Obrázek 3.33: Procentuální podíl zdrojů na vytápění za rok 2006

Kapitola 4

Virtuální model

Pro matematický popis sestavený v kapitole 3 byl vytvořen softwarový projekt, který nabízí vizualizaci reálného domu a topné soustavy. S ohledem na vývojové trendy v oblasti softwarového inženýrství, je projekt realizován v prostředí Microsoft Visual Studio 2005 v jazyce C#. Vzhledem k účelu práce, je vhodné věnovat patřičnou pozornost grafickému zpracování modelu. Klademe si tedy za cíl vytvořit názorný model virtuálního domu, který by srozumitelnou cestou uživatele seznámil se strukturou a principem funkce vytápěcí soustavy, dále aby model nabízel široké spektrum funkcí, a simulační jádro bylo přizpůsobeno pro činnost na výukovém serveru. Bližší analýza jednotlivých komponent uvedeného projektu je popsána v následujících kapitolách.

4.1 Počítačová grafika v oblasti řízení

V současnosti se taktovací frekvence jádra grafických karet střední kategorie pohybuje okolo 500MHz a standardem je paměť GDDR III o velikosti 256MB. Investice spojené se zřízením vyhovujícího pracoviště nijak nepřevyšují běžnou pracovní stanici. Aplikace zaměřené na 3d počítačovou grafiku již dosáhly velmi vysoké úrovně, avšak nároky běžného uživatele rovněž vzrostly. S ohledem na vývoj je dobré i v oblasti řídící techniky sledovat tento trend, využít dostupné výpočetní možností a posílit atraktivitu tohoto oboru. Možnosti, které počítačová grafika nabízí nepochybně otevírají další směr studia a pracovního zaměření, které by bylo dobré i do budoucna sledovat.

4.2 Grafická knihovna

Pro vytvoření grafického rozhraní připadají v úvahu dva kandidáti. Jednak API DirectX od společnosti Microsoft, nebo standard OpenGL od firmy Silicon Graphics. Specifikaci těchto standardů jsou věnovány samostatné publikace (OpenGl např. kniha [7]), které jsou velmi obsáhle. Popis tohoto prostředí není náplní této práce, proto uvedeme pouze základní informace a zvolíme směr realizace projektu. Z obrázku 4.1 je patrné porovnání základní struktury DirectX a OpenGL.

Obrázek 4.1: Bloková struktura grafických standardů

Historie DX sahá do poloviny devadesátých let, kdy Microsoft odkoupil autorská práva od původního projektu společnosti Render Morphics, na němž začal budovat dlouhou sérii grafického API. Na vzdory mnohým neúspěchům dospělo DX nyní do verze 9, respektive DX10 pro nový systém Windows Vista a je považováno za minimálně srovnatelnou knihovnu s OpenGL. Jedná se o systém koncipovaný zejména pro operační systémy z rodiny Microsoft Windows. Přenositelnost je velmi komplikovaný proces, který si obvykle žádá přístup reverse engineering. DirectX je nástroj navržený především pro vývoj počítačových her a nabízí mnoho funkcí pro implementaci grafiky, zvuku, ovládání a umělé inteligence. Základní struktura obsahuje několik vrstev, jak je zřejmé z obrázku 4.1 (a). Instrukční sady grafických karet jednotlivých výrobců jsou odlišné, což je důvodem proč je systém Direct3D oddělen od hardwaru. Každá volaná funkce je filtrována modulem HEL (Hardware Emulation Layer), který vyhodnotí zda grafická karta příkaz podporuje. Pokud ne, vrstva provede softwarový výpočet. V případě, že existuje hardwarová podpora, je aktivován HAL (Hardware Abstraction Layer) a služba je provedena přímo v grafickém adaptéru. Jednotka DDI (Display Device Interface) slouží k přístupu platformy GDI (Graphical Device Interface), nebo HEL modulu k hardwaru.

OpenGL je multiplatformní knihovna typu open source vytvořená v programovacím

jazyce C. S příchodem objektově orientovaných programovacích jazyků prošla revizí a OGL bylo transformováno do objektového modelu. Dle obrázku 4.1 (b) představuje vrstvu přímo na rozhraní uživatelské aplikace a grafického adaptéru. Jádrem systému je přibližně 250 příkazů, pomocí nichž se definují objekty a lze vytvořit interaktivní trojrozměrnou aplikaci. Základní filosofie vychází z modelu konečného stavového automatu. V prostředí však jsou implementovány i módy, které jsou ohraničeny příkazy glEnable() a glDisable(). Prostředí nachází velmi často uplatnění v technických aplikacích, kdy jsou požadavky oproti hernímu průmyslu obecnějšího charakteru. Například lze jmenovat CAD systémy, software pro vytváření filmových 3d animací a mnoho dalších.

V současné době je nejpoužívanější operační systém Windows XP a pro tento bude práce optimalizována. Standardní balíček grafických ovladačů neumožňuje hardwarovou akceleraci a přímý přístup k zařízení. Přímá implementace projektu s trojrozměrnou grafikou by nepracovala optimálně a proto je doporučeno provést instalaci klientských ovladačů (ICD) distribuovaných přímo výrobcem GPU (Graphics Processing Unit).

Pro implementaci grafického rozhraní virtuálního domu byla využita distribuce Tao framework verze 2.0 RC1. Tento projekt je soubor multiplatformních zařízení pro vývoj multimediálních aplikací na platformě .NET. Knihovna se neustále vyvíjí, specifikace, manuály a dokumentace jsou dostupné na internetu [10].

Poznámka: V novém systému Windows Vista jsou integrovány tři

distribuce grafického systému OpenGL. V prvním případě, vytváří vazbu na Direct3D a pro verze 1.4 a starší je umožněna hardwarová akcelerace. Alternativou je využití klientských ovladačů převzatých ze systému Windows XP, v tom případě je prostředí Aero potlačeno. Poslední variantou je plná implementace knihovny OpenGL 2, která může být residentně v činnosti a pracuje paralelně s módem Vista Aero. □

4.3 Koncepce projektu

Při návrhu výukového modelu se zaměřujeme na správnou interpretaci fyzikálního procesu, názornost systému a v neposlední řadě na vzdálený přístup (realizace distribuovaného systému). Na katedře řídící techniky se stále pracuje na vývoji nových modelů, nebo zdokonalování stávajících. Fyzický model je pro studenty velmi užitečný nástroj pro osvojení základních principů řízení přirozenou cestou. Avšak s ohledem na realizovatelnost a možnost hromadného nasazení dospíváme k jistým omezením. U skutečného modelu budeme vždy omezeni přírodními zákony, což je v pořádku, neboť naším úkolem je pracovat v reálném světě. Jestliže budeme chtít provozovat systém v širším intervalu pracovních podmínek, než umožňuje okolní prostředí, pak vzniká velmi významná překážka. K řešení tohoto problému je zpravidla nutné vynaložit značné úsilí a v jistém slova smyslu provést izolaci modelu od okolního prostředí.

V případě realizace prostřednictvím matematického modelu je situace výhodnější, neboť pracovní prostor můžeme přímo specifikovat v rámci konceptu. Tepelný systém je jedním z příkladů, který této skutečnosti využívá. Z přechodových charakteristik na obrázku 3.3 je zřejmé, že měření na laboratorním modelu jsou časově velmi náročná a model topení je provozován v úzkém pracovním intervalu. Virtuální model je navázán na reálná data a matematický popis postihuje širší pracovní oblast a jsme schopni provádět simulace celé topné sezony.

4.4 Analýza možných řešení

V počáteční fázi jsme provedli analýzu možných přístupů, jak vytvořit virtuální 3d svět. V našem případě diskutujme dva možné kandidáty.

- (a) 3d modelovací studio
- (b) programově na úrovni OpenGL

Varianta (a) vyžaduje znalosti v oblasti 3d modelovacích programů a v neposlední řadě vlastnictví licence příslušného SW. Do této rodiny patří např. 3d Max Studio, Maya, TrueSpace, Cinema 4D a nebo open-source projekt Blender. Další nutnou podmínkou je porozumění datové struktuře exportovaných modelů a konečně implementaci 3d loaderu,

4.5. MODULY SW PROJEKTU

který transformuje datový výstup studia do zobrazovacích seznamů v OpenGL. Grafickou interpretaci tohoto procesu vystihuje obrázek 4.2.

Obrázek 4.2: Vizualizační proces prostřednictvím 3d studia

Tato metoda nabízí obrovský potenciál při vytváření prostorových objektů. Je možné vybudovat komplexní virtuální svět, který bude propracovaný do nejmenších detailů. Obrovská výhoda je zejména v modularitě metody a snadné modifikovatelnosti projektu. Práci je možné snadno rozdělit mezi několik lidí, pracovat paralelně a dosáhnout velmi dobrých výsledků.

V rámci této práce byly provedeny experimenty na relativně jednoduchých modelech a ukázalo se, že je třeba věnovat velkou pozornost způsobu exportu modelu a *3d loaderu*. Přesněji řečeno klíčová otázka při importu 3d modelu do SW projektu je rozlišení dat (hustota polygonů). Standardním postupem z 3d modelovacího programu vyexportujeme data o velmi vysokém rozlišení. Po přímé implementaci těchto modelů v **Tao.OpenGL** pro Visual Studio se ukázalo, že grafický výkon aplikace není optimální. Nutno podotknout, že v případě dynamických scén je třeba vynaložit značné úsilí k manipulaci s jednotlivými objekty vytvořeného světa.

Druhou možností je (b), což představuje programové generování virtuálního světa přímo na úrovni OpenGL příkazů. Pro vytvoření modelu srovnatelného s přístupem (a)by bylo třeba značné úsilí, avšak knihovna OpenGL je natolik silným nástrojem, že pro účely této práce bohatě postačí.

4.5 Moduly SW projektu

Výchozím bodem celého projektu je rozhraní Win API, v němž je umístěna komponenta Panel z knihovny System.Windows.Forms, uživatelská nabídka a stavový řádek. Veškeré funkce prostředí jsou přístupné prostřednictvím menu a postranních panelů, podrobnější popis je uveden v kapitole 4.8. Abychom mohli využívat grafické knihovny OpenGL, je nutno nejdříve provést inicializaci. Inicializace znamená zejména zavedení instance objektu SimpleOpenGlControl() a nastavení stavových proměnných (např. barvy, použití vykreslovacích pamětí, transparentnost, konfigurace osvětlení, kamery atd.) Na Panel je ve virtuální metodě OnPaint() zobrazen výstup vytvořené animace. Na obrázku 4.3 jsou blokově znázorněny implementované objekty 3d scény.

Obrázek 4.3: Grafické moduly aplikace

Vzhledem k tomu, že projekt je prototyp, tak při implementaci byl kladen důraz na variabilitu aplikace a prostřednictvím GUI je přímo možné konfigurovat 3d scénu, nastaveni aplikace, matematický model i regulátor.

Projekt Tao. OpenGL již obsahuje grafickou knihovnu s utilitami GLUT a je tedy možné snadno kreslit grafická primitiva i základní prostorové objekty. Tento nástroj jsme využili k implementaci stavebních prvků našeho světa a vytvořili jsme vlastní objekty virtuální scény. V následující části uvedeme stručný popis a ilustrace nejvýznamnějších komponent.

Na všechny vytvořené objekty jsou naneseny textury a výsledný engine je více autentický. Pro práci s texturami jsme využili knihovnu DevIl (Developer's Image Library). Nejdříve je nutné provést inicializaci Il (Image Library) a Ilut (Image Library utilities), pak už lze přímo načítat do vnitřní paměti bitmapová data. Zavedené bitmapě je přidělen unikátní identifikátor, pomocí něhož je v případě potřeby aktivována.
4.5.1 Model domu (House)

Virtuální dům reprezentuje dvoupodlažní budova s dvojicí místností v přízemí a v prvním poschodí. Základní stavební prvek pro dům z obrázku 4.4 je prostředí Gl.GL_QUADS. Definujeme tedy čtveřici vrcholů, které jsou chápány jako polygon se čtyřmi stranami. Abychom mohli vytvořit pravoúhlý šestistranný objekt, musíme definovat osm vrcholů. Pro pozdější aplikaci textury je třeba ještě definovat normálové vektory. Nástroje tohoto typu jsou implementovány v objektu GraphicObjects. Po provedení geometrické analýzy a definici konstant je možné sestavit např. tento dům, nebo prostředí rozšiřovat o další objekty.

Obrázek 4.4: Ilustrace prázdného domu

4.5.2 Vytápěcí soustava (Heating)

V kapitole 3 byla zavedena struktura topného okruhu a byl podán výklad k jednotlivým komponentám. Ve vizualizaci jsou zastoupeny prvky matematického modelu. Situace je

zřejmá z obrázku 4.5, na němž jsou uvedeny i konkrétní popisky. Uživateli se tak nabízí multimediální prostředek, jak proniknout do možné realizace topného systému.

Pravoúhlé objekty (kotel, akumulační nádoba, solární panely, čerpadla, ventily a žebrování radiátorů) jsou vytvořeny opět pomocí knihovny **GraphicObjects**. Výsledný vzhled doplňuje aplikace vhodných textur. Solární panely, kotel a akumulační nádoba jsou ve vizualizaci statickými členy. Naopak stav ventilů, čerpadel, cirkulace média v potrubí a teplota radiátorů jsou animovány. Uživatel tak může bezprostředně vnímat stav modelu a aktuální konfiguraci členů.

Potrubní soustava je vytvořena rekurzivním algoritmem, přičemž jednotlivé úseky jsou ohraničeny rotačními a translačními transformacemi. Efektu zaoblení kolen je dosaženo pomocí sférického objektu. Při aktivním vytápění se uplatní skupina objektů Indicator a vizualizace ukazuje distribuci energie.

Obrázek 4.5: Ilustrace struktury vytápěcí soustavy

Na obrázku 4.6 jsou zachyceny dva mezní stavy radiátorů. V případě (a) je ventil uzavřen, topnému tělesu není dodávána tepelná energie a chladne na teplotu okolního prostředí. Na obrázku (b) je zachycena opačná situace. Ventil je otevřený, topným tělesem cirkuluje médium o vyšší energii a radiátor předává okolnímu prostředí teplo v podobě sálavých ztrát.

Obrázek 4.6: Detail stavů radiátoru

Obrázek 4.7 (a) znázorňuje třícestný ventil a oba stavy čerpadel. Všechny členy jsou aktivní a jejich činnost je interpretována animacemi. Čerpadlo v solárním okruhu (levé spodní) je vypnuto a čerpadlo v radiátorovém okruhu je aktivní (pravé horní). Zapnuté čerpadlo je indikováno běžícím pruhem šipek a zeleným pozadím. Funkci třícestného ventilu vyjadřuje šedý blok s dvojitou šipkou. Poměr mísení je zobrazen prostřednictvím konfigurace barevných kruhových výsečí (od poměru 1:0 až k 0:1).

Na obrázku 4.7 (b) je detailní pohled z perspektivy na rtuťový teploměr. V závislosti na příslušné teplotě se sloupec rtuti pohybuje v mezi 0 a 100°C. Jeden dílek na stupnici odpovídá teplotě 4°C.

Obrázek 4.7: Prvky tepelného systému

4.5.3 Virtuální svět (3d World)

Syntézou výše demonstrovaných elementů dostáváme finální podobu grafického rozhraní. Výsledek s úplnými detaily uvádí obrázek 4.8. Vzhledem k závěrům z kapitoly 3, je ve virtuálním prostředí umístěn i plavecký bazén.

Pro dokreslení prostředí byly implementovány další objekty reálného světa. Obloha je tvořena kulovým objektem, na který je zevnitř nanesena textura. Projekt umožňuje navolit vzhled s ohledem na denní dobu a typ oblačnosti. Kulovou plochu v polovině dělí pravoúhlý polygon (travnatý povrch), na němž je umístěn dům a ostatní objekty. Ve pravé zadní části scény je stromořadí. Základem je objekt **Tree**, který je tvořen cylindrickým a sférickým elementem s modifikovaným měřítkem v rovině XY.

Obrázek 4.8: Ilustrace plné grafické engine

4.5.4 Počasí (Weather)

Do projektu byl zapracován jednoduchý simulátor počasí. Funkce simulátoru se vyvolají pomocí položky Panels→Weather z uživatelské nabídky. Při spouštění ovládacího panelu dojde k importu bitmapových obrázků z adresáře Grafika\Sky. Na obrázku 4.9 je ukázka svítání (a) a oblačného dne (b). Oba případy ukazují scénu za denního světla.

Obrázek 4.9: Ilustrace atmosférických podmínek za bílého dne

Dvojice ilustrací na obrázku 4.10 vystihuje noční scénu za jasné noci (a) a mlhavou noc na obrázku (b). Tyto efekty jsou přístupné v manuálním režimu přes ovládací panel Weather. Pro použití automatizované použití při simulacích je nutné mít k dispozici stavový řídící vektor oblohy. Balík naměřených dat z ČHMÚ tyto údaje neobsahuje a bylo by tedy nutné implementovat vlastní generátor řídící veličiny. Stávající verze projektu tuto funkci nepodporuje, neboť je nad rámec zadání.

Obrázek 4.10: Ilustrace atmosférických podmínek v noci

Na výkonu solárních jednotek se nepochybně podílejí i srážky. Zvýšené množství částic

vody ve vzduchu ovlivní činitel prostupu (resp. odrazivosti) světla a výkon solárních panelů bude nižší. Projekt tedy obsahuje funkce pro volbu srážek, na obrázku 4.11 jsou ilustrace deštivého dne (a) a dne se sněhovými přívaly (b).

Obrázek 4.11: Ilustrace srážky

4.6 Síťové rozhraní

V projektu bylo vytvořeno rozšíření v podobě síťového rozhraní, které slouží pro vzdálenou výuku. Vzhledem k tomu, že nepotřebujeme trvalou komunikaci, zvolíme systém založený na protokolu UDP (User Datagram Protocol). UDP je nespojovaný protokol a proto odpadají značné komplikace s navazováním a obnovováním spojení při výpadcích sítě, což je nutno řešit např. u protokolu TCP (Transport Control Protocol). Naopak slabinou UDP je nulová kontrola validity přenášených dat. Z tohoto důvodu jsme vytvořili vlastní implementaci komunikačního modulu, v němž je kontrola prováděna.

Obrázek 4.12: Filozofie potvrzované komunikace

Základní filozofie potvrzovaného přenosu vyplývá z obrázku 4.12. Klient odešle na adresu serveru zprávu MSG, ta je uložena do seznamu přijatých zpráv a server zpět odešle doručenku x(MSG). Na základě odeslané zprávy a doručenky klient vyhodnotí platnost přijaté zprávy a odešle serveru potvrzovací zprávu ok(MSG).

Popsaná metoda klade na přenosový kanál zvýšené nároky, ale v našem případě to neznamená žádný problém. Softwarový projekt byl rozdělen do dvou částí. Výukový server tvoří projekt Lecture_server a klientská aplikace s vizualizací HouseModel. Komunikační proces pro jednu simulaci vypadá následovně. Klient odešle výukovému serveru požadavek, server jej vyhodnotí provede příslušné výpočty a odešle zpět datovou zprávu.

Pro přenos zpráv je využita technologie XML (eXtended Markup Language). V současnosti je stále populárnější a z hlediska přenosu dat je to velmi užitečný nástroj. U rozsáhlejších dokumentů se rovněž uplatní výhody jazyka XPath a požadovaná informace z dokumentu je snadno dostupná. Bližší informace o XML lze najít v knize [6] a o XPath v [8]. Navržená datová věta je uvedena v příloze B.

4.7 Simulační mód

Veškerá odvození a simulace z kapitoly 3 byly provedeny s využitím programu Matlab. Výstupem je série skriptů, které provádějí matematické výpočty vývoje vnitřních stavů odvozeného modelu. Stručný popis skriptů tvořících simulační jádro je uveden v příloze C.

Pro implementaci matematického modelu v prostředí C# .NET je možné využít např. knihovny CSML (CSharp Matrix Library), což je open source knihovna nabízející základní rutiny lineární algebry. Pro realizaci naší úlohy pomocí této knihovny by bylo nutné rozšířit stávající projekt o některé funkce z Control Toolboxu. Další stinnou stránkou by byla komplikovaná a zdlouhavá implementace. Výsledné matematické jádro by se obtížně modifikovalo, proto uvedeme elegantnější metodu.

Prostředí Visual Studia nabízí vývojářské nástroje, jako interoperabilita s objekty COM (Component Object Model). Je tedy možné vložit do projektu i externí komponenty a využít jejich funkcí. Vzhledem k tomu, že současné verze Matlabu přímo umožňují zapouzdřit vlastní funkce do dynamické knihovny, je velmi výhodné této techniky využít. Tato metoda zachovává výhody Matlabu, je časově nenáročná a dosahuje dobrých výsledků.

V krátkosti ještě popíšeme způsob generování DLL komponenty v Matlabu. Pomocí

příkazu dotnettool spustíme nástroj Matlab Builder. Založíme projekt a importujeme vlastní m-soubory. M-soubory musí obsahovat funkce a definované vstupní/výstupní parametry. V posledním kroku vygenerujeme .NET Object, který pak v projektu Visual Studia přidáme do referencí.

4.8 Uživatelské prostředí - ovládání

V klientské aplikaci projektu HouseModel je implementována řada funkcí spojených s ovládáním programu, vizualizací, simulacemi, konfigurací a síťovým rozhraním. Pro přehlednost byla v hlavním okně integrována uživatelská nabídka, která je vstupním bodem ovládacích prvků. Vzhledem k jejich rozsahu byly vytvořeny tzv. funkční skupiny, jimž odpovídají postranní panely.

Postranní panel je samostatné okno, které uživateli nabízí skupinu ovládacích prvků. Projekt má tedy MDI (Multiple Document Interface) strukturu, přičemž postranní panely jsou potomky hlavního okna projektu HouseModel a nezobrazují se ve Windows v Správci úloh. Seznam spuštěných panelů je dynamicky monitorován aktivními položkami v položce Window.

Obrázek 4.13: Struktura uživatelské nabídky

Na obrázku 4.13 je zachycena úplná struktura uživatelské nabídky. Z položky Panels jsou přístupné všechny implementované postranní panely. Významnější panely (Control, Simulation) jsou zavedeny v konstruktoru programu a jsou spuštěny residentně. Pomyslné spuštění, resp. ukončení je ve skutečnosti pouze zobrazení, resp. skrývání okna.

4.9 Nástroje pro výuku

Simulační prostředí je možno vyvolat dvěma způsoby, jednak pomocí Panels→Simulation, nebo Simulation→Interface. Oba způsoby vedou ke stejnému výsledku. Je to z toho důvodu, že určitá redundance v ovládání dopřává uživateli vyšší komfort.

Simulation panel 🛛 🛛 🔀	Simulation panel 🛛 🛛
✓ Day 📄 Year Network 📄 Params	Day Vear Network Params
Date 1.1.2006 💌	Year 2006
Hour 0 😂	Days 365
Range 24 😂	Ref. temp 13
	Window 3
Mode Furnace 💌	Mode Bivalent 💌
Controler 📔 🔽	Controler PI
Results	Results
(a)	(b)

Obrázek 4.14: Postranní panel - simulační rozhraní

Simulační panel je dynamický formulář, který je generován dle zvolených parametrů. Výsledky jsou znázorněny na obrázku 4.14 (a), resp. (b). Rozhraní uživatelům nabízí poměrně široké možnosti nastavení. Základem je volba krátkodobé, nebo dlouhodobé simulace. Tato se provádí pomocí zaškrtávacích polí Day a Year. Podle délky simulace jsou přizpůsobeny i konfigurační pole.

Krátkodobá simulace představuje výpočet energetické bilance a tepelných podmínek v systému na základě meteorologických dat. Simulace je prováděna pro libovolné datum Date (omezeno na rok 2006), počínaje zadanou hodinou Hour pro rozsah Range. Dále je možné z rozbalovacího seznamu Mode zvolit zdroj tepelné energie, buď elektrický kotel Furnace, duální režim Bivalent a nebo simulace bazénu Pool. Rozbalovací seznam Controler nabízí PI regulátor a PID s filtrovanou derivací.

Poznámka: Regulátor lze volit pouze pro krátkodobou simulaci, kde zdrojem je elektrický kotel, nebo bivalentní systém.

Ve výchozím nastavení je pro simulaci použit předem navržený regulátor, jehož konstanty jsou uloženy v globální datové struktuře aplikace. Jestliže uživatel bude navrhovat vlastní regulátor, pak prostřednictvím tlačítka **Params** vyvolá modální formulář (obrázek 4.15), který je rozhraním pro editaci konstant regulátoru.

Settings	X
Controler Model Aplication	1
PI constants Default	
P 17,5 I 0,002993 $R(s) = \frac{P.s + I}{s}$	
PID constants (filtered derivative) Default	
b2 342,7 b1 2,998 b0 0,0003165	
a2 1 a1 0,09611	
$R(s) = \frac{b2.s^2 + b1.s + b0}{a2.s^2 + a1.s}$	
OK Storno Apply]

Obrázek 4.15: Formulář pro editaci konstant regulátoru

Záložka Controler obsahuje textová pole pro editaci PI a PID regulátorů. Současně je uveden i obecný tvar přenosových funkcí, z nichž je patrný význam jednotlivých koeficientů. Pomocí tlačítek Default je možné vrátit se k předem vypočteným konstantám, jež jsou uloženy uvnitř programu. Potvrzením změn je Focus nastaven na Simulační formulář a provedené změny matematického popisu jsou indikovány zaškrtnutým checkboxem vlevo od tlačítka Params. Rychlý návrat k přednastaveným konstantám se provede kliknutím na indikační checkbox.

V krátkodobém režimu je dále možné provádět simulace ohřevu vody v bazénu. Plavecký bazén u domku je v implementovaných simulacích ohříván dvěma vstupy. Jeden vstup je teplo dodané solárním kolektorem a druhý představuje přímou vazbu z okolního prostředí. Ohřev bazénu není regulován, proto je rozbalovací seznam **Controler** deaktivován.

Dlouhodobá simulace je fixně vázána na režim Bivalent, neboť zkoumaným výstupem je podíl solárního panelu na celoroční energetické bilanci. Kritérium pro stanovení topné sezóny bylo zmíněno v kapitole 2.1, přesto simulační rozhraní umožňuje manuálně nastavit referenční teplotu Ref. temp. a počet dní Window pro průměrování. Celoroční simulace znamená výpočet energetické bilance pro 365 dní roku 2006. Z pohledu regulace je možno nastavit PI, PID regulátor, případně modifikovat konstanty.

Celoroční simulace je výpočetně velmi náročná, na procesoru T7100 architektury Santa Rosa trvá přibližně dvě minuty. S ohledem na masový nárůst víceprocesorových systémů je výpočet prováděn v samostatném vlákně. Toto řešení uživateli umožňuje manipulovat s aplikací, přičemž na pozadí je prováděn výpočet. Aktuální stav výpočtu je indikován ve stavové liště pomocí komponenty **ProgressBar** a inkrementálního výpisu dnů.

Obrázek 4.16: Mapa implementovaných simulací

Na obrázku 4.16 je přehledně sestavena kompletní mapa dostupných simulací. Bloky označené žlutou barvou sdružují parametry jejichž hodnotu lze přímo měnit, bez barevného zvýraznění jsou rozbalovací nabídky a modré záhlaví označuje skupinu grafů na výstupu. Význam jednotlivých vstupních parametrů objasňuje tabulka 4.1 a výstupních grafů tabulka 4.2.

Parametr	Rozsah	Jednotka	Popis
Date	1.1 31.12.	-	datum simulace
Hour	0 - 23	hod	počátečního hodina simulace
Range	0 - 100	hod	délka simulace
Ref.temp.	0 - 20	°C	referenční teplota pro zahájení
			topného období
Window	2 - 10	den	počet dní pro průměrování ref. teploty
Mode	-	-	volba režimu vytápění (zdroj/spotřebič)
Controler	-	-	volba typu regulátoru

Tabulka 4.1: Význam vstupních parametrů simulací

Označení	Popis
SysTemp	Vývoj teploty topné vody a místností
AmbTemp	Vývoj teploty vzduchu vnějšího prostředí
PowerPlot	Průběh výkonových veličin v systému
SolarRate	Poměr solárního panelu/el. kotle na vytápění
PoolRate	Vývoj teploty bazénu a okolního prostředí, výkon kolektoru
PowerSol	Průběh výkonových veličin v systému + výkon kolektoru
HeatStat	Vyznačení topné sezóny
AvrgTemp	Průměrné denní teploty za kalendářní rok

Tabulka 4.2: Přehled výstupních grafů dostupných simulací

Kapitola 5

Závěr

V rámci této diplomové práce byla provedena analýza vytápěcích systémů (viz. kapitola 2) a ve následující části (viz. kapitola 3) jsme provedli odvození matematického modelu k navržené struktuře tepelného obvodu. Odvození bylo provedeno tzv. metodou rozkladu, při níž jsme v první fázi nadefinovali členy v topné soustavě, sestavili blokové náhradní zapojení a ve druhé fázi vytvořili odvození matematických popisů jednotlivých elementů. Tímto postupem jsme dospěli k teplotnímu popisu (viz. kapitola 3.6), který umožňuje provádět simulace vývoje teplot v jednotlivých částech systému. Pro sledování energetické bilance bylo nutné tento model rozšířit do podoby, při níž je výchozí fyzikální veličinou energie. Rozšíření je provedeno v kapitole 3.7.

Dále jsme pro zjednodušenou strukturu energetického modelu (obrázek 3.16) provedli návrh regulátorů. V kapitole 3.7.4 bylo uvedeno pojednání o možných způsobech regulace. Pro řízení bylo využito principu ekvitermní regulace a regulátorů PI, nebo PID s filtrovanou derivační složkou. Pro další simulace v tomto modelu byla použita reálná ekvitermní křivka dle obrázku 3.20. Vstupní veličinou do ekvitermní rovnice je teplota okolního prostředí, tuto hodnotu extrahujeme z naměřených dat Českého hydrometeorologického ústavu v Praze Ruzyni pro rok 2006.

Významnou část této diplomové práce představoval vývoj softwarového prostředí, které nabízí uživatelské rozhraní k odvozenému matematickému modelu. V prostředí Visual Studio .NET C# 2005 byla vytvořena aplikace pro platformu Windows, která tuto funkci plní. S využitím grafické knihovny **OpenGL**, přesněji **Tao Framework** bylo vytvořeno třírozměrné virtuální prostředí, v němž byl implementován interaktivní model domu se zavedenou topnou soustavou. V grafickém enginu jsou generovány realistické radiátory, teploměry, ventily a mnoho dalších objektů. Implementované objekty jsou aktivní a prvky tepelné soustavy byly napojeny na simulační jádro. Této problematice je věnována kapitola 4, v níž jsou uvedeny také ilustrační obrázky při různých pracovních podmínkách.

Dominantní funkcionalitou celé aplikace je simulační režim, v němž jsou integrovány scripty z Matlabu. Díky využití rozhraní .Net Builder si softwarový projekt *Virtuální dům* zachovává výhody prototypovacího prostředí Matlab. Matematický model je flexibilní a je velmi snadné provést jakékoliv modifikace, aniž by bylo nutné měnit kód v jazyce C#. Simulační rozhraní umožňuje provádět mnoho simulací (bližší popis viz kapitola 4.7), přičemž prostřednictvím uživatelského rozhraní lze přímo konfigurovat parametry včetně konstant regulátoru. Výstupy simulací jsou ve formátu grafů **Figure**, stejně jako v Matlabu. V grafech je možno používat nástroje posuvu, měřítka, datatipy a samozřejmostí je export grafů do obvyklých formátů **eps**, **pdf**, **jpg** a mnoha dalších.

Finální verze projektu (verze 1.0.0.0) je složena z dynamické knihovny Comunication, objektů pro vytvoření grafického rozhraní, postranních panelů, rozhraní pro editaci nastavení a hlavního formuláře. Celkový rozsah uvedených komponent přesahuje 12 000 napsaných řádek programu v C#. K simulačnímu jádru byla vytvořena sada m-skriptů o rozsahu přibližně 4000 řádků pro energetický model.

5.1 Možnosti rozšíření projektu

Vzhledem k tomu, že systém je vytvořen v objektově orientovaném vývojovém prostředí, je možné jej snadno dále rozšiřovat. a nebo funkcionalita z hlediska matematického modelu a řízení.

Vizuální stránka je stále otevřena a je možno virtuální scénu propracovat do větších detailů, nebo rozšířit o další objekty. K tomu je možné využít vytvořených objektů, nebo do projektu vkládat samostatné knihovny. Nutno podotknout, že s rostoucím počtem renderovaných objektů také rostou nároky na hardware a je nutné řešit efektivitu kódu.

V této kapitole navrhneme několik možných směrů pro další pokračování v práci.

1. Rozhraní pro logické řízení

V tepelném okruhu jsou zapojeny dvoustavové a vícestavové členy. Aktuální verze projektu umožňuje manuální ovládání. V rámci dalšího vývoje by bylo možno vytvořit rozhraní pro konstrukci logické řídící funkce a dosáhnout tak širšího uplatnění projektu.

2. Nasazení v distribuovaném výukovém systému

5.1. MOŽNOSTI ROZŠÍŘENÍ PROJEKTU

Před uvedením do provozu je nutné provést revizi síťového rozhraní ve vyhrazené laboratorní podsíti a zavést výuková pravidla pro daný předmět.

3. Plně modifikovatelné simulační jádro

Technika obousměrného propojení se simulačním jádrem Matlabu je v této práci zavedena, v rámci možného rozšíření připadá v úvahu definice veškerých parametrů matematického modelu na úrovni softwarového projektu (knihovna GlobalSettings) a doplnit uživatelské rozhraní k jejich editaci. Parametry modelu pak předávat simulačnímu jádru v rámci IO datové struktury.

4. Statistické vyhodnocení simulací

Aktuální verze projektu zahrnuje simulační funkce dle obrázku 4.16, resp. tabulky 4.2. Pro snadné vyhodnocení výsledků by bylo dobré mít k dispozici numerické výstupy (např. procentuální podíl solárního panelu na vytápění, ztráty domu, energetické nároky nebo vyčíslení celkových nákladů). Těchto výstupů lze snadno dosáhnout doplněním patřičných výpočtů do m-kódů (rovněž je nutno doplnit v .NET projektu odpovídající datové vazby).

5. Nápověda, vícejazyčná podpora

V projektu byly implementovány tooltipy a v nástrojové liště kontextová nápověda. Pro zvýšení komfortu při manipulaci s programem by bylo vhodné vytvořit konzistentní nápovědný systém, který by objasňoval děje ve virtuálním tepelném systému a uživatele podrobněji provázel ovládáním aplikace.

6. Podpora pro MDA/PDA zařízení

V posledních letech jsou stále rozšířenější zcela mobilní zařízení typu MDA (Mobile Digital Asistent) a PDA (Personal Digital Assistent). Domníváme se, že uvolnění projektu tohoto typu ve verzi pro Windows Mobile by vzbudilo zájem u početné skupiny uživatelů.

7. Model solárního kolektoru

Problematika solární energetiky je velmi rozsáhlý obor. V této práci je uvažován jen velmi zjednodušený stacionární model solárního panelu. Existují sofistikované profesionální simulátory, jejichž úroveň je v rámci diplomové práce jen těžko dosažitelná, přesto se nabízí zajímavý směr ve smyslu zdokonalení popisu solárního kolektoru, možným zdrojem informací je kniha [2].

Literatura

- [1] CIHELKA, J. Solární tepelná technika. Praha: Nakladatelství T. Malina, 1994.
- [2] DUFFIE, J., A. and BECKMAN, W., A. Solar Engineering of Thermal Processes. Whiley-Interscience Publication:, 1980.
- [3] FENCL, T. Diplomová práce: Algoritmus vícerozměrového regulátoru. Praha:, 2005.
- [4] HORÁČEK, P. Systémy a modely. Praha: Vydavatelství ČVUT, 2001.
- [5] LABOUTKA, K. and SUCHÁNEK, T. Vodní vytápěcí soustavy : Výpočtové tabulky. Praha: Nakl. techn. lit., 1985.
- [6] RAMBHIA, A., M. XML Distributed Systems Design. Sams Publishing:, 2002.
- [7] SHREINER, D., WOO, M., and NEIDER, J. OpenGL průvodce programátora. Computer Press:, 2006.
- [8] SIMPSON, J. XPath and XPointer. O'Reilly:, 2002.
- [9] SLEZAK, M. Diplomová práce: Model domovní automatizace. Praha:, 2006.
- [10] TAOFRAMEWORK.COM. Domovská stránka platformy opengl pro .net. http: //taoframework.com/, Poslední revize 2008-01-01. [online].
- [11] ŠTECHA, J. and HAVLENA, V. Teorie dynamických systémů. Praha: Vydavatelství ČVUT, 2005.
- [12] TZB-INFO.CZ. Portál technická zařízení budov. http://www.tzb-info.cz/, Poslední revize 2008-01-01. [online].

LITERATURA

Příloha A

Měrné tepelné ztráty

Druh a velikost objektu s vnitřní		Období výstavby				
teplotou $20^{\circ}C$		А	В	С	D	Е
		1960	1978	1992	1994	>2000
Jednopodlažní podsklepený, bez půdy, lehký	-12	50	48	38	35	32,5
materiál do 1000 m3	-15	57	54	43	40	37
	-18	65	62	49	46	42
Dvoupodlažní rodinný domek. Dílenský	-12	43	41	33	31	28
provoz z keram. materiálu do 1000 m 3 $$	-15	50	48	38	35	32,5
	-18	57	54	43	40	37
2 - 4podlažní obytný objekt. Malé školy,	-12	38	36	29	27	25
provozní budovy do 5000 m 3	-15	44	42	33	31	27
	-18	50	48	38	35	32,5
2 - 3podlažní obytný objekt. Malé školy,	-12	34	32,5	26	24	22
administrativní a velké budovy	-15	40	38	30	28	26
	-18	45	43	34	32	29
3 - 4podlažní sídlištní objekty. Velké školy,	-12	30	28	22	21	20
obchodní budovy do 5000 m 3 $$	-15	36	34	26	25	23
	-18	40	38	30	28	26
4 a vícepodlažní sídlištní bloky. Adm. budovy.	-12	28	27	21	20	18
Obchodní domy od 5000 m3 do 100 000 m3 a	-15	32,5	31	25	23	21
více	-18	37	35	27	26	17

Měrné	tepelné	ztráty	vestavěných	objektů	$\mathbf{q}[\mathbf{W}]$	$\cdot m^{-3}$]
-------	---------	--------	-------------	---------	--------------------------	------------------

Druh a velikost objektu s vnitřní		Období výstavby				
teplotou $20^{\circ}C$		А	В	С	D	Е
		1960	1978	1992	1994	>2000
Jednopodlažní podsklepený, bez půdy, lehký	-12	43	41	33	31	28
materiál do $1000 \text{ m}3$	-15	50	48	38	35	32,5
	-18	57	54	43	40	37
Dvoupodlažní rodinný domek. Dílenský	-12	38	36	29	27	25
provoz z keram. materiálu do 1000 m 3	-15	44	42	33	31	27
	-18	50	48	38	35	32,5
2 - 4podlažní obytný objekt. Malé školy,	-12	34	32,5	26	24	22
provozní budovy do 5000 m 3	-15	40	38	30	28	26
	-18	45	43	34	32	29
2 - 3podlažní obytný objekt. Malé školy,	-12	30	28	22	21	20
administrativní a velké budovy	-15	35	33	27	25	23
	-18	40	38	30	28	26
3 - 4podlažní sídlištní objekty. Velké školy,	-12	25,5	24	19	18	16,5
obchodní budovy do 5000 m 3 $$	-15	30	28	22	21	20
	-18	35	33	25	24,5	23
4 a vícepodlažní sídlištní bloky. Adm. budovy.	-12	22,5	21	17	24,5	23
Obchodní domy od 5000 m3 do 100 000 m3 a	-15	27	26	20,5	19	18
více	-18	31	29,5	24	22	20

Údaje jsou převzaty z knihy [5], uveď
me následující předpoklady:

- 1. Předpokládá se dvojité (zdvojené) zasklení.
- 2. Denní teplota kolísá mezi 18 °C až 20 °C.
- 3. Období výstavby značí platnost tepelně-technických norem a směrnic. Součinitel prostupu tepla k v jednotlivých obdobích:
 - 1. A 1960 $k = 1,45 \text{ Wm}^{-2}\text{K}^{-1}$
 - 2. B 1978 $k = 0.89 \text{ Wm}^{-2}\text{K}^{-1}$
 - 3. C 1992 $k = 0.46 \ Wm^{-2}K^{-1}$
 - 4. D 1994 $k = 0.33 \text{ Wm}^{-2}\text{K}^{-1}$
 - 5. E 2000 k = 0,33 $Wm^{-2}K^{-1}$
- 4. Ve všech případech je infiltrace počítána pro výměnu vzduchu $0,5/{\rm hod.}$
- 5. Okenní plocha tvoří 45 % obvodové stěny.

Příloha B

Datová věta síťového rozhraní

```
<root>
  <metadata>
    <settings port="" />
   <server ip="" port="" name="" />
    <client ip="" port="" name="" />
    <time tick="" />
    <msgtype />
  </metadata>
  <answer />
  <request />
  <reqparams h="" d="" m="" range="" mode="" controler=""/>
  <data_group>
    <d desc="">
      <v y="" />
    </d>
  </data_group>
</root>
```

Příloha C

Obsah přiloženého CD

K této práci je přiloženo CD, na kterém jsou uloženy zdrojové kódy.

- \Data
 Referenční meteorologická data a podklady pro identifikaci.
- \Documents
 Přiložené materiály použité k realizaci projektu.
- \M files
 Skripty simulačního jádra vytvořené v Matlabu.
- \SW release
 Přeložený projekt výsledných aplikací s příslušnými dynamickými knihovnami.
- **\TeX release** Elektronická verze diplomové práce ve formátu pdf.
- \TeX source
 Zdrojové kódy pro typografický publikační systém LATEX
- \Textures
 Sada textur pro visuální rozhraní aplikace.
- \VS project
 Kompletní verze projektu z prostředí Visual Studio.NET 2005, C#.

Příloha D

Použitý SW

Pro realizaci projektu byly využity následující programy

- Microsoft Visual Studio 2005
- Matlab (R2006a)
- MikTeX 2.5, TeXnicCenter

PŘÍLOHA D. POUŽITÝ SW

VIII

Příloha E

Použité zkratky

Zkratka	Význam
AN	Akumulační Nádoba
API	APlication Interface
CAD	Computer Aided Design
COM	Component Object Model
CSML	CSharp Matrix Library
ČHMÚ	Český Hydrometeorologický Ústav
ČSN	Česká Národní Norma
DDI	Display Device Interface
DLL	Dynamic Link Library
DX	DirectX
EK	Elektrický Kotel
GDDR3	Graphical Double Data Rate
GLUT	Graphical Library Utilities
GPU	Graphics Processing Unit
GUI	Graphical User Interface
HAL	Hardware Ambstraction Layer
HEL	Hardware Emulation Layer
ICD	Instalation Client Drivers

Zkratka	Význam
ΙΟ	Input Output
LTI	Linear Time Invariant
MDA	Mobile Digital Asistent
MDI	Multiple Document Interface
MSG	Message
OGL	OpenGL
PDA	Personal Digital Assistent
PI	Proporcionálně Integrační regulátor
PID	Proporcionálně Integračně Derivační regulátor
SE	Source Effort
SP	Solární Panel
TCP	Transport Control Protocol
TUV	Teplá Užitková Voda
ΤZ	Tepelný Zdroj
UDP	User Datagram Protocol
USA	United States of America
WS	Way-Segments
XML	eXtended Markup Language
ZZE	Zákon Zachování Energie