
Czech Technical University in Prague

Faculty of Electrical Engineering

DIPLOMA THESES

CAN bus communication protocol support
and monitoring

Prague, 2008 Miloš Gajdoš

Acknowledgements

I would like to thank the chief of my diploma thesis Ing. Pavel Ṕı̌sa, for his patience,

help and suggestions, which were very much appreciated. My special thanks go to Ing.

Frantǐsek Vacek, who helped me with the practical aspects of this theses, and without

whom, this theses would not reach the quality as it has now. Many thanks go also to Bc.

Lukáš Staněk for several suggestions and remarks on developed project. Last, but not

least I would like to thank all my close friends and family for their support.

i

ii

Abstrakt

Táto práca sa zaoberá monitorovańım systémov založených na komunikačnom pro-

tokole CAN (Controller Area Network). Hlavným ciel’om práce je portácia monitoringu a

posielanie testovaćıch správ v prostred́ı jazyka C++ s využit́ım grafickej knižnice Qt. Teo-

retická čast’ práce popisuje základné prinćıpy protokolu CAN a zaoberá sa návrhom dis-

tribúcie a filtrácie monitorovaných správ do jednotlivých komponent grafickej aplikácie, s

využit́ım pripojenia tejto aplikácie k ovládaču CAN. Praktická čast’ popisuje návrh a im-

plementáciu grafickej aplikácie nazvanej QCANalyzer, ktorá by mala podporovat’ analýzu

vyšš́ıch vrstiev komunikácie pre l’ahké nasadenie v automobilovom priemysle rovnako ako

interpretáciu a generovanie slovńıku siet’ových premenných.

iii

Abstract

This diploma theses deals with the monitoring of CAN protocol based systems. The

main goal of this work is implementation of monitoring application and sending of test

messages in C++ language environment, with the use of Qt software development toolkit.

Theoretical part of the work describes the basic principles of CAN protocol and discusses

several possible suggestions of distribution and filtration of monitored messages into par-

ticular components of graphical application, with the use of connection of this application

to CAN driver. Practical part describes the design and the implementation of the graph-

ical application called QCANalyzer, which should support analysis of higher communi-

cation layers for easy stocking in the automotive industry, as well as the interpretation

and generation of the network dictionary variables.

iv

v

vi

Contents

List of pictures xi

1 Introduction 1

1.1 Prologue . 1

1.2 Motivation . 2

1.3 Problem statement . 2

2 Controller Area Network - CAN 5

2.1 Overview . 5

2.2 Physical Layer . 6

2.3 Data Link Layer . 8

2.3.1 Medium Acces Control . 8

2.3.2 Data Transmission and The Error Detection 9

2.3.3 Message Frame Formats . 10

2.3.4 Standard Frame . 10

2.3.5 Extended Frame . 11

2.3.6 Communication Management Frames 11

3 Related Projects 13

3.1 Commercial projects . 13

3.1.1 CANalyzer . 13

3.1.2 PCAN Tools . 14

3.1.3 PORT . 15

3.2 Open Source Projects . 15

3.2.1 CANFestival . 16

3.2.2 VSCP . 17

3.2.2.1 CANAL - CAN Abstraction Layer 18

vii

3.2.3 OCERA . 20

3.2.4 Conclusion . 21

4 LinCAN - Linux CAN driver 23

4.1 Overview . 23

4.2 Driver Architecture . 24

4.3 LinCAN system level API . 25

4.3.1 Device Files and Message Structure 25

4.3.2 CAN Driver File Operations . 26

4.4 Summary . 27

5 VCA - Virtual CAN API 29

5.1 VCA Base CAN Protocol Support . 30

5.2 VCA CANopen Protocol Support . 32

5.3 VCA Utility Functions . 32

6 Graphical library 33

6.1 GTK+ . 33

6.2 Qt . 34

6.3 Java - SWING . 34

6.4 Conclusion . 34

7 QVCA - VCA portation to Qt 37

7.1 C++ integration of chosen VCA components 37

7.1.1 CAN interface classes . 39

7.1.1.1 QVcaBusIfcAbstract . 39

7.1.1.2 QVcaBusIfcLinCAN . 40

7.1.1.3 QVcaBusIfcSocketPickle 41

7.1.2 CAN network classes . 42

7.1.3 CANopen classes . 43

7.2 Specialized data structures . 43

7.2.1 Qt generic containers . 44

7.3 Extensions and enhancements . 45

7.3.1 Qt model-view programming . 45

7.4 Conclusion . 47

viii

8 QCANalyzer design and implementation issues 49

8.1 QCANalyzer architecture . 49

8.2 Implementation . 51

8.2.1 CAN network traffic display . 51

8.2.2 Sending of CAN messages . 53

8.2.2.1 Sending of a single CAN message 54

8.2.2.2 Sending of CAN message sequences 54

8.2.2.3 CAN message sequence tool 54

8.2.2.4 Sent message history tool 55

8.3 Filtering of received and displayed CAN messages 55

8.3.1 Traffic filtering . 56

8.3.2 View filtering . 57

8.4 Plot display of monitored data . 57

8.4.1 Qwt library . 58

8.4.2 Plotting of monitored data . 58

8.5 Miscellaneous . 59

9 QCANalyzer User manual 61

9.1 Compilation an building the QCANalyzer 61

9.2 Basic functionality . 62

9.2.1 Connection to the LinCAN driver 62

9.2.2 Monitoring . 64

9.2.3 Saving and Opening monitored traffic files 65

9.2.4 QCANalyzer specialized tools . 66

9.2.4.1 Message sequence tool 66

9.2.4.2 Sent message history tool 67

9.2.4.3 Traffic filtering tool . 68

9.2.5 QCAN plotter . 69

10 Conclusion 71

Bibliography 73

A List of abbreviations I

ix

x

List of Figures

2.1 CAN Acceptance Filtering . 6

2.2 CAN network structure according to ISO-11898 7

2.3 CAN data transmition . 9

2.4 CAN message frame . 10

3.1 CANfestivalGUI in use . 17

3.2 CanalWorks in use . 19

3.3 Canmonitor in use . 20

4.1 LinCAN architecture . 24

5.1 Position of VCA in application program 29

5.2 VCA architecture and message distribution 31

7.1 Signals and slots mechanism . 38

7.2 CAN bus monitoring using the local connection to LinCAN driver 40

7.3 CAN bus monitoring using remote connection to LinCAN driver 41

7.4 QVCA architecture and message distribution 42

7.5 Algorithmic complexity of Qt generic container classes 44

7.6 Model-view programming . 46

8.1 QCANalyzer architecture . 50

8.2 QCANalyzer main window . 52

8.3 QCANalyzer CAN message flow . 53

8.4 QCANalyzer traffic filtering . 56

8.5 QCAN plotter . 58

9.1 QCANalyzer main window . 62

9.2 Configure connection to LinCAN driver 63

9.3 QCANalyzer in use . 64

xi

9.4 Save message log dialog . 65

9.5 Message sequence tool in use . 67

9.6 Sent message history tool in use . 68

9.7 Traffic filtering tool in use . 69

9.8 QCAN plotter in use . 70

xii

Chapter 1

Introduction

1.1 Prologue

Communication can be defined as a process that allows organisms to exchange informa-

tion by several methods. In modern times communication is not only an issue of living

organisms. It became a very important part of technical world. The world is now filled

with the machines of different types that help people to communicate and replace them

in many kinds of works due to several reasons. Machines are very often used for doing

the jobs that a man is not able to perform. If you replace a human being with a lot of

machines from which each of them is doing its particular part of job, you need to make

them communicate with each other to acheive the goal they were designed for. Thus,

when speaking about communication it is very important to be sure about what aspects

of communication one is speaking about. Communication requires that all parties un-

derstand a language that is exchanged among them. To make the machines understand

each other there had to be designed a way how they can exchange information with its

surroundings by several methods. One of the possibilities to acheive this is to design a

communication protocol.

Communication protocol is a set of standard rules for data representation, signalling,

authentication and error detection required to send an information over a communication

channel. It is basically following certain rules so that the system works properly. There

is a lot of procedures that can help you to design your own protocol if you decide so. New

communication protocol should comprise three main principles: Effectiveness, Reliability,

and Resiliency. By effectiveness we mean, that it needs to be specified in such a way,

that engineers, designers, and in some cases software developers can implement and/or

1

2 CHAPTER 1. INTRODUCTION

use it. By reliability we mean error detection and correction and by resiliency we mean a

readdressation of communication network failure, known as topological failure, in which

a communications link is cut and a degradation below usable quality.

1.2 Motivation

There is a lot of already designed communication protocols assigned by several standard-

ization organizations such as IETF, IEEE, ISO etc. Although sometimes we don’t even

know, we come to a contact with them every day. I am going to talk about the indus-

trial network communication protocols. Such of them are for example: Profibus, Interbus,

Lon etc. It depends on your application requirements whether you decide to design your

own protocol or you will use some of the mentioned protocols. Each of them is suitable

for different kind of application. These protocols are hugely used in several (not only

industrial) applications where humans provides only an unnecessary supervision. The

supervision is needed by many reasons. Sometimes the application/system is quite huge

and manual inspection of an error would be very hard. Supervision covers the moni-

toring of the correct netowrk behaviour and takes care of unexpected events (such as

corrupted communication eg. by mechanical problems, incorrect data exchange caused

by unknown reasons), or configures and provides a diagnosis of network devices. Each of

these mentioned issues can be done and read (from monitored communication) thanks to

the mechanism that is provided by a particular communication protocol. To conclude, by

supervision we mean analysis of a communication over the communication channel among

particular parties. To acheive this goal, there is a need to use or create a specialized tool

that enables an easy analysis and high level inspection of the communication itself.

1.3 Problem statement

This work should support a monitoring of one of the above mentioned industrial protocols

called CAN (Controller Area Network). It will provide a mechanism that will enable

creating an application supposingly with an intuitive GUI (Graphical User Interface).

This application will ease the analysis of the communication over the CAN bus. In or-

der to create such an application there had to be designed a driver that would enable a

http://www.ietf.org/
http://www.ieee.org/web/aboutus/today/index.html
http://www.iso.org/iso/home.htm

1.3. PROBLEM STATEMENT 3

communication of the particular hardware with this application program . Commercial

vendors usually offer their own CAN hardware with their own driver and actual monitor-

ing aplication, or an application with the drivers that support only very small group of

CAN hardware, usually their own. This provides a comfort and a support of the product

by its vendor, but on the other hand impossibility of adjusting it to your needs. Plus,

there is also quite an important aspect for deciding to design your own application - the

prize of commercial products.

Before I started to work on this diploma theses I had researched the internet, which

is a normal practice when a new software is going to be developped either by company

or by any programmer. This research gave me a picture about what commercial and

open-source software dealing with CAN monitoring looks like (since the graphical user

interface is very important part of this work) and what functionality it offers to its users. I

had put the emphasis on portability to different operation systems and also on supported

hardware. When researching the open source projects, I considered also a possibility of

their further extension, while researching of the commercial projects was based on strictly

practical reasons. List of researched projects with additional discussion can be found in

the third chapter of this work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Controller Area Network - CAN

2.1 Overview

Before I start to talk about actual the aspects of this diploma theses, I will shortly present

at least some of the basic principles of CAN that are necessary for understanding of the

whole concept of this work.

CAN is a serial bus system, originally developed by the BOSCH company for automo-

tive applications in the early 1980’s. It is being used in a large and still growing extent

especially in automotive industry (for which it was designed), but currently also in chem-

ical industry and in many other branches of automation. CAN is currently supported

by many leading manufacturers of integration circuits. It became a favourite alternative

when designing an intelligent and redundant industrial network. The reasons for that are

low cost, easy stocking, reliability, high transmission rate, high level of error detection

and availability of maintanance parts. CAN was internationally standardized in 1993 as

ISO 11898-1 and comprises two of seven ISO/OSI layer reference model. Those are data

link layer and a part of physical layer. CAN provides two basic communication services

between the nodes: data frame transmission (sending of a message) and remote trans-

mission request (RTR - requesting of a message). The data integrity services such as

error detection or automatic re-transmission of error frames are user-transparent, which

means the CAN chip automatically performs these services. CAN offers a multi-master

hierarchy, which allows every node on a bus to be a master and control other nodes. Thus,

if one node is defect, the network is still able to work. CAN communication is based on a

broadcast communicaton mechanism where a sender transmits the messages to all devices

on the bus. All receiving devices read the message and then decide if they accept it. This

5

6 CHAPTER 2. CONTROLLER AREA NETWORK - CAN

is called Acceptance Filtering and and it is shown for better understanding at figure

2.1.

Figure 2.1: CAN Acceptance Filtering

Acceptance filtering guarantees the common view on transferred data, as all devices

in the system use the same information. Every message starts with a unique identifier

within the whole network, which defines a content and a priority of the message. The

highest priority has the identifier of 0. CAN guarantees that the message with the higher

priority is delivered preferably in case of a collision of several messages. By the identifier

you can set the node to accept only for it significant messages. CAN offers a sophisticated

error detecting mechanisms and re-transmission of faulty messages. The conformance test

for the CAN protocol is defined in the ISO 16845 which guarantees the interchangeability

of the CAN chips.

2.2 Physical Layer

Basic requirement on physical media is the ability to represent a dominant and a reces-

sive bit value. This is possible for electrical and optical media so far. Also powerline and

wireless transmission is possible. The dominant and the recessive bits represent a gener-

alized equivalence of logical signal levels. Their values are not strictly defined and actual

representation depends on a concrete realization of physical media. For the electrical

media the differential output bus voltages are defined in ISO 11898-2 and ISO 11898-3,

in SAE J2411, and ISO 11992. With the optical media, the recessive level is represented

2.2. PHYSICAL LAYER 7

by ”dark” and the dominant level by ”light”. The most commonly used physical media

to implement CAN based networks is a differentially driven pair of wires (for vehicle

body electronics single wire bus lines are also used) according to ISO-11898 standard.

This standard defines electrical behaviour of transmitter and receiver as well as timing

principles, bit encoding and decoding, synchronization and bit timing. The bus consists

of two line wires (marked as CAN H and CAN L), where the dominant or the recessive

level is determined by differential voltage of these two wires. The bus is adjusted on both

ends by using terminating resistors to eliminate bounces on a power line . Fundamental

structure of a CAN network according to ISO-11898 norm is shown at figure 2.2.

Figure 2.2: CAN network structure according to ISO-11898

There is no limit for number of the nodes connected to the bus caused by CAN pro-

tocol principles. Only maximal number of different message types is limited by size of

the message ID fiels. But with regard to a bus and to ensure the correct static and dy-

namic parameters of the bus, the standard recommends maximum amount of 30 nodes.

Depending on a number of connected nodes that causes a data propagation delay, maxi-

mum possible bus length at a specific data rate is determined. The signal propagation is

determined by the two nodes within the network that are furthest apart from each other.

It is the time that it takes to get from one node to the furthest one (considering the delay

caused by transmitting and receiving), synchronization and the signal that returns back

from the second one to the first one. Only then can the first node distinguish either its

own signal level is the actual level on the bus or it has been replaced by the dominant

level by another node. This fact is important for the bus arbitration.

In order to achieve the highest possible bit rate at a given length, a high signal speed

is required. Maximum bus line length for the transmission rate of 1Mbit/s is 40 meters.

8 CHAPTER 2. CONTROLLER AREA NETWORK - CAN

The standard doesn’t specify the bus line length for other transmission rates. Other

lengths for other transmission rates than 1Mbit/s depends on many parameters (eg. type

of cable etc.) However it can be proven that for lower transmission rates the maximum

bus line lengths will be bigger.

2.3 Data Link Layer

The data link layer consists out of two sublayers - MAC (Medium Access Control) and

LLC (Logical Link Contol).

First of them takes care of medium acces, provides bit coding, bit stuffing and destuff-

ing, controls the access of all connected nodes to the physical medium connsidering the

message priority, detection of errors and their reporting and finally acknowledging of

correctly received messages. The second one takes care of message filtering (Acceptance

Filtering) and reporting of warnings about bus overload (Overload Notification).

2.3.1 Medium Acces Control

If a bus is in a Bus Free state, any of the connected nodes can start a transmission.

First one that starts it, gets the bus for itself and the rest of connected nodes have to

wait until it is finished transmitting a message. Then they can start transmitting if they

get the bus for themselves. The only exception is the error frame transmission that can

be transmitted by any node if it detects an error in actual broadcasting message. If

several nodes start transmission at once, then the access to the bus is gained by the node

that transmits a message with the higher priority (lower identifier). Every transceiver

compares the actual transmitted bit value with the bit value on the bus and if it finds out

that they differ (the only possibility is when it is transmitting a recessive bit and there

is a dominant bit on the bus), it immediately interrupts the transmission. Described

real-time concurrent transmission by several nodes is shown at figure 2.3.

2.3. DATA LINK LAYER 9

Figure 2.3: CAN data transmition

This guarantees that a message with a higher priority will be sent preferably and that

it does not get corrupted. That could result in retransmitting of the message and an

unnecessary time delay needed for transferring of the message. The node that didn’t get

the access to the bus must wait until the bus will be back in the Bus Free state. Then it

can try to send the message again.

2.3.2 Data Transmission and The Error Detection

Messages transferred using CAN protocol are protected by several mechanism that work

concurrently. When an error occurs, the node that detects it, generates an error frame.

Basic error detection mechanisms implemented in CAN are:

• Monitoring

A transmitter compares a value of an actual transmitted bit with the bit detected

on the bus.

• CRC (Cyclic Redundancy Check) coding

At the end of each message there is a 15 bit CRC code, generated from all previous

bits of a message

• Bit stuffing

After five consecutive equal bits the transmitter inserts a stuff bit into the message.

This stuff bit has a complementary value, and is removed by the receivers. Apart

from the error detection it is used for synchronization

10 CHAPTER 2. CONTROLLER AREA NETWORK - CAN

• Message frame check

A message is verified against the format and the size given by the specification

• Acknowledge

If a message is received by any of the nodes it sends an ACK message back to

transmitter (this is done by changing ACK bit). If a transmitter does not receive

an ackowledgement an ACK error is indicated.

Every node has two internal error counters that determine number of errors when

accepting or transmitting messages. According to the value of this counter a node can

be in one of 3 states : Error Active, Error passive, Bus-off. If a node generates too many

error messages it is automatically disconnected (switched to Bus-off state).

2.3.3 Message Frame Formats

The CAN protocol defines two basic message frame formats: standard and extended.

There is only one difference between them - the length of the message identifier. The

CAN standard frame has the identifier 11 bits long while CAN extended frame has 29-bit

identifier. Apart from the data message frames, CAN defines 2 communication manage-

ment frames.

2.3.4 Standard Frame

Structure of the standard frame is shown at figure 2.4. The frame starts with the SOF

(start of frame) bit which is always dominant. It is followed by the arbitration field

that contains 11-bit identifier and the RTR bit (Remote Transmission Request) that

distinguishes the data frame from the data request frame. This bit has to be dominant

in data frame and recessive in data request frame.

Figure 2.4: CAN message frame

After this bit the control field follows, containing 2 reserved bits and the 4-bit field

that carries the information about the data length that are sent with the message. Then

2.3. DATA LINK LAYER 11

the actual data field comes. Only 8 bytes of data can be hold by one CAN message.

The frame integrity is guaranteed by 15-bit CRC field.After CRC field there is a 1 bit

delimiter that separates CRC field from ACK (acknowledgement) bit that is followed by

another delimiter bit - ACD (acknowledgement delimiter). After the ACD bit, the EOF

(end of frame) field follows. The space between two transmitted messages (interframe

space) is 3 bits long.

2.3.5 Extended Frame

The message identifier of the extended frame is 29 bits long and is divided into two fields:

11 bit identifier (as the standard frame) and 18 bit identifier extension. The difference

between standard and extended frames is the IDE bit. Accordng to this bit it is decided

which message has the priority when accessing the bus in case of collision with the different

formats that has the same base identifier. 11-bit identifier has always priority over 29-bit

identifier, therefore it is transmitted as dominant in standard frame and as recessive in

case of a 29-bit frame. When sending the extended frame, a bus latency time is longer

(in minimum 20 bit-times), messages in extended format require more bandwidth (about

20%), and the error detection performance is lower.

2.3.6 Communication Management Frames

By the communication management frames we mean the Overload Frame and the Error

Frame. They are used to manage the communication over the bus concretely for the error

detection and signalling and for the requesting of a communication latency. The overload

frame is usually transmitted by the nodes that are not able to receive and process any data

due to their actual load. Error frame is used by any node that detects an error on the bus.

Further information about CAN protocol can be found on web pages maintained by

the group of CAN manufacturers’[1].

12 CHAPTER 2. CONTROLLER AREA NETWORK - CAN

Chapter 3

Related Projects

This chapter lists and shortly presents the most interesting projects dealing with the CAN

monitoring subject that I have found on the internet. These projects can be divided by

many criterias. I have chosen one of the most important when deciding to create or bring

a new application on a software market - economical criteria. By that, we can divide these

projects to Commercial (protected by copy rights) and Open Source (source codes are

freely downloadable and distributable). It depends on your actual needs and economical

status which one you decide to choose. I have chosen three projects I considered the best

from each group.

3.1 Commercial projects

Commercial software offers a lot of advantages from which most important are main-

tanance and support of the company that develops and sells it. On the other hand it has

many disadvantages - unavailability of application source codes, expensiveness, undesired

functionalities and so on.

3.1.1 CANalyzer

It is developed by the Vector company. It provides advanced software tools not only for

monitoring of CAN based systems. CANalyzer offers a graphic block diagram interface

from which CAN based system is controlled or monitored. The basic functions offer

multiple usage options (monitoring and listing of a bus traffic, graphical or textual display

13

http://www.vector-worldwide.com/

14 CHAPTER 3. RELATED PROJECTS

of traffic, sending of predefined message sequences etc.).

What distinguishes this tool from other commercial programs are several special func-

tions that it provides. From many of them, the most interesting is programmability with

CAPL (Communication Access Programming Language). By programmability I mean

adjusting of user needs by inserting special graphical blocks at any point of data flow

plan, so the user can program their function with the use of C-like language CAPL, for

which it has an interactive development environment. Tool supports all bus interfaces of-

fered by Vector. Complete list of supported HW can be found on company’s web pages[2].

CANalyzer system requirements:

• Processor Pentium 4/2,6 GHz Pentium III/1GHz

• Memory (RAM) 1 GB 512 MB

• Hard disc space 200 - 600 MB (depending on the chosen option)

• Operating system: Windows Vista / XP SP2 / 2000 SP4 (Vista for CAN and LIN

only, XP and Vista only 32 bit)

3.1.2 PCAN Tools

PCAN is a a package of software tools developed by the Peak company. It comes on

dedicated CDs for free with the purchased HW modules. It covers the wide range of

tools. From simple CAN monitoring ones, like PCAN-View, to more advanced tools

like PCAN-Explorer. PCAN-Explorer provides all necessary functionality needed for ad-

vanced monitoring and analysis of CAN based systems (advanced logging mechanism,

graphic views of monitored messages and data, support of CANopen etc.). PCAN-Light

tool enables a selection of different drivers for Windows and Linux operating system.

PCAN-development tool allows a programmer to develop its own application using API

libraries provided in form of precompiled libraries. Unfortunately, these APIs offer only

a small range of functions (open, close, write, read, status, setfilter, resetfilter, resetclient

etc.). On the other hand, they are available for different programming languages (C++,

C#, Delphi, Borland Builder, VB.NET and VB header files) and come with the HTML

documentation (as each tool in this package). Peak offers a freely downloadable driver

for Linux operating systems, but it supports only a small group of all HW compoments

developed by the Peak company. The whole list can be found on company’s web pages[3].

http://www.vector-worldwide.com/
http://www.peak-system.com/
http://www.peak-system.com/

3.2. OPEN SOURCE PROJECTS 15

PCAN System requirements:

• Windows 2000 / XP / Vista

• at least 256 MB RAM 700 MHz CPU

• Hard disc space 100 - 500MB (depending on the chosen options)

3.1.3 PORT

Port is another company offering CAN monitorubg software tools. Apart from develop-

ing of their own CAN HW modules, they offer a simple CANopen device monitor tool

programmed in Tcl/Tk. Tcl/Tk is a GTK+ library binding for Tcl scripting language.

This tool provides a basic CANopen features (editing of EDS, SDO/PDO transfers, NMT

atc.). The usage of the CANopen Device Monitor requires a CAN interface - currently

available interfeces are: USB, ISA, PCI, parallel port, serial port and PC-104 or an Eth-

ernet interface like the standalone CANopen-Gateway-Server EtherCAN. Server can be

started either in Windows OS or in Linux environment. The simplest application pro-

vided by Port, is a simple CAN-analyzer (also programmed in Tcl/tk) that can connect to

the server and enable sending of messages (simple or periodic). Supplementary software

modules provide extended functionality like service and protocol dependent interpretation

of CAN messages.

3.2 Open Source Projects

Open source projects are usually maintained on a public place - usually the internet or

some other publicly accesible source file repository where all codes are freely available

to everyone for free. They are released under public license, depending on which, it is

set what can be done with downloaded source files. Many of them are realeased under

a license that allows anyone to change it and freely distribute it with their own actual

application. Unfortunately, their documentation is often very poor.

http://www.port.de/

16 CHAPTER 3. RELATED PROJECTS

3.2.1 CANFestival

CanFestival is a CANOpen framework, licensed with GPLv21 and LGPLv22. It provides

an ANSI-C platform independent CANOpen stack that can be implemented as master or

slave nodes on PCs, Real-time IPCs, and Microcontrollers. With CanFestival you can :

• turn any microcontroller or PC into a CANOpen node

• edit Object Dictionary and EDS files

• use any CAN interface type

• link with a proprietary code

CanFestival focuses on providing an ANSI-C platform independent CANOpen stack

that can be implemented as master or slave nodes on PCs, Real-time IPCs, and Micro-

controllers.Supported CanOpen protocols are PDO, SDO, NMT, SYNC, Node Guarding,

Life Guarding, Heartbeat and Bootup. CanFestival uses Arbracan CAN driver that sup-

ports only Linux 2.4 and Adlink Board, and is slowly deserted by users. Recently, there

was added a new IXXAT VCI driver interface. Nevertheless, the best way to work with

the CanFestival CanOpen stack is to bind it to an existing low level CAN driver. Can-

Festival provides GUI (CanFestivalGUI) and command line tool (CanFestival) that help

in a process of creating a new CanOpen node and editing Object Dictionary.

CANFestival GUI (screenshot of the application is shown at figure 3.1) is programmed

in Qt 2.x and supports many functions of CanFestival in an easy way:

• Sending/Receiving raw CAN Messages

• Sending/Receiving of PDOs or SDOs

• Sending/Receiving of NMT

• Sending/Receiving of Sync Messages

Furthermore it provides some additional useful functions:

• Simulation Mode: in this mode you don’t need an actual CAN interface

• Loading/unloading of the device driver (Arbracan, IXXAT) by pushing a button

in the GUI. (module parameters are hardcoded at the moment. To modify them,

you’ll have to modify C++ code and recompile the software)

1General Public License
2Lesser General Public License

http://www.canfestival.org/

3.2. OPEN SOURCE PROJECTS 17

• CANFestival GUI acts as a CAN sniffer (receiving of CAN Messages is done in a

separate thread)

• Values which should be sent over the CAN/CANopen network can be typed in as

hex, decimal or binary values. Each of them can be converted to the other formats

Figure 3.1: CANfestivalGUI in use

CanFestival runtime library is released under LGPL license, thus it can be linked with

any code, proprietary or not. Bindings are very simple and can be theoretically adapted

to any target or CAN interface. CANFestival necessary requirement is the only PC CAN

Board supported - AdLink PCI-7841 Card. In order to be able to use the CANFestival

GUI you need at least the following things:

• Qt 2.x installed on your computer

• An AdLink PCI-7841 Board is recommended, but if you do not own such a card,

you can still use this program in simulation mode

3.2.2 VSCP

VSCP stands for Very Simple Control Protocol. It has been developed for use on low

end devices such as microcontrollers. It is more than just a protocol. It is a complete

solution for configuration and control. It is very easy to use and very capable. It can be

used in very demanding control situations. VSCP does not assume anything about the

http://www.vscp.org

18 CHAPTER 3. RELATED PROJECTS

lower level system. It works with Ethernet TCP/IP, Wireless, Zigbee, Bluetooth, CAN,

GPRS, RS-232, USB and everything else user wants. It is just a uniform way of describing

the systems available. Every control situation can be described and implemented using

VSCP. The VSCP Protocol was from the beginning designed to be used in CAN networks.

It enables to understand the inner workings of the protocol with just minimal effort and

it is supported throughout the industry. Even though the protocol is designed for CAN,

there is no need for its using. It can be used equally well in other environments. It offers

some of the following features:

• It is free and open for commercial and other use

• It has two levels. Level I and Level II where level I is designed with CAN as the

least common denominator. It can be used for TCP/IP, UDP, RF, Mains, etc.

• It has globally unique IDs for each node

• It has a mechanism to automatically assign a unique ID to a newly installed node

• It has software and drivers for Windows and Linux operating systems

• It has a common specification language ”MDF” that describes a module in an

uniform way that can be used by set up software

3.2.2.1 CANAL - CAN Abstraction Layer

CANAL is the lower layer for the CAN based nodes. It is built as two separate solutions

just to make the CANAL useful also for other CAN tasks. It defines a message format and

some basic function calls. On top of this, some CAN drivers have been built. The can232

driver for the Lawicel adapter is a typical example but there are being developed other for

IXXAT, Zanthic Technologies Inc., Ferraris Elettronica, Vector, OMK (OCERA project)

and all the others. The whole list can be found on the project web pages[4]. Application

rogrammer can use one programming interface to all of them. Thus, one can build the

application that works with the different types of hardware. A typical example of this

kind of application is the Canal diagnostic tool - CanalWorks, that can work directly

with any available device. Screenshot of the application is shown at figure 3.2.

http://www.vscp.org/wiki/doku.php?id=canal_vscp_drivers

3.2. OPEN SOURCE PROJECTS 19

Figure 3.2: CanalWorks in use

CanalWorks can be used on WIN32 and Linux/Unix. The work on this application is

still in progress. At the moment it allows you to open several channels to the VSCP Dae-

mon (will be discussed later) and/or directly to the canal interfaces. You can send and

receive messages, choose an interface or choose which driver should be loaded, set/remove

filter masks and allows a user to have multiple session. The tool is working on both -

the WIN32 and the Linux platform. On a top of CanalWorks, there was a daemon built

(VSCP daemon). On one side there is a canal interface for clients and on the other side

there is a canal interface for drivers. Programmer tells it which drivers to load at start-up.

A client can now connect to the daemon (available for both Windows and Linux), send

a message and it will be sent to all other clients and to all devices.

Project offers also a simple application called LoggerWnd that let you view the traffic

on your net, then Canalocx tool that offers ActiveX control for interfacing the daemon

and many other interesting tools. VSCP daemon and the applications are released un-

der GNU GPL license, drivers, classes and interfaces are released under GNU LGPL.

Unfortunately VSCP API is very simple and even the authors recommend to use more

sphisticated API from different projects (OCERA or CANpie API)

20 CHAPTER 3. RELATED PROJECTS

3.2.3 OCERA

OCERA, that stands for Open Components for Embedded Real-time Applications is an

European project, based on Open Source, which provides an integrated environment for

embedded real-time applications. OCERA combines the use of two kernels, Linux and

RTLinux-GPL to provide support for critical tasks (RTLinux-GPL executive) and soft

real-time applications. Several components for both environments have been developed

to bring an innovative development and deployment platform to the embedded system

developer. The OCERA project offers LinCAN (LinuxCAN) driver, that supports many

hardware interfaces. Appart from the driver, it offers a simple monitoring tool pro-

grammed in Java that provides some basic monitoring features like sending of messages

to the bus, receiving, loading and editiing of EDS files and some other additional func-

tionatilities.

Figure 3.3: Canmonitor in use

Canmonitor (shown at figure 3.3) is a simple TCP/IP client that connects to a can-

monitor daemon(called canmond), which enables sending and receiving of CAN messages

via TCP/IP protocol. Its greatest advantage is that it is programmed in Java(multiplatform

portability), but it lacks a lot of useful features in a view of user needs. The greatest

advantage of the OCERA project is its high level virtual CAN API provided for system

programmers to enable them communication with the LinCAN driver.

http://www.ocera.org

3.2. OPEN SOURCE PROJECTS 21

3.2.4 Conclusion

From the researched projects I deduced several conclusions. Commercial projects, like

the Vector CANalyzer or the Peak PCAN-Explorer are very advanced tools, and are still

being developed by many programmers. In this work I can only try to come close to these

projects and at least get some inspiration for my own application. Open source projects

offer also some advanced applications, but they have several issues. CANFestivalGUI

offers a smart CANopen tool, but on the other hand this tool is programmed using Qt

2.x, which is a very old version of this library and not further supported by the vendors of

Qt. So the possibility to extend this application was refused by this fact. VSCP project

offers the CanalWorks application, but it uses only a very simplified API. Even by the

authors of the VSCP recommend to use more advanced API (like the one offered by

the OCERA project) in order to create a more advanced tool. I had decided to use in

my work some of the components offered by the OCERA project, due to the following

reasons:

• it is testted currently being used by some companies in their industrial applications

• it is released under GPL license

• it offers a LinCAN driver(to enable communication with several HW interfaces)

and canmond daemon(for the remote monitoring)

• it offers a sophisticated VCA (virtual CAN api) system independent library

• some of the project contributors work at my university, so there is an easy way to

contact them and consult any problem

LinCAN driver and the Virtual CAN API library will be shortly discussed in next chap-

ter.

22 CHAPTER 3. RELATED PROJECTS

Chapter 4

LinCAN - Linux CAN driver

4.1 Overview

LinCAN is a Linux kernel loadable module that implements a CAN driver capable of

working with multiple cards, even with different chips and IO methods. Each communi-

cation object can be accessed from multiple applications concurrently. Most important

feature is that the driver supports multiple open of one communication object from more

Linux and even RT-Linux (Real Time) applications and threads. The usage of the driver

is tightly coupled to the virtual CAN API interface component which hides driver low

level interface to the application programmers. LinCAN supports RT-Linux, 2.2, 2.4,

and 2.6 with fully implemented select, poll, fasync, O_NONBLOCK, and O_SYNC seman-

tics and multithreaded read/write capabilities. It works with the common Intel i82527,

Philips 82c200, and Philips SJA1000 (in standard and PeliCAN mode) CAN controllers.

The actual version has been tested at CTU by more OCERA developers, by Unicontrols

and by BFAD GmbH, which use pre-OCERA and current version of the driver in their

products.

Each chip/CAN interface is represented to the applications as one or more CAN

message objects accessible as character devices. The application can open the character

device and use read/write system calls for CAN messages transmission or reception

through the connected message object. The parameters of the message object can be

modified by the IOCTL system call. The closing of the character device releases resources

allocated by the application. The intelligent CAN/CANopen cards should be supported

by the near future. One of such cards is P-CAN series of cards produced by Unicontrols.

The driver contains support for more than ten CAN card basic types with the different

23

24 CHAPTER 4. LINCAN - LINUX CAN DRIVER

combinations of the above mentioned chips. Not all card types are held by the OCERA

members, but Czech Technical University has and tested more SJA1000 type cards and

will test some i82527 cards in near future.

4.2 Driver Architecture

The LinCAN provides simultaneous queued communication for more concurrent running

applications. Driver’s architecture is shown for better understanding at figure 4.1.

Figure 4.1: LinCAN architecture

Each communication object can be used by one or more applications that is connecting

to the communication object internal representation by means of CAN FIFO queues.

The driver can be configured to provide virtual CAN board (software emulated message

object) to test CAN components on the Linux system without hardware required to

connect to the real CAN bus. The example configuration of the CAN network components

connected to one real or virtual communication object of LinCAN driver is shown at the

4.3. LINCAN SYSTEM LEVEL API 25

figure above. The communication object is used by the CAN monitor daemon and two

CANopen devices implemented by the OCERA CanDev component. The actual system

dependent driver API is hidden to applications under VCA (Virtual CAN API) library.

Each communication object is represented as a character device file. The devices can

be opened and closed by applications in blocking or non-blocking mode. LinCAN client

application state, chip and object configurations are controlled by IOCTL system call.

One or more CAN messages can be sent or received through write/read system calls. The

data read from or written to the driver are formed from sequence of fixed size structures

representing CAN messages.

4.3 LinCAN system level API

4.3.1 Device Files and Message Structure

Each driver is a subsystem which has no direct application level API. The operating

system is responsible for user space calls transformation into driver functions calls or dis-

patch routines invocations. The CAN driver is implemented as a character device with

the standard device node names /dev/can0, /dev/can1, etc. The application program

communicates with the driver through the standard system low level input/output prim-

itives (open, close, read, write, select and ioctl). The CAN driver convention of usage

of these functions is described in the next subsection. The read and write functions

need to transfer one or more CAN messages. The structure canmsg_t is defined for this

purpose and is defined in include file can/can.h. It has following fields:

struct canmsg_t {

int flags;

int cob;

unsigned long id;

canmsg_tstamp_t timestamp;

unsigned short length;

unsigned char data[CAN_MSG_LENGTH];

} PACKED;

flags

The flags field holds information about a message type. The bit MSG_RTR marks remote

26 CHAPTER 4. LINCAN - LINUX CAN DRIVER

transmission request messages. The bit MSG_EXT indicates that the message with ex-

tended (bit 29 set) ID will be send or was received. The bit MSG_OVR is intended for fast

indication of the reception message queue overfill.

cob

The field reserved for a holding message communication object number. It could be used

for serialization of received messages from more message object into one message queue

in the future.

id

CAN message ID.

timestamp

The field intended for storing of the message reception time.

length

The number of the data bytes sent or received in the CAN message. The number of data

load bytes is from 0 to 8.

data

The byte array holding message data.

A direct communication with the driver through system calls is not encouraged because

this interface is partially system dependent and cannot be ported to all environments.

The suggested alternative is to use OCERA provided VCA library which defines the

portable and clean interface to the CAN driver implementation. The other issue is the

addition of the support for new CAN interface boards and CAN controller chips.

4.3.2 CAN Driver File Operations

Following list of call operation will be described very shortly. Their detailed description

can be found in LinCAN documentation at the OCERA project web pages[5].

• open - message communication object open system call

http://www.ocera.org/

4.4. SUMMARY 27

• close - message communication object close system call

• read - reads received CAN messages from message object

• write - writes CAN messages to message object for transmission

• struct canfilt_t - structure for acceptance filter setup

• IOCTL CANQUE_FILTER - sets acceptance filter for CAN queue connected to client

state

• IOCTL CANQUE_FLUSH - flushes messages from receiption CAN queue

4.4 Summary

Authors of the LinCAN driver are: Pavel Ṕı̌sa, Arnaud Westenberg and Tomasz Motylewski.

Last released version of LinCAN driver is 0.3. The driver was released under GPL license

and can be found on several internet resources. For further information about LinCAN

or about any other component of the OCERA project which it is part of, you can visit

OCERA project home page[6]

http://www.ocera.org

28 CHAPTER 4. LINCAN - LINUX CAN DRIVER

Chapter 5

VCA - Virtual CAN API

API stands for Application Programming Interface. It is a source code interface that a

library provides to a programmer to support his needs for services to be made of it by his

application. The OCERA project offers quite an advanced API for the communicaction

with the LinCAN driver. It is called Virtual CAN API - VCA. The main idea of VCA

was to have only one application interface between the LinCAN driver and a application

that uses it. Figure 5.1 shows the position of VCA library in the application program

that uses LinCAN driver:

Figure 5.1: Position of VCA in application program

VCA can be divided into three parts:

• Base CAN protocol support

• CANopen protocol support

• Utility functions

29

30 CHAPTER 5. VCA - VIRTUAL CAN API

The part of VCA, that provides base CAN protocol support will be described in more

detail, because it is closely related to this work. Other components of VCA will be men-

tioned very shortly, since they will not be used in prepared CAN monitoring application.

5.1 VCA Base CAN Protocol Support

This part of VCA provides a basic set of primitive functions used for open/close of

LinCAN driver and send/receive of CAN messages to and from the CAN bus. Most

of this part is implemented in vca base.c and vca pollfdnodecan.c source files. These two

components of VCA are very closely related to a part that allows an application program-

mer to create and monitor several CAN networks. Part that provides this possibility is

implemented in vca net.c source files. Using it, one can set-up several acceptance-filtering

masks for the particular CAN nodes, present in simulated CAN netowrk, represented by

their IDs. Finally, VCA provides a logging support used by the whole CAN/CANopen

component. It is implemented in vca log.c.

The most important component of this part, and probably most important component

of the whole VCA library, is the mechanism that enables sending and receiving of CAN

messages, as well as the mechanism that provides the acceptance-filtering. By these two

mechanisms I mean redistributing of received CAN messages to the nodes that can ac-

cept them according to their acceptance-filtering masks. Sending and receiving of CAN

messages is implemented unsing write/read function calls on a particular file descriptor

that represents actual CAN bus interface, through which the driver communicates with

actual CAN hardware (measurement card, pc, etc.). CAN message distribution in VCA

is implemented using the callback function mechanism. This mechanism is based on

a registration of particular callback function to an event. When the event occurs (for ex-

ample a CAN message arrival), its registered callback function is called. This is quite fast

and hugely used in many (not only C-based) applications and libraries. Every message

that arrives on CAN interface is received and then dsitributed to all nodes in monitored

network using this mechanism.

In order to distribute received CAN messages to particular CAN nodes, there had to

be designed some specialized data structures that would keep all netowrk IDs and their

5.1. VCA BASE CAN PROTOCOL SUPPORT 31

acceptance-filtering masks. VCA stores these IDs in generic sorted array (GSA) list, to

which the ID of new arriving message is added when a new node is connected to the

network. IDs can have several acceptance-filtering masks set. These masks have to be

kept in a structure that would provide fast lookup, adding and removing of an item. The

speed of these operations is very important considering a situation of a huge CAN net-

work traffic, when every new arriving message ID must be looked-up in a data structure

that keeps the acceptance-filtering masks. After this lookup, the message is broadcasted

to all CAN nodes that can accept it. The decision either to refuse or accept new message,

must be taken in the shortest time. AVL/GAVL trees satisfy all mentioned requirements.

VCA implements these structures using the uLan utilities library.

For better understanding of VCA architecture and message distribution look at the

figure 5.2:

Figure 5.2: VCA architecture and message distribution

http://cmp.felk.cvut.cz/~pisa/#ulut

32 CHAPTER 5. VCA - VIRTUAL CAN API

5.2 VCA CANopen Protocol Support

This part of VCA covers the Object Dictionary (OD) access as well as Processs Data

Object or Service Data Object (PDO, SDO) processing of PDO/SDO requests. OD is

implemented as a GAVL tree of OD objects. The functions that enable access to these

objects (vcaod find object, vcaod get value, vcaod set value) are implemented in

vca od.c source file. The core structure for the SDO processing is in vcasdo fsm.c

file. It implements a CANopen final state machine. Wrappper for this state machine is

implemented in vca net.c source file. PDO processing is implemented using a structure

called vcaPDOProcessor t. PDO processor knows which OD objects are PDO mapped

(because it is written in EDS) and it can store/retrieve them to/from OD automatically.

Further information, as well as the documentation of implemented functions, can be found

on OCERA web pages[4].

5.3 VCA Utility Functions

This group provides a set of help functions to parse text, convert it to number or se-

rialize CAN messages to human readable form. Again, Further information as well as

documentation of implemented functions can be found on OCERA web pages[4].

http://www.ocera.org
http://www.ocera.org/download/components/WP7/lincan-0.3.3.html

Chapter 6

Graphical library

The core of this work concludes creating a graphical application. In order to do so, I had

to decide what graphical library will be used, to acheive this goal. I was considering only

free available or Open-Source libraries and their portation to different operating systems.

After small research I have narrowed my choice to the following possibilities:

• GTK+ Toolkit

• Qt software developement toolkit

• SWING - Java widget toolkit

Each of them will be shortly discussed with regard to development of graphical user

interface of CAN monitoring application.

6.1 GTK+

GTK+ is a multi-platform toolkit for creating graphical user interfaces. It offers a large

set of different widgets. It is a free software (released under LGPL license) and a part of

(the GNU Project). GTK+ has been designed to support not only C/C++ programming

language. It also provides the support for the scripting languages such as Perl, Python and

many others (the whole list of supported bindings can be found on GTK+ web pages[7]).

Today, GTK+ is used by a large number of applications. From all of them, Wireshark

or the GNU project’s GNOME desktop environment are the most famous.

33

http://gtk.org/
http://trolltech.com/products/qt/homepage
http://java.sun.com/docs/books/tutorial/uiswing/
http://www.gnu.org/
http://gtk.org/

34 CHAPTER 6. GRAPHICAL LIBRARY

6.2 Qt

Qt offers the whole framework for high performance, cross-platform (not only graphical)

application development. It is produced by the Trolltech company. It includes:

• An intuitive, easy to use class library

• Integrated development tools (qmake, Qt Linguist, Qt Designer, Qt Assistant)

• Support for C++ and Java development

Qt uses C++ with several non-standard extensions. It can be used in other programming

languages too. Current supported bindings exist for Python (PyQt), Ruby (RubyQt),

PHP (PHP-Qt), Pascal, C#, Perl, Java, and Ada. Qt based programs can be run on all

platforms (Win32, Linux OS, MAC OS-X). Appart from the commercial edition, Trolltech

offers also an Open-Source freely downloadable edition. The use of Qt in application de-

velopment is increasing every year and the community of Qt developers is hugely growing.

From many projects developped in Qt it is enough to mention KDE desktop environm-

ment for Linux and Unix workstations, Mathematica, Opera web browser, Google Earth

or Skype. Further information about Qt development framework can be found on Qt web

pages[8].

6.3 Java - SWING

Swing is a widget toolkit for Java. It is a part of SUN Microsystem’ Java Foundation

Classes (JFC) - an API providing a graphical user interface for Java based programs.

As Java, it is a cross-platform toolkit that guarantees uniform look and behaviour on all

platforms. Further information about SWIN can befound on projects web pages[9].

6.4 Conclusion

The GTK+ basic API is is based on C programming language. Since the VCA is also

programmed in C, using GTK+ for GUI development of this application would speed

up the whole development process. Structures and mechanisms provided by VCA could

6.4. CONCLUSION 35

easily be connected to GTK+ graphical objects without any major change of their imple-

mentation. Programming in C offers also a speed advantage of a programmed application

and eventually better portability. On the other hand, writing a graphical application is

a process completely different from developing of a typical console program or library.

It would require to design a lot of graphical object which would be easier implemented

using an object oriented approach. Another big disadvantage of developing in GTK+

is its poor documentation. My experience with the GTK+ toolkit couple of years ago,

when I was trying to develop CAN monitoring application, warned me before using it

again. Development of CAN monitoring tool went quite slowly, mainly because of the

documentation resources. GTK+ web pages offer short tutorial and API reference, but

for a person who has never used it before, it is very difficult.

Java is a cross platform object oriented programming language. It has a lot of ad-

vantages - advanced documentation resources, portability to different operating systems

and many other. Even the OCERA project offers simple monitoring application that is

written in Java-SWING. I could easily continue in its developement, but sevral reasons

made me reject this option. I will mention the one that I found the most important -

portabiliy of Java (even the execution of any Java program) is strongly dependant on

its version although its developers would disagree.

According to the problems that would come out if GTK+ or Java-SWING was used

for development of CAN monitoring application, I turned my attention to Qt. First, I

had to accept some handicaps that this solution would bring. Programming in Qt will

cause a little slow-down of the application comparing to the GTK+ (because of the over-

head that comes with the object oriented programming), but it would still be faster than

any Java-based program. Plus, connecting a graphical interface to already prepared VCA

API would require some additional changes that would not be needed if I decided to use

GTK+. Despite all these facts, there is a lot of advantages that speaks for Qt:

• Documentation - very advanced with many practical examples

• Class library - optimized and tested class data structures not only for GUI pro-

gramming

• Developement tools - qmake (for auto-generating of Qt Makefiles), Qt Designer

(powerful tool for designing of user interfaces) and many other

• Signal/Slot mechanism - thread-safe feature of Qt, which is very suitable for the

http://gtk.org/

36 CHAPTER 6. GRAPHICAL LIBRARY

event driven programming as programming of GUI is

The decision of using the Qt library for CAN monitoring tool development brought some

issues that had to be reconsidered. VCA is programmed in C, which would not mean any

complications generally, but in order to ease the creating of the graphical interface it would

be better to reimplement some of the VCA components using the structures provided by

Qt. It would simplify further connecting of VCA to the graphical objects and ensure

better cooperation between graphical and non-graphical parts of the application.

Chapter 7

QVCA - VCA portation to Qt

In order to ease the programming of the graphical application, there was decided to reim-

plement some parts of VCA library. This reimplementation meant portation of VCA

library to Qt environment. More options for porting of VCA to Qt were considered.

From the small modifictaions, concerning the change of some data structures and mecha-

nisms, to the large ones, that would require complete reprogramming of VCA, using the

mechanisms and structures provided by Qt. At last, I had decided for the compromise

between these two options - complete reprogramming of those parts of VCA, that will

closely cooperate with the graphical part of our CAN monitoring application. According

to the Trolltech recommendation to use the letter ’Q’ at the beginning of the objects’

and applications’ names developed in Qt, I decided to change the name of VCA library

to QVCA - Qt Virtual CAN API. All suggested changes can be divided into three closely

related groups that regard:

• C++ integration of chosen VCA components

• Reimplementation and optimization of VCA’s specialized data structures

• Extensions and enhancements

7.1 C++ integration of chosen VCA components

C++ integration of VCA meant the transformation of old data-oriented (or process-

oriented) C-based structures to the object-oriented ones. The goal of object-oriented

approach is to make the system elements more reusable. In addition, this approach

improves system quality and the productivity of its analysis and design. All objects in

37

38 CHAPTER 7. QVCA - VCA PORTATION TO QT

C++ are represented as instances of classes. Class is the base C++ data structure. It

defines particular object abstract characteristics and behaviour. QVCA defines several

different types of classes. Each of them was implemented as QObject. It means, that

they inherit QObject class, which is the base class of all Qt classes. QObject is the heart

of the whole Qt object model. Very advanced and a probably the most powerful QObject

feature is a mechanism for the object communication called signals and slots.

Figure 7.1: Signals and slots mechanism

The signal/slot mechanism is a central feature of Qt and probably the part that differs

most from the features provided by other frameworks. Signal is emitted when a partic-

ular event occurs. Qt’s objects have a lot of predefined signals, but a programmer can

simply subclass any QObject and add his own signals to it. Slot is a function that is

called in response to the particular signal. There is a lot of predefined slots for particular

Qt objects, but a programmer can create its own ones and connect them to the particular

signals. Several slots can be connected to several signals as far as the signal signature

matches the signature of the receiving slot. In fact a slot may have a shorter signature

than the signal it receives, because it can ignore extra arguments. For better understand-

ing of signal/slot mechanism look at figure 7.1.

7.1. C++ INTEGRATION OF CHOSEN VCA COMPONENTS 39

The signal/slot mechanism is, in comparison to the callback mechanism used in VCA,

type and thread safe. When using the callback functions, one can never be sure that

the processing function will call the callback function with the correct arguments. Other

drawback is that, the callback function is strongly coupled to the processing function,

since it must know which callback function to call. In Qt, a QObject class which emits

a signal neither knows, nor cares which slots receive the signal. Qt’s signals and slots

mechanism ensures that if you connect a signal to a slot, the slot will be called with

the signal’s parameters at the right time. More information on QObject and Signal-Slot

mechanism can be found in Trolltech online documentation[10].

QVCA implementation provides several classes that were developed from the structures

offered by VCA library. We can divide these newly designed classes to three groups:

• CAN interface classes - provide the connection to the LinCAN driver and enable

sending and receiving of CAN messages

• CAN network classes - provide CAN message distribution similar to the one

implemented in VCA

• CANopen classes - provide CANopen protocol support

7.1.1 CAN interface classes

Basic requirement for the implementation of CAN interface classes was, that they should

provide a unified connection to the LinCAN driver. Apart from the possibility of the

local connection, QVCA offers a possiblity of the remote connection. In order to unify

both ways, there had to be designed an abstract class, from which the particular interface

classes would be derived. I had decided to call the abstract class QVcaBusIfcAbstract

and the derived classes QVcaBusIfcLinCAN resp. QVcaBusIfcSocketPickle. All men-

tioned classes were designed as QObjects to enable their communication using of sig-

nal/slot mechanism.

7.1.1.1 QVcaBusIfcAbstract

QVcaBusIfcAbstract class provides only the definitions of basic CAN interface program-

ming features. It defines the methods that enable sending and receiving of CAN messages,

http://doc.trolltech.com/4.3/signalsandslots.html

40 CHAPTER 7. QVCA - VCA PORTATION TO QT

as well as the signals and slots for CAN message distribution to different parts of QVCA

library.

7.1.1.2 QVcaBusIfcLinCAN

QVcaBusIfcLinCAN class is the interface class that is used for the local connection to the

LinCAN driver. By the local connection I mean binding the instance of this class to a

device file (usually /dev/can#), present on a local machine, through which the actual

monitoring is performed. Binding the QVcaBusIfcLinCAN to the device file is imple-

mented using Qt QSocketNotifier class, that performs the monitoring of the activity

on particular device file descriptor. This solution replaced the original, quite complicated

solution of VCA, based on using the select function.

Figure 7.2: CAN bus monitoring using the local connection to LinCAN

driver

Figure 7.2 shows the actual monitoring of CAN bus using QVcaBusIfcLinCAN class

for the local connection to the LinCAN driver. When there is some data available for

reading on device file descriptor used for monitoring, QSocketNotifier emits a signal

7.1. C++ INTEGRATION OF CHOSEN VCA COMPONENTS 41

which is then caught by QVcaBusIfcLinCAN slot connected to it. In this slot, new

CAN message is received using the read function called on the file decriptor to which

QSocketNotifier is bound, and then immediately emitted with QVcaBusIfcLinCAN CAN

message dsitribution signal. If a programmer decides to do some other processing with

the received message, he can just simply connect some other QObject’s slot(s) to this

signal. Sending of CAN message is performed the very same way that is implemented in

VCA - using the write function, called on particular CAN device file descriptor.

7.1.1.3 QVcaBusIfcSocketPickle

QVcaBusIfcSocketPickle is the interface class that provides the mechanisms for the

remote connection to the LinCAN driver. It enables to connect to the canmond daemon

through the QTcpSocket (Qt class that provides TCP socket). It is assumed that

canmond is running on some remote machine on the internet and performs the actual

monitoring of CAN bus. Canmond is actually a simple TCP/IP server that resends all

received CAN messages to all clients connected to it.

Figure 7.3: CAN bus monitoring using remote connection to LinCAN

driver

Figure 7.3 shows the actual monitoring of CAN bus using the QVcaBusIfcSocketPickle

class for the remote connection to the LinCAN driver. When a new data is available on the

socket for reading, QTcpSocket emits the signal, which is being caught by corresponding

QVcaBusIfcSocketPickle slot connected to it. This slot provides the mechanism that

parses CAN message from received data stream and then emits it with the signal. Again,

42 CHAPTER 7. QVCA - VCA PORTATION TO QT

if a programmer decides to do some other processing with the received message he can just

simply connect some other QObject’s slot(s) to this signal. Sending the CAN message is

implemented using QTcpSocket write data methods.

7.1.2 CAN network classes

This group contains only two classes: QVcaNet and QVcaNetId. QVcaNet class simu-

lates monitored CAN network. It can contain several QVcaNetId objects, that repre-

sent actual CAN nodes connected to this network and offer a possiibility of setting-up

acceptance-filtering masks. All CAN network nodes and acceptance-filtering masks are

kept in QVcaNet specialized data structures satisfying several requirements regarding the

speed of the manipulation with the items stored in them. QVcaNet represents a parent

object in the whole QVCA parent-children hierarchy. When it is destroyed, all its chil-

dren objects are destroyed in its destructor, too. QVCA architecture is shown at figure

7.4.

Figure 7.4: QVCA architecture and message distribution

Original VCA architecture of CAN message distribution has not been changed. Only

7.2. SPECIALIZED DATA STRUCTURES 43

the mechanism that was implemented using callback functions was replaced by the signal-

slot mechanism. This way we get many advantages, plus the source code that implements

these mechanisms gets more readable. QVcaNet object broadcasts all arriving messages

to all present QVcaNetId objects using its particular signals. QVcaNetId objects can

either accept broadcasted messages or refuse them according to their set-up masks.

7.1.3 CANopen classes

This group will be discussed very shortly, since the programmed application does not

provide the support for CANopen protocol, yet. VCA provides advanced CANopen API

so I decided to reimplement at least some of its parts that will ease future CANopen

support. The base class of this group is QVcaCanOpenNode that represents an actual

CANopen node in particular QVcaNet CAN network. It contains QVcaSDOFsm object

that simulates CANopen final state machine. QVcaSDOFsm is just a C++ wrapper

for the actual final state machine that is implemented in different source file and left

unchanged. Apart from the reference to vcasdo fsm t (original VCA implementation of

final state machine) object, QVcaSDOFsm class keeps the list of its SDO requests. They

are implemented as QVcaSDORequest objects.

7.2 Specialized data structures

Very important issue I had to deal with when I was reimplementing VCA library, was the

storage of CAN network IDs and masks, as well as the storage of CANopen SDO requests.

Data structures, that would keep the mentioned items should provide fast lookup, adding

and removing of an item. I had considered many possible options that would satisfy these

requirements:

• Preserve the original VCA container solution

• Design specialized template structures

• Use the templates from STL (Standard Template Library)

• Use Qt generic containers

44 CHAPTER 7. QVCA - VCA PORTATION TO QT

Each of the considered options would bring its advantages and disadvantages. Preserving

the original solution would mean the use of optimized and already tested structures. It

would eliminate one dereference in each access and simplify many operations including

type conversion hiding. In addition, the library would remain independent from the

application graphical interface. This choice would not be suitable for suggested C++

integration, so it was rejected right after I decided for the portation of VCA to Qt. Design

of new specialized templates would mean creating the structures that would easily use

the nesting of node structures to the objects. This solution would lead to the faster code

writing, but slower optimization.

Using the templates from STL would lead to the previous problem. Plus, STL does not

contain environment good enough for our needs, so there would still be need for creating

of new templates.

Using the Qt generic containers would mean a dependance on graphical library, but I had

accepted this constraint when I decided for the portation VCA to Qt.

7.2.1 Qt generic containers

The Qt framework provides a set of template-based container classes. They can be used

to store items of a specified type. Container classes are designed to be lighter, safer, and

easier to use than the STL containers. They are implicitly shared (method that maximizes

resource usage and minimizes copying of data), fully reentrant, and they are optimized

for speed, low memory consumption, and minimal inline code expansion, resulting in

smaller executables. In addition, they are thread-safe in situations where they are used

as read-only containers by all threads used to access them.

Figure 7.5: Algorithmic complexity of Qt generic container classes

From all the container classes offered by Qt I was considering four of them as a

substitution of original VCA constructs. As for the GAVL/AVL trees I was considering

7.3. EXTENSIONS AND ENHANCEMENTS 45

QHash or QMap, and for the GSA lists, QVector or QList. At last, I had decided to use

QMaps and QLists. QHash, in comparison to QMap, offers faster lookups, since it stores its

data in an arbitrary order, but QMap stores the data in key order, what can be sometimes

very useful. QVector stores an array of values at adjacent positions in memory. Inserting

at the front or in the middle of a vector can be quite slow, because it can lead to a large

number of items having to be moved by one position in memory. That is why I decided

to use QList.

Summarizing table 7.5 shows the algorithmic complexity of Qt generic container

classes. It can be assumed that chosen solution will sufficently fulfil all requirements for

the new storage structures and won’t cause any noticeable inconvenience.

7.3 Extensions and enhancements

Apart from the changes that enabled portation of VCA to QVCA, I had suggested and

implemented some useful features that simplify connecting of QVCA to the application

graphical objects. These features represent an imaginary bridge between the graphical

and non-graphical part of the application. I have decided to keep them as a part of

QVCA - independently of the graphical part as it is required when one wants to use Qt’s

model-view programming technics that simplify the presenting of the data to he user.

7.3.1 Qt model-view programming

Qt introduces new architecture to manage the relationship between the data and the way

it is presented (displayed) to the user. This architecture is called model-view programming.

This approach enables to keep the data independent from the graphical part, which

gives developers greater flexibility to customize the presentation of item, and provides a

standard model interface to allow a wide range of data sources to be used with existing

item views (classes that enable display of model’s data to the user).

The model communicates with a source of data that provides an interface for other

components in the architecture. The view obtains model indexes (references to data

items) from the model. By supplying model indexes to the model, the view can retrieve

items of data from the data source. A delegate renders the items of data. When an item is

edited, the delegate communicates with the model directly using the model indexes. Fur-

46 CHAPTER 7. QVCA - VCA PORTATION TO QT

ther information on model-view programming can be found in online documentation[10].

For better understanding of this approach look at figure 7.6.

Figure 7.6: Model-view programming

To use model-view programming technics, there had to be designed a model that would

store the monitored data and provide it to the view components of the application graph-

ical interface. More important than the actual implementation of the model is what data

it stores (monitored CAN messages) and how. In addition, possible multithreaded archi-

tecture of developed application had to be taken in mind. To deal with the minimizing

of copying of data, maximizing of resource usage and multithreading, there was designed

a new object that fulfilled all mentioned requirements. Qt offers the resources to enable

creating such an object - Implicitly Shared Classes.

An implicitly shared class consists of a pointer to a shared data block that contains a

reference count and the data. When a shared object is created, it sets its reference count

to 1. The reference count is incremented whenever a new object references the shared

data, and decremented when the object dereferences the shared data. The shared data is

deleted when the reference count becomes zero. The benefit of sharing is, that a program

does not need to duplicate data unnecessarily, which results in lower memory use and less

copying of data. Implicitly shared classes can be safely copied across threads, like any

other value classes. They are fully reentrant, which is implemented using atomic reference

counting operations. Atomic reference counting is very fast, much faster than using a

mutex. Even in multithreaded applications, you can safely use them as if they were plain,

http://doc.trolltech.com/4.3/model-view-programming.html

7.4. CONCLUSION 47

non-shared, reentrant classes. Further information can be found in Qt implicitly shared

classes documentation[10].

Apart from implementing CAN message as implicitly shared object, I decided to use

the very same way for SDO requests implementation, too. Although SDO request objects

will not be used in this work, it will ease further extension of the application to support

CANopen protocol. QVCA CAN message model was designed as an abstract class with

one virtual method - CAN message receiving slot. This was done to enable the use of

this model for different kinds of message processing tasks in different graphical widgets

that will eventually use it.

7.4 Conclusion

Portation from VCA to QVCA turned out to be the right solution after all. It brought

many useful features. Signal-slot mechanism enabled simple communication between the

QVCA objects. Model-view programming separated graphical and non-graphical part of

the application and concurrently created a bridge between them. Qt template structures

replaced original VCA constructs without any noticeable inconvenience and made the

source code more readeble. At last, implicit sharing improved application memory and

resource usage and simplified possible multitheading issues.

http://doc.trolltech.com/4.3/shared.html

48 CHAPTER 7. QVCA - VCA PORTATION TO QT

Chapter 8

QCANalyzer design and

implementation issues

QCANalyzer is a graphical application that allows a user to interact with the CAN bus.

It is a simple CAN monitoring tool, that enables to analyze monitored CAN traffic either

from a live CAN network, or from a previously saved traffic files. Instead of offering typed

commands, it gives a user possibility to use its graphical elements, generally called widgets,

to reach the functionality that the application provides. Application architecture, as well

as its implementation, depends on functionality requirements that had been determined

before the beginning of the implementation process:

• CAN network traffic display

• Sending of CAN messages

• Filtering of received and displayed CAN messages

• Plot display of monitored data values

• Miscellaneous

This chapter will discuss QCANalyzer architecture and the implementation of its partic-

ular parts with regard to the specified requirements.

8.1 QCANalyzer architecture

Proposed QCANalyzer architecture keeps the implementation of its graphical objects in-

dependent from the QVCA library that the application will use for monitoring. Therefore,

it can be divided to two basic parts:

49

50 CHAPTER 8. QCANALYZER DESIGN AND IMPLEMENTATION ISSUES

• non-graphical part - it takes care of CAN bus monitoring

• graphical part - it takes care of display of monitored traffic

Each of these parts is running in a different thread. Thread is a way how a program

forks (splits) itself into two or more simultaneously running tasks. Threads inside one

process share some memory while two different processes don’t. Thread programming is

very capable way how to implement a graphical application. It preserves the freezing of

the user interface and thus improves user interaction with the application, while some

other computation is running in the background. Moreover, multithreading increases the

program performance and lowers memory consumption. Qt provides quite an advanced

multithreading support. Apart from platform-independent classes, it offers a thread-safe

way of communication across the threads - the signal/slot mechanism.

Figure 8.1: QCANalyzer architecture

In a following text, non-graphical thread, that takes care of actual CAN traffic mon-

itoring, will be refered to as monitoring thread, and the graphical thread, in which the

8.2. IMPLEMENTATION 51

graphical part of the application is running and which allows a user to watch the moni-

tored traffic, main application thread. Monitoring thread is created and then immediately

started from the main application thread using particular QCANalyzer widget. Thread

creates QVCA network as well as QVCA interface objects that perform actual CAN bus

monitoring and CAN message distribution to different parts of the application in a way

that was described in previous chapter. QVCA interface object signals, that distribute

received CAN messages, are caught by corresponding slots in main application thread,

which performs their further processing. Described mechanism is shown at figure 8.1.

8.2 Implementation

Base class of the whole QCANalyzer application is the class that implements the ap-

plication main window. It is called MainWindow (MW) and consists of several other

objects. Instance of MW is the parent object of all objects in the whole application

parent-children hierarchy. It has to be underlined, that the terms application main win-

dow and MainWindow have different meanings in this text: application main window

represents graphical object that is displayed to the user when the application is started,

while MainWindow represents the class that defines and implements application main

window functionality. Design and implementation of MW, as well as all components it

consists of, will be discussed on following lines in more detail with regard to particular

application functionality requirements.

8.2.1 CAN network traffic display

Monitored CAN message traffic is displayed in QCANalyzer main window. It was de-

signed in Qt-designer - tool for designing and building GUIs from Qt components. Output

of Qt-designer is a customized XML file called user interface form. With Qt’s integrated

qmake tool, the code for user interface created with Qt Designer is generated automat-

ically when the rest of the application is built. Forms can be included and used directly

from the application, or they can be used to extend standard or user customized wid-

gets. MW inherits Qt-designer generated form and implements the functionality of each

graphical object that it contains. This way the implementation of MW graphical objects

is hidden in specialized file.

52 CHAPTER 8. QCANALYZER DESIGN AND IMPLEMENTATION ISSUES

Figure 8.2: QCANalyzer main window

Application main window is shown at figure 8.2. It is organized as a tab widget

with two tab pages. First tab page provides a traffic view, second one provides QCAN

plotter tool. Monitored traffic is shown in a CAN message table view. It displays one

particular message on one row. Every row is is divided to several columns. Each column

displays different CAN message field (ID, flags, etc.). In addition, application main

window provides another table view, that shows the statistics for each received CAN

message ID.

The mechanism that enables to display CAN bus monitored traffic consists of three steps:

• CAN message reception and distribution

• CAN message filtration

• CAN message display

CAN message reception and distribution is ensured using the mechanisms implemented in

QVCA library, which QCANalyzer uses to capture the monitored data (CAN messages).

QVCA CAN interface object signals that distribute received CAN messages from the CAN

bus to different components of the application, are caught by the slot of MW filtering

object, which performs the filtering of captured before its actual display to a user. In this

slot, user unwanted messages are rejected (will not get displayed in a traffic view). The

8.2. IMPLEMENTATION 53

ones that do not get filtered are immediately emitted by another signal, that is caught by

MW CAN message model slot. In this stage of processing, new CAN message is appended

to the model’s QList, so all messages are stored in the order they were received from the

CAN bus. MW CAN message model then provides stored messages to the application

main window’s table view for display. For better understanding of this mechanism look

at figure 8.3

Figure 8.3: QCANalyzer CAN message flow

Apart from the MW CAN message model slot, signal emitted by the MW filtering

object is also caught by a slot of another MW object, which takes care of createing

message ID statistics. CAN message statistics are displayed in a different table on the

same tab page as the monitored traffic . This require design of a new model, which

unlike the CAN message model, stores its data in QHash (Qt generic container similar

to QMap). ID of new arriving CAN message is checked if the statistics model does not

already contain it. If not, it is added to the model’s data QHash and its count is set to

one. If the model already contains it, it increments its count by one.

8.2.2 Sending of CAN messages

QCAnalyzer offers two possibilities for sending CAN messages to the CAN bus:

54 CHAPTER 8. QCANALYZER DESIGN AND IMPLEMENTATION ISSUES

• Sending of a single CAN message

• Sending of CAN message sequences

CAN message(s) can be sent only when the monitoring thread is running - since the

QVCA interface objects, that allow the user to do so, are created with the start and

destroyed with the stop of monitoring thread. Each message sent to the CAN bus is

immediately enqueued to sent message history model used by QCANalyzer Sent Message

History Tool, that allows a user to resend or to keep the track of already sent messages.

In addition, this tool provides some other functionality that will be described later in this

chapter.

8.2.2.1 Sending of a single CAN message

Sending of a single CAN message can be done in two different ways. User can send an

instant CAN message from the application main window using the widgets placed at the

bottom of it. Another possibility is to use the application Message Sequence Tool.

8.2.2.2 Sending of CAN message sequences

QCANalyzer allows a user to send CAN message sequences to the CAN bus using the

specialized tools:

• CAN message sequence tool

• Sent message history tool

Both tools were designed in Qt-designer and both offer same set of widgets with slightly

different functionality. Both offer a possibility to save the messages to a file and open

previously saved files. After opening they can be used the very same way as it was

described on previous lines.

8.2.2.3 CAN message sequence tool

CAN message sequence tool is a primary tool used for sending CAN message sequences. It

allows a user to prepare CAN messages that can be later sent to the CAN bus. Messages

are displayed on the rows and divided to particular columns as it is done in QCANalyzer

main window traffic view. Unlike the MW CAN message model that uses CAN message

model implemented by QVCA library, tool implements its own model. In comparison

to the QVCA message model, it offers the possibility to edit model’s items and drag

8.3. FILTERING OF RECEIVED AND DISPLAYED CAN MESSAGES 55

and drop of item data to different widgets that allow it. In order to enable these item

properties, there had to be set-up some special features to this model. Each model item

has a number of data elements associated with it, and each of these can be retrieved by

specifying a role to the model’s data() function. Items can be queried with flags()

to see if they can be selected, dragged, or manipulated in any other way. To enable

editing and drag/drop of the items, particular item flags must return editable flags and

drag/drop flags for the valid item indexes. Plus, the model must have setData() method

implemented.

8.2.2.4 Sent message history tool

Sent message history tool is a secondary option how a user can send a message sequence

to the CAN bus. By secondary, I mean that this tool was not designed for this purpose

and adds this functioniality because of additional user requirements. User can send to

the CAN bus only the messages that this tool displays. So it offers only the possibility

of resending of messages that had already been sent to the CAN bus by either of

mentioned options - application main window or message sequence tool. Model, that this

tool implement, does not allow a user to edit particular items, but it enables dragging

its items data to different application widgets that allow it (i.e. CAN message sequence

tool).

8.3 Filtering of received and displayed CAN

messages

The notion of filtering covered implementation of two different filtering objects in this

application. Although they may seem the same, they cover two different tasks:

• Traffic filtering

• View filtering

Traffic filtering gives a user option to filter the captured data that can be displayed to

the user, while view filtering allows a user to filter only the view of actually displayed

data.

56 CHAPTER 8. QCANALYZER DESIGN AND IMPLEMENTATION ISSUES

8.3.1 Traffic filtering

To allow a user to filter monitored traffic, there was a specialized traffic filtering tool

(TFT) designed. Again, it was designed with the Qt-designer and consists of the same

group of widgets as the CAN message sequence or CAN message history tool. Main

difference between these tools is the model that they implement. TFT model stores the

set-up masks in its QList. Actual mask is defined as an implicitly shared object. This

tool takes a very important position in the whole application architecture. It allows a

user to define several filtering masks with different roles in the whole application. It is

this tool’s model slot that performs first processing of received CAN messages.

Figure 8.4: QCANalyzer traffic filtering

The pinciple of CAN traffic filtering implemented in TFT can be understood from

the figure 8.4. When a new message is received by QVCA interface object, it is emitted

by the signal that is connected to TFT model slot. ID of received message is checked

against all set-up masks in TFT model. If it passes any of the accept mask compare, it

is emitted by another signal that is connected to MW CAN message model slot. Then it

is enqueued to its model and displayed to user. If ID of new arriving message doesn’t get

through any of the accept masks or if it passes any of the reject masks, it is immediately

rejected and not displayed in the main window. Memory allocated for the message is

released automatically, since the reference for the implicitly shared object (in this case

CAN message) will no more exist.

8.4. PLOT DISPLAY OF MONITORED DATA 57

8.3.2 View filtering

View filtering covers displaying only those items in the view, that match some user fil-

tering conditions or expressions. View filtering is implemented using specialized model

offered by Qt - QSortFilterProxyModel. It provides the support for sorting and filtering

of data passed between another model and a view. QSortFilterProxy model is applied on

already existing model, which is refered to as a source model. QSortFilterProxyModel

works as a wrapper for the original source model. It transforms (maps) source model in-

dexes it supplies to new indexes for different views to use. This enables source model to

be reorganized as far as the views are concerned, without any transformation of model’s

data. Plus, the data stored in the original model is not duplicated. Actual view filter

is imeplemented using QRegExp object. It can be used as a wildcard pattern, a regular

expression or a fixed string. Whenever it changes, a signal that notifies the QSortFil-

terProxyModel model is emitted . QRegExp is applied to the filter role (display role by

default) of each item. Items that don’t match filtering expression are hidden in the view.

View filtering is implemented in every QCANalyzer widget that provides a table view

- main window message log, message (sequence and history) tools and message filtering

tool.

User can specify filtering expression by typing it into tool’s line edits placed at the top

of the view, which reflects applied changes immediately. It had to be reminded again

that this mechanism filters only already displayed data - it won’t filter message

traffic or any other data. Data that does not match the expression specified byt the

user remains stored in original model during the filtering action.

8.4 Plot display of monitored data

Qt offers a large set of objects that allows a user to create sophisticated scientific widgets.

This method of programming the scientific widgets ”from the scratch” would require ad-

vanced knowledge of Qt toolkit, too much code writing and additional optimization before

the widgets could be used in CAN monitoring application. Therefore, I had decided to use

the solutions offered by open-source project called Qwt. Although this decision will cause

additional dependancy on another library, I will get a benefit of already implemented and

optimized objects, which will lead to faster code writing.

58 CHAPTER 8. QCANALYZER DESIGN AND IMPLEMENTATION ISSUES

8.4.1 Qwt library

Qwt is a graphical library built upon Qt. It offers a big set of classes, containers and

graphical widgets that can be used in the programs with technical background. Besides

a simple 2D plotting widgets it offers scales, sliders, compasses, wheels and many other

scientific widgets to control or display the values of type double. Although it was not inte-

grated with the whole framework, Qt-designer provides a support for basic Qwt graphical

widgets. Library is distributed under LGPL license and can be used in all environments

where Qt can be used. Only inconvenience that it brings is, that Qwt does not provide

binary packages. Instead, all source files have to be downloaded and compiled the way

any other Qt based program is compiled. More information on Qwt can be found at

project’s http pages[11].

8.4.2 Plotting of monitored data

Data transferred by CAN messages in monitored CAN network can be displayed in ap-

plication’s main window QCAN plotter tab page. This tab page provides drawing of

2D plots. User can plot several curves at once using this tool.Curve that gets displayed

using this tool is implemented as a customized Qwt object, which is created for every

new added message ID. Message ID and the byte range from which the actual displayed

value of the curve is counted, must be specified in order to read the data transferred by

particular CAN message.

Figure 8.5: QCAN plotter

http://qwt.sourceforge.net/

8.5. MISCELLANEOUS 59

Data used for drawing the trend plots are gained in the QCAN plotter slot that is

connected to the TFT model signal, thus only the data of the messages accepted by

TFT can be displayed using this tool shown at figure 8.5. Data transferred by CAN

messages are in little endian order. They are transformed by this tool to the correct byte

order, transformed to a number and stored in the curve object’s data storage. This data

storage reimplements another Qwt object that keeps the monitored data in QwtArrays.

QwtArray is a structure similar to QLIst. It offers many useful features for the use in

the technical programs (for example adding arrays of values apart from adding a single

values).

8.5 Miscellaneous

This group consists of the objects that simplify the user interaction with other application

widgets or with the application itself. It covers the configuration dialogs and application

settings. By configuration dialogs I mean the dialog that allows a user to config monitoring

options and the dialog that alows a user to configure QCAN plotter drawing options.

Both dialogs were designed by Qt-designer. Their sginals are connected to particular

slots implemented as the methods of MW. Their use will be described in user manual.

Application settings are stored in a special object that inherits one of the most useful

Qt object - QSettings. QSettings provides platform-independent application settings.

QSettings is a wrapper around different OS technologies: Windows stores the application

settings in the system registry, MAC OS X in XML preferences files and UNIX systems in

INI files. The use of QSettings class is very simple and intuitive - application programmer

specifies only a couple (setting, key) that are added by QSettings object to the application

settings file. All other processing is automatically taken care of behind the scene by

QSettings object itself. Application settings are loaded when the programm is executed.

Apart from graphical settings of QCANalyzer widgets (to restore position and size of the

application main window), they store monitoring session options, too.

60 CHAPTER 8. QCANALYZER DESIGN AND IMPLEMENTATION ISSUES

Chapter 9

QCANalyzer User manual

QCANalyzer does not contain any installation script yet. It has to be compiled and built

directly from the given source codes.

9.1 Compilation an building the QCANalyzer

There are some precompilation prerequisities that need to be satisfied in order to compile

the program:

• Qt toolkit must be installed - at least version 4.3

• Qwt library must be downloaded and compiled from its source codes

On some Linux OS distributions (debian, ubuntu), Qt and Qwt is distributed in binary

packages, so there is no need for their additional compilation. Qt and Qwt documentation

describes how to compile these two libraries using Qt tools on different OS. You can find

more information about Qt application deployment in dedicated manual[10]. We assume

that user has installed and deployed Qt and Qwt libraries as it is described in their

documentation. Now the source files of the QCANalyzer application distributed in one

tar file have to be downloaded and compiled. In order to compile the application read

the following installation steps:

1. Generate a Makefile using qmake utility this way: qmake -o Makefile src.pro

2. Run make utility

Compilation should pass without any warnings. Built application binary file called qc-

analyzer can be found in bin project directory. Now the user can copy the application

61

http://doc.trolltech.com/4.3/deployment.html

62 CHAPTER 9. QCANALYZER USER MANUAL

binary to his directory or it can be executed from the directory where it was built.

9.2 Basic functionality

QCANalyzer can be started either by double click on the program executable or from

the command line. When a user starts the application from the command line he can

specify configuration file, from which the application reads its settings. Configuration file

is specified as a program argument. If the specified file does not exist, application will

load last used settings. If the configuration file with last settings does not exist, default

application settings are loaded.

Figure 9.1: QCANalyzer main window

9.2.1 Connection to the LinCAN driver

Before the user starts to monitor the CAN bus, he should check or configure the settings

for actual monitoring session. This can be done using the QCANalyzer configuration

dialog. Dialog is opened either by clicking particular icon in toolbar or by clicking ”Con-

9.2. BASIC FUNCTIONALITY 63

figure Settings” in ”Tools” menu from the application main window menu bar, or using

the configuration shortcut - Ctrl+D. Configuration dialog allows a user to edit following

monitoring session settings:

• Driver interface connection

• Logging

User can configure the connection of the application to the LinCAN driver through ma-

nipulating the dialog’s widgets. Application connects by default to canmond daemon,

which supposingly runs on remote machine to which the application is connecting over

TCP/IP. If a user specifies CAN device file in configuration dialog, local connection will

be used no matter what settings are typed in canmond connection configuration. If the

name of specified CAN device file does not start with the string /dev/can or if it can

device configuration is set to no, application automatically connects to canmond daemon

with the connection parameters specified in configuration dialog shown at figure 9.2.

Figure 9.2: Configure connection to LinCAN driver

Apart from specifying of the connection to the LinCAN driver, user can choose if he

wants to save automatically all monitored traffic to, by him specified, log file. This option

is disabled by default due to possible accumulation of this file. This option is useful for

short time monitoring. Saved file can be later opened and manipulated in the application.

User can specify the name of the logging file by checking the particular configuration

dialog checkbox and typing the name of the file to the ”Log file” line edit. Specified

settings can be saved by clicking the ”Save settings” dialog button. If a monitoring of

the CAN bus is in progress user can’t change any of the described settings.

64 CHAPTER 9. QCANALYZER USER MANUAL

9.2.2 Monitoring

When the connection to the LinCAN driver is configured correctly, user can start mon-

itoring either by clicking the ”Attach to interface” button int application mainwindow

toolbar or by clicking the ”Connect” in ”Tools” menu, or using the predefined keybord

shortcut F5. If there is some traffic on monitored CAN network it is immediately dis-

played in application main window message table view if it passes set-up traffic filters.

Statistics table view right under the message log shows the number of received messages

of particular message ID.

Figure 9.3: QCANalyzer in use

Screenshot of running application is shown at figure 9.3. CAN message fields shown

in particular column of the application main window traffic view are displayed in hex-

adecimal form. Displayed traffic view can be cleared using the ”CLEAR LOG” button

placed above the main traffic table view. After this action no messages will be displayed

in a traffic view. Message ID statistics remain unchanged. If a user decides to clear both

views - traffic and statistics views - he must click the ”CLEAR ALL” button that is next

to the previously mentioned button. User can even hide monitored statics unchecking

by defeault checked ”VIEW STATISTICS” checkbox. User comments can be added to

every monitored message and to every message ID statistics. User can filter the displayed

messages by typing the message ID or message flags filtering condition to prepared fil-

tering line edits placed at the top of main window. While the application is connected

to the driver, user can send single message using the main window widgets placed at

9.2. BASIC FUNCTIONALITY 65

the bottom of traffic tab page. He can specify the message ID either in decimal or in

hexadecimal form. When typing the hexadecimal number, user must add ”0x” prefix

before the actual hex value, so the application could recognize value form. Message is

sent using the ”SEND” button. Monitoring can be stopped by clicking the ”Detach in-

terface” toolbar button or from the ”Tools” menu, or using the keyboard shortcut F6.

This button is by default disabled when the monitoring is not in progress. Clicking it

will exit the monitoring thread, so no other message will be displayed in message log.

9.2.3 Saving and Opening monitored traffic files

When the monitoring is stopped, user can save the displayed messages to the file - either

to text or to binary file. Saved text files have ”.tlog” suffix added while the binary files

have ”.blog”, so they can be recognized when a user wants to open any of the log files

in some text or hexa editor. User can save the message log in a similar way as previous

actions were described: clicking the ”Save” tool bar button, using the ”File” menu or

using the usual save keyboard shortcut ”Ctrl+S”. Saving the log files is disabled when

the monitoring of the CAN bus is in progress.

Figure 9.4: Save message log dialog

Apart from saving the monitored log to the file, application provides a possibility to

open already saved log files. Open files is enabled through the similar dialog window as

the save dialog one shown at figure 9.4. It can be called similar way as the save action is.

Both dialog offer the filtering option of displayed files - user can display either text-saved

66 CHAPTER 9. QCANALYZER USER MANUAL

or binary-saved messages. Files are opened in new tab page inserted after the QCAN

plotted tab page. Opened message log is displayed in a table view. User can’t edit any of

the items in it, but he can drag the item data to different widgets that allow dropping of

dragged data. Even the application logging files specified in the application settings can

be opened and manipulated this way. Closing of opened message log is done by clicking

the ”CLOSE” button placed at the top of open log tab page.

9.2.4 QCANalyzer specialized tools

In addition to previously described functionality, application offers some specialized tools:

• CAN Message sequence tool

• Sent message history tool

• Traffic filtering tool

Implementation of each tool was described in previous chapter. This section will show

how to use these tools in the application.

9.2.4.1 Message sequence tool

Message sequence tool is used for sending CAN message sequences. It allows a user to

prepare messages and then send them to the CAN bus. User can send unlimited count

of messages. Each newly created message is appended at the bottom row of tool’s table

view. Tool allows a user to specify message ID and message flags either in decimal or

hexadecimal form as it is done in main window. Again, if a user wants to specify any

of mentioned fields in hexadecimal mode he has to put ”0x” prefix before the actual

number. Data field is automatically converted to hex form. User can decide either to

send all messages, or only the ones selected by the mouse. Messages are being sent in the

order they are displayed in tools’s view (as it is shown at figure 9.5) or in a way they

were selected by the mouse.

9.2. BASIC FUNCTIONALITY 67

Figure 9.5: Message sequence tool in use

User can remove alreadey prepared or sent messages. He can remove either all or

only the selected ones. Sending or removing of selected messages can be also done by

clicking the item in the context menu called by the mouse right button click, or clicking

coreesponding item in tool’s ”Message” menu bar Tool also offers a possibility to save

prepared messages either in binary or text form and open already saved messages. Several

can message tools can be opened from the application main window. Tool also provides

the option of dropping the messages from the mainwindow traffic view, from the log file

opened in it or even from sent message history tool that will be describe in next section.

User can specify the name of prepared sequence in a ”SequenceName” line edit placed at

the top of the message table view. Name typed in this line edit is immediately reflected

in tool’s window title.

9.2.4.2 Sent message history tool

Message history tool gives a user possibility to keep the track of messages sent either by

the message sequence tool, or from the application main window. Apart from reviewing

of sent message history, tool enables to resend either all, or only selected messages that

it stores and displays as it is shown at figure 9.6.

68 CHAPTER 9. QCANALYZER USER MANUAL

Figure 9.6: Sent message history tool in use

Message history can be saved either in text or in binary form. Saved files can be

reopened and used again: messages can be dragged from this tool and dropped to any

opened message sequence tool, in which they can be edited and send to the CAN bus.

Sent message history tool enables to remove either all of the displayed messages or only

the ones selected by the mouse. As well as message sequence tool, this tool provides

a possibility of sending and removing of displayed messages by clicking corresponding

item in context menu called by the mouse right button click or by clicking the item in

”Message” menu bar. Messages are being sent in the order they are displayed in tool’s

view or in order they were selected by the mouse.

9.2.4.3 Traffic filtering tool

Message filtering tool gives a user possibility to filter the monitored traffic by the masks

created using this tool. Tool can be opened from the application main window clicking

particular toolbar button, item in menu bar or using the shortcut Ctrl+T. Each newly

added mask is appended at the bottom row of tool’s table view. User can specify the

mask and message ID either in decimal or in hexadecimal form. Again, if the specified

values are in hexadecimal form user has to add ”0x” prefix so they can be correctly

interpreted by the tool. Screenshot of TFT in use is shown at figure 9.7.

9.2. BASIC FUNCTIONALITY 69

Figure 9.7: Traffic filtering tool in use

User can define several filtering masks or rules. Each new added masks is automati-

cally created with ”REJECT action” ”INACTIVE status”. Reject means that monitored

messages that pass set-up mask rule will be reject when the status of set-up rules is set to

”ACTIVE”. User can change the mask status or action by simple checking or unchecking

the checkbox in particular status/action column. As well as the previous tools, this tool

gives a possibility to remove all or only by the user selected masks (rules). It also allows

a user to remove all ”ACTIVE” or all ”INACTIVE” masks. User can save defined masks

to a file that can be later opened by this tool and used in the very same way that was

described here. When there are no masks specified in the tool, or all mask rules status are

set to ”INACTIVE”, user can define default filtering behaviour by checking/unchecking

the ”Accept by default” checkbox placed at the bottom of the tool’s table view.

9.2.5 QCAN plotter

QCAN plotter is a plotting tool that allows a user to draw the trend curves of data

transferred by the CAN messages with the particular message ID. In order to display

these data, user must configure the plottiing options using its tool’s configuration dialog.

Obligatory fields that must be specified are message ID and the byte range of the data

carried by the CAN messages. They are marked with the asterisk in tool’s configuration

dialog. user can specify the legend of displayed trend curve and even choose the color of

the curve. QCANplotter as well as its configuration dialog is shown at figure 9.8.

70 CHAPTER 9. QCANALYZER USER MANUAL

Figure 9.8: QCAN plotter in use

Trend curves are displayed in a plot grid that automatically adjust its scales according

to the displaying data. Apart from displaying the curves, tool offers other functionality.

To enable a closer look on displayed curve(s) values, tool provides a graph zoomer. If

a user wants to use the zoomer, he has to toggle the ”Zoom In” button and mark re-

quired plot area. Right click on a plot canvas area will return the view to the previous

displayed state. If a user performed several zooming actions he can return to the original

displayed view either by toggling the ”Zoom In” button or by using the combination of

Ctrl+mouse right click shortcut. The tool allows to display several trend curves with

different colors and legends specified by the configuration dialog. Added curves can be

hidden from the plot area and redisplayed back using the legend’s toggle buttons placed

below the displayed graph. Plot area can be cleared by clicking the ”Clear Plot” tool

button. User can export displayed graphs either to pdf or to SVG format by clicking

corresponding tool buttons placed at the top of the plot area.

Chapter 10

Conclusion

In this diploma theses I managed to create a graphical application called QCANalyzer

that allows a user to monitor CAN network. Using it, one can perform a higher analysis

of captured data either from the live CAN network, or from previously saved files. In

order to enable the communication of the application with actual CAN hardware, some

of the results reached byt the OCERA project were used. QCANalyzer uses OCERA

LinCAN driver, as well as the VCA library, which provides an advanced API for the

communication with this driver. Application was programmed using Qt development

toolkit. The use of Qt for developing, not only graphical applications, is hugely growing

in the world of IT. Thus, the decision of choosing the Qt gave me a chance to learn

new advanced technology, plus it eased the whole development process of the applica-

tion, since Qt provides a complete framework for cross-platform application development.

Getting familiarized with unknown development framework caused a little slow-down

of development at the beginning, but at last it showed up to be the right solution. First,

some components of VCA library were reprogrammed using this toolkit in order to ease

the distribution of captured data to particular application’s graphical objects, then the

actual implementation of QCANalyzer graphical interface followed. It required learning

of several Qt programming technics that were applied to acheive the functionality require-

ments claimed at the the beginning. Apart from standard functionality of sending and

receiving of CAN messages offered by many CAN monitoring tools, QCANalyzer offers

many other useful solutions. It provides an advanced tool for sending CAN message se-

quences as well as the tool that enables to filter captured traffic. Traffic filtering tool gives

a user possibility set-up several traffic filtering masks with different roles (accept, reject)

and states (active, inactive), which slightly resembles iptables firewalls implemented on

71

72 CHAPTER 10. CONCLUSION

UNIX machines. QCANalyzer provides mechanisms for local and remote monitoring over

TCP/IP. User can connect to any machine on the internet, on which canmond daemon is

running, and perform the monitoring remotely. Feature that distringuishes this tool the

most from other free available CAN monitoring tools is advanced tool for plotting trans-

ferred data over CAN network. User can start monitoring and after simple configuration

of QCAN plotter tool he can watch the transferred data on the real-timingly drawn graph.

Application has been tested on virtually loaded LinCAN driver, using the utilities pro-

vided by the OCERA project. Program has not been tested on a real CAN hardware yet,

but testing results showed, that QCANalyzer should appropriately fulfil all requirements

that are posed on CAN monitoring tool. Testing of the application on real CAN hardware

should be performed by the user himself, before he decides to use it in a commercial or

in other project.

Future extensions of the application should provide implementation of CANopen pro-

tocol support. QCANalyzer already provides the API that can be used for this porpose.

The only thing that has to be implemented to enable this support is graphical interface,

that would provide a user an easy way of manipulation with CANopen devices. CANopen

support will enable generation of network variables, the only assignment requirement that

has not been fulfilled in this work. Other possible extension can be implementation of

more advanced traffic filtering or sending of periodic CAN messages what can be very

useful in automotive applications. Another possible extension is implementation of ad-

vanced project files that would enable an advanced project control and that would allow

a user to store all monitoring session configuration and settings in partricular project file.

In order to speed-up the development process of further application extensions, official

QCANalyzer SourceForge1 release is currently being prepared. QCANalyzer will be re-

leased under GPL or LGPL license. Anyone will be able to freely download the application

source codes and change them for its own possible purposes.

In the end I would like thank again my tutor Ing. Pavel Ṕı̌sa for his patience, help

and for many useful suggestions. Without him, this theses would not reach the quality

it has now.

1source code repository on http://sourceforge.net/index.php web site for software developers to con-

trol and manage open source software development

http://sourceforge.net/index.php
http://sourceforge.net/index.php

Bibliography

[1] CAN international users and manufacturers group web site

, http://www.can-cia.org/.

[2] The Vector company web site

, http://www.vector-worldwide.com/.

[3] The Peak company web site

, http://www.peak-system.com/.

[4] VSCP project web site

, http://www.vscp.org/.

[5] OCERA project web pages

, http://www.ocera.org/.

[6] OCERA project development web pages

, https://sourceforge.net/projects/ocera/.

[7] Gtk+ project documentation

, http://gtk.org/.

[8] Qt framework web pages

, http://trolltech.com/products/qt.

[9] Java-SWING tutorial web pages

, http://java.sun.com/docs/books/tutorial/uiswing/.

[10] Qt framework online documentation

, http://doc.trolltech.com/4.3/.

[11] Qwt Project Online Documentation

, http://qwt.sourceforge.net/.

73

http://www.can-cia.org/
http://www.vector-worldwide.com/
http://www.peak-system.com/
http://www.vscp.org/
http://www.ocera.org/
https://sourceforge.net/projects/ocera/
http://gtk.org/
http://trolltech.com/products/qt
http://java.sun.com/docs/books/tutorial/uiswing/
http://doc.trolltech.com/4.3/
http://qwt.sourceforge.net/

74 BIBLIOGRAPHY

Attachement A

List of abbreviations

ISO The International Organization for Standardization

IEEE The Institute of Electrical and Electronics Engineers

IETF The Internet Engineering Task Force

CAN Controller Area Network

GUI Graphical User Interface

ISOOSI ISO Open Systems Interconnection Model

EDS Electronic Data Sheet

PDO/SDO Process/Service Data Object

NMT Network Management Technology

SYNC Synchronization Object

OCERA Open Components for Embedded Real-time Applications

API Application Programming Interface

GPL General Public License

LGPL Lesser General Public License

ANSI-C American National Standards Institute standard for the C programming lan-

guage

I

II ATTACHEMENT A. LIST OF ABBREVIATIONS

API Application Programming Interface

VSCP Very Simple Control Protocol

GAVL/AVL Generic/Generalized Adelson-Velski Landis trees

KDE K Desktop Environment

GNOME Desktop environment for computers running Unix based operating systems

GNU Computer operating system composed entirely of free software

JFC Java Foundation Classes

STL Standard Template Library

TFT Traffic Filtering Tool

