
Master’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Control Engineering

Advanced payload control on DJI platforms
using embedded on-board computer

Bc. Adam Svoboda

Supervisor: Ing. Tomáš Meiser
Field of study: Cybernetics and Robotics
Subfield: Cybernetics and Robotics
May 2018

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

420298Personal ID number:Svoboda AdamStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

Cybernetics and RoboticsBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Advanced payload control on DJI platforms using embedded on-board computer

Master’s thesis title in Czech:

Pokročilé řízení užitečného zatížení palubním počítačem na platformách DJI

Guidelines:
1. Study manuals and reference documentation for target embedded computational unit and DJI autopilots communication
API
2. Develop Open Embedded system configuration to provide OS for target embedded platform providing all necessary
communication interfaces.
3. Develop communication layer based on DJI autopilots API to provide flight control and telemetry acquisition interfaces.
4. Run integrated system for visual data acquisition based on flight management using DJI UAV platform and digital camera
sensor.
5. Evaluate and visualize results of realized experiments
6. Provide system documentation and users manuals

Bibliography / sources:
[1] Marwedel, Peter. Embedded system design. Vol. 1. New York: Springer, 2006.
[2] Lee, Edward Ashford, and Sanjit A. Seshia. Introduction to embedded systems: A cyber-physical systems approach.
MIT Press, 2016.
[3] Marques, P., Da Ronch, A.: Advanced UAV Aerodynamics, Flight Stability and Control: Novel Concepts, Theory and
Applications, John Wiley & Sons, 2017.

Name and workplace of master’s thesis supervisor:

Ing. Tomáš Meiser, Department of Computer Science and Engineering, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 25.05.2018Date of master’s thesis assignment: 16.01.2018

Assignment valid until: 30.09.2019

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
Ing. Tomáš Meiser
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

iv

Acknowledgements

I would like to express my very profound
gratitude to my supervisor, Ing. Tomáš
Meiser, for the help, support, and guid-
ance he gave me through the time of the
research. Without his useful comments
and remarks, the thesis could not have
been accomplished.

I would also like to thank my family,
my girlfriend and my friends for providing
me with unfailing support and continuous
encouragement throughout my years of
study and through the process of writing
this thesis.

Thank you.

Declaration

I hereby declare that I am the sole author
of this master thesis and that I have not
used any sources other than those listed
in the bibliography and identified as ref-
erences.

In Prague on the 24. May 2018

..

v

Abstract

Drones have potential to be used in al-
most every field of science and technology,
for example, for the creation of 3D models
using the photogrammetry method. For
that purpose, it is important to capture a
target area in detail and add the most ac-
curate GPS coordinates to each captured
photograph. While modern autopilot can
handle a payload, such as a camera, the
efficiency, and accuracy of this control is
not enough.

This project aimed to develop a special
control unit that would take control of
the autopilot and the camera and ensure
a more accurate and efficient collection of
photographic data. The control unit, a
Gumstix COM, was added on board the
DJI Matrix 600 hexacopter. The project
included configuration settings for build-
ing the Linux operating system and de-
veloping control applications using DJI
development kit. These procedures are
documented in the corresponding chap-
ters of the diploma thesis.

The developed application was tested
in both the DJI simulation environment
and the field. The obtained data demon-
strated the functionality of all the mod-
ules created, including the flight path
planner and the data analyzer.

The application completely fulfilled the
specifications and is ready for use. At
the end of the diploma thesis, there are
presented some possibilities of further de-
velopment of the application.

Keywords: image data acquisition, DJI,
autpilot, Gumstix, Yocto Project

Supervisor: Ing. Tomáš Meiser

Abstrakt

Drony mají potenciál na využití téměř v
každém odvětví vědy a techniky, napří-
klad při tvorbě 3D modelů metodou foto-
grammetrie. Pro účely fotogrammetrie je
důležité podrobně nafotit cílovou oblast
a ke každé pořízené fotografii doplnit co
nejpřesnější GPS souřadnice. Moderní au-
topiloty sice dokáží řídit užitečné zatížení,
například fotoaparát, ale efektivita a přes-
nost tohoto řízení není dostatečná.

Tento projekt si vzal za cíl vyvinout spe-
ciální řídicí jednotku, která by převzala
kontrolu nad autopilotem i fotoaparátem
a dokázala zajistit přesnější a efektivnější
sběr fotografických dat. Jako řídicí jed-
notka byl použit Gumstix COM, který
byl přidán na palubu hexakoptéry DJI
Matrice 600. Součástí projektu bylo nasta-
vení konfigurace pro sestavení operačního
systému Linux a vývoj řídicí aplikace s
využitím vývojových nástrojů DJI. Tyto
postupy jsou zdokumentovány v přísluš-
ných kapitolách diplomové práce.

Vyvinutá aplikace byla otestována jak
v simulační prostředí DJI, tak i přímo v
terénu. Na získaných datech byla před-
vedena funkčnost všech vytvořených mo-
dulů, včetně plánovače letové trasy a ana-
lyzátoru nasbíraných dat.

Aplikace kompletně splnila zadání a je
připravena na použití. V závěru diplomové
práce jsou navrženy možnosti dalšího roz-
voje aplikace.

Klíčová slova: sběr obrazových dat,
DJI, autopilot, Gumstix, Yocto Project

Překlad názvu: Pokročilé řízení
užitečného zatížení palubním počítačem
na platformách DJI

vi

Contents

1 Introduction 1

1.1 Goal description 3

1.2 Thesis overview 4

2 HW solution design 7

2.1 Control unit 8

2.2 Camera . 9

2.3 Autopilot . 10

2.4 Drone . 10

3 SW solution design 11

3.1 Yocto Project 11

3.1.1 Event driver 13

3.2 DJI software development kit . . 14

3.2.1 DJI OSDK 14

3.2.2 Connection 15

3.2.3 Cross-compilation 15

3.2.4 Telemetry sample 15

3.2.5 Mission sample 16

3.3 Shutter application 17

3.3.1 Mission planner 17

3.3.2 Shutter handler 22

3.4 Data analyzer 25

4 Experimental evaluation 27

4.1 Simulations 27

4.1.1 DJI Assistant 2 27

4.1.2 Simulation 28

4.2 In-field experiment 32

4.2.1 Safety . 32

4.2.2 Experiment realization 33

4.2.3 Execution 33

4.3 Results and evaluation 34

5 Conclusion 37

5.1 Review of the project 37

5.1.1 Review of the objectives 38

vii

5.1.2 Review of the solution 38

5.2 Future work 39

Bibliography 41

viii

Figures

2.1 HW design . 7

3.1 The output of the planning
algorithm . 21

4.1 Polygon: Charles Square 28

4.2 Trajectories 29

4.3 Detail of the trajectories 30

4.4 Development of the velocity 31

4.5 Polygon coverage 31

4.6 Polygon: Bratronice 33

4.7 Trajectories 34

4.8 Polygon coverage 35

4.9 Trigger time interval 35

4.10 Shutter response delay 36

4.11 Resulting 3D model 36

5.1 Design with the future extensions 39

Tables

2.1 Camera parameters 9

ix

Chapter 1

Introduction

Unmanned aerial vehicles (UAVs), also called drones, are aircrafts, which are
controlled by a computer instead of a human pilot aboard. This control is
done either remotely by a human operator or autonomously by an onboard
autopilot with a predefined trajectory.[6] There are several application fields,
which imply the construction and the equipment of the aircrafts. The one,
which was probably the main reason for the development of such aircrafts, is
military. The others, which appeared heavily in recent years, are filmography,
logistic, agriculture, forestry, civil engineering, scientific sensing, etc.

The variability of their movement results from the number of their rotors
and propellers. There are categories named after that such as quadcopter,
hexacopter, octocopter, etc. In our project, we are interested in multicopters
in general. The components of these aircrafts are very similar to hobby aircraft
models, which means that there is not any cockpit, environmental control
system or life support system. These aircrafts are in general cheaper and
easier to manufacture than usual manned aircrafts. There is an opportunity
to use for example less robustly tested electronic control systems or lighter
and less sturdy materials for the construction. Therefore, the research and
usage of these technologies are open to smaller research organizations and
universities.

The equipment of the aircrafts, also called payload, is mostly smaller and
lighter than a human, so the aircrafts can be considerably smaller. To handle
the stability of the aircraft in the air, it becomes very useful to use electric
motors, because its speed can be controlled and changed much faster than
if we used combustion engines. For the power supply, there are mostly used

1

1. Introduction
some lithium-polymer batteries. The flight control units are, due to the
recent development of computer technology, very powerful microcontrollers,
which are often called autopilots. The position and attitude of the aircraft
is obtained from a complex system of sensors. The most frequently used
sensors are GPS and IMU (inertial measurement unit). These components
are the core of the aircraft, which ensures the ability to navigate and stabilize
it. Apart from that, the aircraft can carry any other useful device, which
can weight several kilograms depending on the construction and power of the
aircraft. All this results in relatively very light, fast and agile aircrafts, which
offer many interesting and innovative usages in many various sectors.[13]

Most of the drones used for civil purposes are equipped with an aerial
camera, which can provide wonderful landscape photographs. Compared
to manned aircraft, it is definitely much cheaper to use a drone and take
an elevated photo or video, than to rent a helicopter with a human pilot
and a photographer. Some basic tasks, like taking a few photos or a video
can be done directly by the autopilot. It has become very popular because
drones can be used to take photos from hardly accessible places or even on
the go. These properties can be very valuable in architecture, in sports or in
professional photographing. Nowadays, the drones are capable of following a
sportsman and capturing a high-resolution videotape of his performance. On
the Winter Olympics 2018 in PyeongChang, we could see a very impressive
light show, which was done by a synchronized flight of more than 1200 drones
with LED lights. The development of the drones rushes forward and new
applications rise every day.

However, there are still some challenging tasks, which can’t be accomplished
by the present autopilots. One of the recently most developed fields is so-
called image data acquisition. It is a complex task, which provides a coherent
set of photos of an area, which has to be taken in equidistant spots and saved
along with its geodetic or telemetry data. Adding geodetic data to the images
is called geotagging, and it forms the second important part of the dataset.
The images with the added metadata could be used to produce any kind of a
map or a landscape model. The process of reconstruction of the landscape is
very sensitive to deviations in the metadata, which must be minimalized. The
images have to be taken in several angles and directions, in order to simplify
and support further processing. The control of the camera should be done at
least with some basic feedback, to be sure, that every photo was captured in
the determined moment. Standard present autopilots aren’t capable of such a
control and they are also missing some other useful features. When collecting
such a dataset, it is crucial to capture all the images with no exceptions.
When an image is not captured, the drone should return to that spot and try
it again. This functionality demands much more sophisticated behavior than
present autopilots can offer.

2

................................... 1.1. Goal description

The last ideas, which may come to your mind, could be for example
synchronization of more cameras or some basic communication with the
operator, which may help to calibrate the cameras. Next level improvement
could be a live stream preview of some taken photos directly to the operation
computer. There will be always something to improve in this field. That is
the main reason, why I started my development right here.

1.1 Goal description

The goal of this project was the development of a control unit, which would
solve the problems briefly described in the introductory section. The purpose
of this thesis was to describe properties of particular components, suggest
the complex solution and document the progress and the final results.

To summarize the task, the control unit had to be capable of communicating
with the camera and with the autopilot and this communication had to be
bidirectional in both cases, because this unit was meant to be the main
controller of the whole system. The input for the task was a file describing
the target area and a file describing the requirements for the results. The
output of the system had to be the set of image data along with the geodetic
and telemetry metadata.

The resulting system is a composition of three devices: a control unit, a
camera and an autopilot unit. There is obviously a fourth device, which is
the drone carrying all the other devices, but the system controls the drone
through the autopilot unit, so the system is not dependent on the drone itself.
All these components will be described in detail in the next chapter. This
section deals with the basics of connecting these components together, which
represent the main tasks of this work.

The first great subtask was to establish the connection between the control
unit and the camera. This connection has to be capable of transmitting two
kinds of signals. At first, the control unit has to send the shutting signal.
Next, there has to be secured fast feedback information saying, whether
the photography has really been taken or not because the camera does not
take the photos surely, whenever it gets an impulse. There may arise many
accidental and undetermined problems, such as overflowed buffers, focus
problems, memory problems, etc.

The second subtask was to establish the connection between the control

3

1. Introduction
unit and the autopilot unit. The control unit has to be able to obtain the
telemetry data provided by the autopilot. Apart from that, there should be
an opportunity to affect the flight control. The system should be able to
upload a flight plan and track its execution during the flight.

The third subtask was to implement an application, which would use the
established connections to accomplish the image data acquisition within a
given area. This program was divided into three parts. The first part is
a flight planner, which is an algorithm for constructing a flight plan for a
given area so that the camera could take photos of the area within the given
demands for resolution and overlaps. The second part is the flight and shutter
control application, which executes the flight plan and controls the shutter of
the camera. The last part is the data analyzer, which produces the geotagging
script, that contains the GPS coordinates of the gathered photos.

The fourth subtask was to implement a tool, which would visualize the
outputs of the application. For this purpose, a few MATLAB scripts were
created. Using these scripts, the user can visualize the target polygon, the
planned trajectory of the flight, the actual trajectory of the flight and the
image coverage of the target area.

The last subtask, which was partially implemented, was the communication
between the control unit and the operator on the ground. The purpose of this
communication is mainly to provide some preview data to allow the operator
to check the functionality of the system before taking some more exhaustive
measurements. Moreover, this communication could be used to control the
system fully from the ground, which would allow the operator to modify the
experiment without the need of landing the drone. However, this subtask
was not a part of the thesis assignment so that it was partially left for further
development.

1.2 Thesis overview

The following part of the thesis is divided into four chapters. The first chapter
describes the hardware modules, which were used to design the solution. The
next chapter is devoted to the core of the project, which is the software part
of the solution. It contains a description of the build system used to provide
the operating system, a description of the software development kit needed
for communication with the autopilot and a description of the developed
application.

4

................................... 1.2. Thesis overview

The last but one chapter deals with the experimental evaluation. The
simulation environment is presented, and the experiments are described
and evaluated. The last chapter concludes the thesis. It summarizes the
contribution of the project and suggests some possible improvements.

5

6

Chapter 2

HW solution design

This chapter describes the HW structure of the developed system, what
components are used and how the components are physically connected. In
the following sections, there are descriptions of all used components along with
their attributes, characteristics and possibly used interfaces. The HW design
of the whole solution along with the interfaces can be seen in Figure 2.1.

Figure 2.1: HW design

7

2. HW solution design
2.1 Control unit

As the main control unit, we chose Overo FireSTORM-P COM[7]. This
computer-on-module has 1 GHz ARM Cortex-A8 processor, WiFi and Blue-
tooth module, microSD card slot and two 70-pin AVX connectors, which can
be used to connect the computer to an expansion board. Such an expansion
board can significantly extend connectivity of the computer. As the expansion
board, we use Tobi[8], which provides various USB ports, ethernet port, DVI
display, 40 GPIO pins and many other useful interfaces. This expansion
board is one of the recommended for engineers to start their researches and
when the solution is tested enough, a custom expansion board can be created
to meet the specific requirements.

The main reason to use Gumstix was that it was already in our resources,
but it was currently not in use, and this project seemed to be a good option
to utilize this computer. The simple task containing only the triggering of
the camera had been implemented before using an Arduino microcontroller,
but when the task was extended by the mission planner and the analyzation
subtasks, it was necessary to look for some more powerful platforms.

In contrary to the Raspberry microcontrollers, working with Gumstix is
more complicated and exhaustive, because the documentation of the product
is very poor and the community support is incomparable to the support
of Raspberry developers. When searching the internet for some Raspberry
sample codes, tips or troubleshooting hints, one can find dozens of articles,
discussions and other helpful materials. When looking for the same in the
Gumstix community, one has to be very lucky to find few pages dealing with
the specific topic, while most of them contain only unanswered questions
asked by some other struggling developers.

Development on the Gumstix platform is not easy, but when the developer
is patient enough and doesn’t lack time, the results always pay off. Devel-
opment of a master thesis project on the Gumstix platform won’t be really
recommended by me, but as we can see, it is accomplishable.

8

....................................... 2.2. Camera

2.2 Camera

To get high-quality photographs, we chose the SONY α7RII[15] camera
with high resolution of 42.4 Mpx, high sensitivity and speedy response. A
significant feature is 5-axis image stabilization, which successfully reduces
blur. It is also capable of 4K movie recording. Connection with this camera
is made through Sony-multi interface, which provides USB port and can be
used to control the shutter.

The configuration connection can be made easily through the USB port.
There can be used a specific library called Glib2, which implements all the
basic methods needed for configuration and setup of the camera. On the
other hand, the USB communication can also be used to provide the preview
photos for the control unit, so that they can be sent to the operator. The
other pins could be connected to the GPIO ports of the control unit. This
connection could be used to control the focus and shutter of the camera.
The last thing we mentioned is the feedback confirmation that the photo has
been taken. This information could be obtained from the light shoe of the
camera, which is directly connected to ground by the camera when the photo
is being taken. Using a simple external pull-up, there is generated a falling
edge, which can be delivered to the control unit as an interrupt, in order to
be processed immediately.

The parameters of the camera and the lens determine the proportions of
the flight trajectory. The parameters of the SONY α7RII have the following
values (Table 2.1):

focal length 28mm
image height 5304px
image width 952px
sensor height 24.00mm
sensor width 35.90mm

Table 2.1: Camera parameters

For the trajectory planning, there are two important distances: grid spacing
and trigger distance. The grid spacing is the distance between two successive
line segments, which depends among others on the image width and sensor
width. The trigger distance is the distance between two successive camera
trigger spots and it depends on the image height and sensor height. There
are some other determining inputs for the planning algorithm, which are

9

2. HW solution design
described in the section dealing with the SW components, specifically the
section about the planner itself.

2.3 Autopilot

The autopilot unit, DJI A3[3], is a very powerful autopilot, which has many
interesting features, such as intelligent flight modes, low voltage protection,
motor overload detection, etc. Communication with this unit can be easily
done through the standard TTL serial communication. There is prepared a
very extensive API for this purpose, which can be used to manage the flight
control and read the telemetry data provided by the autopilot unit.

2.4 Drone

The aircraft we use is called DJI Matrice 600, and it is a modern flying
platform designed for professional aerial photography and industrial appli-
cations. It is equipped with powerful DJI technologies, including the A3
flight controller, Lightbridge 2 transmission system, Intelligent Batteries and
Battery Management system, for maximum performance.[3]

The aircraft dimensions are 1668mm x 1518mm x 759mm when fully
expanded and 640mm x 582mm x 623mm when frame arms and GPS mount
folded. The weight of the aircraft along with batteries is about 9.5 kg, and
maximal takeoff weight is 15.1 kg. Important performance parameters are
maximal flight altitude above sea level, which is 2500m, and maximal speed
which is 18 m/s when there it is windless. The hovering time is about 40
min while carrying no payload and about 18 min while carrying about 5.5 kg
payload.

The Matrice 600 supports the DJI GO mobile application and the new brand
DJI Assistant 2, which is a desktop application. The DJI GO application
is designed to be used along with the remote controller, which allows the
operator to communicate with the drone from a very long distance up to 5
km when used in an area, where no obstacles and no disturbances are present.
The DJI Assistant 2 can be used to setup the configuration of the drone, and
it allows the developer to use the built-in flight simulator.

10

Chapter 3

SW solution design

This chapter describes the SW design of the developed system, which is the
operating system and the application running on the control unit. The first
section describes the Yocto project, which is a tool for building custom Linux
distributions. The second section describes the application, which runs on
the control unit during the flight and controls the process of the image data
acquisition. The last section describes the data analyzer, which synthesizes
the data saved during the flight a produces the final output, which is the
geo-tagging file for the captured images.

3.1 Yocto Project

When developing an application, which is supposed to be executed on an
embedded computer, the developer has to give special focus to the operating
system, which always has a crucial influence on the features and performance
of the user program.

The Gumstix computer can run various operating systems. For our purpose,
the best choice is the standard embedded Linux distribution with some minor
modifications. Compilation of such a custom operating system can be done
in the Yocto Project Build System[5].

This build system is an open-source collaboration project, which focuses on

11

3. SW solution design
the development of embedded Linux systems. It uses a build host based on
OpenEmbedded project, which uses BitBake tool to construct complete Linux
images. It provides a development environment for many different architec-
tures like the ARM, MIPS, PowerPC, and x86 and it contains components
and tools used to design, develop, build, debug and simulate any custom
software application. While it has so many features, it is quite difficult to
learn how to use it properly.

The first thing one has to deal with is setting up the host system. The
Yocto Project is designed to be used on Linux distributions like Ubuntu,
Fedora, Debian, etc. The easiest way of getting the Yocto Project working
on a Windows machine is using some virtualization tool to run a Linux
distribution virtually in the Windows environment. I can recommend Virtual
Box for this purpose because this project was developed entirely in the Virtual
Box.

The host system has to fulfill a few application version requirements which
involve getting specific versions of Git, tar, and Python. Except for these,
there are some system packages, which have to be downloaded and installed.
The process of getting the host system into the competent state is quite a
time demanding and it shouldn’t be underestimated.

Learning the basics of how to use the Yocto Project can be comfortably
done by following a Getting started manual, which presents how to build
a custom Linux distribution in a few steps. It starts with downloading the
Yocto Project from a Git repository, continues with the initialization of the
build system and ends with building and simulating of a prepared image.

When it comes to the development of a custom operating system, one has to
start using the Yocto Project Development Manual, which is comprehensive
documentation containing almost everything one has to know to be able
to achieve any goal. On the other hand, it is so extensive, that it is more
time efficient to read only the segments, which are relevant for the particular
project. The manual has quite a clear outline, so it is easy to find answers to
specific questions.

The greatest advantage of the Yocto Project lies in the structuralism. All
the properties of the operating systems are divided into logical groups called
layers. The developer can include these layers to gain access to the features
implemented in each of these layers. When a developer produces a new
program or a function, he can create a new layer to keep his work consistent.
Many layers containing many features are already prepared in the Yocto
Project Git repository, and the development of a custom operating system

12

.................................... 3.1. Yocto Project

consists in the combination of these layers and features together.

The build of the custom image is coordinated by a few configuration files.
There are two main configuration files, which contain the information about
incorporated layers and modules. Then, there is a configuration file in every
layer, which describes, how the specific layer should be compiled. Except
that the developer produces some own application, his job also contains the
maintenance of these configuration files. These files contain a huge amount
of variables, which have to be set correctly to produce the desired result.

When all the modules are ready for compilation, and the configuration
files are prepared, the developer can use the BitBake tool to construct the
image of the operating system. Then, the image can be (using a Bmaptool,
for example) copied to an SD card, which can serve as a bootable flash drive.

For this project, we chose a Gumstix console image, which can be obtained
from the Gumstix Git repository dedicated to the Yocto Project Build sys-
tem [2]. There is also a very detailed step-by-step manual, which helps to
understand, how to setup and build the image.

3.1.1 Event driver

Even though the Git repository of the Yocto Project contains very many
various modules and programs, which can be included in the custom operating
system, the developer often comes across the situation, where he has to
contribute with some own piece of code to achieve the desired behavior of the
operating system. This includes especially the kernel modules, which can be
introduced into the Linux kernel through the Yocto Project very comfortably.

The Gumtix console image contains almost everything we need to get our
application working. The only thing, which was missing in the system, was
GPIO interrupt handler. The GPIO pins can be accessed in user space quite
comfortably. It is possible to export unexported pins, to set their direction to
output or input, and to set and read the value of the pins. But if we wanted
to read the feedback signal coming from the camera this way, we would have
to check the value of the pin in a loop, and it would have a very negative
influence on the performance of the program. This signal should be set up as
an interrupt and should be handled by the operating system instead.

On the Wiki page of the Gumstix, there can be found a kernel module

13

3. SW solution design
called GPIO event driver[10], which was developed right for this purpose.
The module can be used to set up an interrupt any desired GPIO pin along
with the type of edge (rising or falling) and with debounce avoidance time.
The information about the interrupt can be then obtained through a special
system file in the /dev folder.

3.2 DJI software development kit

This section describes the procedure of setting up the connection between the
Gumstix COM[7] and the DJI A3[3] flight controller and running the basic
sample applications provided with the DJI OSDK[4].

3.2.1 DJI OSDK

The DJI SDK is a free software development kit provided for the DJI develop-
ers. There are three different kinds of SDKs, such as On-board SDK, Mobile
SDK and Guidance SDK. All of them provide tools to control the aircraft
along with its payload, which can be used to create custom applications that
fulfil the potential of the aircraft. The On-board SDK and Mobile SDK are
quite similar. They can be used to create a customized application, which
can handle the mission setup, camera control and even the flight control
itself. The difference between them is that the On-board SDK is designed for
Linux computers and connects directly to the flight controller over a serial
interface, while the Mobile SDK is designed for Android and iOS mobile
devices that connect to the aircraft wirelessly through the remote controller.
The Guidance SDK is a bit different. It comes along with a Guidance module,
which is a revolutionary visual sensing system. It consists of a powerful
processing core, visual cameras and ultrasonic sensors, which offers a new
level of safety and confidence in flight. The Guidance SDK was developed
to provide practical access to this module. For our purpose, we chose the
On-board SDK (abbreviated as OSDK), because we develop an embedded
application, which runs directly on the board when the vehicle is in the air.

The OSDK can be obtained in a few different versions to match requirements
of the hosting operating system. Since we use a customized Linux distribution,
we chose the open source C++ library version of the OSDK with support for
Linux, ARM and STM32.

14

............................. 3.2. DJI software development kit

The features, which this SDK provides, are quite extensive. The SDK gives
access to the aircraft telemetry, flight control, camera control, etc. This means
that the developer can use the SDK to attach his own onboard computing
device and use it to control the flight and the payload.

3.2.2 Connection

Contrary to the Mobile SDK, which is designed for mobile devices and
supports wireless connection, the On-board SDK is designed for controllers,
which have to be connected directly to the flight controller over a serial
interface. The flight controller provides a UART serial interface with 3.3 volt
TTL, but the Gumstix COM supports just 1.8 volt TTL. Therefore we had to
introduce a level shifter into this connection. The power supply is secured by
the Gumstix Tobi board since it provides both 1.8V and 3.3V pins. The level
shifter may contribute to the communication by some extra delay, caused by
opening time of the MOSFET transistor, which is about a few nanoseconds.
However, the default baud rate of the communication is 230400, so the delay
of a few nanoseconds is totally insignificant. When using the Tobi board,
one of the UART interfaces can be found on pins 9 (RX) and 10 (TX). This
interface is accessible from the operating system through /dev/ttyO0.

3.2.3 Cross-compilation

The OSDK for Linux operating system is distributed as an open source
C++ library. Except for the core C libraries, it requires pthread library.
Compilation of the library is not complicated when compiled on the device,
where it is used lately. In our case, we don’t want to compile any code
directly on the Gumstix COM, so we need to set up a cross-compilation
environment, where the library could be compiled for a specific processor.
Such an environment for the Gumstix COM can be obtained using the Yocto
Project utilities. The whole process is described in details in the "Cross-
compilation" chapter.

3.2.4 Telemetry sample

The DJI OSDK comes with a few sample applications, which may be in-
strumental in the development of a custom application. There is a simple

15

3. SW solution design
application, which presents the accessibility of the telemetry data of the flight
controller.

The first step of the procedure is a configuration of a so-called subscription.
The application subscribes to some specific topics, which the flight controller
then produces in specified frequencies. The most important topics are the
GPS coordinates, the aircraft attitude, the flight status, etc. Most of the
topics, including the GPS, have the highest possible frequency set to 50Hz.

3.2.5 Mission sample

In contrary to the previous example, which is only reading some information
from the flight controller, the mission sample application presents, how a
sequence of GPS locations, so-called waypoints, can be transformed to a
mission plan, which can be then executed by the aircraft.

When a developer creates such an application, which deals with the control
of the aircraft, he has to have a developer account on developer.dji.com,
where he can obtain unique API key for his application, which he needs to
get the application working. The key is required by the DJI SDK and it
serves as a safety enhancement for the drones, which are used in autonomous
mode. Whenever a drone is launched, it can be uniquely determined, whose
application is responsible for its movement.

The mission plan has some extending settings. There can be set for example
a bend length, which stands for a turn radius and offers an interesting option
for the aircraft to fly the trajectory smoothly, without stopping at each
waypoint. There can be also set a command to be executed in a waypoint,
but this requires that the aircraft stops and hovers in that waypoint. This
utility could be used to take a photo on specified GPS coordinates. If we
wanted to use it to gather image data from a great amount of GPS coordinates,
like the image data acquisition task, the aircraft would spend too much power
to accelerating and decelerating over and over again, so the scannable area
would be significantly smaller. This problem is the main handicap of the
flight controller and the main reason to introduce a shutter unit.

16

.................................. 3.3. Shutter application

3.3 Shutter application

In the following paragraphs, there is the description of the program, which
controls the whole process of the image data acquisition. The input for the
program is the target polygon, parameters of the camera and mapping options
like overlaps and ground resolution. The output of the process is the set of
images along with the GPS coordinates, where they were taken.

3.3.1 Mission planner

Introduction

The first part of the application is the mission planner, which computes
the trajectory composed of so-called waypoints. The trajectory has to be
computed in the way, that the whole input polygon is covered on the gathered
images with specific overlaps.

The general task of planning paths is always a very complex and complicated
challenge demanding a very sophisticated solution. Fortunately, we are not
the first developers to deal with this topic. Our implementation of the planner
builds on two open source planners, which are quite popular among drone
users.

One of them is called MissionPlanner[16] and it is written in C#, which
means we couldn’t use any piece of code directly. The second one is called
QGroundControl[1], and although it is written in C++, it is implemented
using the QT library, which is again impracticable in our application. But
since they are both open source, we could use the code as an inspiration and
implement our own planner.

Inputs

This section explains the inputs for the planner, which are two files describing
the polygon and the parameters of the mission.

17

3. SW solution design
The file describing the polygon has to be named polygon.kml, and it can

be generated using Google Earth. Google Earth is quite a popular software,
which is free to download, and it offers very many practical tools to work with
maps offered by Google. Beside the other common utilities, it allows defining
a polygon using a few map points. Such a polygon can be then exported and
saved as *.kml file, which is directly supported by our application. There
is one requirement, which the developer has to comply when defining the
polygon, namely: the polygon has to be convex.

The second file, describing the parameters of the mission, has to be named
parameters.xml and it is an XML file containing certain values defining
the process of the planning. The file is divided into two parts. The first
part contains parameters of the camera: name, focal length, image height,
image width, sensor height and sensor width. The second part contains the
parameters (the assignment) of the mission: ground resolution, side overlap,
and frontal overlap.

The name of the camera is not required by the algorithm, but it may help
to keep things organized when someone would use more cameras. The focal
length along with the ground resolution determines the altitude, in which the
photos have to be taken. The ground resolution is defined as the number of
square centimeters of the ground projected to one pixel of the photography. It
defines the preciseness of the result. The image height along with the sensor
height and the frontal overlap determines the trigger distance, which is the
distance between two successive photo captures. Vice versa, the image width
along with the sensor width and the side overlap determines the grid spacing,
which is the distance between two successive line segments of the trajectory.

Algorithm initialization

This subsection explains how the developed trajectory planner works. As we
described in the previous subsection, the inputs are: set of GPS coordinates
defining the polygon, parameters of the camera, and requirements for the
resulting photos.

First of all, we need to put the parameters of the camera and the require-
ments for the result together and compute the three determining measures:
altitude, grid spacing, and trigger distance.

The altitude depends on the focal length of the lens, on the ratio between the
image size and sensor size, and on the required ground resolution (measured

18

.................................. 3.3. Shutter application

in cm2/px)[1]. The formula for the altitude is the following:

altitude = img_w × ground_res× foc_l
sen_w × 100 ,

where img_w is the image width (measured in px), sen_w is the sensor width
(measured in mm), ground_res is the ground resolution (measured in cm2/px),
and foc_l is the focal length (measured in mm).
When the aircraft keeps the computed altitude, the grid spacing and trigger
distance can be both computed directly from the image size and ground
resolution:

gridspacing = image_width× ground_resolution
100 ,

trigger_distance = image_height× ground_resolution
100 ,

These values have to be then corrected using the overlaps defined by the user.
The formula for this correction is straightforward:

corrected_value = 100 − overlap

100 × value,

where overlap is the percentage overlap value.

When the parameters are computed, the process can proceed to the next
step, which is an examination of the polygon. The polygon consists of points,
which are defined by their GPS coordinates. Planning the path using ordinary
GPS coordinates would be quite a complicated task. It can be simplified
by introducing NED coordinate system, which is planar, unlike the GPS
coordinate system, which is spherical.

The NED coordinate system (north-east-down) is a coordinate system,
which is also known as the local tangent plane, and its principle lies in
mapping any points from the sphere to a tangent plane. It consists of three
values: one for the position along the northern axis, one for the eastern axis
and one for the vertical position. The vertical position is not used in our
case, because we know the altitude from the previous computations and we
are looking only for the two-dimensional path. Obviously, this coordinate
system needs on origin, whose GPS coordinates are mapped to zero in the
NED coordinate system.

Therefore, before the algorithm starts, all the points defining the polygon
are converted to the NED coordinate system with the origin in the first point
of the polygon.

19

3. SW solution design
Algorithm process

The resulting path is composed of parallel lines with the distance of the
grid spacing. In the first step, we have to determine the direction of these
lines. To introduce some optimality in the algorithm, the direction of these
lines is taken from the direction of the longest border line of the polygon.
This ensures that the trajectory will contain the smallest possible amount of
turnings.

When this direction is computed, the algorithm can start. The algorithm
takes the two points of the longest border line of the polygon as the first line
segment of the path. It chooses the direction along this line randomly. Then,
a new line is constructed. The new line is shifted by the distance of the grid
spacing in the direction perpendicular to the direction of the lines. Then, the
algorithm computes the intersection of this new line with the border lines
of the polygon. The intersection computation produces two points, which
are then added to the resulting path. The order of this points is determined
according to their distance from the last point of the path. This procedure is
repeated until the newly constructed line has no intersection with the polygon.
That means, that the path is done. To be sure, that there is no place left,
the last newly constructed line is added to the path too, while the position of
its boundary points is assumed to be the same as the previous.

The boundary points of these lines then express the resulting path. They
can be turned into so-called waypoints and uploaded to the drone, which can
then follow these waypoints one by one.

Smoothing

We could take the path generated by the explained algorithm, upload it to
the drone, and it would work. However, the flight would not be smooth. The
drone would fly from waypoint to waypoint, and it would have to stop in
each of them. This behavior is undesirable because it would not be very
power efficient as the aircraft would have to accelerate and decelerate in every
waypoint.

Solution to this problem can be found in the settings of the waypoint
mission. The mission can be set in the way, that the aircraft does not have
to stop in the waypoints, it even does not have to fly precisely through the
waypoint, but it can fly only sufficiently near the waypoint. The sufficient

20

.................................. 3.3. Shutter application

distance from the waypoint can be defined for each waypoint differently, and
it is set through so-called bend length, which apparently corresponds to the
turn radius.

With this feature, we can make the trajectory smooth. We set the bend
length for all the waypoints of the elementary path to zero, and then we add
two extra waypoints next to every two points, which form a turning. These
extra points can have the bend length set to the half of the distance between
the two parallel lines to make the aircraft fly along a half circle. The distance
of the two extra points from the polygon was set to three-quarters of the
distance between the parallel lines, in order to let the aircraft stabilize after
the turning maneuver.

After this small modification, the path is completely done, ready to be
uploaded to the drone and executed.

The functionality of the algorithm is shown on the Figure 3.1. There is
a simple four-cornered polygon. The longest side is the upper one, so the
direction of the lines is horizontal, and the path starts in the top right corner.

-120 -100 -80 -60 -40 -20 0 20

x [m]

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

y
 [
m

]

Polygon

Planned trajectory

start

end

Figure 3.1: The output of the planning algorithm

21

3. SW solution design
3.3.2 Shutter handler

The main part of this project is the application, which controls the process
of the image data acquisition. The task can be divided into three subtasks,
which can run concurrently. To accomplish that, we used basic fork()[11]
system call, which is the simplest way of creating multi-process programs in
C.

Calling the fork function, the parent creates a copy of itself. The code
of the program is the same for both processes, and the diversity of their
behavior is done using if clause. The fork function returns the PID of the
child process, so it can be used in the parent process to identify its child
process and terminate it, for example. In the child process, the fork function
returns zero. Using this returned value, the if clause can be constructed, so
the programs can do different tasks.[12]

The central responsibility and the control of the whole operation are held
by the parent process, which was named "Telemetry thread". It is quite an
incorrect notation because the fork function creates a process instead of a
thread, but nowadays multi-threading is used very much, and multi-processing
might be a bit confusing for some developers, so we chose to use the term
thread.

The parent thread gets the telemetry data, controls the execution of the
flight path and instructs the other threads. The other threads have some
minor tasks, which cannot be effectively done by the parent thread. They
are mainly operating the camera. One of them triggers the shutter and the
second one records the feedback signals.

Telemetry thread

The parent thread does the main part of the task. It communicates with the
autopilot and decides when to take the photos. Apart from that, it creates
and controls the other threads.

First of all, the communication between the threads has to be established.
For this purpose, there is a tool called pipeline. A pipeline is created using
the system call pipe. Then, each of the processes gets its end of the pipeline,
which can be used to communicate with the other process.

22

.................................. 3.3. Shutter application

At the beginning of the program, there is the initialization of one pipeline,
which is then used for communication between the parent thread and the
child thread which is controlling the trigger. When the pipe is successfully
initialized, the first fork is called and the "Trigger thread" is created. Then,
there is created and opened a log file for the telemetry data, which is called
"log_telemetry.csv." This file is used to save the telemetry data for further
usage.

After the preparation step is done, the DJI API is initialized. The commu-
nication with the aircraft is established, and the subscription for the telemetry
data is registered. The program subscribes to the GPS data and the attitude
data. The frequency of the data update is set to 50 Hz, which is the maximal
possible for the GPS.

When the subscription is successfully set, the mission planner is started. As
described in the previous section, the input files are loaded, computations are
executed, and the path is defined. Before the path is uploaded to the autopilot,
there are some necessary steps, which has to be done. The maximal allowed
velocity of the flight is computed, to keep the camera trigger frequency lower
than 0.75 Hz. The path is extended by adding the first and the last waypoint
on the coordinates of the start-up of the application in the altitude of 50m, to
avoid any collisions of the aircraft with the surrounding environment. After
that, the waypoints list is uploaded to the autopilot unit and the mission is
started.

During the mission, this thread obtains the data from the autopilot and
saves the data to the log file. However, the main duty of this thread is tracking
the aircraft’s movement within the waypoint mission. The program knows the
coordinates of all the waypoints and also the order in which they are flown
through. Assuming, that after the start, the aircraft is heading to the first
waypoint, the program repeatedly computes the distance to this waypoint,
and when the distance starts to grow, the waypoint has been reached and the
algorithm can proceed to the next waypoint. This way, the program knows
in every moment, what part of the mission is being executed.

The last responsibility of this thread is deciding, when the photos have to
be taken. The photo should be taken on the border of the polygon, which
is right in the waypoint of the mission, and then every time, the aircraft
moves the desired trigger distance. The maximal possible trigger distance is
computed during the planning phase, but it is corrected (lowered) using the
specific length of each line segment along which the photos are being gathered.
The length of the line segment is divided by the maximal trigger distance,
and the result is then rounded up, so we get the number of photos planned
to take along this line. Then the optimal trigger distance is computed by

23

3. SW solution design
dividing the length of the line by the number of photos. The new trigger
distance is never greater than the basic due to the rounding up. When the
aircraft moves this trigger distance, this thread sends a message to the thread,
which controls the trigger, and a photo is captured. This behavior is active
only during the flights along the line segments, where the photos have to be
taken. During the turnings and during the flights from the start-up point to
the polygon and back, the photos are not taken to spare the memory and the
shutter of the camera.

When the mission is over, this thread recognizes that by reaching the
last waypoint. After that, the autopilot executes the command assigned
to the end of the waypoint mission, which is in this case "landing." The
aircraft automatically lands, and the rotors are turned off. The program then
terminates the other threads and proceeds to the last phase, which is called
"Data analysis."

Camera trigger thread

This thread is responsible for controlling the trigger of the camera and writing
a log file containing the timestamps of the triggers.

On the beginning, the program sets the configuration of the GPIO port
144, which is connected to the trigger pin of the camera. The GPIO pin is
exported at first, then the direction is set to output, and its value is initialized
to zero. Then, the control loop starts. The program gets inputs from the
"Telemetry thread" through the pipeline, and when the signal to capture a
photo appears, the GPIO port is set to one for 500ms, and the timestamp
is written to the log file. Then the GPIO port is set back to zero, and the
thread is waiting for another signal.

Camera feedback thread

The last thread is called "Feedback thread" because it deals with the feedback
signal coming from the camera. The signal is registered by the event driver
kernel module[10], and the information about its occurrence along with the
timestamp appears in the /dev/gpio-event file. Since this file is not a regular
file, the information needs to be read, or it is lost. This thread ensures the
blocking read on this file, which means, that the thread reads the file until all
the data is read and then it waits for another data to appear.[14] Whenever

24

.................................... 3.4. Data analyzer

a new interrupt record appears, it writes its timestamp to a specific log file
for the feedback information.

3.4 Data analyzer

The section describes the last part of the program, which is the analysis of
the log files and producing the geo-tagging outputs.

The algorithm for the analysis is divided into three parts. In the first
part, the log file containing the camera trigger timestamps is used. The
timestamps written in this file represent the images, which were attempted to
be taken. This information is used to initialize an array containing structures
representing all these images and the time of the trigger is written to each
one of them.

The second step is deciding, whether and eventually when was each of
the photos taken. This decision is made using the camera feedback log file.
However, not all of the timestamps present in the file are valid. Some cameras
may have a special feature called pre-flash. They use a brief flash before
the main flash. As a consequence of that, we may get each of the interrupts
twice. It is necessary to exclude these duplicities, which is done according to
the difference between the timestamp and the one before. If the difference is
lower than one second, the timestamp is ignored. The camera is not capable
of taking two photos in such a short time interval.
The algorithm of matching the photos with the feedback timestamps is simple.
Every feedback timestamp is assigned to the one image, which has its trigger
timestamp right before this feedback. Practically, the algorithm goes through
the images and checks the timestamps. When the trigger timestamp is greater
than the feedback, the previous picture is the right one.

The last step is dealing with the GPS coordinates of the images. Since the
algorithm knows, when the images were taken, it is very easy to choose the
right record from the telemetry log file and add the right coordinates to the
image. Since the timestamps are never equal, the algorithm takes the two
records, which surround the searched timestamps and linear interpolation of
the coordinates is performed.

When the analysis is done, the geo-tagging script has to be generated.
The process of geo-tagging requires a tool, which is capable of editing the

25

3. SW solution design
metadata of the photos. We chose to use the exiftool[9], which supports very
many file formats and it allows to edit the GPS metadata comfortably.

Since the program does not know the names of the photos, which are
obviously needed by the exiftool, it has to be done without the names, just
following the order of the images. Assuming, that the names of the photos
are generated as a combination of a repeated string and an increasing number
of the photo, it is possible to use this pattern in the script. The script can
be constructed, so it requires only the name of the first photo, and then the
names of the other photos are predicted by increasing the number contained
in the name.

26

Chapter 4

Experimental evaluation

This chapter contains the description of the tests, which were made during
the development. Some of them were only simulated, some of them were done
by in-field experiments.

4.1 Simulations

Simulation is a safe way to try out an application. Every developer makes
mistakes and executing any applications on real hardware in a real environment
is always risky. When developing on the DJI platform, developers can use a
very practical built-in simulator.

4.1.1 DJI Assistant 2

When the developer wants to use the simulator, he needs to download a
desktop application called DJI Assistant 2, which provides among others
the simulation environment. The connection between the aircraft and the
computer is made through the aircraft’s micro USB port. The application
offers much more than just the simulation environment. It is capable of
configuring the aircraft, and it provides a summary of the aircraft’s condition.

27

4. Experimental evaluation
To start the simulation, we have to insert the initial coordinates, which

are passed to the autopilot. The aircraft behaves the same way like it would
behave if it were in the air on the given coordinates. Even various wind
conditions can be simulated. The DJI GO application signals the GPS
coordinates, which we have inserted, and the aircraft can be controlled using
the remote control. On the desktop application, we can start an environment
simulation, which shows the aircraft and its movement and the view is the
same as in reality.

4.1.2 Simulation

The definition of the polygon can be seen in the Figure 4.1. For this simulation,
the factual GPS coordinates are irrelevant. The definition of the polygon
depends only on their relative position. However, the simulation environment
has to be initialized with the start position near to the polygon due to the
geo-fencing mechanism.
The parameters of the mission were set according to the expected application of
the gathered images, which was producing a 3D model using photogrammetry:
overlaps 70% and the ground resolution 1px/cm2.

Figure 4.1: Polygon: Charles Square

28

..................................... 4.1. Simulations

Flight planner and execution test

The first tested functionality is the planner, which should be able to create
a flight plan according to the input parameters. Then, the plan should be
uploaded to the autopilot and executed. In addition, the telemetry data
should be gathered during the flight.

-100 0 100 200 300 400 500

x [m]

-500

-400

-300

-200

-100

0

y
 [

m
]

Polygon

Planned trajectory

Real flight trajectory

Camera trigger locations

Figure 4.2: Trajectories

The process was simulated successfully. The trajectories are depicted on
the Figure 4.2. The aircraft took off, flew through all the waypoints and
landed as desired.

The functionality of the planner, along with the communication between
the application and the autopilot unit, was successfully verified. The logging
of the telemetry data was accomplished too.

Trajectory smoothness test

Another feature of the planner, which has to be verified, is the setting of
the damping parameter, which should allow the autopilot to take smoother

29

4. Experimental evaluation
trajectory and keep the velocity during the turning maneuver higher than
half at least.

The detail of the trajectories can be seen in the Figure 4.3. The evolution
of the velocity through the time can be seen in the Figure 4.4.

95 100 105 110 115 120 125

x [m]

0

5

10

15

20

25

y
 [
m

]

Polygon

Planned trajectory

Real flight trajectory

Figure 4.3: Detail of the trajectories

The Figure 4.3 shows, how the damping parameter of the boundary way-
points affects the resulting trajectory of the flight. The flight direction changes
smoothly. As a consequence of that, the aircraft does not approach the poly-
gon as planned. This is caused by the distance of the extra added waypoints
from the polygon boundary. To decrease the deviation, the distance of the
added points has to be increased.

The Figure 4.4 verifies, that the velocity is during the turning maneuver
decreased from 7 m/s to 4.3 m/s, which fulfills our requirement.

Polygon coverage test

The main functionality, which has to be tested, is the resulting coverage of
the target polygon, which should result from the demanded overlaps.

30

..................................... 4.1. Simulations

0 100 200 300 400 500 600

t [s]

0

1

2

3

4

5

6

7

8
v
 [

m
/s

]

Velocity

Figure 4.4: Development of the velocity

Figure 4.5: Polygon coverage

31

4. Experimental evaluation
In the Figure 4.5, the coverage of the polygon is drawn. The shades of grey

represent how many photos cover the specific area. The darker the area is,
the more photos contain it, whereas each level of the shade adds one photo.
The area covered by a single photo is shown in the bottom right corner.

It is evident, that the overlaps were accomplished. Moreover, due to the
high overlaps of the photos, each point of the polygon is captured on at least
six images. Most of the points are captured on even more images. This result
is significant for the further processing, which is the 3D photogrammetry
modeling, whereas the coverage is considered sufficient when each point is
present at least on five images.

4.2 In-field experiment

When the simulations are successful, we can not proceed to the in-field
experiments. For this purpose, we can use a private area near Bratronice,
which is about 40 km from Prague. The area is a hexagon with the diameter
about 450 meters.

The purpose of the experiment is to verify the functionality and practical
usability of the application. In addition to the tests introduced in the
simulation section, this section also contains some statistics concerning the
camera functionality and response.

4.2.1 Safety

During the experiment, the control over the drone is handled by the control
unit, but it can be anytime retrieved by the operator. Another fail-safe
mechanism concerns the batteries. It is hazardous to fly when the charge level
of the batteries gets under twenty percent. That is one of the most important
limitations of the in-field experiments with drones. The DJI GO application
has a geo-fencing mechanism, which contains, among others, settings for the
highest allowed altitude and highest allowed distance from the operator. The
program has to operate within these limits. Otherwise, its commands are not
executed.

32

.................................. 4.2. In-field experiment

4.2.2 Experiment realization

The realization demanded some practical modifications. The power supply
for the Gumstix COM has to be ensured. It was done using an extra battery
added on board. The communication between the Gumstix and the operator
was made through a portable WiFi access point using ssh. The application
had to be executed in a detached screen, which allows the program to continue
running even when the ssh communication is lost due to the great distance.

4.2.3 Execution

The input polygon can be seen in the Figure 4.6. The parameters of the
mission were set the same as in the simulation: overlaps 70% and 1px/cm2

ground resolution.

Figure 4.6: Polygon: Bratronice

The experiment was executed almost successfully. However, the capacity
of the batteries was insufficient, and the experiment had to be ended earlier.
Fortunately, the omitted part contained only the last line segment, so the
gathered dataset was sufficient.

33

4. Experimental evaluation
4.3 Results and evaluation

The resulting trajectories are depicted in the Figure 4.7. The resulting
coverage of the polygon is shown in the Figure 4.8.

-50 0 50 100 150 200 250 300 350 400 450

x [m]

-350

-300

-250

-200

-150

-100

-50

0

50

100

y
 [

m
]

Polygon

Planned trajectory

Real flight trajectory

Camera trigger locations

Figure 4.7: Trajectories

The following figures describe some obtained statistics of the camera. The
Figure 4.9 contains a histogram of the time intervals between two consecutive
triggers of the camera. A histogram of the response delay of the shutter can
be seen in the Figure 4.10.

The flight trajectory was designed as expected and the resulting photo
coverage of the polygon was more than satisfactory. The camera was triggered
in a frequency lower than 0.75 Hz, which was demanded. The delay of the
shutter was in average about 176 ms. Since the average velocity of the aircraft
was 7 m/s, the shift of the photos was about 1 meter, which is acceptable.

The generated 3D model of the polygon can be seen in the Figure 4.11.

34

................................ 4.3. Results and evaluation

Figure 4.8: Polygon coverage

Figure 4.9: Trigger time interval

35

4. Experimental evaluation

Figure 4.10: Shutter response delay

Figure 4.11: Resulting 3D model

To summarize the results, the application succeeded in the simulation and
also in the in-field experiment so that it can be considered operational.

36

Chapter 5

Conclusion

This chapter contains the evaluation of the whole project, review of objectives
with respect to the final solution and some possibilities for the future work.

5.1 Review of the project

As shown in the evaluation chapter, the results of this project are very
good. The developed application corresponds to the assignment, and the
performance is more than satisfactory. Moreover, the thesis contains detailed
descriptions of all used technologies so that it can serve as a guide for other
developers.

Even though some problems were encountered during the development, the
solutions were always found. For example, when a software feature failed,
then a hardware solution was introduced. Although a lot of work was done
and a lot of documentation was written, there are still some possibilities for
improvement, which are described in the last section of the thesis.

37

5. Conclusion......................................
5.1.1 Review of the objectives

The supreme goal of this project was to develop a system for image data
acquisition. Such a task could be divided into several subtasks, while all of
the subtasks had to be accomplished to obtain a reliable result.

First of all, the documentation of the dedicated devices had to be studied.
The first development phase concerned the build of the specific OS with the
desired configuration of all necessary communication interfaces. The second
development phase concerned the application itself. The application was
composed of several modular parts, such as the mission planner, the flight and
shutter control application, and the data analyzer. When the development
was done, the project continued with the experiments. Most of them were
simulated, but a few tests had to be done in the real environment. Using
the data from the experiments the evaluation was done, and the project was
finalized.

5.1.2 Review of the solution

The solution is a robust and user-friendly tool for image data acquisition,
exactly how it was assigned. Although the process of image data acquisition
was feasible without this tool, it was very complicated and unreliable. The
operator had to use several different tools to prepare and upload the flight
trajectory, the available shutter applications were inaccurate, and the further
data analysis was inefficient.

Using the developed system is very simple. The user can generate the
description of the polygon through the popular GoogleEarth software. Then
he only creates a configuration file containing the parameters of the camera
and parameters of the desired results, and the rest is done by the developed
application. The control unit computes the flight trajectory and executes it,
including the takeoff and the landing. During the flight, it controls the data
gathering, and after the mission is over, it produces the geo-tagging script,
which contains the GPS data to the photos. The user then downloads the
images from the camera and executes the script. Processed images contain
the information about GPS coordinates, where they were taken.

38

..................................... 5.2. Future work

5.2 Future work

Even though the primary goal has been accomplished, there are always
possibilities for improvement.

First of all, the presented tool is capable of using only one camera. There
is a possibility to add two extra cameras to obtain side views, which would
extend the coverage to the sides. This extension would lead to shortening of
the flight distance needed, which would offer to cover a greater area.

Another improvement could be made in the handling of failed photos during
the flight. The presented tool analyzes the photos in an offline mode, which
means after the mission. It is possible to evaluate the information during the
flight, to offer a possibility to deal with the photos, which were not taken as
supposed. The control unit could, for example, change the flight plan and
return to capture the missing photo.

Finally, the tool could also provide some preview photography during the
flight so that the operator could modify the configuration of the camera or
change some other parameters.

The design of the extended solution is presented in the Figure 5.1.

Figure 5.1: Design with the future extensions

39

5. Conclusion......................................
However, these improvements demand extra potion of time and effort,

which is not within the scope of this thesis.

Even so, the contribution if this thesis is not negligible and the presented
tool is ready to be used practically.

40

Bibliography

[1] QGroundControl. http://qgroundcontrol.com/, 2016. Accessed on
2018-04-02.

[2] Ash Charles, Adam Lee, et al. Gumstix Repo Manifests for
the Yocto Project Build System. https://github.com/gumstix/
yocto-manifest, 2017. Accessed on 2018-01-31.

[3] DJI. DJI A3. https://www.dji.com/a3/info#specs. Accessed on
2018-02-11.

[4] DJI. DJI-OSDK. https://developer.dji.com/onboard-sdk/. Ac-
cessed on 2018-05-24.

[5] Linux Foundation. Yocto Project. https://www.yoctoproject.org/.
Accessed on 2018-02-11.

[6] Jeremiah Gertler. U.S. Unmanned Aerial Systems. Congressional Re-
search Service, 2012.

[7] Gumstix. Overo FireSTORM-P COM. https://store.gumstix.com/
coms/overo-coms/overo-firestorm-p-com.html. Accessed on 2018-
02-11.

[8] Gumstix. Tobi. https://store.gumstix.com/tobi.html. Accessed on
2018-02-11.

[9] Phil Harvey. ExifTool. https://www.sno.phy.queensu.ca/~phil/
exiftool/, 2018. Accessed on 2018-05-02.

[10] Dave Hylands. GPIO Event Driver. https://wiki.gumstix.com/index.
php/GPIO_Event_Driver, 2010. Accessed on 2018-03-31.

41

http://qgroundcontrol.com/
https://github.com/gumstix/yocto-manifest
https://github.com/gumstix/yocto-manifest
https://www.dji.com/a3/info#specs
https://developer.dji.com/onboard-sdk/
https://www.yoctoproject.org/
https://store.gumstix.com/coms/overo-coms/overo-firestorm-p-com.html
https://store.gumstix.com/coms/overo-coms/overo-firestorm-p-com.html
https://store.gumstix.com/tobi.html
https://www.sno.phy.queensu.ca/~phil/exiftool/
https://www.sno.phy.queensu.ca/~phil/exiftool/
https://wiki.gumstix.com/index.php/GPIO_Event_Driver
https://wiki.gumstix.com/index.php/GPIO_Event_Driver

Bibliography
[11] Michael Kerrisk. Linux Programmer’s Manual. http://man7.org/

linux/man-pages/man2/fork.2.html, 2016. Accessed on 2018-04-15.

[12] Edward Ashford Lee and Sanjit A. Seshia. Introduction to embedded
systems: A cyber-physical systems approach. MIT Press, 2016.

[13] Xin Li and Lian Yang. Design and Implementation of UAV Intelligent
Aerial Photography System. 4th International Conference on Intelligent
Human-Machine Systems and Cybernetics, 2012.

[14] Peter Marwedel. Embedded system design. Vol. 1. New York: Springer,
2006.

[15] SONY. Sony α7RII. https://www.sony.co.uk/electronics/
interchangeable-lens-cameras/ilce-7rm2. Accessed on 2018-02-11.

[16] ArduPilot Dev Team. Mission Planner. http://ardupilot.org/
planner/, 2016. Accessed on 2018-04-02.

42

http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
https://www.sony.co.uk/electronics/interchangeable-lens-cameras/ilce-7rm2
https://www.sony.co.uk/electronics/interchangeable-lens-cameras/ilce-7rm2
http://ardupilot.org/planner/
http://ardupilot.org/planner/

	Introduction
	Goal description
	Thesis overview

	HW solution design
	Control unit
	Camera
	Autopilot
	Drone

	SW solution design
	Yocto Project
	Event driver

	DJI software development kit
	DJI OSDK
	Connection
	Cross-compilation
	Telemetry sample
	Mission sample

	Shutter application
	Mission planner
	Shutter handler

	Data analyzer

	Experimental evaluation
	Simulations
	DJI Assistant 2
	Simulation

	In-field experiment
	Safety
	Experiment realization
	Execution

	Results and evaluation

	Conclusion
	Review of the project
	Review of the objectives
	Review of the solution

	Future work

	Bibliography

