
 

CZECH  TECHNICAL  UNIVERSITY  IN  PRAGUE 

FACULTY  OF  ELECTRICAL  ENGINEERING 

 
 

 
 

 

DIPLOMA THESIS 

 

 

Scheduling and Visualization of 

Manufacturing Processes 
 

 

 

 

 

 

 

Prague, 2008                Author: Roman Čapek 

 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Diploma Thesis  CTU in Prague, 2008 

iii 

 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

iv 



Diploma Thesis  CTU in Prague, 2008 

v 

 
 

 
 

 

 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

vi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Diploma Thesis  CTU in Prague, 2008 

vii 

 

 

 

 

 

 

 

 

 

 

 

 

Thanks 
 

I would like to thank everbody who helped me either directly or indirectly during the 

work on this thesis. Especially to Ing. Přemysl Šůcha Ph.D., my supervisor, who has always 

given me advice willingly, sometimes even over the frame of his duties, and helped me with 

the work flow and the finalization of the thesis. Furthemore, I would like to thank to Doc. Dr. 

Ing. Zdeněk Hanzálek for his expert advices and also to my parents who support me during 

my entire study. 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

viii 

 



Diploma Thesis  CTU in Prague, 2008 

ix 

Annotation 
This work involves results achieved in two parts of the scheduling area. A research in 

the scheduling with more alternative process plans is described in the first place. We suggest 

to represent this problem using the Petri nets formalism and we offer data structures and 

methods suitable for this problem. For this data representation, an algorithm based on Integer 

Linear Programming (ILP) is proposed and tested on randomly-generated data. Second part of 

this thesis is dedicated to description of utilization of the simulation and visualization in 

scheduling. Implementation of VISIS (VIsualization and SImulation in Scheduling), a tool for 

the simulation and visualization,  is described and case studies and examples are presented. 

 

Anotace 
Tato diplomová práce je věnována popisu výsledků dosažených ve dvou částech teorie 

rozvrhování. Prvním řešeným problémem je rozvrhování s více alternativními výrobními 

plány. V práci je zahrnut výzkum navazující na již existující práce v oblasti alternativního 

rozvrhování a pro zadání struktury problému je využita notace Petriho sítí. Pro takto popsaný 

problém je navržen algoritmus založený na celočíselném lineárním programování.  Navržené 

řešení je otestováno na náhodně generovaných instancích problému s alternativními 

výrobními plány. Druhá část této práce je potom věnována popisu využití vizualizace a 

simulace v oblasti rozvrhování. Práce rovněž obsahuje popis implementace nového nástroje 

pro vizualizaci a simulaci nazvaného VISIS (VIsualization and SImulation in Scheduling) a 

několik ukázkových příkladů vytvořených pomocí tohoto nástroje. 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

x 

 

 



Diploma Thesis  CTU in Prague, 2008 

xi 

Content 
 

Annotation ................................................................................................... ix 

Content ........................................................................................................ xi 

List of Figures ........................................................................................... xiv 

1. Introduction.......................................................................................... 1 

1.1. The Visualization in Scheduling ....................................................................1 

1.2. Scheduling and the Simulation.......................................................................2 

1.3. Optional Scheduling Motivation ....................................................................3 

1.4. Contribution....................................................................................................4 
1.4.1. VISIS Application ............................................................................................................. 4 
1.4.2. Related Works for the Visualization and Simulation ........................................................ 5 
1.4.3. Algorithm for the Optional Scheduling Problem .............................................................. 6 
1.4.4. Related Works for the Optional Scheduling Problem ....................................................... 6 

1.5. Paper Organization .........................................................................................8 

2. Problem Description ............................................................................ 9 

2.1. Scheduling Theory..........................................................................................9 
2.1.1. Definition of the Fundamental Scheduling Objects......................................................... 10 

2.2. Examples of Scheduling Problems...............................................................11 
2.2.1. Gantt Chart ...................................................................................................................... 13 
2.2.2. The Hoist Scheduling Problem........................................................................................ 14 

2.3. Optional Scheduling Problem Statement......................................................15 

3. Optional Scheduling Problem Representation................................... 16 

3.1. Modified Temporal Network - XOR Graph.................................................16 

3.2. Petri Nets in Optional Scheduling ................................................................18 
3.2.1. Petri Nets Basics.............................................................................................................. 18 
3.2.2. Conversion of XOR Graph to Petri Net .......................................................................... 21 

4. Algorithm for the Optional Scheduling Problem............................... 24 

4.1. Definition of Parameters and Variables........................................................24 

4.2. Integer Linear Programming Formulation....................................................26 
4.2.1. One Processor.................................................................................................................. 26 
4.2.2. Infinite Amount of Identical Parallel Processors............................................................. 28 
4.2.3. Dedicated Processors....................................................................................................... 28 

5. Utilization of the Simulation and Visualization ................................ 29 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

xii 

5.1. Application of the Simulation...................................................................... 29 

5.2. Application of the Visualization .................................................................. 32 

6. Implementation of VISIS ...................................................................35 

6.1. Implemented Functions................................................................................ 35 

6.2. Simulink Model Description........................................................................ 40 

6.3. Task Representation..................................................................................... 44 

6.4. Virtual Reality Toolbox ............................................................................... 44 

7. Case Studies .......................................................................................46 

7.1. Performance Measures for the Optional Scheduling Problem..................... 46 

7.2. Simulation with VISIS................................................................................. 48 

7.3. Visualization with VISIS ............................................................................. 50 

7.4. Profiler Results............................................................................................. 53 

8. Conclusions ........................................................................................55 

References ..................................................................................................57 

A. User Manual ..........................................................................................I 

A.1. Simulation by Simpler Substitution of TrueTime Library.............................. I 

A.2. Visualization with User-defined Virtual Reality ......................................... III 

A.3. Definition of Commands for Tasks................................................................V 

 



Diploma Thesis  CTU in Prague, 2008 

xiii 

 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

xiv 

List of Figures 
 

Figure  2.1 - maxCid~,ir1  problem ................................................................................ 12 

Figure  2.2 - Precedence constraints ............................................................................... 12 

Figure  2.3 - Scheduled problem maxCid~,ir1 .............................................................. 13 

Figure  2.4 - Scheduled problem maxLprecP2 .............................................................. 13 

Figure  2.5 - Hoist scheduling Gantt chart...................................................................... 14 

Figure  2.6 - Hoist scheduling special chart ................................................................... 14 

Figure  3.1 - Alternative process plans ........................................................................... 16 

Figure  3.2 - XOR graph................................................................................................. 18 

Figure  3.3 - Example of Petri net .................................................................................. 19 

Figure  3.4 - Choice representation in PN ...................................................................... 20 

Figure  3.5 - Parallel process plans in PN....................................................................... 20 

Figure  3.6 - Incorrect PN............................................................................................... 21 

Figure  3.7 - PN for the optional scheduling problem.................................................... 22 

Figure  5.1 - Precedence constraints for DSVF filter ..................................................... 30 

Figure  5.2 - Tasks execution.......................................................................................... 31 

Figure  5.3 - Result of the simulation ............................................................................. 31 

Figure  5.4 - MPC control............................................................................................... 32 

Figure  5.5 - Hoist scheduling problem .......................................................................... 33 

Figure  5.6 - Example of process flows .......................................................................... 34 

Figure  6.1 - S-Function dialog box................................................................................ 41 



Diploma Thesis  CTU in Prague, 2008 

xv 

Figure  6.2 - Subsystem with S-Function block..............................................................42 

Figure  6.3 - Mask of the subsystem ...............................................................................43 

Figure  6.4 - Simulink model with VR block..................................................................43 

Figure  7.1 - Mean solving time ......................................................................................47 

Figure  7.2 - Mean memory used ....................................................................................47 

Figure  7.3 - Ratio of the solved instances in time..........................................................48 

Figure  7.4 - Simulink model of DSVF...........................................................................49 

Figure  7.5 - DSVF simulation signals............................................................................50 

Figure  7.6 - Virtual reality for the Hoist scheduling......................................................51 

Figure  7.7 - Progress of the visualization.......................................................................51 

Figure  7.8 - Visualization of the workshop....................................................................52 

Figure  7.9 - Motivation example....................................................................................53 

Figure  A.1 - Generated Simulink model ........................................................................IV 

 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

xvi 



Diploma Thesis  CTU in Prague, 2008 

1 

Chapter 1 

1. Introduction 

1.1. The Visualization in Scheduling 

Scheduling theory plays important role in optimization of resources that is used in 

many manufacturing and service industries. Many optimal and heuristic algorithms have been 

proposed for the scheduling area, but there is a growing demand for transparent and realistic 

representation of results in scheduling. The objective of the visualization is to bring these 

theoretical results near to non-experts in scheduling theory. Especially production scheduling 

and planning needs to be represented in the transparent form. 

 

Visualization is a technique for creating images, diagrams or animations for graphical 

representation of real systems. It has expanding applications in science, education, 

engineering (e.g. production scheduling visualization), interactive multimedia, medicine, etc. 

Nowadays, the visualization is used for graphic representation of theoretical background in 

the first place. This representation needs to be as precise real world approximation as it is 

possible. Therefore, visualization should be designed for concrete instance of problem instead 

of representing similar problems by one predefined template. The best way to keep these 

demands is to bind established scheduling notation with user-defined virtual world definition. 

 

Not only in relation with scheduling graphic representation can be used. Another area 

with wide use of the visualization is presentation of projects, their results and motivation 

examples. Transparent presentation of a final solution of any problem is very important. We 

can say almost as important as the solution itself. Also motivating students and their approach 

to new areas of study can be supported by the visualization. 

 

We can consider three basic areas of the visualization use:  

1) As a feedback for creating a time schedule. 

2) For graphic representation of already scheduled problems, e.g. for production 

scheduling. 

3) For demonstrational purposes, e.g. a final solution presentation. 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

2 

1.2. Scheduling and the Simulation 

The simulation is used in many contexts, including the modeling of natural systems or 

human systems in order to gain insight into their functioning. Other contexts include 

simulation of technology for performance optimization, safety engineering, testing, training 

and education. Simulation can be used to show the eventual real effects of alternative 

conditions and courses of action. Whereas visualization has main purpose in the presentation 

of scheduling results, simulation can serve as an optimization tool. We can use simulation not 

only in creating time schedules but also for optimizing system design, e.g. in digital 

processing. In both cases, simulation can be used for cyclic optimization via modification of 

some parameters by recalculation with acquired data or simply by estimation. In comparison 

with simulation using hardware, less time is needed for a programme realization of the same 

problem. Design of digital filters can be mentioned as a suitable example. 

 

Easier modification of whole system is also one of the advantages of the computer 

simulation. In analog version, some parameters of hardware elements can be changed to 

modify function of the system. This change may not guarantee needed precision of new value; 

on the other hand, change of parameters in digital version is exactly defined and changes can 

be repeated infinitely. Consequently, we can say that computer simulation is less vulnerable to 

errors caused by inaccuracy of the project implementation. 

 

Consequently, we can describe basic areas of computer simulation usage: 

1) As an optimization tool for improving time schedules. 

2) For determining the influence of given schedule to whole system function. 

3) As an approximation of the real system and its function before hardware 

implementation. 

 

Points 2) and 3) are very closely related to design of digital signal processing units, 

especially for digital filters. Usage of computer simulation there leads to high reduction of 

time needed to their design. 

 



Diploma Thesis  CTU in Prague, 2008 

3 

1.3. Optional Scheduling Motivation 

Scheduling theory itself assumes exactly given set of tasks to be scheduled. This means 

that each given task is present in the final schedule, only start time and processor has to be 

assigned for each task. Nevertheless, there is at least one situation when classic conception of 

tasks is not sufficient: problem with alternative process plans. In related works, there are also 

used terms alternative (or optional) tasks, activities and routings [1], [2], [3], [4], [5]. In this 

work, it will be referred as the optional scheduling problem or as the problem with alternative 

process plans. Not only for production scheduling can this situation occur, but production 

scheduling is the most significant example from real world applications. Let us consider 

situation when there are more alternative routes to satisfy all demands and constraints and 

each route is formed by different set of tasks. Then not all of initial tasks will be present in the 

final schedule. We can say that presence of each task in the final solution is only optional, so 

the solving algorithm has to be able to choose and schedule only subset of tasks instead of 

creating schedule from all of them. Presence of precedence constraints between tasks results 

from the principle of the optional scheduling problem.  

 

As mentioned above, this situation occurs mainly in production scheduling because 

there are usually more ways how to complete the product. For example, to repair a television 

one expert worker or two less skilled workers are needed. First alternative for chief of the 

workshop is to assign television repair to one skilled worker who needs about 2 hours to 

complete the work and second alternative is to commit it to two workers who need about 3 

hours to do the same work. Each worker can use two different analyzer units where time to 

finish the repair also differs and these analyzer units can represent shared resources for all 

workers. All these facts lead to more than one way how to complete the set of demands under 

fixed constraints. Much more examples of this problem could be mentioned. 

 

In fact, the optional scheduling problem is a combination of scheduling and planning 

areas. Planning consists of sequencing of operations to one integrated manufacturing plan. 

Only the operation itself is considered in the phase of creating the production plan 

independently on its real processing time and resource requirements. Precedence constraints 

are defined during the planning. Scheduling deals with tasks specifications like processing 

times, resource demands and precedence constraints. The goal of the scheduling phase is to 

create a time schedule optimizing some criterion while respecting all constraints. 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

4 

1.4. Contribution 

This diploma thesis presents results in two areas of scheduling theory [6]. One part 

contains description of the new tool for representation of scheduling results via the simulation 

and visualization. Second part is dedicated to an optional scheduling problem, its description, 

data representation and an optimal algorithm for solving of this problem is proposed. 

1.4.1. VISIS Application 

First goal of this diploma thesis is to present an application for demonstration of 

scheduling results in the Matlab environment (http://www.mathworks.com/) : VISIS 

(VIsualization and SImulation in Scheduling). This application uses the Matlab-based 

simulation environment Simulink and the Virtual Reality toolbox for the graphic 

visualization. Two areas of usage are considered: simulation for monitoring of the influence 

of the scheduling process on the system function (e.g. for digital filters) and time visualization 

(e.g. graphic representation of the execution on a production line in time). This tool will be 

freely available in the next version of TORSCHE Scheduling Toolbox for Matlab 

(http://rtime.felk.cvut.cz/scheduling-toolbox/) planed on October 2008. Up to our knowledge 

there is no such a tool providing visualization of scheduled processes in this range. 

 

VISIS is able to simulate or visualize any time schedule given by TORSCHE data 

structures. The application is adjusted to maximize user comfort and simplicity of usage. 

Therefore, most of data and files needed for the simulation and visualization are created 

automatically and the structure of the code that defines activities is checked before the start of 

simulation in Simulink. Virtual reality world is fully user-defined so it can satisfy all 

appearance demands. In addition, parameters that can be changed via control code are defined 

by user of the application. Visualization can be realized in 2D or 3D world. Some examples 

were created as an illustration of the VISIS potential. All data history can be saved to later 

analysis and more, Virtual Reality toolbox used for visualization provides possibility to 

capture any frame or record runtime as a video file. Simulink allows stopping and restarting 

the simulation in any time and it is also possible to change some parameters during the 

simulation. 

 

VISIS is designed to provide transparent representation of scheduling results in the first 

place but it can be also used for optimization purposes. Especially simulation using VISIS can 



Diploma Thesis  CTU in Prague, 2008 

5 

serve as a fast feedback to acquired schedule and it can contemporaneously show function of 

whole simulated system. This can be great help for solving problems with assigning 

computing operations for multiprocessor systems and also for designing digital processing 

units at all. 

1.4.2. Related Works for the Visualization and Simulation 

This work comes up from TORSCHE Scheduling Toolbox for Matlab [7], which 

provides data structures and algorithms for time scheduling. Thus, all work is realized in the 

Matlab environment. One of the related tools is TrueTime [8] - a Matlab based tool for real-

time simulation for wide spectrum of problems, e.g. digital filters, embedded systems or 

wireless networks. TrueTime is very strong simulation tool but utilization for small problems 

is quite difficult and especially for scheduling results simulation it is unnecessarily 

sophisticated solution. Fishman [9] made a comprehensive review of Discrete Event 

Simulation (DES) which is a system represented by sequence of disjunctive events. Each 

event occurs at an instant time and leads to change in the system state while there are not 

continuous states. Therefore, DES systems are very closely related to the simulation of 

scheduling results because each task is one discrete event, although it can contain more 

operations. But only the beginning and the end of each task is important for the simulation of 

a time schedule. Optimization using simulation is also described in this book. Another 

utilization of simulation-based optimization in real production was shortly described by 

Manlig and Sramek [10]. An alternative for purely sequential discrete event simulation was 

proposed by Misra [11]. This survey is dedicated to distributing of DES to more cooperating 

processors what may provide better performance of simulation. Utilization of simulation for 

production scheduling was discussed by Toal, Coffey and Smith [12], including also expert 

systems utilization.  

 

For visualization purposes, OpenGL (Open Graphics Library) (http://www.opengl.org/) 

is a standard specification defining a cross-platform API for writing applications that produce 

2D and 3D computer graphics. This means that visualization can be realized by OpenGL at 

any operation system. The visualization in scheduling was studied at Karlsruhe University 

[13] and some application for visualization of process scheduling has been developed there. 

This tool has predefined template where up to 8 processes (tasks) with some attributes and up 

to 4 processors can be defined. Time schedule is then represented by showing state of all tasks 

and processors in time. On the other hand, Matlab includes Virtual Reality toolbox, which is 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

6 

also sufficient tool for visualization of scheduling results. More tools can be mentioned but 

none of them provides visualization in close relations with user-defined time schedules. 

 

1.4.3. Algorithm for the Optional Scheduling Problem 

Second part of this thesis is dedicated to description of the new scheduling algorithm 

for the problem with alternative process plans. This involves not only realization of algorithm 

itself but also input data representation and a specification of the problem types that can be 

solved. Scheduling algorithm is based on Integer Linear Programming (ILP) [14] and is 

implemented in the Matlab environment using additional ILP solver. The formalism of Petri 

nets [15] in combination with TORSCHE toolbox structures and algorithms is used for input 

problem setting and solving. 

 

Solution for a certain area of scheduling problems, including case with alternative 

process plans and minimizing Cmax criterion in the first place, was implemented. Moreover, 

ILP algorithm is able to solve problems with given processing times, release times, deadlines 

and precedence constraints for tasks while one processor, dedicated processors or infinite 

amount of identical processors are available. We can say that each problem denoted by 

maxiii CdrpPDP1 |~,,|},,{  [6] that can be interpreted via Petri nets is solvable. The proposed 

solution can be easily modified to optimizing another criterion that can be described as a 

linear combination of tasks start times and processing times. 

 

Definition of the problem structure using PN notation allows easy modification of the 

created project via simple graphic interface. Output of the application is the standard 

TORSCHE toolbox structure taskset with the included time schedule that can be depicted as a 

Gantt chart [6]. It is also possible to use VISIS application to visualize or simulate acquired 

solution. 

 

1.4.4. Related Works for the Optional Scheduling Problem 

There were some attempts to deal with the optional scheduling problem but no one in 

the same form as described in this work. Bartak [1] proposed edge-finding algorithm for 

scheduling with optional activities (tasks) with unary resource. This algorithm is able to solve 



Diploma Thesis  CTU in Prague, 2008 

7 

the problem with given processing time, earliest possible start time (release time) and latest 

possible completion time (deadline) for each task. The function of the algorithm is based on 

tightening the time bounds for tasks and their progressive elimination from the initial set of 

tasks. Beck and Fox [2] formulated a constraint-based representation of optional activities to 

model problems containing alternatives in scheduling. They begin with listing of all possible 

scheduling alternatives and then they connect these different ways into one temporal graph 

with so-called XOR nodes. Each of the XOR nodes represents one branching to more 

alternatives where decision has to be made. Beck and Fox assign each task with probability of 

existence (PEX) value, bounded within interval 1,0 . Rules for propagation of these values 

through the graph are then defined and rules for connection of graph nodes are also described. 

Exact working algorithms and some heuristics are proposed for solution of problems set by 

this graph. This representation by the graph with established XOR nodes is in very close 

relation with Petri nets formalism used in this diploma thesis. Wilhelm [16] proposed column 

model represented by state transition graph to deal with assembly system design problem with 

tool changes. Each node in the graph represents one station with single operation assigned and 

determined time needed for this operation. Algorithm for solution of this problem is then 

based on finding the shortest path through the graph respecting given constraints. Helimann 

[17] established model for project scheduling with multi-mode resources where each activity 

can be realized on more than one resource while processing times and also minimum and 

maximum time lags for other tasks differ. Solution is set on branch and bound method with 

depth-first search.  

 

Utilization of Petri nets in scheduling area was described by Tuncel and Bayhan in 

[18]. They discuss application of Petri nets in production scheduling and then they describe 

combination of PN formalism with search algorithms, heuristics, meta-heuristics and 

mathematical based algorithms like linear programming for minimizing the cycle time of the 

system. Algorithm for minimizing total tardiness in a flexible manufacturing system based on 

Petri nets formalism was proposed by Mejia and Montoya [19]. They use transitions to 

represent events (tasks) and places to represent states, conditions and machines (processors). 

This approach is very close to the problem representation described in this thesis except the 

processors representation. Solution of the problem is based on state equations of the system 

and a heuristic search algorithm is also described.  



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

8 

1.5. Paper Organization 

The paper is divided into eight chapters. First chapter presents motivation of this thesis and its 

contribution in two areas: simulation and visualization of scheduling results in the first place 

and optional scheduling as second. Related works are also described there. Chapter 2 provides 

basic scheduling theory description, then some examples of scheduling problems are 

described and representation of their results is discussed. Statement of the optional scheduling 

problem is provided at the end of this section. Next chapter is dedicated to description of the 

optional scheduling problem representation and its relation to Petri nets formalism. Chapter 4 

describes Integer Linear Programming formulation for the optional scheduling problem. 

Chapter 5 describes areas of utilization of both visualization and simulation tools. Following 

chapter is dedicated to description of implementation of VISIS application in Matlab, its 

relation to TORSCHE toolbox and short description of created functions and other files. 

Chapter 7 presents experiments, case studies and examples for both parts of this diploma 

thesis. Last chapter contains conclusions of this work, contribution to scheduling area and 

future utilization of VISIS application and the optional scheduling algorithm. 



Diploma Thesis  CTU in Prague, 2008 

9 

Chapter 2 

2. Problem Description 

2.1. Scheduling Theory 

Scheduling is an optimization of resources usage with given constraints in time. In 

other words, scheduling solves the problem how to assign given resources to given tasks in 

time. Scheduling problems are characterized by three basic sets [6]: 

1) Set of tasks - { }nTT ,,1 K=T  

2) Set of processors (machines) - { }mPPP ,,1 K=  

3) Set of additional resources - { }sRRR ,,1 K=  

Tasks are determined by several numerical parameters, e.g. processing time. There are two 

general constraints: each task can be processed by at most one processor at a time and each 

processor is able to process at most one task at a time. Set of processors P determines amount 

and type of processors that can be used. Resources needed for execution of tasks, which are 

not included in set P, are represented by the set of additional resources R. For deterministic 

problems, α|β|γ notation was established [6], [20]. The first field α describes available 

resources (processors), β represents tasks and resources characteristics and γ denotes an 

optimality criterion. Detailed description is below. Many algorithms were proposed for 

solution of problems described by this notation.  

 

Generally, scheduling is NP-hard problem. Polynomial algorithms are known only for 

the limited amount of scheduling problems, especially for problems with only one processor. 

For the rest of the problems, solving time needed to find optimal solution is exponentially 

proportional to size of the input problem. Algorithms can be based on searching techniques 

like branch and bound method, on constraint programming [21] or on integer linear 

programming [14]. Other way is to use some polynomial heuristic method but without 

assurance of optimal solution.  

 

Production scheduling is a branch of scheduling mostly aimed to automated production 

lines and industrial production at all [22]. Almost all cases of production scheduling are NP-

hard problems. 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

10 

2.1.1. Definition of the Fundamental Scheduling Objects 

There are some essential notions from scheduling theory used in this work: 

 

Task - Basic scheduling object, referred to as Ti. 

- Represents one concrete real world operation. 

- Each task has its own execution time called processing time pi. 

- May have some additional properties: 

• Release time ri, which is the time at which Ti is ready for processing. 

• Due date di, which is the time limit by which Ti should be completed. 

• Deadline id~ , which is a time limit by which Ti must be completed. 

• Weight wi, which represents relative urgency of task Ti. 

• Resource specification: on which resource has to be Ti processed. 

- Scheduled task has its own start time si and completion time ci in the schedule. 

 

All parameters pi, ri, di, id~  and wi are supposed to be positive integers.  

 

Taskset - Set of tasks Ti, referred to as T. 

- All tasks have the same resource environment. 

 

Job - Set of tasks Ti, referred to as J. 

- Each task has its own resource specification - dedicated processors problem. 

 

Problem - Description of tasks, resources and constraints. 

 - Established α|β|γ notation was described by Blazewicz [6]. 

• α characterizes the type and amount of processors used: 

Ø - one processor. 

P - identical processors. 

Q - uniform processors. 

R  - unrelated processors. 

PD - dedicated processors, definition proposed by Kellerer and 

Strusevich [23]. 

O - dedicated processors, open shop system. 

F - dedicated processors, flow shop system. 



Diploma Thesis  CTU in Prague, 2008 

11 

J - dedicated processors, jobshop system. 

k - number of processors; integer value, written after type. 

• β describes tasks and resources characteristics: 

pmtn  - preemption allowed. 

prec  - precedence constraints between tasks exists. 

pi, ri, di, id~  - detailed description of processing times, release times, 

due dates and deadlines. 

• γ denotes the optimality criterion; some of the most used criterions: 

Cmax  - minimizing of the latest completion time. Represents 

throughput of the system. 

∑ ⋅ ii wC  - minimizing of the weighted sum of completion times. 

∑ iU  - minimizing of the number of delayed tasks. 

Lmax  - minimizing of the largest Li value, where iii dcL −= . 

 

Schedule - Result of the scheduling. 

 - Describes allocation of tasks to resources in time. 

 - Mostly represented by Gantt chart [6] with time on x-axis and resource on y-axis. 

 

2.2. Examples of Scheduling Problems 

In this subsection, some examples of the scheduling problems are shown. 

 

maxii Cd,r1 ~  - problem with one processor, given processing times, release times and 

deadlines for tasks. Optimality criterion is to minimize the latest completion time. Let us have 

a set of four tasks, determined by the vector of processing times ]2,2,1,2[=p , the vector of 

release times ]0,1,1,4[=r  and the vector of deadlines ]4,6,5,7[~
=d . Graphical 

representation of this problem via modified Gantt chart is shown in Figure 2.1. This picture 

was acquired using TORSCHE toolbox. Each task has its own processing time (width of 

appropriate rectangle area), release time (arrow aiming up) and deadline (arrow aiming 

down). 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

12 

0 1 2 3 4 5 6 7 8

Task 4

Task 3

Task 2

Task 1

t

Input set of tasks

 

Figure  2.1 - maxCid,ir1 ~  problem 

 

maxLprecP2  - problem with two identical parallel processors, given processing times, due 

dates and defined precedence constraints between tasks. Presence of due date values is not 

involved in problem definition, but it is a logical consequence of the criterion Lmax, which is 

subject to due dates. Optimality criterion is to minimize the largest Li, where iii dcL −= . 

Value Lmax can be also negative - in the situation when all tasks are completed before their due 

dates. Precedence constraints can be defined by the task-on-node graph [6], shown in 

Figure 2.2. Each node of this graph represents one task and each edge denotes a precedence 

constraint between appropriate tasks. 

 
Figure  2.2 - Precedence constraints 



Diploma Thesis  CTU in Prague, 2008 

13 

2.2.1. Gantt Chart 

As mentioned above, the most used representation of time schedules is Gantt chart. All 

task parameters and precedence constraints can be displayed in one chart. There are discrete 

time values on x-axis and description of processors on y-axis. Each start time of the task is 

represented by shift of appropriate task position along x-axis and assignment of the task to 

processor is determined by position on y-axis. Let us take an example of max
~1 Cd,r ii  

problem from the previous subsection. Gantt chart resulting from the scheduling process, for 

example using branch and bound method, is shown in Figure 2.3. 

0 1 2 3 4 5 6 7 8

Processor1

t

Scheduled tasks

T1T2 T3T4

 

Figure  2.3 - Scheduled problem maxCid,ir1 ~  

 

Problem max2 LprecP  from the previous subsection is taken as an example of multi-

processor Gantt chart. Taskset characteristics: set of processing times ]3,3,3,2,2,2[=p  and 

set of due dates ]3,4,6,8,5,3[=d . Resulting schedule with precedence constraints taken from 

Figure 2.2 is displayed in Figure 2.4. 

0 2 4 6 8 10

Processor2

Processor1

t

Scheduled tasks

T1

T2

T3T4T5

T6

 
Figure  2.4 - Scheduled problem maxLprecP2  

 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

14 

2.2.2. The Hoist Scheduling Problem 

The hoist scheduling problem [24], [25] deals with the problem how to schedule the 

hoist moves to perform the material handling tasks in the system. The most frequent used 

optimality criterion is Cmax value because it represents throughput of the system. In the hoist 

scheduling problem, each task represents one move of the hoist with the material. The 

material has to be processed in several tanks with liquid and the time needed for processing in 

every tank is determined by its minimum and maximum value. In addition, all empty hoist 

moves have to be taken into account for the scheduling. Result of scheduling depicted by 

Gantt chart is shown in Figure 2.5 and representation by a special chart for the hoist 

scheduling problem is shown in Figure 2.6. 

0 50 100 150 200 250

Hoist 1

t

T1 T2T3 T4 T5

 
Figure  2.5 - Hoist scheduling Gantt chart 

 

0 50 100 150 200
0

1

2

3

t

ta
nk

s

T = 209

0

36 107

14351

87 158

209

51

107

158

71

117

71

0

 
Figure  2.6 - Hoist scheduling special chart 

 

Special chart for the hoist scheduling problem gives better idea of the acquired result, 

although understanding is quite difficult for the first time. Red solid lines in Figure 2.6 

represent moves of the hoist with the material, red dashed lines depict empty hoist moves and 

blue lines represent temporary stays of the material in tanks. Labels of tanks are on y-axis and 

discrete time is on x-axis.  



Diploma Thesis  CTU in Prague, 2008 

15 

2.3. Optional Scheduling Problem Statement 

In contrast to classic conception of tasks described in the previous section, optional 

scheduling problem is a problem that involves different approach for solving. More possible 

process plans are defined and only one of them has to be chosen. Process plan is a sequence 

of tasks that satisfies all input demands. All tasks can be included in more than one plan, but 

each sequence is determined by a disjunctive set of tasks, i.e. no task can be included in one 

process plan more than once. We can say that each process plan represents one alternative 

routing to complete the input assignment. Not all given tasks will be then present in the final 

schedule, so they can be called optional tasks [1]. These tasks have the same properties as 

described in Section 2.1 and also processors have the same characteristics. The only 

difference is that only one process plan has to be chosen and scheduled, so only one particular 

sequence of tasks is taken into account for scheduling. 

 

This is very close to combination of planning and scheduling areas, but all decisions are 

made only on the basis of the scheduling algorithm. No additional information except the 

definition of tasks and alternative process plans has to be set before the scheduling process. 

The goal of the scheduling for the optional scheduling problem is to choose one process plan 

and assign all included tasks to processors according to the given criterion and respecting all 

given constraints. Result is then classic time schedule containing selected tasks. 

 

Algorithm for the optional scheduling problem has to be different from classic 

scheduling algorithms from the point of view that not all constraints resulting from the 

problem assignment have to be satisfied. For example, if one task is included in two different 

process plans, then only precedence constraints from the chosen plan are taken into account 

for the scheduling process. Another problem is with task start time in the schedule: if all plans 

would be scheduled, the same task in different plans could have different start time. This is in 

contradiction with the fact, that each task can have only one start time for deterministic 

problems. 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

16 

Chapter 3 

3. Optional Scheduling Problem Representation 
In order to develop a new algorithm for the optional scheduling problem, the input data 

representation has to be defined first of all. Two general demands have to be satisfied. 

Proposed data representation must be able to describe more alternative process plans in one 

instance of a problem and data entry should be comprehensible and should allow easy 

modification. For this purpose, existing related work is used as the starting point and the 

proposed solution is then modified using the Petri nets formalism. 

3.1. Modified Temporal Network - XOR Graph 

As mentioned in the previous section, the optional scheduling problem involves 

approach different from the situation when all given tasks are present in the final schedule. 

For this purpose, we will come out of the model proposed by Beck and Fox [2] and then this 

model will be modified and interconnected with the Petri nets formalism. Beck and Fox start 

with listing of all alternative process plans as a disjunctive set of task consequences, shown in 

Figure 3.1 (taken over from [2]). 

 
Figure  3.1 - Alternative process plans 

 

Each task has its own identifier, written in the lower-right corner of the box, and 

resource to be processed on, written in the upper-left corner of the box. Each process plan 

(PP) is determined by a consequence of disjunctive tasks. The goal of the scheduling process 

is then to choose one of those process plans and create a time schedule of included tasks 

respecting their characteristics, resources specification and precedence constraints. As we can 

see in Figure 3.1, each task can be included in more than one process plan, but each process 



Diploma Thesis  CTU in Prague, 2008 

17 

plan is determined by a disjunctive set of tasks. Task presence in the final solution is 

determined by a probability of existence - PEX value. As a next step, all process plans are 

connected into one graph - modified temporal network, shown in Figure 3.2. This graph, also 

called XOR graph, consists of three types of nodes: 

 

1) Activity node is representation of task. Start time and completion time of an Activity 

node in the final schedule are temporal variables. Duration of an activity node in the 

temporal graph is determined by the processing time of an appropriate task. 

 

2) AND node has start time and completion time in the schedule and these values are 

temporal variables. Duration of AND node is zero. For the PEX value propagation, 

two rules are defined: 1) all graph nodes linked to an AND node exist in the solution 

if and only if the AND node does; 2) All non-XOR nodes directly connected to an 

AND node must have the same PEX value as the AND node itself. 

 

3) XOR node represents the possibility of choice during the scheduling process. 

Duration of a XOR node is zero and its start time and completion time are temporal 

variables again. Rules for PEX propagation through the XOR nodes are these: 1) At 

most one node connected to a XOR node upstream and one connected downstream 

can be present in the final schedule; 2) If there is a node connected to the XOR node 

downstream (upstream), which is present in the final schedule, then there must be 

just one node connected to the XOR node upstream (downstream) that is present in 

the final schedule and also XOR node itself must be present in the schedule. 

 

Figure 3.2 (taken over from [2]) displays XOR graph resulting from the problem 

assignment shown in Figure 3.1 where four different process plans are defined. All these 

plans are interconnected by one XOR node at the beginning and one at the end. Moreover, 

plans 3 and 4 have the same first activity (task), so we can use branching via XOR node up to 

this activity. Similarly, the last activities of plans 3 and 4 are also the same, so we can connect 

these plans via XOR node before this activity node. 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

18 

 
Figure  3.2 - XOR graph 

3.2. Petri Nets in Optional Scheduling 

In the following text, we modify XOR graph presented in the previous section and then 

we use the Petri nets formalism [15] to set the input problem. For this purpose, the Petri nets 

formalism has to be defined in the first place.  

3.2.1. Petri Nets Basics 

A Petri net is a formalism for modeling of systems with discrete states and events. Petri 

net (PN) is a quintuple },,,,{ 0MWFP T , where { }mPPP ,,1 K=  is the finite set of places, 

{ }nTT ,,1 K=T  is the finite set of transitions, )()( PPF ××⊆ TT U  is the set of arcs, 

},2,1{: K→FW  is a weight function, },2,1,0{:0 K→PM is the initial marking [15]. P and 

T are disjunctive, i.e. no object can be both a place and a transition. Petri nets are represented 

by a bipartite directed graph. Every arc of the graph connects one place and one transition; arc 

cannot connect two nodes of the same type. Consequently, places and transitions are regularly 

alternating in a graph. Transition without input place is called source transition and transition 

without output places is called sink transition. The same situation occurs for places.  For the 

purpose of modeling and simulating of systems, each place can contain any number of tokens. 

A distribution of tokens over the places of a Petri net is called marking M. An example of a 

simple Petri net containing three places and three transitions is depicted in Figure 3.3. 

Marking of this net is ( )0,0,1=M .  



Diploma Thesis  CTU in Prague, 2008 

19 

 
Figure  3.3 - Example of Petri net 

 

The most important parameters of a Petri net for scheduling are state-transitions matrices +W  

and −W  and resulting incidence matrix W. −W  is defined as nm×  matrix, where m is amount 

of places and n is amount of transitions. Columns of matrix −W  represent transitions and 

rows represent places. Each element of a matrix determines number of tokens taken from a 

place by an appropriate transition. Similarly, +W  is defined as nm×  matrix where each 

element of a matrix determines number of tokens added to a place by an appropriate 

transition. Incidence matrix of a Petri net is then defined as +− −= WWW . Generally, arcs 

between places and transitions can have different weights but for the optional scheduling 

problem purposes, all arcs are supposed to have weight equal to one. Also marking is ignored 

in that case. 

 

State-transition matrices resulting from the Petri net depicted in Figure 3.3: 

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=−

000
110
001

W  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=+

110
001
000

W  

Incidence matrix: 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−−

−
=−= −+

110
111

001
WWW  

 

There are some special PN structures that are important for the optional scheduling 

problem. Possibility of choice, needed for the data setting, is represented by a place with more 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

20 

output transitions. Similarly, merging of more alternative process plans is modeled as a place 

with more input transitions. Only one of tasks T1, T2 and T3 can be present in the solution of 

problem depicted in Figure 3.4. 

 
Figure  3.4 - Choice representation in PN 

 

Situation with a process plan containing tasks that can be executed simultaneously is 

represented by a transition with more output (and then input) places (see Figure 3.5). Both 

tasks T2 and T3 have to be scheduled and they can be executed in the same time if there is 

sufficient resource environment. 

 
Figure  3.5 - Parallel process plans in PN 

 

Not all models that can be defined via Petri nets are correct representations of the real 

process plans. There are some cases inconsistent with the idea of the process plans; one 

incorrect instance of Petri net is shown in Figure 3.6. The problem is in the fact that there is a 

branching into two alternatives and then these disjunctive parts are connected by one 

transition. This is classic example of deadlock because in the beginning, only one of two 

alternatives has to be chosen and later, both process plans need to be executed to reach the 

final state. 



Diploma Thesis  CTU in Prague, 2008 

21 

 
Figure  3.6 - Incorrect PN 

 

 

3.2.2. Conversion of XOR Graph to Petri Net 

In our case, transitions stand for activities (tasks) and places stand for the states of the 

system. In comparison with XOR graph, transitions represent both AND nodes and Activity 

nodes and places represent XOR nodes. This approach respects all rules for nodes in XOR 

graph defined in the previous text. All places connected with a transition are present in the 

final solution if and only if the transition is also present. For each place that is present in the 

final solution, there is just one input transition and one output transition, except the place 

representing initial state of the system (no input transitions) and place representing the final 

state of the system (no output transitions). With this presumption, we can modify the optional 

scheduling problem depicted in Figure 3.1 and Figure 3.2 to the version based on the Petri 

nets formalism (see Figure 3.7). 

 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

22 

 
Figure  3.7 - PN for the optional scheduling problem 

 

As mentioned above, possibility of choice during scheduling is modeled by a place 

with more output (and later input) transitions. At the beginning, only one of the tasks A1, A3 

and C1 has to be chosen and appropriate process plan has to be scheduled then. In the situation 

when C1 is chosen, another one decision has to be made.  

 

 

Input representation of the optional scheduling problem is defined as follows: 

1) Each task is represented by a transition in a given Petri net. 

2) Alternative process plans are modeled by a place with more output (and later input) 

transitions. 

3) Parallel tasks are modeled by a transition with more output (and later input) places. 

4) Petri net for the optional scheduling problem must have one source place, 

representing the start point for scheduling, and one sink place, representing the 

requested final state.  

5) No source or sink transitions are allowed. 

 

 



Diploma Thesis  CTU in Prague, 2008 

23 

Any PN editor that provides possibility to obtain the state-transitions matrices +W  and 
−W  can be used for the input problem setting. Description of the Petri net by the state-

transition matrices is passed to the proposed scheduling algorithm. Tasks are determined by 

their processing times, release times, deadlines and resource specification if needed. All these 

parameters are passed to the algorithm as well. 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

24 

Chapter 4 

4. Algorithm for the Optional Scheduling Problem 
In this section, an optimal algorithm based on Integer Linear Programming (ILP) for 

the optional scheduling problem is proposed. We use the Petri nets formalism described in the 

previous section to define the structure of the alternative process plans. State-transitions 

matrices +W  and −W  are passed as input data to the algorithm. GLPK (GNU Linear 

Programming Kit) solver [26] is used to solve the ILP problem. GLPK package is intended 

for solving large-scale linear programming (LP) and mixed integer programming (MIP). It is 

a set of routines written in ANSI C and organized in the form of a callable library. This tool is 

freely available at http://www.gnu.org/software/glpk/. 

 

4.1. Definition of Parameters and Variables 

The goal of the algorithm is to chose and then schedule a subset of the initial set of 

tasks { }nTT ,,1 K=T , represented by identical set of transitions. Each task is determined by its 

processing time pi and the structure of the problem is defined via Petri net. Deadline id~ , 

release time ri and dedicated processor number Ri can be also defined. Position of a task in the 

schedule is determined by its start time si. Presence of a task Ti in the final schedule is 

determined by a binary decision variable vi where 1=iv  if Ti is present in the final solution 

and 0=iv otherwise. For the purpose of ILP formulation for the optional scheduling 

problem, a binary decision variable ei,j is defined as presence of arc between place Ti and 

transition Pj in the final solution, 1, =jie  if an appropriate arc is present in the final solution 

and 0, =jie otherwise. Further, let xi,j be a binary decision variable such that 1, =jix  if and 

only if jii sps ≤+  (i.e. Ti is followed by Tj) and 0, =jix  if and only if jji pss +≥  (i.e. Tj is 

followed by Ti) [27]. Objective of the algorithm is to minimize Cmax defined as 

)(maxmax iii
psC += . 

 

 

 



Diploma Thesis  CTU in Prague, 2008 

25 

From a defined Petri net, only state-transitions matrices +W  and −W  are taken into 

account for scheduling. Each element of the resulting matrix W determines number of tokens 

removed or added to a place (index of a row) by an appropriate transition (index of a column). 

In our case, all elements are from set }1,0,1{−  because all arcs in a given Petri net must have 

value equal to one. 1],[ =jiW  denotes that one token is added to place Pi by transition Tj, 

1],[ −=jiW  denotes that one token is removed from place Pi by transition Tj and 0],[ =jiW  

means that there is no arc between place Pi and transition Tj. Another parameter, placeType, is 

computed from the matrix W. This parameter is a set with the same size as the set of PN 

places P and determines the type of each place; placeTypei = 1 denotes that place Pi is a sink 

place, placeTypei = -1 signifies that place Pi is a source place and placeTypei = 0 denotes that 

place Pi has both input and output transitions. 

 

List of all parameters and variables used in the ILP formulation is summarized below. 

 

Parameters: 

n - number of tasks; also number of transitions in a Petri net. 

m - number of places in a Petri net. 

UB - sufficiently high positive integer constant. 

{ }nTT ,,1 K=T  - set of tasks; equal to set of PN transitions. 

{ }mPPP ,,1 K= - set of PN places. 

+− −= WWW   - incidence matrix of a Petri net; size of W is mn× . 

],,[ 1 nRRR K= - numbers of processors for dedicated processors problem. 

],,[ 1 nppp K= - vector of processing times. 

],,[ 1 nrrr K=    - vector of release times. 

]~,,~[~
1 nddd K= - vector of deadlines. 

],,[ 1 mplaceTypeplaceTypeplaceType K=  - indication of the source and sink places of a 

Petri net. 

 

 

 

 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

26 

Variables: 

si - start time of task Ti, ni ,,2,1 K= ; integer variable. 

vi - presence of task Ti in the final schedule; ni ,,2,1 K= ; binary variable. 

ei,j - presence of arc between place Pi and transition Tj in the final schedule; 

mi ,,2,1 K= ; nj ,,2,1 K= ; binary variable. 

xi,j - allocation of tasks Ti and Tj in the time; ni ,,2,1 K= , nj ,,2,1 K= ; binary variable. 

 - 1, =jix  means that Ti precedes Tj. 

 - 0, =jix  means that Tj precedes Ti. 

Cmax - Value of the criterion; latest completion time. 

 

4.2. Integer Linear Programming Formulation 

Let us describe basic idea of the proposed ILP formulation for the optional scheduling 

problem. Three similar ILP models are described, one for the problem with one processor, one 

for infinite amount of parallel processors and the last one for the problem with dedicated 

processors. The goal of the ILP formulation is to chose and then schedule a subset of the set 

of tasks T subject to Cmax criterion. 

  

4.2.1. One Processor 

ILP model for the problem with one processor is described in the first place: 

 

iii rUBvs ≥⋅−+ )1(                               ni ,,2,1 K=      (1) 

 

UBvpds iiii ⋅−+−≤ )1(~         ni ,,2,1 K=      (2) 

 

)2( kjjkj vvUBssp −−⋅+−≤   

0and0;,,2,1,;,,2,1 <>== W[i,k]W[i,j]nkjmi KK      (3) 

 

)2(, jijijij vvUBxUBssp −−⋅+⋅+−≤  

W[k,j]W[k,i]W[k,i]jimknji ±≠><== and0and;,,2,1;,,2,1, KK      (4) 



Diploma Thesis  CTU in Prague, 2008 

27 

 

)2(, jiijiji vvUBpUBxUBss −−⋅+−≤⋅+−  

W[k,j]W[k,i]W[k,i]jimknji ±≠><== and0and;,,2,1;,,2,1, KK      (5) 

 

∑∑
>=<=

−=
0],[:,2,1

,
0],[:,2,1

, )()(
kiWnk

iki
jiWnj

ji placeTypeee
KK

      mi ,,2,1 K=      (6) 

 

ijik ee ,, =       0and0;,,2,1,;,,2,1 <>== W[j,i]W[k,i]mkjni KK      (7) 

 

iji ev ,=             0;,,2,1;,,2,1 ≠== W[j,i]mjni KK      (8) 

 

)1( imaxii vUBCps −⋅+≤+        ni ,,2,1 K=      (9) 

 

We start with two equations (1) and (2) representing the constraints resulting from 

release times and deadlines of tasks. If task Ti is not present in the final schedule (vi = 0) then 

the constraints (1) and (2) are satisfied due to high positive constant UB and value of  si is 

arbitrary. If vi = 1 then the task cannot start before its release time and must be completed 

before its deadline. Precedence constraints between tasks are taken into account in 

equation (3). This equation is created for all pairs of transitions (tasks) Tj and Tk such that the 

output place Pi of the transition Tj is the input place of the transition Tk. Constraint for start 

times of tasks is considered only if both tasks are present in the final schedule, i.e. 1=jv  and 

1=kv , constant UB ensures satisfaction of the equation otherwise. Equations (4) and (5) 

represent processors constraints for all pairs of tasks that are not joined by precedence 

constraints. These equations ensure that only one task is processed by the processor in a time. 

Constraint (6) represents limitation for number of input and output arcs that can be in the final 

schedule for each place. Number of output arcs present in the final solution is equal to number 

of input arcs present in the final schedule. Parameter placeType ensures that just one output 

arc of the source place and one input arc of the sink place will be present in the final solution 

and therefore at most one input/output arc can be present in the final solution for each place in 

a Petri net. Constraint (7) denotes that all input and output arcs of each transition have the 

same value of variable determining their presence in the final solution. Equation (8) 

determines that the transition Ti is present in the final solution if and only if all input and 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

28 

output arcs are also present. Equation (9) stands for evaluation of optimality criterion Cmax; 

only completion times of tasks that are present in the final schedule are taken into account. 

4.2.2. Infinite Amount of Identical Parallel Processors 

ILP model, considering infinite amount of identical parallel processors, is identical to 

the ILP model with one processor. Only processors constraints are not taken into account, so 

the equations (4) and (5) are not considered. 

4.2.3. Dedicated Processors 

The problem with dedicated processors is close to the problem with one processor, 

mentioned in the previous text, except the processor constraints. Therefore, equation (4) and 

(5) are modified to equations (10) and (11). Equations themselves are the same as in the case 

with one processor, but they are created only for tasks assigned to the same processor R. 

 

)2(, jijijij vvUBxUBssp −−⋅+⋅+−≤  

ji RRW[k,j]W[k,i]W[k,i]jimknji =±≠><== andand0and;,,2,1;,,2,1, KK      (10) 

 

)2(, jiijiji vvUBpUBxUBss −−⋅+−≤⋅+−  

ji RRW[k,j]W[k,i]W[k,i]jimknji =±≠><== andand0and;,,2,1;,,2,1, KK      (11) 

 

 

 

 



Diploma Thesis  CTU in Prague, 2008 

29 

Chapter 5 

5. Utilization of the Simulation and Visualization 
Areas of the simulation and visualization use in scheduling will be described in this 

section and some examples will be shown. Basic summary of this theme was shortly 

mentioned in Chapter 1. Both simulation and visualization have to be designed just for each 

case separately. There are some examples to illustrate utilization of the simulation and 

visualization in the following text. Some concrete implemented problems will be shown in 

Chapter 7. 

5.1. Application of the Simulation 

Scheduling of digital signal processing (DSP) algorithms is a practical example where 

the simulation can be used. Let us slightly describe the function of the Digital State Variable 

Filter (http://www.earlevel.com/Digital%20Audio/StateVar.html) [28], [29] that is used for 

example in processing of acoustic signals. This filter arises from the authentic analog version 

and its transcription results in the set of mathematical equations that represent filtering 

operations. Function of the filter is then realized by repeating of those operations in a never-

ending loop. One of the reasons for the utilization of the digital version is easier design of the 

filter and easier modifiability as well. Role of the scheduling in the design of digital 

processing units, including filters, is to allocate given operations to one or more processors in 

time. From the scheduling process point of view, each mathematical operation corresponding 

to one task Ti and time needed for execution of this operation corresponds to processing time 

pi. The goal of the scheduling algorithm is to create a time schedule containing all tasks while 

optimizing the given criterion. In the case of digital filter design, objective is to minimize the 

cycle time (period) of the schedule [27], [29]. Digital state variable filter is formed by the set 

of equations that are summarized below. 

  

for Kk :2=  

)1()( 1 −⋅= kBFkFB   // T1 

)()1()( kFBkLkL +−=  // T2 

)1()( 1 −⋅= kBQkQB   // T3 

)()(}{ kLkIkIL −=   // T4 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

30 

)()()( kLkILkH −=   // T5 

)()( 1 kHFkFH ⋅=   // T6 

)1()( −+= kBkFHBK  // T7 

)()()( kLkHkN +=   // T8 

end 

 

Applied attributes: k - current iteration of the algorithm. 

   K - number of iteration. 

   I - input value. 

   L - output value. 

   F1, Q1 - constants. 

   FB, QB, IL, H, FH, B, N  - discrete states; initially equal to zero. 

 

Each mathematical operation is assigned to one task whereas addition takes one clock 

cycle of the processor unit and multiplication takes three clocks. Precedence constraints result 

from the relationship of operations used in the equations (see Figure 5.1). 

 
Figure  5.1 - Precedence constraints for DSVF filter 

 

Two discrete time moments are important for the scheduling process for each task. First 

of them is the beginning of the task when all input data for an appropriate equation are fetched 

and the second one is the end of the task when all computed data are uploaded to the output 

(see Figure 5.2). Some computation is executed between these moments and data are being 

updated. 



Diploma Thesis  CTU in Prague, 2008 

31 

 
Figure  5.2 - Tasks execution 

 

Each operation (task) must be executed just once during one iteration of the algorithm. 

Result of the simulation of DSVF filter with sample time equal to 220 kHz is displayed in 

Figure 5.3. The result was acquired using TrueTime [8] tool in Matlab. 

 
Figure  5.3 - Result of the simulation 

 

Not only filtering of signals can be mentioned as utilization of the simulation in digital 

signal processing. Model-based Predictive Control (MPC) [30], [31] is another representative 

example of optimizations in DSP. MPC controllers are intended for control of linear (or 

linearized) systems subject to optimization of specified optimality criterion. An advantage of 

MPC control is an occasion to cover up wide spectrum of constraints and restrictions like 

limits for the value of control signals or for their rate of change in time. The most frequently 

used demand is to observe the reference signal. Design of MPC controllers arises from the 

state space equations of the system. The optimality criterion is formed by linear combination  

of energy used to control and squared difference between the required and real output. The 

goal of the MPC controller is to find a sequence of discrete values of control signal 

minimizing the criterion. Number of computed control signal values is called prediction 

horizon. There are more control strategies with MPC controller. One strategy is to compute 

the control sequence only on basis of state space model of the system and then to apply this 

control without regard to actual state of the system. Other strategy, closer to application of the 

simulation, is based on recalculation of the control sequence after each discrete step in time. 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

32 

This strategy is called receding horizon because in each recalculation, new prediction horizon 

is computed, so the end of prediction is being shifted. 

 

Solution of the MPC control problem can be found in numerical version, formed by the 

set of mathematical operations that represent matrices operations. These equations can be 

separated to elementary mathematical operations and then they can be assigned to tasks and 

scheduled with the given set of processors as in the case of DSVF filter. Basic idea of MPC 

control is displayed in Figure 5.4. 

 
Figure  5.4 - MPC control 

 

Reference signal and discrete states are brought to the block with model-based 

predictive controller. The actual computed value of control signal is at the output of the 

controller, which is connected with the controllable input (or more inputs) of the system. 

Function of the MPC controller can be tested and optimized via computer simulation. If the 

strategy with receding horizon is used, sequence of control signal values is computed in every 

sample time of the controlled system. The situation is the same as for DSVF filter simulation; 

to update one sample of the output signal, a set of operations has to be executed so the 

processor (or more processors) must have sufficient frequency to perform given operations in 

required time. In the real world cases, mathematical operations are assigned to processors in 

time via some scheduling strategy. Therefore, the simulation may take place in MPC control 

as well. 

 

5.2. Application of the Visualization 

The visualization serves as a tool to gain a better idea about realization of some 

problem in the first place. In the scheduling area, visualization can also serve as an 

optimization tool or as a verification for already scheduling problems. This verification is 

necessary e.g. for the production scheduling where not only time constraints has to be 



Diploma Thesis  CTU in Prague, 2008 

33 

satisfied but also constraints caused by the adjustment in the space are important. These 

restrictions due to localization and movement of the material or machines are hard to cover up 

by the mathematical description and therefore hard to be taken into account for the scheduling 

process. A representative example is the hoist scheduling problem described in Section 2.2. 

The goal of the scheduling algorithm for the hoist scheduling problem is to schedule moves of 

one or more hoists with material, which is processed in several tanks with liquid. Figure 5.5 

displays the basic idea of the hoist scheduling problem. In some cases, the load and the unload 

station can be merged into one load/unload station.  

 
Figure  5.5 - Hoist scheduling problem 

 

Visualization of the hoist scheduling problem can prove feasibility of the given time 

schedule or detect new restrictions that must be involved in the scheduling algorithm. Space 

restrictions are important especially in situation with more hoists when their trajectories may 

intersect. 

 

Another area for visualization of production activities are process flows. For the 

purpose of production cost reduction and productivity of work growth, amount of activities 

that do not yield economic profit has to be minimized. As a consequence, production 

operations that do not add a value to the product have to be eliminated or suppressed at least. 

Material transfers, machine setup times, tool handovers and cleaning are examples of 

activities to be avoided. Process flow is two or three-dimensional transcript of the production 

plan. It is formed by lines and curves that connect machines, buffers and other stations in the 

graphical approach of the production plan. Diagram of the movement in the space is very 

important for projecting the allocation of machines, buffers, tool repositories and other 

stations. This type of the visualization plays the role during the planning of production plans 

and it can be also used for representation of the already scheduled solution. An example of the 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

34 

process flow is depicted in Figure 5.6. Each object with label M represents one machine for 

processing of the material and each object with label B represents one buffer for temporary 

storage of the material. Solid curves stand for material transfers, dashed curves represent 

moves of required instruments and dotted curves stand for garbage collection. 

 

 
Figure  5.6 - Example of process flows 



Diploma Thesis  CTU in Prague, 2008 

35 

Chapter 6 

6. Implementation of VISIS 
As mentioned in Chapter 1, VISIS is intended to be a tool for the simulation and 

visualization of the scheduling results. VISIS is implemented in the Matlab environment 

using data structures and algorithms from TORSCHE Scheduling Toolbox for Matlab [7] and 

it will be a part of this toolbox in next release planned on October 2008. Users of VISIS can 

define their own project in the Virtual Reality toolbox, standard part of Matlab, and bind this 

definition with Matlab commands. Both simulation and visualization are then realized in 

Simulink, which is also a default part of the Matlab environment. The VISIS implementation 

provides several functions available for users and there are also several supplemental 

functions. In order to maximum simplicity of usage, resulting Simulink model is generated 

automatically. This output model contains one masked subsystem representing the control 

system. In case of the visualization, there is another block referencing to the predefined 

virtual reality world. The mask of the control subsystem has inputs and outputs with user-

defined names and sizes. The core of the control subsystem is the S-Function block, which 

contains main control function. This function realizes updating of outputs according to the 

given schedule and actual values of inputs. This control function is also generated 

automatically and all needed external data are created in Matlab workspace before the start of 

the simulation. The S-Function block has only one input and output port as default so the 

in/out signals are integrated/divided to reach user-defined number of inputs and outputs. This 

subsystem is then masked as one block with appropriate ports. The Simulink model and code 

for the S-Function block are both generated as text files from the prepared templates. The 

control function is called for each sample of Simulink and the outputs are updated according 

to the schedule and actual Simulink time.  

 

6.1. Implemented Functions 

All functions implemented during realization of the VISIS application are standard 

Matlab m-files. In this subsection, we present all of them with description of input and output 

variables and command syntax. 

 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

36 

adduserparam - function that loads commands form the text file and assign them to 

tasks due to the format of the given text file. Commands from the text file 

are stored in attribute UserParam for each task. Some parameters can be 

also stored in attribute TSUserParam of the taskset. 

Syntax: 

),( fileTSaddcodeTSout =  

 

Where TS is a taskset object, file is a string with the name of the text file and TSout is output 

taskset with assigned commands. In the text file, each task has to be introduced by its 

identifier which can be its name (property Name of the task) or by special character # and then 

ordinal number of a task in the taskset. Following set of commands is assigned to an 

appropriate task up to the keyword endparam. After this keyword, new set of commands 

introduced by new identifier of a task can be written. Commands to be stored to attribute 

TSUserParam of the taskset have to be introduced by the keyword UserParam.begin and 

terminated by the keyword endparam. Detailed utilization of this function is described in 

Appendix A. All commentaries (introduced by the character %) inside the task definition are 

copied to the S-Function and all other are ignored. 

 

 

setports - function that serves for setting the name and size of ports of the control 

block in Simulink.  

Syntax: 

)(vararginsetportsports =  

 

Where ports is the output structure containing information about user-defined names and 

sizes. Input of this function is alternative and its length depends on the amount of inputs and 

outputs that are needed for the concrete application. Setting of inputs starts with keyword 

Input and arbitrary amount of inputs can be listed in the form (input_name, size_of_input). 

Size of input represents length of the vector corresponding to an appropriate port. The setting 

of outputs is the same, only with the keyword Output now. An example of the function call is 

in Appendix A again. 

 

 



Diploma Thesis  CTU in Prague, 2008 

37 

 

VRcontrol - function for setting of objects of virtual reality and their properties that 

will be controlled from Simulink. Inputs of the virtual reality block are 

automatically created concerning this definition. 

Syntax: 

)(vararginVRcontrolVRin =  

 

Where VRin is an output structure containing information about user-defined names and 

properties of the virtual reality (VR) objects. As an input for this function, one or more pairs 

of the exact VR object name and its property can be defined in the form (object_name, 

object_property). Only numerical parameters of VR objects and strings of text boxes can be 

controlled from the Simulink model. 

 

 

taskset2simulink - main function of VISIS. This function generates the Simulink model 

and all other files and data structures needed for the simulation and 

visualization.  

Syntax: 

)vararginstopTimeVRinportsTSilesimulink(ftaskset ,,,,,2  

 

Where file is a string with name of the virtual reality file that must be terminated by the suffix 

.wrl. If the VR is not used, arbitrary name of project can be set or empty parameter [] can be 

passed to the function and all created data will have default prefix project1. TS is the taskset 

object with included schedule and Matlab commands assigned to tasks. Structure ports is the 

parameter that can be obtained by the setports function and VRin is the structure resulting 

from the VRcontrol function. Parameter stopTime serves to set duration of the simulation or 

visualization in Simulink. Some additional information can be passed to the function via 

arbitrary input. User of VISIS can set the sample time of the simulation (default value is equal 

to one), period of schedule repeating and it is also possible to generate only the control 

function instead of the whole Simulink model. Detailed description of input parameters is in 

the Appendix A. 

 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

38 

 The main function taskset2simulink handles arbitrary inputs, if any exists, in the first 

place. To be available for the resulting Simulink model, four variables are assigned with their 

names in the workspace of Matlab - file, period, TS and sampleTime. The code for the control 

S-Function is then generated and if there is any structural error in the created code, a warning 

is displayed. The last step of the taskset2simulink is to generate the output Simulink model 

and if there is no error, the model is opened. 

 

 

sfunctioncode - supplemental function, which generates code for the S-Function 

regarding to the text assigned to tasks. The function is called from the 

main function taskset2simulink and a new m-file is saved to the current 

directory of Matlab. 

Syntax: 

dispVR)VRinportsTSode(filesfunctionc ,,,,  

 

Where file contains the name of the project, TS is the taskset object with assigned code, ports 

is the structure resulting from the setports function and VRin is the structure resulting from 

the VRcontrol function. Parameter dispVR is a binary variable that determines if the virtual 

reality is used or not. Function generates code for the S-Function as a string that is inserted to 

a new text file afterwards. This file is saved as S_projetName.m where projetName is the 

name defined by user or project1 as default. For the generation of the S-Function code, 

predefined template file is used, one for the case with virtual reality (file SFunctionBase.m) 

and one for the case without VR (file SFunctionBase2.m). Some text from the template is 

copied and the rest is added according to size of taskset and commands assigned to tasks. 

 

 

parsetask - supplemental function that loads data from the task attribute 

UserParam and transforms them to the form for the S-Function code. 

Syntax: 

)2index1indexTparsetask( ,,  

 

Where T is a task object, which contains code to be transformed, index1 is the index of start 

time of task T in the vector of discrete states of the S-Function (will be described later) and 



Diploma Thesis  CTU in Prague, 2008 

39 

index2 is the index of completion time of task T in the vector of states. This function is called 

from the sfunctioncode for each task in the taskset. 

 

 

simulinkmodel - supplemental function serving to generate the output Simulink model. 

The model is generated as a text file from the predefined template files. 

The function is called from the main function taskset2simulink and a new 

Simulink model file is saved to the current directory of Matlab. 

Syntax: 

dispVR)VRinportssampleTimestopTime(filekmodelsimulin ,,,,,  

 

All input parameters have the same meaning as for the previous functions. The function 

generates system with one S-Function block, one mux (multiplexer) block and one demux 

(demultiplexer) block. Amount of ports for both the mux and demux blocks are adjusted with 

regard to count of user-defined inputs and outputs. The S-Function block in Simulink has just 

one input and one output port, so the signals have to be integrated/divided to satisfy given 

demands for count and names of the inputs/outputs. The whole system is then masked as one 

subsystem with appropriate ports. If the virtual reality is also defined, another block (VRsink), 

referencing to the given VR file, is also added to the model. Simulink model is generated as a 

string and it is inserted to a new text file afterwards. This file is saved as projetName.mdl 

where projetName is the name defined by the user or project1 as default. 

 

 

getVRpar - function that allows to obtain any numerical or string value of the 

objects from the virtual reality represented by the VRsink block in 

Simulink. 

Syntax: 

)varobjectilegetVRpar(fvalue ,,=  

 

Where file contains the name of the project, object is a string with the exact name of the 

object in the VR file, var is the name of the parameter to acquire the value from and value is 

the value of required parameter. The getVRpar function serves mainly to get values of 

parameters that are not directly controlled from the Simulink model. Parameters, which are 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

40 

controlled via inputs of VR block in Simulink are available in the S-Function under the same 

name. 

 

 

isin - supplemental function that is used in the S-Function code to recognize 

if the following set of commands is to be executed in the current time. 

Syntax: 

t)eriodpstop(startisinstatus ,,,=  

 

Where start and stop are the numerical values representing start time and completion time of a 

task in the schedule, period is the period of the schedule and t is the current time in Simulink. 

Output binary variable status is equal to one if and only if a task determined by its start time 

and completion time is to be executed in current time respecting the period of the schedule. 

 

Functions adduserparam, setports, VRcontrol, taskset2simulink and getVRpar are 

intended for direct work with VISIS whereas sfunctioncode, parsetask, simulinkmodel and 

isin are supplemental functions not mentioned to be used by users of VISIS.  

 

6.2. Simulink Model Description 

Both the simulation and visualization of scheduling results are realized in Simulink, 

which is a part of Matlab intended for wide spectrum of simulations. The Simulink model is 

generated automatically and it contains one control block with included S-Function block and 

in the case of visualization, there is also one VR sink block referring to the given file with the 

virtual world definition. The S-Function block is intended for executing of Matlab commands, 

written in standard Matlab m-file, during the simulation in Simulink. Inputs for the S-

Function block are the name of the assigned m-file, names of variables in the workspace to be 

passed to the S-Function and the last input is definition of additional modules. Dialog box for 

the S-Function block is depicted in Figure 6.1. The S-Function block itself has one input port 

and one output port. Length of the vector that will be accepted in the input of the block and 

the vector length of the output are defined in the assigned m-file. Input vector is available 

under the name u in the S-Function and more, actual Simulink time is stored in variable t, 



Diploma Thesis  CTU in Prague, 2008 

41 

vector of internal states is in the variable x and flag is automatically updated variable, which  

determines actual step in the S-Function call. 

 
Figure  6.1 - S-Function dialog box 

 

Execution of the S-Function is separated into several steps for each function call in 

dependence on the type of internal states and required sample time of operations. Decision 

about next routine to be executed is made on basis of the actual value of the  flag  variable. If 

the S-Function block is called for the first time, initialization routine is executed. During this 

routine, number of continuous and discrete states, number of inputs and outputs, sample time 

of the function and initial values of the internal states are defined. After the initialization, 

subfunction for updating output values is called. If there are any continuous states (not in case 

of VISIS implementation), next step of the function is to compute their derivates. Discrete 

states are updated after the continuous derivates computation and if the variable sample time 

of the S-function is defined, next time moment for the S-Function block calling is computed. 

After the last step of the simulation, termination routine is executed. All these subfunctions 

except the initialization and termination are executed during each call of the S-Function. 

 

VISIS implementation involves only discrete states and the sample time is fixed, so the 

steps for derivates and next calling time computation are skipped. In the initialization, number 

of discrete states, inputs and outputs are automatically computed in regard to given taskset 

and user-defined input and output ports. Start times, processing times and processors 

specification are read from the taskset and saved to the vector of internal states. Values of the 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

42 

controlled inputs of virtual reality are assigned to appropriate output variables and saved to 

internal states too. 

 

User-defined code assigned to tasks is included in the subfunction for updating discrete 

states. Current discrete step is computed from the actual time of the Simulink simulation and 

current values of controlled inputs of the virtual reality block are assigned to appropriate 

variables via function getVRpar. Function isin is used to determine which task is executed in 

current step of the simulation in regard to the given time schedule. Tasks can be divided into 

more parts (see Appendix A), so the decision is made for each part of each task separately. At 

the end of discrete states updating, all computed values are stored to predefined positions in 

the vector of internal states, so all these values will be available in the next step of the 

simulation. The last subfunction, called in one sample of the S-Function block, updates 

outputs. An appropriate part of the vector of internal states is copied to the output vector in 

this subfunction. 

 

The S-Function block is connected with requested number of inputs and outputs and the 

whole system is then masked as one subsystem in Simulink. This mask is called 

projectName_Subsystem where projectName is a name specified by user of VISIS and the 

inputs and outputs of this masked subsystem correspond with user definition. Example of the 

generated subsystem is displayed in Figure 6.2 and its mask is displayed in Figure 6.3. 

 
Figure  6.2 - Subsystem with S-Function block 



Diploma Thesis  CTU in Prague, 2008 

43 

 
Figure  6.3 - Mask of the subsystem 

 

As we can see in Figure 6.2, any unused port is terminated by the ground to avoid 

warnings and errors caused by not connected ports. All Simulink objects are generated 

automatically and their sizes, positions and number of ports are also set automatically. If the 

virtual reality is used, block referring to specified VR file is also included. Figure 6.4 displays 

the whole Simulink model, which is a result of onehoist_demo example.  

 
Figure  6.4 - Simulink model with VR block 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

44 

It is possible to add any other object to the generated Simulink model and then start the 

simulation. Virtual reality world is automatically opened in the case of visualization. 

6.3. Task Representation 

Each task is determined by its processing time and start time in the schedule. 

Completion time of a task can be easily computed from these values. All operations defined 

for a task are executed in regard to these numerical values. To allow as much precise problem 

representation as possible, each task can be separated to more parts with different commands 

and different duration. Each part of a task is relative to its start time in the schedule. There are 

three ways how to define operations for one task in time (see Appendix A). Commands 

assigned to a task can be repeated for a defined number of samples or executed just once. In 

regard to Figure 5.2 we can define operation of loading data executed in the time moment 

corresponding with the start time of a task, operation of uploading data in the moment 

corresponding to completion time and any repeating operation executed for every sample of 

the Simulink simulation between these time moments. 

 

6.4. Virtual Reality Toolbox 

Graphical objects for the visualization are created in VRedit (part of Virtual Reality 

toolbox for Matlab). VRedit allows to define basic geometrical objects, text, background, 

textures and complex objects. VR toolbox links MATLAB and Simulink with virtual reality 

graphics, enabling MATLAB or Simulink to control the position, rotation, dimensions, etc. of 

the 3-D images defined in the virtual reality environment. To be controllable, the object in 

virtual reality must have unique name. This identifier has to be chosen as an input of the VR 

block in Simulink together with the property that will be controlled. In each sample of the 

Simulink simulation, properties of the virtual reality world are updated according to the vector 

values at the input of VR block. VISIS generates the whole Simulink model so the input ports 

for VR block are defined automatically.  

 

To change string value in the virtual reality world, function setfield can be used. 

Parameters of this function are the virtual reality node, its property and new requested value. 

Example of setting the string value of the node Tank1 in the VR file onehoist.wrl: 

 



Diploma Thesis  CTU in Prague, 2008 

45 

    w=vrworld('onehoist.wrl'); 

    open(w) 

    node = vrnode(w,'Tank1'); 

    setfield(node,'string','Busy')  

    close(w) 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

46 

Chapter 7 

7. Case Studies 
In this section, performance measures for the new algorithm for the optional scheduling 

problem are presented. Random generator of instances for the problem with alternative 

process plans was realized created and the algorithm was tested using these data. Furthermore, 

four examples for the visualization and one for the simulation with VISIS were created to 

show capabilities of VISIS and three of them are described in this section. 

7.1. Performance Measures for the Optional Scheduling Problem 

There are three algorithms proposed for the optional scheduling problem; one for the 

problem with one processor, one for infinity amount of identical processors and one for the 

case with dedicated processors. For performance measures, algorithm for the problem with 

one processor is used. Figure 7.1 displays mean CPU time used to solve the problem in 

dependence on number of transitions in a Petri net. All displayed results are average from 100 

measurements with randomly-generated instances. These instances consist of Petri net 

incidence matrix W and vector of processing time p. The incidence matrix W results from a 

Petri net that represents instance of the problem with alternative process plans. The 

implemented generator of instances creates one source place with number of output 

transitions uniformly generated from the vector v1 = ]4,4,3,3,3,2,2,2,2,2[ . Number of 

places is then uniformly generated from the vector v2 = ]3,2,2,2,2,1,1,1,1,1[  and each 

transition is randomly connected with one output place. For each place, number of output 

transitions is uniformly generated from vector v1 and these steps are repeated until the 

specified amount of transitions (tasks) is acquired. At the end, all transitions without output 

place are connected to the sink place. Each processing time is generated uniformly from the 

interval <1;10>. The measurement was performed for the amount of tasks from 5 to 28. Time 

complexity of the presented ILP model is exponential. 



Diploma Thesis  CTU in Prague, 2008 

47 

5 10 15 20 25 30
0

20

40

60

80

100

120

Number of tasks

M
ea

n 
C

PU
 ti

m
e 

[s
]

 
Figure  7.1 - Mean solving time 

 

Figure 7.2 displays dependence of memory size used for solving on the amount of 

tasks. Solving demands for memory are very low in comparison with the time complexity. 

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

Number of tasks

M
ea

n 
m

em
or

y 
us

ed
 [M

B]

 
Figure  7.2 - Mean memory used 

 

Number of variables and constraints in dependence on size of input problem is displayed in 

Table 7.1. 

binary 2nmnn +⋅+  
Variables 

integer n 

Constraints )( nmnm +⋅⋅  

Table  7.1 - Number of variables and constraints 

 

Where n is amount of PN transitions and m is amount of PN places. 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

48 

Figure 7.3 shows for a given amount of time, how many instances have been solved. 

Measurement was realized for three quantities of tasks with one hundred instances for each 

quantity. 

0 20 40 60 80
0

20

40

60

80

100

t [s]

So
lv

ed
 in

st
an

ce
s 

[%
]

 

 

n=20
n=25
n=28

 
Figure  7.3 - Ratio of the solved instances in time 

 

All measurements was realized on computer with 1 GB operational memory and 

processor dual-core 1.6 GHz. 

7.2. Simulation with VISIS 

Simulation of Digital State Variable Filter (DSVF), described in Chapter 5, was 

implemented in Simulink using VISIS application. This filter is formed by the set of 

equations with elementary arithmetic operations. Each operation is assigned to one task and in 

the text file, it has the following form: 

 

#1 

in 0 

x(8) = 0.0079 * x(7); 

in 3 

x(1) = x(8); 

endparam 

 

This part of script denotes that data for the operation are loaded in the beginning of first 

task of the taskset in the schedule and the resulting output is available after three samples of 

task executing. All other operations are assigned to tasks similarly. Input for the filtering is 



Diploma Thesis  CTU in Prague, 2008 

49 

stored in variable I and the output variable is named L in the commands for tasks. All other 

variables are stored in the vector of internal states. Matlab commands for the definition of 

simulation with VISIS are written below. 

 
%Define taskset and add code for tasks 

TS = taskset([3 1 3 1 1 3 1 1]); 

TS = adduserparam(TS,'dsvf.txt'); 

 

%Define period of tasks 

period = 11; 

 

%Set the schedule 

starts = [0 4 3 5 6 7 10 7]; 

add_schedule(TS,'dsvf',starts,TS.ProcTime) 

 

%Define parameters for the simulation in Simulink 

stop = 1; 

sample = 1/220000; 

 

%Define inputs and outputs for the S-Function block 

ports = setports('Input','I',1,'Output','L',1); 

 

%Call main function 

taskset2simulink('dsvf',TS,ports,[],stop,'Period',period,'Sample',sample); 

 

The Simulink model resulting from this simple definition contains one masked 

subsystem with input I and output L. Pulse generator with unit amplitude and period 0.1s and 

the Scope unit are added to the model and the simulation is ready to start, see Figure 7.4. 

 
Figure  7.4 - Simulink model of DSVF 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

50 

 

The result of the simulation is the same as in case with TrueTime tool, described in 

Chapter 5. The input and output signal of the simulated filter is displayed in Figure 7.5; purple 

line is the signal from the pulse generator and the yellow one is the filtered signal. 

 
Figure  7.5 - DSVF simulation signals 

 

7.3. Visualization with VISIS 

Technique for the visualization is very similar to the case of the simulation with only 

one difference during definition. Ports for the VR block in the Simulink model have to be 

defined and the virtual reality world has to be created indeed.  

 

The first realized example is the visualization of the hoist scheduling problem, 

described in Chapter 5. More precisely, two visualizations for the hoist scheduling problem 

were created, first one with one hoist carrying material and the second one with two hoists. 

The material has to be processed in three tanks with liquid in both cases. For the situation 

with only one hoist, load and unload stations are merged into one place. Graphical appearance 

was defined in the VRedit environment and the project is designed as a 2D visualization. 

Controllable properties are positions of the material (represented by square objects with 

different textures), horizontal positions of the hoists, lengths of hoist arms and vertical 

positions of hoist wrists. Moreover, string values representing the amount of waiting and 

finalized material are being changed using function setfield. The Simulink model for the case 

with one hoist is displayed in Figure 6.4 and the initial state of virtual reality is in Figure 7.6. 

 



Diploma Thesis  CTU in Prague, 2008 

51 

 
Figure  7.6 - Virtual reality for the Hoist scheduling 

 

Four tasks are needed to represent moves of the hoist with the material. The schedule 

with these tasks is repeated periodically and the commands to perform the moves are executed 

in regard to start time of an appropriate task in the schedule. Progress of the visualization is 

slightly demonstrated in Figure 7.7. 

 
Figure  7.7 - Progress of the visualization 

 

Second example of the visualization with VISIS is the workshop for production of 

small lamps. How to modify position, size, rotation and also color of objects is shown in this 

example. One frame of the visualization is displayed in Figure 7.8. 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

52 

 
Figure  7.8 - Visualization of the workshop 

 

The last realized visualization with VISIS is the motivation example to show 

importance of the scheduling. Let us imagine a river and four soldiers standing on the shore in 

the night. They have only one flash-lamp and to get on the other side of the river, at most two 

soldiers can walk together and they must have the flash-light. Each soldier can walk through 

the river with different speed and movement of two soldiers is made with the speed of the 

slower one. The goal is to transport all soldiers on the adverse side of the river in the shortest 

possible time. Movements of soldiers are represented by tasks with processing times equal to 

time needed to cross the river and two time schedules are created, one with the correct 

progress of soldiers transfers and one with the incorrect progress. Difference in acquired times 

can show the purpose of the time scheduling. One frame of the realized visualization for this 

problem is shown in Figure 7.9. Times needed for transports of soldiers are displayed on the 

left side and actual time value is displayed in the upper left corner. 



Diploma Thesis  CTU in Prague, 2008 

53 

 
Figure  7.9 - Motivation example 

 

7.4. Profiler Results 

In this subsection, we will show some results acquired from the Matlab profiler, which 

supports measurement of execution time of functions. Profiler returns information about time 

spent by each function that is called during the selected command execution. Number of 

function calls and detailed list of called subfunctions are also available. For each created 

example, presented in the previous text, execution times of VISIS functions are measured and 

the results are stated in Table 7.2. 

 

Function / Example Filter Hoist Workshop Soldiers 
adduserparam 0,29 s 0,34 s 0,49 s 0,34 s 
taskset2simulink 1,72 s 2,46 s 2,78 s 4,22 s 
sftunctioncode 0,48 s 0,41 s 0,71 s 0,36 s 
simulinkmodel 0,53 s 0,55 s 0,62 s 0,52 s 
number of tasks 8 4 14 5 

 

Table  7.2 - Execution times 

 

To generate the Simulink model and the included S-Function, it takes only a few 

seconds and it does not increase rapidly in dependence on the amount of tasks or the length of 

the given text file. Most of the execution time of the main function taskset2simulink is spent 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

54 

by opening of the generated Simulink model and critical is the graphical complexity of the 

virtual reality file. The Simulink model file and the S-Function code are generated as strings 

and then included into the new file, so the time complexity of generation in dependence on 

amount of tasks and text file length is linear. 

 

Distribution of time between functions during the simulation of the Digital State 

Variable Filter was probed. The S-Function is divided into several steps (see Chapter 6) and 

most of time (17 from total 26 seconds) of its execution is spent by the subfunction for 

updating discrete states. This is the expected fact, because all commands specified by user of 

VISIS are executed during this part of S-Function. Time needed to update discrete states is 

distributed uniformly through the function so there is no bottle-neck, which would halt the 

simulation. Simulation by VISIS needs approximately 80% of time in comparison with the 

same example realized using TrueTime library. In addition, time needed for one second of 

simulation with 220000 samples per second is approximately 32 seconds in TrueTime and 26 

seconds in VISIS.  



Diploma Thesis  CTU in Prague, 2008 

55 

Chapter 8 

8. Conclusions 
This work presents results achieved in two parts of scheduling area. New algorithm for 

the optional scheduling problem has been proposed and VISIS, an application for the 

visualization and simulation in scheduling, has been realized in the Matlab environment. Both 

parts offers solution for problems that are usable in the area of production scheduling. This 

branch of the scheduling theory plays an important role nowadays and time savings during the 

production planning and scheduling lead to less demanding manufacturing of products. 

 

For the implementation purpose of the new scheduling algorithm for the optional 

scheduling problem based on Integer Linear Programming (ILP), terminology arising from 

the related works has been established in the first place. Original representation by the Petri 

nets formalism is then proposed. This concept of input data assignment allows to define the 

problem structure naturally and also later modification of the structure is simple. The ILP 

model is designed from the state-transitions matrices of given Petri net. Proposed solution 

based on ILP solution was tested on random-generated data and the results show that the 

algorithm is suitable to solve optional scheduling problems with up to 30 tasks in within a few 

minutes with low memory requirements (only about 5 MB for the biggest tested instances). 

The algorithm is capable to solve the problems defined as a Petri net with specified properties. 

Processing time, release time and deadline can be assigned to each task. Proposed integer 

linear programming model can be easily extended, new task parameters can be added and the 

optimality criterion modified. 

 

Established terminology will be a base for the following research in the area of the 

optional scheduling. New optimal algorithms can be proposed and some polynomial heuristic 

can arise from the properties of Petri nets. Moreover, utilization of Petri nets offers a 

possibility to use some of many existing methods for their analysis and simplifications. 

 

VISIS has two areas of use: in discrete simulation (e.g. in digital signal processing) and 

in the visualization of scheduled problems. It is planed as an extension of future version of 

TORSCHE Scheduling Toolbox for Matlab. The application can be used for presentations, 

educational purposes or as an optimization tool and whenever clear presentation of results is 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

56 

needed. During the implementation of VISIS, several functions for work with this tool and 

several supplemental functions were realized. Some demonstrative examples was created to 

show the capabilities of VISIS. Visualization with VISIS supports user-defined appearance of 

the virtual reality and it allows to bind this definition with arbitrary Matlab commands. Up to 

our knowledge, there is no such a tool providing visualization of scheduled problems in that 

range. The simulation in scheduling can serve as a fast feedback for results of scheduling 

process. Simulation of digital state variable filter is faster than in TrueTime library since 

VISIS is optimized for simulations of time schedules. The main advantage of VISIS is easier 

problem definition and simple usage. The implemented application is designed to maximize 

the comfort and simplicity of utilization.  



Diploma Thesis  CTU in Prague, 2008 

57 

References 
 

[1] R.BARTAK: Unary Resource Constraint with Optional Activities. In Lecture Notes in 

Computer Science, Vol. 3258/2004, p. 62-76. 

[2] J.CH.BECK and M.S.FOX: Constraint-directed Techniques for Scheduling 

Alternative Activities. In Artificial Inteligence, 2000, Vol. 121, p. 211-250. 

[3] A.WEINTRAUB, D.CORMIER, T.HODGSON, R.KING, J.WILSON and 

A.ZOZOM: Scheduling with Alternatives: a Link Between Process Planning and 

Scheduling. In IIE Transactions, 1999, Vol. 31, p. 1093-1102. 

[4] C.SAYGIN, F.F.CHEN, J.SINGH: Real-Time Manipulation of Alternative Routeings 

in Flexible Manufacturing Systems: A Simulation Study. In The International Journal 

of Advanced Manufacturing Technology, 2001, Vol. 18, p.755-763. 

[5] E.VIN, P.LIT, A.DELCHAMBRE: A Multiple-objective Grouping Genetic Algorithm 

for the Cell Formation Problem with Alternative Routings. In Journal of Intelligent 

Manufacturing, 2005, Vol. 16, p. 189-205. 

[6]  J.BLAZEWICZ et al: Scheduling in Computer and Manufacturing Systems. Springer, 

1993. 

[7] P.ŠŮCHA, M.KUTIL, M.SOJKA and Z.HANZÁLEK: TORSCHE Scheduling 

Toolbox for Matlab. In IEEE International Symposium on Computer-Aided Control 

Systems Design, 2006, p. 50-52. 

[8] M.OHLIN, D.HENRIKSSON and A.CERVIN: TRUETIME 1.4—Reference Manual. 

Department of Automatic Control, Lund University, 2006. 

[9]  G.S.FISHMAN: Discrete-Event Simulation: Modeling, Programming, and Analysis. 

Springer, 2001. 

[10]  F.MANLIG and M.ŠRÁMEK: Řízení výrobních zakázek s podporou počítačové 

simulace. In journal Průmyslovés inženýrství, 2003, p. 119-123. 

[11]  J.MISRA: Distributed Discrete-Event Simulation. In ACM Computing Surveys 

(CSUR), 1986, Vol. 18, p. 39-65. 

[12]  D.TOAL, T.COFFEY and P.SMITH : Expert Systems and Simulation in Scheduling. 

CiteSeer, 2000. 

[13]  H.WWTTSTEIN, H.ZOLLER and G.LIEFLANDER: Visualization of Process 

Scheduling.  Universität Karlsruhe, Department of Computer Science. 

http://i30www.ira.uka.de/teaching/coursedocuments/processscheduling/ 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

58 

 

[14] A.SCHRIJVER: Theory of Linear and Integer Programming. Paperback, 1998. 

[15] T.MURATA: Petri Nets: Properties, Analysis and Applications. In Proceedings of the 

IEEE, 1989, Vol. 77, p. 541-580.  

[16] W.E.WILHELM: A Column-Generation Approach for the Assembly System Design 

Problem with Tool Changes. In International Journal of Flexible Manufacturing 

Systems, 1999, Vol. 11, p. 177-205. 

[17] R.HELIMANN: A Branch-and-bound Procedure for the Multi-mode Resource-

Constrained Project Scheduling Problem with Minimum and Maximum Time Lags. In 

European Journal of Operational Research, 2003, Vol. 144. 

[18] G.TUNCEL, G.M.BAYHAN: Applications of Petri Nets in Production Scheduling: a 

Review. In The International Journal of Advanced Manufacturing Technology, 2007, 

Vol. 34, p.762-773. 

[19] G.MEJIA, C.MONTOYA: A Petri Net Based Algorithm for Minimizing Total 

Tardiness in Flexible Manufacturing Systems. In Annals of Operations Research, 

2007. 

[20] R.L.GRAHAM, E.L.LAWLER, J.K.LENSTRA, A.H.G.RINNOOY KAN: 

Optimization and Approximation in Deterministic Sequencing and Scheduling 

Theory: a Survey. In Annals of Discrete Mathematics, 1979, Vol. 5, p. 287-326. 

[21] P.BAPTISTE, C.LE PAPE, W.NUIJTEN: Constraint-Based Scheduling - Applying 

Constraint Programming to Scheduling Problems. Springer, 2001. 

[22]  J. W. HERRMANN: Handbook of production scheduling. Springer, 2006. 

[23] H.KELLERER and V.A.STRUSEVICH: Scheduling Problems for Parallel Dedicated 

Machines under Multiple Resource Constraints. In Discrete Applied Mathematics, 

2003, Vol.133, p.45-68. 

[24]  M.A.MANIER and CH.BLOCH A Clasification for Hoist Scheduling Problems. In 

International Journal of Flexible Manufacturing systems, 2003, Vol. 15, p. 37-55. 

[25] J.LIU, Y.JIANG, Z.ZHOU: Cyclic Scheduling of a Single Hoist in Extended 

Electroplating Lines: a Comprehensive Integer Programming Solution. In IIE 

Transactions, 2002, Vol. 34, p. 905-914. 

[26] A.MAKHORIN: Modeling Language GNU MathProg. Documentation for GNU 

Linear Programming Kit, 2005. 

 



Diploma Thesis  CTU in Prague, 2008 

59 

[27] P.ŠŮCHA, Z. HANZÁLEK: Cyclic Scheduling of Tasks with Unit Processing Time 

on Dedicated Sets of Parallel Identical Processors. In Proceedings of the 3rd 

Multidisciplinary International Conference on Scheduling: Theory and Application, 

2007, p. 463-470. 

[28] R.JOHNSON: Programmable State-Variable Filter Design for a Feedback Systems 

Web-Based Laboratory. Advanced Undergraduate Project Report, Massachusetts 

Institute of Technology, 2004. 

[29] D.MATĚJÍČEK: Optimalizace Algoritmů pro FPGA. Diploma Thesis, CTU in 

Prague, 2007. 

[30] J.A.ROSSITER: Model-Based Predictive Control: A Practical Approach. CRC Press, 

2003. 

[31] E.F.CAMACHO, C.A.BORDONS: Model Predictive Control in the Process Industry. 

Springer, 1997. 

 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

60 

 



Diploma Thesis  CTU in Prague, 2008 

I 

Appendix A 

A. User Manual 
 This project is realized in the Matlab environment [http://www.mathworks.com/], 

more exactly in the version Matlab R2006a. For older versions, there could be some 

incompatibility, especially in case of creating Simulink model. Created functions can be 

called from command line or from own m-files. The result of whole project is the Simulink 

model with automatically generated control function and needed data structures. 

A.1. Simulation by Simpler Substitution of TrueTime Library 

First necessary step after setting and scheduling the problem is to assign Matlab 

operations to tasks. These operations will be realized in time due to the final schedule. This 

code has to be stored in attribute UserParam for each task in the taskset. E.g. for existing task 

T1 : 

 
code = 'in 0'; 

code = sprintf('%s\n%s\n',code,'x(1) = 5*x(1)–1;'); 

T1.UserParam = code; 

 

This way of adding code for tasks is quite difficult and for larger amount of data also 

very impractical. Thus, a function adduserparam is available. This function adds code from a 

text file to all tasks in the taskset together. First argument of this function is a taskset object 

and second argument is a string with the name of the text file. Output object is a taskset with 

assigned code. Example of use: 

 
TS = adduserparam(TS,'data.txt'); 

 

In the given text file, each task has to be introduced by its name (Ti.Name) or by the 

special character # and then its ordinal number in the taskset, e.g. #3. Then it is possible to 

write down set of commands for an appropriate task. Each set of commands has to be ended 

by the keyword endparam. If there are some commands, which have to be executed at each 

sample time of the simulation, they have to be closed between keywords UserParam.begin 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

II 

and endparam. Any text outside the bordered sets of commands, except the commentaries, 

will cause error. Commentaries are not copied to the control function. Example of text file: 

 
UserParam.begin 

pause(0.1) 

endparam 

 

task1 

y = 2*x^2; 

z = sin(x); 

endparam 

 

#2 

x = x+1; 

endparam 

 

Next step for using simulation is to define inputs and outputs of the Simulink S-

Function block, which calls control function in each time sample. Names of inputs and 

outputs will be then accessible in task commands as variables. For this definition, function 

setports is created. There are two keywords for this function: Input and Output. First of them 

introduces part for definition of inputs of the S-Function block and second one for outputs 

definition. After each of them, next argument is the name of the input/output and then its size 

(vector length). If only inputs (or outputs) are needed, only one keyword can be used. Output 

of this function is a structure that is one of the input arguments for the main function. 

Example how to create two inputs with size 1 and one output with size 2: 

 
ports = setports('Input','w',1,'e',1,'Output','control',2); 

 

Now is possible to call the main function of the project – taskset2simulink. This function will 

generate Simulink model and control function and other data structures from the given taskset 

with time schedule. Syntax of the function call: 

 

)vararginstopTimeVRinportsTSilesimulink(ftaskset ,,,,,2  

 

 

 



Diploma Thesis  CTU in Prague, 2008 

III 

 

Description of parameters: 

 

file - name of virtual reality file (has to be ended by postfix .wrl); all created 

  functions and files will contain this name. 

- if virtual reality is not needed, arbitrary name of project can be set. 

- it is possible to set empty argument [] and project will be named project1. 

TS - taskset object. 

ports - structure with information about inputs and outputs of the control block. 

VRin - structure with information about inputs of the virtual reality block . 

- empty argument [] if virtual reality is not used. 

stopTime - stop time of the simulation. 

varargin - additional information; set in format: (‘Property name‘, Property value). 

  - ‘Sample‘    – value of sample time; default value is one. 

  - ‘Period‘ – value of schedule period; without repetition as default. 

  - ‘Simulink‘ – string with information about Simulink model generation. 

         – ‘off ‘ if Simulink model is not needed to be created. 

 

Example of the main function call for the case without virtual reality, name of project 

will be dsvf, sample time one second, stop time 50 seconds, period of schedule 10 seconds 

and we do not need to generate Simulink model: 

  
taskset2simulink('dsvf',TS,ports,[],50,'Period',10,'Simulink','off') 

 

A.2. Visualization with User-defined Virtual Reality 

Technique for the visualization of the scheduling results is the same as for the 

simulation with one additional step. It is necessary to define inputs for the virtual reality block 

in Simulink. For this purpose, function VRcontrol is available. Input arguments are the pairs 

of strings, where first one is the exact name of the object in the virtual reality and second one 

is the property, which we want to refer to. Output of this function is the structure with given 

information. Example: 

 
VRin = VRcontrol('Arm1','translation','ColorMachine1','diffuseColor'); 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

IV 

Now, first input of the virtual reality block will refer to the object called Arm1 and it will be 

possible to change the object property translation via this input.  

 

If we want to control some inputs of the VR block by outputs of the control block, it is 

necessary to have these outputs/inputs at the same ports of blocks. For example, if we want to 

control the third input of the VR block, an appropriate output of the control block has to be 

also on the third position. In  the situation when more outputs from the control block than 

inputs to the VR block are needed, these outputs have to be defined after definition of 

corresponding outputs/inputs. For example, if we want to connect first two outputs of the 

control block with the VR block and two other additional outputs are needed, the function 

calls are following: 

 
ports = setports('Output','controlArm',3,'signalColor',3,'U',1,'out',2); 

VRin = VRcontrol ('Arm1','translation','ColorMachine1','diffuseColor'); 

 

It will be possible to control translation of the object Arm1 from the control block 

output controlArm. It is the same for the output signalColor and the property diffuseColor of 

the object ColorMachine1. By calling main function with these structures together with 

defined virtual reality project, we get Simulink model shown on Figure.  

 
taskset2simulink('my_poject.wrl',TS,ports,VRin,500); 

 

 
Figure A.1 - Generated Simulink model 



Diploma Thesis  CTU in Prague, 2008 

V 

A.3. Definition of Commands for Tasks 

There are three ways how to define commands for tasks by relative time: 

 

1) By the keyword repeat, followed by three numbers separated by colons – start, step 

and stop. First number determines the start time for executing of the following block 

of commands. This time data determines time moment to start of executing these 

commands referring to the beginning of a task in the schedule. Second number 

determines time space between two repetitions of this block of commands and the 

last number determines the end of executing commands referring to the beginning of 

a task in the schedule. Time data start and stop can overreach the borders of a task 

in the schedule, i.e. start can be negative and stop can be greater than processing 

time of a task. Therefore, it is possible to define some operations before and after of 

a task in the schedule. Time data step has to be positive number. 

 

2) By the keyword divide, followed also by three numbers separated by colons – start, 

step and stop. Meaning of these time data are very similar to the previous case, with 

only one difference: data start and stop are not in real time units. Instead of this, 

they are proportionally related to the processing time of a task. Generally, they are 

decimal numbers and it is also possible to execute some commands outside of a task 

in the schedule. 

 

3) By the keyword in, followed by only one time data, which determines in what time 

related to beginning of a task in the schedule will be the block of commands 

executed. 

 

Code for one task can be for example following: 

  
task1 

repeat 0:1:7 

T1trans(1) = T1trans(1)+1; 

in 7 

ColM1 = [1 0 0]; 

divide 0.5:1:1 

Drill1(2) = Drill1(2)-0.04; 



Scheduling and Visualization of Manufacturing Processes Roman Čapek 

VI 

repeat 19:1:29 

Drill1(2) = Drill1(2)+0.04; 

in 29 

ColM1 = [0 1 0]; 

repeat 29:1:35 

T1trans(1) = T1trans(1)+1; 

endparam 

 

Until a new keyword is used, all commands belong to the previous keyword. It is 

possible to use all standard Matlab functions and in addition, function getVRpar is available. 

Via this function, it is possible to obtain value of any accessible property defined in the virtual 

reality file. First argument of this function is the name of VR file, second argument is a string 

with name of the object in VR and the last argument is the name of property that we want to 

get. Output value is a vector with relevant size. Example of use: 

 
value = getVRpar('my_world.wrl','Earth','rotation'); 

 

To store any numerical value between two time samples, there are internal states x(i). 

Main function will automatically define needed amount of states according to the highest used 

index. To refer states, use format x(3), it is not possible to use notation x(1:3). It is also 

possible to refer to the inputs and outputs defined by the function setports with the same 

names as in definition. 


