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Abstract

The objectives of this diploma thesis are to learn about thermodynamical processes in

a chemical industry, based on the knowledge learned, to create and to identify a model of

a thermodynamical process in a real chemical tank. To create a model the chemical tank

itself is described with regards to its shape, sensor placement and physical properties.

Model will be identified using real data. Data for identification will be analysed to avoid

problems during identification. Methods used will be both linear and nonlinear according

to own choice, validated on a real data samples. Results of all approaches taken to identify

the model will be compared to decide which method prvided the best results. Current

control approach is described and possible improvements are suggested.

Anotace

Ćılem této práce je seznámit se s termodynamickými procesy v chemickém pr̊umyslu a

na základě těchto znalost́ı vytvořit a identifikovat matematický model termodynamického

procesu na konkrétńım chemickém zásobńıku. Aby mohl být vytvořen podel, zásobńık je

podrobně popsán (včetně umı́stěńı sensor̊u a tvaru) a také jeho vlastnosti jsou zevrubně

rozebrány.Model je identifikován na reálných datech, která jsou nejprve posouzena z hle-

diska vhodnosti pro identifikaci, aby se předešlo potencionálńım problémům. K identifikaci

jsou použity lineárńı i nelineárńı př́ıstupy a výsledky jsou validovány prostřednictv́ım

simulaćı s reálnými daty. V závěru jsou srovnány výsledky jednotlivých metod které

srovnaj́ı přesost modelu se skutečným systémem. Je popsáno současné ř́ızeńı a navrženo

možné vylepšeńı.
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Chapter 1

Introduction

The company ENASPOL a.s. is located in surroundings of Teplice (Velvěty). Its

main focus is chemical industry. Company produces material called ABESON, which

is an intermediate product mainly for producing goods for drugstores - e.g. shampoos,

shower gels, etc. ABESON needs to be stored somewhere before its final expedition. In

the chemical factory there are two storage tanks: vertical and horizontal, to store ABE-

SON. Generally in chemical tanks there are many variables to control - pH, temperature,

vacuum, pressure. This thesis will address only temperature control of ABESON inside

the tank, becuase to keep its qualities it needs to stay in certain range of temperatures.

Eventhough there are two tanks, this thesis focuses only on the vertical tank.

Thesis’ main objective is to create a mathematical model of thermodynamical pro-

cesses in the vertical tank storing ABESON. Mathematical model describes the temper-

ature of ABESON inside the tank. Model is a differential equation with variables and

constants on right handside and with output on left hand side. Output is ABESON’s

temperature. Some variables are inputs, some are varying parameters and some are

unknown parameters. Constants are fixed numbers determining the geometry and mate-

rial properties of both tank and ABESON. Identification of the model means estimating

unknown parameters of the model.

Determining unknown parameters is secondary objective of this thesis. To estimate

parameters several approaches are used. Identification covers both linear and non-linear

approach. Results are verified and compared.

Despite it is not an objective of this thesis, model predictive controler was designed.

Controler uses identified model of thermodynamical process. Controler was simulated in

MATLAB R©and implemented in the real process.

Chapter 2 describes the tank itself, its inputs, outputs, shape, sensor placement and

1



CHAPTER 1. INTRODUCTION 2

everything what is somehow related to the tank. It covers how the temperature inside the

tank is affected and what can influence the ABESON’s and supply water temperature.

Chapter also explains terms heating and control unit and describes their tasks.

Chapter 3 derives thermodynamical differential equaiton describing desired tempera-

ture. Firstly, it is derived from physical principles, secondly, it is derived using resistor –

capacitor network in circuit that is equivalent to the thermodynamical process. Chapter

also introduces discretization and models used in control. It explains how a smapling

frequency was chosen.

Chapter 4 explains how the data are used. It describes artefacts, which are the main

complication to deal with. Chapter explains how these artefacts arise and how to get rid

of them.

Chapter 5, along with Chapter 3, is one of the main chpaters. It desribes approaches

used to identify the model. Approaches are explained and described in detail in this

section.

Chapter 6 summarises the results achieved by identification approaches from Chap-

ter 5. It shows how the models performed on chosen data set and compares them.

Chapter 7 describes former control approach and introduces new one. Model predic-

tive control is explained.

Chapter 8 presents comparison of former control approach with new control approach.

It pointss out the advantages of model predictive control and explains why this control

is superior to former control.

Chapter 9 closes the thesis. It summarises achieved results, comments them and

proposes improvements of control and future direction of development.



Chapter 2

Description of the tank

Chapter describes the tank’s dimensions, shape, insulation, sensor placement, control

unit equipment and placement. It describes ABESON’s properties and things going on

inside the tank.

2.1 Physical properties

To describe physical properties data provided by the company and availible pho-

tographs from the factory are used. The chemical product stored in the tank – ABESON

(Dodecylbenzene Sulfonic Acid) – is a liquid of gold color with some properties close to

the ones of water. For example specific heat and density are similar. Its viscosity changes

with temperature. The higher the temperature is, the lower the viscosity gets. Therefore

it is necessary to keep ABESON within a certain range of temperatures. And espetially

before pumping it out it requires temperature high enough so its viscosity is the same as

water’s. When the viscosity of ABESON is same as water’s, then it is very easy to pump

it out from the tank. When the temperatures are low the viscosity is high – similar to

honey like liquid. Under these circumstances it becomes much harder to pump ABESON

out.

The product is required to have temperature above 30 ◦C and under 55 ◦C. If above,

it changes its properties (especially affecting its color) making ABESON degenerated.

Therefore the company wants the temperature of ABESON to be within this range. To

maintain the temperature it is necessary to measure it. The placement of sensors and

tank’s scheme is shown on Figure 2.1.

3



CHAPTER 2. DESCRIPTION OF THE TANK 4

Tank

T
i

T
sw

T
a

Heating 
unit

3-way 
valve

h

Pump

Figure 2.1: Schematic description of the tank

The tank is heated-up using supply water. The supply water and the temperature

inside the tank measurements are available. Also level is measured. Ambient tempera-

ture is provided from National Oceanic and Atmospheric Administration (NOAA) server

using their weather forecast. The weather forecast is with a tolerance of ±3 ◦C. Temper-

atures are measured by the resistive temperature sensors Pt100, the level is measured by

hydrostatic pressure sensor. The sensors inside the tank – inside temperature and level

– are placed at the very bottom of the tank. Heating pipes go around the shell of the

tank, do not cover the bottom base and reach the hight 1.5 m from the bottom edge of

the tank.

In reality the tank is about 10 m tall, insulated and covered in a metal shell. The

insulation used is orsil, widely used insulation material in civil engineering and also in

technological processes. The material, the tank is made of, is unknown, but operators

provided information it is metal-like material. Not plastic.

There are actually two tanks of the same volume. First is worked with in this thesis,

second not. Second tank is horizontally placed and it serves as an emergency buffer
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(a) Vertical storage tank of ABESON. (b) Horizontal storage tank of ABESON.

Figure 2.2: ABESON tanks in ENASPOL.

when the main tank is full. Horizontal tank is empty most of the time and can be seen

on Figure 2.2b. The tank is marked with red rectangle with red number three.

2.2 Control set-up

Next to both tanks is a control station with heating unit, sensors and pumps. Heating

unit is in principle a heat exchanger where steam warms up the supply water. Supply

water is then pumped to the pipes. Thanks to the use of steam it warms it up very

fast. The temperature sensor is located at the control station on Figure 2.3b. Principle

is depicted on Figure 2.1 and actual real-life situation is on Figure 2.2a, where the red

number one denotes tank itself and number two is a control station.

Control staion is approximately 5 m away from actual tank. During its way the pipes

are not very well insulated, so supply water is affected by ambient environment. The

temperature is measured inside the station and is not measured at the point where it

enters the tank. The return water was not incorporated into the process.

Part of a control station is also a pump (see Figure 2.3a, where the pump is marked

by a red rectangle, (barrels there are not part of the ABESON storage tanks) pump drains

ABESON out from the tank. This process of pumping it out takes about few minutes.
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(a) Pump. (b) Temperature sensor of supply water.

Figure 2.3: Pump and temperature sensor Pt100.

The very same pump is used to mix the ABESON in tank. Only the pipes are connected

in a way that the output pipe does not go to cistern, but it is connected to the input pipe

of the tank. This process runs for about 10 minutes. The ABESON from the bottom of

the tank gets to the top of the tank and the temperature is then the same in the whole

tank. Input pipe transports new ABESON to the storage tank. The influx is constant.

In this station it is possible to turn heating on or off siply by closing proper valve.

Notice that on Figure 2.3b is temperature sensor of supply water Pt100 and temper-

ature on analog thermometer says 50 ◦C, which was the temperature set for heating on

the beginning of February and it can be found in corresponding data set.

2.3 Former control approach

Former control approach used only one programmable logical controler to control

proper temperature of supply water. To control the temperature PID controler was

employed. This PLC also collets all the data from the tank and provides it to higher layer

of control chain. There are physically two tanks - the PLC is controling and collecting

data from both of them.

So far only feed forward control of heating temperature was implemented, which is an

unaccurate and money-consuming approach. The desired supply water temperature was

set manualy by an operator who knows the process. If the set temperature was not able to

maintain ABESON within desired range, operator just raised it. This might be avoided

by use of more sofisticated contol system, which would take into account weather forecast
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and properties of ABESON describing its temperature development. Using model based

control system company would be able to reduce costs. This approach can then be applied

on any other tank or to similar class of control problems.

Advantage is that operators know when the factory will finish producing new ABE-

SON, when will a customer arrive to transport ABESON and when will the factory stop

producing it because of maintenance or for other reasons. This is very useful and helps

to decide whether to heat at all.

Eventhough there are good points in this way of controling system, it has abundance

of bad qualities. For this reason is the tank heated even when it is not neccessary because

the weather temperature is enough to maintain safe temperature. This means, that the

supply water happens to be 50 ◦C even when ambient temperature is 32 ◦C and the Sun

shines directly to the tank and the ABESON level is low. This leads to significant energy

loss, which can be improved by use of more sofisticated control.



Chapter 3

Creating a model

This chapter introduces how the mathematical model of thermodynamical processes

was created. Firstly, the physical principles are explained and using them the mathemat-

ical model is introduced. Secondly, to validate aproach taken in first step the equations

describing heat exchanger using resistor–capacitor network are derived. At last the model

is discretized and discrete transfer function and discrete state space model for parameter

estimation and control are introduced . It was decided to employ a simple model rather

than very detailed model, so for that reason some details which have mild effect on the

model are neglected. Incorporating them into the model would bring more variables

to work with. The complexity would grow over acceptable limits and it would be very

complicated to estimate model’s parameters.

3.1 Physical principles

Supply water pipes pass the heat to tank’s shell and heat-up ABESON. Modeling of a

tank can be understood as modeling of a heat exchanger. The energy flow is from a heat-

ing pipes to ABESON and from ambient environment to the tank or vice versa depending

on the temperature. The general heat exchanger looks like the one on a Figure 3.1.

On the Figure 3.1 the thermal exchange takes place in between the pipe and the

liquid inside the exchanger. In this case heating pipes are going through the tank. For the

storage tank the pipes are mounted on the surface, but it does not mean any complication.

It only affects the thermal resistivity between the heating pipes and ABESON. Storage

tank will have greater resistivity than pipes going directly through the liquid. Let us

8
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Ti

Tair

w
T
w

wi

TwR R21

Figure 3.1: General heat exchanger.

consider the heat exchanger on Figure 3.1 first. The energy flow

Q̇ =
Twi − Ti
R1

, (3.1)

where Q̇[ W] is an energy flow, Twi[
◦C] and Ti[

◦C] are water input and water output

temperatures, respectively R[ K W−1] is a thermal resistivity. Sign of temperatures dif-

ference determines the direction of energy flow. In our case this will tell whether the tank

is warmed up or cooled down.

From thermodynamics is known [6] that any thermal capacitance of any material is

defined as

Ci =
dQ

dT
=
Q̇

Ṫ
, (3.2)

which can be rewritten and regrouped into

Q̇ = Ci Ṫ , (3.3)

Ṫ =
Q̇

Ci
.

Where Q, T and Ci[ J K−1] are energy, temperature and thermal capacitance of any

material.

Substituting Equation (3.1) into Equation (3.3) yelds for Figure 3.1

Ṫi =
1

Ci
Q̇ =

Twi − Ti
R1Ci

, (3.4)

where Ci = mc is a thermal capacitance of heated medium, where m[ kg] is a mass of

heated medium and c[ J kg−1 K−1] is a specific heat of heated medium.
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For the chemical storage tank with ABESON, the thermal capacitance and resistivity

under the assumption that the shape of the tank is a cylinder can be determined as

Ci = mc = ρ V c = ρ π r2 h c, (3.5)

R =
l

λ S
,

where S[ m2] is an area of the surface the heat will be passing to, ρ[ kg m−3] is a

density of heated medium, V [ m3] is a volume of heated medium – here it is a cylinder,

π is a mathematical constant, r[ m] is a radius of top or bottom-base, h[ m] is a height of

cylinder, tank respectively, l[m] is a thickness of material through which the energy flows

and λ[ W m−1 K−1] is a thermal conductivity. All geometrical and physical constants

metioned above will be refered to as P .

To describe the process properly there are two phenomenas taking part in changing

tank’s temperature. Firstly, it is direct heating to the metal surface of tank. Secondly,

there is a weather, which is considered as a known disturbance. Weather temperature is

forecasted using NOAA weather forecast. It has been verified that forecasted temperature

fits real temperature within range of ±2 ◦C. These are two parts, which have to be

included in model of chemical storage tank. For cooling down the area will vary with

content’s level and will be refered to as S2(h,P). But the top-base is not considered,

because ABESON never touches the top lid. Heating the tank is limited by the reaching

point of heating pipes. Pipes reach h1 = 1.5 m from the bottom of the tank and therefore

the area is constant and will be refered to as to S1(P), which is area of tank’s shell covered

by supply water pipes.

S1(P) = 2π r h1 (3.6)

Area representing the ABESON in the tank is denoted S2(〈,P). It takes into account

the bottom base and the shell, but does not count with top-base.

S2(h,P) = 2π r h+ π r2 = π r (2h+ r) (3.7)

Now one can introduce the variables which concern our problem in Equation (3.8).

Ṫi = f(Ti, Tsw, Ta, h,P), (3.8)

where Ti is ABESON’s temperature, Tsw, Ta are supply and ambient water temperatures,

respectively, h is ABESON’s level inside the tank and P covers all physical and geometric

parameters. With use of basic principle of heating from Equation (3.4)
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Ci(h,P)Ṫi = −Ti − Tsw
R1(h,P)

− Ti − Ta
R2(h,P)

, (3.9)

Ṫi = − Ti − Tsw
Ci(h,P)R1(h,P)

− Ti − Ta
Ci(h,P)R2(h,P)

= (3.10)

= − 1

ρπr2hc

λ12πrh1

l1
(Ti − Tsw)− 1

ρπr2hc

λ2πr(2h+ r)

l2
(Ti − Ta) =

= −2h1

ρrc

λ1

l1

1

h
(Ti − Tsw)− 2

ρrc

λ2

l2
(Ti − Ta)− 1

ρc

λ2

l2

1

h
(Ti − Ta),

1

Ci(h,P)R1(h,P)
=

2h1 λ1

r ρ c l1 h
, (3.11)

1

Ci(h,P)R2(h,P)
=

2λ2

r ρ c l2
+

λ2

ρ c l2 h
, (3.12)

with thermal conductivity of heating pipes λ1, thermal conductivity of tank’s insula-

tion λ2, thickness of insulation of supply water l1, thickness of tank’s insulation l2.

Constants r, ρ, h1 are known parameters and subjects of estimation are parameters

λ1, λ2, l1, l2, c. ABESON level can be viewed upon as yet another input to the system

or as time varying parameter. By substitution for known parameters as p1 = −2h1

rρ
,

p2 = − 2
rρ

and p3 = −1
ρ

and unknown parameters as a1 = 1
c

, a2 = λ1

l1
ans a3 = λ2

l2
,

the Equation (3.9) can be rewritten into

Ṫi =
p1a1a2

h
(Ti − Tsw) +

(
p2a1a3 +

p3a1a3

h

)
(Ti − Ta). (3.13)

This equation can be rewritten with use of substitution a1 a2 = α and a1 a3 = β to

Ṫi =
p1 α

h
(Ti − Tsw) +

(
p2 β +

p3 β

h

)
(Ti − Ta), (3.14)

which is the final continuous-time model to be identified.

To identify the model defined by Equation (3.14), α and β has to be determined. Any

method used later in this thesis always interprets results as parameters α and β. It is not

necessary to identify each parameter λ1, λ2, l1, l2 and c. Two parameters are sufficient

to describe the cooling and warming process. Anytime in this thesis, when refered to

parameters it regars to α and β.
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3.2 Resistor – capacitor network

Thermodynamical processes can be modeled using electrical circuits with resistors

and capacitors, here capacitor represents tank’s content – ABESON. Resistors represent

thermal resistivities. Power sources are sources of heat. Resistor network for chemiacal

storage tank with ABESON is on Figure 3.2.

There are two power sources - the first represents supply water and is denoted as usw

and the second power source ua represents ambient temperature. Capacitor is marked

as Ci and represents ABESON. Voltage constitutes temperature and current is a energy

flow. As power supplies charge capacitor, its voltage rises. It means that ABESON’s

temperature rises too. R2 is thermal resistivity of metal dividing heating pipes and

ABESON, R1 is thermal resistivity of orsil. Weather and supply water are considered to

be power supplies because their temperatures are not affected by any other source.

C
i

R
1

R
2

+

-

+

-

u
sw

u
a

u
i

u
R1

u
R2

i
i

i
R2

i
R1

N

Figure 3.2: Resistor network simulating tanks behaviour.

To describe tank’s inner temperature, equation for ui(capacitor voltage) must be

derived. Krichhof’s current law will be used. This law says, that sum of all currents

entering a nod is equal to zero. Namely for nod N on Figure 3.2:

ur1
R1

+
ur2
R2

= ii, (3.15)

ui − ua
R1

+
ui − usw
R2

= ii.

Current through capacitor is described as:
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ii = Ci
dui
dt

= Ci u̇i, (3.16)

which will be plugged into Equation (3.15), resulting in:

ui − ua
R1

+
ui − usw
R2

= C, u̇i (3.17)

ui − ua
CiR1

+
ui − usw
CiR2

= u̇i.

Equation (3.17) verfies, that chosen concept is correct and can be applied for modeling

aforementioned chemical tank. Equation (3.17) can be rewriten in a way that describes

temperature transfers. It is similar to equation as in Equation (3.9). Note:the system is

nonlinear and this fact is not represented in this model. Nonlienarity might be expressed

by making capacity and resistivity dependent on some varialbes. Changing capacity

would cause the same effect as does the water level.

3.3 Model for control

For practical reasons of control, model had to be discretized. Discretized model was

then used in to run simulations and to compute optimal temperature of supply water.

3.3.1 Sampling time selection

The data are saved into database every minute. So one minute time interval is the

shortest time interval to use. To determine the sampling time, frequency spectra of data

were used. Frequency spectra on Figure 3.3 shows average spectra of input and output

signals. Significant peak at frequency 7.27 · 10−5[ rad s−1] represents a day. Plot auggests

that there is no important information above frequency 0.8 · 10−3[ rad s−1], repectively

there is only noise.

Shannon–Kotelnikov theorem says that sampling frequency should be at least twice

as greater as the frequency of our interrest. This means, that if frequency of our interrest

is 0.8 · 10−3[ rad s−1], which corresponds to the period T = 131[ min], then the sampling

time should be at least Ts = 65[ min]. To be more realistic it is better to choose one
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hour as the lowest possible sampling time. To meet the Shannon–Kotelnikov theorem

the sampling time was chosen approximately six times lesser: Ts = 10[ min].
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Figure 3.3: Frequency spectrum of data.

3.3.2 Discretization

For discretization Euler’s discretization with sampling time Ts is used.

Ti(k + 1) ≈ Ṫi Ts + Ti(k), (3.18)

Discrete model can be then obtained simply from plugging Ṫi into Equation (3.18)

and as a result is derived:

Ti(k + 1) =

[
p1α

h
(Ti(k)− Tsw(k)) +

(
p2β +

p3β

h

)
(Ti(k)− Ta(k))

]
Ts + Ti(k). (3.19)

3.3.2.1 Discrete transfer function

For future estimation purposes is derived discrete transfer function representaition of

the discrete equaiton.
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Z{Ti(k + 1)} = Z{Ti(k)} z, (3.20)

Z{Ti(k)} = T̂i,

where z−1 is a time delay. Equation (3.19) is interpreted as a transfer function description

with 1/h as a varying parameter.

T̂i z =
[p1a1a2

h
(T̂i − T̂sw) +

(
p2a1a3 +

p3a1a3

h

)
(T̂i − T̂a)

]
Ts + T̂i, (3.21)

T̂i z = Ts p1 α
1

h
T̂i − Ts p1 α

1

h
T̂sw+

+ Ts p2 β T̂i − Ts p2 β T̂a+

+ Ts p3 β
1

h
T̂i − Ts p3 β

1

h
T̂a,

T̂i z =

(
Ts p1 α

1

h
+ Ts p2 β + Ts p3 β

1

h
+ 1

)
T̂i

−
(
Ts p1 α

1

h

)
T̂sw

−
(
Ts p2 β + Ts p3 β

1

h

)
T̂a,

T̂i

(
z −

(
Ts p1 α

1

h
+ Ts p2 β + Ts p3 β

1

h
+ 1

))
=

= −
(
Ts p1 α

1

h

)
T̂sw −

(
Ts p2 β + Ts p3 β

1

h

)
T̂a,

T̂i =

[
−(Ts p1 α

1
h )

z−(Ts p1 α
1
h

+Ts p2 β+Ts p3 β
1
h

+1)
−(Ts p2 β+Ts p3 β

1
h )

z−(Ts p1 α
1
h

+Ts p2 β+Ts p3 β
1
h

+1)

] [
T̂sw

T̂a

]
.

Let us substitute:

Ksw(h) = −
(
Ts p1 α

1

h

)
(3.22)

Ka(h) = −
(
Ts p2 β + Ts p3 β

1

h

)
D(h) =

(
z −

(
Ts p1 α

1

h
+ Ts p2 β + Ts p3 β

1

h
+ 1

))
and then it is possible to write following transfer function description of the model:

G(z, h) = [Gsw(z, h) , Ga(z, h)] =

[
Ksw(h)

z +D(h)
,

Ka(h)

z +D(h)

]
, (3.23)
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Note, that in Equation (3.23), are only two inputs. This is because this model is

parameter varying with parameter h.

3.3.2.2 Discrete state-space model

In control state space model is used. To create it Equation (3.19) can be used and

rewritten as follows:

Ti(k + 1) =

[
p1α

h
(Ti − Tsw) +

(
p2β +

p3β

h

)
(Ti − Ta)

]
Ts + Ti(k) (3.24)

Ti(k + 1) =

(
Ts p1 α

h
+ Ts p2 β +

Ts p3 β

h
+ 1

)
Ti

−
(
Ts p1 α

h

)
Tsw

−
(
Ts p2 β +

Ts p3 β

h

)
Ta. (3.25)

Equation (3.24) is basically a state space description, let us consider Ti as state, Tsw

as input and Ta as disturbance input, then the system can be rewritten into:

Ti(k + 1) = A(h)Ti +B(h)Tsw + V (h)Ta, (3.26)

where the system matrices are:

A(h) =

(
Ts p1 α

h
+ Ts p2 β +

Ts p3 β

h
+ 1

)
(3.27)

B(h) = −
(
Ts p1 α

h

)
V (h) = −

(
Ts p2 β +

Ts p3 β

h

)



Chapter 4

Analysis of measured data

Chapter gives an overview of complication with data. It explains what is understood

by artefact in data and explains why the data had to be preprocessed. It also covers

what caused artefacts and why it made it difficult to estimate parameters. Solution of

problems is described.

4.1 Artefacts in data sets

During the identification process some problems were encountered. These problems

made it too difficult or even impossible to estimate parameters correctly. Estimated

parameters happened to be way out of acceptable bounds. After verifying that estimation

approached work well it was concluded that problem is caused by data sets. Therefore

the analysis of data was necessary to find the problems and decide how to avoid them

and how to estimate parameters correctly.

The data include artefacts, which are areas where the data behave as not expected

or in a way that is not covered by model. If the model does not descibe the data, it

cannot be used. Two possible solutions arise - either to create a new more complex

model covering discovered artefacts or to preprocess the data to avoid problems. Both

ways were examined. The first way turned out to be very complex, since the model

got very complicated. The second approach was taken because it is faster to solve the

problems by preprocessing the data. The example of data with artefacts is on Figure 4.1.

The model is designed only to describe heating and cooling in tank. It does not take

into account following artefacts:

17
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• sudden increase of ABESON’s temperature,

• outlayers of temperature or level,

• changes in weather forecast,

• non-realistic changes of level,

• loss of data,

• no numeric values stored - NaN (not a number) error.

The most artefacts were caused by mixing ABESON in the tank and by pumping it of

the tank. Because of sensor placement and poor insulation measurement of ABESON’s

temperature is much more affected by ambient environment than the rest of the tank.

It cools down faster than the ABESON on the top and when ABESON inside is mixed

temperature rises rapidly for even more than 10 ◦C. This process cannot be described

by an input since this happens irregularly and is strictly manually controlled. The same

result - temperature step - is caused by pumping ABESON out from a tank. The reason is

similar - temperature on the top is higher than on the bottom. When pumping ABESON

out, a valve on the bottom of the tank is opened and hotter ABESON from the top of
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Figure 4.1: Data example.
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the tank gets down, where the temperature sensor is placed. This lasts a very short time.

This can be detected since there is a significant drop in an ABESON level.

These are the major issues to deal with, but there are also some minor complications.

Firstly, the sun is also affecting inner temperature and it slows down cooling process.

This can affect estimated parameters. Secondly the temperature sensors measuring the

heating water and return water are placed at the control station and not at the tank

itself making it possible for ambient environment to affect heating water (because of a

poor insulation on heating pipes). Thirdly, there are problems with data measurement

and time from time there is a data loss, which has to be taken care of.

Solution to these complications is in data preprocessing. Before running any simula-

tion or estimation, the input data are scanned for NaNs and these are removed. Then

the data are cut into many different parts where there are no artefacts. This means that

only data with clear cooling or heating pattern are taken into account.



Chapter 5

Indentification of model

Identification methods itself are described in detail in this chapter. The list of ap-

proaches taken to identify parameters α and β follows.

1. First principle modeling. Thorough analysis of the physics on the background

of the process.

2. Family of prediction error methods (PEMs). Since not all the system param-

eters are known, the statistical methods are recommended to employ. Moreover,

PEMs serve mainly for identification of linear systems. Which this case under some

special circumstances is.

3. Subspace identification (4SID). Yet another linear system identification method

which, on contrary to PEMs, includes order selection.

4. Linear parameter varying (LPV) systems identification. The level in the

tank is a varying parameter. Therefore these approaches were employed too.

5. Identification by ACADO software. Physical principle model comprises many

unknown constant parameters, that need to be identified. ACADO is a software tool

allowing identification of unknown parameters of nonlinear continuous or discrete

time systems.

6. Decoupled identification of cooling and heating parts. This approach used

ACADO software for parameter estimation, but heating and cooling part was esti-

mated separately.

20
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5.1 First principle modeling.

5.1.1 General overview

Thanks to ENASPOL a.s. some parameters of the model are already known: h1 = 1.5 m,

r = 1.4 m, ρ = 1080kg m−3. The rest of parameters will be estimated.

Material c[ J kg−1 K−1] λ[ W m−1 K−1]

water 4180 0.6062

iron 450 80.2

air 1003 0.0262

diamond N/A 895-2300

orsil N/A 0.040

Table 5.1: Table of material properties.

Based on the data in table1 Table 5.1 it is assumed that the properties of insulation

should be similar to orsil. Widely used insulaiton material in technological processes and

in houses. It is also supposed the specific heat is similar to water. On site measurements

in ENASPOL a.s. provided the thickness of insulation material. The thinckness of

insulation is not consistent and it might have changed its properties due to long exposure

to outside conditions. This would cause the tank to cool down faster, than when the

insulation would be in a good shape.

Description of tank’s insulation and thickness is depicted on Figure 5.1.1 and shows

that λ2 and l2 is related to orsil and outside environment and λ1 and l1 is related to

heating pipes. Heating pipes have a quite long way to get to the tank itself and therefore

heating temperature is not the same as when measured.

Thanks on site measurements it was figured that the insulation between the shell and

the tank is l2 = 0.2 m and the thickness of heating tubes shell together with thickness

of tank’s shell is l1 = 0.02 m. Based on the data from Table 5.1 it is supposed that the

material thermal insulation conductivity λ2[ W m−1 K−1] is in interval 〈0.02; 0.06〉 and

that tank and pipes thermal conductivity λ1[ W m−1 K−1] is 〈50; 100〉. Specific heat of

ABESON is similar to the water with c = 4180J/(kg−1K−1). All the assumptions point

to the following values of the parameters α = 〈1 ·10−2; 1 ·10−1〉 and β = 〈1 ·10−4; 9 ·10−3〉.
1http://www.engineeringtoolbox.com
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Figure 5.1: Cut through tank.

Note: The estimation process was started with all five parameters as subject of

estimation, later reduced into three as shown in Equation (3.13). At last, model using

only parameters α and β was used. This provided acceptable results and was very simple

to interpret.

The decision to use model with two parameters was made, because there is no need

to find the exact value of parameters λ1, λ2, l1, l2 and c. It is only necessary to create a

model which will cover the change of temperature properly in a control point of view.

5.1.2 Margin estimates

In order to make rough estimate of what the parameters α and β should be, there is

an estimation based on known data and experience of current ENASPOL a.s. operators

manning the tank.

Let us suppose that parameters lie in within the range set by previous chapter. It is

very important for future estimation. If the range is wrong, it would not be possilbe to

estimate right parameters. All following methods use constraints. It constraints are set

wrong, then also resulting data will be most likely wrong. From aforementioned intervals

is computed the first aproximate estimate of parameters to demonstrate that the priciple

works. If the real value of ABESON’s temperature lies within simulated output, than it

means that values were set right. If not, the range has to be modified.
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〈αmin; βmin〉 = 〈1 · 10−2; 1 · 10−4〉, (5.1)

〈αmin; βmax〉 = 〈1 · 10−2; 9 · 10−3〉,
〈αmax; βmin〉 = 〈1 · 10−1; 1 · 10−4〉,
〈αmax; βmax〉 = 〈1 · 10−1; 9 · 10−3〉.

To demonstrate that margin stated in Equation (5.1) is correct, simulations were

performed.
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Figure 5.2: Simulation of margin.

Simulations are whown on Figure 5.2 It proves that the margin covers the range in

within the real parameters should be, because the real ABESON temperature lies between

simulated lines.

On Figure 5.3 there are data with simulation of cooling part compared with original

ABESON’s temperature. It is possible to see, that cooling component was estimated

correctly because it cools very fast, but ABESON’s temperature stays about the same.
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Figure 5.3: Data used to simulate margin.

5.2 Linear time invariant approach

5.2.1 Prediction error methods - PEMs

The most common way of identifying models is to use PEMs. It is also the first choice

for purposes of this thesis. This methods are well known and widely used. PEMs are

usually employing ARX (autoregresive with external input) models. Their parameters

are then identified by LS (least squares) or by recursive algorithms. This approach is

suitable for linear time invariant systems.

The nonlinear model of the system is proposed. Nevertheless, in measured data can

be found such cases, where the model can be considered as linear and time invariant. It

happens when ABESON level is fixed: the input h then happens to be a constant. It

changes the way to look at the model. Thus the model is linear.

Prediction error methods minimize the prediction error ε(t, θ) = y(t)− ŷ(t, θ), where

ε is error of prediction, y(t) is measured output, ŷ(t, θ) is estimated output and θ is a

vector of parameters.The criterion function of this approach is

θ̂∗ = arg min
θ

N∑
t=1

ε(t, θ), (5.2)

where θ̂∗ is called optimal estimate of θ. The hat stands for estimate and star denotes
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optimality in terms of Equation (5.2). N is the length of data. For more details, see for

instance [9].

ARX model is described by

y(k) +
na∑
i=1

ai y(k − i) =
nu∑
l=1

nb∑
j=0

bj l ul(k − j) + e(k), (5.3)

where ul is l–th input, e is white noise sequence with N (0, σ2
e), nb is number of

parameters for inputs, na is number of parameters for outputs. The Equation (5.3) can

be rewritten using

θ =
[
a1 a2 . . . ana b01 b11 . . . bnb1 b02 . . . bnbnu

]T
, (5.4)

which is a vector of parameters and

ψ =
[
−y(k − 1) . . . −y(k − na) u1(k) . . . u1(k − nb) . . . unu(k − nb)

]T
, (5.5)

which is a vector of data, called regresor. The Equation (5.3) is possible to express

as a vector multiplication

y = ψT θ + e, (5.6)

where ψ and θ were defined above. This is possible when parameters of the system are

known and there is no disturbance. For parameter estimation the situation is different.

Usually the vector θ is unknown and it is desired to estimate it in a fashion that satisfies

Equation (5.2). The inputs and output are measured. This approach is suitable only for

MISO (multiple input single output) systems. Measured inputs and output are assembled

into regresor. Ouput is known.

The best estimate in terms of Equation (5.2) is θ̂∗. It can be obtained by using least

squares, which minimizes:

θ̂∗ = arg min
θ
||y − ψ θ||22. (5.7)
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To get the optimal vector of parameters θ̂∗ is Equation (5.7) processed as follows:

∂

∂θ

(
yT y − yT ψT θ − ψ θT y + ψ θT ψT θ

)
= −2ψ y + 2ψ ψT θ, (5.8)

0 = −2ψ y + 2ψ ψT θ̂∗,

ψ y = ψ ψT θ̂∗,

(ψ ψT )−1 ψ y = θ̂∗,

θ̂∗ = (ψ ψT )−1 ψ y.

The methods used for the identification have been implemented both in the iden-

tification toolbox ([8]) and by ourselves, which has advantages of additional physical

constraints on the model to be identified. This was converted to transfer function and

from transfer function it is easy to compute actual results for parameters.

The wanted parameters α, β are obtained from Equation (3.23). Additionally, there

are physical constraints on Ksw, Ka to be positive.

α =
−Ksw h

Ts · p1

β =
−Ka h

(p2 + p3)Ts
, (5.9)

Firstly, the estimation of parameters α and β was performed on the whole available

data, but the result was not satisfactory due to artefacts described in Chapter 4. Arte-

facts caused the resulting model to create a curve which was almost not responding to

any significant input from supply water or weather temperature.

Secondly, the decision was made to cut the whole original data set into sets without

any significant loss of data and without any artefacts. The estimation was run on each

one of them and provided results listed in Table 5.3. The zeros in the table are due to

aforementioned constraints.

5.2.2 Subspace identification

As well as previous methods this is also used for identifying linear time invariant

systems, but on contrary it can be used to identify multiple input multiple output (MIMO)

systems as well. This approach is also widely used for identification purposes as ARX

[4, 3, 11]. In this case, only the identification toolbox in Matlab has been used. The

greatest advantage is that it can merge more data sets together, so it can compute results
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Data set α β Data set α β

1 3.30 · 10−2 1.00 · 10−9 11 6.37 · 10−2 1.00 · 10−9

2 4.50 · 10−2 1.00 · 10−9 12 2.43 · 10−2 1.00 · 10−9

3 2.76 · 10−2 0.16 · 10−2 13 7.03 · 10−2 0.53 · 10−2

4 0.20 · 10−2 1.00 · 10−9 14 4.23 · 10−2 1.00 · 10−9

5 1.00 · 10−9 0.19 · 10−2 15 1.00 · 10−9 1.07 · 10−2

6 4.04 · 10−2 0.03 · 10−2 16 6.52 · 10−2 1.00 · 10−9

7 9.51 · 10−2 1.00 · 10−9 17 1.71 · 10−2 0.22 · 10−2

8 1.00 · 10−9 1.00 · 10−9 18 0.98 · 10−2 0.33 · 10−2

9 1.32 · 10−1 1.00 · 10−9 19 1.00 · 10−4 3.54 · 10−2

10 0.91 · 10−2 1.00 · 10−9 Mean Value 3.56 · 10−2 0.32 · 10−2

Table 5.2: Table of ARX estimated parameters.

using cooling or heating sets together. Method is also able to estimate the order of

the system. The objective of the subspace algorithm is to find a linear, time invariant,

discrete time model in an innovation form

x(k + 1) = Ax(k) +Bu(k) +Ke(k) (5.10)

y(k) = Cx(k) +Du(k) + e(k),

where A, B, C, D are system matrices, K is Kalman filter gain and e is a white noise

sequence [12]. The objective of the algorithm is firstly to determine the system order,

and afterwards, to find the system as well as state and measurement noise covariance

matrices given the sequence of input u(k) and output y(k) measurements. The main

difference between classical and subspace identification is, as follows:

• Classical approach. Find the system matrices, then estimate the system states,

which often leads to high order models that have to be reduced thereafter.

• Subspace approach. Use orthogonal and oblique projections to find Kalman state

sequence, then obtain the system matrices using least squares method.
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Data set α β Data set α β

1 3.33 · 10−2 −0.04 · 10−2 11 4.24 · 10−2 −0.05 · 10−2

2 5.00 · 10−2 0.10 · 10−2 12 3.46 · 10−2 −0.33 · 10−2

3 7.33 · 10−2 −0.06 · 10−2 13 6.85 · 10−2 0.35 · 10−2

4 0.75 · 10−2 −0.24 · 10−2 14 2.95 · 10−2 0.09 · 10−2

5 −4.87 · 10−2 0.07 · 10−2 15 −2.25 · 10−2 0.16 · 10−2

6 4.21 · 10−2 0.02 · 10−2 16 6.80 · 10−2 −0.15 · 10−2

7 8.48 · 10−2 1.00 · 10−9 17 3.56 · 10−2 0.08 · 10−2

8 0.60 · 10−2 −0.93 · 10−2 18 0.93 · 10−2 0.25 · 10−2

9 11.9 · 10−2 0.03 · 10−2 19 0.51 · 10−2 −0.66 · 10−2

10 2.19 · 10−2 0.08 · 10−2 Mean Value 4.30 · 10−2 0.12 · 10−2

Table 5.3: Table of subspace (n4sid) estimated parameters.

5.3 Nonlinear approach

5.3.1 Linear parameter varying models (LPV)

These methods described for example in [10] and [1] are used to identify non–linear or time

varying systems. It is assumed, that the varying paramter is measured. LPV separates

a paramter causing nonlienarity from the system. It allows to identify the linear part of

the system. In 5.11 is introduced a LPV system. Parameter dependent plant is depicted

on Figure 5.4.
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Figure 5.4: Parameter dependent plant.
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Since here is only one varying parameter, it will be denoted δ(k) instead of ∆(k),

where k represents time step. δ(k) is extracted parameter causing non–linearity, in case

of ABESON chemical storage tank it is level h. On Figure 5.4 – uk is measured input

data, yk is measured output and zk with wk are unmeasurable signals internal to the

plant. The system can be expressed by following system equations:

X(k + 1) = AX(k) +B1u(k) +B2w(k),

z(k) = C1X(k) +D11u(k) +D12w(k),

y(k) = C2X(k),

w(k) = δ(k)z(k), (5.11)

where A ∈ Rn×n, B1 ∈ Rn×m, B2 ∈ Rn×1, C1, C2 ∈ R1×n, D11 ∈ R1×m and D12∈R1×1 .

Where n is model order and m is number of inputs. For thesis’ system n = 1 and m = 2.

There are two measured inputs and one measured output and one measured parameter –

level h. Using this fractional transformation, it is possible to identify system as a linear

system with one varying parameter using recursive least square (RLS) algorithm.

For our case of the first order model, the matrices A = a11, B1 = [b11 b12], B2 = 1,

C1 = c1, C2 = 1, D11 = [d11 d12] and D12 = d2. So the Equation (5.11) can be rewritten

into

Ti(k + 1) = a11 Ti(k) + b11 Tsw(k) + b12 Ta(k) + w(k),

z(k) = c1 Ti(k) + d11 Tsw(k) + d12 Ta(k) + d2w(k),

y(k) = Ti(k),

w(k) = δ(k) z(k). (5.12)

In order to find regresor and vector of parameters, it is necessary to proceed further

by regrouping terms as

Ti(k + 1)− a11 Ti(k)− b11 Tsw(k)− b12 Ta(k) = w(k),

1

d2

(c1 Ti(k) + d11 Tsw(k) + d12 Ta(k)) =
1

d2

zk − w(k), (5.13)

w(k) = δ(k) z(k).

From Equation (5.13) is possible to collect zk and substitute for wk
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Ti(k + 1)− a11 Ti(k)− b11 Tsw(k)− b12 Ta(k) = δk zk,

1

d2

(c1 Ti(k) + d11 Tsw(k) + d12 Ta(k)) = zk

(
1

d2

− δk
)
, (5.14)

and it allows to divide both equaitons and cancel zk, getting

(
1

d2

− δk
)

(Ti(k + 1)− a11 Ti(k)− b11 Tsw(k)− b12 Ta(k)) =

= δk
1

d2

(c1 Ti(k) + d11 Tsw(k) + d12 Ta(k)) . (5.15)

Equation (5.15) is almost in a form for use of least squares method. To simplify it, let

us substitute α1 = 1
d2

, α2 = −a11

d2
, α3 = − b11

d2
, α4 = − b12

d2
, α5 = a11 − c1

d2
, α6 = b11 − d11

d2
,

α7 = b12 − d12
d2

, .

While the vector of parameters Θ and regressor Ψ are defined as

Θ = [α1, α2, α3, α4, α5, α6, α7]
T (5.16)

Ψk+1 =
[
Ti(k + 1) Ti(k) Tsw(k) Ta(k) δ(k)Ti(k) δ(k)Tsw(k) δ(k)Ta(k)

]
,

Parameters in vector Θ are obtained from solving Equation (5.17) using RLS.

δ(k)Ti(k + 1) = Ψk+1Θ. (5.17)

Tank’s discretized equation according to [10] is as follows:

Ti(k + 1) =
[
p2βTs + 1 0 −p2βTs

]
Ti(k)

Tsw(k)

Ta(k)

+ w(k),

w(k) = δ(k)z(k), (5.18)

z(k) =


p1αTs + p3βTs

−p1αTs

−p3βTs


T 

Ti(k)

Tsw(k)

Ta(k)

 .
Using this method, estimated paramters converged to α = 0.029 and β = 0.0019.

The trajectory of parameters suggests there are two possible models - first summer and
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second winter. Once the heating started working the parameters dropped to different

values. Changes of trajectory were caused by artefacts described in section Chapter 4.

The algorithm for providing results was recursive least sqares and least squares. LPV

was - unlike ARX, Subspace and ACADO - run on the whole data set taken from the

end of september till the end of January.

Θ̂(k) = Θ̂(k − 1) + L(k)
[
y(k)− ψT (k)Θ̂(k − 1)

]
, (5.19)

L(k) =
P (k − 1)ψ(k)

λ+ ψT (k)P (k − 1)ψ(k)
, (5.20)

P (k) =
1

λ
·
[
P (k − 1)− P (k − 1)ψ(k)ψT (k)P (k − 1)

λ+ ψT (k)P (k − 1)ψ(k)

]
, (5.21)

where P is covariance matrix, λ is forgetting parameter, Θ̂ is an estimate of vector of

parameters and L is Kalman’s gain.

5.3.2 Identification by ACADO software

ACADO2 stands for the Automatic Control and Dynamic Optimization ([7, 5]). It

enables the computation of an optimal input, identification of optimal parameters of non-

linear systems and solving non-linear equations in continuous or discrete time domain.

ACADO can be used as a standalone program using C/C++ source code or it can work

as an interface for Matlab. The results using ACADO software are displayed in Table 5.4

and in Table 5.5.

Algorith uses the Levenberg–Marquardt Algorithm, which is the most often used

optimization algorithm. It is a combination of vanilla gradient descent and Gauss–Newton

iteration. In many ways it overcomes simple gradient algorithms.

Even though it might seem as the most straightforward method of determining searched

parameters, it turned out that there are too many data and computer was not able to

process more than certain size of input files, which made its use very limited. However,

it produced perfect results which matched the input data plausibly, although it did not

work on the whole data set.

This identification also underwent some development. At the beginning the idea was

to determine also all parameters of the model – l1, l2, λ1, λ2 and c. However it proved to

be too complicated and it was decided not to proceed with these estimates. The results

2http://www.acadotoolkit.org/
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were out of physical bounds or sometimes also illogicaly negative. The accuracy was very

good, but provided values did not make any sense in a real world. ACADO turned out

to be the very useful tool and produced plausible results.

Set α β Set α β

1 2.77 · 10−2 1.82 · 10−3 11 2.80 · 10−2 1.00 · 10−4

2 4.46 · 10−2 1.00 · 10−3 12 3.11 · 10−2 1.00 · 10−4

3 6.68 · 10−2 9.73 · 10−3 13 7.63 · 10−3 2.00 · 10−2

4 1.39 · 10−2 8.79 · 10−3 14 3.74 · 10−2 1.00 · 10−4

5 1.00 · 10−6 1.32 · 10−3 15 3.70 · 10−2 1.00 · 10−4

6 1.26 · 10−2 1.00 · 10−4 16 3.66 · 10−2 1.00 · 10−4

7 2.51 · 10−2 1.30 · 10−2 17 3.00 · 10−2 1.00 · 10−4

8 1.00 · 10−6 9.93 · 10−3 18 1.04 · 10−2 1.74 · 10−2

9 3.54 · 10−2 1.00 · 10−4 19 2.38 · 10−2 6.32 · 10−3

10 2.29 · 10−2 1.87 · 10−2 Mean Value 2.58 · 10−2 5.72 · 10−4

Table 5.4: Estimated parameters by ACADO from reference set.

α β Heating temp α β Heating temp

1.00 · 10−6 0.12 · 10−2 35.0 9.03 · 10−3 0.60 · 10−3 40.0

4.42 · 10−2 0.08 · 10−2 35.0 1.24 · 10−2 1.00 · 10−3 40.0

7.50 · 10−2 0.26 · 10−2 45.0 3.14 · 10−3 2.60 · 10−3 40.0

2.35 · 10−2 0.11 · 10−2 45.0 7.92 · 10−3 3.20 · 10−3 40.0

4.85 · 10−2 0.19 · 10−2 45.0 1.59 · 10−2 3.50 · 10−3 40.0

3.23 · 10−2 0.07 · 10−2 40.0 1.74 · 10−3 1.10 · 10−3 40.0

2.40 · 10−2 0.14 · 10−2 40.0 1.05 · 10−4 0.70 · 10−3 55.0

1.00 · 10−9 0.19 · 10−2 40.0 5.90 · 10−5 0.17 · 10−3 55.0

Table 5.5: Estimated parameters by ACADO from nonlinear sets.

In the second table there are identified parameters for winter time. It is possible to

tell because there is a column with supply water temperature.s
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5.4 Decoupled identification approach

As another approach to verify the results and to get more accurate parameters it was

decided to use ACADO to identify separetly heating and cooling parts. This approach

required data preprocessing. Instead of parts with obvious cooling pattern, data, where

ABESON’s temperature was in steady state or where it was very close to the heating tem-

perature, were choosen for identification. The assumption was that when the temperature

is about the same as supply water temperature then it can be neglected.

Second point is to choose the same data as in previous cases with cooling pattern to

identify cooling constant only - this means setting the α = 0. Then on parts with clear

heating α was identified separately.

Data set Cooling - β Data set Cooling - β

1 1.35 · 10−3 6 1.04 · 10−3

2 1.01 · 10−3 7 0.53 · 10−3

3 1.19 · 10−3 8 0.21 · 10−3

4 1.45 · 10−3 9 1.44 · 10−3

5 1.16 · 10−3 10 0.88 · 10−3

Mean Value 0.9794 · 10−3

Table 5.6: Table of decoupled estimated parameters for cooling.

Using the mean value from table 5.6 as fixed parameter for β the other parameter –

α – was estimated from heating parts. The parameter was determined as α = 0.028.

Data sets with appropriate heating sets were less than with cooling sets, therefore there

are only few items in Table 5.7. Despite its limited resources, this approach turned out

very important in terms of realising the energy flow. If one of the estimated components

represented by parameters α and β is steeper than the other, it results in increasing the

ABESON’s temperature or decreasing it depending on which component has stronger

influence. Decoupled approach also tells, how long it will take for ABESON to cool down

when not heated. If days, it might be used to turn the heating off entirely. Thanks

to decoupled identification it is possible to tell, when will the ABESON’s temperature

decrease under desired value and when the heating will be needed again.

The parameters in Table 5.7 have very small deviation. It is a very good result. It

might be because there were only few data sets. The problem was, that supply water

was not able to maintain the ABESON’s temperature when full tank. For that reason
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the sets where the temperature was actually rising thanks to the supply water were rare.

When more data are measured, more estimations can be done to support this approach.

Data set Heating – α

1 2.05 · 10−2

2 2.80 · 10−2

3 2.76 · 10−2

4 3.70 · 10−2

5 2.72 · 10−2

6 2.38 · 10−2

Mean Value 2.75 · 10−2

Table 5.7: Table of decoupled estimated parameters for heating.



Chapter 6

Verification of identified models

Chapter describes the files written to simulate results and extimate parameters. It

includes figures of simulated models and compares them. The chapter states criateria for

a model to be acceptable and to be used in control and then evaluates identified models.

6.1 Files description

To perform simulations numerous files were written. This section will describe each

one of them.

• LPV_enaspol.m- loads desired data and then identifies parameters of linear param-

eter varying model using recursive least squares.

• LPV_identification.m- uses modified linear parameter varying model and identi-

fies parameters using recursive least squares method,

• ACADO_parameter_estimation.c- source code for using ACADO to identify pa-

rameters. Source file has to be compiled first and then run with input files with

input data.

– ENA_h_short.txt- level input data.

– ENA_Theat_short.txt- supply water temperature.

– ENA_Ttank_short.txt- ABESON’s temperature.

– ENA_Tw_short.txt- ambient temperature.

35
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• get_fit_factor.m- includes code to compapre two signals.

• ENASPOL_simulation.m- simulates the ABESON’s temperature and plots graphs.

• ARX_estimate.m- estimation of parameters of ARX model.

• parse_data.m- data parser to prepare export of data from MATLAB R©to ACADO

input files.

• write_data.m- writes data for ACADO to txt files.

• read_data.m- reads data from txt files for simulation purposes.

• ACADO_matlab.m- ACADO interface incorporating ACADO to MATLAB.

6.2 Validation of models

For simulation script ENASPOL_simulation.m was used. This script used input data

to simulate ABESON’s temperature and as a result plots the original ABESON’s tem-

perature along with simulated to see the difference. To evaluate the result properly, other

script computed fit factor. Fit factor is a percentage value suggesting how similar the

two signals are. The closer to 100%, the better, but it is still acceptable fit of 50%. The

script computes the difference between single points from simulation and original data

and then normalises it.

A storage tank was modelled, the model describing heat exchanger was used as de-

scribed in Chapter 3. To identify parameters of the system, five approaches were applied:

• Linear - ARX and Subspace.

• Non-linear - ACADO software and Linear parameter varying model’s parameter

estimation.

• Decoupled cooling and heating parts identification.

Estimated parameters of identified models are in Table 6.1.

The parameters are in expected range, but PEM and Subspace parameters are sig-

nificantly greater than others. It is caused by the extimation process where mean was

computed from set of input data. The estimation process of PEM was constrained, but
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Subspace did not have any constraints. For that reason the results of both linear methods

are different.

On the other hand, the non–linear methods have parameter α about the same, but

parameter β is different. Also decoupled approach provided results similar to non–linear

approches.

On the Figure 6.1 are simulated results and ABESON’s temperature with original

data. The data were obtained in winter time as suggests the negative ambient tempera-

ture. Supply water has high temperature, because ABESON was required to stay warm.

This data set was chosen also because the level is changing and therefore it is possible to

verify whether the model is working also unde this condition.

The method using ARX model seems to have trouble with matching the original

data. It means that parameters are not estimated correctly. On contrary, Subspace

identification covers the original data well. It is almost like ACADO. Subspace method

did not have any contraints, so some estimated parameters from which the mean was

calculated were even negative. It shifted the resulting parameters in Table 6.1. ARX

model without constraints was also tested, but it did not provide acceptable results.

ACADO simulation is very close to Subspace simulation. It is because the ration

between parameters α and β is about the same, so the development of temperature will

be very similar. LPV model’s simulation of the temperature is also plausible. From all

the methods it covers the original data the best.

Estimation of parameter for previous methods was based on estimating parameters

from different data sets and them computing mean value, which was considered as result-

ing parameter. LPV approach could work with the whole data set as the only approach

used. ACADO has also the capability to process the non–linear input, but it required

a great computation power which was not avalible to author when writing this thesis.

Using LPV was very convenient.

Convergence of parameters is shown on Figure 6.2 along with data used to estimate

parameters. The values of the estimated parameters α, β varying in time are depicted

Parameter ARX SubSpace LPV ACADO Decoupled

α 3.56 · 10−2 4.30 · 10−2 2.58 · 10−2 2.41 · 10−2 2.80 · 10−2

β 3.20 · 10−3 1.20 · 10−3 1.56 · 10−3 7.89 · 10−4 1.02 · 10−3

Table 6.1: Table of resulting parameters.
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Figure 6.1: Result of identification and input data used for simulation.

in Figure 6.2. The trajectory of the parameters was affected neither by changes of supply

water temperature, nor by drops in level. It was a great advantage that there was no

need for data preprocessing. In data there are obvious artefacts, but despite them, the

parameters converged succesfully and as Figure 6.1 shows the result was acceptable.
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Figure 6.2: Convergence of parameters and used data for parameter estimation.

Typical output of ACADO software is on Figure 6.3. This outpus shows the status

of convergence and every line is one step of optimization. In the end it displays optimal

parameters for desired input set and plots graphs using gnuplot. Grahical output example

is on Figure 6.4.

Identification using ACADO has certain requirements for the input data. It needed

time stamp for every measurement and eventhough there were examples able to deal

with a data loss, in reallity it seemed to cause trouble. It caused the system to report

Segmentationfault. Therefore input data sets were cleaned from NaN (not a number)

values. This was done by script parse_data.m as noted above.

On Figure 6.4 gnuplot plots the output computed by ACADO. The upper left graph

shows the comparisement of original data entered - red line - with simulated result - black

line. The black line in this case is almost not visible, since there is very high fit factor.

ACADO produced on this sets always very precise outputs with high fit factor.

Approach suitable for the problem was applied- decoupled identification of heating

and cooling parts, which proved to provided good parameters as well. This approach was

based on data preprcessing and to identify parameters ACADO was used as well. To

perform this, data sets with clear heating part were needed. Unfortunately there were
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Figure 6.3: Text output from ACADO.

Figure 6.4: Graphical output plotted by gnuplot.

not sets enough to improve the estimates, but despite limited options it yielded some

usable results.

The data set was chosen with high temperature of supply water. That is the main idea

of using decoupled approach. The part of cooling was already identified using ACADO
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on data sets where the supply water was off. Since parameter β determining the cooling

part is estimated, the next step is to determine parameter α.

Figure 6.6 shows, how the date looked like. The line called cooling is a simulation,

how the temperature would develop, if only cooling was employed. The real ABESON’s

temperature is above this line. That means, that the heating is supplying energy to

the system. Contribution of heating part can be expressed by subtracting the simulated

cooling part from original ABESON’s temperature and the result identify using ACADO.

The result of subtraction is on Figure 6.5. The parameter obtained will be parameter of

α.
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Figure 6.5: Difference between ACADO temperature and estimated cooling part is heat-

ing part – subject to estimate.

The Figure 6.5 is almost linear line. This is confirms that supply water is providing

constant energy to the system.

6.3 Summary

Is is necessary to determine which approach would be the most suitable for implementing

control. The model should have the greatest fit factor in average. For that reason all
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Figure 6.6: Decoupled input data exmaple.

data sets used for estimation were taken and estimated parameters from Table 6.1 used

to compute fit factor for every single data set. The couple of parameters with highest fit

tactor in average will be then used for control.

Acording to results table Table 6.2, it was decided to use parameters from LPV

model. Eventhough there are some negative numbers, it has the highest fit factors in

table. Generally it is not necessary to achieve very high fit factor. Fit factors above 50%

are still acceptable.
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PEM[%] Subspace[%] LPV[%] ACADO[%]

-2 51 72 46

-251 -50 -54 -75

-292 4 -35 -25

-28 12 46 32

-435 -85 -45 20

-66 -19 76 -5

-138 -25 82 29

48 -4 36 13

-52 24 63 54

-52 24 63 54

60 41 43 45

-82 4 80 34

32 -98 12 -58

-75 13 65 44

-25 38 60 65

-9 43 74 57

-73 9 79 37

78 39 38 42

-352 16 62 25

Table 6.2: Table of fit factors.



Chapter 7

Control and Implementation

7.1 Control strategy

The main objective of the control of this process is to reduce the energy consumption.

Since the process includes disturbance and physical and chemical constraints, and since

the control demands are the reference tracking and the optimality (from the point of

energy consumption), the only possible control strategy is the model predictive control

(MPC). Due to its great properties, the MPC is widely used in many real application,

and, moreover, is recently thought of as the best way to save the energy.

As was mentioned above, there is no measurement of return water, thus the problem of

derivation of the amount of consumed energy arises. To cope with this problem, one can

assume the following. Since the supply water can be only heated up using the steam, and

since during the winter (as main heating season) the steam is the only source of heat, it

holds that the lower supply water temperature, the lower energy cost. Therefore, instead

of the energy consumption, the MPC criterion contains the supply water temperature.

7.2 Formulation of the control problem

Let us denote the model for control as

Ti(k + 1) = A(h, Ts)Ti(k) +B(h, Ts)Tsw(k) + V (h, Ts)Ta(k), (7.1)

where A(h, Ts), B(h, Ts), V (h, Ts) are appropriate parameter dependent model matrices

and the signals were defined in Chapter 2. Aforementioned control strategy implies the

44
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following formulation of the MPC problem. The optimal control input sequence T ∗sw(k),

k = 0, . . . , N − 1 minimizes the cost function:

J =
N−1∑
k=0

‖(Ti(k)− Zi(k))Q‖22 + ‖(Tsw(k)− Zsw(k))R‖22,

such that the Equation (7.1) and

Tsw,min ≤ Tsw ≤ Tsw,max, (7.3)

Zsw,min ≤ Zsw ≤ Zsw,max, (7.4)

Zi,min ≤ Zi ≤ Zi,max,

∆minTsw ≤ ∆Tsw ≤ ∆maxTsw,

hold as well as the other standard assumptions on the optimal problem to be solvable

[2]. Zi and Zsw are called slack variables and define ranges where the Ti and Tsw are not

penalized. The subscripts min,max denote minimum and maximum possible values of

appropriate variables and ∆ denotes rate of change of corresponding variable. Q,R are

weighting matrices.

Since ABESON has to be kept in certain range, slack variables were set to Zi,min =

30 ◦C Zi,max = 55 ◦C,Zsw,min = 30 ◦C, Zsw,max = 30 ◦C and Tsw,min30 ◦C, Tsw,max = 50 ◦C.

It tells that controler keeps the ABESON’s temperature within 30 ◦C and 55 ◦C and that

the supply water temperature will not go over 50 ◦C or under 30 ◦C, also when higher or

lower than 30 ◦C it will be penalized. The horizon of prediction is three days. The data

from NOAA are provided 7 days in advance, but it can change significantly. ABESON

changes its temperature very slowly, so three days are enough to maintain its temperature

within desired range with regard to weather. More than three days are not necessary.

7.3 Implementation of control system

The solution of the system is based on programable logical controlers (PLC’s) DOMAT

and JUMO. These two controlers are part of the lowest layer. Higher layer is then

operated by remote RcWare server from ENERGOCENTRUM Plus s.r.o. This approach

allows to monitor system from anywhere and make any corrections, if desired. On the

same level is WebPanel which is a web–based application for direct access to process

control.
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JUMO is responsible for controling of temperature of the supply water and for reading

measurements - level, temperature of supply water, inner product temperature. Weather

temperature is not meausured directly and is not provided from sensor on site. Ambient

temperature is provided by NOAA from their weather forecast.

DOMAT takes care of communicating with superior layer. It recieves instruction of

what the desired temperature is and ensures that only valid data will be handed over to

JUMO. It also checks, whether the communcation with control server is online and in

case of any interruption it is able to set safe temperature.

RcWare is server, where SoftPLC application is running and executing root operations.

In 30 min cycles it starts MATLAB, runs computation of MPC problem (solving the

optimization) using designed model and returns a vector of temperatures to use for next

30 min. Since the process is very slow, there is no need to care about the whole vector

and only first value is taken and sent to DOMAT.

Time interval 30 min was chosen, because for control are used data with sampling

time 60 min and for safety reasons is the computation run twice rather than once.

From WebPanel can be viewed the current desired temperature from controler and

SoftPLC RT DOMAT PLC

ABESON

JUMO PLCMATLAB®

WebPanel 
(manual/

 automatic)
Operator

Manual

Figure 7.1: Control set-up.
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Figure 7.2: WebPanel window.

it is possible to switch to manual control and set the temperature manually. Because it

is web–based application it is possible to access it from everywhere to make corrections.

The access is protected by password. It also shows current level, ABESON’s temperature

and current supply water temperature of both tanks.



Chapter 8

Results of control

The parameters used in control are parameters from LPV identification, as was jus-

tified in Chapter 5. How the tank performes after using model predictive control can be

compared on Figure 8.1. At the very moment when MPC started its operation, it set

the lowest heating temperature in accordance to its constraints.
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Figure 8.1: MPC implemented.

The change is very significant, it happens in eigth day. The supply water temperature

then changes value according to weather temperature and ABESON temperature. Which

is a great improvement comapared to previous approach, where the operators did not take

care about setting the temperature lower or higher at the moment when it was needed.
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Figure 8.2: Heating ranges and actions taken from MPC.

The ABESON’s temperature was set to be maintained within desired 30 ◦C and 55 ◦C.

On Figure 8.2 is possible to see, that when the temperature gets bellow this range, contoler

starts heating–up till the ABESON temperature is in the range. Eventhough it might

set higher temperature it leaves it less than maximum. These ranges are marked by red

area, which shows where the supply water temperature is allowed to get and blue dashed

lines show the acceptable range for ABESON.

When looking at Figure 8.2, one important question arises. There is a segment be-

tween second and fourteenth day, where the supply water temperature is higher than

30 ◦C, eventhough the ABESON’s temperature is in desired range. This is due to a warm

weather during that time. Notice, that peaks in supply water temperature correspond to

top peaks in ambient environment temperature.

It is also interresting to see, that implemented controler is able to maintain the tem-

perature when level is rising. The controler dealt with the situation well not letting the

temperature decrease bellow desired range. At the last day, the temperature of ABESON

rises because of mixing. Before that it seems that ABESON’s temperature was getting

below allowed range even when supply water temperature was on its maximum.

To compare the former control approach with new control approach some data from

September 2010 were taken, where the conditions were similar to ones in March 2011.

Find the same data where every input variables except supply water would be the same
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is impossible, since the controler is in operation only a short time. Figure 8.3 shows part,

where the inputs are similar.It is not possible to provide better comparison among all

available data at the moment.



Chapter 9

Conclusion

The main focus was to create a suitable model for model based predictive control. In

total 5 couples of models parameters are designed for control and their performance was

tested. The plausible model was created using LPV. This model performed well in terms

of fit factor. Another well working model was identified using ACADO. This software

allowed use of wide range of testing data which improved final solution and eased search

of parameters.

Prediction error method provided so far worst results due to its linear character and

limited options for choosing the data sets. On contrary subspace identification method

despite its linear character provided surprisingly good results and the model might be

applied as well. It was because the estimation was not performed with constraints.

The error of model within range of ±5 ◦C was acceptable and worked well for the

company. There might be more estimations with more data and final model might be

improved even more. But it would take additional time and company was satisfied with

provided model.

The identification process suffered from many issues. For example the identification

was not performed with return water, sensor is not placed very well, heating pipes were

exposed to ambient environment which had an unknown effect on the heating temper-

ature, unpredictible artefacts in data such as mixing and drops of ABESON level, very

low ABESON level with no need to heat at all, ABESON nonhomogenity.

Despite the aforementioned complications, proposed models worked very well and

ENERGOCENTRUM Plus, s.r.o. established a permanent cooperation with ENASPOL

a.s. The model obtained is used as pilot model in model predictive controler. When

the controler was brought to the control process it turned the heating from former 40 ◦C

to 30 ◦C, maintaining the heating temperature at its minimum value. MPC records
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satisfactory results since whenever the ABESON temperature decrease below the desired

range due to unmeasured disturbances, it immediately starts to heat up the tank. In

normal operation, when disturbances do not affect the ABESON temperature, MPC

keeps the temperature at desired level.

It might be convinient to allow higher maximum supply water temperature, because

from measured data is obvious, that in case of full tank, the supply water is not able

to provide enough energy to heat ABESON up and it is barely enough to maintain its

temperature and prevent it from cooling.

There is a large gap for possible improvements. It would be very convenient to incor-

porate return water measurement. Using it it would be possible to verify savings. Also

ABESON temperature sensor placed more suitably would be more pleasant. Database,

where the operators would enter the dates of expedition and intensive production would

provide very useful additional information, i.e.: when expedition date is approaching the

temperature is required higher. On the other hand, when production is going on, there is

a lots of hot ABESON getting into the tank warming up colder ABESON inside. From

this point of view it would be enough to mix ABESON after every production cycle. Au-

tomation of the pump would be of great help, espetially in identification process, but also

for maintaining the temperature. In case the ABESON’s temperature would decrease

under specified limit and the tank would be full, controler would execute mixing. Direct

ambient temperature measurement would also help.

In this thesis, several basic identification techniques have been tested for ability to

suitably approximate the non–linear model. All approaches were tested mainly (and LPV

only) under laboratory conditions. We shown their performance/usability in a real life

project.

The project was a success and ENERGOCENTRUM Plus s.r.o. is working with

ENASPOL a.s. on other chemical tank, where experiences from this thesis can be ap-

plied.
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Attachement A

Overview of attached documents

Part of the diploma thesis is also a CD including all the source codes and some

additional materials such as pictures and data used to perform identification. The list of

data on CD follows.

• Data used for estimation.

• Scripts performing all operations metioned in text.

• ACADO toolkit source codes.

• Digital version of this thesis.

• Pictures from ENASPOL a.s. factory when visited in February 2011.

• ABESON datasheet.

• Paper for conference.

On following pages are additional documents regarding the thesis. The first is a

document describing properties of ABESON provided by ENASPOL. a.s. and the second

is a paper for conference based on data from this thesis.
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ABESON 
SKP 24 51 20    PN ENS 058 - 02   

PAL – polotovar tenzidu 
 

CHARAKTERISTIKA VÝROBKU 
ABESON je lineární alkylbenzénsulfonová kyselina, vyráběná kontinuální filmovou sulfonací 

n-monoalkylbenzénu s délkou postranního řetězce C11-13 (označení CTFA/INCI: Dodecylbenzene 
Sulfonic Acid). 

 

parametr zkouší se podle ABESON 

typické hodnoty 
charakter  anionický 

vzhled při 20oC  hnědá viskozní kapalina 
hustota při 20oC, g/cm3 ČSN 65 0342 1,08 

viskozita při 20oC, mPa.s ČSN 67 3014.B 1400 
aktivní látky, % hmot. PN ENS 058-02 95,5 

voda, % hmot. PN ENS 058-02 0,5 
barva, zneutralizovaný roztok PN ENS 058-02 5o 

specifikace 
aktivní látky, % hmot. (Mr=324), min. PN ENS 058-02 95,0 

volná H2SO4, % hmot., max. PN ENS 058-02 1,5 
vzhled, zneutralizovaný roztok PN ENS 058-02 čirá kapalina 

barva, 25% zneutralizovaný roztok, stupnice 
Fe-Co, max. 

PN ENS 058-02 6 

nesulfonovaný podíl, % hmot., max. PND 32-5006-94.6 2,5 

POUŽITÍ 
ABESON je polotovarem pro výrobu tenzidů. Soli ABESONu (obvykle sodná, amonná nebo 

trietanolaminová), získané po neutralizaci příslušnými bázemi, se zpracovávají nejčastěji na 
práškové či kapalné prací detergenty, mohou ale být využity i pro přípravu čistících, pomocných 
průmyslových nebo jiných speciálních povrchově aktivních přípravků. Pro optimalizaci vlastností 
dodávky ABESONu právě pro Vaše použití doporučujeme předchozí konzultaci s našimi techniky. 

PŘÍKLAD ZPRACOVÁNÍ 
 Příprava sodné soli (ABESON Na) – násada na 100 kg cca. 40%: 

 NaOH (100%) 5,0 kg 
 ABESON (96%) 39,0 kg 
 voda 56,0 kg 
Násady NaOH a ABESONu je vhodné překontrolovat, případně upravit podle předběžné 
laboratorní zkoušky. Hydroxid sodný rozpustit v předložené vodě. Pak začít přidávat 
ABESON tenkým proudem za intenzivního míchání, popř. chlazení. Při nedodržení tohoto 
postupu mohou v reakční zóně vznikat obtížně rozmíchatelné gely, komplikující další průběh 
neutralizace. Teplota v reaktoru by neměla přestoupit 60°C. Konec neutralizace se sleduje 
podle pH reakční směsi. Produkt se následně bez stáčení zpracuje na finální výrobek. 
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PŘÍKLADY POUŽITÍ 
 Práškový prací přípravek: 

 ABESON NA (40%) 30 % 
 Syntapon NKS 4 % 
 tripolyfosfát (práškový) 17 % 
 perboritan sodný 8 % 
 vodní sklo (práškové) 5 % 
 soda, síran sodný, zeolit, sekvestranty, mýdlo, aktivátory, enzymy, ozp, aj. do 100 % 

 Kapalný čistící či prací přípravek: 
 ABESON NA (40%) 30 % 
 SPOLAPON AES  8÷10 % 
 ALFONAL KF 0÷3 % 
 ethanol 1 % 
 voda do 100 % 

 Autošampóny: 
Přídavek 6÷8 % hořečnaté soli (ABESON MG) příznivě ovlivňuje lesk a životnost autolaků. 

 Emulgace herbicidů: 
Vápenatá sůl ABESONu, připravená v tolueno-xylenovém roztoku, je výtečným 
emulgátorem, používaným mj. pro herbicidní přípravky, aj. 

HYGIENA A OCHRANA ZDRAVÍ PŘI MANIPULACI S VÝROBKEM 
Výrobek je žíravá kapalina silně kyselé reakce, styk s pokožkou, sliznicemi nebo očima může 

způsobit poleptání. Při manipulaci použít pracovní oděv, gumové rukavice, brýle. Při práci nejíst, 
nepít, nekouřit. Dodržovat základní pravidla osobní hygieny, ruce po práci umýt vodou, ošetřit 
reparačním krémem. 
První pomoc: 

 Při vniknutí do oka či potřísnění - důkladně vymýt proudem čisté vody, při zasažení oka vždy vyhledat 
lékařskou pomoc. 

 Při požití - ústa vypláchnout čistou vodou, přivolat lékaře, který rozhodne o eventuálním výplachu 
žaludku, při spontánním zvracení zajistit, aby nedošlo k zadušení zvratky 

 Při nadýchání - přenést postiženého na čerstvý vzduch, vyhledat lékařskou pomoc. 

BALENÍ A SKLADOVÁNÍ 
ABESON se dodává v nerezových autocisternách nebo železničních cisternách, nebo 

v jiných vhodných, předem dohodnutých obalech. ABESON by měl být skladován v suchu v 
kyselinovzdorných obalech či zásobnících při teplotách 0÷30°C. Za těchto podmínek poskytuje 
výrobce 6měsíční záruku. 

VYRÁBÍ A DODÁVÁ 

ENASPOL, a. s., Velvěty 79, 415 01 Teplice 1 
Telefon                 417 813 111, 417 813 105 
Fax/záznamník  417 813 108 
Tech. služba  417 813 126 
GSM brána          724 238 135 
URL  http://www.enaspol.cz 
E-mail  enaspol@enaspol.cz 
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Identification and Control of a Chemical Tank: A Case Study

Ondřej Bruna, Zdeněk Váňa, Jiřı́ Cigler, Samuel Prı́vara and Lukáš Ferkl

Abstract— Even though a modeling of the chemical tank is,
in our case, in principle the modeling of a heat exchanger and
belongs to the classical tasks, there are always some phenomena
in practice, which are either difficult or impossible to include
into the model. This especially holds in case of the old devices,
where these parasitic events can have quite a large effect and
can degrade both the model and the control strategy. Two
important questions arise: how to detect these events and how
to cope with them during the modeling. In this paper, we show
several modeling and identification approaches which apply
to industrial type of the shell and tube heat exchangers. The
control of the heat exchanger has been treated in many papers
using some of the “classical” control concepts. In contrary, we
propose a predictive control scheme which recorded a superior
(in sense of energy consumption) results comparing to the
classical control.

I. INTRODUCTION

Chemical tanks are storage containers for chemicals and
from control engineering point of view, there are several
crucial aspects of interest, such as a control of the tank
temperature, pH of chemicals, inside pressure, vacuum etc.
In the following text, we will confine ourselves only to tanks
with the temperature control. Such a class of tanks can be
interpreted as a heat exchangers.

There have already been some attempts to employ ad-
vanced control techniques for control of thermodynamical
systems, mainly for buildings, which have proven, both by
simulation studies and industrial practice, significant energy
savings potential. The attribute advanced in this case stands
for model-based control techniques taking into account pre-
dictions of disturbances acting on the system [18]. A well
identified model is then necessary, however not sufficient,
aspect for perfect control.

Modeling of a heat exchanger as a common industrial
process has been broadly studied in a number of papers.
From the physical point of view, it is a first order process,
thus the general description seems not to be very difficult,
however, many limitations and constraints arise in the prac-
tice. Therefore we will refer rather to those papers which
employ innovative techniques. A very comprehensive survey
of heat exchangers modeling can be found in [17]. The paper
by [2] can be highlighted as one of the first attempts to
deal with non-linearity in this process, where some specific
transformations of the process variables lead to a reduction
of the non-linear effects. Further, several modern techniques
have been applied such as non-linear statistical approach
using a neural networks [5], [8], physically-based pinch
method [12], [1] or fuzzy models (see e.g. [19], [10], [3]).

Ondřej Bruna, Zdeněk Váňa, Jiřı́ Cigler, Samuel Prı́vara and Lukáš
Ferkl are with Department of Control Engineering (DCE), Faculty of
Electrical Engineering (FEE) of Czech Technical University (CTU) in
Prague, Technická 2, 166 27 Praha 6, Czech Republic

The papers cited above cover many of control strategies from
classical to predictive.

Our contribution is devoted to the modeling and control of
the real heat exchanger in chemical industry. Particularly, we
propose a complex solution for a tank, where the chemical
intermediate product is kept until it is drained out. We intro-
duce a number of practical issues arising during modeling of
such a heat exchanger. Moreover, we provide a verification
of the applicability of these methods to the real processes.
The approaches to be applied are as follows [14]:

1) First principles modeling. This is one of the oldest
approaches counting on the physical properties of the
process. This method is necessary for the understanding
and insight into the process.

2) Family of the prediction error methods (PEMs).
Since not all the system parameters are known, the
statistical methods seem useful to be employed. They
provide a functionality to identify both linear and non-
linear models minimizing error between measured and
predicted data.

3) Subspace identification (4SID). Yet another linear sys-
tem identification method which, on contrary to PEMs,
includes order selection. 4SID methods yields state-
space models.

4) Linear parameter varying (LPV) system identifica-
tion. The influx to the heat exchanger can be viewed
upon as either the system input or a time-varying
parameter. In the latter case, the underlying model is
modeled as LPV.

5) Grey-box identification. First principle model com-
prises many unknown constant parameters that need
to be identified. ACADO Toolkit was used for iden-
tification since it enables the identification of unknown
parameters of a continuous time system.

The contribution also lies in an innovative approach to
model predictive control (MPC) of the tank. Proposed MPC
scheme takes into account weather forecast and hence it can
react to sharp changes in local weather in advance.

This paper is organized as follows. Sec. II is devoted
to modeling of the heat exchanger and identification its
parameters. We will thoroughly introduce the examined
problem and provide a description of the methods used
for the identification. The control problem is formulated in
Sec. III whilst Sec. IV provides a comparison of a number of
modeling approaches and evaluates the performance of MPC
controller deployed on real system. Finally, the last section
concludes the paper.
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Fig. 1: Principle of ABESON tank

II. IDENTIFICATION

A. Description of the modeled system

The examined tank is used as a storage of ABESON (Do-
decylbenzene Sulfonic Acid) before its final expedition. The
temperature of the product before draining out is required to
be within the range of 30 ◦C to 55 ◦C. If the temperature is
below the lower bound, ABESON becomes very dense and is
very difficult to pump it out of the tank. In case of breaking
the upper bound, the properties of the ABESON changes and
it becomes worthless.

Schematic sketch of the system is depicted in Fig. 1 and
shows the integration of the heating system. The tank is
heated-up using supply water coming from three-way valve
where the return water is mixed with the hot water from
heating unit. Measurements of the supply water and temper-
ature inside the tank are available using resistive temperature
sensor Pt100. Ambient temperature is provided from NOAA1

server using their weather forecast. Finally, level of the
ABESON is also measured by hydrostatic pressure sensor.
Note, that all the sensors inside the tank are placed at its
very bottom.

During the data analysis we encountered several issues.
The most of them were caused by mixing the ABESON in
order to make it more homogenous. Unfortunately, this pro-
cess cannot be described by an input since this happens only
irregularly and is a strictly manually controlled operation.
Moreover, due to this fact, it is not possible to get rid of the
effect of mixing.

1National Oceanic and Atmospheric Administration (NOAA), www.
noaa.gov/
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Fig. 2: Corrupted data example

As the temperature of the ABESON is measured at the
very bottom of the tank and due to the lower radius of the
tank at the bottom, the measured temperature is affected by
the ambient environment more than if the sensor would be
placed higher inside the tank. From this reason, the measured
temperature rises rapidly for more than 10 ◦C during one
mixing of the ABESON. The same result – a temperature
step – is caused by pumping the ABESON out from the
tank. The reason is similar – the temperature on the top is
higher than one on the bottom. Namely, when pumping the
ABESON out, a valve on the bottom of the tank is opened
and the hotter ABESON from the top of the tank gets down,
where the temperature sensor is located. All happens during
a very short time and therefore it suddenly rises to much
higher temperature. This can be detected since there is a
significant drop in the ABESON level.

The example of the corrupted data is depicted in Fig. 2,
where the cyan line is a level of ABESON. There are
three increases of a product temperature – red color . The
first is caused by draining out of the ABESON and the
temperature sensor measures the hot liquid from the top.
Then the level increases steadily when suddenly a second
increase of temperature appears – this is caused by a mixing.
Later the level is fixed at 10 m and yet another temperature
increase appears, again due to the mixing. Note, when the
level is increasing the fresh ABESON has the temperature
around 50 ◦C.

Apart from the aforementioned issues, there are several
other smaller problems, some of them follows. Firstly, the
sun also affects the inner temperature and it slows down
the cooling process. Since the global solar radiation is not
incorporated into the model (this type of information is
not known), it can affect the final estimate. Secondly, the
temperature sensor measuring the supply water is placed
at the control station and not at the tank itself. Ambient
environment affects the supply water (because of a poor
insulation of heating pipes), but this phenomena is not
measured.

Usually a return water measurement is used as well. The
process did not have incorporated return water measurement.
For that reason, the return water temperature is not used in
the current model and we focused rather on creating a simple
model, which sufficiently describes the process.



B. Identification approaches

1) First principles models: Considering the measured
signals, the general model of the tank is

Ṫi = f(Ti, Tsw, Ta, h,P), (1)

where Ti[ ◦C] is the ABESON temperature, Tsw[ ◦C], Ta[ ◦C]
are supply and ambient water temperature, respectively,
h[ m] is the ABESON level inside the tank and P covers
all physical and geometric parameters. From the physical
properties described in previous section, we can induce

Ci(h,P)Ṫi = −Ti − Tsw
R1(h,P)

− Ti − Ta
R2(h,P)

, (2)

where R1[ K W−1] denotes a thermal resistance between the
heating pipes and ABESON, R2[ K W−1] denotes a thermal
resistance between the heating pipes and outside environment
and Ci[ K W−1] is a heat capacity of the ABESON, in detail

1
Ci(h,P)R1(h,P)

=
2h1 λ1

r ρ c l1 h
, (3)

1
Ci(h,P)R2(h,P)

=
2λ2

r ρ c l2
+

λ2

ρ c l2 h
, (4)

with density of the ABESON ρ[ kg m−3], thermal conductiv-
ity of the heating pipes λ1[ W m−1 K−1], thermal conductiv-
ity of the tank insulation λ2[ W m−1 K−1], thickness of the
insulation of supply water l1[ m], thickness of the tank insu-
lation l2[ m], specific heat of the ABESON c[ J kg−1 K−1],
the level reached by heating pipes h1[ m] and the radius of
the tank shell r[ m].

Parameters r, ρ, h1 are known, while λ1, λ2, l1, l2, c are
to be estimated. The influence of the time varying ABESON
level on the system can be considered as a non-linearity. By
substituting the known parameters as p1 = 2h1

rρ , p2 = 2
rρ and

p3 = 1
ρ and unknown parameters as α = λ1

c l1
and β = λ2

c l2
,

the Eq. (2) can be rewritten into

Ṫi =
p1α

h
(Tsw − Ti) +

(
p2β +

p3β

h

)
(Ta − Ti). (5)

For sake of simplicity, we consider only estimation of two
parameters α and β.

The values of known parameters are: h1 = 1.5 m, r =
1.4 m, ρ = 1080 kg m−3. Before running the actual identifi-
cation we roughly estimate the values of unknown parameters
to match the physical constraints. From the material data
sheets, the insulation layer is of width l2 = 0.2 m and
the thickness of heating pipes together with tank is l1 =
0.02 m. We estimate that the insulation material thermal
conductivity λ2 is in interval 〈0.2; 0.6〉W m−1 K−1 and that
tank-pipes thermal conductivity λ1 is 〈2; 10〉 W m−1 K−1.
Specific heat of ABESON is similar to the water with
c = 4180 J kg−1 K−1. All the suggestions point to the
following values of the parameters α = 〈0.02; 0.1〉 and
β = 〈2 · 10−4; 6 · 10−4〉.

Next, for the construction of the discrete-time model, the
Euler’s discretization has been utilized:

Ti(k + 1) = ṪiTs + Ti(k), (6)

TABLE I: Table of parameters estimated by ARX, subspace
(4SID) and ACADO Toolkit.

Data ARX 4SID ACADO

set α β α β α β

1 0.0330 0.0033 0.0333 0.0009 0.0277 0.0002
2 0.0450 0.0019 0.0500 0.0010 0.0354 0.0001
3 0.0276 0.0016 0.0356 0.0008 0.0311 0.0010
4 0.0171 0.0022 0.0421 0.0002 0.0280 0.0008
5 0.0423 0.0107 0.0424 0.0008 0.0230 0.0018
6 0.0404 0.0003 0.0685 0.0035 0.0238 0.0001
7 0.0241 0.0053 0.0680 0.0016 0.0251 0.0012

Mean 0.0328 0.0036 0.0486 0.0013 0.0277 0.0007value

Standard 0.0104 0.0035 0.0145 0.0011 0.0044 0.0006deviation

with Ts = 600 s being an identification sampling time. This
sampling time has been chosen mainly due to fast dynamics
of disturbances entering the system. However, the process
itself is rather slow, therefore for control purposes Ts,cont =
3600 s is used. State-space description of a discrete-time
system is then

Ti(k + 1) = ATi(k) +BTsw(k) + V Ta(k), (7)

where A ∈ 〈1.03 − 7.34 · 10−1/h; 1.01 − 1.43 · 10−1/h〉,
B ∈ 〈1.43 · 10−1/h; 7.14 · 10−1/h〉 and V ∈ 〈−0.01− 1.33 ·
10−2/h;−0.03− 4.00 · 10−2/h〉.

2) Linear time-invariant models: In case that the level
of the ABESON is fixed, which occurs very seldom, the
process can be modeled as a linear and time-invariant. For
these cases, the well-known ARX model can be used [14].
The multivariable ARX model is described by Eq. (8), where
a0 = 1, nu is number of inputs, na and nb order of the ARX
model polynomials and ai and bj,l are their coefficients

na∑
i=0

ai y(k − i) =
nu∑
l=1

nb∑
j=0

bj,l ul(k − j) + e(k). (8)

Using Eq. (8) the description of the system can be expressed
in form of the transfer function as follows

G(z) = [Gsw(z) , Ga(z)] =
[
Ksw

z +D
,

Ka

z +D

]
, (9)

where

Ksw =
p1αTs
h

,

Ka = p2βTs +
p3βTs
h

, (10)

D = −p1αTs + p3βTs
h

− p2βTs + 1.

From these equalities, the unknown parameters α, β can be
obtained. Additionally, the parameters Ksw,Ka have to be
positive. The results of estimated parameters using ARX is
listed in Tab. I.



3) Subspace identification: The family of subspace iden-
tification methods (4SID) is widely used for identification of
linear multiple-input multiple-output (MIMO) systems [9],
[7], [16]. The objective of the subspace algorithm is to find
a linear, time invariant, discrete time model in an innovation
form

x(k + 1) = Ax(k) +Bu(k) +Ke(k), (11)
y(k) = Cx(k) +Du(k) + e(k),

where A, B, C, D are system matrices, K is Kalman filter
gain and e is a white noise sequence [20]. The algorithm
firstly determine the order of the model, and afterwards find
the model as well as state and measurement noise covariance
matrices.

For the identification, the System Identification toolbox
in MATLAB [13] has been used. The results of estimated
parameters using subspace algorithm are listed in Tab. I.

4) Linear parameter-varying models: Linear parameter-
varying (LPV) models assume, that the parameters of the
model vary in time and are measured [15], [4].

Let the varying parameter δ(k) is measured. Identification
method using LPV model separates a parameter causing non-
linearity from the system y = f(u, δ), where u, y is the
measured experimental data, and it allows to identify the
linear part of the system of the following structure:

X(k + 1) = AX(k) +B1u(k) +B2w(k),
z(k) = C1X(k) +D11u(k) +D12w(k),
y(k) = C2X(k),
w(k) = δ(k)z(k), (12)

where A ∈ Rn×n, B1, B2 ∈ Rn×1, C1, C2 ∈ R1×n,
D11, D12 are scalars and n is model order. Using the
fractional transformation, it is possible to identify system
using a linear model with one varying parameter by means
of recursive least square (RLS).

For our first order case, the matrices A = a11, B1 = b11,
B2 = 1, C1 = c1, D11 = d1 and D12 = d2. While the vector
of parameters Θ and regressor Ψ are defined as

Θ = [αj , αn+1, αn+2, αn+2+j , α2n+3]T (13)
Ψk =

[
X(k)T , u(k), x1

k+1, δ(k)X(k)T , δ(k)uk
]
,

the system parameters can be computed from the α1 = a11
d2

,
α2 = b11

d2
, α3 = 1

d2
, α4 = a11 − c11

d2
, α5 = b11 − d1

d2
. The

parameters in vector Θ are obtained from solving Eq. (14)
using RLS.

δ(k)xk+1 = Ψk+1Θ. (14)

The discretized equation of the tank can be formulated as
follows [15]

Ti(k + 1) =
[−p2βTs + 1 0 −p2βTs

]  Ti(k)
Tsw(k)
Ta(k)

+ w(k),

w(k) = δ(k)z(k), (15)

z(k) =

−p1αTs − p3βTs
+p1αTs
+p3βTs

T  Ti(k)
Tsw(k)
Ta(k)

 .

TABLE II: Table of parameter β estimates (mean β = 1.026·
10−3, standard deviation s = 0.401)

Data set β data set β

1 1.353 · 10−3 6 1.036 · 10−3

2 1.014 · 10−3 7 0.528 · 10−3

3 1.193 · 10−3 8 0.205 · 10−3

4 1.449 · 10−3 9 1.439 · 10−3

5 1.157 · 10−3 10 0.881 · 10−3

Using this method, estimated parameters converged to α =
2.58 · 10−2 and β = 1.56 · 10−3.

5) Identification by ACADO Toolkit: ACADO Toolkit2 is
a software environment and algorithm collection for auto-
matic control and dynamic optimization [11]. It provides a
general framework for using a great variety of algorithms
for direct optimal control, including model predictive con-
trol, state and parameter estimation and robust optimization.
ACADO Toolkit is implemented as self-contained C++ code
and comes along with user-friendly Matlab interfaces.

The parameter estimates using ACADO Toolkit are dis-
played in Tab. I. The resulting parameters were determined
as α = 2.41 · 10−2 and β = 7.89 · 10−4 and were used to
perform all the simulations.

6) Decoupled identification of cooling and heating parts:
Yet another approach is to separate identification of cooling
and heating parts. This approach assumes, that during the
summer time the influence of the heating pipes is too small
to affect the whole process and that the main factor which
affects the tank is weather. For that reason we assume that
the term associated with coefficient α, which represents the
heating part of the model, is 0.

Then we are able to identify the weather constant β using
ARX model. After determining the ambient temperature
constant, we fix it and that leaves the only α parameter to
estimate. To identify it properly, we used the data from the
winter time, where the heating was working for 100 %.

Using the mean value from Tab. II as fixed parameter for
β we estimated the parameter α from heating parts. The
parameter was determined as α = 2.80 · 10−2.

III. CONTROL

A. Control strategy

The main reason of the applying of the predictive control
to the process is to reduce the energy consumption. Predictive
control enables treating requirements such as disturbance
rejection, satisfying physical and chemical constraints, rea-
sonable reference tracking, counting on the weather forecast
and the optimality (in sense of energy consumption). Due to
its properties, the Model Predictive Control (MPC) seems to
be a perfect choice for the given process.

As mentioned above, there is no measurement of the
return water, thus the problem of derivation of the amount
of consumed energy arises. To cope with this problem, we

2Automatic Control And Dynamic Optimization Toolkit (ACADO)
http://www.acadotoolkit.org/
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Fig. 3: Convergence of parameters and used data.

can assume following. The supply water can only be heated
up by the steam. Moreover, during the winter season (the
main heating season) the steam is the only source of heat.
Therefore it holds that the lower supply water temperature,
the lower energy cost. From the reasons mentioned above, the
(consumed energy is proportional to the water temperature),
the supply water temperature replaces the energy in the MPC
optimization criterion.

B. Formulation of the control problem

Let us denote the model for control as

Ti(k+1) = A(δ, Ts)Ti(k)+B(δ, Ts)Tsw(k)+V (δ, Ts)Ta(k),
(16)

where A(δ, Ts), B(δ, Ts), V (δ, Ts) are appropriate parameter
dependent model matrices and the other symbols have been
defined in Sec. II-B.1. Aforementioned control strategy im-
plies the following formulation of the MPC problem. The
optimal control input sequence T ∗sw(k), k = 0, . . . , N − 1
minimizes the cost function

J =
N−1∑
k=0

‖(Ti(k)− Zi(k))Q‖22 + ‖(Tsw(k)− Zsw(k))R‖22,

such that Eq. (16) and

Zsw,min(k) ≤ Zsw(k) ≤ Zsw,max(k), (17)
Zi,min(k) ≤ Zi(k) ≤ Zi,max(k),

∆Tsw,min(k) ≤ ∆Tsw(k) ≤ ∆Tsw,max(k).

hold as well as the other standard assumptions on the optimal
problem to be solvable [6]. Zi and Zsw, which define ranges

TABLE III: Table of the most reliable parameters estimates.
method α β

PEM 3.56 10−2 3.10 10−3

4SID 4.30 10−2 1.20 10−3

LPV 2.58 10−2 1.56 10−3

ACADO 2.41 10−2 7.88 10−4

Decoupled 2.80 10−2 9.79 10−4

where the Ti and Tsw are not penalized. The subscripts
min,max denote minimum and maximum possible values
of appropriate variables and ∆ denotes rate of change of
corresponding variable. Q,R are weighting matrices.

IV. RESULTS

We have modeled a storage tank as described in Sec. II.
The obtained models and the individual results are discussed
further on.

To identify the parameters of the system, several ap-
proaches have been applied. i) Linear - estimation of ARX
model and use of 4SID methods ii) Non-linear - Graybox
(using ACADO Toolkit) and LPV model parameter esti-
mation method iii) Identification of decoupled cooling and
heating parts The best parameter estimates are summarized
in Tab. III. The choice of the best or the most reliable
estimates is based on the cross validation of model responses
on all data sets.

The parameters estimated by linear methods were plausi-
ble mainly during summer period; especially 4SID provided
good results. But in winter, the parameters obtained by these
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Fig. 4: Comparison of model responses both for linear and
non-linear identification methods.

approaches were not plausible at all as the data contained
non-linearities which could not be tackled.

Using ACADO Toolkit the problem was reformulated in a
non-linear fashion. The results were very close to the results
provided by the LPV identification, which recorded the best
results. We used the data set collected from December 2010
to February 2011 (part of the data is displayed in Fig. 3).
The values of the estimated parameters α, β varying in time
are depicted in Fig. 3. The trajectory of the parameters was
affected neither by changes of supply water temperature, nor
by drops in level. Hence this way of identifying did not need
any data preprocessing and could be used on the whole data
set.

The methods discussed up to here have been verified on
the same data set (see Fig. 4).

The last approach was used to support our results obtained
from all previous identifications. Decoupling of heating and
cooling parts of the model, i.e. an identification of sepa-
rate parts was performed. To estimate parameters ACADO
Toolkit was used again. For the estimation, one of the pa-
rameters was always fixed and the other one estimated. This
yielded results similar to already obtained, so we confirmed
that our identification was successful.

Data from the real operation of MPC are depicted in Fig. 5.
The blue lines correspond to supply water temperature (solid)
and its minimum and maximum constraints (dashed) while

Fig. 5: MPC implemented.

the red refer to the ABESON temperature. The highlighted
area stands for the range in which the ABESON temperature
should stay.

Parameters used for control are taken from LPV approach.
MPC records satisfactory results since whenever the ABE-
SON temperature decrease below the desired range due to
unmeasured disturbances, it immediately starts to heat up the
tank. In normal operation, when disturbances do not affect
the ABESON temperature, MPC keeps the temperature at
desired level.

V. CONCLUSIONS

In this paper, several basic identification techniques have
been tested for ability to suitably approximate the non-
linear model. All approaches were tested mainly (and LPV
only) under laboratory conditions. We shown their per-
formance/usability in a real life project. The LPV model
parameter estimation approach turned out to be the most
applicable from all of the tested methods. Model obtained
from this estimation was used for MPC. This approach did
not need any data preprocessing.

On the other hand, widely used PEM was not plausible
for model estimation. ACADO Toolkit produced acceptable
results in regions with increasing level and was able to
process non-linear input. In all of these approaches data
preprocessing was essential, but while all measured data has
been used at once, it did not provide any satisfactory results
at all.

As it can be seen from Fig. 5, designed controller sets
the lowest possible temperature to minimize the consumed
energy while meeting the control requirements and input
constraints.
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