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Abstrakt

Diplomova prace se zabyva sifenim podélnych elastickych vin lokdlné periodickymi
strukturami vybuzenymi harmonickou silou. Stejné jako v mnoha periodickych sys-
témech sireni elastickych vln periodickymi strukturami vede ke kmitoc¢tovym pésmo-
vym propadiam, tj. k Sirokym kmito¢tovym oblastem, kterymi se dopadajici vina nesiri.
Material lokalné periodickych struktur vykazuje nestejnorodou zavislost hustoty a elas-
tickych parametri. Vinovod se sklada z buriek, pricemz jsou uvazovany bunky s nestej-
norodym prurezem, ruznymi materidly a rovnez materidlem, ktery méni své elastické
vlastnosti linedrné v zavislosti na prostorové souradnici. Odpovidajici modelova rovnice
je odvozena. Ke studiu elastickych vln prochéazejicich nehomogenni oblasti je pouzita
metoda vyuzivajici pfenosové matice. Vypocet prenosovych matic je proveden naléze-
nim obecného feseni v intervalu obsahujicim dva regularni singuldrni body. Na zdkladé
prenosovych matic je studovan vliv vybranych parametru na spektrum koeficientu pre-
nosu. Vypocet koeficientu prenosu lokdlné periodické struktury pro N opakujicich se
bunék se pocitda pomoci Chebyshevovych polynom.

Klicova slova

Prenosova matice; koeficient transmise; elastické viny; nestejnorodd hustota a elastické
parametry materidli; lokalné periodické struktury.
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Abstract

This master thesis presents the propagation of the longitudinal elastic waves through
the locally periodic structures excited by a harmonic force. As in many periodic sys-
tems, elastic wave propagation through the periodic structures results in the frequency
band gaps, or large ranges of the incident wave frequency over which no wave is trans-
mitted. The material of the locally periodic structures has non-uniform profile of the
mass density and elastic properties. Cells with non-uniform cross-section, different ma-
terials and linearly graded material, constituting the solid rod, are considered. The
corresponding model equation is derived. The transfer matrix method is applied to
study the elastic waves passing through the inhomogeneous domain. The calculation of
the transfer matrices goes through the evaluation of the general solution in the interval
containing two regular singular points. Based on the transfer matrices the influence of
the chosen parameter values on the transmission coefficient spectrum is studied. The
transmission coefficient calculation of locally periodic structures for N repeating cells
is calculated with the help of the Chebyshev polynomials.

Keywords

Transfer matrix; transmission coefficient; elastic waves; non-uniform mass density and
elastic properties of materials; locally periodic structures.
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Latin capital letters

A cross section

A(z) non-uniform cross section

A, B cell regions

A B, C,D complex amplitudes

Ch, Cy complex integration constants

Cs, Cy complex integration constants
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S scattering matrix
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1 Introduction

In isotropic and homogeneous media, there are two kinds of a wave motion: traveling
waves, which can have any frequency, and standing waves, which occur only for dis-
crete frequencies. In periodic media, the third kind of motion has been detected, it
is characterized by appearance of band gaps separating pass bands (see e.g. [1], [2]).
Photonic crystals have presented a such property, that enables nowadays to use them
as optical waveguides, high quality resonators, selective filters, lens or super prism (see
e.g. [3]). Later it has been discovered that the band gap formation in periodic composite
materials also pertains to elastic/acoustic wave propagation. These periodic structures
are called phononic crystals, they involve a larger variety of materials as concerns the
possibility of high contrast among the elastic properties. Today, phononic crystals have
numerous applications such as elastic/acoustic filters, transducer design improvements,
noise control, vibration shields, thermal-barrier structures, etc. Furthermore, other
interesting properties such as negative refraction or the creation of super lenses have
been observed with these structures, which offers other new perspectives for research
and application (see e.g. [4]).

The study of crystals and other periodic structures can be precisely described using
Bloch’s theorem, as long as the infinite number of repetitions is assumed. However,
real objects are hardly infinite, they have only a relatively small number N of repeating
elements, let us call these systems locally periodic, and require another approach (see
e.g. [1]). In order to study periodic media with the finite number of repetitions, this
work is restricted to a one-dimensional problem in the solid phase. Since the band gap
phenomenon occurs for any kind of a wave propagation, such as mechanical, acoustical,
electromagnetic and even oceanographic waves, it can be easily applied to any other
wave problem (see e.g. [1]). Therefore, the results obtained can be adapted to e.g.
sound propagation in a waveguide. The one-dimensional wave propagation problem is
presented through the transfer matrix method (see e.g. [1], [2], [5], [6]). The periodic
structure can be modelled by a sequence of elementary cells, each of which is described
by the transfer matrix. Non-uniform dependencies of mass density and elastic properties
are taken into consideration. Since the whole study is done analytically, it imposes
strong conditions on the shape of the used cells. The transmission coefficient for the
locally periodic structures is calculated with the help of the Chebyshev polynomials.
Unlike the previous studies which included only one type of the cell, this work studies
different kinds of cells. The goal is to link together the description of the frequency
band gaps and the medium’s parameters.

The study is organized as follows. Within Chapter 2 the transfer matrix method is
presented, the transfer matrix properties are listed, the formula for the transmission
coefficient calculation of the locally periodic structures through the Chebyshev polyno-
mials is derived. Chapter 3 is devoted to the modelling the propagation of plane elastic
waves in a solid rod. Chapter 4 deals with the two types of the cell: with non-uniform
cross-sections, with non-uniform mass densities and Young’s moduli. In Chapter 5 the
ratio between two parts of the cell on the band gap existence is studied. Chapter 6
is devoted to the elastic wave propagation through the linearly graded material. The
positive and negative gradients of Young’s modulus is studied and the triangular com-



1 Introduction

bination of these gradients. The wave of the inhomogeneous region is described by
Bessel functions. Chapter 7 states the conclusion.



2 Transfer Matrix

In this chapter a mathematical method for the analysis of a wave propagation in a
one-dimensional system is introduced. The method uses the transfer matrix and it is
commonly known as the transfer matrix method. The transfer matrix method can be
used for the analysis of the elastic waves propagation (see e.g. [2]).

2.1 Scattering Matrix and Transfer Matrix

The first system to be introduced is shown in Fig. 1 in a dimensionless notation and it is
called a basic cell. The cell has its characteristics that influences the wave propagation.
The wave is divided into the transmitted and the reflected wave at the junctions of
the cell. The subscripts L (Left) and R (Right) indicate the position of the wave with
respect to the region of the cell, the superscripts + and — determine the direction of
the propagation. The wave moves from the left to the right. So, the incoming waves
are U] and Vg, the outgoing waves are U7 and U (see e.g. [2]).

+ _ iKs + _ iKs
U = Ae Ur = Ce

\I,E — Be—iKs Cell \I,;{ — De—iKs

Fig. 1 Transmitted and reflected waves.

The wave functions at the left and right sides of the cell are
UL(s) = U (s) + Uy (5) = A 4 Be 5 s <5, (2.1)
UR(s) = Uk(s) + Up(s) = Ces 4+ De™ B8 | 5> 5. (2.2)

where A, B, C, D are complex amplitudes, K is the dimensionless wave number (see

e.g. [1], 2], [6]).
In general, linear relations between outgoing and incoming waves can be written as

Ur(s=s Uf(s=s
=) ) g [ Vils =) , (2.3)
Uk (s = sp) Up (s = sp)
where the scattering matrix S is

S11 Sz
Sa1 Sao



2 Transfer Matrix

The transfer matrix P is defined by the following relation

Uh(s=sp) _p U (s = s4)

Ui (s =sp) V(s =5q)

) (2.5)

The matrix P represents a linear correspondence between wave functions on the right-
hand side of the cell and the wave functions on the left-hand side (see e.g. [2]).

By substituting the expressions (2.1) and (2.2) with amplitudes and the wave number
instead of wave functions, the transfer matrix P can be written in the way (see e.g. [5])

CeiKsb AeiKsa
=P . (2.6)
DeiKsb BeiKSﬂ

There is also one more definition of the transfer matrix using the linear relationship
just between amplitudes A, B, C, D defined in Egs. (2.1) and (2.2) (see e.g. [1], [2], [6],

[5])

=M , (2.7)
D B

where the transfer matrix M has the form

My Mo
M — . (2.8)

Moy Moo

The relation between transfer matrices P and M in accordance with the notations
in Fig. 1 and after some mathematical manipulations is (see e.g. [1], [2])

eiK(sbfsa) 0
P— M . (2.9)
0 efiK(sbfsa)

In order to be precise let us call the matrix M as the transfer matrix, the matrix P
as the shifted transfer matrix.

In order to distinguish the different transfer matrices, the shifted transfer matrices
as well, let us denote the matrices M and P with the coordinates denoting the left
and right sides of an area described by the transfer matrix. Then the matrices from
relation (2.9) can be denoted as M(syp, sq) and P(sp, sq) (see e.g. [5]).

The transfer matrix approach is more appropriate for the analysis of one-dimensional
systems than the scattering one. Since the object of study in this master thesis are one-
dimensional systems, the transfer matrix approach is chosen to work with.

2.2 Properties of Transfer Matrix

The next properties of the transfer matrix represented by matrix (2.8) and the shifted
transfer matrix defined by (2.9) of a cell are considered in the work.



2.2 Properties of Transfer Matrix

2.2.1 Symmetry

The physical systems that are symmetric with respect to an inversion of time possess
symmetry which further reduces the number of independent parameters of the scattering
and transfer matrices (see e.g. [2]).

Let the wave moves from the right to the left for the cell presented in Fig. 1. Since the
complex conjugate wave function! means the propagation in the opposite direction, in
a time reversal situation the incoming waves are \IIE* and ¥ *, the outgoing waves are
Ur* and U (see e.g. [2]). After expressing the transfer matrix for this propagation and
comparing with the transfer matrix defined by (2.8), the reduction of the independent
parameters of matrix M(sp, s,) leads to the form (see e.g. [1], [2], [5], [6])

My Mio
M(sp, 8q) = . (2.10)

Miy M
The shifted transfer matrix P(sp, sq,) consists of two matrices: the transfer matrix
M(sp, s4) and the matrix represented by relation (2.9). Let us call this matrix the
factor matrix. The factor matrix also satisfies the symmetry property. Let us multiply

the matrices of the shifted transfer matrix, where the transfer matrix M(sp, s,) has the
form as written in (2.10), the result matrix also satisfies the symmetry property

eBlso=sa) Ny K (so=sa) By Py P
P(sp,5q) = - ’ (211)
e‘iK(sb_S“)Mfz e_iK(Sb_s“)Mﬁ Py, Pp

2.2.2 Unimodularity

The relationship between the elements of matrix M(s, s,) is the following (see e.g. [1], [2])

|My1|? — M =1. (2.12)

Combining the result above and taking into consideration the form (2.10) of matrix
M(sp, Sq), the determinant of the transfer matrix is (see e.g. [1], [2])

det M(Sb, Sa) = MllMikl — MfQMlQ = |M11|2 — |M12|2 =1 N (2.13)

which means that the transfer matrix M(sp, s,) is unimodular with the determinant
being equal to 1.

The determinant of the factor matrix of the shifted transfer matrix P(sp, s,) is also
equal to 1, so the factor matrix is also unimodular. The determinant of a multiplication
of two matrices is equal to the multiplication of the determinants, it follows that the
shifted transfer matrix is also unimodular.

The determinant of matrices M(sp, sq) and P(sp, s,) can be different from one for
some cases, so it is necessary to pay attention for an each type of the cell.

2.2.3 Transmission Coefficient

Let us show how to calculate the transmission coefficient of the cell through the transfer
matrix formalism. From Eqgs. (2.7) and (2.8) amplitudes C and D are equal to

C =M1 A+ MoB, (2.14)
D = Ma A+ My . (2.15)

'The complex conjugated variables are marked with an asterisk.
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By supposing D is zero, B can be expressed from Eq. (2.15) and substituted into
Eq. (2.14). Then C from Eq. (2.14) equals

M1 Moo — Mia2 Moy

C:A )
Moo

(2.16)

where the numerator is the determinant of the transfer matrix.
The transmission coefficient is defined by the ratio of transmitted and incident wave
amplitudes, then from Eq. (2.16) an expression for the transmission coefficient is

_ € det(M(sp, Sa))
T=3=" (2.17)

Since the amplitudes are generally complex numbers, it is usually sufficient to calcu-
late the modulus of the transmission coefficient

det(M 1
7] = |5 (M(s, 5a)) | _ : (2.18)
Moo | Mas|
where relation (2.13) was used.
For the shifted transfer matrix Eq. (2.18) takes the form
T = det(P(sb,sa))’ 1 1 B 1 1
B Py C|Pa| e K G1ms0) Myy| e iR (s1=50)| [ Mag| [ Mao|
(2.19)

So, the transmission coefficient 7 is the same for both formulations since the transfer
matrices M(sp, sq) and P(sp, s,) differ from each other only in the phase (see e.g. [2]).

2.2.4 Multiplication

If the wave propagates through two cells, then the multiplication property is applied.
The first cell to be passed is characterized by M(s, s,) transfer matrix, the second one
by M(se, sp), then the composition law to get the transfer matrix of the system is (see

eg. [2)
M(s¢, 8q) = M(s¢, s5)M(sp, Sa) - (2.20)
An analogical rule is applied for the shifted transfer matrix

P(s¢, 84) = P(sc, s5)P(Sp, Sa) - (2.21)

2.3 Transfer Matrix of N Cells

Now let us suppose that the basic unit cell introduced in Fig. 1 is replicated N times
at regular intervals as in Fig. 2. The goal is to construct the transfer matrix for the
whole depicted array based on the given transfer matrix for a single cell (see e.g. [1]).

The length of the basic cell is represented by si, the distance between the corre-
sponding sides of the neighboring cells is sy, the distance between the closest sides of
the neighboring cells is [ (see e.g. [1]).



2.3 Transfer Matrix of N Cells

A c’ C
B Celly D D Celly Celly
K—Z—H
77777 N D T 4

Fig. 2 Finite periodic system in amplitudes notation.

2.3.1 Transfer Matrix of Single Cell

A single cell is represented not only by the basic cell Celly, but also by the part between
coordinates s; and so, so it is necessary to get the expression relating amplitudes C, D
and A, B for a chosen type of the cell.

Based on the symmetry and unimodularity properties, let us set up the transfer
matrix of Cell; in the form (see e.g. [1])

M(s1,0) = : (2.22)
Z* w*
where w and z satisfy (see e.g. [1], [2])
lw> = |2)> = 1. (2.23)

The shifted transfer matrix of Cell; using relation (2.6) is

C/eiKsl ./4
) = P(Sl,O) . (2.24)
Dle—lel B

The left side of Eq. (2.24) can be expressed as a multiplication of matrices, so
Eq. (2.24) can be written as

elfs1 0 c’ A
=P(s1,0) . (2.25)
0 e 1K1 D’ B

By multiplying the both sides of Eq. (2.25) by the inverse matrix of the factor matrix,
the relation between amplitudes A, B, C’, D' is given as

C’ e K1 0 A
= P(s1,0) . (2.26)
24 0 elfs B
M(s1,0)

The shifted transfer matrix P(s1,0) from Eq. (2.26) then equals

eiK51 0
P(s1,0) = M(s1,0) . (2.27)
0 e—iKsl
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The wave functions at positions s = s;1 + ¢ = +s1 and s = s9 — ¢ = —sg, where ¢ is
an infinitesimally small increment?, also satisfy Eq. (2.6)

CeiKSQ CleiKsl
=P(—s9,+s1) . (2.28)
De—iKSQ rD/e—iKsl

The both sides of (2.28) can be expressed as a multiplication of matrices, so the
equation can be written as

eing 0 C 6il(sl 0 C/
= P(*SQ,jLSl) . (229)
0 e—ing D 0 e—iKsl D

The multiplication of the both sides of Eq. (2.29) by the inverse matrix of the factor
matrix on the left side brings to

C e—ing 0 ei[(sl 0 C/
= P(—82,+81) . (2.30)
D 0 €iKS2 0 e—iKsl D/

M(—s2,+s1) = identity matrix

M(—sg,+s1) is the identity matrix, because at the end points on the line segment
(—s2,+s1) the waves save its amplitudes, but the phases are different. From the
equivalence of the transfer and the shifted transfer matrices from Eq. (2.30) matrix
P(—s2,+s1) can be expressed as (see e.g. [5])

eiK(SQ*Sl) 0
P(—sy,+51) = . (2.31)
0 6*iK(SQ*Sl)

Finally, the relation between amplitudes C, D and A, B are (see e.g. [1])

C A A
= P(—52,0) = P(—s3,+51)P(51,0) . (2.32)

D B B

By substituting the expressions of the shifted matrices described by (2.31) and (2.27)
accordingly, the amplitudes relationship is

C e s2 0 A
D 0 e 1Ks2 B

P(—s2,0)

Let us substitute the expression for M(s1,0) into (2.33) and multiply the matrices
to see the final formula of the shifted transfer matrix of the single cell (see e.g. [1])

weiK52 zeiKSQ
P(—s2,0) = . (2.34)

Z*671K52 w*eflez

2One-sided limits: +s1 and —so are right-hand and left-hand limits respectively.



2.3 Transfer Matrix of N Cells

If the matrices (2.34) and (2.11) are compared, it is obvious that the derived expres-
sion of P(s2,0) satisfies the known formula even if the corresponding cell is a little bit
in a different form.

2.3.2 Chebyshev Identity

Once the transfer matrix is calculated for one cell, it can be easily extended to calculate
analytically the transfer matrix for N identical cells (see e.g. [1], [2]).

Let us demonstrate that using some transfer matrix properties and a chosen trick
it is possible to obtain compact and universal expressions for the transfer matrix of a
finite periodic system.

Basing on the result from the previous section, let us mention once more the shifted
matrix

P Pio welks2 zelfs2
P(—s92,0) = = . (2.35)
P1*2 Pl*l Z*e—iK52 w*e—iKSQ

Let us use the multiplicative property of the shifted transfer matrices, then it is
possible to write the shifted transfer matrix of the sequence of N-cells as (see e.g. [5])

Py = P(—[Nss], (N — 1)s2). P(—[(N — 1)s0], (N — 2)s2)..P(—52,0) = PY . (2.36)

N factors

Eq. (2.36) can be shortly written as
Py= P.P P=Py 1 P(-5,0). (2.37)

N-1 factors

Eq. (2.37) means that the product of matrices can be written as the product of the
last N — 1 matrices denoted as Px_; and the first matrix P(—s2,0). So, having the
transfer matrix of the single cell only is sufficient to get the shifted transfer matrix of
the sequence of N-cells (see e.g. [5]).

In the terms of matrices, the expression above can be rewritten as

Py = Py, Py, _ P(Nfl)u P(Nfl)12 Py Pro ‘ (238)
P]ﬂ\ﬂhz P]tfn P(*Nfl)lz P(*N—l)11 Piy Py

Now, let us obtain Py,, and Pp,, through the known Pj; and Pj2. From Eq. (2.38)

Py = Pivony,, P+ Piv-),, Plz (2.39)
Py, = Pivny,, Pr2 + Pivoyy , Pri - (2.40)

Let us express Py_1),, from Eq. (2.40)
Pin-1y,, = Pni,Piy' — Pivoy,, P Pry - (2.41)
Let us define the function
pPN-1 = PNy, Py" = Pny, = Prapn—1 (2.42)
then Eq. (2.41) can be rewritten as

Pn-1),, =pn-1 —pNn—2Py or Py, =pn—pNP. (2.43)



2 Transfer Matrix

By substituting Eq. (2.42) and Eq. (2.43) into Eq. (2.39), the following recurrence
relation is obtained

pn — (P + Pf)py-1+pNv-2=0. (2.44)

To solve this equation it is necessary to define the initial conditions. Let us consider
that:

1. Po=1—= Py, =F, =1, Py, =F,=0,

2. Py =P — P, =Pn, P{, =P}y, P, = P2, P[, =Py,
3. from Eq. (2.42) and 2. follows py = 1,

4. from Eq. (2.42) and 1. follows p_; =0,

5. the trace is

1 1 ; ;
U= 5Tr(P(—Sg,O)) = (Pu+Pj)= (welKS2 + w*e_‘K52) . (2.45)

2

N~

The recurrence Eq. (2.44) then is exactly the same as Eq. (2.46).
Equation
Un(z) —22Un_1(z) + Un—2(x) =0 (2.46)

defines the Chebyshev polynomials of the second kind Uy (z) with Uy = 1 and U_; = 0.
Therefore, the functions py in Eq. (2.44) are the Chebyshev polynomials evaluated at
p (see e.g. [1], [5]). So, let us use notation Un(p) further in this work.

2.3.3 Transfer Matrix of N cells
Using relations (2.43), the shifted transfer matrix for N cells has the form

—— Un(p) — PiiUn—1(p) ProUn -1 () _ (2.47)

PHUN-1(p) Un(p) — PriUn—1(p)

From Eq. (2.33) it is known that

eiKsz 0
P(—52,0) = M(s1,0) . (2.48)
0 e—iKSQ

Based on the results about Py from the subsection Chebyshev Identity, using re-
lation (2.48) between the shifted transfer and transfer matrices of the single cell and
substituting the expressions of the shifted transfer matrix elements from (2.35), it fol-
lows that the transfer matrix for the whole array of N cells is (see e.g. [1])

e—iKst 0
MN = PN
0 eiKNSQ
- e~ 1K Nsa {UN(M) _ w*e—iKszUN_l(u)} ze—iK(N—l)szUN_l(lu)
Z*eiK(N—l)SQUN_l(ILL) el Ns2 [UN(N) — welKs2 UN_1(,M)}

10



2.3 Transfer Matrix of N Cells

From expression (2.49) it is possible to see that to determine the transfer matrix
of the periodic system consisting of NV cells, it is sufficient only to know the transfer
matrix of one cell, i.e. if z and w are known (see e.g. [1]).

Based on the expression of the transmission coefficient (2.19) and using the unimod-
ularity property (2.12), the transmission coefficient modulus in a second power can be

found as (see e.g. [1])
1 1

|Mao|> 14| Mo’
this last expression is better to apply since it uses less calculations that reduces the
calculation error.

Thus, the transmission coefficient modulus of the system of N cells shown in Fig. 2
with using the relation of My, from (2.49) can be determined by (see e.g. [1])

(2.50)

T

1
TN | = . (2.51)

VI 2 Unoa ()

11



3 Propagation of Elastic Waves in Solid
Rod

In this chapter the equation modelling the propagation of plane elastic waves in a solid
rod is derived. The solid rod is symmetric along the z-axis, as shown in Fig. 3, with
the non-uniform values of cross-section A(z), mass density p(z) and Young’s modulus
E(x). The dynamic stress field o(z,t) causing the local displacement wu(z,t), where ¢
is the time, has place. The body force g(x,t) is not considered.

N q(,1) ’
Ogx(T,1) — Oze(x + dz, t)

«— —

Fig. 4 Differential element of the solid rod under stress 0., (z,t) and with body force g(z,t).

Let us reference an example of a small part of the solid rod as shown in Fig 4,
Newton’s second law of motion can be written as (see e.g. [7])

2u(z
p(x)A(x)aa(tz’t)da: = 0gz(r +dx,t)A(r + dx) — 0z (x, 1) A(z) . (3.1)

In a pure longitudinal wave motion the direction of a particle displacement is purely in
the direction of the wave propagation (see e.g. [7]), then Hooke’s law can be written as

aa(,t) = B(2)ens(,1) , (3.2)

where €., (x,t) is the extensional strain, 0., (x,t) and €z, (x,t) are the scalar functions.
The relation of the extensional strain and the local displacement is

ou(z,t)
or

ezz(xat) = (33)

12



Using this fact, Eq. (3.1) can be rewritten as

0?u(x,t)

p($)A(ZL')T2’dx = FE(x +dz)A(x + dx)w ou(z,t)

ox ox

Let us consider the small elastic wave amplitudes, so only the first order approximation
of the dependent variables is taken into account

— E(z)A(z)

. (3.4)

Ou(x,t)
ox
Az +dz) =~ A(z) + dﬁ(x)dx :

x
dE(z)
dz
dp(z)
——=d
dr

By substituting the appropriate expressions from the above approximations into
Eq. (3.4)

u(z +da,t) = u(z,t) + dz ,

(3.5)
E(x+dr) =~ E(z) +

dx ,

ple +da) ~ plz) +

2'LL X
o)A 7L g,
= |E(z) + dEdf)dm} {A(aﬁ) + dﬁ;x)d:v] % [u(x,t) + au(x’t)dx] —E(:c)A(x)a“é?t)
2u(x x) Ou(x ) 02ulz
— Ba)A@) 240D gy 4 pa) DD g, | A Pl 1)
dE(z) ou(x,t) dE(x) %u(z,t)
dE(z) dA(z) ou(z,t)  0*u(x,t)
+ de  dr dz? [ O + 92 dx] . (3.6)

After neglecting the second order and the higher terms and reducing dz

O*u(z,t) 0?u(x,t) dA(z) Ou(z,t) dE(z) ou(z,t)

p)A@)——5 50— = E@)Ale)—— 5— + Bl@)— ——5— + —7 ~Al)——.
(3.7)

Can be noticed, that Eq. (3.7) can be rewritten into

Pu(z,t) 0 ou(z,t)
P(fU)A(ﬂf)T ~ or E(z)A(z) o : (3:8)
Assuming a time periodic motion

u(z,t) = i(x)e (3.9)

where w is the angular frequency and i is the imaginary unit, and substituting this
expression of the local displacement into Eq. (3.8), the equation can be written as

_d di(zx)
=% E(x)A(z) 1

—p(z)A(z)wa(x) (3.10)

Equation (3.10) can be expressed as

Pa(z) 1 dE(z)daz) 1 dA(z)da(z) | p(z) 5. .
da? +E($) dz  dz +A(a:) dr dz ‘f'E(x)wQU(x)—O_ (3.11)



3 Propagation of Elastic Waves in Solid Rod

For solving model equation (3.11), it is convenient to rewrite it into the dimensionless

form
20(s) | 1 dn(s)dU(s) 1 dS(s)dU(s) | &(s) par
&2 Tl ds ds | 5(s) ds ds s 0@ =0 (3.12)
Here
=2 7(s) = US) _ As) E(s)
s=7 U(S)—T, S(s) = P (s) = B -
T A B e T £ '
Po CTo 00

where ¢ is a characteristic length.
Assuming E(s) = Ep and p(s) = po to be constant, Eq. (3.12) can be reduced to the

Webster equation (see e.g. [8], [9])

?U(s) 1 dS(s)dU(s)

277 _
& T5e s s TK U(s)=0. (3.14)

Since S(s) = 7r?(s) /€%, Eq. (3.14) can be rewritten as

A

d2U(s) 2 dR(s) dU(s)

K*U(s) = 1
ds? +R(s) ds s Uls) =0, (3.15)

where R(s) = r(s)/¢ is the dimensionless radius of the solid rod.

14



4 Elastic Wave Propagation

In this chapter the general method for the calculation of the transmission coefficient of
a wave propagating through an area of a varying cross-section or different materials is
presented.

4.1 Single Cell

[71(8) UH(S) (7[11(8)
AeiKAS feiKBS CeiKAS
Be—iKAs ge—iKBS De_iKAS
Region 1 Region 11 Region 111
————————————— e S i
0 S1 S2 s

Fig. 5 Reflection and transmission of the wave in a single cell.

Let us assume a solid rod consisting of cells. One cell of the solid rod starts at s =0
and ends at s = so, so it includes two regions: Region II and Region III. A such unit
cell is sketched in Fig. 5. Here the wave propagates from the left to the right, the
dimensionless notations for the local displacements in the corresponding regions are
marked and they can be expressed as

Ur(s) = Aelfas 4 BeiKas (4.1)
ﬁH(S) — eriKBs + gefiKBs ’
ﬁIH(S) = CeiKAS + De_iKAS . (4.3)

Roman numerals are used in general description, notations A and B correspond to
the defined regions. So, the subscripts A and B are used for the regions with smaller
and bigger cross-section respectively. For the cell with different materials alternating
notation corresponds to the type of material.

To find the boundary conditions at the junctions of regions in order to find the
elements of the transfer matrix it is necessary to take into account the balance of forces
and the continuity of velocities at the junctions s = 0 and s = s1 (see e.g. [1])

F1:F27

V1 = V2,

(4.4)

where indices 1 and 2 mean two regions to the common junction.

15



4 FElastic Wave Propagation

4.1.1 Non-Uniform Cross-Section

Let us consider a unit cell with its preceding region as sketched in Fig. 6. The unit cell
itself starts at s = 0 and ends at s = s3. Here, the cross-sections in regions I and III
are equal. The material is the same in all neighboring regions, so the wave numbers
K and Kp can be identified as K.

Fig. 6 A unit cell for a non-uniform cross-section.

Let us rewrite the boundary conditions (4.4) for this case. It is helpful to write

F= Aoy, = ABe,, = Ap24®:1
Oz (4.5)
_ Ou(x,t)
v = 7815 .

Applying expressions (4.4) and (4.5), the next equalities are applied at junctions
s=0and s = sy

A, Ouy(x,t) _ A28u2(x,t) ’
Ouy(z,t)  Oug(x,t) '
ot ot

By substituting Eq. (3.9), using relations s = /¢ and U(s) = @(s)/¢ and making the
reduces, Egs. (4.6) can be written as

A~ A~

Al(S) dUl(S) dUQ(S)
Ay(s) ds ds 7 (4.7)
Uy (s) = Us(s)

The boundary conditions (see e.g. [1]) at the points s = 0 and s = s; then could be written
as

Ur = Un )
s=—0 s=40
|,
Ads B s o
) s=—0 ) s=-+0 (4.8)
Um = Un )
s=-+s1 S=—581
AUy _ AUy
ds B s
s=+4s51 §=—81
Applying Egs. (4.1) - (4.3), it is possible to get the final relationships to work with
A+B=F+G,
Ay (A—B)=Ag (F-G) ,
(4.9)

Celel +De—1K51 — ]_-elel _|_ge—1Ksl ,

AA (CeiKsl 7D€71K51) _ AB (J—_'eiKsl 7g€71Ksl) )

16



4.1 Single Cell

4.1.2 Non-Uniform Mass Density and Young’'s Modulus

Let us consider a unit cell with its preceding region as sketched in Fig. 7. The unit cell itself
starts at s = 0 and ends at s = so. Here, the mass densities and Young’s modulus in regions I
and III are equal, the cross-sections are the same in all regions.

Fig. 7 A unit cell for a non-uniform mass density and Young’s modulus.

Let us repeat the boundary conditions (4.4) once more, so as in the previous case

F = Ac,, = AEe,, = AE% ,
X
oo, ) (4.10)
ot

So, taking into account expressions (4.4) and (4.10), the next equalities are applied at the
junctions s = 0 and s = s1

Ouy(x,t) Ous(x,t)

El = E2 )
Ouy(x,t)  Oua(x,t)
o ot

The dimensionless notation of the boundary conditions above, using (3.9) and relations s =
x/¢ and U(s) = 4(s)/¢ as in the previous case, can be written as

Ey(s)dUi(s)  dUs(s)
Es(s) ds ds 7 (4.12)

01(8) = UQ(S) .

At points s = 0 and s = s; the relationships between the regions can be expressed as

UI — UII )
s=— s=—40
aty AUy
Ea—t = Ep—2
Ads B B s 7
b -0 ) s=+0 (4.13)
U = Un )
s=+s1 §=—581
dUHI . dUII
ATds B s
s=-+s51 S§=—81

Taking into account Eqgs. (4.1) - (4.3), it is possible to get the final relationships to work with

A+B=F+¢G,
ErKp(A—-B)=EgKg(F-6),
CeiKA51 —|—D€_iKAsl — ]_-eiKle +ge—iKle ,

EAKA (CeiKA51 7'D671KA81) — EBKB (f;eiKle o geiiKBSl) )

(4.14)

17



4 FElastic Wave Propagation

4.2 Multiple Cells

Replicating N times the unit cell for both investigated cases, the multiple cells solid rods then
look like in Fig. 8 and Fig. 12. These arrangements represent one-dimensional phononic crystals.

From subsection 2.3.3 it is known, that to determine the transfer matrix of the periodic
system consisting of N cells it is sufficient only to know w and z, which are connected to the
transfer matrix of the part of the cell, that is from s = 0 to s = s1 (see e.g. [1]). By substituting
appropriate wave numbers K and Kp instead of K (this distinction is important for the solid
rod consisting of different materials), the transfer matrix of N cells then is

My =
e AN [y (1) — we ™ HKas2Un_y ()] ze A=D1y (1)
AN DTy () AN [y (1) — wel A% Uy (1)
(4.15)
The Chebyshev polynomials are evaluated at p, where p is
= % (weikasz 4 yeiKas) | (4.16)

The transmission coefficient of N cells then is found with the help of derived expression

1
[Tn| = . (4.17)

V14112 Unoa ()]

4.2.1 Non-Uniform Cross-Section

The solid rod consisting of N multiple cells, where the single cell consists of the two part with
different cross-sections of the same material as was discussed earlier, is represented in Fig. 8.

Fig. 8 An array of cells for a non-uniform cross-section.

By identifying the wave numbers in regions since the material is the same, the required
elements of the transfer matrix for this case are

w = &l [cos (K1) +ipy sin (Ks1)] ,

z = —ie'®lg_sin (Ksq) | (4.18)
= cos (K1) cos (Ks1) — ¢4 sin (K1) sin (Ksq)

where 1 /A 1 -
A B 2 2 4l
¢:|: 2 <AB AA) ; A TTA 5 B Ty E/,O ( 9)
The transmission coefficient of the N repeating cells can be found through
1
[Tn| = . (4.20)

\/1 + [l¢— sin (Ks1)| Un—1 (1))
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4.2 Multiple Cells

In the work [1] it is shown that with the increasing values of N the emergence of a large
frequency gap has a place. Let us see how it is possible to reduce the amount of the cells by
choosing appropriate parameters values of the solid rod and how the parameters of a band gap
can be influenced by these values.

The transmitted wave over frequencies is influenced by the ratio of cross-sections radii. The
bigger this ratio the less part of the wave is transmitted for some band. The illustration to this
conclusion is shown in Fig. 9. These results are for one cell with chosen values of parameters
{=1m, s; =4 cm, [ =2 cm for aluminum characterized by p = 2.7 g/cm? and E = 69 GPa.
The chosen value of radius r4 is 1 ¢cm, rg is 2 cm, 5 cm and 10 cm (that values correspond to
ratios 2, 5 and 10 respectively). The order of cross-sections for one cell doesn’t influence the
transmission coefficient for the chosen values.

1.0 N-=1 S—
—T‘B/TA:2

0.9 re/ra=ph

—rg/ra =10]| |

0.8}
0.7
0.6
0.5
0.4
0.3
0.2
0.1

T

0 10 20 30 40 50 60
7 [kHz]

Fig. 9 Dependence of the transmission coefficient modulus on frequency for non-uniform
cross-sections for different ratio of radii (aluminum).

The chosen material influences the frequency and the range of the possible band gaps. This
conclusion can be seen from Fig. 10, the chosen materials are aluminum (Al), nickel (Ni) with
p = 8.88 g/cm?® and E = 199.5 GPa, silicon carbide (SiC) with p = 3.1 g/cm?® and E = 427
GPa, steel with p = 7.75 g/cm?® and E = 200 GPa, the rest parameters values are remained the
same.

The emergence of the bang gap can be already got for just N = 2 cells. An example of that
fact can be seen in Fig. 11. Nickel is chosen with the ratio of radii of 10. The drop before the
band gap has place.

By adding more cells the band gap form is adjusted to the right angles. The increase of the
cells shifts the band gap to the higher frequencies and decrease the range of frequencies. In Fig.
11 these facts are shown for N = 24 cells.

4.2.2 Non-Uniform Mass Density and Young’'s Modulus

The solid rod consisting of N multiple cells, where the single cell consists of the two parts with
different mass densities and Young’s moduli as was discussed earlier, is represented in Fig. 12.
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4 FElastic Wave Propagation

T
— Al
— Ni

1.0 ‘

0.9 — SiC |

—Steel

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Tyl

0 10 20 30 40 50 60 70 8O0 90 100 110 120 130 140 150
7 [kHz]

Fig. 10 Dependence of the transmission coefficient modulus on frequency for non-uniform
cross-sections from different materials.

1.0 ‘ ‘ ‘ ‘ ‘ ‘ 1.0
0.9} ] 0.9
0.8 ] 0.8
0.7 ] 0.7
0.6 ] 0.6}
g 0.5 E 0.5
0.4 ] 0.4
0.3 0.3
0.2U 0.2
0.1 L J 0.1
0 10 20 30 40 50 60 0 10 20 30 40 50 60
1 [kHz| 7 [kHz]

Fig. 11 Dependence of the transmission coefficient modulus on frequency for non-uniform
cross-section for N=2 and N=24 cells (Ni).

A B A B A A B A

| L
! !
| |
| |
,,,,,,,,,,,,,,,,,,,,, U -
| |
| |
| |
1 r

~v-

N

Fig. 12 An array of cells for a non-uniform mass density and Young’s modulus.

The distinction of the wave numbers, Young’s moduli and mass densities according to the
regions is important in this case since the materials are different. The required elements of the
transfer matrix then are

w = Bl [cos (Kps1) + ipy sin (Kps1)]
—iel®aly_ sin (Kpsy) | (4.21)

1= cos (Kal)cos (Kgs1) — w4 sin (Kal)sin (Kps1) ,

z =
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4.2 Multiple Cells

where
1 (KAEA KBEB> 27Tf£ 271'f€ (4 22)
= — A= —F—, = —_——, .
75T 2 \KpEp  KaFa VEa/pa 5 VEBs/pw
The transmission coefficient of the N repeating cells can be found through
1
(Tl = (4.23)

\/1 + (- sin (Kps1)| Uy—1(n)]

Now, in contrast to the previous section, let us investigate the influence of the mass densities
ratio and Young’s moduli ratio on the transmission coefficient modulus dependent on frequency.
There is an interest in bigger ratios of mass densities and Young’s moduli. The bigger these
ratios the less part of the wave is transmitted for some band. The illustration to this conclusion
is shown in Fig. 13.

N =1
1.0 !

0.9 ]
0.8F ]
0.7+ ]
0.6
0.5
0.4
0.3} i
0.2- i

— steel, Al
0 . ]- —_— steel,7 Mg
—steel, CFRP

T

0 10 20 30 40 20 60
7 [kHz]

Fig. 13 Dependence of the transmission coefficient modulus on frequency for non-uniform
mass density and Young’s modulus for different pairs of materials.

These results are for one cell with chosen values of geometrical parameters { = 1 m, s; = 4
cm, [ = 2 cm for steel with p = 7.75 with g/cm? and E = 200 GPa, for aluminum (Al) with
p = 2.7 g/em?® and E = 69 GPa, for magnesium (Mg) with p = 1.738 g/cm?® and E = 45
GPa, for carbon fiber reinforced polymer (CFRP) with p = 1.4 g/cm?® and E = 30 GPa, that
is the values of Kevlar Fabric CFRP. The pairs are chosen as combination of steel B and other
mentioned materials A so the approximated ratios of mass densities pg/pa and Young’s moduli
Egp/E 4 accordingly are

e 2.87 and 2.9 for steel as B and Al as A,
e 4.46 and 4.44 for steel as B and Mg as A,
e 4.3 and 6.67 for steel as B and CFRP as A.

The order of materials A and B with the chosen geometrical parameters changes the trans-
mission coefficient result. For the pairs steel and Al steel and Mg, by changing the order of
materials the transmission coefficient is the same at the beginning, but starting at some fre-
quency the graphs are not the same, they are shifted. This fact can be seen in Fig. 14, for the
pair steel and aluminum, s, = 30 cm.
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4 FElastic Wave Propagation

1.0 ‘ _
0.9¢
0.8 |
0.7
0.6
0.5 :
0.4- |
0.3 :
0.2F |
0.1 | | | | 1

0 10 20 30 40 50 60
7 |kHz]

T

Fig. 14 Dependence of the transmission coefficient modulus on frequency for non-uniform
mass density and Young’s modulus for different order of materials.

N =1

0.2 1
0.1 —steel(A), CFRP(B)] |
—CFRP(A), steel(B
0 10 20 30 40 50 60

+ |kHz]

Fig. 15 Dependence of the transmission coefficient modulus on frequency for non-uniform
mass density and Young’s modulus for different order of materials.

For the third pair, steel and CFRP, the change of the materials’ order causes the transmission
coeflicients differ starting from the begin of the chosen frequencies. That can be seen in Fig.
15, s2 = 30 cm.

By trying different values of CRFP, i.e. mass densities and Young’s moduli, it has been
noticed, that the ratios should not only be bigger, but the bigger the multiplication of these
ratios, the bigger amplitude can be reached. This fact is introduced in Fig. 16, s; = 15 cm and
s3 = 30 cm. The next types of CFRPs are chosen: E glass UD with p = 1.9 g/cm? and E = 40
GPa, E glass Fabric with p = 1.9 g/cm?® and E = 25 GPa and Kevlar Fabric with p = 1.4
g/cm?® and E = 30 GPa.
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4.2 Multiple Cells
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Fig. 16 Dependence of the transmission coefficient modulus on frequency for non-uniform
mass density and Young’s modulus for different types of CFRP.

From the graphs shown in Figs. 14 - 16 can be concluded that the order of the same chosen
materials doesn’t change the amplitude value.

Let us take the pairs of materials
e Al as A and steel as B, Al as A and zirconia (ZrOs) as B,
e Al as B and steel as A, Al as B and zirconia (ZrOz) as A.

Steel and zirconia (p = 5.7 g/cm® and E = 200 GPa) have the same Young’s modulus, steel
mass density is bigger than zirconia mass density, so the conclusion how the values of mass
density influences the result transmission coefficients can be made (in combination with alu-
minum). The corresponding graphs are in Fig. 17. It can be seen, that when materials B has
the same Young’s modulus and material A is the same, the pair with the bigger mass density of
B material will have a band gap for lower frequencies than the pair with lower B mass density
(the first pair is shifted to the left from the second pair). When materials A has the same
Young’s modulus and material B is the same, then there is no shift for chosen values.

Let us take the pairs of materials
e Al as A and manganese (Mn) as B, Al as A and indium (In) as B,
e Al as B and manganese (Mn) as A, Al as B and indium (In) as A.

Manganese (p = 7.35 g/cm3 and E = 190 GPa) and indium (p = 7.35 g/cm? and E =
10 GPa) have the same mass density, Young’s modulus of manganese is bigger than Young’s
modulus of indium, so the conclusion how the values of Young’s modulus influences the result
transmission coefficients can be made (in combination with aluminum). Graphs are in Fig. 18.
It can be proclaimed, that when materials B has the same mass densities and material A is
the same, the pair with the smaller Young’s modulus of B material produces the transmission
coefficient with the higher frequency. When materials A have the same mass densities and
material B is the same, then there is no shift for chosen values.

The emergence of the bang gap can be seen since N = 4 cells. An example of that fact is in
Fig. 19. Steel and CFRP (Kevlar Fabric) are chosen. As in the case of different cross-sections,
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4 FElastic Wave Propagation

the increase of the cells makes the angles of the band gap become the right angles, the shift of
the frequency range doesn’t have place. In Fig. 19 these features are shown for N = 15 cells.

1.0 N 1 1.0 N 1
0.9- 1 0.9 1
0.8 ] 0.8 |
0.7 ] 0.7/ |
06 ] 06 1
é 0.5 ] é 0.5 |
0.4/ ] 0.4] |
0.3 ] 0.3 1
0.2 ] 0.2 |
o SRR o =i MR

0 10 20 30 40 50 60 0 10 20 30 40 50 60
s [kHz] £ [kHe]

Fig. 17 Dependence of the transmission coefficient modulus on frequency for two pairs of
materials, steel and ZrOq has the same Young’s modulus.
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Fig. 18 Dependence of the transmission coefficient modulus on frequency for non-uniform
mass density and Young’s modulus for the two pairs of materials, Mn and In has the same
mass density.
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Fig. 19 Dependence of the transmission coefficient modulus for non-uniform mass density and
Young’s modulus on frequency for N=4 cells and N=15 cells (CFRP is A and steel is B).

24



5 Cell with Known Length Ratio of Its
Parts

In this chapter the influence of the length ratio between two parts of the cell on the band gap
existence is studied. The two types of the cells are investigated again: with the non-uniform
cross-section and with with the non-uniform mass density and Young’s modulus. The length
ratio is included into expressions to calculate the transmission coefficient.

5.1 Single n/m Cell

UI(S) ﬁH(S) UIH(S)
AeiKBs ].'eiKAS CeiKBs
BefiKBS ge_iKAs DefiKBS
Region 1 Region 11 Region 111
————————————— T S T il T
0 mS2 S2 8

Fig. 20 Reflection and transmission of an elastic wave in a single n/m cell.

Now a cell representing a solid rod looks like in Fig. 20. The order of regions with A and
B characteristics is reversed. The length ratio between two parts of the cell is represented by
n/m multiplicand at the coordinate. The coordinate sy represents also the length of the cell,
so if the whole cell consists of m parts, then Region II contributes n parts of m.

Since the order of the parts of the cell is different than in the previous chapter, the local
displacement equations have the forms

Ur(s) = Aeifes 4 BemiKes | (5.1)
Uni(s) = Felfas 4 Gemilas | (5.2)
UHI(S) = CBiKBS + De_iKBs . (53)

The balance of forces and the continuity of velocities (4.4) at the junction are applied in the
same manner, but at the junctions s = 0 and s = nsa/m (see e.g. [1])

F1:F2a

U1 = V2,

(5.4)
where indices 1 and 2 mean two regions to the same junction.
5.1.1 Non-Uniform Cross-Section

A n/m cell with a non-uniform cross-section is sketched in Fig. 21. The unit cell itself starts
at s = 0 and ends at s = nsy/m. Here, the cross-sections in regions I and IIT are equal. The
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5 Cell with Known Length Ratio of Its Parts

material is the same in all regions, so the wave numbers K and Ky can be identified as K
again.

Fig. 21 A unit cell for a non-uniform cross-section.

At the points s = 0 and s = nss/m the relationships between the regions then are

Un = Un )
s=—0 s=-+0
dUy dUy
B A
ds ds ’
s=—0 s=+0 (5 5)
Um = Un ,
s=+ 52 s=—Ttso
AUy AUy
AB = AA
ds ds
s=+-s2 s=—-52

The substitution of the points and displacement equations (5.1) - (5.3) leads to the system

A+B=F+G,
Ap(A—B)=Ax (F-G) ,
CeiK%SQ +,D671K%52 _ ]:eiK%sz +gefiK%sz ,

AB (CeiK:’T’LsQ _ De—iK?—n’sz) _ AA (feiK:’Tl’sz _ ge—iK%sz) .

5.1.2 Non-Uniform Mass Density and Young’'s Modulus

A n/m cell with the non-uniform mass density and Young’s modulus is sketched in Fig. 22.
The unit cell itself starts at s = 0 and ends at s = s5. Here, the mass densities and Young’s
modulus in regions I and IIT are equal, the cross-sections are the same in all regions.

Fig. 22 A unit n/m cell for a non-uniform mass density and Young’s modulus.
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5.2 Multiple Cells of n/m Type

At points s = 0 and s = nsy/m the relationships between the regions are

Ut = Un )
s=—0 s=40
dUy dUn
B~ = A7
ds o ds o ’
S=— s=-
(5.7)
U = Un
s=+s2 s=—1s2
E dUHI dUII
B = A7
ds ds
s=+-32 s=—Tts9

The substitution of the points and displacement equations (5.1) - (5.3) leads to the system
A+B=F+G,
EgKg (A —B)=EAKA(F—G) ,
CeiKB%SQ _i_De_iKBﬁsE — .FeiKA%S2 +g€_iKA%S2 ,

EpKp (CefPm® — D Koms2) — By Ky (Felffams2 — GemHamsz)

(5.8)

5.2 Multiple Cells of n/m Type

Considering the result from the previous chapter, that with the increasing number of cells for
a given set of parameters, the band gaps become more pronounced, let us see how the choice of
the n and m influences the behavior of band gaps.

5.2.1 Multiple n/m Cells

The multiple n/m cells solid rods are shown in Fig. 23 and Fig. 29. The transfer matrix, the
point at which the Chebyshev polynomials are evaluated and the transmission coefficient of NV
cells are a little bit different than in Section 4.2, since the order of A and B regions are reversed

My =
e~ KB N [y () — wre ™ Ke52Un_y ()] 2e R0y (1) , (5.9)
e N (U 1) — w3
= % (welkesz 4yt emiKnsz) (5.10)
Tl = 1 (5.11)

2
V1 2l Ui ()
Elements w and z will be expressed for each case separately. Their expressions are almost
the same as was derived earlier. The difference is in the reverse of wave numbers K and Kg
and use of expression 1 — n/m instead of [.

5.2.1.1 Non-Uniform Cross-Section

The solid rod consisting of N multiple cells, where the single cell consists of the two parts with
different cross-sections with the given length ratio of these parts, is sketched in Fig. 23.
The needed expressions are

w = e K(1=%)s2 [cos <K282> + iy sin (Kﬁsz)} ,
m m
2= ieK(1=%)%2,_gin (Kﬁsz) : (5.12)
m
b = cos (K (1 — l) 32> cos (K£82) — ¢4 sin (K (1 — E) 52) sin (KESQ) ,
m m m m
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5 Cell with Known Length Ratio of Its Parts

Fig. 23 Multiple n/m cells for a non-uniform cross-section.

where 1 /4 " o 1
A B 2 2 4l
=—|(-—x— Ap = Ap = K= 5.13
¢:|: 2 (AB AA) 3 A TTA B Try E/p ( )
The transmission coefficient can be found through
1
Tn| = (5.14)

Vi [l sin (K 25) [ U (0]

Based on the results from the previous chapter let us find out the regularities for this type
of the cell.

In Fig. 24 there are the graphs for the solid rod consisted of the two aluminum cells, the
number of parts is m = 10, the radii have values ro = 1 cm and rg = 10 cm, the length of one
cell is 10 cm.
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Fig. 24 Dependence of the transmission coefficient modulus on frequency for non-uniform
cross-sections of different lengths and N = 2 repeating cells (aluminum).
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5.2 Multiple Cells of n/m Type

The first part of the transmission coefficient graphs represented in Fig. 24 is the drop, the
second part is the 1st band gap. The following part differs for chosen value n of m. Can be
concluded that for n > m/2 and n is closer to m the 1st band gap is wider, the widest one
is when the lengths of both cell parts are equal. The 1st band gap is followed by the drop or
the band gap. The 1st drop amplitude is bigger for bigger n. All drops can be divided into
two groups: side drops and internal drops. For n > m/2 there are both types of drops, but for
n < m/2 there are only side drops. For n < m/2 the 1st band gap is narrower, the 1st drop
amplitude is smaller.

Let us have a look at Fig. 25 and Fig. 26, where the wider spectrum is chosen, it can be
seen, that if n equals to e.g. 3 and 7 or 1 and 9 (their sum equals to m), then there is a full
transmission of the wave almost at the same frequencies. Also it can be noticed that the band
gaps are trying to form some groups dependent on the values of n and m. The length ss is set

to 2 cm.
1.0 T T T T T T T T T T T T
—n/m=1/10
0.9 —nfm:gfw

0.8

0.7
O.GU
0.5 I

0.4
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0.3
0.2

L O

0 10 20 30 10 50 60 7
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30 90 00 1
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Fig. 25 Dependence of the transmission coefficient modulus on frequency for non-uniform
cross-sections from aluminum with n/m = 1/10 and n/m = 9/10 for two cells (sz = 10 cm).
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Fig. 26 Dependence of the transmission coefficient modulus on frequency for non-uniform
cross-sections from aluminum with n/m = 3/10 and n/m = 7/10 for two cells (s2 = 10 cm).

Now it is easily to get and see very clearly the property: the length of the cell is less, the band
gap is wider. To be more precise the band gap is wider almost as much times as s, was made
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5 Cell with Known Length Ratio of Its Parts

less, because there is a shift of the full transmission frequencies, forming the band gap borders,
to the right and to the left accordingly proportional to the number of times. This property can
be seen in Fig. 27, where the length s, is remained to be 10 ¢cm for one curve and 5 c¢m for the
other one, the both parts of the cell have equal lengths, i.e. n/m = 1/2. The symmetry of the
curves can be noticed.

In Fig. 28 two number of cells’ repetitions are chosen: N = 2 and N = 7. The length of one
cell is s, = 5 cm with the length ratio n/m = 1/2 is remained. By adding more repetitions the
band gap borders become more straight rather rounded and are a bit shifted.

N =2

1.0 T T T T T T T T T T T
—s9 =10 cm
0.9 — g =5cm

0.8

0.7
0.6
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Fig. 27 Dependence of the transmission coefficient modulus on frequency for non-uniform
cross-sections with different sy length and n/m = 1/2.
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Fig. 28 Dependence of the transmission coefficient modulus on frequency for non-uniform
cross-sections with N =2 and N =7 (s2 =5 cm, n/m = 1/2).

5.2.1.2 Non-Uniform Density and Young’s Modulus

The solid rod consisting of N multiple cells, where the single cell consists of the two parts with
different mass densities and Young’s modulus with the given length ratio of these parts, is shown
in Fig. 29.
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5.2 Multiple Cells of n/m Type
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Fig. 29 Multiple n/m cells for a non-uniform mass density and Young’s modulus.

The needed expressions are

w = KB (1= )s2 [cos (KA252) +ipy sin (KA252)} ,
m m

z = ieiKB(l_%)‘”(p_ sin (KA%SQ) R (515)

L = cos (KB (1 — 2) 52) cos (KA£52> — @4 sin (KB (1 — E) 52) sin (KA232> ,
m m m m

1<KAEAiKBEB> K — 27Tf£ - 271'f€ (5 16)
7= T2\ KpEp  KaBa AT VEalpn 0 \Eejes '
The transmission coefficient can be found through
1
|Tn| = (5.17)

VIt [lomsin (Kaso)| Unoa()]*

Based on the results from the previous chapter let us find out the regularities for this type
of the cell.

In Fig. 30 there are the graphs for the solid rod consisted of four cells. One cell of which is
represented by the pair of CFRP (Kevlar Fabric) as material A and steel as material B. The
length of one cell is 10 ¢m, the number of parts is m = 10, n is taken different. In comparison
to the cell of the non-uniform cross-section, this type of the cell with the chosen parameters’
values needs more repetitions, because for N = 4 the band gap is seen, but the 4th drop is not
a band gap for every chosen n.

The widest band gap is when the lengths of both cell parts are equal, the start of the band
gap in this case is the first one in comparison to the other chosen values of n and m, see Fig.
31. Also it can be noticed that in comparison to the case of different cross-sections, in the case
of the different mass densities and Young’s moduli the sum of two n being equal to m doesn’t
lead to the full transmission at the same frequencies for all such pairs. It can bee seen that it is
almost true for the pair n = 7 and n = 3, but not for the pair n =9 and n = 1, where m = 10.

From the previous chapter, it is known that the order of materials influences the frequency
of the transmission coefficient modulus when the parts of the cell have the same length. But
what will happen if the order of materials is changed in case of different n from m? The blue
plots represent the same combination of steel as B and CFRP as A, the new magenta color
represents the reversed order of materials, so steel is A and CFRP is B in Fig. 32. By adjusting
the values of n from m and changing the order of materials it is possible to shift the range of
the band gaps and influence the widths of these band gaps.
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5 Cell with Known Length Ratio of Its Parts
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Fig. 30 Dependence of the transmission coefficient modulus on frequency for non-uniform
mass density and Young’s modulus for four n/m repeating cells. CFRP is A and steel is B.
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Fig. 31 Dependence of the transmission coefficient modulus on frequency for non-uniform
mass density and Young’s modulus for four n/m repeating cells (CFRP is A and steel is B)
with different values of n.
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5.2 Multiple Cells of n/m Type
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Fig. 32 Dependence of the transmission coefficient modulus on frequency for non-uniform
mass density and Young’s modulus for four n/m repeating cells. CFRP (A) and steel (B)
are in blue, steel (A) and CFRP (B) are in magenta.
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6 Propagation of Elastic Waves through
Linearly Graded Material

In this chapter the solid rode consisted of the inhomogeneous region is considered. The in-
homogeneity is represented by the linear Young’s modulus change. The positive and negative
gradients are investigated, their combination, form the triangular profile of Young’s modulus, is
also analyzed. The solution of model equation describing the propagation through the linearly
graded region is derived.

6.1 Model Equation and its Solution

Let us consider the solid rode as sketched in Fig. 33, fabricated from two materials My and M.
There is an inhomogeneous region of the length of ¢ between these two regions.

Region 1 Inhomogeneous Region 11
Material 1 region Material 1T
Ex, po E(z), po Ert, po
0 14 x

Fig. 33 Distribution of the regions in a solid rode.

The inhomogeneity of material properties can be caused by the temperature, for example.
If the solid rode is heated in such a way that there is a large variation in temperature along
the solid rode length, Young’s modulus E depends on « since Young’s modulus is known to be
sensitive to the large temperature changes. However, in such cases mass density pg varies only
little, so that it is possible to assume that it remains constant (see e.g. [10]). Young’s modulus
then can be described as a function of the material properties and volume fractions of consistent
materials (see e.g. [11])

E=FEVi+ EqVi, (6.1)

where E7 and Ep; denote Young’s moduli of the supposed materials and Vi and Vi are the
volume fractions of the constituent materials that satisfy the following condition

i+Vn=1. (6.2)

Let us make an assumption that the material composition in an inhomogeneous region varies
continuously only along the z-axis, then let us denote Vi1 = V(z) and on the basis of Eq. (6.2)
can be written V1 =1 — V(z). Then Eq. (6.1) can be written as

E(x) = EuV(z) + B[l - V()] (6.3)

The material composition in the solid rode inhomogeneous region is supposed to be dis-
tributed according to the following linear law

Viz) = % , (6.4)
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6.1 Model Equation and its Solution

where /£ is considered as a characteristic length.
With respect to Egs. (6.3) and (6.4) Young’s modulus can be expressed as

E(z) = Eu> + B (1 - %) = Er+ (En — Ey) (6.5)

z
¢ A

There is a derivation of equation describing the propagation of elastic waves in a solid rode
written in dimensionless form in Chapter 3. Let us repeat equation (3.12) again

42U (s) 1 dn(s) dU(s) 1 dS(s)dU(s)  &(s) ,.on B

ds? n(s) ds ds + S(s) ds ds + n(s)K Uls) =0, (6.6)

where
T N () _A(s) _ E(s)
S_Z’ (5)_ VR S(S)_ 2 77(8)— E, ’ ( 7)
29 6.
O S S
Po Lo Po

The third term in Eq. (6.6) can be omitted since the cross-section is considered to be constant
in this chapter. Young’s modulus Fjy is replaced by Ep according to the notations, then

E(s) , we? B
s) = , KP="5—, cpi=4]—. 6.8
77( ) EI I 0%1 L1 Po ( )

The dimensionless form of Young’s modulus, expressed by Eq. (6.5), and dimensionless mass
density are

n(a;s) = EFE‘f) =1+ EHT_IEIS =1+as, (6.9)
£(s) = p;j) =1. (6.10)

After the substitution into Eq. (6.6) expressions (6.8) - (6.10), the longitudinal propagation of
elastic waves through a continuously inhomogeneous solid rode can be described as (see e.g. [10])

d*U(s) 1 dp(a;s)dU(s) w262 .
= A1
ds? n(a;s) ds ds 2 Uls) =0, (6-11)

where ¢, = \/E(s)/po.

Let us substitute the expressions related to the dimensionless Young’s modulus into Eq. (6.11)

d?U(s) a dU(s) W lpy 4
=0. 12
ds? 1+as ds (1+ as)Ex Uls) =0 (6.12)

The third term can be expressed through the wave number K7, so Eq. (6.12) can be written as

d?U (s) a dU(s) K .
=0. 1
ds? 1+as ds + 1+as Uls) =0 (6.13)

The solution of the above differential equation is

v1+as

P (6.14)

U(S) = ClJo (2K1

>+C2Y0 <2Kﬂl+“8> ,

lal

where C7 and Cy are complex integration constants, Jg and Y are the Bessel functions of the

first and second kinds of order zero.
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6 Propagation of Elastic Waves through Linearly Graded Material

6.2 Linear Gradients of Young's Modulus

Let us define more exactly the solution of the model equation describing propagation of elastic
waves through the linearly graded material for the cases with positive and negative gradients of
Young’s modulus. Analogically to the previous cases let us use notations A and B for different
regions, but subscript B corresponds to the higher value of Young’s modulus, A to the lower

one. It follows
FEg > FEx . (6.15)

6.2.1 Positive Linear Gradient of Young’s Modulus
The solution of the model equation (6.14) with the positive linear gradient of Young’s modulus
has the form

, (6.16)

UAB(S) = ClJO <2KA1:'L_GJS>

1
OV (2, )
a
where subscript AB means the change of Young’s modulus from the lower value to higher, the
corresponding wave numbers have subscripts A and B. The expression for a, based on (6.10),
is

Ep — Ea
0=t (6.17)
The derivation of equation (6.16) is
dUag Ka vl—&—as) < \/1+as>}
=— C1J1 [ 2KpA—— CoYq | 2Kpa——— || 6.18
ds V1+as [ . < A et A (619

where J; and Y are the Bessel functions of the first and second kinds of order one.

6.2.2 Negative Linear Gradient of Young's Modulus

The coefficient a defined by (6.10) is negative in this case. The needed Bessel functions of
the first and second kind of the negative argument can be found through the formulas (see

e [12], [13)) e
Jn(=2) = (=1)"J. (2) ,
Yo (=2) = (—1)" [Ya (2) + 20 (2)] | (6.19)

where n is integer.
The solution of model equation (6.14) with the negative linear gradient of Young’s modulus
has the form

Upa(s) = CsJo (2KBM> +Cy [YO <2KB m) +i2Jo (2K3m)} . (6.20)

b b b
where B B
b= B _ A 21
- (6:21)
The derivation of equation (6.20) is
dUa B
ds
Ky 1—bs 1—bs 1—bs
C3J1 | 2K Cy Y1 | 2K i2J; | 2K, .
%1_1)8(31( B b >+ 4[1( B b )+1 1( B b )})
(6.22)

6.3 One Cell

Let us form the transfer matrix of one cell representing the part of the solid rode consisted of
the graded material.
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6.3 One Cell

6.3.1 Boundary Conditions

Let us assume the solid rode as sketched in Fig. 34.

Un(s) U(s) Uni(s)
AeiKIS CeiKHS
Be—iKIS De—iKHS
Inhomogeneous
Region 1 region Region II
————————————— e
0 1 s

Fig. 34 Reflection and transmission of an elastic wave in an inhomogeneous region.

The notation is dimensionless, the inhomogeneous region starts at s = 0 and ends at s =
1. The wave propagates from the left to the right, the dimensionless notations for the local
displacements in the corresponding regions are marked and they can be expressed as

Ur(s) = Aefrs 4 Bemifas | (6.23)
U(s) = Uxg(s) or U(s)=Usa(s), (6.24)
Uni(s) = Celfus 4 pe~ifus (6.25)

where the wave number of the second region is

w2e? FE
KIQI = CT 5 Cro = l (626)
L2 Po

The boundary conditions at the junctions of regions can be found in the same way as were
done in the previous cases (see e.g. [1]), by taking into account the balance of forces and the
continuity of velocities at the junctions s = 0 and s = 1. That can be written as

U =U ,
s=—0 s=+0
ds | - ds B ’
Cem e (6.27)
U =U
s=+1 s=—1
AUy B dU
12l
s=+1 s=—1

Applying these boundary conditions, the transfer matrix of one cell with the inhomogeneous
region can be formed. Let us see how conditions (6.27) look like for cases with the positive and
negative Young’s modulus gradient.

6.3.1.1 Positive Linear Gradient of Young's Modulus

The one cell with the positive linear gradient of Young’s modulus and the neighboring cells,
where Region I has the constant Young’s modulus E4 and Region II is also of the same type,
e.g. Young’s modulus changes linearly from Ex to Ep, is represented in Fig. 35.
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6 Propagation of Elastic Waves through Linearly Graded Material
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Fig. 35 Reflection and transmission of an elastic wave in a region with the positive linear
gradient of the Young’s Modulus.

The waves in the regions are described by the equations

A~

UAB(S) = C’lJo (QKA

UH(S)

UI(S) _ AeiKAs +B€7iKAS ,

CelKAs + /DeflKAs )

(6.28)
L) oy, (ama ) (6.29)
(6.30)

Applying Egs. (6.28) - (6.30), the boundary conditions (6.27) for the positive linear gradient,

where F(s = —1) = Ep, are
Ur
a0
ds
U
AUy

B, 21
AT ds

= UAB )

s=— s=40
dUxg
B ds | 7

s=—0 ) s=+40 (631)

= UAB )
s=+1 s=—1

AU
=F
B s

s=+1 s=—1

After the substitution of the wave equations into the system (6.31), the boundary conditions

for the positive linear gradient are

A+B=CJg (2KAi) + C5Yy <2KA(11> ,

i(A—B)=— [Cﬂl (2KAi> + 0, <2KAi>} :

CeiKA + DeiiKA = ClJO (2KA

_Es
VvVi+a

iEa (CeiKA — De_iKA)

[ClJl (2KA> + (Y, <2KA
a

(6.32)

v 1; “> T+ Y, <2KA

vi+a

)

a

6.3.1.2 Negative Linear Gradient of Young’s Modulus

The one cell with the negative linear gradient of Young’s modulus and the neighboring cells,
where Region I has the constant Young’s modulus Eg and Region II is also of the same type,
e.g. Young’s modulus changes linearly from Ep to Ej, is represented in Fig. 36.
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6.3 One Cell

UI(S) UH(S)
.A(?liKBS CeiKBs
Be—i[\'Bs g De—iKBS
Region I Region II
—————————————— e
0 1 s

Fig. 36 Reflection and transmission of an elastic wave in a region with the negative linear
gradient of the Young’s Modulus.

The waves in the regions are described by the equations

Ur(s) = Aetles 4 Be~iKps (6.33)
A 10 10 VI—b
Upa(s) = C3J <2KB S> 10y [YO <2KB S) +i2J, <2KB ; s)} . (6.34)

Uni(s) = Celfes 4 DeiKns | (6.35)

Applying Egs. (6.33) - (6.35), the boundary conditions (6.27) for the negative linear gradient,
where E(s = —1) = Fja, are

le - 0BA )
s=—0 s=+40
dlr _ dUpa
ds 3 T ds 3 ’
) s=—0 ) s=+0 (6.36)
Un = Upa )
s=+1 s=—1
dUH dUBA
~~u - B
B A s
s=-+1 s=—1

After the substitution of the wave equations into the system (6.36), the boundary conditions

for the negative linear gradient are
+ Cy |:Y0 <2KB > + 2iJo | 2KB - >:|

(
ronn (g ) 2 (g )|

A+B= C3J0 (2KB1

c~\>—~@
\/\/

i((A—B) = CsJ (2

VI—b VI—b N
Ce'ls  De KB = 03], (QKB ; ) +Cy [YO <2KB . > + 2iJ, <2KB . )] ,
. . Ea VI—b
iEp (Ce'lfe — De~1ie) = 2K
iEg (Ce e ) 1—b<C3J1< B )+
Cy {Yl <2KB Y 1b_ b) +2iJ, <2KB 4 1b_ b }
(6.37)

39



6 Propagation of Elastic Waves through Linearly Graded Material

6.3.2 Transfer Matrix

Let us write the transfer matrices M(syp, s,) and P(sp, s,) of one cell represented by an inho-
mogeneous region

w z
M(1,0) = , (6.38)
z*f wr
,weiK ZelK
P(1,0) = _ _ : (6.39)
Z,*e—lK w*e—lK

since the symmetry property has place.
The shifted transfer matrix differs for positive and negative gradients. The difference is in a
wave number K.

6.3.2.1 Positive Linear Gradient of Young’'s Modulus
The shifted transfer matrix for the positive linear gradient of Young’s modulus equals
eiKA 0 weiKA ZeiKA
P(1,0) = M(1,0) = : (6.40)
0 e_iKA Z*e—iKA w*e—iKA
6.3.2.2 Negative Linear Gradient of Young’s Modulus
The shifted transfer matrix for the negative linear gradient of Young’s modulus is
6iKB 0 weiKB ZeiKB
P(1,0) = M(1,0) = . (6.41)
0 e_iKB Z*e—iKB w*e—iKB
6.3.3 Transfer Matrix Feature

The transfer matrix of the cell describing the propagation of elastic waves through the linearly
graded material has one feature separating it from the transfer matrices discussed earlier in the
work: the determinant is not equal to one. This feature influences the transmission coeflicient
formula.

6.3.3.1 Determinant

The determinants of the transfer matrices are not equal to one generally, so the value of the
one cell determinant is

det M(1,0) = |w|* — |2|* = det P(1,0) . (6.42)

6.3.3.2 Transmission Coefficient

Applying the transmission coefficient formula (2.17) to one cell described by Eq. (6.38) with
the non-unitary determinant leads to

_ det(M(1,0) _ det(M(1,0))

6.43
T Mo w* ’ (643)
so the modulus of the transmission coefficient (6.43), based on Eq. (2.19), is
det(M(1,0
|T| = W‘ . (6.44)
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6.4 Multiple Cells

6.4 Multiple Cells

The construction of the solid rode consisted of N repeating cells with positive/negative gradient
is analogically to the already considered cell types. The Chebyshev identity has place since the
determinants are real. So it can be applied to calculate the transfer matrix of N inhomogeneous
regions constituted the solid rode.

6.4.1 Transfer Matrix of N Cells

The shifted transfer matrix for NV cells has the form

U —wre KN 2 KU _
Py — ~N () N-1(p) ~N-1(n) ' (6.45)

2re M UN-1 (1) Un(p) — weB Uy -1 (1)

The transfer matrix for N cells then is

e—iKN 0
My = Py
0 6iKN
e—1KN [UN(M) _ ’w*e_iKUN—l(M)] Ze_iK(N_l)UN_l(u) (6 46)
Z*eiK(Nfl)UN_l(‘u) el KN [UN(,u) _ weiKUN_1(,u)]
where
1 1 iK * —iK
"= §Tr(P(1,0)) =3 (we'™ +w e ™) . (6.47)

6.4.2 Transmission Coefficient

The transmission coefficient modulus of the system of N cells, based on Egs. (6.44) and (6.46),
is

det(My)| | det(M(1,0)) [V
e ‘ , (6.48)

Ta| = - .
Tl [T () — 0¥ Uy ()|

6.4.2.1 Positive Linear Gradient of Young’'s Modulus

The solid rode consisted of N repeating cells with positive linear gradient of Young’s modulus
is represented in Fig. 37.

Fig. 37 Multiple cells with positive linear gradient of Young’s modulus.
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6 Propagation of Elastic Waves through Linearly Graded Material

Using formula (6.46) the transfer matrix for this case is

e—iKAN 0
My = Py
O eiKAN
B e—iKAN [UN(,U) _ w*e_iKA UN—I(M)] Ze_iKA(N_l)UN_l(M) (6 49)
2 KA =DU N (1) AN TUN (1) — weSr Uy 1 ()]
The needed expressions are
w— Eav1+aar + Egas +1i [EA\/l + aas + EBa4]
B 2ei2Ka Fa+/1 + aas ’
L Fav1+ao; — Egas —1i [EA\/I + aoqg — EBa4]
- 2ei2Ka Ear/1 + aas ' (6.50)
1 . .
n=; (we'Fa +w*eHAY
EBOéG
det(M(1,0)) = ——26_
et(M(1,0)) FaviT aos
the used designations are
a1 = Jo(arga(1))Y1(arg.(0)) — Yo(arga(1))J1(arg.(0)) ,
az = Jo(arga(0))Y1(arga(1)) — Yo(arga(0))J1(arga(1)) .
as = Jo(arga(1))Yo(arga(0)) — Jo(arga(0))Yo(arga.(1)) , (6.51)
ay = Ji(arga(1))Y1(arg.(0)) — Ji(arg.(0))Y1(arga(1)) , '
a5 = Jo(arga(0))Y1(arg.(0)) — Yo(arga(0))J1(arg.(0)) ,
as = Jo(arga(1))Y1(arg.(1)) — Yo(arga(1))Ji(arga(1)) .
where
— arge(0) = 2K 1
argq(s) = QKAM = e Yo (6.52)
a Vi+a
argq (1) = 2K, .
a
Finally, the transmission coefficient formula, based on Eq. (6.48), is
det(M(1,0)) |V

| Un (1) —weaUn_a(p) |-

To achieve the band gap with the smallest possible number of cells, the difference between
Young’s moduli should be high. Carbon steel C > 0.3% has been chosen as material, Young’s
modulus Fp is 202 GPa at 21°C and Ep = 106 GPa at 649°C (see e.g. [14]). For the chosen
material and its values the bang gap is achieved for N = 40 cells, see Fig. 38.
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6.4 Multiple Cells
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Fig. 38 Dependence of the transmission coefficient modulus on frequency for positive gradient
of Young’s modulus (carbon steel C > 0.3%).

6.4.2.2 Negative Linear Gradient of Young's Modulus

The solid rode consisted of N repeating cells with negative linear gradient of Young’s modulus
is represented in Fig. 39.

Fig. 39 Multiple cells with negative linear gradient of Young’s modulus.

Using formula (6.46) the transfer matrix for this case is

e—iKBN O
MN = PN
0 eiKBN
| TN [Un (k) — wre R UN 1 (n)] 2e DUy 1 () (6.54)
Z*eiKB(Nfl)UN_l(u) KN [UN(H) _ weiKBUN—l(,M)]
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6 Propagation of Elastic Waves through Linearly Graded Material

The needed expressions are

w— EgV1—bB1 + Eaf2 —i[EgV1 —bp3 + Eaf4)
212K /T — bf3s ’
L EgV1—bB1 — Exfa +1[EgV1—bp3 — Erf4)

2ei2K5 B /T — b5 ’ (6.55)
W= % (weiKB + w*e_iKB) ,
~ EaBs
det(M(1,0)) = 7E3m55 ,
the used designations are
B1 = Jo(argy(1))Y1(argy(0)) — Yo(argy(1))J1(argy(0)) ,
B2 = Jo(args(0))Y1(argy(1)) — Yo(args(0))J1(args(1)) ,
Bs = Jo(args(1))Yo(args(0)) — Jo(argy(0))Yo(args(1)) , (6.56)
Ba = J1(argy(1))Y1(argy(0)) — J1(args(0))Y1(argy(1)) , ’
Bs = Jo(args(0))Y1(args(0)) — Yo(argy(0))J1(args(0)) ,
Be = Jo(argy(1))Y1(argy(1)) — Yo(args(1))J1(args(1)) ,
where 1
N argy(0) = QKBE ,
argy(s) = 2Kp = N (6.57)
b argy(l) = 2Kg lbi b .

Finally, the transmission coefficient formula, based on Eq. (6.48), is

_ | det(M(1,0)) [V
= | Un (1) — weEsUyn_y () | (6.58)

10 N = 40

0.9] |
0.8} 1
0.7 1
0.6| 1
Z | 1
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0.1 ‘ ‘ U :

0 ) 10 15 20
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Fig. 40 Dependence of the transmission coefficient modulus on frequency for positive gradient
of Young’s modulus (carbon steel C > 0.3%).
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6.4 Multiple Cells

The band gap for the negative gradient has also place for N = 40 cells, this occurrence is
represented in Fig. 40. Comparing the results for the positive and negative gradients can be
concluded that for the negative gradient the band gap occurs at higher frequencies than for the
positive one. For the negative gradient the band gap is wider than for the positive gradient.

6.4.2.3 Triangular Profile of Young’s Modulus Gradient

Let us combine the positive and negative gradients of Young’s Modulus. The solid rode consisted
of N repeating cells of this kind is represented in Fig. 41.

Fig. 41 Multiple cells with positive linear gradient of Young’s modulus.

Since the transfer matrices for positive and negative gradients have already been derived, the
transfer matrix of the combination of these gradients, represented the cell, can be easily written
down. Let us call this type of the cell as a triangular profile of Young’s modulus (see e.g. [15]).
In order to distinguish the elements of the transfer matrices, let the elements wy and z; be the
elements in case of the positive gradient, wo and zy are of negative one.

One cell, as it can be seen in Fig. 41, is from 0 to 2. The shifted transfer matrix of one cell is

ei(KAJrQKB) O
P(Q,O) = ‘ Mneg(laO)MPOS(l,O)
0 e*I(KAJrQKB)
el(Ka+2Ks) 0 w oz
= , (6.59)
0 efi(KA+2KB) 2 w*
where
w = wawy + 2227 ,
z = wWaz1 + 22w , (6.60)
o= % (wei(KA+2KB) + w*efi(KA+2KB)) '
The determinant is
a6
det(P(2,0)) = det(M(2,0)) = =1 6.61
(P(2,0)) = det(M(2,0)) =~ 28 (6.61)
So, the transfer matrix determinant is unimodular, because the cell has the symmetry.
The transfer matrix for N cells is
e_i(KA+2KB)N O
MN = PN
O ei(KA+2KB)N
e—iKN [UN(M> _ w*e_iKUN,l(,u)] Ze_iK(N_l)UN,1<M) (6 62)
Z*eiK(Nfl)UN_l(u) el KN [UN(,U) —weiKUN_l(,u)}
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6 Propagation of Elastic Waves through Linearly Graded Material

where
The transmission coefficient modulus is
1

= TG0 — we ¥ Un () |- (6.64)

The band gap for the triangle profile of Young’s modulus has already place for N = 35 cells,
this occurrence is represented in Fig. 42. In comparison to the positive and negative gradients
taken separately the chosen combination of gradients shifts the band gap to the low frequencies.
Moreover, there are three band gaps at lower frequencies than in a case of the positive gradient.

1.0
0.9
0.8
0.7
0.6
0.5- A
0.4r 8
0.31 A
0.2F 8
0.1

T

—
*[_

0 1 2 3 4 ) 6 7
s |kHz]

Fig. 42 Dependence of the transmission coefficient modulus on frequency for triangle profile
of Young’s modulus (carbon steel C > 0.3%).
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7 Conclusion

In this master thesis, the propagation of the longitudinal elastic waves through the locally peri-
odic structures excited by a harmonic force have been studied. The frequency band gaps were
the main object of interest. The material of the locally periodic structures (one-dimensional
phononic crystals) had non-uniform profile of the mass density and elastic parameters or non-
uniform profile of the cross-section only. The corresponding model equation was derived. Dif-
ferent types of the cells constituting the solid rod were considered. Dispersion zones were
taken as spatially bounded regions with the functionally changing material properties. The
transfer matrix method have been applied to study the elastic waves passing through the inho-
mogeneous domain. The transfer matrices calculation was done through the evaluation of the
general solution in the interval containing two regular singular points (boundary conditions).
There were considered three cell types in the thesis: with the non-uniform cross-sections, with
the non-uniform mass densities and Young’s moduli and, finally, functionally graded materials,
based on the linear change of Young’s modulus. For the two first types were shown that by
having the big ratios of the non-uniform parameter values the band gap occurrence could be
already achieved for the small number of cells, e.g. just for N = 2 in case of the non-uniform
cross-sections. It was shown that the choice of the material and geometrical parameter values
influences the band gap range and amplitude, the influence of the order of the non-uniform
parameter values also was represented. The known length ratio of non-uniform parts has been
also considered. It was shown that this knowledge was very helpful in forming the band gaps.
For the third type of the cell, where the linear gradient of Young’s modulus was considered, the
solution of the inhomogeneous region was represented by Bessel functions. Triangular profile
has shifted the band gap to lower frequencies in comparison to the cases of just one linear
gradient of Young’s modulus. The transmission coefficient calculation of the locally periodic
structures for N repeating cells was calculated with the help of the Chebyshev polynomials. In
the studies [1], [2], [5], [6] the Chebyshev polynomials were applied to unimodular matrices, in
the thesis the Chebyshev polynomials were applied for the non-unimodular matrices also.

Due to isomorphism of model equations that can be encountered in various areas of wave
physics, the presented results in this work will find wider application (see e.g. [1]).

The whole work was done analytically. The calculations were made in Maple software. The
assignment task has been accomplished.
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Appendix A
Attached CD contents

Maple calculation worksheets. These worksheets contain all calculations and graphs repre-
sented in the thesis. The worksheets are organized according to the chapters.
Electronic version of the thesis in PDF.
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