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Abstract
This thesis develops techniques for predict-
ing a map of local surface properties in
front of a vehicle. Traditional automotive
control systems adapt to road conditions
reactively. Instead, we propose to adjust
their parameters based on a surface prop-
erty prediction, before the vehicle travels
over the surface, which can potentially
improve safety, comfort, and maintenance
costs of modern cars.

Two surface properties are used: rough-
ness and friction. The dataset is obtained
in a self-supervised fashion, meaning that
there is no manual annotation. When
training, the image labels are obtained au-
tomatically by properties derived from ve-
hicle responses (vertical acceleration, slip
ratio, torque etc.). When the system is
deployed, only the images are used to pre-
dict the surface properties.

This thesis builds on top of the results
achieved in our previous work (Cech et al.
2021[1] and Vosahlik et al. 2021 [2]). Pre-
vious models were limited to predicting a
single surface property for an entire image.
We propose two approaches. The first uses
U-Net convolutional neural network to
output a pixel-wise property map trained
on the semi-synthetic dataset. The sec-
ond method uses visual explanations from
deep networks via gradient-based localiza-
tion (Grad-CAM). All experiments were
done using the subscale vehicle platform.
Both models were validated on a manually
annotated test dataset, showing promis-
ing results.

Keywords: surface properties,
convolutional neural networks, automatic
annotation

Supervisor: Ing. Jan Čech, Ph.D.

Abstrakt
Tato práce se zaměřuje na vývoj technik
pro predikci mapy povrchových vlastností
před vozidlem. Tradiční řídicí systémy v
automobilovém průmyslu se přizpůsobují
podmínkám vozovky reaktivním způso-
bem, takže schopnost upravit jejich para-
metry na základě predikce povrchových
vlastností může potenciálně zlepšit bez-
pečnost, komfort a náklady na údržbu
moderních automobilů.

Jsou použity dvě veličiny popisu-
jící vlastnosti povrchu: hrubost a tření
(kluzkost). Dataset je získán automatic-
kým způsobem, není potřeba manuální
anotace. Při tréninku se získávají hodnoty
veličin automaticky podle vlastností odvo-
zených z reakcí vozidla (vertikální zrych-
lení, podélný skluz, točivý moment atd.).
Při nasazení systému se používá k predikci
vlastností povrchu pouze obraz.

Tato práce navazuje na výsledky dosa-
žené v naší předchozí práci (Čech a kol.
2021[1] a Vošahlík a kol. 2021 [2]). Před-
chozí modely byly omezeny na předpoví-
dání jediné hodnoty vlastnosti povrchu
pro celý obrázek. Jsou navrženy dva pří-
stupy. První využívá k predikci mapy po-
vrchových vlastností konvoluční neurono-
vou síť U-Net natrénovanou na polosyn-
tetické datové sadě. Druhá metoda vyu-
žívá vizualizace z hlubokých sítí prostřed-
nictvím lokalizace založené na gradientu
(Grad-CAM). Všechny testy byly prove-
deny na experimentální platformě. Oba
modely byly ověřeny na ručně anotované
testovací datové sadě a ukazují slibné vý-
sledky.

Klíčová slova: vlastnosti povrchu,
konvoluční neuronové sítě, automatická
anotace

Překlad názvu: Predikce vlastností
povrchu z obrazu s využitím samoučení
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Chapter 1

Introduction

Performing any maneuver in a vehicle is hugely influenced by the surface
properties. The forces generated in the wheel to road interface are deciding
factors of safe driving. The traction properties of different surfaces are
significantly influenced by their materials. That has an impact on the vehicle
braking distance and overall controllability and stability of the car.

Professional drivers are able to predict the road situation ahead, taking into
account tire and surface conditions and adjust their driving style accordingly.
Most of the everyday drivers do not have such an experience, thus many of the
advanced driver-assistance systems (ADAS) are being introduced into modern
cars. Even though ADAS systems such as adaptive cruise control (ACC),
anti-lock braking system (ABS), electronic stability control (ESC), traction
control system (TCS) and many others help human drivers significantly with
their driving, most of these systems function reactively. That means that they
start intercepting into driving only based on the measurements and traction
system response when the car is already present on an incriminated surface.

Predictive visual recognition of the surface properties in front of a vehicle has
potential to improve safety, comfort and even costs coming with maintenance.
Deep learning techniques in image recognition have become more useful and
accurate in the last few years. The critical part of image recognition system
developement is its training. The training phase relies on a dataset size and
its labels accuracies. Manual data annotation costs significant amounts of
money and can be extremely tedious. The surface property annotation is
even more complicated since it is a rather continuous quantity and is unclear
how it should be labeled.

Self-supervised method of surface visual prediction is a promising solution
in our case. We can collect large amount of data that are automatically
labeled using the sensors mounted on a vehicle. Such an attitude even allows
for continuous dataset extension and improvement.

The goal of this thesis is to implement such data harvesting on our subscale
vehicle platform. The surface properties prediction will then be trained

1



1. Introduction .....................................
using this data. The objective is to present not only prediction of a single
regression value for each image but to perform pixel-wise segmentation of
the surface properties. This will be done using different approaches such as
synthetic dataset creation or using visual explanations from deep network
via gradient-based localization. The second approach builds on top of our
previous work from papers [1] and [2]. The main contribution of this thesis
are:

. Robust birds-eye view of an area of specified dimensions.The creation of a semi-synthetic dataset. U-Net method for prediction of a local surface properties map.Method using visual explanations from deep networks via gradient-based
localization (Grad-CAM) to obtain a local surface properties map.

The rest of this thesis is constructed as follows: first are researched existing
techniques and related literature. The next step will be a robust orthorectifi-
cation of an original image into an area of given dimensions from a birds-eye
view. We will describe dataset collection and semi-synthetic images creation.
Finally, two methods using convolutional neural networks will be trained to
output local surface properties maps.

2



Chapter 2

Related work

There have been several image-based approaches of mapping the surface in
front of a vehicle. Some of the methods are concerned with detecting damages
and anomalies such as potholes or cracks in the road. The work of Minh-Tu
Cao [15] has surveyed the performance of several deep learning models such
as convolutional neural network and Faster Region-based convolutional neural
networks (Faster R-CNN). Lydon [16] has reviewed different methods of
surface defects, deformation and cracking. He compared customized vehicle
setups using laser scanners, small-scale vision-based monitoring setups, stereo
vision and Resnet neural network with the convolutional neural net ending at
the top.

Other works are concentrated on surface classification rather than defining
it as a continuous regression quantity. Team from Ghent university [17]
developed a method of unsupervised content-based road type classification
using image data. The paper [3] uses surface detection and image processing
to recommend route.

Figure 2.1: Road surface area extraction results. Original image in the first
column. Cutting results after the final refinement in the second column. The
image marked with a road area covered in third. Adopted from [3]

3



2. Related work.....................................
The paper [18] uses a binary classifier to detect paved and non-paved road

classes. It is also done using ResNet50 implementation. Same method is
used in [19]. There have also been published methods of identification of
surface type for friction coefficient estimation [20]. One of the methods has
been published by our predecesors in Tomi project [4]. The surface type
classification and related road friction properties are provided to the ABS
(braking control algorithm) in order to adjust the vehicle response accordingly.

Figure 2.2: Visual surface recognition - Tomi1 team [4]

The methods mentioned above rely heavily on manually labeled data.
That is a costly and exhaustive process. That is the reason we choose the
automatic annotation, which allows us to process huge amount of data and
create sufficient datasets expected by deep learning methods.

The principle of having two correlated signals and using one as a label for
classification or regression to predict the other is well known. The cross-modal
training is used in many different areas. Facebook AI Research [5] uses a
single camera to percept depth, estimate the normal vector of a surface and
semantic labeling using ground truth depth maps. The results are visible in
Fig. 2.3.

4



..................................... 2. Related work

Figure 2.3: Example depth results from [5]

A similar approach is nowadays being heavily used in the medical field.
The advances in image processing help doctors to detect potential problems
in the early stages. Convolutional neural networks are used to detect brain
tumors [21] helping radiologists make better and quick decisions.

In the automotive industry, there exist methods combining data measured
by accelerometer and images harvested by a camera mounted on a vehicle.
The paper [22] uses accelerometer data to detect damages and defects on
asphalt as a countermeasure to car accidents. The same problem is solved
in [23] using smartphone camera and accelerometer. Though these methods
deal with a similar problem to ours, they do not use the accelerometer data
to train the full surface segmentation of the surface.

Finding the traversability of the terrain has been unfolded in [24]. For the
model training were used the measurements from the range sensing lidar. The
obstacles found by the lidar are projected into the occupancy grid, which is
the used as a label for the camera images. The process is then unsupervised,
deriving the traversability property using just the geometry and appearace
of the scene. This unsupervised concept is closest to our goal, only using
different modality as a label.

Mercedes Benz has developed a system called Magic Body Control. They
use the stereo camera to scan the road ahead for bumps and dips. Using the
received information the suspension system is then adjusted (Fig. 2.4). It
works up to about 15 meters to ensure maximal smoothness for the passengers.

5



2. Related work.....................................

Figure 2.4: Surface scan of Mercedes Magic Body Control [6]

Audi has introduced a similar approach firts in their top-end A8 model.
The system is called Predictive active suspension. It can load and unload each
wheel separately to attain the best chassis position to ensure maximal comfort.
This system also works using front looking camera detecting anomalies on
the surface ahead and predictively regulating the actuators (Fig.2.5).

Figure 2.5: Audi Predictive active suspension [7]

It is clear that predictive techniques for ADAS systems are used and
wanted by the car manufacturers. Though these corporations do not share
the information about the datasets, training methods or models architectures
it is obvious that the computer vision techniques are implemented into those
systems. It seems that there is a future for the surface properties prediction
for the automotive industry.
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Part I

Theoretical background
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Chapter 3

Surface properties

This section serves as a description of two parameters used to characterize
surface in front of a vehicle. These two concepts have been used in papers [1]
and [2]. The abstractions of surface properties representations are described
in sections 3.1 and 3.2.

3.1 Surface roughness

The roughness of the surface can be measured in many ways. These methods
are comprehensively described in [25]. The accelerometer-based techniques
implemented specifically to detect and characterize road anomalies are de-
scribed in [26]. The use of vehicle acceleration measurements to estimate road
roughness [27] is the closest implementation of measuring surface roughness
to ours. We are using the attitude of analyzing the measurement signal in the
time domain rather than in frequency one. A similar approach has been used
DARPA Grand challenge by Stanley [28]. They used the measured magnitude
of the accelerometer signal to adjust the driving speed of the autonomous
vehicle.

In our implementation, the surface roughness is derived from the vibrations
signal measured by the accelerometer mounted on the front axle next to the
left wheel (Sec. 5.1). Having az(t) as an accelerometer signal, we define the
surface roughness as:

ρ(t0) = k

v(t0)
∑
t

W (t− t0)az(t)2. (3.1)

This definition is adopted from [1]. From the equation: az(t) is the vertical
acceleration (without the gravity) over time,W (t−t0) is the Gaussian window
to filter the noisy accelerometer signal, v(t0) is the vehicle velocity at time t0
and k is the constant ensuring the roughness is from the range of 0 to 1.

Normalization by the velocity is important since the magnitude of the
acceleration signal is linearly dependent on the velocity itself. The linear de-
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3. Surface properties...................................
pendency has been measured experimently and is in agreement with [28]. We
have performed a vast majority of experiments measuring surface roughness
at a predifined constant speed using automatic cruise control. We believe that
it results into most accurate measurements and normalized surface roughness
labels for our dataset.

3.2 Surface friction

The road friction condition is being measured in many different areas. Since
it has a huge impact on the maneuver safety and road-tire interface it has
found its place not only in the automotive industry but also in aerospace.
The large scale measurements are continuously performed on airport runways
by grip testers [29].

One of these machines operates every day at the Prague Václav Havel
Airport. In Fig. 3.1 and Fig. 3.2 is a visible mechanism of the fifth wheel
capable of accurately measuring surface roughness. The adhesion of the
airport runway is crucial for the safe landing (and take offs) of aircraft.

Figure 3.1: Trunk of the car measuring surface friction on Prague airport [8]
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Figure 3.2: Car measuring surface friction on Prague airport from below [8]

Our implementation of the surface friction estimation is a part of a Ph.D.
studies of Ing. David Vošahlík. His algorithm provides a measurable value of
a surface friction φ, which is used as a label for the driven surface [2]. He has
developed an Unscented Kalman filter to estimate the friction.

The tire-to-road interface is modeled by the well-known Pacejka magic
formula [30]. The high fidelity twin-track nonlinear model is used as a
simulation model for the estimator. The vehicle dynamics is modeled with
suspension and each wheel by Pacejka magic formula Eq. 3.2 and Kamm’s
circle friction ellipse.

Fx(λ) = µFzD sin(C arctan(Bλ− E(Bλ− arctan(Bλ)))) (3.2)

The slip ratio λ is used as the slip variable, µ is the road friction coefficient,
B, C, D and E are Pacejka coefficients characterizing the slip curve shape,
and Fz stands for wheel normal force [2]. The surface friction is defined as
part of the magic formula:

φ = µFzD. (3.3)

The whole algorithm relies on the following assumptions: the wheel angular
velocity is measured, the wheel pivot point velocity vector is measured or
estimated, parameters of the wheel dynamics are identified and that all
resistant torques such as rolling resistance induced torque, friction torque,
and others are known.
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Figure 3.3: Comparison of the estimated friction for different surfaces based on
the subscale platform measured data [2]

In Fig. 3.3 are visible estimated friction coefficients from the data measured
from rides on our Tomi2 platform (Sec. II). More thorough explanation of
the whole surface friction estimation algorithm pipeline is in the article [2].
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Chapter 4

Machine learning

4.1 Supervised, unsupervised, and self-supervised
learning

There are many terms used in machine learning to describe different concepts
in model learning based on the availability of labeled data. This section will
describe the basic regimes and explain which are used in this thesis. The
definitions are adopted from [31].

4.1.1 Supervised learning

In supervised learning, the training multi-set of examples is available [31]. The
labels (annotations) are known for all observations in the dataset. Classifica-
tion (Sec.4.1.5) and regression (Sec.4.1.6) are typical examples of supervised
learning. The popular approach these days would be to train a deep neural
network on an available dataset with the loss being the difference between
the predicted output and the actual true label. Supervised learning can be
considered as the most straightforward kind of a machine learning method.

4.1.2 Semi-supervised learning

Unlike supervised learning (Sec.4.1.1), semi-supervised learning assumes to
have the true labels only for some partition of the available dataset. This
problem of semi-supervised learning is often used by pseudo-labeling. Pseudo-
labeling starts with training a model in a fully supervised way on the part of
the dataset that allows such thing. This model is then used to artificially label
the rest of the data. This approach does not produce a perfectly annotated
dataset, so only the labels with high confidence from the model are added to
the final dataset.
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4. Machine learning ...................................
4.1.3 Unsupervised learning

Unsupervised learning is used when the training dataset is available but
without the corresponding labels. These labels must be found in the data
itself by some sort of data analysis [31]. We usually seek to find some
underlying patterns in the data. Data clustering is usually applied to achieve
that. There are multiple clustering algorithms such as K-means [32].

Unsupervised learning is widely used in online marketing [33]. It is used for
customer segmentation. With the understanding of different customer groups
has the company great advantage in building specific marketing strategies for
each cluster. Unsupervised learning is also being used for fraud detection by
betting companies. They possess huge datasets of bets. Models trained on
this data can easily detect anomalies in betting and match results.

4.1.4 Self-supervised learning

Self-supervised learning could be seen as an autonomous form of supervised
learning. In our case, it requires no human input and all the data are
automatically annotated by the system itself. This approach is weel scalable,
since no human intervention is not needed.

4.1.5 Classification

The goal of the classification task is to determine one of the predefined
output class for the input vector. The input can be an unseen image (three-
dimensional matrix of width, height, and three RGB channels) resulting
into a predefined output class. Model trained on the ImageNet dataset [34],
which contains 1000 classes. We then want the model to predict as many
true positives as possible. There is actually competition for such models
established in 2005 called ImageNet challenge. The goal is to achieve the best
error rate on the given dataset.

4.1.6 Regression

Regression differs from the classification in a fact, that it predicts a continuous
numerical value, rather than one of the predefined discrete class labels. An
example is a convolutional neural network model that predicts human age
based on their image [35]. Regression will be used for our models in this
thesis since we want to describe surface by a continuous property.
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4.2 Neural networks

A neural network is one of the machine learning methods. Modern computer
vision methods heavily use artificial neural networks. This thesis works with
convolutional neural networks (Sec.4.4), which are one type of artificial neural
nets. These methods are experiencing great boom in the last decade with the
improvements of computational powers of modern CPUs and GPUs.

4.3 Backpropagation

Backpropagation is one of the core techniques of neural networks. It is the
method of learning for the neural net. It is basicaly a recursive application of
the chain rule along the computational graph of the neural network for the
gradients computation of a loss function with respect to the weights. The
implementation maintains a graph structure.

First, the forward pass is computed, and the result of the operation is
saved. Any intermediate results needed for the gradient computation are
also stored in the memory. In the backward pass is applied the chain rule to
compute the gradient of the loss function with respect to the inputs (Fig.4.1).
The model weights are then updated and the process repeats itself. The loss
function is being optimized.

Figure 4.1: Backpropagation in vector representation [9]

4.4 Convolutional neural networks

Convolutional neural networks have become frequently used in computer
vision tasks. They contain at least one convolutional layer and usually
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4. Machine learning ...................................
pooling blocks. They can adaptively learn spatial feature hierarchy through
backpropagation. They are being used in medical field (radiology [36], [21])
and also automotive [6].

4.4.1 Convolutional layer

A convolutional layer is the main building block of the convolutional neural
networks. This layer works by taking the filter and sliding it over the image
spatially and computing dot products at every spatial location (Fig.4.2). It
basically centers our filter on top of every pixel in its input volume, starting
at the upper-left corner, and at every position it is going to compute this dot
product (that produces one value).

Figure 4.2: Example of the convolutional layer [10]

Each convolutional layer can have multiple filters, each producing one
activation map. The filters at the earlier levels (close to the image input)
tend to represent low-level features such as edges. When we get further in
the model we start getting more complex kind of features and the final layers
usually start to resemble the classes.

There are several parameters set in the convolutional layer:

. Stride - the shift of the filter in the input. Example : Fig.4.4.

. Padding - controls the amount of padding applied to the input. Example:
Fig.4.3.

. Dilation - controls the spacing between the kernel points.

.Kernel size.
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............................. 4.4. Convolutional neural networks

Figure 4.3: Zero padding of 1. [9]

Figure 4.4: Example of a stride [9]

The dimensions (MxM) of the output activation map produced by the
convolutional layer can be computed as:

M = N + 2P −K
S

+ 1, (4.1)

where N is the input width, P is padding, K is the filter (kernel) size and S
is stride.
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4.4.2 Pooling layers

Pooling layers are mainly used to make the representations of inputs smaller
and more managable. It operates over each activation map independently.
The pooling layer replaces a certain location by some statistic. There are
several different examples of pooling layers:

.Max pooling - takes the maximal value of some region: Fig.4.5.Average pooling - takes the average value of some region. Global pooling - downsampling taken to the extreme, entire feature map
downsampled to a single value

Figure 4.5: Example of a maxpool layer [10]

4.4.3 Activation functions

Activation fuctions are functions applied to neuron inputs. In the convo-
lutional neural networks usually used right after convolutional layers. The
activation functions basically decide wether a neuron should be activated or
not. Activation functions decides the importance of an intput for the network
prediction. There are several activation functions:. Sigmoid

σ(x) = 1
1 + e−x (4.2).Tanh

y(x) = tanh(x) (4.3). Relu
y(x) = max(0, x) (4.4). Leaky RELU

y(x) = max(0.1x, x) (4.5)
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4.4.4 Loss functions

The loss function is a function to define the success of the model prediction.
We want to minimize such function. Arguments of this function are the real
value and the model output. There are several loss functions, here is an
example of some:

.Mean square error (L2 loss)

MSE =
∑n
i=1(yi − ŷi)2

n
(4.6)

.Mean absolute error (L1 loss)

MAE =
∑n
i=1 |yi − ŷi|

n
(4.7)

. Cross Entropy Loss (used for classification)

CEL = −(yi log(ŷi) + (1− yi) log(1− ŷi)) (4.8)

4.4.5 Batch normalization

To reduce the strong dependence of the model regularization we use batch
normalization. It is usually used after fully connected or convolutional layers.
The batch normalization improves gradient flow through the network and
allows for higher learning rates. The strategy is to compute mean and variance
independently for each dimension and normalize the given batch.

x̂(k) = x(k)− 1
n

∑n

i=1 xi√
1
n

∑n
i=1(xi − 1

n

∑n
i=1 xi)

(4.9)

4.4.6 Regularization

Regularization is a concept of penalizing the complexity of a model rather
than explicitly trying to fit the training data. There are also many techniques
of regularization. L2 regularization and L1 regularization penalize the weight
vector using the hyperparameter that controls the importance of the regu-
larization. Another regularization technique is called dropout. It randomly
ignores some amount of neurons during the training phase. The aim is to
prevent overfitting on a provided dataset and improve the model to work on
an unseen data.
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4.5 Used architectures

The following architectures and methods have been implemented in this thesis.

4.5.1 ResNet

Deep neural networks are difficult to train. In the article Deep Residual
Learning for Image Recognition [11] the autors introduced a skip-connection
learning block (Fig.4.6). The building block contains a shortcut over some
layers. There is typicaly activation function and a batch normalization in
between. This approach is proven to help with a problem of vanishing gradient
during backpropagation. This allowed the authors to train a network with
152 layers that performed better than human on ImageNet [34]. Resnet50
architecture is shown in Fig. 4.7.

Figure 4.6: Resnet building block [11]
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Figure 4.7: Resnet architecture [12]

4.5.2 UNet

Unet architecture has been first found in Convolutional Networks for Biomed-
ical Image Segmentation paper [13]. It is architecture fitted to the image
pixel-wise segmentation. The architecture consists of tho main path 4.8.
First is a contracting path followed by a symmetric expanding path. The
contracting path (encoder) captures the context of the input image. The
spatial information is reduced but the number of channels increases. The
expanding path (decoder) enables precise localization of the features found.
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Figure 4.8: Unet architecture [13]

4.6 Grad-CAM

Modern deep learning models have become very complex and accurate. But
they can sometimes act as a blackbox. That forced the development of
computer vision analysis tools. The Grad-Cam algorithm comes from the
Visual Explanations from Deep Networks via Gradient-based Localization
[37]. The paper proposes a technique for producing visual explanations for
decisions from large convolutional neural networks models. This helps them
to be more tranparent and explainable.

The intuition is based upon the fact that the model must have decided
the output based on some regions of the image. The Grad-CAM is used for
classification networks. It starts with finding of the gradient of the most
probable class with respect to the latest activation map in the model.

αck =

global average pooling︷ ︸︸ ︷
1
Z

∑
i

∑
j

∂yc

∂Akij︸ ︷︷ ︸
gradients via backprop

(4.10)

The yc is the score of the class, Ak is the feature map activation of a
convolutional layer.

To obtain the algorithm output, a weighted combination of forward activa-
tion maps is performed, followed by the ReLU.
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LcGrad-CAM = ReLU(
∑
k

αckA
k) (4.11)

The coarse heatmaps are projected into the original image in fig. 4.9.

(a) : Grad-CAM Cat [37] (b) : Grad-CAM Dog [37]

Figure 4.9: Visual explanations by Grad-Cam

4.7 RANSAC

Random sample consensus (RANSAC) [38] is an algorithm for a robust
estimation of a model from measured data. RANSAC is especially useful
for the data containing outliers that would otherwise influence final model
of different algorithm. RANSAC is suited for applications in image analysis
and pointcloud filtering [38]. It is part of the non-determenistic algorithms
family. The result of RANSAC is influenced by the number of iterations,
minimum number of samples chosen randomly from the original data and
chosen threshold. Below follows the pseudocode of the random sample
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4. Machine learning ...................................
consensus algorithm 1 with all the necessary parameters for its function.

Data:. pointcloudData - pointcloud points. n – minimum number of data points required to estimate model
parameters. t - threshold. stopInliers - stop iteration if at least this number of inliers are found. k - maximum number of iterations

Result: bestModel - model which bests fit given data (parameters of
a plane)

iterations = 0;
bestModel = null;
bestError = ∞;
while iterations < k do

ranInliers := n randomly selected data points from
pointcloudData;
Model := model fitted to ranInliers;
Inliers := ∅;
for each point p in data and not in ranInliers do

if point fits to Model with error < t then
add point p to Inliers

end
end
if # of elements in Inliers > stopInliers then

newModel := model fitted to ranInliers and Inliers;
error := error of newModel for ranInliers and Inliers;
if error < bestError then

bestModel := newModel;
bestError := error

end
end

end
Algorithm 1: RANSAC pseudocode [39]

RANSAC basically loops over two main steps (picking random samples and
verifying model fitted to them). It does not need huge amounts of memory,
thanks to random sampling of the given data. [40] Rather than using whole
dataset and attemping to eliminate outliers, it uses small initial data set and
enlarges this small set with eligible data when possible. [38]
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Hardware platform
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Chapter 5

Tomi2 overview

The Tomi2 platform is based on a commercial RC platform. It has BLDC
electrical, motor and it is in 1:5 scale. Our particular model is Losi1:5 DBXL-
E. It has 844x501x308 mm dimensions. The weight of the bought platform is
12.5 kg rising to 20 kg, taking into account all of the additions made. Each
wheel has its own servo motor for independent four-wheel steering. In the
car are mounted two 14.8 volts LiPo batteries.

Several computing units have been added to the platform. Nvidia Jetson
Xavier is the most relevant computer to this work. It has a powerful GPU
compatible with Nvidia CUDA system, so it supports running neural network
models implemented in Pytorch. Nvidia Jetson has a rather friendly input
voltage range of 9-20 volts. This range perfectly accepts additional 14.8V
LiPo battery. The Nvidia Jetson can demand up to 72 watts of power in peak.
The LiPo traction battery can provide several amperes to the motor controller,
so using it to power Nvidia Jetson leaves us with plenty of headroom.

Raspberry Pi4 can be considered as a main hub that connects all the
modules placed on this platform. It is connected to the Nvidia Jetson Xavier
via ethernet. It also communicates with another Raspberry board with Navio
shield. Its main function is to communicate with the motor controller and
send PWM signals. Navio also receives signals from radio controller. Navio
has its own IMU and gyroscope readings and Ublox GPS.

Another module is STM Nucleo. It processes signals from Hall sensors
placed on each Tomi2 wheel. The information about RPMs is the sent via
UART to the main Raspberry. There is also Arduino Nano that processes the
signal from the accelerometer (Sec.5.1) and sends it to Raspberry via UART.

The Tomi2 platform is developed in collaboration with Toyota Research
Lab under supervision of doc.Ing. Tomáš Haniš, Ph.D. and Ing. Jan Čech,
Ph.D. Team members are Tomáš Twardzik, Marek Boháč, Jan Švancar, David
Vošahlík, Tomáš Rutrle and myself.
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Figure 5.1: Tomi2 platform

Figure 5.2: Tomi2 platform at university yard

5.1 Accelerometer on the front axle

The main sensor that is used to measure surface roughness (Sec.3.1) is located
on the front axle next to the left wheel (Fig.5.3). It is an analog accelerometer
from Analog Devices with the model name ADXL326. It is compact, complete
three-axis accelerometer. It measures acceleration with a minimum full-scale
range of ±16g. Users can define bandwidth of the accelerometer starting at
0.5 Hz and going up to 1600 Hz. It has a small profile with dimensions of 4
by 4 by 1.45 mm. You can see the 3D-printed housing by Tomáš Rutrle in
the Fig. 5.3.
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Figure 5.3: Accelerometer location [1]

5.2 ROS2 nodes

The Tomi2 platform runs ROS2 system used for communication between
processing units on the vehicle. The ROS nodes are:

. ZED2 wrapper - Publishing on the camera image and pointcloud topics

. Image processing node - Binary classifier for tiled pavement
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Figure 5.4: Binary classifier in image processing node

.Motion planning - Finds path in the map received from Image processing
node using RRT

Figure 5.5: Path planning

.Trajectory tracking - Subscribes found path and publishes velocity and
steer commands. Controls - The main control loop, options are manual control, cruise
control, slip ratio control and autonomous driving.
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5.3 Data acquisition

Data recorded during rides:

. Rostime. Navio IMU - (accelerometer, gyroscope, magnetometer). Longitude, Latitude.Wheel RPMs - Hall sensors. Heading and speed from GPS. Signals from 10-channel receiver.Accelerometer data from the front axle. ZED2 camera images.

5.3.1 ZED2 camera

We are using a ZED2 camera from Stereolabs, which you can see in Fig. 5.6.
This camera has 120° wide-angle field of view. Since it is a passive stereo
camera it has two lenses, both with 16:9 native ratio. ZED2 has a built-in
IMU sensor with additions of barometer and magnetometer. The camera itself
with the addition of its SDK provides multiple advanced systems, such as
skeleton tracking, simultaneous localization and mapping, remote monitoring
and, data collection and spatial object detection.

Figure 5.6: ZED2 [14]

The most useful feature for our project has been the depth-sensing ability of
ZED2 camera. The fact that this camera has two lenses allows it to estimate
depth and motion by comparing the displacement of pixels between the right
and left images. It provides a depth map consisting of (x, y, z) distance values
in relationship to the position of the left lense. Stereolabs labs SDK allows
the pointcloud to contain colour information as well as space coordinates,
which you can see in the Fig.5.7
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Figure 5.7: ZED2 pointcloud fused with image [14]

ZED software developement kit provides several settings of the depth map
that can be tweaked to our liking. ZED2 camera has two main modes of
depth sensing: standard and fill. Standard mode runs faster than the fill
mode, but it contains holes due to the computational algortithm. This mode
is used for autonomous navigation and obstacle detection, where speed and
reliability are the main concerns. We can also set the depth range in front of
the camera that is taken into account. It can provide a depth map from 0.3
to 40 meters.

5.3.2 Camera recording

ZED2 allows us to record in many image formats such as HEVC, JPG and
PNG, meaning that it can do lossless compression. SDK can be used to store
the video alongside with timestamp or IMU data. There are many options
for the camera output as you can see in the Tab. 5.1. We can adjust many
camera settings such as brightness, contrast, hue, saturation and many others.

Video mode FPS Output resolution (side by side)

2.2K 15 4416x1242
1080p 30 / 15 3840x1080
720p 60 / 30 / 15 2560x720

WVGA 100 / 60 / 30 / 15 1344x376

Table 5.1: ZED2 camera resolution [14]

We used the third option from the Tab. 5.1 for the majority of work and
experiments on our Tomi2 platform. That means that we received 2560x720
image at 30 frames per second. This image had to be then sliced in half to
receive typical resolution of 1280x720 for both left and right lens.
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Implementation and experiments
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Chapter 6

Implementation starting point

This thesis continues to work on research started by the Tomi2 project
resulting in papers [1], and [2]. In these papers were implemented methods of
predicting surface roughness and friction using self-supervised learning. We
harvested the dataset using our Tomi2 platform, which recorded images and
all the measurements from the sensors. The properties of the surface served
as labels for the training of convolutional neural network and the images were
annotated automatically.

Two ResNet50 [11] architecture models were trained on a dataset labeled
automatically by cross-modal supervision. The experiments showed that both
models are accurate visual predictors. The correlation coefficient between
the visually predicted results and the true labels was 0.9 on the independent
validation dataset for roughness and 0.98 for friction respectively. These
methods provided automatic and objective road conditions assessment using
a cheap and reliable alternative to manual data labeling, which enables to
use this approach on large datasets [1].

This method provides single surface roughness/friction prediction for an
entire image (1 meter in front of a vehicle) and lacks more detailed spatial
resolution. This is particularly important for navigating on complex hetero-
geneous surfaces comprising various areas of different properties. Though the
predictor outputs a single value, we wanted to see the generalization for the
larger image area. A simple baseline to achieve that is by moving a sliding
window over the original image and executing the CNN prediction for about
600 different areas. Those outputs are visualized in Fig. 6.1 and Fig. 6.2.
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Figure 6.1: Color-coded surface roughness calculated by the trained CNN
executed in a scanning window over the input image rectified to bird’s-eye view,
colorized by the estimated roughness, and finally back-projected to the raw
camera image. [1]

Figure 6.2: Color-coded friction of the surface found by a visual predictor that
was trained only by self-supervision from vehicle response data, without any
manual annotation. Colder colors encodes higher friction (wet tarmac), while
warmer colors lower friction (snow). [2]

While this method of obtaining a coarse map of surface properties gives
good results, it cannot be used in a system running in real time. It requires
many hundreds of model executions, using an extended amount of processing
time. Single prediction takes about fourty milisecond, several hundreds are
therefore unacceptable for real-world world use. This thesis aims to increase
the spatial resolution of the predictor. The output will be a map of local
surface properties (both roughness and friction). The resulting model should
provide the map using a single forward pass through the model, significantly
reducing the time and resources needed for a prediction.
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Chapter 7

Birds-eye transformation

In order to be able to provide a surface map in front of the vehicle , we
need to somehow transform the original image to be rectangular and of given
dimensions.

The process of orthorectification begins with capturing a raw ZED2 camera
image. It is then rectified to a virtual bird’s-eye view. The homography
mapping is used to warp the raw image to a scene of the desired size. In the
Sec. 7.1 and Sec.7.2 are described two main approaches to this problem.

7.1 Static homography

The static transformation orthographically rectifies the raw image to the
bird’s-eye view. The homography mapping is used to warp the image and
receive a scene of a given size. The homography is defined by the corners
of the scene rectangle and the corners of the rectified image. You can see
the result of the static transformation in Fig. 7.1. The scene from the raw
image on the left is transformed into the warped image representing 1.5 by
1.5 meters on the right.

(a) : Original image
(b) : Transformed image 1.5x1.5 metres
in front of a vehicle

Figure 7.1: Static birds-eye transformation
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7. Birds-eye transformation................................
The transformation was found by placing a planar rectangular object of

known dimensions in front of a vehicle. The homography estimation was
found using known corner points of the object source points and object points
in orthorectified image as targets using getPerspectiveTransform() function
from OpenCV library [41].

7.2 Dynamic birds-eye view

The main disadvantage of the static homography approach is the camera tilt
due to instability of the vehicle body. The springs on the wheel base are not
rigid and that can cause the mount of the ZED2 camera on top of the vehicle
to move around in consequence of the acceleration of the car.

The idea of the dynamic birds-eye view transformation is to take into
account the position of ZED2 camera. If we were able to estimate the
immediate angle of the camera we could then adjust the homography to
compensate camera tilting due to vehicle driving.

The first idea was to use an inertial measurement unit that is inside the
ZED2 camera itself or some additional sensor. We would read its data in real
time and use that information to create our transformation matrix. However,
this approach has one limitation: we would not be able to differentiate from
the pitch angle obtained whether the position of the camera has changed with
respect to the vehicle body or whether the car platform is simply driving up
or down the hill.

To solve the hill detection problem, we took advantage of the ZED2 camera
to compute 3D pointcloud of the space from the stereo lenses. In the following
sections will be described the computation of relative pitch angle of the
camera with respect to ground plane detected in the pointcloud.

7.2.1 3D pointcloud

As described in Sec. 5.3.1 the ZED2 camera uses the camera stereo pair to
compute a sparse 3D pointcloud of its surroundings. Figure 7.2 shows the
raw stereo images on the top and on the bottom are computed respective
pointclouds. Each point has three positional coordinates related to the left
camera lens. In those pictures are depicted pointclouds with only one-tenth of
maximal pointcloud density. This density allows us to perform robust ground
plane detection and its normal vector computation without demanding much
of limited memory and processor time.
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Figure 7.2: ZED2 3D pointcloud

7.2.2 Pointcloud filtering

When driving on an uneven surface, the vibrations can cause the final image
to be a bit blurred. Those distortions (loss of high-frequency texture) in a
stereo recording can cause some miscalculations when creating 3D pointcloud.
You can see in Fig. 7.3 two groups of false points appearing above and below
the actual scene.

Figure 7.3: ZED2 3D pointcloud - miscalculations
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7. Birds-eye transformation................................
We plan to estimate the normal vector of the ground plane using RANSAC

(Sec.1) algorithm. RANSAC itself is a robust algorithm, but we can achieve
faster and more reliable result by doing some preprocessing on the given
pointcloud. The goal is to filter out obvious outliers from the scene and
provide RANSAC with a small neighbourhood above the point with the
minimal height in the scene. That leaves us mainly with the ground points
and a much smaller number of points with different height than simply feeding
RANSAC with the whole pointcloud scene.

The filtering itself is performed in the following way: first, we get rid of
the points that lie below the height level of percentile of 2. That has been
empirically found to be the best compromise between filtering out the outliers
and at the same time keeping the maximum number of points that are present
in the ground section of a pointcloud. After this operation, the points that
have height difference bigger than ten centimeters from the lowest points
of the scene are omitted. We have thus successfully obtained an area of
pointcloud with the majority of ground points.

7.2.3 RANSAC ground plane detection

This section describes the process of computation of the normal vector of the
ground plane detected in the filtered pointcloud from Sec.7.2.2. This data
is fed into RANSAC algorithm implemented in the sklearn library [42]. A
minimum number of samples chosen randomly from original data is set to
fourty. A maximum number of iterations for random sample selection is set
to two hundred. Squared loss is chosen as an error function. This algorithm
returns the parameters of the plane.

Parameters of the plane are transformed into coordinates of the normal
vector based in the vehicle platform base. Obtained coordinates are used to
compute pitch angle of the camera with respect to the ground.

θ = atan2(z, x) (7.1)

atan2(y, x) =



arctan( yx) if x > 0
arctan( yx) + π if x < 0 and y ≥ 0,
arctan( yx)− π if x < 0 and y < 0,
+π

2 if x = 0 and y > 0,
−π

2 if x = 0 and y < 0,
undefined if x = 0 and y = 0.

(7.2)

In the Fig. 7.4 is visible comparison of the pitch angle obtained from the
pointcloud (blue line) and the ground truth recorded by the ZED2 inertial
measurement unit. We tilted the car from front to back changing the pitch
angle. This plot shows the fact that we are able to use the angle computed
using only the pointcloud from the camera and dynamically change the
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................................ 7.2. Dynamic birds-eye view

birds-eye view transformation, which is described in the following chapter
7.2.4.
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Figure 7.4: Comparison of pitch angle obtained from the ZED2 pointcloud and
raw data from ZED2 IMU

7.2.4 Image transformation using obtained ground normal
vector and camera intrinsic matrix

We first need to define the area in front of the vehicle we want to contain in
the transformed image. Let’s say that we want to send to map a segmented
area of 2 by 2 meters. Then the scene points are defined as follows:

X =


0.4 0.4 2.4 2.4
1 −1 1 −1

−0.14 −0.14 −0.14 −0.14
1 1 1 1

 =


x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4
1 1 1 1

 (7.3)

The first row of the X matrix defines the distances in the x axis, which is
defined in the direction of movement of the car. The reason for adding fourty
centimeters to each point is that the main coordinate system is defined in the
base of the vehicle, while the front wheels are fourty centimeters ahead. The
second row defines two meters in the y axis. The third row shows that the
base of the car is 14 cm above the ground. To change the bases of different
coordinate systems, the points are defined in homogeneous coordinates.
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7. Birds-eye transformation................................
The Tpitch matrix transforms the points between map and vehicle base

coordinates using the computed pitch angle. Other euler angles are neglected,
we are mostly affected by the forward and backward tilt of the vehicle body.

Tpitch(θ) =


cos(θ) 0 sin(θ) 0

0 1 0 0
− sin(θ) 0 cos(θ) 0

0 0 0 1

 (7.4)

The following transformation matrix is Tzed
base which transforms points from

vehicle base coordinate frame to the ZED2 left camera optical frame. This
transformation was measured by hand and is stored in ROS2 transformation
buffer.

Xcamera = Tzed
baseTpitchX (7.5)

The final step is to take transformed points and project them into camera
image plane. That is done using camera intrinsic matrix:

K =

fx s x0
0 fy y0
0 0 1

 (7.6)

, where fx and fy are focal lenghts, x0, y0 are principal point offsets and
s is axis skew. To projects points obtained by the transformation to the
image plane by the matrix K we first need to handle matrix computed in 7.5
(remove last row). Matrix K is saved by the manufacturer in ZED2 camera.

Xpixels = KXcamera (7.7)

The matrix Xpixels computed in 7.7 contains pixel coordinates of the four
points defining area in front of the vehicle. These pixel points are used to
compute perspective transformation, which closes the whole dynamically
computed birds-eye transformation.

7.3 Static and dynamic birdseye view comparison

We have performed an experiment for the purpose of comparing the static
and dynamic transformations. The car body has been tilted back and forth
around the y axis. The angles are seen in the Fig. 7.4. You can see steady
states of the transformations in the Fig. 7.5. In the image are visible two
ARUCO markers, the one in the bottom marks one-meter in front of car front
axle and the top of the second one marks the two meter line.
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...................... 7.3. Static and dynamic birdseye view comparison

Figure 7.5: 2x2 metres transformation

Visualization below shows a comparison of the two approaches to the image
transformation. The Fig. 7.6, Fig. 7.7, Fig. 7.8 and 7.9 present two images
taken at the exact same time each using different approach. It is clearly
visible that dynamic transformation can react to the change of a vehicle body
tilt, while static transformation loses track of the specified area and shows
the surface way behind the two-meter mark.

(a) : Transformed image using dynamic
transformation

(b) : Transformed image using static
transformation

Figure 7.6: Comparison of static and dynamic transformation at time 8.0s
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7. Birds-eye transformation................................

(a) : Transformed image using dynamic
transformation

(b) : Transformed image using static
transformation

Figure 7.7: Comparison of static and dynamic transformation at time 8.7s

(a) : Transformed image using dynamic
transformation

(b) : Transformed image using static
transformation

Figure 7.8: Comparison of static and dynamic transformation at time 9.4s
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...................... 7.3. Static and dynamic birdseye view comparison

(a) : Transformed image using dynamic
transformation

(b) : Transformed image using static
transformation

Figure 7.9: Comparison of static and dynamic transformation at time 10.0s

Each rectified image is projected to the steady-state image of 2 meters by
calculating the optical flow of good features [43] and resulting homography
(using OpenCV [41]). The main reference points are in the same position
of the image compared to the steady state. Fig. 7.10 when the rectified
image shows a bigger area than desired. We can compute the area shown and
difference from the desired size using images in Fig. 7.10.

(a) : Steady-state image
(b) : Projection of static transformation
to the steady-state image

Figure 7.10: Comparison of steady-state area and area shown by rectification

Tab. 7.1 shows statistics from the experiment for both methods. It contains
the mean value of distance shown in the rectified image and standard deviation
from two-meter meter mark.
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7. Birds-eye transformation................................
Transformation method Mean [m] Standard deviation [m]

Static 2.2 0.27
Dynamic 1.92 0.12

Table 7.1: Comparison of static and dynamic transformation
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(b) : Histogram of differences from two-
meter mark - static correction

Figure 7.11: Histograms comparing differences from two-meter mark of dynamic
and static homography

The Fig. 7.11 shows the comparison of histograms of differences from the
desired two-meter mark recorded during our experiment. From the histograms
7.11 and the Tab. 7.1 is visible that dynamic transformation is much more
stable, while the static transformation has a higher deviation from the desired
two meters.

46



Chapter 8

Dataset collection

8.1 Synthetic images

This section describes the collection of the semi-synthetic dataset that contains
label for each pixel of a given rectified image. The camera recordings and
sensor measurements were collected during rides (about twelve hours) on
several different surfaces. The dataset contains information about asphalt,
gravel, grass, snow, cobblestones, and tiled pavement.

8.1.1 Sparse spatial information problem

The goal of this model is to obtain a prediction map of local surgace properties
for the whole surface area in front of a vehicle. The problem of the original
method described in Sec. 6 is the sparsity of the surface property information
in the image. Measurements on the Tomi2 platform are recorded at 100 Hz.
If we consider the two by two meters rectified area and 10 m

s vehicle speed,
there are only 20 sensoric measurements in that window. The new method
aims to provide information about the surface for every pixel of the image.

We created a synthetic dataset of images resembling natural images that
would possess label for each pixel. We can rely on the assumption that each
drive was performed on a single surface. That excludes the possibility of
having two different surfaces in rectified images.

The synthetic image creation starts by cutting a small patch from each
rectified image. We choose the area around the one-meter mark in front of a
vehicle. One of the roughness or friction measurements that lies closest to
this measurement region is taken as a label for this patch. We then cut the
area of 40 by 40 centimeters around this pixel using the same label for the
whole patch. Fig. 8.1 shows the original image for the patch cutting.
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8. Dataset collection...................................

Figure 8.1: Original camera imaged to be patched

Fig. 8.2 shows the process of the patch cutting. Original camera image
8.1 is transformed as shown in (a). Then we cut the measurement region
resulting in a final patch (b).

(a) : Image rectification (b) : Final patch

Figure 8.2: Patch creation

8.1.2 Patch concatenation and blurring

Once we have the patches for all the images, we can create the synthetic
images. We imitate the natural images as much as possible to achieve the
best accuracy on the non-synthetic validation dataset. We decided to create
each one of the synthetic images using two random patches. Each of those
patches is from a different ride. The synthetic image has square dimensions
of 224 by 224 pixels, which are the dimensions our CNN models will expect
as inputs.

Once we picked the two patches, we create two different images, that will
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................................... 8.1. Synthetic images

be later on fused together, using only those patches.

(a) : Image created using the first patch (b) : Image created using the second patch

Figure 8.3: Patch images for fusion

For the fusion of the images is needed a binary mask. We do not want to
feed the network with the repetitive patterns, so the mask will be unique for
each synthetic image. We start with an initial seed randomly located in the
binary mask. Starting from this point we generate 300 other points, each
randomly in the neighbourhood of 20 pixels of the previous. This cloud of
points is then dilated using the morphological operation and ellipse kernel to
obtain the final mask. The process is shown in Fig. 8.4.

(a) : Cloud of random points (b) : Final mask

Figure 8.4: Random binary mask creation

The two images are finally fused together using the obtained binary mask
in Fig. 8.5. There are added black corners to the final image. This element
is present in transformed images. The black corners represent the invisible
part of the area in front of the vehicle for the camera. The top of the image
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8. Dataset collection...................................
is blurred by the averaging (using cv2.blur()). It emulates the degradation of
the transformation in the distance due to camera resolution.

Figure 8.5: A sample of a synthetic image from the dataset

8.1.3 Dataset distributions

Two datasets of 10 000 synthetic images with pixel-wise labels were created,
both for surface roughness and surface friction. The synthetic dataset consists
of training part (80%) and validation part (20%). Test data are described in
Sec. 8.2. In the Fig.8.6 and Fig.8.7 are the distributions of datasets for the
friction and for the roughness respectively.
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................................... 8.1. Synthetic images
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Figure 8.6: Histogram of surface friction synthetic dataset

The Tab. 8.1 shows the typical value of fricion for different surfaces.
It is necessary to point out that those are values measured on a specific
conditions. These values can change depending on the weather (mostly rain).
We would ideally need a datasets containing surfaces driven in different
weather conditions and mainly different lighting conditions. The differences
in the lighting (direct sun, shadows) make the prediction problem especially
challenging.

Surface Typical value of friction φ

Grass 2.5
Ice/snow 1.4
Asphalt 12.1

Interlocking pavement 7.2
Cobble pavement 7.9

Hard gravel 10.9
Wet cobblestones 3.0

Table 8.1: Typical values of surface friction for different surfaces
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8. Dataset collection...................................
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Figure 8.7: Histogram of surface roughness synthetic dataset

Tab. 8.2 shows typical values of roughness for different surfaces. The value
of surface roughness does not depent much on the weather conditions. The
lighting conditions still play a big role in the training proccess.

Surface Typical value of roughness ρ

Grass 0.3
Asphalt 0.15

Tiled pavement 0.2
Cobble pavement 0.66

Gravel 0.25
Cobblestones 0.75
Ice/snow 0.3

Table 8.2: Typical values of surface roughness for different surfaces

8.2 Test dataset

It is necessary to do the final testing of the model on non-synthetic images to
measure the real world performance. This is done by manually annotating
the surface properties. That was done using graph-cut segmentation and
Matlab GUI provided in B4M33DZO course. The algorithms used by the
GUI were programmed in seminars.

The algorithm uses Gaussian mixture model (GMM) based segmentation.
The user input is used as information about the foreground and background.
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..................................... 8.2. Test dataset

It is visible in Fig. 8.9 (a). The red and blue pixels are used to estimate
probability distribution functions of foreground and background pixels mod-
eled by GMMs. Individual components are formed by multivariate normal
distributions. The pixels are then coloured respectively by the distributions.
The smoothness is ensured by finding minimum cut (maximum flow) in a
graph constructed from the pixels [44].

Figure 8.8: Original image for validation partition of dataset

(a) : Birdseye transformation of 8.8 with
manual input (b) : Result of graphcut segmentation

Figure 8.9: Image segmentation for validation dataset

The red and blue colors are assigned the values of the surface properties.
The test datasets of fifteen images were created both for surface roughness
and friction.
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Chapter 9

Pixel-wise regression

9.1 Model training

We trained two different models for surface roughness and surface fricion
respectively. The U-net architecture [13] was chosen for both models. This
architecture has been developed for biomedical image segmentation and is
often used to perform semantic segmentation. The model accepts images of
224 by 224 pixels. The original architecture is described in Sec. 4.5.2.

The models were trained on a GPU server (Cantor server available for the
students by the Department of Cybernetics at CTU FEE). This server has
16 cores/32 threads CPU, 256 GB of RAM, 500GB SSD internal storage,
and eight Nvidia GTX 1080 Tis. These GPUs have 11 GB of memory and
are crucial for the model training. The CUDA architecture (3584 cuda
cores) is compatible with the PyTorch module which was used for the model
implementation.

Mean square error loss function was used for surface roughness and mean
absolute error for surface fricion. The loss is computed on the output seg-
mentation map of the Unet (224 by 224 pixels) and the image label of same
dimensions. Network weights were found by ADAM optimizer [45].

Models for both surface roughness and friction were trained on a synthetic
datsets of 10000 samples. Evaluation of model on validation part of the
dataset was performed after every training epoch. The model with the
smallest error was saved for evaluation on the test dataset. Training and
validation parts of the datasets consist of the synthetic images. The testing
part is then performed on manually annotated non-synthetic images. Training
settings are shown in Tab. 9.1.
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9. Pixel-wise regression..................................
Surface property Surface roughness 3.1 Surface fricion

Learning rate 0.01 0.01
Image size 224 px by 224 px 224 px by 224 px
Batch size 64 64

Loss function MSE 4.6 MAE 4.7
Number of epochs 50 60

Table 9.1: Training settings for models

9.2 Surface roughness evaluation

A model trained on the synthetic data was used to predict segmentation maps
for the images from the test dataset of real images. The model achieved mean
square error of 0.016, that means mean absolute error of 0.126 for every pixel.
That is accuracy that allows the model to distinguish between the surfaces.
Folowing images(Fig.9.1 and Fig. 9.2) show the predictions of the surface
roughness map for the manually annotated data.

Figure 9.1: Example of roughness map on cobbles and interlocking pavement
(Original image -> Manual annotation -> Model prediction -> Value bar)

Figure 9.2: Example of roughness map on cobbles and interlocking pavement
(Original image -> Manual annotation -> Model prediction -> Value bar)

Fig. 9.3 contains an original image with the grass covered partialy with
snow. That causes a little confusion for the predictor, because such a situation
is not present in a training dataset. Training data contain images of grass
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............................... 9.3. Surface friction evaluation

recorded in summer. The model still manages to predict reasonable values
for this surface.

Figure 9.3: Example of roughness segmentation map on asphalt, and grass
with snow (Original image -> Manual annotation -> Model prediction -> Value
bar)

9.3 Surface friction evaluation

The predictor trained on data with surface friction as a label manages to
achieve a mean absolute error of 1.49. The figures below (Fig.9.4, Fig.9.5, Fig.
9.6 and Fig.9.7) show the outputs of the U-Net model. Better performance of
the predictor could probably be achieved by enlarging our dataset by images
from different lighting conditions. Artifacts as shadows can cause inaccuracies
when unseen in training.

Figure 9.4: Example of friction map on asphalt and grass (Original image ->
Manual annotation -> Model prediction -> Value bar)

Figure 9.5: Example of friction map on cobbles tiled pavement (Original image
-> Manual annotation -> Model prediction -> Value bar)
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9. Pixel-wise regression..................................
The orange line in the tiled pavement in Fig. 9.6 was not seen in a training

dataset and the predictor misinterprets it as a different surface.

Figure 9.6: Example of friction map on cobbles and tiled pavement with unknown
artifact (Original image -> Manual annotation -> Model prediction -> Value
bar)

Figure 9.7: Example of friction map on cobble pavement and grass (Original
image -> Manual annotation -> Model prediction -> Value bar)

Fig. 9.8 shows the effect of imperfections in the original image. There is a
dirt or drop of water on the lens and the model predicts very different values
for this area.

Figure 9.8: Example of friction segmentation map on gravel and grass (Original
image -> Manual annotation -> Model prediction -> Value bar)
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Chapter 10

Grad-CAM segmentation

The second method of obtaining the prediction map of local surface properties
will be based on the visual explanations from deep networks via gradient-based
localization Grad-CAM [37]. Grad-CAM is used for better visualization of
image patterns of classes that network is sensitive to as described in Sec. 4.6.
The following section describes the modification of this weakly supervised
method to the purpose of prediction of local surface maps.

10.1 Grad-CAM pipeline

To make Grad-CAM work, we have to make adjustments to the models
described in Sec. 6. We change the final layers of Resnet50 models trained to
predict the single label of surface property. The final fully connected layer is
retrained to predict the probability of artificial classes. Original continuous
labels will be assigned to these classes based on a lookup table.

Artificial classes Surface roughness Surface fricion

Class 1 ρ < 0.25 φ < 3
Class 2 0.25 ≥ ρ < 0.5 3 ≥ φ < 8
Class 3 ρ ≥ 0.5 φ ≥ 8

Table 10.1: GradCAM classes lookup table

The final fully connected layer is changed to softmax (three outputs),
predicting a probability of the input belonging to the classes defined in Tab.
10.1. Both models are retrained for ten epochs using the same settings
described in papers [1], and [2]. Only the final layer of the models is modified,
the convolutional layers stay unchanged.

Our algorithm is demonstrated in Fig. 10.1. The image with tiled pavement
and cobblestones serves as an input for our modified model predicting surface
roughness. The output of the model (the probabilities of belonging to classes)
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10. Grad-CAM segmentation ...............................
are used to find the gradients of each class with respect to the latest activation
map in the model using Eq. (4.10). The result is used in Eq. (4.11) which
outputs the heatmaps for each class as seen in Fig. 10.2.

Figure 10.1: Input image for GradCAM

(a) : GradCAM output
class 1

(b) : GradCAM output
class 2

(c) : GradCAM output
class 3

Figure 10.2: GradCAM outputs for three classes

Heatmaps from Fig. 10.2 are two dimensional matrices and are caled g1,g2
and g3. We will perform a pixel-wise normalization. That means that the
sumation of values at given matrix position from all class probability maps is
equal to one.

α(x, y) =
3∑
c=1

gc(x, y) (10.1)

g̃ = g(x, y)
α(x, y) (10.2)

The final output is computed as:

ŷ(x, y) =
3∑
c=1

g̃c(x, y)yc, (10.3)
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............................. 10.2. Surface roughness predictions

where the yc is expected value of the property for the classes defined in Tab.
10.1. The output is shown in Fig. 10.3 alongside the original image and
manual annotation.

10.2 Surface roughness predictions

The outputs of the model predicting surface roughness are visible in Fig.
10.3 and Fig. 10.4. This model achieves a mean absolute error of 0.207
on the test dataset. The disadvantage is the low resolution of the original
output ŷ(x, y). The size of the activation map of the last convolutional
layer determines the size of the model output, which is seven by seven two
dimensional matrix. This output is then resized to the dimensions of the input
image, but the original information is still only 49 values. This limitation
can cause imperfections in following the transitions between different surfaces
and overall error with respect to the manual annotation.

Figure 10.3: Segmentation map created by GradCAM (Original image ->
Manual annotation -> Model prediction -> Value bar)

Figure 10.4: GradCAM map for asphalt and grass with snow (Original image
-> Manual annotation -> Model prediction -> Value bar)

10.3 Surface friction predictions

Outputs for surface friction are in Fig. 10.5, Fig. 10.6 and Fig. 10.7. The
friction model achieves a mean absolute error of 4.3 on test data. The same
limitations apply to both the friction and roughness. The improvement of
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10. Grad-CAM segmentation ...............................
this method could be increasing the number of artificial classes. Possible
future improvements of the methods will be discussed in future work.

Figure 10.5: GradCAM map for asphalt friction (Original image -> Manual
annotation -> Model prediction -> Value bar)

Figure 10.6: GradCAM map for asphalt and grass friction (Original image ->
Manual annotation -> Model prediction -> Value bar)

Figure 10.7: GradCAM map for cobblestones and pavement friction (Original
image -> Manual annotation -> Model prediction -> Value bar)
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Chapter 11

Results

In the Tab. 11.1 are shown results of four models predicting surface properties.
Pixel-wise regression model using UNet [13] architecture predicting surface
roughness achieves mean absolute error of 0.126. The same model predicting
surface friction achieves a mean absolute error of 1.49. The significant
difference in the values is not caused by the major differences in model
qualities. The main cause is the different ranges of those two surface properties.
While the surface roughness maximum values are about 0.8, the values of
friction go up to 13. The error with respect to the values range is similar for
both properties. The error on the semi-synthetic validation dataset is about
seventy-five percent of the error on the natural images. That is probably due
to the imperfections in emulating real-world images.

The approach using visual explanations from deep networks via gradient-
based localization [37] records about a double of errors in comparison with
dedicated segmentation architecture. The error of this method is partly
influenced by the resolution of the output segmentation map, that has to be
upsampled to match the original image. A number of chosen bins (artificial
classes) is another factor for the performance. Using more than three classes
could probably lead to a better predictions. The original idea was developed
for making human-readable explanations of the model behaviour, so proving
that it can be used for pixel-wise regression is a good result.

Model Mean square error Mean absolute error

Roughness UNet 0.0016 0.126
Roughness Grad-CAM 0.043 0.207

Friction UNet - 1.49
Friction Grad-CAM - 4.3

Table 11.1: Models results
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Chapter 12

Conclusions

The first part of this thesis contains a survey of related methods dealing with
surface properties description and self-supervised learning. The first part
also contains a definition of two properties used to define surfaces: surface
roughness and surface friction. It is followed by a theoretical background, that
is composed of machine learning methods used in this thesis. More in-depth
descriptions of convolutional neural networks and visual explanations from
deep networks via gradient-based localization are provided.

The implementation part begins with the description of previous work of
predicting a single label of the surface property for an input image, that
is used as a starting point for the implementation of this thesis. Then we
describe the creation of the synthetic dataset, that contains a full pixel-wise
label for each image, which is needed for the first method of predicting full
surface property maps in front of the vehicle.

Then is presented the rectification of the image taken by the camera
to obtain a birds-eye view of a rectangular region of given dimensions in
front of a vehicle. The first approach uses static homography to transform
the original image into a birdseye view. The second approach uses the
three-dimensional pointcloud provided by the ZED2 camera mounted on our
platform to estimate the pitch angle between camera lenses and the ground
plane detected in pointcloud. This information allows the algorithm to adjust
the birds-eye transformation depending on the vehicle’s current state. The
second approach compensating the pitch angle dynamically, outperforms the
static rectification in a real-world experiment. This provides a robust method
of obtaining the area of given dimensions in front of a vehicle, even though
the vehicle body is not rigid and the tilt of the camera changes.

The first method, that provides the pixel-wise surface property map for
both roughness and friction, is explained. It describes the architecture and
training settings. The models are trained on the previously created semi-
synthetic datasets. Output segmentation maps for non-synthetic real-world
images are shown in this chapter and are compared to manual annotations.
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12. Conclusions.....................................
The second method providing a surface segmentation map is based on a

visual explanation of deep networks via gradient-based localization (Grad-
CAM) introduced in [37]. This approach is used for classification networks,
so the necessary adjustments to our model are described. Model outputs
probabilities of a surface belonging to one of three classes instead of outputing
single regression values. These probabilities are used as weights and fused
together to a final property map. Despite this method’s limitations, it provides
promising results for a model that is trained on automatically labeled data
with just a single information for a whole image.

12.1 Future work

The main future improvement would likely be a creation of a more complex
and larger dataset. Convolutional networks are sensitive to lighting conditions.
The ideal state would be to have images for each surface during different
day times and weather conditions. The colour of some surfaces can change
significantly depending whether it rained or not. The automated system
for image recording was developed, so it would not be necessary to rely on
humans to do the annotation manually.

The first method could be improved by more advanced data augmentation
techniques in the creation of the synthetic dataset. The second method based
on Grad-CAM could be improved by extending the number of artificial classes.
The current state provides only a coarse discretization for surface properties,
so more classes could improve model accuracy. The modifiability of original
Grad-CAM method to a problem of surface pixel-wise regression was proven
and it could be further improved and researched.

A method of training convolutional networks on non-synthetic data, while
using only parts of the image, where the sensor measurements are available,
could be worth a try. This approach would have to reconstruct vehicle
trajectory in the rectified image, and that relies on precise odometry, but the
process of emulating real-world images by synthetic ones could be omitted.
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