
Czech Technical University,

Faculty of Electrical Engineering,

Department of Control Engineering

MASTER’S THESIS

Porting of resource reservation framework to

RTEMS executive

Master Programme: Space Science and Technology
Supervisor: Ing. Michal Sojka, Ph.D.

Prague, May 27, 2011 Author: Petr Beneš

Space Master is a Joint Euro-
pean Master in Space Science and
Technology.

Erasmus Mundus helps out
thousends of students to gain
an international education every
year.

Department of Control Engineer-
ing, Czech Technical University,
Prague.

Lulea University of Technology,
the main partner of the Space
Master consortium.

This thesis is mainly a contribu-
tion to FRSH/FORB project.

This thesis is a contribution to
RTEMS project under a supervi-
sion of its developers.

This thesis is supported by
Google Summer of Code oppor-
tunity for software oriented stu-
dents worldwide.

Declaration

I declare that I have written this thesis myself and that I have not used any
sources or resources other than stated for its preparation. I further declare
that I have clearly indicated all direct and indirect quotations.

Prague, May 27, 2011 Petr Beneš

i

ii

Acknowledgements

I would like to express my thanks to Michal Sojka, my thesis supervisor, who
was the main leading hand on the way to a successful thesis accomplishment
even in times of his tremendous work overloads. Furthermore, I would like
to thank to all the professionals who either shared their experience with me
or encouraged to pass the project to the waters of better quality and general
usefullness. Namely Pavel Ṕı̌sa, Gedare Bloom, Tommaso Cucinotta and
Joel Sherrill.

iii

iv

Abstract

The aim of this thesis is to create a port of a FRSH/FORB project for
RTEMS operating system. FRSH/FORB is a software middleware imple-
menting a resource reservation framework for tasks running on a certain
operating system, in particular real-time embedded systems. So far, the
framework runs on Linux platform, which is only a general purpose operat-
ing system. Therefore, the port is to be done for RTEMS. The main steps to
achieve this are redesigning a part the framework in order to become inde-
pendent of the underlying operating system, preparation of the latest version
of RTEMS, implementing an EDF scheduler with a sporadic server, linking
the framework together with RTEMS, and finally testing with an appropriate
application. The framework has been refactored and scheduler implemented
and tested. Only the last part of linking was not finished because of lack of
time.

Keywords: real-time, middleware, RTEMS, EDF

v

vi

Objectives

1. Familiarize yourself with FRSH/FORB framework and its current state.

2. Modify FORB middleware to allow running applications in a single ad-
dress space.

3. Port the FRSH framework from Linux to real-time executive RTEMS.

4. Implement some mechanism for CPU resource reservations such as con-
stant bandwidth server and interface it with the FRSH framework.

vii

viii

Contents

List of Figures xiii

List of Acronyms xv

1 Intoduction 1
1.1 Motivation . 1
1.2 Contribution . 2
1.3 Structure of the thesis . 3

2 About FRSH/FORB project 5
2.1 Resource reservation framework 5
2.2 Fremework structure . 7

2.2.1 FRSH . 7
2.2.2 FOSA . 8
2.2.3 FORB . 9

3 Changes and implementation in FRSH/FORB 11
3.1 FORB running in a single address space 11

3.1.1 Current executor and thread specific data 12
3.1.2 Invocation procedure decision 13
3.1.3 Inter-thread invocation implementation 14
3.1.4 Forbrun, framework initialization 16
3.1.5 Backward compatibility scripts 17
3.1.6 Conclusion . 17

3.2 FRSH/FORB to RTEMS adaptation 17
3.2.1 FOSA for RTEMS . 17
3.2.2 Cross compilation, libraries creation 18
3.2.3 Platform dependent changes in FRSH/FORB 18

4 RTEMS Operating System 21
4.1 RTEMS advantages . 21

ix

4.2 API . 22
4.3 Internals . 22

4.3.1 RTEMS Pluggable Scheduler infrastructure 22

5 Earliest Deadline First scheduler 25
5.1 General concepts . 26

5.1.1 Mathematical model of a real-time system 26
5.1.2 Schedulability analysis 27
5.1.3 Classification of scheduling algorithms 28
5.1.4 Shared resources . 29
5.1.5 Multiprocessing . 32

5.2 Design of a scheduler for the r. r. framework 32
5.2.1 Comparison and selection 32
5.2.2 Priority inversion handling 33
5.2.3 Background tasks inclusion 33
5.2.4 Design of a ready queue 35

6 RTEMS CBS for Resource Reservation 39
6.1 Temporal isolation property achievement 40
6.2 Time servers . 41
6.3 Approach of AQuoSA project 42
6.4 Rules ensuring a temporal isolation of tasks 43

6.4.1 Budget overrun . 43
6.4.2 Unblock rule . 44
6.4.3 Bandwidth inheritance 45

7 Implementation of scheduler 47
7.1 Pluggable Scheduler interface description 47
7.2 Scheduling implementation . 48

7.2.1 Thread Control Block 49
7.2.2 Red-Black trees . 52
7.2.3 Pluggable scheduler callbacks 52
7.2.4 EDF API . 53

7.3 CBS API . 54
7.4 Adding a RTEMS CPU resource 54

8 Validation of the work and testing 57
8.1 Linux wvtests . 57
8.2 Scheduler tests . 58

8.2.1 EDF test . 58
8.2.2 CBS test . 58

x

8.3 RTEMS+FRSH/FORB integration tests 60

9 Conclusion 63
9.1 Future work . 64

A Getting FRSH/FORB and RTEMS I
A.1 Compilation of FRSH/FORB I
A.2 Building RTEMS . I

A.2.1 Testing and debugging tools II

xi

xii

List of Figures

2.1 Structure of the FRSH/FORB middleware. 8
2.2 Sequence diagram of FORB inter-node invocation. 9

3.1 Sequence diagram of FORB inter-thread invocation. 13

4.1 Structure of RTEMS internals. 22

5.1 General model of a real-time task. 26
5.2 General division of scheduling algorithms. 28
5.3 A simple example of priority inversion. 30
5.4 Background tasks’ inclusion into a deadline-driven ready queue. 37

6.1 Unblock rule. 45

xiii

xiv

List of Acronyms

API Application Programming Interface

AQuoSA Adaptive Quality of Service Architecture

BSP Board Support Package

BWI Bandwidth Inheritance

CBS Constant Bandwidth Server

CORBA Common Object Request Broker Architecture

CPU Central Processing Unit

CVS Concurrent Versions System

DM Deadline Monotonic

EDF Earliest Deadline First

ELF Executable and Linkable Format

FCB FRSH Contract Broker

FORB FRSH Object Request Broker

FOSA FRSH Operating System Adaptation

FRA FRSH Resource Allocator

FRESCOR Framework for Real-time Embedded Systems based on COn-
tRacts

FPS Fixed Priority Scheduling

FRM FRSH Resource Manager

xv

FRSH FRESCOR Scheduler

FWP FRESCOR WLAN Protocol

GRUB GRand Unified Bootloader

GPOS General-Purposes Operation System

IDL Interface Description Language

IOP Inter-ORB Protocol

MSB Most Significant Bit

NPCS Nonpreemptive Critical Sections

OMK Ocera Make System

OS Operating System

PCP Priority Ceiling Protocol

PIP Priority Inheritance Protocol

POSIX Portable Operating System Interface for Unix

PreCP Preemption Ceiling Protocol

QoS Quality of Service

RM Rate Monotonic

RR Round Robin

RT Real-Time

RTEMS Real-Time Executive for Multiprocessor Systems

RTOS Real-Time Operating System

SMP Symmetric Multiprocessing

TCB Thread Control Block

xvi

Chapter 1

Intoduction

1.1 Motivation

Nowadays, real-time systems keep gaining significance in the field of control
engineering. A lot of applications require safety-critical properties such as
space technologies where an unpredicted timing violation may result into a
mission fail responsible for a loss of an astronomic amount of money. Sec-
ondly, another group of applications such as media transmission considered
as soft real-time put emphasis on Quality of Service(QoS) [Abeni et al., 2005]
in which case the important measures are statistical guarantees and cost ef-
ficiency.

Development of real-time applications is typically a complex task. It is
not only sufficient to write the application logic but one also needs to ensure
that the application meets all temporal requirements such as deadlines. For
this reason it is difficult to apply component-based development methodolo-
gies. Normally, composing the application from well tested components leads
to better applications and shorter development time, but in the case of real-
time applications even the most tested component can behave incorrectly if
they do not have sufficient amount of resources to perform their functionality.

Resource reservation framework helps to temporally isolate the applica-
tion components by reserving the resources for the individual components.
By incorporating on-line schedulability tests the availability of reserved re-
sources can be guaranteed.

An availability of such a middleware on a hard real-time operating system
will yield a top quality of temporal guarantees for all kinds of simultaneously

1

2 CHAPTER 1. INTODUCTION

running services while still providing a time and cost effective development
conditions for application designers.

1.2 Contribution

This thesis aims at enriching FRSH/FORB resource reservation framework
(later only framework) with hard real-time capabilities that open new area of
possible utilization mentioned above. The thesis mainly refactors the current
version of middleware and also contributes with new features specific for the
underlying operating system RTEMS.

Hard real-time capabilities of the framework. Adapting the back-end
of the framework to the RTEMS operating system makes use of its all fea-
tures, especially the hard real-time timing capabilities, which is necessary for
a certain scope of applications. Thereafter, the framework becomes capable
of handling highly critical systems.

EDF scheduler. An Earlies Deadline First (EDF) scheduler for RTEMS
has been designed and implemented. As a matter of fact, this is a part of
overall scheduling algorithm for FRSH/FORB project, but it will also serve
as an optional scheduler for a general use of RTEMS project users. The
scheduler will be merged directly into RTEMS operating system, so that
everybody can use it.

Hybrid priority representation. As a compromise between hard real-
time deadline driven scheduling with a possibility of executing background
tasks with no real-time requirements and a low overhead is a hybrid priority
representation that has been designed. This concept making use of a simple
mathematical trick saves a lot of effort when implementing EDF and pos-
sibly also other, more complex schedulers under certain circumstances, see
Section 5.2.3.

Temporal isolation of tasks in RTEMS. A Constant Bandwidth Server
(CBS) as a reservation-based scheduling policy atop of EDF has been de-
signed and implemented in order to guarantee temporal isolation of tasks
essential for resource reservation on the RTEMS platform.

1.3. STRUCTURE OF THE THESIS 3

1.3 Structure of the thesis

In the very first part, this thesis includes an introduction about the FRSH/FORB
project which is being enhanced, its aim, description and use in the Chap-
ter 2. Since the project is very modular, its components will be consequently
described separately.

Further, the Chapter 3 presents necessary changes and refactoring of the
FRSH/FORB framework that have been performed.

Next, a brief description of RTEMS operating system, its properties es-
pecially in terms of hard real-time behavior is provided in Chapter 4. Also
the application programming interface will be discussed which is necessary
to comprehend in order to figure out what options and obstacles will arise
concerning the API matching between FRSH/FORB and RTEMS.

An introduction to basic concept of real-time scheduling, description of
scheduling algorithms and related features, their pros and cons related to
FRSH/FORB needs, and finally a design of a low-level scheduling Earliest
Deadline First scheduler will be described and justified in Chapter 5.

The Chapter 6 describes how a temporal isolation of task will be achieved
by a Constant Bandwidth Server implementation. The temporal isolation
property of CBS is an essential property for resource reservation capability
of the FRSH/FORB project. The CBS utilizes low-level Earliest Deadline
First scheduler

The implementation details of RTEMS scheduling policy based on previ-
ous design is described in Chapter 7.

Validation of all parts of work in terms of tests is presented in Chapter 8.

Finally, conclusions are made in the last Chapter 9 also indicating the
current stage of project and commenting on its deficiencies. Also proposals
for another future work are summed up in Section 9.1. Since this thesis is
actually not the end of effort, some of the points will be finished in a very
close time horizon.

Details on how to get and compile both RTEMS and FRSH/FORB can
be found in Appendix A.

4 CHAPTER 1. INTODUCTION

Chapter 2

About FRSH/FORB project

FRESCOR (Framework for Real-time Embedded Systems based on COn-
tRacts) is a finished research project intended to create an effective tech-
nology for embedded real-time distributed systems allowing users and ap-
plication programmers a simple approach to develop flexible, reconfigurable
and distributed architectures using the most advanced techniques along with
shortest time-to-market [fre, 2008]. The project was executed by a consor-
tium of several European partners and financially supported by the European
Union. The result of this effort is FRSH/FORB resource reservation frame-
work [frs, 2011].

Distributed systems. The main emphasis of this project is put on dis-
tributed systems which means that not only a resource reservation on a single
computer is provided, but also a possibility to share computational capacity
among multiple computers. The framework provides to users an abstraction
yielding a very convenient development environment for distributed systems
(see Section 2.2.3).

2.1 Resource reservation framework

Every computer system running a set of applications provides with resources
which are shared by these applications. These resources may be divided into
active and passive. The active resources are the ones that can execute tasks,
thus e.g. a CPU. Passive resources are additional necessary resources such
as LAN or disk. All of these resources are under control of an operating
system and applications utilize these resources. Every time a resource is
shared by multiple applications, it is necessary to come up with some ac-
cess control mechanism in order to serve all the application requesting the

5

6 CHAPTER 2. ABOUT FRSH/FORB PROJECT

particular resource. In case of General-Purpose Operating Systems (GPOS),
there is no motivation to study any guarantees on resource assignment since
the applications are not critical. Moreover, some of the resources may be
considered sufficiently large to run what is necessary. In case of real-time
operating systems (RTOS) the situation is different. Since the applications
require a guarantee that no deadlines are going to be missed, the resources
have to be seen as limited no matter how big they are.

Reserved resources. The idea of resource reservation is based on assump-
tion that a task is capable of a proper execution as long as it has necessary
amount of resources. The resource reservation framework in order to ensure
a full functionality of each application sharing active and passive resources
in a real-time manner has to take care of a proper distribution and reserva-
tion of these resources [Molnár et al., 2008]. This will be carried out using
contracts, which provide the possibility for the applications to indicate their
resource requirements, ask for them and keep them until the end of their life.
Since the amount of each resource is limited, the framework has to keep in-
formation on how much resource is already in use and decide on-line whether
enough of resource is available or not. This is managed by blocks handling
resources described in Section 2.2.

Contracts. As the framework name already suggests, the resource reser-
vation is accomplished by a contract based negotiation with applications. In
order to reserve all necessary resources that are requested by the application,
a contract has to be prepared and negotiated with the framework.

Quality of Service. Moreover, given a spare capacity of resources is avail-
able, currently not being used by any application, this spare capacity may
be redistributed across the running tasks. This is a very useful feature for a
certain area of applications such as media transmission, where no strict de-
terministic deadlines are wanted, but rather a Quality of Service is requested.
Such applications are usually not optimized in terms of criticality, but rather
in terms of flexibility and cost. The applications having a possibility to run
in several levels of QoS [Abeni et al., 2005] tend to utilize the resources as
much as possible and only a lower bound of the quality is necessary to be
maintained. Therefor, the possibility of spare capacity redistribution has its
place in this framework [Sojka et al., 2011].

2.2. FREMEWORK STRUCTURE 7

2.2 Fremework structure

The FRSH/FORB project consists of several more or less independent soft-
ware projects,

• FRSH Object Request Broker (FORB),

• FRESCOR Scheduler (FRSH),

• FRESCOR WLAN Protocol (FWP),

• FRESCOR Network Adaptation (FNA),

• Wireless sensor network protocol ITEM.

later denoted only as components [Molnár et al., 2008], some of which will be
in more detail described in latter sections. Each of the components provide
with some kind of functionality. The modularity is a very convenient design
for possible adjustments. A block diagram of the middleware underlining the
layers and mutual communication is depicted on Figure 2.1.

And another software projects have been integrated:

• FRSH Operating System adaptation layer (FOSA),

• Cluster-Tree wireless sensor network

• ORTE middleware (developed in EU project OCERA)

• OMK make system (developed in EU project OCERA) [omk, 2010]

2.2.1 FRSH

FRSH is the highest level part of FRSH/FORB including functionalities of
a general use. There should not be any platform and resource specific parts
(however, this is not exactly the reality). The FRSH API is an interface di-
rectly being used by application programmers while implementing their sys-
tems. It provides with the contract based reservation negotiation for available
resources.

Resource allocators. These are responsible for handling a particular re-
source by means of communicating with a resource scheduler. The functions
of a resource allocator (FRA) are basically assigning and removing resource
fractions to and from tasks and also handling the spare capacity.

8 CHAPTER 2. ABOUT FRSH/FORB PROJECT

Figure 2.1: Structure of the FRSH/FORB middleware [Sojka, 2010].

Resource managers. The responsibility of calculation how much of a re-
source is currently in use and whether another task may obtain a fraction of
a resource or has to be refused in order to maintain the reservations of the
tasks already sharing the resource lies upon the resource managers (FRM).
Every resource has its own resource manager deciding about possible resource
allocation and schedulability (see Section 5.1.2) of the system as a whole.

In order to add a resource, a new Resource allocator and a new Resource
manager have to be implemented.

Contract broker. The responsible entity distributing the contracts be-
tween application and involved resource managers is called Contract Broker
(FCB). The FCB announces the application the result of negotiation. That
means whether the contract was accepted or not.

2.2.2 FOSA

FRSH Operating System Adaptation (FOSA) layer is the back-end of the
middleware providing an independence of the higher level components on
the underlying operating system.

2.2. FREMEWORK STRUCTURE 9

2.2.3 FORB

FRSH Object Request Broker (FORB) is an implementation of CORBA mid-
dleware. Although the CORBA protocol [cor, 2011] comprises a huge amount
of features, only a small part of them has been implemented in FORB. Partic-
ularly for practical purposes and simple usability. This middleware ensures a
communication among parts of software residing in the same process, another
process or even another node, along with providing an abstractized interfaces
among the objects so that there is no need to know where the components are
actually located. This feature is a necessary building block for distributed
and modular system development approach.

The objects are main entities in the FORB communication and own a
certain set of methods. When a method of an object is invoked, it is per-
formed in a synchronous manner, thus the calling entity waits for a return
value. Moreover, the methods are not invoked directly, however, a stub is
called instead. The communication sequence is shown on Figure 2.2.

Figure 2.2: Sequence diagram of FORB inter-thread invocation of a method.
On the left hand side there is a client node including the application and on
the right hand side there is a server node including the implementation of
called function.

10 CHAPTER 2. ABOUT FRSH/FORB PROJECT

Stubs. The stub is a mean of abstractization of a method according to IDL
language on the side of caller (client). It is not necessary to know whether
the function is local or remote. The stub figures this out and takes appro-
priate steps to find and invoke the function.

If an object (or method) is found remote (implementation is not avail-
able on the same peer), the Inter-ORB protocol (IOP) defines rules for data
serialization and transmission between peers (other computers). In case of a
remote call, a message is to be serialized, sent and deserialized on the desti-
nation peer, where a skeleton of a method deserializes the request and finally
invokes the desired method (Figure 2.2).

Skeletons. Skeleton has the same function as stub but on the side of called
object (server part). It invokes the desired method and sends a reply with
output paramenters back to the caller in a way dependent on whether the
caller is remote or local.

Possible invocation procedures in FORB were so far:

• Direct invocation (A method is called directly when the implementation
is available),

• Inter-process invocation (This is taken into account only in case of OS
having multiple processes, such as Linux. UNIX sockets were used),

• Inter-node invocation (A serialized message has to be sent via network).

Executor and executor queue. Each object includes a thread that is
responsible for executing all incoming requests. This thread is called Execu-
tor. The incoming requests are stored in an executor queue of an object and
waiting for being processed.

IDL language and compiler

The IDL (Interface description language) is a language describing an arbi-
trary interface regardless of which language is used for the interface imple-
mentation or what machine (endian) it is to be run on. This makes different
languages and computers communicate with each other. The IDL compiler
translates the IDL language into already a particular language such as C. The
result is that the interfaces (stubs and skeletons) are created automatically
and the user cares only about the IDL definition [Molnár et al., 2008].

Chapter 3

Changes and implementation in
FRSH/FORB

This chapter introduces the first part of work, implementation details en-
countered during refactoring the framework into a single address space, this
will be presented in Section 3.1, and then, issues related to matching and
porting FRSH/FORB to RTEMS are presented in Section 3.2.

3.1 FORB running in a single address space

Threads and processes are two possible processing units in a multitasking
operating system. Unlike thread, processes are not only an execution of a
program code, but has also assigned a part of computer memory space called
address space. Each thread is associated with a process and each process is
associated with a program. However, not all operating systems, especially
the ones for embedded purposes, which tend to be small in size and do not
need all features provided by GPOS, implement processes and all threads
run in one address space as a single process or program. The feature of mul-
titasking is simply provided by threads.

The initial design of FRSH/FORB middleware was performed for sake of
Linux platform which provides with processes. Therefor, the active compo-
nents of the middleware described in Section 2.2 are implemented as separate
processes. The real-time operating system RTEMS, however, executes appli-
cations as a single process. As we need to port the complete middleware on
RTEMS, this property is a major obstacle and we are forced to refactor the
middleware in a way all components run as a single process, thus they share

11

12CHAPTER 3. CHANGES AND IMPLEMENTATION IN FRSH/FORB

the entire memory. Moreover, it is desirable that the refactored version will
run in Linux the same way as before and maintain a high degree of back-
ward compatibility so that no change is notable from the user’s point of view.

In the following sections I present necessary steps and problems that
arose during this procedure, along with means to validate its functionality
on Linux.

Validation of these steps is presented in Chapter 8.

3.1.1 Current executor and thread specific data

The FORB layer as described in Section 2.2.3 is responsible for communi-
cation between remote objects according to Inter-ORB protocol, so that a
distributed system can be easily established without any need for applications
to care about low-level communication details. In case a method belonging
to an object is to be invoked, the layer is supposed to determine where the
object owning the called function is implemented. The actual implementa-
tion may be invokable from the place where it is called from in which case a
direct invocation can occur. In the opposite case when the object is either in
a different process or on another node in the distributed network, a remote
invocation occurs.

In case of a single address space it may happen that an object previously
implemented in a different process, thus invoked remotely, is available in the
same address space. Since the methods of objects are not reentrant, multiple
threads are not allowed to access the data. Therefor, it is not possible to
invoke the method directly, but an invocation request has to be passed to a
thread executing all requests on the object. This thread is called executor.

Thus, it is essential to distinguish this case in order to avoid concur-
rent access. Let us call this inter-thread invocation in detail described in
Section 3.1.3. It is a blend of local and remote invocation procedures, it
serializes the request and inserts into the executor queue of requests without
a need of sending via network. This is depicted on the Figure 3.1.

First of all, in order to be capable of deciding which kind of local invo-
cation we require, we have to figure out which thread we are in before in-
vocation. For this purpose a function forb_get_current_executor() was
added. The function uses POSIX thread specific data pointing to an assigned
executor. The thread specific data are initialized as an executor is started

3.1. FORB RUNNING IN A SINGLE ADDRESS SPACE 13

Figure 3.1: Sequence diagram of FORB inter-thread invocation a method.
On the left hand side there is a client application and on the right hand side
there is a server object including the implementation of called function. Both
entities share a common address space.

(forb_executor_run()). If the thread does not belong to any executor but
to an application a NULL pointer is returned. This uniquely separates local
and inter-thread invocation.

3.1.2 Invocation procedure decision

Since we are now able to figure out the relation between a calling and des-
tination entity, we can make a decision on how to start a communication.
This is a responsibility of stub, which is called first in any case. The possible
invocation procedures are now:

• Direct,

• Inter-thread,

• Remote (inter-node).

As for the implementation, the condition

14CHAPTER 3. CHANGES AND IMPLEMENTATION IN FRSH/FORB

forb_object_is_local(obj) &&

forb_get_current_executor() == forb_object_get_executor(obj)

where obj is the target object determines the local invocation case. Con-
sequently, the rest of cases are handled the same because the procedure is
to a certain extent very similar. The procedure of request preparation in
stub continues with no change as a remote invocation case. The consequent
distinction emerges only in implementation of the request and response han-
dling functions.

Thus, the stubs were reimplemented in a corresponding way. Respective
their template only because they are automatically generated.

3.1.3 Inter-thread invocation implementation

The newly introduced inter-executor invocation procedure requires a couple
of changes in the FORB structure.

In case of a remote invocation a complete serialized message represented
by (struct request) is to be made up and sent via network. In the other
node it is deserialized and enqueued as a request (struct exec_request)
for an executor.

Let us begin with the same scenario just omitting a few steps. The re-
quest consists of serialized parameters, request header (specifying what ob-
ject, method is being requested, . . .) and a message header specifying other
information. Since the requested object and executor is in the same address
space, instead of a full serialization of the message with request header and
message header, it is sufficient to keep only the request header which mainly
determines which function is requested. The message header is a lower level
indication of a message type when sending via network and is not at all of
our interest.

Now, as we decided to pack up the request and enqueue it for the executor
of destination object, the previous implementation gave a little complication.
The representation of request on the side of caller forb_request is different
to representation on the side of executor forb_exec_req because also the
data to be kept there are different. On both sides C structure components
are filled out.

The request represented by structure forb_exec_req, once prepared, is a

3.1. FORB RUNNING IN A SINGLE ADDRESS SPACE 15

member of the executor queue and thus, it would be desirable to fill out only
that one. However, some necessary information such as function name and
its input parameters are still in a serialized form (FORB_CDR_Codec codec).
But as the remote invocation procedure (in stub) already serializes these
data into forb_request, we will keep this structure as well. Moreover, there
is no need for the forb_exec_req to keep any output parameters or return
value because after the called function finishes the result in case of remote
invocation just has to be sent out. As for the inter-executor invocation, the
output data (buffer) is directly saved to the corresponding forb_request.
Which one is the corresponding one is determined by the newly added pointer
forb_exec_req.input_request.

The request represented on stub (caller) side (/src/forb/src/request.h) 1:

struct forb_request {

CORBA_unsigned_long request_id;

FORB_CDR_Codec cdr_request;

FORB_CDR_Codec *cdr_reply;

gavl_node_t node;

forb_object obj;

unsigned method_ind;

char *interface;

struct forb_env *env;

forb_syncobj_t reply_ready;

forb_syncobj_t *reply_processed;

+ unsigned end_of_header_index;

};

The end_of_header_index is added for sake of the changed serialization
method which omits message header.

The request represented on skeleton side (/src/forb/src/exec_req.h):

typedef struct forb_exec_req {

unsigned request_id;

forb_server_id source;

forb_object obj;

unsigned method_index;

FORB_CDR_Codec codec;

ul_list_node_t node;

+ enum forb_exec_req_type request_type;

1plus sign denotes newly added components

16CHAPTER 3. CHANGES AND IMPLEMENTATION IN FRSH/FORB

+ forb_request_t *input_request;

+ char *interface;

} forb_exec_req_t;

For a distinction whether a remote or inter-executor invocation occurs,
the forb_exec_req.request_type indicator has been added.

enum forb_exec_req_type {

FORB_EXEC_REQ_LOCAL,

FORB_EXEC_REQ_REMOTE

};

3.1.4 Forbrun, framework initialization

Previous usage of the middleware in Linux was based on existence of separate
programs. These programs (processes) were executed form a command line.
In order to run a user application utilizing the FRSH/FORB middleware, it
was necessary to start

• FRSH Contract Broker,

• required FRSH Resource Managers,

• the user application itself.

Now, as we have just a single executable, we have to ensure a proper initial-
ization of all these components which are to be compiled as shared libraries
(in Linux). Each shared library has a forb_main() function as the entry
point.

A simple program called forbrun was created, which is given a set of com-
mand line parameters. According to these parameters forb_main() func-
tions with appropriate parameters belonging to them are executed. Each
shared library as well as the forbrun itself may have specific command line
parameters. Thus, if an user application is to be run it is necessary to exe-
cute the forbrun with parameters of the shared libraries’ names along with
parameters belonging to them. This makes the execution a little messy, how-
ever, it is still possible to run the components separately. In that case you
execute forbrun several times, each times with only one shared library as a
parameter. It leads to the same effect.

The syntax for forbrun program is

3.2. FRSH/FORB TO RTEMS ADAPTATION 17

forbrun [options] -- <forb-server>.so [options for forb_main()]

[-- ...]

3.1.5 Backward compatibility scripts

The previous change of execution procedure (Section 3.1.4) may cause trou-
bles to applications already designed with FRSH/FORB in Linux before.
Therefor it was necessary to come up with some kind of backward com-
patibility strategy. For this reason, each of the components is assigned a
shell script having the same name as the component. The script is just a
replacement for the previous executable component and its content is only
a forbrun call with a parameter of the corresponding component shared li-
brary plus its own parameters. Verification whether the changes did or did
not harm functionality in Linux is presented in Chapter 8.

3.1.6 Conclusion

Since the middleware is composed of several layers, it was necessary to alter
only the FORB layer and the rest stays untouched. In general, the necessary
steps included recreating the components from processes into threads hav-
ing a different name of the main function since there may be only one such
function. Consequently, communication means have to be established and
implemented for the inter-thread execution and finally all of this still has to
be executable in Linux in the same manner as before, preferably maintaining
a backward compatibility with the previous invocation strategies.

3.2 FRSH/FORB to RTEMS adaptation

3.2.1 FOSA for RTEMS

As the FOSA (Section 2.2.2) layer is an operating system abstraction, it is
necessary to create one for RTEMS. However, it is not necessary to do so
from scratch because the RTEMS operating system already inherits a signif-
icant portion of POSIX standard (Section 4.2). Therefor the FOSA sources
for Linux and RTEMS do not differ too much but some features are not in-
cluded in RTEMS. For example siglongjump is not implemented properly.
As a matter of fact, just a proper testing will figure out how compliant with
POSIX RTEMS actually is.

18CHAPTER 3. CHANGES AND IMPLEMENTATION IN FRSH/FORB

A main difference between RTEMS and Linux is a task identification.
While in Linux two identifiers are necessary, for threads pid_t linux_tid

and for processes pid_t linux_pid, in case of RTEMS only a task is to be
identified rtems_id rtems_tid.

3.2.2 Cross compilation, libraries creation

Since the RTEMS support of shared libraries is not very mature, we were
forced to make up a different way of compilation of the middleware com-
ponents. The easiest way is to compile all the libraries as static instead of
dynamic. The precompiled RTEMS core is actually not a final executable
either, but just a set of built object files waiting for user application to be
compiled and linked together with in order to yield a final ELF file which is
already capable of executing on a specific target or in an emulator.

The platform dependent compilation of FRSH/FORB components as li-
braries is carried out by defining a specific macro forb_share_LIBRARIES

either as lib_LIBRARIES for RTEMS or shared_LIBRARIES for Linux, which
is in both cases already an OMK [omk, 2010] variable.

3.2.3 Platform dependent changes in FRSH/FORB

This section finishes the enumeration of all necessary adjustments on the
way of obtaining a running framework under RTEMS in as much as possible
similar way as in Linux. Mostly the changes were accomplished using a
conditional compilation where the definition of RTEMS macro introduces a
RTEMS specific part. Another, more specific macros are used in cases where
the condition for compilation is not just an assumption of RTEMS platform
but rather a particular library.

Select vs. Epoll. A very significant issue concerning multiplexing net-
work sockets on a server has been identified in FORB (proto_inet.c). For
an asynchronous servicing of multiple clients the library Epoll [epo, 2010] is
being used. Although this library is one of the best of this kind, it is plat-
form dependent and definitely not supported in RTEMS. Therefor, a much
more common Select [sel, 2011] library has to be used for RTEMS, which is
implemented. At this point I have to say that the platform dependency is
not very convenient as the FORB layer should not be platform dependent
and any conditional compilation using a preprocessor makes the code very
hard to read.

3.2. FRSH/FORB TO RTEMS ADAPTATION 19

Main functions. The above described issue of static compilation and link-
ing of framework component libraries (Section 3.2.2) yields another problem.
Not only the address spaces of previously separate components have been
merged, but also name spaces became one. As each component required a
forb_main() function, as an entry point to the dynamically loadable library,
in case of a single name space, the functions have to be called differently. This
is accomplished by introducing a generalizing macro FORB_MAIN()2 that re-
names the forb_main() functions by concatenating a component specific
suffix e.g. forb_main_fcb().

Forbrun in RTEMS. All required components have to be started within
the framework initialization in RTEMS. For this purpose a forbrun() func-
tion has been added where subsequent initialization of components is realized.

Error handling. Although a small, yet an important difference or an in-
compatibility was discovered in error handling. While in Linux the header file
error.h has to be included and the actual error messages are being passed
by calling error() function, in RTEMS the include is rtems/error.h and
rtems_error() is to be called. This difference in function names was masked
as ERR()3, which is independent on underlying platform.

2forb.h
3forb.h

20CHAPTER 3. CHANGES AND IMPLEMENTATION IN FRSH/FORB

Chapter 4

RTEMS Operating System

This chapter just briefly summarizes why RTEMS operating systems has
been chosen for use of FRSH/FORB. The Section 4.1 shows its advantages.
Comments on application programming interface of RTEMS are made in
Section 4.2 and description of internals with main focus on scheduling in
Section 4.3.

4.1 RTEMS advantages

The RTEMS Operating system [rte, 2010] is a very good candidate to became
an underlying platform for the FRSH/FORB project. It is a hard real-time
operating system for embedded purposes which overlaps the same area of
interest as of FRSH/FORB, and it is open-source. The open property gives
us the opportunity to make minor changes in the internals of the operating
system or at least to study them and thus to make a better fit for the mid-
dleware.

Portability. A very strong side of RTEMS may be considered a very good
portability across hardware platforms and the isolation of RTEMS core from
hardware specific packages. This plays a very important role in terms of
possibly being accepted by a wide audience in the real-time and embedded
area.

The operating system is written in two languages Ada and C. We will
deal with C only all the time.

21

22 CHAPTER 4. RTEMS OPERATING SYSTEM

4.2 API

RTEMS basically includes two application programming interfaces. First
one is called Classic API which better corresponds to feature set of the sys-
tem, and the second one, POSIX API which is a latter effort of RTEMS
towards having a common API with other operating systems in order to
support portability of applications. However, implementation of the POSIX
standards is still under development.

4.3 Internals

The internal structure of RTEMS includes basically all necessary features for
mature real-time applications. The implementation is even quite readable
and easy to use. The Figure 4.1 displays and overview of RTEMS core
features.

Figure 4.1: Structure of RTEMS internals [OAR, 2009].

4.3.1 RTEMS Pluggable Scheduler infrastructure

The implicit and only scheduling policy implemented in RTEMS is a priority
scheduling for tasks with priorities between 0 to 255. However, beginning the
version 4.11 of RTEMS, there is a brand-new feature called Pluggable Sched-
uler and as the name already insists the feature enables to pull a random
scheduler out of the RTEMS kernel which enables application programmers
to arbitrarily choose and implement a scheduling policy they need for their
applications. Moreover, it is very suitable for experiments with scheduling

4.3. INTERNALS 23

which is of our major interest as well.

Implementation of a pluggable scheduler does not mean a complete im-
plementation of thread handling, but rather just a couple of callback func-
tions along with scheduler specific memory requirements have to be defined
whereas the rest of general thread handling is still managed inside of the core.
However, in order to be capable of implementing a pluggable scheduler, an
user has to be aware and closely acquainted with the RTEMS internals. How
far the pluggable scheduler infrastructure is useful for various types of sched-
ulers is not clear and the RTEMS developers are open to any feedback and
experiences with issues encountered while using the pluggable scheduler in-
frastructure in order to adapt the interface so that it can be used for as wide
a span of scheduling algorithms as possible.

24 CHAPTER 4. RTEMS OPERATING SYSTEM

Chapter 5

Earliest Deadline First
scheduler

Every system that runs multiple tasks on a limited number of processors is
required to have a certain set of rules deciding how the tasks are assigned
processor in order to fulfill some criteria which may differ depending on the
purpose. This set of rules is called scheduling policy of scheduling algorithm.

The reason why I deal with scheduling in this thesis is the need to include
the RTEMS CPU as a resource. The CPU resource is of the main importance
because every application utilizes CPU.

This chapter first introduces basic concepts of real-time theory, schedul-
ing algorithms and issues related to scheduling in Section 5.1.

Later, in Section 5.2 the basic concepts are commented form the point of
view of FRSH/FORB and a design of low-level scheduler along with some
specific features for our purposes will be performed.

However, for sake of use in FRSH/FORB this scheduling policy is not
sufficient and a higher-level scheduler that provides the possibility to RTEMS
CPU act as a reservable resource will be introduced in Chapter 6.

25

26 CHAPTER 5. EARLIEST DEADLINE FIRST SCHEDULER

5.1 General concepts

5.1.1 Mathematical model of a real-time system

Every task τi according to the real-time theory [Liu, 2000] has several pa-
rameters such as

• Release time ri - time when the task becomes ready

• Start time si - time when the task starts its execution

• Computation time Ci - period necessary for the task execution (without
any interruption)

• Deadline di - time by which the task has to be finished

• Finishing time fi - time when the task finishes its execution

as depicted on the Figure 5.1.

Figure 5.1: General model of a real-time task.

Task states. Each task has a certain state. The main states usually con-
sidered in RTOS are running, the task is currently being executed on a
processor, ready, the task is ready to run and waiting in a ready queue for
its execution. If a task is said to be suspended, it means the task is removed
from the ready queue and is waiting for some event (mutex, timer, . . .) to
become ready.

Ready queue. Ready queue is a representation of an entity containing
set of ready tasks in an order corresponding to their priority How to assign
task’s priorities is a matter of used scheduling algorithm.

We can separate the task into two groups periodic and aperiodic. Pe-
riodic tasks are of the main concern in the real-time applications, thus a
special attention has to be payed to them. A periodic task τi is a sequence

5.1. GENERAL CONCEPTS 27

of infinite number of its instances called jobs (Jij) with the above mentioned
properties. The index i denotes a task belonging to and j denotes a number
of task instance τi.

Moreover, a periodic task is characterized by inter-arrival time also called
period (Ti) which is a period between two subsequent activations of task
Ti = rij − rij−1. For sake of simplicity the periods are equal to deadlines.

Schedule. If we consider a set of n tasks τ1 . . . τn competing for the pro-
cessor time, the order of their job executions is called a schedule.

Scheduling algorithm. Scheduling algorithm is an algorithm that decides
which task of a ready queue can gain processor and orders the ready tasks
into a ready queue.

5.1.2 Schedulability analysis

A schedulability analysis refers to the procedure which determines whether
a feasible schedule can be found. Feasible schedule is such a schedule that
makes all tasks meet their deadlines. Calculation complexity of such analysis
depends on a lot of things, number of tasks, complexity of their mathemati-
cal model as well as additional given constraints such as access to mutually
exclusive resources.

Depending on complexity and application the analysis may be performed
either

• on-line (while the tasks already run)

• or off-line (given all the parameters and constraints are available a-
priory).

On-line schedulability analysis. The on-line case of schedulability anal-
ysis is needed in case we do not know the set of task or exact requirements
before the application starts. That is a case of modular applications. Since
the complexity of schedulability analysis grows rapidly with respect to com-
plexity of assumed task model, it is necessary to keep the model as simple as
possible in order to be capable of applying the schedulability analysis on-line.

28 CHAPTER 5. EARLIEST DEADLINE FIRST SCHEDULER

Utilization. The schedulability analysis may be based on various infor-
mation. However, the easiest option is called utilization-based schedulability
analysis. For each periodic task τi consider utilization of

Ui = Ci/Ti

corresponding to a fraction of processor utilized by τi. And for set of n tasks
total utilization of processor

U =
n∑

i=0

Ui.

can be calculated. Regardless of what scheduling algorithm we use, a neces-
sary condition is in any case expressed by the following theorem.

Theorem 1. [Abeni and Buttazzo, 1998] A system of independent, preempt-
able periodic tasks with relative deadlines longer than their periods can be
feasibly scheduled on a processor as long as the total utilization is equal to or
less than 1.

5.1.3 Classification of scheduling algorithms

There are several classes of scheduling algorithms which might be divided
according to the Figure 5.2.

Figure 5.2: General division of scheduling algorithms.

The static scheduling algorithms are fully calculated off-line whereas the
dynamic scheduling algorithms decide about the order of tasks on-line. The

5.1. GENERAL CONCEPTS 29

off-line scheduling algorithms are not useful for dynamic applications. The
dynamic schedule algorithms will be studied in more detail.

Preemptive algorithms unlike non-preemptive ones are allowed to inter-
rupt a running task before its execution finishes.

Widely used scheduling algorithms

In real-time systems there are a few widely used scheduling algorithms such
as Rate-Monotonic (RM), Deadline-Monotonic (DM) and Earliest Deadline
First (EDF) [Liu, 2000].

The Rate-Monotonic algorithm belongs to the group of Fixed Priority
Scheduling (FPS) algorithms. The priorities are assigned corresponding to
rates based on assumption that a task with higher rate (shorter period) de-
serves higher priority. The Deadline-Monotonic algorithm also belongs to
the FPS and assigns priorities according to relative deadlines. The shorter
deadline the higher priority.

The Earliest Deadline First algorithm belongs to the group of dynamic
priority algorithms where the priorities correspond to absolute deadlines of
the tasks and thus the priorities have to be updated with each release of a
job. Unlike FPS it leads to an unlimited number of priority levels.

5.1.4 Shared resources

The above mentioned model of real-time tasks assumes that the tasks are
independent. however, several tasks may share common resources with ex-
clusive access which makes them not independent. These resources have to
be accessed only by one thread at a time in order to maintain consistency
of the resource data. Therefor, it can happen that a task (thread) has to
wait for the resource to become available. The means to ensure an exclusive
access are called mutexes commonly implemented in RTOS which are used
in order to lock or unlock the resource for its use. Consequently, another
task demanding to use the same locked resource is blocked until the resource
is available again.

30 CHAPTER 5. EARLIEST DEADLINE FIRST SCHEDULER

Priority inversion. The problem arising as a consequence of the task
blocking due to waiting for a shared resource may result in an effect called
Priority Inversion in case a task is blocked by another task with a lower
priority. A sample of Priority Inversion causing a deadline miss is shown on
the Figure 5.3.

Deadlock. In case of tasks blocking each other, another problem might
emerge. If a situation where tasks are waiting for each other in a loop occurs,
a deadlock may cause halt of the set of task.

Figure 5.3: A simple example of priority inversion (picture taken from
[Molnár, 2006]) Job J1 is blocked by a job J3 with lower priority.

In order to solve this problem various rules (protocols) have been pro-
posed. Some of them such as Priority Inheritance Protocol (PIP) and Pri-
ority Ceiling Protocol (PCP) are designed for sake of fixed priority systems
and some other ones e.g. Preemption Ceiling Protocol (PreCP) for dynamic

5.1. GENERAL CONCEPTS 31

priority systems. Another possibility to avoid long blocking is a protocol
called Nonpreemptive Critical Sections (NPCS). There is a list with a brief
description of various protocols that may be used with the EDF algorithm
along with both their advantages and disadvantages.

Priority Inheritance Protocol

This is a simple protocol that works with any priority-driven algorithms (thus
even EDF). It does not prevent deadlocks unless another protocol doing it
is employed simultaneously. Each job is assigned a priority by a scheduling
algorithm. This priority may be raised to a higher priority of blocked job.
The priority is inherited and the job continues its execution with this inher-
ited priority as long as it causes the blocking. The PIP is defined by set of
rules [Liu, 2000]:

• 1. Scheduling Rule: Ready jobs are scheduled on the processor preemp-
tively in a priority-driven manner according to their current priorities.
At its release time t, the current priority π(t) of every job J is equal to
its assigned priority. The job remains at this priority except under the
condition stated in rule 3.

• 2. Allocation Rule: When a job J requests a resource R at time t,
(a) if R is free, R is allocated to J until J releases the resource, and
(b) if R is not free, the request is denied and J is blocked.

• 3. Priority-Inheritance Rule: When the requesting job J becomes
blocked, the job Jl which blocks Jh inherits the current priority π(t) of
Jh . The job Jl executes at its inherited priority π(t) until it releases
R; at that time, the priority of Jl returns to its priority πl(t) at the
time t when it acquires the resource R.

Priority Ceiling Protocol

As well as the PIP, this protocol is based on the idea that a job Jlow blocking
another job Jhigh of a higher priority is supposed to inherit its priority in order
to decrease the blocking period of Jhigh. Moreover, unlike the PIP, PCP is
capable of avoiding deadlocks because a priority ceiling is set. The drawback
of this protocol is that it is pretty difficult to implement in a system with
dynamical priorities of tasks. As a matter of fact, it is possible to use this
protocol in case of Job-Level Static-Priority systems such as EDF where the
the jobs in a ready queue do not change their priorities with respect to each
other but the implementation requires updating the priority ceilings upon
release of every new job.

32 CHAPTER 5. EARLIEST DEADLINE FIRST SCHEDULER

Nonpreemptive Critical Sections

This is a very simple protocol avoiding deadlocks because no preemption
during critical sections can occur. This protocol is very useful especially
when the critical sections are short. However, of course, not allowing to
preempt longer critical sections may result in long waiting periods of the
higher priority jobs.

5.1.5 Multiprocessing

So far any Symmetrical Multiprocessing (SMP) support is not considered,
multiprocessor and multi-core systems [Brandenburg et al., 2000] exceed the
scope of this thesis. However, a practical use of SMP would be definitely
found and thus, possibly implemented in the future.

5.2 Design of a scheduler for the resource

reservation framework

This section describes how the low-level scheduler for RTEMS has been de-
signed and what features it includes.

Before we dive into any details, let me introduce the crucial expectations
of the scheduler we select and what are the constraints in order to keep this
in mind during reading of following sections. The main reasons why I have
to make decisions about how the scheduler for FRSH/FORB will look like
are

• possibility of CPU time reservation (in the ideal case 100% of it),

• independence of tasks,

• implementation for RTEMS, in particular use of the Pluggable sched-
uler infrastructure (see Section 4.3.1).

5.2.1 Comparison and selection

A very important parameter playing a major role in the scheduling algo-
rithm selection is schedulable utilization Ualg which indicates the maximum
possible total utilization that a particular algorithm can schedule. Therefor,
the condition U < Ualg guarantees the algorithm to create a feasible schedule.

5.2. DESIGN OF A SCHEDULER FOR THE R. R. FRAMEWORK 33

As for the RM algorithm, the schedulable utilization is

URM(n) = n(21/n − 1) converging to lim
n→+∞

' 0.69

and it is said to be optimal among all FPS.

Since the EDF schedule has the possibility to dynamically change the
deadlines it necessary has to yield a better performance.

Theorem 2. [Liu, 2000] The schedulable utilization UEDF (n) of the EDF al-
gorithm for n independent, preemptable periodic tasks with relative deadlines
equal to or larger than their periods is equal to 1.

As a matter of fact, the EDF algorithm does not have only the advantage
over FPS in terms of schedulable utilization and thus possibility to employ
100% of processor time which is very useful for the resource reservation as
stated above, but also the switching overhead is lower in terms of context
switch counts [Abeni and Buttazzo, 1998, Molnár, 2006]. Therefor, the EDF
scheduler is the best choice as the low-level scheduler for reservation-based
scheduling (see Chapter 6).

5.2.2 Priority inversion handling

However, all this considerations have been made only upon the assumption
of independent tasks executing without blocking periods. It is necessary to
decide how to handle the priority inversion in order to avoid unnecessarily
long waiting periods. The PIP was selected for the EDF scheduler because it
was found very easy to use on RTEMS, where the it is already implemented
for static priority scheduling. The protocol works almost the same way in
case of dynamic and static priorities. On the other hand, PCP would be a
significant challenge and thus has not been chosen. As a matter of fact, we
can not avoid deadlocks properly at the moment, therefor the applications
should be cautious in this matter.

In case we wanted to schedule complicated sets of mutually dependent
tasks that tend to deadlock, the NPCS protocol might be easily implemented.
However, it is not considered as of much importance now.

5.2.3 Background tasks inclusion

So far in this chapter we were examining only the situation of deadline-driven
tasks with real-time properties and a discussion has been made which algo-

34 CHAPTER 5. EARLIEST DEADLINE FIRST SCHEDULER

rithms fit the most to the previously stated requirements of the framework.
However, in some cases it is desirable to run tasks without real-time proper-
ties on the same processor. Since such tasks do not have any requirements on
deadlines, it is sufficient when they are allowed to enter processor only in the
otherwise idle periods of processor. Tasks having no deadlines barely fit to
the concept of dynamic priority scheduling. The initial idea would be to as-
sign a background task and infinite or a very long deadline. This is sufficient
in case of FPS scheduling algorithms such as RM where the the background
tasks would be simply assigned a low priority. In case of dynamic priority
scheduling the problem is that priorities move in the course of time and in-
crease their values. It is required to have an explicit priority comparison
in case of deadlines since normal algebraic comparison does not work for a
finite-bit variable priority representation where the priorities overflow.

There are a few possible ways how to incorporate the background task
into the deadline-based dynamic priority scheduling. Now, an analysis on
possible approaches will be introduced.

Single ready queue

The background jobs are assigned a very far deadline df , which is higher than
all deadlines drealmax of real-time tasks, while shifting the df forward in time
to maintain the condition df > drealmax which is not practical. Moreover, note
that this is actually a case of job-level dynamic-priority scheduling and any
conclusions coming out of the EDF theory have to be reconsidered. Especially
PIP does not work here.

Double ready queue

It is possible to use additional (lower-priority) ready queue. Thus there are
two parallel ready queues, first one containing finite priority (deadline) jobs
and second one containing infinite priority jobs scheduled for example in
a RR manner. The practical drawback is that an infinite deadline has to
be represented by either a finite number or a flag (separate information in
another variable). For a better distinction of the two situations we have
to highlight that the essential difference is whether to indicate that the task
belongs to the set of background ones inside or outside of the priority variable.

• Additional variable denoting the background property. In this
case you may make up several ways how to represent the background
property of a task even with some additional priority levels. However,
a common drawback is that the basic PIP is not applicable and you

5.2. DESIGN OF A SCHEDULER FOR THE R. R. FRAMEWORK 35

have to implement special rules saying how to handle the additional
properties. As a result, the inheritance protocol would have to be also
called differently because the tasks do not inherit only priorities but
also the additional properties of higher-priority task.

• Hybrid priority space - background property determined by
a priority level. This approach might be called a Hybrid priority
representation. To indicate that a set of tasks belongs to a specific
scheduling policy, we reserve a part of the priority space (full set of
priority levels) for one algorithm and a part for another algorithm. By
specifying rules for priority comparison we declare priorities of that
regions which is all we have to do about it. Remember that a specific
priority comparison have to be created in any case. The PIP works
fine because the job-level priorities are static and properly comparable,
moreover, the only property of jobs to be inherited is the priority. Thus
the jobs may arbitrarily skip across all the priority regions and back as
they are blocking and unblocking other jobs.

Obviously, the hybrid approach has been selected for the RTEMS EDF
scheduler.

5.2.4 Design of a ready queue

This section introduces a step by step design procedure of the EDF sched-
uler ready queue specifically focused on the priority interpretation allowing
to schedule deadline-driven and background tasks simultaneously.

Imagine a priority space represented by an n-bit variable. The Figure 5.4
shows how the priority representation is being incrementally transformed (T
stands for current time, D1 and D2 stand for deadlines of deadline-driven
tasks, P1 represents a priority driven task). Since the priorities represent
deadlines (time instants), they are increasing as well as current time and
overflowing after the highest possible value of the variable. So both the cur-
rent time and deadlines rotate within the variable.

Now, imagine the same situation but with having the most significant
n-th bit (MSB) equal to zero. This we can reach by looking at the variable
through a mask (this was inspired by [Kim and Shin, 1997]). The current
time along with deadlines are limited only to the region where MSB is equal
to zero which is the lower half of variable. The upper part is never reached
by deadlines and the current time, the time circulates only in the lower part

36 CHAPTER 5. EARLIEST DEADLINE FIRST SCHEDULER

and the upper part stays forever untouched.

The upper part of priority space will be used by background tasks. Each
background task is assigned a priority in the same fashion as in case of nor-
mal priority-based scheduling and these priorities are mapped into the upper
part of priority space. Now we can see that we reached the desired effect
where the deadline-driven priorities never cross the background priorities as
they are perfectly separated.

Consequently, in this set-up a proper priority comparison method is to
transform the priority space so that a simple numeric comparison can be
performed in order to figure out which tasks have higher priority than other
ones. This is rather simple, since only one step is needed. All tasks in the
lower part of priority space are to be shifted to the left by a value corre-
sponding to current time. Underflowing deadlines show up in the middle of
the priority space. After this procedure we end up with the priority space
perfectly sorted in the order they are allowed to become scheduled.

The Figure 5.4 illustrates the procedure of priority comparison for the
deadline-driven and background tasks residing in a single ready queue.

5.2. DESIGN OF A SCHEDULER FOR THE R. R. FRAMEWORK 37

(a) Only deadline-driven tasks are included in the ready
queue first.

(b) In order to use only the left hand half of the priority
space, the most significant bit of current time and all
deadlines is set to zero. This results in empty right
hand side of the priority space.

(c) Background task (low priority) added to the right
hand side of the priority space, which means that the
priority is lower than priority of all deadline-driven
tasks.

(d) Left hand half of the priority space shifted (rotated)
to the left by the value of current time in order to set
the correct order of priority levels (D1, D2, P1 as last).
Now, the priority comparison is performed by a simple
numeric comparison.

Figure 5.4: Background tasks’ inclusion into a deadline-driven ready queue.

38 CHAPTER 5. EARLIEST DEADLINE FIRST SCHEDULER

Chapter 6

RTEMS Constant Bandwidth
Server for resource reservation

Ordinary scheduling algorithms as shown in Chapter 5 are not sufficient
in terms of providing a reserved resource. This is guaranteed only using
Reservation-based schedulers [Palopoli et al., 2008]. The major phenomenon
in the are of reservation-based algorithms [Abeni et al., 2005] is temporal
isolation.

This chapter basically deals with a strategy how to reach the temporal
isolation of tasks. This is in more detail described in Section 6.1. Result
of this chapter is a high-level scheduler making use of the low-level EDF as
presented in Chapter 5.

Basic building blocks for temporal isolation are time servers. A brief
overview of them as well as selection of the most appropriate of them is in-
troduced Section 6.2.

There is, however, a set of specific rules that the time server has to adopt
in order to become fully capable of temporal isolation of tasks. It has been
searched for these rules in related projects and an overall design of a schedul-
ing policy that temporally isolates tasks has been made up.

Scheduling parameters. Let us consider a very simplified model of pe-
riodic task behavior, which is defined by period P equal to deadline and
by computation time Q or budget defined per one period of a periodic task.
These attributes are denoted scheduling parameters.

39

40 CHAPTER 6. RTEMS CBS FOR RESOURCE RESERVATION

Hard and Soft reservations. In theory, there is more options how to
create a reservation on a resource. First option is a hard reservation which
means the budget negotiated by a task is guaranteed but can not be ex-
ceeded even if there is a spare resource available and it might happen that
the processor goes idle even in case of ready tasks. On the other hand a soft
reservation strategy refers only to minimal guarantees. The tasks may be
given more budget in case they do not oppress other tasks.

It was decided that the hard reservation strategy is sufficient and the
following sections will deal only with the case of hard reservations.

6.1 Temporal isolation property achievement

In order to ensure desired and proper behavior of a task, resources neces-
sary for the task execution have to be provided as mentioned in Section 2.1.
Concerning active resources, the meaning of the actual resource is execution
time. The tasks compete for the execution time on a processor (or multiple
processors). The processor has a limited computation power, thus an algo-
rithm distributing the time is required. The maximum computation power is
dependent on a given algorithm (as shown in Section 5.2.1, EDF is optimal
in this matter). However, not only a sufficient amount of resources for all
tasks have to be guaranteed, but also their proper distribution which basi-
cally means that a task is not allowed to take more resources than a certain
amount. In case of hard reservation it is the budget Q.

As soon as the CPU time is properly distributed, it is crucial to maintain
the tasks within the assigned bounds. In case one task would try to spend
more time than agreed, it would affect either a quality of other tasks or even
cause a deadline miss of another task. Thereafter a definition of temporal
isolation arises as

Definition 1. A task is said to be temporally isolated when its quality of
execution in terms of meeting all its deadlines and having a certain budget
each period is independent of any other tasks.

In ideal case we can imagine the temporally isolated tasks as if they
were running on their own slower dedicated processor [Palopoli et al., 2008].
Practically it means that we have to count on all possible cases of task’s
execution which might negatively affect another ones.

6.2. TIME SERVERS 41

6.2 Time servers

There are various scheduling approaches as describe in Chapter 5 that are
responsible for selecting tasks gaining processor. There are also extensions
of these algorithms that have a property of bandwidth limitation. These
algorithms are called time servers and provide with various approaches of
budget handling features being of our great interest.

The time servers may be used for various purposes. Some servers may be
designed in such a way that one server include multiple tasks and handles
their budgets together. This is not our case because the need for a time
server comes from a limitation of a single task.

Thereby, the task and its server may be considered a single entity since
the scheduling parameters of a task and a its time server are merged together
and we can consider it one entity. This is a simplifying assumption which
may be extended into a group of tasks being facilitated by a single server,
but we abandon this direction as it is not necessary to have implemented at
the moment.

Bandwidth limitation. Bandwidth (or an utilization) of a periodic task
refers to average budget per period. As we agreed, each task is required to
be assigned to a server in order to have a limited bandwidth. The limited
bandwidth is a necessary but not sufficient condition to provide the temporal
isolation. Other conditions will be presented later (Section 6.4). However,
of a practical use may be also a presence of non-real time task that do not
claim any deadlines. These tasks may be considered background tasks (see
Section 5.2.3) and are assigned a very low priority (or infinite deadline in
case of deadline-driven scheduling). Because of the low priority they do not
occupy the processor unless it becomes idle and they can not interfere with
any other tasks, therefor, it is assumed that they do not require any server.

There exists a numerous span of time servers [Liu, 2000]. We are inter-
ested in a group of servers called bandwidth preserving servers. These servers
are characterized by consumption and replenishment rules that specify how
the budget is handled in the course of time. The consumption rule spec-
ifies when and how the budget is consumed as related tasks are executed.
The replenishment rule says when and how the budget is refilled. According
to [Abeni and Buttazzo, 1998], the best server having the temporal isola-
tion property is Constant Bandwidth Server (CBS). In case of the AQuoSA

42 CHAPTER 6. RTEMS CBS FOR RESOURCE RESERVATION

project (Section 6.3) a CBS has been selected.

The consumption and replenishment rules of CBS are very simple.

• C: The budget is consumed only when the task is executed.

• R: The budget is replenished to the maximum (negotiated) value in
every beginning of a new period.

In the example of [Abeni and Buttazzo, 1998] there is a situation of coex-
istence of hard and soft tasks proposed where only the soft tasks are served
on the CBS basis under assumption that the hard tasks can not violate their
properties and thus do not have any assigned budget. However, in order to
really ensure the temporal isolation of all tasks in case they are all consid-
ered hard, it is necessary to assign a time server to each of them. In general
a server may embed multiple tasks, in which case the temporal isolation is
not provided between tasks sharing a common server. This might be useful
in some applications but can also be remodeled into the form of single task
servers.

In the Section 2.1 it was described how tasks can negotiate and obtain
resources in FRSH/FORB. FRSH handles processor time as one of shared re-
sources provided by underlying system. Now, the resource is considered pro-
cessor time and each task (thread) can ask for a specific budget of time. A ne-
gotiation procedure between the application and FCB by means of contract is
then performed, the exact negotiation procedure is described in [Sojka, 2010].
If the negotiation ends up successfully, the respective task is guaranteed to
have the possibility to run with a given bandwidth as long as it wants. From
the perspective of FRSH it is necessary to establish appropriate scheduling
and time reservation method which is the aim of this chapter.

As the problem of temporal isolation was already researched, we can make
use of some hints and steps. The related research was performed under name
of AQuoSA project (see Section 6.3) [Palopoli et al., 2008].

6.3 Approach of AQuoSA project

Since this work concerns porting onto RTEMS, similar issue has already been
solved and researched before. The Linux platform uses AQuoSA (Adaptive
Quality of Service Architecture) project [aqu, 2008] as the mean of time dis-
tribution in Linux kernel. This architecture embeds a reservation based

6.4. RULES ENSURING A TEMPORAL ISOLATION OF TASKS 43

process scheduler for soft real-time tasks which is capable of dynamical
CPU time allocation for QoS aware applications such as media streams
[Abeni et al., 2005].

So, this project stands as example how the RTEMS version of CPU time
distribution might have been provided. However, this project is too extensive
in order to be fully brought to RTEMS yet. It might be done in the future.
On the other hand, the basic design concept was taken over for RTEMS CBS.

6.4 Rules ensuring a temporal isolation of tasks

This section introduces the set of main and essential features that a CBS
scheduler has to include so that the condition of temporal isolation of all
tasks is provided. Therefor, the Constant Bandwidth Server including these
features yields a complete design of the resulting scheduler

6.4.1 Budget overrun

In case a task exceeds its reserved budget during a period, it has to be
suspended until the budget gets replenished again, which is the beginning of
a new period. This is called budget overrun. Tasks which for some reason
exceed their budget may affect schedulability of other tasks in case the total
utilization exceeds maximum schedulable utilization. That is not acceptable
with regard to the temporal isolation definition. On the other hand, if neither
of the jobs overruns, the CBS behaves as a plain EDF (in case the low-level
scheduling algorithm is EDF) which yields the lemma.

Lemma 1. [Abeni and Buttazzo, 1998] A hard task τi with parameters (Ci, Ti)
is schedulable by a CBS with parameters Ci ≤ Qi and Ti = Ts if and only if
τi is schedulable with EDF.

A disputable issue is how to asses and handle tasks exceeding their bud-
gets. A lot of various cases of this effect may occur, tight execution time
estimate, infinite cycle or lack of budget awareness on the side of task and so
on. For the scheduler it is almost impossible to identify the cause and thus
to decide what to do with the job. This responsibility lies on the scheduler
designer. The least controversial solution is to suspend the task until the
end of the period as soon as the budget reaches zero and then enable again.
However, of a rather practical concern is problem of execution consistency,
when the task is enabled after a forced suspension, the execution most prob-
ably starts in the middle of some procedure and the expected periodicity is

44 CHAPTER 6. RTEMS CBS FOR RESOURCE RESERVATION

not maintained any more. Therefor, another possibility is to just suspend
the task forever.

6.4.2 Unblock rule

In order to extend the explanation of properties of the temporal isolation, it
is necessary to say that not only the budget overrun must not occur, but also
a blocking periods have to be taken into account. These do not follow the
classical periodic activation pattern and the utilization based schedulability
analysis is not sufficient any more. There has to be another rule created in
order to maintain real-time properties of system. However, note, that this
behavior should be considered a missed deadline of the respective task.

The presence of blocking periods during the task execution may occur.
Unless the blocking period is limited and counted as a part of task execution,
which decreases the schedulable utilization because we force the processor to
become idle, a deadline miss may occur for one of the following reasons. Ei-
ther the blocking period is too long so that it results in an immediate deadline
miss of the current task or the task gets unblocked too close before deadline.
This may cause a deadline miss of a consequent task as it is presented in
[Cucinotta and Checconi, 2010]. In both cases there is no correct solution
adhering the current model (Section 5.1.1), the system is not schedulable
and the given set of tasks is to be handled in such a way that real-time ca-
pabilities of no task but the violating one are affected (Figure 6.1).

In the article [Cucinotta and Checconi, 2010] the situation of a deadline
miss due to unexpected blocking period is described. In case a running task is
blocked and becomes runnable again too close to its current deadline without
changing the absolute deadline and thus is the most eminent one to be run.
In order to avoid this effect, the following decision has to be made. If the
remaining computation time Cijrest divided by the time left until the current
deadline dijrest exceeds the assumed utilization of the task Ui

Cijrest

dijrest
>
Ci

Ti
, (6.1)

the current deadline dij is to be reset to Tcurrent + Ti.

Lemma 2. If a task is unblocked and the condition 6.1 is satisfied, then
the deadline is reset to the current time plus the reservation period, and the
current budget to the allocated reservation budget.

6.4. RULES ENSURING A TEMPORAL ISOLATION OF TASKS 45

(a) Deadline miss of second task due to a long blocking
period of first task.

(b) Deadline postponed so that no deadline miss of the
other task occurs.

Figure 6.1: Unblock rule [Cucinotta and Checconi, 2010].

6.4.3 Bandwidth inheritance

Another protocol [Lipari et al., 2004] to be included is Bandwidth Inheritance
(BWI). This protocol is a straightforward extension of priority inheritance
protocol for reservation-based scheduling. Tasks sharing mutually exclusive
resources can be blocked for a certain time before acquiring the resource
owned by another task. The contribution of BWI says that not only a prior-
ity of the blocking task should be inherited, but also the budget to consume
from. This is another necessary condition of task isolation.

In case of single processor systems, the BWI rules are quite straightfor-
ward [Lipari et al., 2004]. The example how the protocol was implemented
into Linux kernel during AQuoSA project is described in [Faggioli et al., 2008].
A more complicated extension to multicore systems and symmetrical multi-
processing is denoted BWI-M and described in [Faggioli et al., 2010].

46 CHAPTER 6. RTEMS CBS FOR RESOURCE RESERVATION

Chapter 7

Implementation of scheduler

This section describes and implementations of EDF/CBS according to the
design from Chapter 5 and Chapter 6. The first question was raised when a
possibility to implement these two approaches independently was discussed.
Since the EDF is a low-level scheduling algorithm being used by a higher
level reservation-based CBS policy, it was assumed these two entities would
be implemented separately. However, it was found out that either serious
implementation complications would emerge or execution overhead would
increase. The CBS requires some rules directly residing in EDF algorithm
which means a pure EDF as a separate entity is not our aim.

First, the way how a Pluggable scheduler interface in order to connect
a scheduler to RTEMS will be described in Section 7.1. Consequently, the
scheduling algorithm implementation itself will be described in Section 7.2.
The Section 7.3 presents how an application programming interface for the
CBS scheduler was created and Section 7.4 deals with incorporating the
RTEMS CBS scheduler into the framework as a resource.

7.1 Pluggable Scheduler interface description

Since any documentation on RTEMS pluggable scheduler infrastructure is
not published anywhere yet (but definitely will be soon) except for [OAR, 2010],
I will introduce the pluggable scheduler interface with some comments to the
single functions and steps necessary to reach a working scheduler. Moreover,
I will try to point out some problems I encountered and problems that may
be of a general concern.

First of all, an user has to specify that he/she wants to connect an user

47

48 CHAPTER 7. IMPLEMENTATION OF SCHEDULER

scheduler instead of a built-in one and then specify memory requirements
per thread and per scheduler (e.g. ready queue).

#define CONFIGURE_SCHEDULER_USER

#define CONFIGURE_SCHEDULER_USER_ENTRY_POINTS

#define CONFIGURE_MEMORY_FOR_SCHEDULER

(_Configure_From_workspace(sizeof(EDF_Chain_Control)))

#define CONFIGURE_MEMORY_PER_TASK_FOR_SCHEDULER

(_Configure_From_workspace(sizeof(RBT_Node)))

Consequently, the _Scheduler structure has to be defined by means of
call out functions that are being called after important actions occur in the
RTEMS core.

#define SCHEDULER_ENTRY_POINTS \

{ \

_Scheduler_edf_Initialize, /* initialize entry point */ \

_Scheduler_edf_Schedule, /* schedule entry point */ \

_Scheduler_edf_Yield, /* yield entry point */ \

_Scheduler_edf_Block, /* block entry point */ \

_Scheduler_edf_Unblock, /* unblock entry point */ \

_Scheduler_edf_Allocate, /* allocate entry point */ \

_Scheduler_edf_Free, /* free entry point */ \

_Scheduler_edf_Update, /* update entry point */ \

_Scheduler_edf_Enqueue, /* enqueue entry point */ \

_Scheduler_edf_Enqueue_first, /* enqueue_first entry point */ \

_Scheduler_edf_Extract, /* extract entry point */ \

_Scheduler_edf_Priority_compare /* compares two priorities */ \

}

Although this does not exactly correspond to the guide [OAR, 2010], it is
how it works. If you want to make sure that the current implementation of
RTEMS Core is the same as I am describing, read confdefs.h to figure it
out. That file is responsible for all RTEMS configuration.

7.2 Scheduling implementation

Now, I will introduce the implementation of CBS/EDF scheduler. The
full theoretical background to the scheduling concept was described in Sec-
tion 5.2.4.

7.2. SCHEDULING IMPLEMENTATION 49

Aim of arbitrary scheduler is to determine a heir, that is a thread which
is to be executed as next on a CPU. In RTEMS, this is represented by a
Per_CPU_Control structure1.

/**

* @brief Per CPU Core Structure

*

* This structure is used to hold per core state information.

*/

typedef struct {

#if (CPU_ALLOCATE_INTERRUPT_STACK == TRUE) || \

(CPU_HAS_SOFTWARE_INTERRUPT_STACK == TRUE)

void *interrupt_stack_low;

void *interrupt_stack_high;

#endif

uint32_t isr_nest_level;

Thread_Control *executing;

Thread_Control *heir;

Thread_Control *idle;

volatile bool dispatch_necessary;

} Per_CPU_Control;

The executing thread is the one currently running on a specific CPU,
the heir is the one to switch to as soon as the executing one leaves the
CPU. The idle thread is a special thread with the lowest possible priority
running every time the processor does not have anything else to do. We say
the processor is idle.

7.2.1 Thread Control Block

Each thread in the RTEMS operating system is represented by a structure
called Thread Control Block (TCB). This structure2 maintains all necessary
information about threads and states of threads. The most important prop-
erties are for instance current_state saying whether the thread is runnable
or not (and why), current_priority obviously indicating the priority of a
thread, which is of the main significance with respect to scheduling. Another
attributes worth noticing are e.g. is_preemptible preemptibility indicator

1percpu.h
2Located in thread.h

50 CHAPTER 7. IMPLEMENTATION OF SCHEDULER

of a thread or scheduler_info a generic pointer to arbitrary additional in-
formation necessary for a specific schedulers. Another important attributes
will be presented in the course of time as they gain significance.

/**

* This structure defines the Thread Control Block (TCB).

*/

struct Thread_Control_struct {

Objects_Control Object;

States_Control current_state;

Priority_Control current_priority;

Priority_Control real_priority;

uint32_t resource_count;

Thread_Wait_information Wait;

Watchdog_Control Timer;

#if defined(RTEMS_MULTIPROCESSING)

MP_packet_Prefix *receive_packet;

#endif

#ifdef __RTEMS_STRICT_ORDER_MUTEX__

Chain_Control lock_mutex;

#endif

/*================= end of common block =================*/

uint32_t suspend_count;

#if defined(RTEMS_MULTIPROCESSING)

bool is_global;

#endif

bool is_preemptible;

#if __RTEMS_ADA__

void *rtems_ada_self;

#endif

uint32_t cpu_time_budget;

Thread_CPU_budget_algorithms budget_algorithm;

Thread_CPU_budget_algorithm_callout budget_callout;

Thread_CPU_usage_t cpu_time_used;

void *scheduler_info;

Thread_Start_information Start;

Context_Control Registers;

#if (CPU_HARDWARE_FP == TRUE) || (CPU_SOFTWARE_FP == TRUE)

Context_Control_fp *fp_context;

#endif

struct _reent *libc_reent;

7.2. SCHEDULING IMPLEMENTATION 51

void *API_Extensions[THREAD_API_LAST + 1];

void **extensions;

rtems_task_variable_t *task_variables;

};

For sake of the EDF scheduling the variable part of TCB, scheduler_info,
was created as another structure containing the EDF specific information.

typedef struct RBT_node_struct {

Deadline_Control abs_deadline;

Deadline_Control rel_deadline;

EDF_Node *left;

EDF_Node *right;

EDF_Node *parent;

Node_Color color;

EDF_Chain_Control *ready_chain;

uint8_t is_enqueued;

uint32_t cmp_time;

rtems_id timer_id;

uint8_t flags;

} RBT_Node;

The pointers to EDF_Node structures which are actually the TCBs are nec-
essary for handling a position in the ready queue (Red-Black tree). The
main scheduling parameter, rel_deadline is the deadline or a period of
the task and does not change in the course of time. The abs_deadline is
job’s deadline relative to system start. This is basically the same value as
real_priority in TCB. The color of a node in the Red-Black tree is deter-
mined by color.

Budget for each thread (or its server) is set in cmp_time. As soon as a new
period of a task starts, the cmp_time is copied into TCB’s cpu_time_budget
which corresponds to CBS server replenishment and the RTEMS core auto-
matically performs gradual consumption of the cpu_time_budget as long as
the thread is running.

Moreover, it has to be pointed out that implementation of the BWI pro-
tocol (as discussed in Section 6.4.3) is provided thanks to the way we handle
the budget. Since the task consumes its budget only in a running state and
not all the time after start, it is not necessary to perform any additional
steps. The task is given only as much budget as it was agreed.

52 CHAPTER 7. IMPLEMENTATION OF SCHEDULER

7.2.2 Red-Black trees

The ready queue of tasks for scheduling with dynamic priorities can not be
carried out as simply as in case of static priorities where it is sufficient to
enqueue the released jobs to the end of the chain. In the case of EDF it is
necessary to have a possibility to insert a released job into arbitrary position
in the queue. For this purpose a tree representation, in particular Red-Black
trees, is usually used.

The Red-Black trees have not been implemented from scratch. The com-
plete implementation was overtaken from a former EDF implementation by
[Molnár, 2006]. The RB Tree just undertook a couple of simple adjustments
in order to be able to handle threads represented by TCB and RBT_Node.

7.2.3 Pluggable scheduler callbacks

The actual scheduling rules corresponding to handling the ready queue in
terms of inserting and extracting jobs according to their deadlines is man-
aged by filling out the pluggable scheduler call-out functions Section 7.1. The
complete implementation can be found in the source codes scheduler_edf.c.

One function to point out is the priority comparison mentioned in Sec-
tion 5.2.4.

int _Scheduler_edf_Priority_compare

(Priority_Control p1, Priority_Control p2) {

uint32_t time = _Watchdog_Ticks_since_boot;

// now sort priority levels

if (p1 < EDF_HYBRID_MASK)

p1 = (p1 - time) % EDF_HYBRID_MASK;

if (p2 < EDF_HYBRID_MASK)

p2 = (p2 - time) % EDF_HYBRID_MASK;

if (p1 > p2) return -1;

else if (p1 < p2) return 1;

else return 0;

}

In order to make use of the Priority Inheritance Protocol already im-
plemented in RTEMS, this function has to be incorporated to the set of
pluggable scheduler callbacks. It has to be invoked not only upon selecting
a position in the ready queue, but also when deciding whether to inherit a

7.2. SCHEDULING IMPLEMENTATION 53

priority of another task in accordance to PIP after a mutex is locked. This oc-
currence is the only one in the entire RTEMS core where it is necessary to in-
troduce this explicit priority comparison using this approach (Section 5.2.4).

As it was mentioned in Section 6.4.2, it may be necessary to shift deadlines
in certain cases as a job is unblocked to avoid a deadline miss of another job.
This is allowed when a flag EDF_LATE_UNBLOCK is raised. Then, before the
corresponding job is enqueued into a ready queue in _Scheduler_edf_Unblock,
its deadline is shifted.

if (node->flags & EDF_LATE_UNBLOCK) {

uint32_t Q_left = the_thread->cpu_time_budget;

uint32_t P_left = node->abs_deadline - _Watchdog_Ticks_since_boot;

uint32_t P = node->rel_deadline;

uint32_t Q = node->cmp_time;

if(P*Q_left > Q*P_left)

edf_postpone_deadlines(the_thread);

}

7.2.4 EDF API

As periodic tasks consist of jobs, after each period the task is supposed to
indicate a finished execution of current job, so that a deadline can be shifted
and new job released. This is in RTEMS already implemented in terms of
Rate Monotonic (RM) manager which is responsible for maintaining informa-
tion about periodic executions such as missed deadlines and some statistics.

The main feature that we can make use of is waiting until the end of
current period. As soon as the execution of job is finished, it is announced to
the RM manager which suspends the task execution until the end of period.
Consequently, the job is reenabled again in order to continue executing a
next period. However, no deadline handling was present at this stage.

As you can see the RM manager is a very useful tool and we can build up
the EDF API on it. The edf_next_period() is the function to be called by
a task after finishing a period or before start of the first period. This function
basically shifts the deadline and calls the rtems_rate_monotonic_period().

Another functions are edf_deadline_init() and edf_deadline_cancel()

that basically initiate and cancel a periodic behavior of a calling task. When
a task is not assigned any deadlines it is considered as background task and

54 CHAPTER 7. IMPLEMENTATION OF SCHEDULER

scheduled on a priority basis as described in Section 5.2.3. However, these
two functions are called only when using a simple EDF. For the sake of FRSH
treating CBS as a resource another API is used (see Section 7.3).

7.3 CBS API

As for the resource reservation of RTEMS CPU time it is necessary to come
up with an interface which is going to be used by either an application pro-
grammer or, which is of our major concern, the FRSH layer of framework,
namely the resource allocator specific for this particular resource of RTEMS
CPU. The API should provide with a set of methods for creating and destroy-
ing a CBS server as well as with a possibility to attach and detach threads
to the servers. Also, for tasks it is essential to have a possibility to be in-
formed about its scheduling parameters especially the remaining budget, so
that the tasks have some degree of feedback in order to always fit into the
given budget.

For sake of consistency with previous AQuoSA project with totally the
same focus, it was settled to use the same interface defined in [aqu, 2008] in
header files qres_lib.h (QRES Library Application Programming Interface)
and qsup_lib.h (The QoS Supervisor Application Programming Interface).
So far, the entire interface is not utilized, especially in terms of spare capac-
ity reservation, some of the functions are not implemented. However, it is
necessary and logical to maintain the possibility of having the same set of
features in the future.

At this stage, the CBS does not include any spare capacity handling and
is limited to having only one task attached to a server at a time.

7.4 Adding a RTEMS CPU resource

General hints how to add a new resources are stated in [Molnár et al., 2008].

As a first resource added to the framework is obviously the CPU. As soon
as we have a CPU scheduler, we can add this resource to this framework un-
der name cpu_rtems. As we know from Chapter 2 in order to add a resource
it is necessary to implement a Resource manager (FRM) and Resource allo-
cator (FRA).

7.4. ADDING A RTEMS CPU RESOURCE 55

The FRM is a simple routine calculating a total utilization. If the total
utilization (sum_utilization) including a new task negotiating its contract
is lower than 88%, the contract is approved. The factor of 88% is partially
arbitrarily selected in order to provide some space for background tasks even
if the processor is fully loaded. Moreover, a space for context switching over-
head is left.

The FRA is responsible for creating servers and assigning threads to the
servers along with providing some feedback information about execution to
the framework. This would not be difficult to implement from scratch. How-
ever, a decision has been made to take over a current API of AQuoSA (Sec-
tion 6.3) for the CBS (Section 7.3). This makes things easier since these
two projects have completely the same aim and there is completely no point
in making up some new API. The AQuoSA API is defined in qres_lib.h

[aqu, 2008]. Therefor the FRA for RTEMS CPU was just copy-pasted from
AQuoSA FRA.

A block diagram how the final communication infrastructure looks like is
depicted on Figure 7.1.

56 CHAPTER 7. IMPLEMENTATION OF SCHEDULER

Figure 7.1: Block diagram of FRSH/FORB middleware including the
RTEMS CPU resource.

Chapter 8

Validation of the work and
testing

This chapter presents what tests were undertaken in order to validate the
functionality of implementations and adjustments. Since a part of work
has been carried out purely in Linux, in Section 8.1 the results of refac-
toring the middleware into a single address space in Section 3.1 will be
stated. Consequently, the scheduler tests in RTEMS were created in order
to make sure the algorithm has been implemented propertly in Section 8.2.
Last part after compiling RTEMS and FRSH/FORB together an integration
test is to be made in order to verify the capabilities already from the joint
RTEMS+FRSH/FORB user perspective. This is presented in Section 8.3. It
would be very desirable to run the same integration/system test directly on
hardware, but there was no time to manage it any more.

8.1 Linux wvtests

The FRSH/FORB project includes a set of automatic tests (wvtests) which
serve as a easy-to-use validation tool for the overall functionality of the frame-
work. These tests help the developers to make sure that the entire framework
works properly after each incremental update of the project. One part of
work done purely on the Linux platform Section 3.1 has been tested exactly
by this set of tests. After finishing this part of work all test results turned
green saying OK.

A couple of new tests validating the proper functionality of different invo-
cation methods in the FORB layer have been added to the set. The tests in
the directory src/forb/src/tests/executor/ examine the cases of remote

57

58 CHAPTER 8. VALIDATION OF THE WORK AND TESTING

and inter-thread invocation of functions. Both of the cases finish successfully.

8.2 Scheduler tests

8.2.1 EDF test

A situation of two concurrent tasks has been made up. Task 1 is defined by
period of 7 ticks (smallest unit of time resolution) and computation time just
a fraction of one tick. Task 2 has a period of 10 ticks and computation time
of 2 ticks. Since the total utilization is much lower than 1, the situation is
schedulable by EDF and no deadline miss should occur. The figure Figure 8.1
is a console output of a program representing the introduced situation of two
concurrent tasks. Every line is an information from a running task about
its state related to periodic behavior. The letter S stands for starting time,
F stands for finishing time and p indicates the task’s priority (or deadline).
Let me show that the scheduler works properly and the tasks are assigned
CPU in a correct order on an example starting at time 160 where task 2
starts its execution with a deadline of 170. However, at time 161 a task 1 is
also released with a deadline of 168 which is higher priority than currently
running task 2. This causes a preemption of task 2 and a computation of
task 1 continues. Consequently, after the execution of task 1 is done, the
task 2 can finish its computation at time 162. Since the total utilization is
very low, there is no other opportunity where the two tasks meet each other
in the ready queue observable on the output screen. The program is asked
to terminate at the time of 180, so this is the last output.

This test was first intended for QEMU emulator, however, it turned out
that the timing properties of QEMU are not sufficient and fully deterministic.
Therefore this test was carried out directly on 386 laptop invoked only after
boot.

8.2.2 CBS test

This test shows the capabilities of CBS, where two concurrent tasks share
processor. The tasks have a limited budget which they are aware of. They do
not have any precomputed execution time but they keep running as long as
they have some budget left. The remaining budget information is provided
to the tasks using the CBS API.

The scheduling parameters for task 1 are period 7 and budget 3 ticks.

8.2. SCHEDULER TESTS 59

Figure 8.1: EDF scheduler output screenshot.

The task 2 has period of 11 and budget of 5 ticks. The tasks’ job is just a
loop performing a dummy memory allocation as long as there is a budget
left. In the first case of Figure 8.2 where the tasks are aware of the budget, no
problems in terms of budget overrun and deadline miss occur. The second
case of Figure 8.3 uses completely the same scenario with a difference in
task 2. At the time of 140 ticks it decides to neglect the assigned budget and
continues executing as long as it is possible. Therefor, the CBS scheduler is
obliged to suspend this violating task in order to maintain proper execution
of task 1. Consequently, only the task 1 is further scheduled.

60 CHAPTER 8. VALIDATION OF THE WORK AND TESTING

Figure 8.2: Test of CBS scheduler where both tasks watch out for their
budget and yield the processor on time.

8.3 RTEMS+FRSH/FORB integration tests

The integration is not finished yet, the tests will be performed in a close
future.

8.3. RTEMS+FRSH/FORB INTEGRATION TESTS 61

Figure 8.3: Test of CBS scheduler where Task 2 decides to neglect the budget
limitation after time 140. The task is suspended by the scheduler.

62 CHAPTER 8. VALIDATION OF THE WORK AND TESTING

Chapter 9

Conclusion

This thesis was rather a challenging work because the volume exceeds the
usual time amount devoted to a master thesis. I have to point out that it was
necessary first to get acquainted with almost the entire FRSH/FORB frame-
work and a significant part of RTEMS OS just in order to comprehend the
assignment. Moreover, this project has been performed under a supervision
of RTEMS developers and FRSH/FORB developers while trying to search
for optimal joint and fitting between these projects. That resulted into a
significant number of group emails sent all around the world and valuable
discussions.

The first part of project (refactoring into a single address space) was suc-
cessfully finished. The EDF is fully working, even the temporally isolating
CBS works, however, a proper testing of all features handling various scenar-
ios has not been finished.

The RTEMS+FRSH/FORB fitting is not fully done yet since there is a
couple of details missing or waiting for adjustments.

As far my personal experience given by this project is concerned, I have to
admit that the thesis provided me valuable experience related to scheduling,
operating systems theory and praxis, open-source software development as
well as communication with world experts and a little bit of management in
order to actually find out the practical requirements and sense of this project.
To be honest, it was a good choice to apply for this topic.

63

64 CHAPTER 9. CONCLUSION

9.1 Future work

Since the RTEMS EDF scheduler adopts only PIP protocol, more compli-
cated applications might become deadlock-prone. This can be avoided by a
simple implementation of NPCS protocol as mentionded in Section 5.2.2.

Proper integration/system testing has to be performed as soon as it is
managed to suppress all minor issues and the FRSH/FORB+RTEMS is
linked together.

An unifying library Ulevpoll [Ṕı̌sa, 2011] for Select, Epoll and other li-
braries dealing with servicing multiple waiting UNIX sockets might be used.
Currently, the source code is not very readable because of conditional com-
pilation.

As a continuation of this thesis was accepted for Google Summer of Code,
the work will continue an all the missing adjustments finished within oncom-
ing months.

Bibliography

[aqu, 2008] (2008). Adaptive quality of service architecture - web. http:

//aquosa.sourceforge.net. retrieved 08/05/11.

[fre, 2008] (2008). Frescor project website. http://www.frescor.org. re-
trieved 22/03/11.

[epo, 2010] (2010). Epoll - Linux programmer’s manual. http://www.

kernel.org/doc/man-pages/online/pages/man4/epoll.4.html. re-
trieved 05/01/11.

[omk, 2010] (2010). Omk online documentation. http://rtime.felk.cvut.
cz/omk. retrieved 22/03/11.

[rti, 2010] (2010). Real-time systems group wiki, ctu. http://rtime.felk.
cvut.cz/hw/index.php/MIDAM_MPC5200_DB1. retrieved 12/03/11.

[rte, 2010] (2010). RTEMS wiki. http://www.rtems.com/wiki/. retrieved
03/03/11.

[cor, 2011] (2011). CORBA website. http://www.corba.org.

[frs, 2011] (2011). Frsh/forb project website. http://frsh-forb.

sourceforge.net. retrieved 22/05/11.

[qem, 2011] (2011). Qemu wiki. http://wiki.qemu.org.

[sel, 2011] (2011). Select - Linux man page. http://linux.die.net/man/

2/select. retrieved 05/01/11.

[Abeni and Buttazzo, 1998] Abeni, L. and Buttazzo, G. (1998). Integrating
multimedia applications in hard real-time systems. In Proceedings of the
IEEE Real-Time Systems Symposium, RTSS ’98, pages 4–, Washington,
DC, USA. IEEE Computer Society.

65

http://aquosa.sourceforge.net
http://aquosa.sourceforge.net
http://www.frescor.org
http://www.kernel.org/doc/man-pages/online/pages/man4/epoll.4.html
http://www.kernel.org/doc/man-pages/online/pages/man4/epoll.4.html
http://rtime.felk.cvut.cz/omk
http://rtime.felk.cvut.cz/omk
http://rtime.felk.cvut.cz/hw/index.php/MIDAM_MPC5200_DB1
http://rtime.felk.cvut.cz/hw/index.php/MIDAM_MPC5200_DB1
http://www.rtems.com/wiki/
http://www.corba.org
http://frsh-forb.sourceforge.net
http://frsh-forb.sourceforge.net
http://wiki.qemu.org
http://linux.die.net/man/2/select
http://linux.die.net/man/2/select

66 BIBLIOGRAPHY

[Abeni et al., 2005] Abeni, L., Cucinotta, T., Lipari, G., Marzario, L., and
Palopoli, L. (2005). Qos management through adaptive reservations. Real-
Time Syst., 29:131–155.

[Brandenburg et al., 2000] Brandenburg, B. B., Block, A. D., Calandrino,
J. M., Devi, U. M., Leontyev, H., and Anderson, J. H. (2000). Litmus: A
status report*.

[Cucinotta and Checconi, 2010] Cucinotta, T. and Checconi, F. (2010). The
IRMOS realtime scheduler. http://lwn.net/Articles/398470/.

[Faggioli et al., 2008] Faggioli, D., Lipari, G., and Cucinotta, T. (2008). An
efficient implementation of the bandwidth inheritance protocol for han-
dling hard and soft real-time apps. in the Linux kernel.

[Faggioli et al., 2010] Faggioli, D., Lipari, G., and Cucinotta, T. (2010). The
multiprocessor bandwidth inheritance protocol. In ECRTS’10, pages 90–
99.

[Kim and Shin, 1997] Kim, B. K. and Shin, K. G. (1997). Scalable hardware
earliest-deadline-first scheduler for atm switching networks. In Proceedings
of the 18th IEEE Real-Time Systems Symposium, RTSS ’97, pages 210–,
Washington, DC, USA. IEEE Computer Society.

[Lipari et al., 2004] Lipari, G., Lamastra, G., and Abeni, L. (2004). Task
synchronization in reservation-based real-time systems. IEEE Trans. Com-
put., 53:1591–1601.

[Liu, 2000] Liu, J. W. S. W. (2000). Real-Time Systems. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1st edition.

[Molnár, 2006] Molnár, M. (2006). The edf scheduler implementation in
RTEMS operating system. Master thesis.

[Molnár et al., 2008] Molnár, M., Trdlička, J., Jurč́ık, P., Smoĺık, P., Sojka,
M., and Hanzálek, Z. (2008). Wireless networks – documented protocols,
demonstration.

[OAR, 2009] OAR (2009). RTEMS C users’ guide. http://www.rtems.

com/.

[OAR, 2010] OAR (2010). Writing an RTEMS scheduler plugin. draft 1.

[Palopoli et al., 2008] Palopoli, L., Cucinotta, T., and Lipari, G. (2008).
Aquosa - adaptive quality of service architecture.

http://lwn.net/Articles/398470/
http://www.rtems.com/
http://www.rtems.com/

BIBLIOGRAPHY 67

[Ṕı̌sa, 2011] Ṕı̌sa, P. (2011). ulan/universal light event poll library (ulevpoll).
ulan.sourceforge.net/pdf/ulevpoll.pdf.

[Sojka, 2010] Sojka, M. (2010). Resource reservation and analysis in het-
erogenous and distributed real-time systems. Ph.D. thesis.

[Sojka et al., 2011] Sojka, M., Ṕı̌sa, P., Faggioli, D., Cucinotta, T., Checconi,
F., Hanzálek, Z., and Lipari, G. (2011). Modular software architecture for
flexible reservation mechanisms on heterogeneous resources. Journal of
Systems Architecture, 57(4):366–382.

ulan.sourceforge.net/pdf/ulevpoll.pdf

68 BIBLIOGRAPHY

Appendix A

Getting FRSH/FORB and
RTEMS

A.1 Compilation of FRSH/FORB

The FRSH/FORB project can be found on the website (frsh-forb.sourceforge.net)
[frs, 2011] and downloaded from a GIT repository residing at

git clone git://frsh-forb.git.sourceforge.net/gitroot/frsh-forb/frsh-forb

Detailed hints on how to set up and build the framework can be found in the
README of the repository.

A.2 Building RTEMS

Versions. The current RTEMS release is 4.10 version available in a GIT
repository, however, there are some brand new features implemented after
the 4.10 release. It is available in CVS and named 4.11 already, although the
version is not officially released yet. The motivation for picking the latest
version of RTEMS from CVS HEAD was presence of Pluggable Scheduler
infrastructure (see Section 4.3.1), which is very useful for us since we need
to implement a CBS/EDF scheduler which is of course not a part of the
RTEMS core.

Building toolchain. The drawback is that the latest 4.11 toolchain was
not available and I was forced to build the tools myself. I did not encounter
any problems during the procedure since the patches are consistent and up-
to-date for all of the utilities. Since there are numerous descriptions how

I

II APPENDIX A. GETTING FRSH/FORB AND RTEMS

to build the RTEMS toolchain [Molnár, 2006], I will not put any effort on
explaining this issue.

Since of the main interest of this project are the embedded applications,
the testing of results was (and still is) planned to be performed on a PowerPC
board MIDAM MPC5200. This board is compatible with RTEMS Icecube
BSP [rti, 2010]. In order to build RTEMS for this target, it is necessary to
use a specific configuration

$../rtems/configure --disable-multilib --disable-cxx --enable-posix

--enable-networking --target=powerpc-rtems4.11

--prefix=$(PWD)

--enable-rtemsbsp=icecube

However, for sake of having a better development environment in terms
of simulator and debugger, decision has been made to build up RTEMS
also with a the pc386 BSP. Moreover, it is was found that a very good and
reasonable testing with this BSP can be performed directly on a laptop (see
Chapter 8).

$../rtems/configure --disable-multilib --disable-cxx --enable-posix

--enable-networking --target=i386-rtems4.11

--prefix=$(PWD)

--enable-rtemsbsp=pc386

--enable-maintainer-mode target_alias=i386-rtems4.11

--no-create --no-recursion

A.2.1 Testing and debugging tools

The advantage of pc386 BSP is that it is possible to run the applications in a
hardware emulator such as BOCHS of QEMU [qem, 2011] (there is also PSIM
for the PowerPC targets). Moreover, you can even run the application on
your development PC directly. I decided to perform all the testing in QEMU
with a connected debugger simultaneously. The advantage of QEMU is that
the console output is provided, however, there is just a few lines of output to
see at once in the console, so if you require to log these outputs it is better
to redirect them somewhere else. According to mailing-list, it is possible
to redirect standard output into serial port (using USE_COM1_AS_CONSOLE=1

flag), but I did not succeed with this. The problem lies probably rather on
the side of RTEMS than in QEMU, because I can get the serial port output
from GRUB running in QEMU. I have to note that I work in Linux, where

A.2. BUILDING RTEMS III

nothing called COM1 exists.

It was found, however, that QEMU is reasonable good tool in case tim-
ing properties are not of the highest interest but for a study of concurrent
behavior it is not the best way. Moreover, for sake of execution time mea-
surements of tasks it is not useful at all. For this purpose it is better to run
the compiled applications directly on a laptop after boot (e.g. from GRUB).

As a reasonably good tool for debugging is gdb unless you are trying to
examine timing properties and concurrent tasks. In that case breakpoints do
not help out. In order to connect to your running application (in a simulator)
by gdb, use following commands in gdb (or place them into .gdbinit file
in your Linux home directory along with your required breakpoints, it will
execute just after the start of gdb).

file $(relative_path_to_compiled_image)

target remote localhost:1234

IV APPENDIX A. GETTING FRSH/FORB AND RTEMS

Content of attached CD

To this thesis a CD including following content is attached:

• Directory pdf: Soft copy of this thesis

• Directory src: Source codes

• Directory app: Attached documents

V

	List of Figures
	List of Acronyms
	Intoduction
	Motivation
	Contribution
	Structure of the thesis

	About FRSH/FORB project
	Resource reservation framework
	Fremework structure
	FRSH
	FOSA
	FORB

	Changes and implementation in FRSH/FORB
	FORB running in a single address space
	Current executor and thread specific data
	Invocation procedure decision
	Inter-thread invocation implementation
	Forbrun, framework initialization
	Backward compatibility scripts
	Conclusion

	FRSH/FORB to RTEMS adaptation
	FOSA for RTEMS
	Cross compilation, libraries creation
	Platform dependent changes in FRSH/FORB

	RTEMS Operating System
	RTEMS advantages
	API
	Internals
	RTEMS Pluggable Scheduler infrastructure

	Earliest Deadline First scheduler
	General concepts
	Mathematical model of a real-time system
	Schedulability analysis
	Classification of scheduling algorithms
	Shared resources
	Multiprocessing

	Design of a scheduler for the r. r. framework
	Comparison and selection
	Priority inversion handling
	Background tasks inclusion
	Design of a ready queue

	RTEMS CBS for Resource Reservation
	Temporal isolation property achievement
	Time servers
	Approach of AQuoSA project
	Rules ensuring a temporal isolation of tasks
	Budget overrun
	Unblock rule
	Bandwidth inheritance

	Implementation of scheduler
	Pluggable Scheduler interface description
	Scheduling implementation
	Thread Control Block
	Red-Black trees
	Pluggable scheduler callbacks
	EDF API

	CBS API
	Adding a RTEMS CPU resource

	Validation of the work and testing
	Linux wvtests
	Scheduler tests
	EDF test
	CBS test

	RTEMS+FRSH/FORB integration tests

	Conclusion
	Future work

	Getting FRSH/FORB and RTEMS
	Compilation of FRSH/FORB
	Building RTEMS
	Testing and debugging tools

