
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Control Engineering

Integration of iLLD drivers to Erika
Enterprise RTOS on Infineon TC387

Bc. Danylo Begim

Supervisor: Ing. Michal Sojka, Ph.D.
Field of study: Cybernetics and Robotics
May 2024

May 24, 2024 ii

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

510862 Osobní číslo:Danylo Jméno:Begim Příjmení:

Fakulta elektrotechnická Fakulta/ústav:

Zadávající katedra/ústav: Katedra řídicí techniky

Kybernetika a robotika Studijní program:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Integrace iLLD ovladačů do RTOS Erika Enterprise pro Infineon TC387

Název diplomové práce anglicky:

Integration of iLLD drivers to Erika Enterprise RTOS on Infineon TC387

Pokyny pro vypracování:
1. Seznamte se s RTOS Erika Enterprise 3 (EE) a mikrokontrolérem Infineon TC387.
2. Na základě pokynů vedoucího zprovozněte kompilaci a ukázkové aplikace EE ve vývojovém prostředí Aurix Studio.
3. Integrujte do EE ovladače iLLD, zejména podporu pro obsluhu přerušení. Zprovozněte minimálně GPIO (IfxPort), CAN
FD a SPI ovladače. Pomocí SPI zprovozněte čtení a zápis na SD kartu se souborovým systémem.
4. Vytvořte ukázkové aplikace demonstrující výhody použití EE (multi-tasking) oproti „bare-metal“ a využívající zmíněné
periferie. Dále implementuje benchmarky měřící výkonost či dobu odezvy jak EE, tak zmíněných periferií (odezva CANu,
latence zpracování přerušení v OS, rychlost čtení z SD karty apod.).
5. Výsledky zdokumentujte.

Seznam doporučené literatury:
[1] Infineon AURIX TC3xx UserManual v2.0.0 2021-02
[2] Infineon AURIX TC38x UserManual v2.0.0 2021-02
[3] https://www.erika-enterprise.com/wiki/
[4] Rutrle T., Using an embedded QP solver for automotive applications, Master's thesis, ČVUT, 2022,
https://dspace.cvut.cz/handle/10467/101688

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Michal Sojka, Ph.D. vestavěné systémy CIIRC

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 24.05.2024 Datum zadání diplomové práce: 05.02.2024

Platnost zadání diplomové práce:
do konce letního semestru 2024/2025

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
prof. Ing. Michael Šebek, DrSc.

podpis vedoucí(ho) ústavu/katedry
Ing. Michal Sojka, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

May 24, 2024 iv

Acknowledgements
I would like to thank everybody who sup-
ported me while writing this thesis. Es-
pecially I would like to thank my parents
and friends who helped me and made the
completion of this thesis possible. Also,
I would like to thank my supervisor for
all the knowledge that I gained during
the development of this diploma thesis.
Finally, I thank Garrett Motion Inc. for
making this project possible.

Declaration
I declare that this work was written in-
dependently. At the same time, I declare
that all the sources used in the work are
cited and listed according to the Methodi-
cal Instructions for Observing the Ethical
Principles in the Preparation of Univer-
sity.

In Prague, May 2024

v May 24, 2024

Abstract
The use of microcontrollers with Real-
Time Operating Systems can lower the de-
velopment cost of the application since the
development team does not need to build
everything from scratch. This diploma
thesis shows how to compile Real-Time
Operating System Erika Enterprise for
Infineon TriCore TC387QP using Task-
ing compiler and Aurix Development Stu-
dio. The Erika Enterprise can run on
many CPUs but lacks support for Tri-
Core TC387QP and Infineon Low Level
Driver library. To verify changes to Erika
Enterprise, example applications for CAN
and SPI communication were developed
and tested.

Keywords: RTOS, Erika Enterprise,
CAN, SPI, Infineon TriCore, iLLD,
Embedded systems, FAT

Supervisor: Ing. Michal Sojka, Ph.D.
Jugoslávských partyzánů 1580/3, 160 00
Prague 6 - Dejvice

Abstrakt
Použití mikrokontrolérů s operačními sys-
témy reálného času může snížit náklady
na vývoj aplikace, protože vývojový tým
nemusí stavět vše od začátku. Tato diplo-
mová práce se věnuje tomu, jak zkompilo-
vat operační systém reálného času Erika
Enterprise pro Infineon TriCore TC387QP
pomocí Tasking kompilátoru a Aurix De-
velopment Studio. Erika Enterprise ma
podporu mnoha CPU, ale nemá podporu
pro TriCore TC387QP a knihovnu Infi-
neon Low Level Drivers. Pro ověření změn
do Erika Enterprise byly vyvijeny a otesto-
vány ukázkové aplikace s použitim sběrnic
CAN a SPI.

Klíčová slova: RTOS, Erika Enterprise,
CAN, SPI, Infineon TriCore, iLLD,
Vestavěné systémy, FAT

Překlad názvu: Integrace iLLD
ovladačů do RTOS Erika Enterprise pro
Infineon TC387

24. května 2024 vi

Contents
1 Introduction 1
2 Background 3
2.1 ERIKA Enterprise RTOS 3

2.1.1 Configuration of ERIKA 4
2.1.2 Interrupt configuration in Erika 6

2.2 Controller Area Network (CAN) . 6
2.2.1 CAN latency measurement . . . 9

2.3 SD card interface 10
2.3.1 SPI . 10
2.3.2 SD card 11
2.3.3 File Allocation Table 12

2.4 Infineon TriCore TC387QP 13
2.4.1 CAN module 15
2.4.2 SPI module 16
2.4.3 Context Save Area 17

3 Compiling Erika with Aurix
Development Studio 21
3.1 Installation 22
3.2 Creating a project 23
3.3 Using iLLD drivers with Erika . . 24

3.3.1 Erika’s source code changes . 25
3.3.2 Startup initialization difference 26

4 Basic Erika examples 29
4.1 Scheduler example a GPIO. 29
4.2 Semaphore example 30
5 CAN communication 33
5.1 Single-Core Example 35

5.1.1 Erika configuration 35
5.1.2 CAN drivers – iLLD 37

5.2 Multi-Core Example 41
5.2.1 Erika configuration 42
5.2.2 CAN Driver – iLLD and SW

buffer . 44
5.3 Benchmark results 49
6 Serial Peripheral Interface (SPI) 55
6.1 SPI Drivers – iLLD & bit-bang . 55
6.2 FAT Library 58
6.3 Example Application 59
6.4 CPU frequency 60
6.5 Benchmark Results 61

7 Conclusion 65
Bibliography 67
A List of Abbreviation 69
B Interrupt mapping into groups 71
C Benchmark results 73

vii May 24, 2024

May 24, 2024

Chapter 1
Introduction

The number of embedded systems in the automotive segment has significantly
grown in recent decades. Cars that originally used to be just pieces of
mechanical equipment are now an advanced electromechanical engineering
art. Some features of modern cars, such as electronic stability program
(ESP), torque splitting and parking assistant, just to name a few, require
sophisticated mathematical computation algorithms, such as a quadratic
program (QP) solver that is used for optimization purposes in control systems
or model prediction control (MPC).

All of these changes are meant to provide customers with more efficient,
more reliable and safer cars. This led to growing demand for the development
of more advanced, multi-core microcontroller units (MCU), with advanced
processors that are designed to be robust and comply with strict rules for
safety-critical systems. To use this computational power more efficiently
and make maintenance of the code easier, new real-time operating systems
(RTOS), like Erika Enterprise have been developed to satisfy new industry
needs. The use of real-time operating systems assures that in a well-designed
system, all hard deadlines will be met. There are a lot more different reasons
to use RTOS. For example, a better application structure or the concept
of threaded execution, which allows the program to fill the busy-waiting
gaps with the execution of another task. Also since Erika Enterprise is an
OSEK/VDX type of RTOS. Migration to different hardware or different
RTOS is easier due to the standardized API.

This thesis’s main goal is to integrate iLLD drivers to Erika Enterprise
and compile it with Tasking compiler using Aurix Development Studio. To
do that, the code of RTOS should be changed to add support for TriCore
TC387QP MCU and iLLD drivers. The thesis is also meant to provide the
reader with enough information about how to use Erika RTOS with iLLD.
For this purpose programming examples are developed. Also, examples are
tested to verify the changes that were made to Erika Enterprise.

The hardware for this project is provided by Garrett Motion Inc..

1 May 24, 2024

May 24, 2024 2

Chapter 2
Background

This chapter describes the background of the diploma thesis and should
introduce the reader to the technologies that were used. Basic characteristics
of the used MCU and the description of the MCU’s modules that will be used
in examples. Another important part of the thesis is Erika Enterprise. A short
description of the RTOS, as well as some basic concepts of its configuration,
are discussed in this chapter. The examples written as a part of this thesis
use 2 types of communication protocols. One of them is CAN (Controller
Area Network) and the second is SPI (Serial Peripheral Interface), which is
used to communicate with an SD card. To store the data on the SD card, a
file system called FAT (File allocation Table) is used.

The chapter describes the technologies used in a thesis from the higher
level concepts like Erika Enterprise RTOS, and its configuration, moving
to the lower level concepts like communication protocols and description of
MCU modules.

2.1 ERIKA Enterprise RTOS

ERIKA Enterprise is an RTOS that is suitable for a wide range of microcon-
trollers, such as Karlay MPPA, AVR 8bit, ARM Cortex A5x, Intel x86-64
and Infineon TriCore just to name a few. RTOS became quite popular due
to its AUTOSAR compatibility and hypervisor support1.

Erika provides portable API implementation for different hardware archi-
tectures, configurable ROM and stack sharing to save RAM space. Resulting
in a low and configurable footprint. The source code of the RTOS is available
on the Evidence Srl Github repository2 under GNU GPL. Thus Erika enter-
prise is the only open-source OSEK/VDX certified RTOS. That allows freely
modify ”MAKE” files or other parts of ERIKA to achieve needed goals. Even
though Erika Enterprise has rudimentary support for the TriCore TC398
processor, it does not have support for TriCore TC387QP or iLLD integrated
into it. The process of integration of iLLD drivers and TriCore TC387QP is
discussed in section 3.3.1.

1https://www.erika-enterprise.com/index.php/erika3/features.html
2https://github.com/evidence/erika3

3 May 24, 2024

https://www.erika-enterprise.com/index.php/erika3/features.html
https://github.com/evidence/erika3

2. Background
Erika allows users to configure different types of task schedulers. For

example, user can define a static scheduler using SCHEDULETABLE Object
or use a standard priority-based scheduler with different types of task queues
that implement different time complexity of the scheduler itself.

Except for task scheduling another important part of any RTOS is interrupt
handling. Erika provides users with two types of interrupt according to
AUTOSAR standard [1]. Interrupt of category two can execute OS calls.
More strictly said, interrupts of category 1 (ISR1) are not directly handled by
the OS. Category 2 interrupts are handled by the OS and thus provide access
to OS primitives [2]. In Erika, Category 2 interrupts (ISR2) are scheduled as
a task with very high priority.

2.1.1 Configuration of ERIKA

This section provides users with a basic understanding of Erika Enterprise con-
figuration. A more detailed description of the OIL configuration format can
be found on Erika OIL Wiki page [4] or in the specification of OIL standard [3].

Since ERIKA implements the AUTOSAR OS and OSEK/VDX API spec-
ification. It does not allow the creation of the RTOS objects, e.g., tasks,
timers, etc. dynamically at system run-time (with exceptions of Dynamic
API functionality). Instead, the objects are created statically, at compile time.
Configuration of objects is done in a specialized development environment
RT-DRUID.

This environment is based on Eclipse IDE. And provide a set of plugins for
users that implement a more comfortable way of writing configuration files
for RTOS and additional debugging capabilities for embedded systems. Such
as debugger support and memory analyzing tools.

To standardize configuration files among different implementations of OSEK
like RTOS, the OSEK standard has introduced configuration file format OIL
(OSEK implementation language). This format is used as a main configuration
in ERIKA RTOS. Configuration of RTOS is written in a file conf.oil (just a
configuration file later in a text). RT-Druid generates parts of Erika’s source
code based on the configuration in this file.

Configuration consists of so-called objects. Examples of such objects are
tasks, resources, alarms etc. Each object has specific attributes (if the object
has multiple attributes it can be called a section) such as priority for a Task
object or interrupt source for an interrupt object.

Each configuration starts with the definition of the object called CPU. This
object is used as a container for all other objects and does not have any
specific attributes.

The next object that configuration should have is OS object. this object is
used to define the ERIKA’s global configuration as well as the compilation
parameters. Compilation attributes are strings that can be used to specify

May 24, 2024 4

............................... 2.1. ERIKA Enterprise RTOS

some additional flags that the user might need to provide to the compiler.
For example, level of optimisation, or custom flags that are used in make files.

Other important to mention attributes are OSEK/VDX-specific attributes.
These attributes are described in OSEK standard [5]. An example of such
an attribute is attribute STATUS, which specifies if OS will use a standard
kernel or extended kernel.

Another important sections of OS object are CPU_DATA, MCU_DATA
and KERNEL_TYPE. The first two specify which CPU is running the oper-
ating system, and what its parameters should be. Specifically CPU_DATA
is used to specify CPU configuration such as compiler and clock-rate of CPU.
Section MCU_DATA specifies the HW that OS is running on (connected
pins, external oscillator frequency etc.). Core configuration can also include
idle hook function or core-specific task options like MULT_STACK. Core
specification in KERNEL_TYPE serves to provide a user with a more flexible
kernel configuration such as the OSEK conformance class and scheduler that
should be used.

The following code snippet provides the reader with an example configura-
tion. It configures RTOS to run on a TriCore MCU and use just two cores.
Code will be compiled using the TASKING compiler and the main core (core
0 or CPU0) is running on a 300MHz clock rate. The kernel conformance class
is ECC2, which allows RTOS to store pending activations of a task. Each
core of the CPU has its own idle hook and according to EE_OPT, the OS is
compiled in debug mode.

CPU mySystem {

OS myOs {

EE_OPT = "OSEE_DEBUG";
EE_OPT = "OSEE_ASSERT";
EE_OPT = "OS_EE_APPL_BUILD_DEBUG";
EE_OPT = "OS_EE_BUILD_DEBUG";
STATUS = EXTENDED;
ERRORHOOK = TRUE;

CPU_DATA = TRICORE
{
ID = 0x0;
COMPILER = TASKING;
CPU_CLOCK = 200.0;
IDLEHOOK = TRUE {HOOKNAME = "idle_hook_core0";};

};

CPU_DATA = TRICORE
{
ID = 0x1;

5 May 24, 2024

2. Background
IDLEHOOK = TRUE {HOOKNAME = "idle_hook_core1";};

};

MCU_DATA = TC39X {DERIVATIVE = "tc387qp";};
KERNEL_TYPE = OSEK {CLASS = ECC2;};

};

2.1.2 Interrupt configuration in Erika

As it has been mentioned earlier Erika provides support for two types of
interrupts. The first type of interrupt is referred to as ISR1 and it is ser-
viced as a function call. The second type ISR2 is serviced as a task, that
has to be scheduled, but within this type of interrupt OS primitives can be
called. Erika Enterprise has basic support of TriCore’s architecture interrupts.

The definition of interrupt in Erika Enterprise looks similar to this code.

ISR timer_isr_handler
{

CPU_ID = 0x0;
CATEGORY = 1;
SOURCE = "GPT12_GPT120_T3";
HANDLER = "timer_isr_handler";
PRIORITY = 10;

};

The code in the snippet determines which CPU will serve this interrupt (in
this case CPU0). The category of the interrupt is 1, according to AUTOSAR
[1]. Which means that it is serviced with a function call. HANDLER
specify the function name that will be called in case of interrupt in this
case timer_isr_handler. Be aware that the following restriction applies on
interrupt priority: ”all interrupts of Category 1 must have a higher or equal
hardware priority compared with interrupts of Category 2. This limitation
has been introduced to avoid various rescheduling problems appearing when
an ISR2 interrupts a lower priority ISR1” [2].

The toughest part of interrupt configuration is to find out the source of
the interrupt. Erika uses aliases to define the source of interrupts. All the
names are located in the file ee_tc_src.h. The file also contains the aliases
that are used for the interrupt sources in user manuals [6] and [7].

2.2 Controller Area Network (CAN)

This chapter is based on a description of CAN protocol in a CAN standard
[8] and a guide for CAN FD [9]

May 24, 2024 6

............................ 2.2. Controller Area Network (CAN)

Controller Area Network or shortly CAN belong to one of the most used
data-communication protocols in the industry segment. Also, it is one of the
most important protocols that has been used in the industry since it has been
developed in the early 80‘s. Originally protocol was meant to be a solution
for a growing number of copper wires that had been in cars at that time.
The protocol allows small embedded devices to communicate with each other.
CAN is a message-based protocol. It become so popular due to its reliability,
robustness and efficiency.

CAN bus is often used for a safety critical application in the automotive
industry. Such as engine control, anti-lock braking system (ABS), electronic
stability program (ESP) and many other important parts of a modern car.
The reliability of the CAN bus is achieved by the following factors:.Message prioritization. Error detecting and correction. Differential signalling.

Let’s get through them one by one starting with message prioritization.
Each frame has a so-called header. In general header in communication
protocols is used to define protocol-specific information such as the priority
of the message, length of data or other important flags such as time to live
(TTL) or routing information in internet protocol (IP). According to CAN 2.0
specification, two headers are allowed on a bus. One of them is the standard
header that was introduced in the original CAN bus protocol and allows
devices on a bus to use 2048 priorities. Another one is called the ”extended
header”. It consists of 29 bits and allows to use (229) priorities. Both
headers can be used simultaneously on the same bus. CAN bus message
header structures are shown in Figure 2.1.
Whenever the bus is free any unit (CAN controller) may start to transmit a
message. If 2 or more units start transmitting messages at the same time,
the bus access conflict should be resolved using the identifier. This process is
called arbitration or arbitration phase. The conflict is resolved by performing
bitwise AND operation between two headers. The arbitration phase is done
in such a way that the message with a lower identifier wins arbitration over
a higher identifier value. Meaning that the message with priority 0 has the
highest priority.

This is because CAN is a dominant zero protocol, whenever any transmitter
sends a dominant level, the bus will switch to that level no matter what
is the level before. During the arbitration phase, every transmitter listens
to the bus and compares the level of the transmitted bit with the level of
the bus. If levels are not equal that means that the unit has lost an arbi-
tration phase and must immediately withdraw without sending any other bits.

Error detection mechanism on CAN is implemented to prevent faulty
devices to repeatedly sending error frames which will disturb communication.

7 May 24, 2024

2. Background

Figure 2.1: CAN bus data frames header types. Taken from [8].

The error frame consists of 6 bits of the dominant level. This frame also
violates framing rules because according to the standard, each frame also has
so-called “stuffed bits”. They are added to the message automatically by the
CAN controller if 5 consecutive bits have the same level. If any controller
detects an error frame, it increases the internal counter by 8 (if the message
has been received/transmitted successfully it decreases by 1). Error frame can
be sent by any unit on a bus if the CRC (cyclic redundancy code) value does
not match the content of the message. During this time the bus is set to a
recessive state, so the error frame can be detected. Counters of the controller
can’t be reset by the program so the controller at fault state will no longer
be able to interrupt communication until its error counter drops down. After
reaching the specified level controller switches to one of the following modes:. Error active – counter value 0 - 127. This is the default state of the

controller. Able to transmit data and error frames. Error passive – counter value 128 - 255. The controller can transmit
data but is not able to raise an error flag. Instead, it raises a passive
error flag (consecutive 6 bits of recessive state).Bus off – counter value 255. the controller is only able to listen to
other devices and receive messages, however, he is not able to interrupt
communication for other devices.

Last but not least important redundancy factor is differential signalling.
Protocol has just two data wires named CAN_H and CAN_L. One wire contains
the inverse signal of the opposite wire. This provides much better noise

May 24, 2024 8

............................ 2.2. Controller Area Network (CAN)

immunity and common-mode rejection. Allowing to use of longer cables and
higher data rates.

2.2.1 CAN latency measurement

One of the goals of the diploma thesis is to test the implementation of the
demo examples that were developed. To test CAN communication, the latency
of the communication will be measured. However the latency is not a goal,
but just a measure that can provide some evidence that ERIKA works as it
is intended.

The latency of the can communication for 1 Mbit/s communication speed
is mostly measured in tens or sometimes even hundreds of microseconds.
Measuring such latency is a complicated task that requires integration into
Linux Kernel drivers or specialized high-cost equipment. Due to this fact
already existing solution canping3 is used. This program has been developed
by the Control Department of Czech Technical University

Figure 2.2: Definition of latency in CAN bus communication. Taken from [10].

Figure 2.2 shows the definition of communication latency used in this
diploma thesis. To measure the latency program sends the message labeled
on a picture as Incoming msg. And save a timestamp of a time when the
message has been completely sent. Then the program waits until the new
message is received, this event is labelled as Reply msg. When a new message
is completely received program makes another timestamp and subtracts two
values.

Since we know the communication speed and amount of bits sent (including
bit stuffing bits) we can subtract this value from the measurement. After this,
we will obtain a latency made by the device under test. Since the messages
sent one-by-one arbitration of the CAN does not affect the test.
To use this program it should be installed and compiled according to the
instruction in ”README.md” file.

3https://sourceforge.net/p/ortcan/canping/ci/master/tree/

9 May 24, 2024

https://sourceforge.net/p/ortcan/canping/ci/master/tree/

2. Background
2.3 SD card interface

The following section describes the concept of SD cards, and the basics of the
communication process using SPI and File Allocation Table, or FAT in short.

2.3.1 SPI

The section is based on information from the source [11].
Single peripheral interface or SPI belong to the most popular communi-

cation protocols. It is widely used in embedded electronics and provides a
simple interface for inter-controller communication. Some of the most popular
use cases are communication with AD/DA converters, sensors or EEPROM
memory. Protocol became so popular due to the simplicity of implementation.
Almost every microcontroller nowadays has this communication protocol
built-in. And even if MCU does not have the support of SPI, it is easy to
make SW-defined SPI, sometimes also called ”Bit-Bang SPI”. The protocol
does not have any communication speed limitations. The only limitation is
HW capabilities of the devices. Data are sent with each change of the clock
cycle. The architecture of the protocol is based on so-called ”Master-Slave
communication”. That means that slave devices can send data only when
the master controller requests it.

The hardware interface for this protocol is quite simple and does not
require additional integrated circuits like for example CAN transceivers that
are additionally installed for CAN bus communication.

For full-duplex communication between two microcontrollers, 4 wires are
needed:.CS (Chip select) – from master to specific slave to enable communication

(negated). SCLK (Serial clock) – Clock signal provided by Master.MOSI (Master Output Slave Input) – Data line from master to slave.MISO (Master Input Slave Output) – Data line from slave to masters.

Since the protocol is a serial bus. Data lines and clock signals are shared
between all connected devices. However, each device should have its own CS
signal.
The clock signal is provided by the master and even in case of slave trans-
mission, the master‘s clock signal is used. Clock signals can have inverted
or non-inverted polarity. To avoid confusion first edge is referred to as the
leading edge, and the second edge is called the trailing edge. This terminology
allows to use same naming for both polarities. Also, protocol allows to set
on which edge of the clock data will be sampled. This setting is commonly
referred to as ”clock phase”. An example of SPI communication is shown in

May 24, 2024 10

...................................2.3. SD card interface

Figure 2.3: SPI communication example. Polarity is not inverted. Data sampled
on leading edge. Source [11].

the picture below

TriCore MCU has SPI functionality built-in. With iLLD QSPI (Queued
Serial Peripheral Interface) allows to use a similar concept that is used in
CAN communication drivers, where messages are put into the memory from
where it is accessed using DMA by the QSPI module. However, due to the
limitations described in section 6.1 a bit-bang SW definition of the SPI is
used. Implementation of which has been provided by Garrett Motion Inc.

2.3.2 SD card

The information for the following description of SD card is gathered from
FatFs description of SD card [13] and [12].

The secure Digital Card or just SD card originally created as a response
to a need for small and reliable data storage. Since its first introduction in
1999, it has become a very important part of embedded devices and industry
overall. SD cards can use one of two protocols for communication either I2C
or SPI. In this project, SPI communication is used.

SD cards have internal information registers that can be used for control
of various SD card features. Some of the registers can be configured by the
host controller. For example Operation Condition Register or OCR in short.
These registers are configured by the file system or the driver of the SD card
during the initialization process. Overall communication with an SD card
is a master-to-slave communication. The host controller sends a request or
command and the SD card responds with the data request or the result of
the command. The SD card in SPI mode has the following list of pins:.DO – Data output or MISO. SCLK – CLK signal.DI – Data input or MOSI.CS – Chip select.

11 May 24, 2024

2. Background
In SPI mode, the data direction on the signal lines is fixed (except for the

initialization procedure) and the data is transferred in byte-oriented serial
communication. The card is ready to receive a command frame when it drives
DO (data output or MISO) high. Because the data transfer is driven by a
serial clock generated by the host controller, the host controller must continue
to read data, send a 0xFF and get the received byte, until a valid response
is detected. The DI signal must be kept high during read transfer (send a
0xFF and get the received data). The response is sent back within command
response time, 0 to 8 bytes for SDC, and 1 to 8 bytes for MMC. The CS
signal must be driven high to low before sending a command frame and held
it low during the transaction (command, response and data transfer if exist).
The CRC feature is optional in SPI mode. The card does not check the CRC
field in the command frame.

2.3.3 File Allocation Table

The information for this section is gathered from [13] and [14].

File allocation table or FAT in short. Originally was developed in 1977
and used on floppy disks. Then it became commonly used as a standard for
Microsoft DOS machines and it is still commonly used for flash disks and
some operating systems.

The file system has evolved over its lifespan and has a lot of variations.
Each new version adds new features and support for higher-capacity disks.
The oldest still commonly used version is FAT16, this format can store files
up to 2 GB (without large file support). A newer version of the file system
FAT32 can store files up to 4 GB with a maximum partition size of up to 2
TB. Also, an extended version of FAT or exFAT. Which is widely used as a
default file system for many Linux distributions (Linux kernel version 5.7 or
newer). The extended file allocation table (exFAT) allows to store the files
up to 128 PB (petabyte) with the same maximum partition size.

Often FAT is criticized for wasting too much memory using the clusters.
If the cluster size is 512 bytes and the file size is just 256 bytes, then the
cluster where the file is located will be assumed to be already filled with the
data and 256 bytes will be wasted. This problem is partially solved in newer
versions of FAT, where the number of clusters is increased, which leads to a
smaller size of the clusters and less memory wasted.

Information in FAT is stored in so-called allocation tables. Each table
describes how the file is stored in a memory. The table consists of chained
items. Each item has a link to the next cluster. The last item contains a
special index instead of a link which means EOF (End of the File).

Each FAT system is made of a few regions:.Reserved region to store bootloader and file system information.. FAT region to store file allocation tables (typically two copies are used).

May 24, 2024 12

.............................. 2.4. Infineon TriCore TC387QP

.Root Directory region (FAT12/16 only) to store information about
files and directories.Data region to store actual data.

The first sector is the so-called Reserved sector. This is from where the system
is booted.

The reserved region of the system consists of two parts bootloader and file
system information. FAT allows to boot the system from the medium where
the information about the system is stored. This is the reason behind having
a bootloader in a file system. In FAT16 size of the bootloader is 512 bytes.

The second region is the file allocation table. This section contains the
data about how the file is stored in memory. Then follows the root directory
region, which has information about the internal structure of the file systems.
such as folders and files of the name. The last sector is the data region where
the file data is stored.

2.4 Infineon TriCore TC387QP

The Infineon TriCore 32-bit family of MCUs has been on the automotive
market for more than 20 years. This 32-bit RISC (reduced instruction set
computer) based processor has been specially developed to work with real-
time applications. It combines the computation power of DSP and real-time
systems capabilities. It has been introduced by Infineon company as a concept
called Automotive unified processor (AUDO in short). Processors became
popular in the automotive and industrial segments due to their reliability and
safety features such as calculation of CRC, HW watchdogs, and register write
locks. In the automotive segment, these MCUs are used in mission-critical
places such as engine control units (ECU) and other important safety parts
of the car4.

The family of processors has been developed for more than 20 years and
consists of 4 generations of microcontrollers. In this diploma thesis, the MCU
from the third-generation TriCore TC387QP is used. Key processor features
according to Infineon web-page5 are:. 4 cores running at 300 MHz (with 2 additional checker cores delivering

2700 DMIPS). Up 10 MB flash with ECC protection. Up to 1.5 MB SRAM with ECC protection. 128x DMA channels
4https://www.infineon.com/cms/en/product/microcontroller/

32-bit-tricore-microcontroller/
5https://www.infineon.com/cms/en/product/microcontroller/

32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc3xx/
aurix-family-tc38xqp/

13 May 24, 2024

https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc3xx/aurix-family-tc38xqp/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc3xx/aurix-family-tc38xqp/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc3xx/aurix-family-tc38xqp/

2. Background

Figure 2.4: Microcontroller board provided by Garrett Motion Inc.

. 1 Gbit Ethernet, 12x CAN FD and 6x QSPI.AUTOSAR 4.2 support6. Developed and documented following ISO 26262/IEC61508 to support
safety requirements up to ASIL-D/SIL3

Hardware for this diploma thesis is provided by Garrett Motion Inc. as
a part of the internal research project. The provided hardware is based
on an MCU TC387QP. The hardware has two PCB boards. The first one
(bottom board shown top right in Figure 2.4) has a TriCore processor on it
and circuitry for peripheral devices such as Ethernet, CAN or SD card slot.
The board has an RJ-45 connector and a gigabit Ethernet PHY transceiver,
micro SD-card slot and D-sub connector for CAN.

On the top board, the hardware has electrical components related to the
power supply and connector for an OEM DAP debugger Infineon Miniwiggler
v3 (shown in Figure 2.4). Also, the top desk of the microcontroller has an
additional debug ”interface” which is 4 green LEDs. Two of them cannot be
controlled by the processor and indicate that voltage circuits are functioning.
The other two can be controlled by the processor and will be used for
debugging purposes.

6AUTOSAR – (AUTomotive Open System ARchitecture) is a global partnership of
leading companies in the automotive and software industry to develop and establish the
standardized software framework and open E/E system architecturehttps://www.autosar.
org/

May 24, 2024 14

https://www.autosar.org/
https://www.autosar.org/

.............................. 2.4. Infineon TriCore TC387QP

2.4.1 CAN module

This chapter is based on a description of the CAN module in the user manual
[7]

The MCMCAN (or simply CAN) module in TriCore implements Bosch
M_CAN as CAN nodes. The M_CAN performs communication according to ISO
11898-1 according to ISO 11898-4. Module supports classical CAN and CAN
FD. The M_CAN provides all features of time-triggered communication specified
in ISO 11898-4, including event-synchronized time-triggered communication,
global system time, and clock drift compensation. A general structure of the
module is shown in the Figure 2.5

Figure 2.5: CAN module general structure in TC3xx family of MCU. Source [7].

TriCore TC387QP is equipped with 3 modules each as 4 nodes. CAN
module provides not only an interface to the CAN bus communication but
also implements some of the advanced features such as grouping of the
interrupt that is done by the ICU (Interrupt Compression Unit), or module’s
RAM, which is connected to the common Bus Peripheral Interface (BPI).
This memory is a common space for all the nodes to store incoming and
outgoing messages.

The size of the memory is enough to fit 64 messages on receive and 32
messages on transmission. The module supports different types of queues for
message storage. It is equipped with two FIFO buffers, a queue buffer and
Dedicated Buffers. FIFO and Queue buffers can be configured to create a
shared memory space from where messages can be accessed by both queues.
For example, both FIFO buffers can be set to have one shared space, as well
as queue and FIFO buffer can create a shared memory space.

The module provides numerous interrupts that can help with easier debug-
ging and faster application implementation. For example, RX FIFOi Full
interrupt (i is the number of FIFO i=0,1), can save a lot of time during
implementation because the software does not have to check the state of the

15 May 24, 2024

2. Background

Figure 2.6: TriCore CAN module memory layout. Source [7].

hardware buffer. It is enough to check if the flag of this interrupt is active
in a register. Each interrupt is connected to so-called interrupt lines which
are used as an instrument that helps ICU to combine interrupts into groups.
Each interrupt can be assigned to any core of the MCU.

Also, the module provides support for so-called transmission events that
are described more in User Manual [7]. The key knowledge about transmission
events is that. after the node has transmitted a message on the CAN bus,
the Message ID and timestamp are stored in a Tx Event FIFO element. To
link a Tx event to a Tx Event FIFO element, the Message Marker from the
transmitted Tx Buffer is copied into the Tx Event FIFO element. The purpose
of the Tx Event FIFO is to decouple handling transmit status information
from transmit message handling i.e. a Tx Buffer holds only the message
to be transmitted, while the transmit status is stored separately in the Tx
Event FIFO. This has the advantage, especially when operating a dynamically
managed transmit queue, that a Tx Buffer can be used for a new message
immediately after successful transmission.

2.4.2 SPI module

The information about this module is gathered from [7]

The main purpose of the QSPI (Queued SPI) module is to provide syn-
chronous serial communication with external devices using clock (CLK),
data-in (MISO), data-out(MOSI) and slave-select(CS) signals. The focus of
the module is set to fast and flexible communication: either point-to-point or
master-to-many slaves communication. The term “Queue Support” is used
in this context to describe the functionality implemented for comfortable
switching of the timing configuration of the QSPI frames, depending on the

May 24, 2024 16

.............................. 2.4. Infineon TriCore TC387QP

Figure 2.7: SPI module general structure. Taken from [7].

slave select signal which is to be activated. The main feature of the module
is the possibility to take both the configuration and data to the transmission
buffer and to track down which transmission buffer entry is configuration,
and which data. The main features of the module are the following:.Master and Slave Mode Operation. Interoperability with SSC and USIC modules of Infineon microcontroller

families, and with popular (Q)SPI interfaces of multiple suppliers.QSPI supports control and data handling by the DMA controller. Interrupt generation

Overall the structure of the QSPI module and the main features that it
provides are very similar to the CAN module. It also has internal FIFO
buffers for received and transmitted messages and even iLLD configuration
in its ”philosophy” is very similar to CAN module configuration. It also has
a configuration structure where every part of the module is initialized. The
general structure of the QSPI module looks the following way.

2.4.3 Context Save Area

TriCore architecture supports some of the operating system features on a
hardware level. One of the features is CSA registers (Context Save Area).
This chapter is a short version of the description of the context save area in
[15]. Erika Enterprise uses this feature to switch between tasks and interrupts
much faster.

17 May 24, 2024

2. Background
Most embedded and real-time control systems are designed according to

a model in which interrupt handlers and software-managed tasks are each
considered to be executing on their own ‘virtual’ microcontroller. That model
is generally supported by the services of a Real-time Executive or Real-time
Operating System (RTOS), layered on top of the features and capabilities of
the underlying machine architecture. In the TriCore™ architecture, the RTOS
layer can be very ‘thin’ and the hardware can efficiently handle much of the
switching between one task and another. At the same time, the architecture
allows for considerable flexibility in the tasking model used. System designers
can choose the real-time executive and software design approach that best
suits the needs of their application, with relatively few constraints imposed
by the architecture. The mechanisms for low-overhead task switching and for
function calling within the TriCore architecture are closely related. Contexts,
when saved to memory, occupy 16-word blocks of storage, known as Context
Save Areas (CSAs).

The context types are:. Upper context: Consists of the upper address registers A[10] to A[15]
and the upper data registers D[8] to D[15]. The upper context also
includes PCXI and PSW. These registers are designated as non-volatile
for purposes of function-calling (their contents are preserved across calls).. Lower context: Consists of the lower address registers A[2] to A[7], the
lower data registers D[0] to D[7], A[11] (Return Address) and PCX

The architecture uses linked lists of fixed-size Context Save Areas. A CSA
is 16 words of memory storage, aligned on a 16-word boundary. Each CSA
can hold exactly one upper or one lower context. CSAs are linked together
through a Link Word. The Link Word includes two fields that link the given
CSA to the next one in a chain. The fields are a 4-bit segment and a 16-bit
offset. The segment number and offset are used to generate the Effective
Address (EA) of the linked CSA (see architecture manual[15]). Incrementing
the pointer offset value by one always increments the EA to the address that
is 16-word locations above the previous one. The total usable range in each
address segment for CSAs is 4 MBytes, resulting in storage space for 216
CSAs. The upper context is saved automatically as a result of an external
interrupt, trap or function call. The lower context is saved explicitly through
instructions.

Architecture switches context when one of the following happens:. Interrupt or Trap. CALL - Function Call. BISR - Begin Interrupt Service Routine. SVLCX - Save Lower Context. STLCX - Store Lower Context

May 24, 2024 18

.............................. 2.4. Infineon TriCore TC387QP

. STUCX - Store Upper Context.

The upper and lower contexts are saved in Context Save Areas (CSAs).
Unused CSAs are linked together in the Free Context List (FCX). CSAs that
contain saved upper or lower contexts are linked together in the Previous
Context List (PCX). The contents of the FCX register always point to an
available CSA in the Free Context List. That CSAs Link Word points to the
next available CSA in the free context list. Before an upper or lower context
is saved in the first available CSA, its Link Word is read, supplying a new
value for the FCX. To the memory subsystem, context saving is therefore a
read/modify/write operation. The new value of FCX, which points to the
next available CSA, is available immediately for subsequent upper or lower
context saves.

19 May 24, 2024

May 24, 2024 20

Chapter 3
Compiling Erika with Aurix Development
Studio

This section is an overview of all the changes that have been done to Erika
Enterprise so it can be compiled using the Tasking compiler under Aurix
Development Studio.

The coding project creation process is described in [17] and this chapter is
based on this technical report.
The latest version of Erika Enterprise 3 supports neither the TC387 micro-
controller nor compilation with AURIX Development Studio, which contains
a free version of the Tasking compiler. However, Erika supports a similar
microcontroller TC39x as well as the Tasking compiler, but in its commer-
cial variant. Erika applications are typically configured and compiled via a
graphical IDE called RT-Druid. This tool is responsible for:..1. Generating parts of Erika source code based on the application configu-

ration and..2. Compile both Erika and the application with the C compiler

However, due to the use of a free version of the Tasking compiler, this standard
workflow cannot be used, because the compiler works when run within ADS
(Aurix Development Studio) and does not work when run within RT-Druid.
Therefore, we extend the workflow and use AURIX Studio in addition to
RT-Druid. Specifically, the following changes have been made:. Support for the TC387 microcontroller was added. Support for executing the build under AURIX Studio. Initial support for using iLLD drivers (this will need to be further

extended)

The figure below explains the basic workflow with Erika. The left light blue
rectangle represents standard Erika workflow. Due to the use of a free Tasking
compiler, this standard workflow cannot be used, because the compiler does
not run under RT-Druid. Therefore, we extend the workflow and use AURIX
Studio in addition to RT-Druid.

21 May 24, 2024

3. Compiling Erika with Aurix Development Studio

Figure 3.1: Development workflow. Source of the image [17].

3.1 Installation

This section explains basic settings that need to be done for example compi-
lation...1. Install AURIX Studio...2. Download modified Erika sources from GitHub1 and unpack them to

some directory...3. Follow the Quick start2 guide on the Erika wiki...a. Install JRE..b. Installation of Cygwin can be skipped. It will be replaced with
AURIX Studio...c. Download and install RT-Druid by unpacking it to any directory....d. Run RT-Druid via eclipse.exe..e. Configure RT-Druid Preferences (discussed later in this section)

Before attempting to compile the project following steps should be done in
configuration. In RT-DRUID Preferences→Oil→Erika Enterprise enter the
path to modified Erika sources via Manual edit box. Then select Plugins as
a location of the RT-Druid extension pack (e.g. eclipse/plugins/com.eu.evi-
dence.ee3_3.0.1.20190524_gh65/ee_files/rtdruid.ext).

Then open Oil→Generator Properties and set TriCore→TASKING CTC
Compiler to the compiler path under Aurix Studio installation. This will
be something similar to C:/Infineon/AURIX-Studio-1.5.2/plugins/com.infi-
neon.aurix.tools_1.5.2/build_system/tools/Compilers/Tasking_1.1r7.. For
other versions of Tasking compiler and Aurix Development Studio the path
can be different.

After, copy cygpath.exe from the utils folder of the downloaded Erika
Enterprise to the tools/make folder of the Tasking compiler (something
similar to e.g. C:/Infineon/AURIX-Studio-1.5.2/plugins/com.infineon.au-
rix.tools_1.5.2/build_systemtools/make). The program cygpath.exe is avail-
able in the Cygwin environment and Erika build system calls it. Since we run

1https://github.com/Darth-Bujar/erika3-tc38x
2https://www.erika-enterprise.com/wiki/index.php/Quick_start_guide

May 24, 2024 22

https://github.com/Darth-Bujar/erika3-tc38x
https://www.erika-enterprise.com/wiki/index.php/Quick_start_guide

.................................. 3.2. Creating a project

the build without Cygwin, under AURIX Studio, we must provide a tool that
provides similar functionality there. Note that for some targets, Erika can
compile itself without Cygwin, but it doesn’t work for the Tasking compiler.

3.2 Creating a project

To create a project that enables both iLLD drivers and Erika compilation
under Tasking. The next steps should be performed:..1. Create an AURIX Studio project for the TC38xQP_A-Step device. In

the following, we assume the project is named erika-test...2. Create an RT-Druid project (fully called RT-Druid v3 Oil and C/C++
Project) in the folder ”ee” created in the root folder of the project created
in the first step (describe in more detail in the same chapter)..3. Specify the make files and location of the modified version of Erika
Enterprise..4. Compile the configuration of Erika using RT-DRUD..5. Compile the rest of the application code using ADS.

Let’s get through the steps in more detail one by one. The first step does
not need any further explanations. However, the second step will be described
in more detail.

In the New Project window of RT-DRUID select a project ”RT-Druid
v3 Oil and C/C++ Project”, then ”uncheck” Use default location box
and specify the location of the file as follows. Open a location of the new
ADS project created in step 1. Create a new folder named ”ee” (or any other
name). Select the ”ee” folder as a location of the project so the resulting
path looks similar to path_to_ads_project/erika_test/ee. Note that
the RT-Druid workspace should be at a different location than the AURIX
Studio workspace.

Click next and in the new opened window choose a project “TriCore →
AURIX 2G → TASKING → MultiCore + Blink” and press Finish. After
the project was created RT-DRUID will open conf.oil file and automatically
compile it. The following message will appear.
make doc
Cannot run program "make": Launching failed

Error: Program "make" not found in PATH

This is expected, as cygwin and its tool make are not installed. Instead, the
project is compiled using Aurix Development Studio.

The third step is to make ADS compiling using Erika Enterprise files.
To do this open properties of the project erika_test that has been created

23 May 24, 2024

3. Compiling Erika with Aurix Development Studio

Figure 3.2: Location of the Debug Active Project button in ADS (located under
red arrow)

in ADS in the first step. Then open C/C++ Build→”Generate MakeFiles
Automatically” property should be changed to the location of Erika’s makefiles
in the project {workspace_loc:/erika-test}/ee/out. After the application
is ready to be compiled by the Tasking compiler using Aurix Development
Studio. To compile the application and download it to the microcontroller
click on Debug Active Project button in ADS.

Note that the modifications of Erika Enterprise files in the project will be,
or can be overwritten by the RT-DRUID. To keep changes, modify Erika
Enterprise files in the location of the modified version of Erika. Recompilation
of Erika Enterprise configuration (means almost any changes to conf.oil file)
can be done only in RT-DRUID or using shell script3 that can be added to
make file. That means that in case of any changes to the configuration of
the Eika in conf.oil. Firstly RT-DRUID (or shell script) should recompile
the configuration of Erika Enterprise and only after, a full compilation of the
project in ADS can be done. So steps 4 and 5 should be followed in case of
any changes to RTOS configuration.

To run any project that is already done in the way that has been described
in this chapter. It is enough to import the project to both RT-DRUID and
ADS.

3.3 Using iLLD drivers with Erika

iLLD drivers is a proprietary set of low level drivers developed by Infineon
specifically for their TriCore microcontrollers. Erika does not have an im-
plementation of iLLD built in. Under the hood, RTOS uses drivers that
have been developed by Erika’s developers themselves. That means that
some of the functions can be accessed in both ways either from iLLD (for
example using IfxScuCcu_getSourceFrequency) or by using Erika Enterprise
function (osEE_tc_get_osc_freq). However this project concentrates on
the integration of iLLD drivers, so only the iLLD’s functions will be used to
configure hardware.

3https://www.erika-enterprise.com/wiki/index.php/RT-Druid_command_line

May 24, 2024 24

https://www.erika-enterprise.com/wiki/index.php/RT-Druid_command_line

............................. 3.3. Using iLLD drivers with Erika

3.3.1 Erika’s source code changes

Since Erika officially does not support TriCore TC387QP and iLLD, a few
changes have been made to Erika’s source code. These changes follow the
initial work that has been done by the supervisor of this project Ing. Michal
Sojka, Ph.D. That includes changes to a build system so the project can be
compiled using Aurix Development Studio.

Since the TC387 architecture is not much different from TC39x, only
the linker script should be changed. The main difference is that TriCore
TC39x has two more cores. To cut those two additional cores, macro
__PROC_TC38X__ has been added to Erika’s linker script file (file exten-
sion type .lsl). This macro is used to distinguish two types of processors that
share the same Erika’s linker script file. At the top of the file ee_tc_task-
ing_flash.lsl the following code is added to determine which processor is
compiled and which linker script file should be used:

#if defined(__PROC_TC39X__) || defined(__PROC_TC38X__)
#if defined(__PROC_TC38X__)
#include "tc38x.lsl"
#endif
#if defined(__PROC_TC39X__)
#include "tc39x.lsl"
#endif

Additionally in the same file, script sections that are related to cores 5
and 6 (which TC387 does not have) are put under condition of macro
__PROC_TC39X__ existence, so these parts of linker script are not com-
piled for TC387 processor.

Support for iLLD drivers is also added to the project. Since we are using
Erika’s MAKE files to compile the project, they should be extended with a
path to the iLLD drivers header and source files.

This can be achieved by modifying ee_arch_compiler_tasking_ctc.mk.
Only modules that have been used in this diploma thesis were added to the
make file. The changes are separated into 4 commits in GitHub repository4.
Each commit represents support for one of the modules that have been used
during this project. Namely, modules CAN, QSPI, GPT and STM are added.
These commits can be used as a template for future extensions of iLLD
support. Without these changes, compilation will fail when compiling iLLD
files, since Erika’s MAKE file cannot find them.

Let’s take a closer look at one of the commits that adds support for the
GPT12 module. First of all the path to the header files should be included
in the make file, mentioned above. This can be done by modifying variable
INCLUDE_PATH contained in the file. The second step is to add the source
files of the drivers (file extension .c) to the list of compilable sources. This can

4https://github.com/Darth-Bujar/erika3-tc38x/

25 May 24, 2024

https://github.com/Darth-Bujar/erika3-tc38x/

3. Compiling Erika with Aurix Development Studio
be done by adding a new source to the end of list OS_EE_APP_CFG_SRCS
in the same file. The resulting change should look similar to the following
code snippet.

INCLUDE_PATH += $(call short_native_path,
$(abspath $(wildcard
../../Libraries/iLLD/TC38A/Tricore/Gpt12/Std)))
INCLUDE_PATH += $(call short_native_path,
$(abspath $(wildcard
../../Libraries/iLLD/TC38A/Tricore/Gpt12/IncrEnc)))

OS_EE_APP_CFG_SRCS += \
... \
... \
../Libraries/iLLD/TC38A/Tricore/Gpt12/Std/IfxGpt12.c

3.3.2 Startup initialization difference

Erika Enterprise has a slightly different startup initialization code than iLLD.
One of the main differences is that Erika does not configure SCU (System
Control Unit) and CCU (Clock Control Unit) registers in the way that iLLD
does it. Due to this fact, a configuration of the clock should be done by
the application of the MCU. The easiest way is to use the default (already
existing in iLLD) configuration of these registers. The default configuration
can be loaded into the variable of type IfxScuCcu_Config using the function
named IfxScuCcu_initConfig, and the following function IfxScuCcu_init will
load the configuration into the MCU’s registers.

The mentioned workflow for SCUCCU registers initialization was not a
part of the changes made to the Erika Enterprise code. The following code
should be added before the initialization of the specific hardware that requires
these registers to be configured, such as CAN module. In the case when more
peripherals require it, code can be added to the ”main” function before the
start of the OS.

// SCU CCU configuration handler
IfxScuCcu_Config IfxScuCcu_sampleClockConfig;

// PLL & clock initialization
IfxScuCcu_initConfig(&IfxScuCcu_sampleClockConfig);
IfxScuCcu_init(&IfxScuCcu_sampleClockConfig);

Now let’s move to the configuration of the PLL in the System PLL Config-
uration register (SYSPLLCON). According to the default setting mentioned
above for SCU CCU registers, PLL0 with a frequency fP LL0 is used as a
primary source for most of MCU’s peripherals, including CPU clock frequency
fCP Ui (where i is the number of cores i=0..3), and the frequency of the PLL

May 24, 2024 26

............................. 3.3. Using iLLD drivers with Erika

is set to be 300 MHz. This is calculated using values P, N and K25 from the
SCU CCU configuration register and the formula from:

fP LL0 = N ∗ fosc0
P ∗ K2 = (29 + 1) ∗ 20

(0 + 1) ∗ (1 + 1) = 300MHz (3.1)

The frequency of the CPUi is set to be the value of the fSRI divided by the
value of the register SRIDIV in case of the default SCU CCU configuration
from iLLD. The value of the register is set to zero for all cores. That means
that each core of the MCU is running on the frequency fcpu = fSRI , where
fSRI = fP LL0 according to the configuration of CCUCON0.CLKSEL.

5According to User Manual [6] values P, N and K2 in registers should be increased by
one to get real value

27 May 24, 2024

May 24, 2024 28

Chapter 4
Basic Erika examples

This chapter describes two basic examples and Erika’s basic configuration is
then used with slight modifications in other demos developed as part of this
thesis. All examples that were developed in this diploma thesis can be found
on GitHub1.

4.1 Scheduler example a GPIO

A small example has been done to verify the correctness of the scheduler
work. The example consists of two tasks that are activated periodically by
an ALARM.

Each task has its own ALARM. This Erika’s object is used to periodically
activate some event or task. More about it later in section 5.1.1.

When the task with low priority is running and the task with high priority
is activated. The low-priority task should not be preempted if it does not
have a parameter SCHEDULABILITY set to NON (non-preemptive).

The task with low priority prints ”Y” to the console each time it gets
activated and the task with high priority prints ”X” to the console when
running activated.

The following output was obtained by running the program in two variations.
In the first experiment, low priority task has a parameter SCHEDULABILITY
set to FULL. This means that this task can be preempted. In the second
experiment, the same parameter is set to NON, so the low-priority task
cannot be preempted. According to the output logs the scheduler works
correctly. Each time the program switches between the tasks context of a
task is switched using CSA discussed earlier in 2.4.3

Experiment 1
Y
Y
X <- 500 ms alarm expires and activates HIGH_priority_task
Y
Y

1https://github.com/Darth-Bujar/examples_erika

29 May 24, 2024

https://github.com/Darth-Bujar/examples_erika

4. Basic Erika examples
Experiment 2
Y
Y
Y <- 500 ms alarm expires and activates HIGH_priority_task,

but LOW_priority_task cannot be preempted
Y
Y

When the high-priority task is activated it will switch on the LED on the
top PCB board of the hardware. The low-priority task switches off the LED
each time it completes the busy wait cycle.

This is done using the iLLD drivers for GPIO (general-purpose input/out-
put). It is enough to configure the mode of the GPIO and then set, or reset
the state of the GPIO. The following snippet shows how to initialize and
change the state of GPIO.
// Definition of GPIO port, pin
#define LED_D110 &MODULE_P20, 14

// Initialize GPIO
IfxPort_setPinModeOutput(LED_D110,

IfxPort_OutputMode_pushPull,
IfxPort_OutputIdx_general);

// Set GPIO
IfxPort_setPinHigh(LED_D110);

// Reset GPIO
IfxPort_setPinLow(LED_D110);

The source code for this example is located in a folder basic_examples/sched-
uler.

4.2 Semaphore example

Another small example has been done to verify that the semaphore works
correctly on TC387. The program has 3 tasks, two of them are so-called
consumer tasks and one is a producer task. The producer task has the
lowest priority. When producer tasks post a semaphore a consumer task
with higher priority should take a semaphore, thus it will be proven that the
implementation of the semaphore works correctly..

Let’s take a look at how a semaphore can be created in Erika RTOS. First
of all, semaphores should be defined in conf.oil
USEEXTENSIONAPI = TRUE
{

SEMAPHORE = DEFAULT { NAME = "S"; COUNT=0; };
};

May 24, 2024 30

..................................4.2. Semaphore example

Be aware that semaphores can be used only in extended task types. The code
above defines a semaphore with the name ”S” and an initial count of 0. To
access the semaphore, firstly it should be added into the .c file as an external
variable of type SemType e.g. extern SemType S;. Then to get the semaphore,
a function WaitSem is used, and to post a semaphore, use function PostSem.
Both functions take a pointer to the semaphore as an argument.

All three tasks of the application are set to be activated periodically by an
ALARM with a period of 3, 2 and 1 second. The lower the priority of the task
the longer its ALARM period. Additionally, the alarm for middle-priority
task (or low-priority consumers) has 10 ticks offset from other tasks, so the
timing is ”asymmetric” and low-priority consumer may take the semaphore
after high priority task or before it.

The result of the program run is written into the debug console.
Z posting one semaphore
X Waiting for semaphore
X get the semaphore

Y Waiting for semaphore
Z posting one semaphore
Y get the semaphore

X Waiting for semaphore
Y Waiting for semaphore
Z posting one semaphore
Y get the semaphore

Z posting one semaphore
X get the semaphore

In the console log, the task ”Z” is a producer task. Task ”X” is low priority
consumer task and ”Y” is high priority consumer task. As we can see when
the producer posts a semaphore and the high-priority consumer task is not
already waiting for it, the low-priority consumer task will take the semaphore.
If both of the consumer tasks are waiting for the semaphore then the task
with higher priority will get the semaphore. That proves that the semaphore
works as it is intended.

The source code for this example is located in a folder basic_exam-
ples/semaphore.

31 May 24, 2024

May 24, 2024 32

Chapter 5
CAN communication

To test if the iLLD can work with ERIKA RTOS, there is no better way than
to write an application code and test it. Since TriCore is a multi-core MCU,
two examples will be done. The first example is a single-core example and it
was done as a lightweight implementation of CAN communication where the
message is immediately processed after being received.

The second example is a multi-core example, that may have slightly worse
performance in latency measurement. However, this application example
should use a bit more sophisticated features of the CAN module, such as
message filtering.

In general, both applications can be divided into the following list:. Start-up setting of the HW.. Interrupt handling by ERIKA RTOS. Basic functionality of CAN (sending and receiving messages). CAN hardware buffers (multi-core example only). CAN hardware filtering (multi-core example only)

To verify the performance of the CAN communication program canping
(mentioned in section 2.2.1) is used together with oscilloscope measurement.
The general flowchart for both examples is shown in figure 5.1. Program has
a ”reactive” behaviour so firstly CAN message should be sent to the MCU by
some external source (USB-CAN converter connected to PC etc.). Than the
message is accepted by the TriCore, and when the message is stored in the
RAM of the CAN module, a new message interrupt flag is raised. After this,
ERIKA should activate the ISR (Interrupt service) for this specific interrupt.

In ISR, the program will read data from the HW buffer and store them in
the software buffer (or simple variable). After the message is stored program
will start to process the stored messages. Both examples are set to reply to
the received (original) message with a reply message. The CAN ID of the
reply message is set to be the same format (standard or extended) as the
CAN ID of the received message. The ID of the original message is increased
by decimal 1 in a reply message. The same procedure is applied to data, but

33 May 24, 2024

5. CAN communication
only the first byte of the received message is used. Thus the reply message
always has only one byte of data. After the reply message has been generated
it is added to the transmission queue transmission process is fully handled
by the CAN module. Additionally, MCU sent a so-called keep-alive message
that indicates that the controller has not been trapped into some exception
and is still running as it is intended.

Figure 5.1: General sequence diagram for CAN examples

To provide users with a better understanding of what is happening in
the application ”Debug mode” has been added to the program. This mode
can be activated by sending a CAN message to the MCU with a specific ID
(0x1) and a value one in the first byte of the message. After this MCU will
automatically start to write logs into the debugger serial interface.

To switch back to the normal mode microcontroller should receive a message
with the same ID but a value of zero in the first byte. Be aware that this
mode significantly reduces the performance of the microcontroller since serial
writing to the debugger is done in a blocking way. Example output of the
controller debug mode.

CAN driver initialization: Complete
RX CAN ID: 0x154 data: 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF
TX: Success
RX CAN ID: 0x152 data: 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF
TX: Success

May 24, 2024 34

................................. 5.1. Single-Core Example

5.1 Single-Core Example

This example was made to be a simple benchmark for measuring the latency
of CAN communication using iLLD drivers and Erika Enterprise RTOS. This
program uses interrupt of category 2, which can call RTOS primitives and it is
scheduled as a task with a high priority. Withing this interrupt control should
read the message that is stored in the RX HW buffer, process this message,
and send a reply message. Additionally, the microcontroller is configured to
send ”keep-alive” messages that indicate that the controller is still alive and
able to access CAN BUS. The message contains useful debug information. In
the case of the single-core application, it is a counter of received messages.
To send this message periodically, the program has an ALARM that activates
a task once per second.

5.1.1 Erika configuration

The beginning of the configuration is very similar to the configuration dis-
cussed in section 2.1.1. However, the number of cores for the single-core
example is reduced to 1. The exact configuration for the single-core project
can be found in can_singlecore/ee/conf.oil.

Interrupt and task configuration

The program has one interrupt handler of category two (ISR2) that services
the RX new message interrupt flag for FIFO 0, or RXF0N. The interrupt
handler is set to be serviced by CPU0 with a priority of the interrupt set to
10. Be aware that the following restriction applies: all interrupts of Category
1 must have a higher or equal hardware priority compared with interrupts of
Category 2. This limitation has been introduced to avoid various rescheduling
problems [2]. Configured this way the interrupt will be triggered each time
a new message appears in the FIFO0 buffer of the CAN module. If the
interrupt’s handler is not specified then the function with the same name
as an interrupt (in this case can_ISR_RX_handler) is used instead. If the
function with such a name is not found, compilation will fail. The exact
definition of interrupt handler from the configuration file:

ISR can_ISR_RX_handler
{

CPU_ID = 0x0;
CATEGORY = 2;
SOURCE = "CAN_CAN0_INT0";
HANDLER = "can_ISR_RX_handler_func";
PRIORITY = 10;

};

35 May 24, 2024

5. CAN communication
The parameter SOURCE must be set to provide Erika with a definition of
the hardware interrupt flag. The list of sources can be found in User Manual
[7].

This structure definition has a similar meaning as calling the macro IFX_IN-
TERRUPT that is used to assign a function to the ISR in iLLD.

The next part of the configuration is the task that sends the keep-alive
message. The message should be sent periodically and serve as an indication
that the controller did not get stuck in some trap or infinite loop. To trigger
the task periodically, typically ALARM object is used, the definition of the
alarm is discussed later in the next section 5.1.1.

The task definition is very simple in this case. No synchronization prim-
itives such as RESOURCE or EVENT are used, and the task does not
require a private stack. The task is defined as a TASK object with identifier
can_keep_alive_task. Since there is no other task the priority is set to
1. The schedulability of the task is set to NON, which means that the task
cannot be preempted.

TASK can_keep_alive_task
{

CPU_ID = 0x0;
PRIORITY = 1;
ACTIVATION = 1;
SCHEDULE = NON;

};

Alarms and counters

The ALARM object is a time-triggered object that can activate a task,
EVENT, or set of events. The definition of such an object contains the source
of the ticks, the tick offset, the period in ticks and a task or event to be
activated. An alarm object can be used to trigger the tasks on a different
core than the core it is assigned to. The source of the countdown can be any
COUNTER object.

From Erika’s OIL wiki [4], COUNTER object is the timing reference that
is used by alarms. There are two main types of counters. The first one is
a software counter and it is not connected to the HW timer, this type of
counter is serviced during the system timer service call. COUNTER can be
set to be connected to a hardware timer (TYPE = HARDWARE). If it is
so, RT-DRUID generates an additional handler for this specific counter. The
counter can be also equipped with priority and the parameter SYSTEM_TIMER
which defines if the timer is serviced as an OSEK system timer or not. Also,
a counter object has parameters that specify the maximum and minimum
values of the counter, the number of ticks per base and the number of seconds
per tick. The exact definition of the pair counter and alarm in this application

May 24, 2024 36

................................. 5.1. Single-Core Example

look as follows:

COUNTER system_timer_master
{

CPU_ID = 0x0;
MINCYCLE = 1;
MAXALLOWEDVALUE = 2147483647;
TICKSPERBASE = 1;
TYPE = HARDWARE
{

DEVICE = "STM_SR0";
SYSTEM_TIMER = TRUE;
PRIORITY = 2;

};
SECONDSPERTICK = 0.001;

};
ALARM alarm_1s
{

COUNTER = system_timer_master;
ACTION = ACTIVATETASK { TASK = can_keep_alive_task; };
AUTOSTART = TRUE { ALARMTIME = 0; CYCLETIME = 1000; };

};

This configuration code uses a device STM_SR0 as a source of ticks for
COUNTER. STM (System Timer) is a TriCore module, that contains a
few free-running 64-bit counters. Erika Enterprise supports STM_SR0 and
STM_SR1 as system timer devices.

The timer increases its value once per millisecond as it is defined in
SECONDSPERTICK until the maximum value of 2147483647 ticks is reached
(31-bit maximum value). An alarm is set to activate the task with an identifier
can_keep_alive_task which is a task that sends keep-alive messages. The
task is triggered every 1000 ticks with each tick equal to 1 ms task will be
activated each second.

5.1.2 CAN drivers – iLLD

As it has been mentioned above, the single-core example is done as a simple
benchmark-oriented. The program should successfully receive the CAN
message and then it will generate and send a reply message immediately
without storing a message. Interrupt configuration should be done on both
sides in Erika’s configuration and CPU registers. For Erika, it is a definition
of the interrupt in the configuration file (conf.oil), for CPU configuration is
done through an already pre-made iLLD CAN module configuration structure
that contains all needed parameters for the CAN module configuration.

37 May 24, 2024

5. CAN communication
CAN Node configuration

The first step is to select the CAN module. MCU that is used in this
diploma thesis has 3 CAN modules and only MODULE0 is used in all CAN
examples. Each CAN module, as well as the CAN node, has a slightly
different definition of available pins. To have a better view of the avail-
able pins for each module I would recommend checking the file located in
../iLLD/TC38A/TriCore/_PinMap/IfxCan_PinMap.c. This file contains the
list of all available pins for each CAN module and each CAN node.

According to the schematics of the HW provided by Garrett Motion Inc.
pins P20.7 and P20.8 are connected to the D-sub connector that is used for
CAN communication. So only CAN module 0 and its node 0 can be used.

After selecting the module and its node and verifying the pin assignment
according to the schematics, a type of node should be set. In both single-core
and multi-core CAN examples the same node is used for both directions of
communication, so it is set to value IfxCan_FrameType_transmitAndReceive.
This value is then used by iLLD to initialize buffers according to the se-
lected direction of communication. In case when only one direction of the
communication is chosen, only one buffer (RX or TX) will be initialized.

The next setting is the baud rate of the CAN. For all projects that have
a CAN bus, the communication speed is set to be 1 Mbit/s standard speed
and 4 Mbit/s for the data rate switching in CAN FD.

Configuration of the RX and TX buffers is done in the following way.
The mode of the TX buffer is set to be a queue of the length 2 and the
size of one element is IfxCan_DataFieldSize_64, which is the maximum
size of the message in CAN FD communication. Received messages are
set to be stored in the FIFO0 buffer. The FIFO mode is set to value
IfxCan_RxFifoMode_blocking. That means that the module is not allowed to
overwrite any already stored messages. If the buffer is full, then the RX FIFOi
Full interrupt is generated and until the interrupt is serviced, the node will not
accept any new messages to this buffer. For each lost message, interrupt RX
FIFOi Message Lost (RXF0L) is generated and should be serviced. Another
available option for the ”buffer full behaviour” is to overwrite an already stored
message with a new one. However, this behaviour leads to the loss of messages
which should not happen during normal communication. Furthermore, such
a behaviour will lead to incorrect results for the communication latency tests.

The transmission buffer data field size is set to only 8 bytes and stored in
a queue. The buffer size (amount of messages that it can hold) is defined by
a CAN_BUFFER_SIZE macro (expands to 1) for both buffers.

Be aware that the saviour change of the TX/RX buffer should be made
alongside a change of the start address of a particular buffer and buffer listed
below.

The next part of the configuration is an interrupt configuration in iLLD
(which means the configuration in MCU). It consists of 4 main parts. First of
all, interrupts should be enabled in the list of interrupts in the communication
structure. This setting will set a specific bit in the IE (Interrupt Enable)

May 24, 2024 38

................................. 5.1. Single-Core Example

register of the CAN module according to the register description in the user
manual [7].

After interrupt generation has been enabled, for the correct functioning
interrupt should be provided with a valid description for the ICU (Interrupt
Control Unit). This will cover the remaining 3 steps of the interrupt con-
figuration. The type of service (a module or CPU to serve the interrupt),
priority, and ICU interrupt line should be assigned to it.

The configuration for the ICU is done through the interrupt group names,
rather than the name that has been listed in the IE register. For the ”conver-
sion” between two variations of the interrupt naming, the picture in Appendix
B is added. The same picture can be found in the user manual [7].

When interrupts are being generated two registers change their values.
First register IR (Interrupt Register) represent the interrupts themselves.
The second register ISREG (Interrupt Signalling Register) represents groups
of interrupts. if the group of interrupts has at least one pending interrupt
service request, then the bit in ISREG will be set to TRUE. For example,
the interrupt Lost message used in the multi-core example is configured in
group alrt (alerts). When the interrupt flag is active entire group is also active.

The entire configuration is to big to add it here as a code snippet, but it
can be found in the file can_singlecore/ee/can_control.c variable name is
IfxCan_Can_NodeConfig canNodeConfig.

iLLD with CAN module

After the configuration of the CAN module has been discussed let us move
to the functions that service the CAN module. These functions can be split
into 3 main categories..Module and Node initialization.. Servicing the interrupts.. Reading and sending CAN messages.

Firstly the module should be initialized. To initialize CAN on TriCore
microcontroller code should first initialize the chosen CAN Module (in this
case MODULE_CAN0). And only after that chosen CAN Node is initialized
(IfxCan_NodeId_0). Initialization of the CAN module is done in the function
void can_init(void). Be aware if registers SCU and CCU are not set to enable
the CAN clock, then the controller will stuck in an infinite loop during the
CAN module initialization procedure more about it in section 3.3.2.
// CAN module configuration structure
IfxCan_Can_Config canConfig;
// CAN module configuration handler
IfxCan_Can canModule;

// CAN initialization

39 May 24, 2024

5. CAN communication
IfxCan_Can_initModuleConfig(&canConfig, &MODULE_CAN0);
IfxCan_Can_initModule(&canModule, &canConfig);
IfxCan_Can_initNode(&canNode, &can_node_config);

The next step is the interrupt service routines. To handle the interrupts
that are generated by the HW iLLD has a straightforward interface. In
the source code of the drivers, an enumerated structure is defined. This
structure represents all the possible interrupt sources that can be gener-
ated by the CAN module. To service specific interrupt flags, a function
named IfxCan_Node_clearInterruptFlag is used. After the execution of
this function, the interrupt flag will be serviced and a new interrupt can
be generated. So the flag should be served at the end of the interrupt function.

After receiving a new message interrupt the interrupt service routine should
(or can) load the message from the HW buffer and move the acknowledgement
index of a buffer (handled by iLLD). The reading from the HW buffer
can be done by using the iLLD function IfxCan_Can_readMessage. The
function should be provided with a node configuration (discussed in section
5.1.2, a pointer to the variable that stores CAN message header of type
IfxCan_Message and a pointer to an array where data should be written.

An iLLD message header described in a data type IfxCan_Message contains
a few parameters that specify from which buffer data should be read (FIFO0,
FIFO1, Queue). In this example, FIFO0 is configured to be an RX buffer so
the readFromRxFifo0 parameter should be set to TRUE before reading the
message.

After the message has been read from the HW buffer the interrupt handler
processes the message and sends it as a reply message. In this case, a simple
function that increments both CAN ID and data is used, but any more
sophisticated function can be used instead.

To successfully send a CAN message using iLLD drivers it should be
provided with a standard, for the CAN message header, parameters. Such
as header type, CAN ID and data length. As well as the special parameters
that are used inside of the CAN iLLD drivers.

Such parameters are the mode of the frame and the buffer where the
message should be stored before being sent. Since the reply message always
contains only one byte of data the frame mode is set to be IfxCan_FrameM-
ode_standard. For messages that contain more data, iLLD can be configured
to setting IfxCan_FrameMode_fdLongAndFast, for transmission with CAN
FD and enable bitrate switching on RX and TX.

The last parameter before sending a message is a queue where the message
should be stored. By default, if none of the buffers are specified, then the
message will be stored in the dedicated buffer. But in this example, the
CAN node is configured to have a queue instead of a dedicated buffer as a
TX buffer. To store the message in a queue, parameter storeInTxFifoQueue
should be set to TRUE. The next code snippet shows the simple example of
the message being read from the HW buffer, modified and sent in a busy-wait
loop.

May 24, 2024 40

................................. 5.2. Multi-Core Example

IfxCan_Message rxMsgHdr;
IfxCan_Can_initMessage(&rxMsgHdr);
uint8 rxData[MAXIMUM_RX_CAN_FD_DATA_PAYLOAD];

/* Received message content should be read from RX FIFO 0 */
rxMsgHdr.readFromRxFifo0 = TRUE;

/* Read the received CAN message */
IfxCan_Can_readMessage(&canNode, &rxMsgHdr, (uint32*)rxData);

IfxCan_Message txMsgHdr;
IfxCan_Can_initMessage(&txMsgHdr);

/* Configure message header */
txMsgHdr.messageId = rxMsgHdr->messageId + 1;
txMsgHdr.messageIdLength = rxMsgHdr->messageIdLength;
txMsgHdr.frameMode = IfxCan_FrameMoLade_standard;
txMsgHdr.dataLengthCode = IfxCan_DataLengthCode_1;
txMsgHdr.storeInTxFifoQueue = TRUE;

/* Send a message with busy-waiting */
do
{

status = IfxCan_Can_sendMessage(&canNode, txMsgHdr,
(uint32 *)rxData);

}
while(status == IfxCan_Status_notSentBusy);

At this point we have already discussed the configuration of Erika Enterprise
and iLLD drivers for the single-core CAN example. The source code for this
project is located in a folder can_singlecore.

5.2 Multi-Core Example

This example has been done as a demonstration that the hardware modules
(in this case CAN module of MCU) can be accessed from multiple cores under
RTOS. In this example, CAN messages are now received on CPU0 and sent
using a task on CPU1. When messages are received at CPU0 they are stored
in a ring buffer before being processed.

The example is based on the single-core example described in chapter 5.1.
Let’s quickly recapitulate what single-core application has:. CAN communication using iLLD drivers. Received message interrupt (RXF0N).Keep-alive message with a counter of received messages

41 May 24, 2024

5. CAN communication
. Debug mode

The application still follows the general flowchart shown in figure 5.1,
however, some parts of the chart have changed and a more detailed description
of the message ”path” is shown as a sequence diagram in figure 5.2.

In this example, the message after being read from the HW buffer, is stored
in the SW buffer instead of processing it right away. Then periodically, a
CPU1 task that service the SW buffer is triggered by ALARM, then the
message is finally processed and a reply is sent.

Figure 5.2: Multi-core application sequence diagram, detailed.

In comparison to the single-core example, this example utilizes more re-
sources of the CAN module. The application uses bigger HW buffers, more
interrupts and also HW filtering based on the ID of the CAN message. Also,
the application now has an implementation of SW buffer, which is a circular
buffer (or a ring buffer) guarded by a spinlock to allow multi-core access.

The following sections will describe how Erika Enterprise RTOS is config-
ured and what changes to the source code of single-core example from section
5.1 are done.

The source code for this example is located in a folder can_multicore/.

5.2.1 Erika configuration

The core of the configuration is still the same as in the single-core example.
But few changes have been made. The list of the changes can be described
as follows:.One more CPU has been added to the configuration.. RXF0N interrupt category is changed to 1.. New interrupt handlers definition has been added..A new task that services the SW CAN buffer is added..The Data length of the keep-alive message is increased.

May 24, 2024 42

................................. 5.2. Multi-Core Example

Let us get through the changes step-by-step. The first change adds one
more core to the conf.oil. This can be done by adding this code.

CPU_DATA = TRICORE
{
ID = 0x1;
IDLEHOOK = TRUE
{

HOOKNAME = "idle_hook_core1";
};

};

It is very similar to the definition of the first core, but frequency and compiler
are not specified. By default, they should be the same as for the CPU0.

The next change is new interrupt handlers that are servicing newly added
interrupts. Resulting in having three interrupts in the application, including
two new.

ISR can_isr_fifo0_msg_lost {
CPU_ID = 0x0;
CATEGORY = 1;
SOURCE = "CAN_CAN0_INT3";
PRIORITY = 6;

};

ISR can_isr_tx_success {
CPU_ID = 0x0;
CATEGORY = 1;
SOURCE = "CAN_CAN0_INT9";
PRIORITY = 8;

};

ISR named can_isr_fifo0_msg_lost is triggered each time when a message is
lost for FIFO0. The message is considered lost when the CAN module does
not have free resources to save the message. It can happen if the RX buffer
is full.

Next is an interrupt triggered on the transmission success event. The
transmission events were discussed in a section 2.4.1.

The sources of interrupts have been found according to a description in
section 2.1.2

A new task has been added to service CAN messages stored in a SW buffer.
The task checks whether the buffer has new messages and if it is so, then it
picks these messages and processes them one-by-one. The task will continue
to pick messages from a buffer until it is empty. The task is fired periodically
by ALARM object (alarm is triggered each 10 ms). The size of both buffers
(HW and SW) should be enough to handle all incoming messages within the

43 May 24, 2024

5. CAN communication
period between task calls, see chapter 5.2.2. Since the TASK is running on
CPU1 ALARM uses a definition COUNTER object for CPU1. However, it
is possible to trigger a task with ALARM based on the COUNTER from
another core.

TASK task_can_tx_msg_processing_cpu1
{

CPU_ID = 0x1;
SCHEDULE = FULL;
ACTIVATION = 1;
PRIORITY = 10;

};

5.2.2 CAN Driver – iLLD and SW buffer

The multi-core definition of the CAN configuration did not change much from
the single-core example, two interrupts have been added and HW filters are
configured.

The main change is that CPU1 can now access the module simultaneously
with CPU0.

Also, keep alive message now hosts 2 more counters for new interrupts.
Thus the new keep alive message contains all the needed information for
debugging purposes. It sends data about how many messages have been
received, transmitted and lost. Under normal conditions, the counter of lost
messages should be zero.

CAN Node configuration

Since the core functionality is the same, the source code for this example is
based on a single-core example. Thus the already mentioned in section 5.1
functions and their usage will not be described here.

Description of the changes to the new configuration of the CAN node can be
described as follows. Two interrupts have been enabled in the configuration,
and both of them are serviced on CPU0. Resulting in all CAN module
interrupts being serviced by CPU0. CPU1 has only one interrupt assigned to
it, which is COUNTER interrupt.

The configuration of the interrupts is very similar to the configuration of the
interrupt Rx FIFO0 New Message. New interrupts have lower priority than
RF0N interrupt. Because new interrupts serve only a debug role. All of the
interrupts have category 1 (ISR1). Changes to CAN node configuration for
multi-core example are shown in a list (interrupt name in brackets according
to Appendix B):. RX and TX buffer is set to 32. 2 more interrupts are added so the full list is now:

May 24, 2024 44

................................. 5.2. Multi-Core Example

. Rx FIFO0 New Message (RF0N) – triggered when new message
arrived.Transmission Completed (TC) – triggered when transmission has
been completed. Rx FIFO0 Message Lost (RF0L) – when the buffer has no space to
add a new message.

Due to the blocking behaviour of the FIFO buffers, it can happen that
interrupt flag RF0F (RX FIFO0 Full) will be raised. This interrupt is not
handled by the application. Under the normal behaviour of the application,
it should not happen since the execution time of the RF0N interrupt is less
than the time that the CAN message needs to be fully sent and the size of
the SW buffer can be configured to a much higher value than HW buffers.
However, by default, it is just 32 messages.

Each interrupt has a specific counter value assigned to it. When some
event is happening the counter is being incremented by one. The value of the
counters is sent in keep alive message that in the multi-core example has 12
bytes corresponding to 3 values each 4 bytes long. When the counter reaches
a limit of 32bit value it is reset to 0 by the application automatically.

Also in this example, the CAN node is configured to reject messages within
the defined range of CAN ID. The filters are configured separately for extended
CAN ID and standard CAN ID. The general flowchart of the HW filter looks
as it is shown in figure 5.3.

The application is configured to reject all messages within the ID range
from 0x2 to 0xAA (170 decimal). That means that after such a message is
received the interrupt new message is not generated and the message is not
added to the RX FIFO0 buffer. In the configuration structure of the node
the section filterConfig is set to accept non-matching frames to RX FIFO0. It
is important since interrupt RX FIFO1 New Message is not configured. The
configuration of the filter is done using iLLD functions and both extended
and standard IDs are configured the same way:

// Initialize the filter structure
IfxCan_Filter filter;

filter.number = 0;
filter.elementConfiguration =

IfxCan_FilterElementConfiguration_rejectId;
filter.type = IfxCan_FilterType_range;
filter.id1 = from_id; // 0x2
filter.id2 = to_id; // 0xAA

IfxCan_Can_setStandardFilter(&canNode, &filter);
IfxCan_Can_setExtendedFilter(&canNode, &filter);

45 May 24, 2024

5. CAN communication

Figure 5.3: CAN hardware message filtering flowchart. Taken from TriCore
User Manual Part 2 [7].

SW buffer implementation

The SW buffer is a commonly used technique when dealing with communi-
cation. The type of buffer used in this implementation is a so-called ring
buffer. A ring buffer is such a buffer, where the end of the buffer is con-
nected to the beginning of the buffer, as shown in Figure 5.4. Buffer has
two indices first is where the data will be written (buffer_write_idx) and
the second is from where data should be read (buffer_read_idx). When
the write index is about to cross the length of the buffer it is reset to the
initial value (buffer start). That allows messages or other data to be stored
in some sort of queue where the first message to get in is the first message to
get out (FIFO). It is the same structure as HW buffers of the CAN module use.

Since the application is multi-core and the buffer will be accessed at least
from 2 places it should have a synchronization mechanism. It should be
done so the reading and writing cannot be made from the different cores,
or threads, at the same time. The synchronization mechanism is the simple

May 24, 2024 46

................................. 5.2. Multi-Core Example

Figure 5.4: Ring buffer structure example.

implementation of a spinlock that iLLD already has.
Erika also has such a primitive, but Erika’s implementation is far more

complicated than iLLD’s. Erika’s implementation additionally performs
multiple checks, when iLLD’s implementation simply waits in a while loop
for a specified amount of cycles until it gets a spinlock. If after a specified
amount of cycles thread cannot access the resource (spinlock), a function
should return a value that will indicate that. And the application should
handle it.

To take a spinlock program calls function IfxCpu_setSpinLock, which has
two parameters, first is the pointer to a spinlock, and second is the amount
of cycles to wait. To reset spinlock function IfxCpu_resetSpinLock is used.
During the time that thread has a spinlock, interrupts are disabled to allow
faster execution of the critical part of the code. The code snippet that imple-
ments the process of acquiring spinlock and resetting the spinlock looks the
following way:

/** Lock spinlock and reenable interrupts
*/
static void _spinlock_lock(IfxCpu_spinLock *lock)
{

IfxCpu_disableInterrupts();
IfxCpu_setSpinLock(lock, MAX_32BIT_VAL);

}

/** Unlock spinlock and reenable interrupts
*/
static void _spinlock_unlock(IfxCpu_spinLock *lock)

47 May 24, 2024

5. CAN communication
{

IfxCpu_resetSpinLock(lock);
IfxCpu_enableInterrupts();

}

It is also important to mention that according to the TriCore architecture
manual [16] instruction that is used for access the spinlock cmpswap requires
the address to be aligned to 4 bytes, which means that the address should
end either on 0x0 or 0x4. To ensure that the Tasking compiler will place
the variable in proper memory space, a special macro IFX_ALLIGN(4)
should be used in front of the data type of the variable. This explicitly says
to the compiler that the variable should be aligned to 4 bytes. If it is not
done, the processor will fail at the execution of this instruction. This is very
hard to debug since the behaviour seems random.

Continue on SW buffer implementation, spinlock should be acquired by the
shortest possible amount of time. Because while the thread has a spinlock
interrupts are disabled, To achieve it, a spinlock is only locked during the
moment when the buffer is accessing the read or write indices. An example of
such a usage is a function that loads a message from a buffer to some external
variable of type can_message.
boolean can_buffer_pick_message(can_message* message)
{

boolean buffer_status = FALSE;

/* Blocking spinlock */
_spinlock_lock(&can_sw_buffer_index_lock);
if (can_buffer_read_idx != can_buffer_write_idx)
{

*message = can_sw_rx_buffer[can_buffer_read_idx];
buffer_status = TRUE;

}
_spinlock_unlock(&can_sw_buffer_index_lock);

return buffer_status;
}

As it is shown in a code snippet and has already been described above.
The spinlock is blocked only for the shortest possible amount of time and
released immediately after the message is copied into the external variable.
The function can_buffer_write_message is implemented according to the
same principle.

The only change that is left to discuss is the task that service the SW
buffer. The flowchart of the task is shown in figure 5.5. But in short, the
task will be active until the TX buffer is not full and the SW buffer has new
messages to process.

May 24, 2024 48

.................................. 5.3. Benchmark results

Figure 5.5: Flowchart of the task that process CAN messages in multi-core
CAN example.

To implement this behaviour reading from the SW buffer has been separated
into two steps. The message should be picked from a buffer (implemented in
can_buffer_pick_message) and only if the message has been successfully sent,
the read index of the buffer is moved (function can_buffer_move_index).

An important note is that TriCore architecture allows any core to access
any address space in the memory. So the entire memory can be considered as
shared.

5.3 Benchmark results

The subject of a benchmark is the latency of communication that has been
described in chapter 2.2.1. Latency was measured using a program canping
and an oscilloscope to verify the results obtained by canping. Figure 5.6
shows the definition of latency used in this tests.

It is important to mention that the latency itself is not a goal of a test.
MCU with higher computational power, or even more simple code will have
lower latency. The goal is to verify that the implementation of the example
applications is robust and fast enough to handle a flood of CAN messages
without their loss and changes that were done to Erika Enterprise are not
causing the program to fail during runtime.

49 May 24, 2024

5. CAN communication

Figure 5.6: Definition of latency used for tests. Source [10].

Let us take a look at the test that was done using an oscilloscope. Figure
5.7 is an example of how the measurement looks like. The blue line is the
CAN_H signal, and the red line is the state of the LED mounted on the
hardware’s top PCB board. The LED is switched on when the program enters
ISR and switched off when the program leaves it.

The total communication time (between the start and end of communica-
tion) is around 175 µs. The time between vertical green lines is the latency
of the communication, which is around 12 µs. This value also includes the
”end of frame” (see section 2.2). After the message is sent the bus is switched
to the recessive state (0 for CAN_H) for an amount of time equal to 5 bytes.
With the communication speed set to 1 Mbit/s, this time is equal to 5 µs
and can be subtracted from the latency.

The program spent just 3.5 µs in ISR. The same figure shows that the
incoming message is longer than a reply message from the MCU. This is
correct because the payload for incoming messages is set to be 8 bytes and
the reply message always has only 1 byte of data. Also, as we can see in the
same figure, the amount of time spent servicing interrupt and scheduling it
(ISR2 is used) is much lower than the amount of time needed to send a CAN
message. This means that the buffer will always be emptied before another
message is received.

The next test is done using canping. The command that used to start
canping is: ”sudo ./_compiled/bin/vca_canping -m 1 -d can0 -w 2
-vv -c 40000 -r”.

During the tests, different sizes of HW and SW buffers were tested. The
number of messages sent is always a 40000. The payload is 8 bytes and
messages are sent with extended identifiers (29 bits long). Program should
sent another message as soon as the reply message is received (flag -w 0 in
command).

The test result for the single-core example is shown in a table 5.1. Also
note that the N in the table’s column ”Size of HW buffer” means, how many

May 24, 2024 50

.................................. 5.3. Benchmark results

Figure 5.7: Oscilloscope measurement of CAN communication latency. The
time between two green vertical beams is the latency of communication. The
time between black vertical beams is the total communication time. The grid is
20 µs.

Size of HW
buffer [N]

Mean
latency
[µs]

Standard
deviation
[µs]

loss
[%]

1 379.84 35.57 0
4 379.61 34.59 0
10 381.87 39.10 0
32 373.39 28.09 0

Table 5.1: Single-core Latency test result

messages it can fit.
The latency values in table 5.1 are significantly higher than in a test done

with an oscilloscope. This is because the UBS-CAN converter latency is much
higher than it was expected. Also canping measure total communication time
(definition in figure 5.6).

However, the results of the tests are still useful as they can show that
the program CAN handle the flood of messages without their loss and that
the program will not fail. Thus the implementation is robust enough for
demonstration purposes. The slight difference in the latency value that seems
to be related to HW buffer sizes, can be mostly explained as the variations in
USB-CAN converter latency rather than the real difference made by the size
of the HW buffer.

The following figure 5.8 shows the latency histogram of the measured data

51 May 24, 2024

5. CAN communication

Figure 5.8: Histogram of latency for single-core application.

Task
period
[ms]

Size of SW
buffer [N]

Size of HW
buffer [N]

Mean
latency
[µs]

Standard
deviation
[µs]

loss
[%]

1 512 32 949.61 142.56 0
5 512 32 4921.72 349.33 0
10 512 32 9921.05 345.76 0
1 512 1 950.33 142.27 0
1 32 32 948.24 147.29 0

Table 5.2: Multi-core Latency test result

for the single-core example with different sizes of the HW buffer.
One important fact that has been already mentioned is that enabling debug

mode causes latency to grow significantly. The latency, in this case, is around
34690 µs, Which is more than 100 times bigger latency than with debug mode
turned off and more than a thousand times more than a latency measured
with an oscilloscope. This is happening due to the blocking behaviour of
command printf that is used to write debug data to the console. The latency
histogram for this scenario can be found in Appendix C.1

Now let’s take a look at a multi-core example. This example can be used as
a base for CAN communication in more sophisticated demo projects because
this example has SW buffer implementation that allows to postpone the new
message processing.

As we can see in the table 5.2. The application is still able to handle all
the messages on a CAN bus without a loss. Even if the hardware buffer size

May 24, 2024 52

.................................. 5.3. Benchmark results

is set to 1. However, it does not make sense to set a SW buffer to 1. The
application will end up leaving messages in the HW buffer since the SW buffer
is full after the first message is received, which can lead to the HW buffer
being full and new messages being rejected. Also, the message processing
task is done in such a way that it cannot read messages from the HW buffer.
So after replying to one message contained in the SW buffer, the task will be
terminated.

Figure 5.9: Histogram of latency for multi-core application with a period of task
set to be 1 ms.

In the same table, we can see that the period of the task significantly
affects the latency, which is expected. The controller will send a response only
after the task is activated, and the larger the period of the task the higher is
maximum latency. As was expected for a 1 ms period of the task the mean
latency is around 1 ms, the same happens for 5 ms and 10 ms periods. The
slight difference between 10 ms or any other period and the mean value of the
same measurement can be explained by the fact that messages are sent by
canping one after another and some of them arrive when the task is running,
so they will be processed almost instantly. Some of them arrive when the
task was just terminated, so they should wait until a new iteration begins.
For example in the test where the task period was set to 10 ms the lowest
latency is 4834 µs. Also, some messages will not be sent in the next iteration
after they arrive if the size of the TX buffer is smaller than the number of
received messages.

Additionally, the multi-core example has been tested with the reply task
running in an infinite loop without delay. In this case, the latency of the
multi-core example is almost the same as for the single-core.

The histogram in figure 5.9, shows that most of the messages are sent back

53 May 24, 2024

5. CAN communication
(replied) at a time around 1 ms for the reply task period set to 1 ms.

May 24, 2024 54

Chapter 6
Serial Peripheral Interface (SPI)

This chapter explains the basics of using an implementation of FAT file system
FatFs with SPI on TriCore MCU running Erika Enterprise.

Unfortunately, the HW provided for this diploma thesis has been developed
for internal testing purposes, and it does not have the support of the QSPI
interface yet. The pins are not connected to the SD card slot. But since SPI
is a very simple protocol, Garrett Motion Inc. provided a solution for the
problem which is a ”bit-bang” implementation of SPI.

6.1 SPI Drivers – iLLD & bit-bang

At the beginning of this chapter, we will discuss and explain a bit-bang imple-
mentation of SPI. After some basic code that can be used for communication
with an SD card using an inbuilt TriCore module and iLLD will be described.

Figure 6.1: GPT reload mode general structure [7].

The SW implementation of SPI requires a controller to have some source of
clock signal. In this case, a General Purpose Timer (GPT) is used to generate
a clock signal and periodically check the state of the bus. Tricore has 6 GPT
timers, however, not all of them have the same functionality. According to

55 May 24, 2024

6. Serial Peripheral Interface (SPI).............................
manual [7]. Only timers T2 and T4 can be used in the reload mod for timer
T3.

As it has been described in section 2.3.1. SPI is a clock synchronous bus, so
that means that the bus is sampled only on the clock edge. That significantly
simplifies the implementation since the entire communication protocol can be
done in one interrupt of timer.

First of all GPT module should be configured to generate interrupts with
the desired communication speed. GPT T3 interrupt is generated every 500
ns, which means that the frequency of the CLK signal for SPI is 1 MHz. To
generate one cycle of CLK signal two interrupts of GPT T3 are needed. One
will set CLK to a HIGH state and the other will reset it to a LOW state.
Configuration of the GPT timer can look like this:

/* Initialize the GPT12 module */
IfxGpt12_enableModule(&MODULE_GPT120);
IfxGpt12_setGpt1BlockPrescaler(&MODULE_GPT120,

IfxGpt12_Gpt1BlockPrescaler_8);

/* Initialize the Timer T3 */
IfxGpt12_T3_setMode(&MODULE_GPT120, IfxGpt12_Mode_timer);
IfxGpt12_T3_setTimerDirection(&MODULE_GPT120,

IfxGpt12_TimerDirection_down);
IfxGpt12_T3_setTimerPrescaler(&MODULE_GPT120

IfxGpt12_TimerInputPrescaler_1);
IfxGpt12_T3_setTimerValue(&MODULE_GPT120, RELOAD_VALUE);

/* Initialize the Timer T2 */
IfxGpt12_T2_setMode(&MODULE_GPT120, IfxGpt12_Mode_reload);
IfxGpt12_T2_setReloadInputMode(&MODULE_GPT120,

IfxGpt12_ReloadInputMode_bothEdgesTxOTL);
IfxGpt12_T2_setTimerValue(&MODULE_GPT120, RELOAD_VALUE);

/* Initialize the interrupt */
volatile Ifx_SRC_SRCR *src =

IfxGpt12_T3_getSrc(&MODULE_GPT120);
IfxSrc_init(src, ISR_PROVIDER_GPT12_TIMER,

ISR_PRIORITY_GPT12_TIMER);
IfxSrc_enable(src);

At the beginning of this code, the GPT module is initialized with prescaler 8
(resolution 250ns for each tick of the timer). After GPT timer T3 is configured
to be in timer mode the direction of counting is set to IfxGpt12_TimerDirec-
tion_down. GPT T2 is used as a holder of reload value for timer T3. Each
time T3 reaches zero its value is automatically reset to the value stored in timer
T2. Timer value for both T2 and T3 defined in macro RELOAD_VALUE
that extends to value 2. With each tick of a timer being generated every 250
ns the resulting period of a timer is 500 ns. After T3 is fully configured, T2

May 24, 2024 56

............................. 6.1. SPI Drivers – iLLD & bit-bang

is configured to reload mode and reload value loaded into it.
The next step is the initialization of interrupts. The initialization of inter-

rupts for the GPT module is different from the CAN module. Firstly the
pointer to the value that describes GPT T3 is stored, and then the value of
the registers SRPN (Service Request Priority Number) and TOS (Type of
Service Control) is updated with a priority of interrupt and type of service
(in this case CPU1) is stored into the registers of GPT T3.

Now let’s move to the implementation of an interrupt service routine that
will do all the jobs related to SPI communication. The pseudo-code for this
routine:

if edge is rising then:
{

bit_count++;
set_clk();
read_data_from_miso();

}

if edge is falling then
{

if bit_count >= 8 then
{

reset_clk();
byte_count++;
bit_count = 0;

if byte_count >= data_byte_length then
{

stop_t3();
}

}
}
else
{

set_MOSI((tx_buff[byte_count] >> (7-bit_cnt)) & 0x01);
}

Let us get through this code. The code should keep track of two values. First
is the number of bytes (byte_count), this is important since this value is used
as an index for transmission data buffer (tx_buffer). The second index is the
number of a bit in this byte (bit_count) that is now being transmitted or
received. Since the value is sent bit-by-bit we should keep track of it.

When the program gets its first interrupt, cock edge is set to be falling,
which means that the SPI communication is defined as CPHA = 0, or in
other words sampled on the first edge of the CLK signal.

In the very first GPT interrupt we set the value of the MOSI signal to the

57 May 24, 2024

6. Serial Peripheral Interface (SPI).............................

Figure 6.2: SPI CLK signal generated by GPT T3 measured on an oscilloscope.

value that is contained in the first bit of the first byte in the transmission
buffer. Then when the next interrupt is received, the program sets the CLK
signal to 1 and reads the value of signal MISO. In the next iteration bit index
is moved and the next value is set as a value of MOSI. This continues until
the end of the byte is reached. Then next byte from the transmission buffer
is sent to the bus following the same procedure.

This continues until the end of the transmission buffer is reached. The
same applies to the receiving procedure. The value of the MISO signal is
captured on each Rising edge. The exact implementation can be found in the
file can_logger/ee/SPI_CPU.c.

6.2 FAT Library

The information about FatFs usage is gathered from the Wiki of the file
system [14]. The following section explains the code that is used for com-
munication with the SD card. The code is initializing the SD card, opens a
file and writes data to it. Then the file is closed and the volume is unmounted.

FatFS requires users to define basic communication interfaces. Each project
has a different peripheral interface configuration and it is not the job of the
file system to take control of it. Thus the interface for the storage system
should be defined by the user. The file system has 3 main interfaces send a
command, receive data and transmit data. In this diploma thesis SD card is
used as the storage.

Communication with an SD card starts with its initialization. This is done
by using the function disk_initialize from FatFs. To perform this operation

May 24, 2024 58

................................. 6.3. Example Application

clock signal should be set to slow mode (100 KHz). The program waits for 80
dummy clocks (data lanes are set to idle). After 80 clocks program sends a
command CMD0 to the SD card which will change the state of the SD card to
idle. After this, the program sends a command SEND_IF_COND to identify
if the SD card type is SDv2. Then voltage range checks are performed. If
this check passed then the SD card is considered to be initialized.

After the disc is initialized the volume of the disk should be mounted (e.g.
selected). Since the disc has only one volume there are not many options to
choose from. The mounting process is done by the command f_mount. Be
aware the results of every FatFs operation should be checked to verify that
the operation result is correct.

When volume is mounted, a file can be created or opened with commands
f_open. The function should be provided with the name of the file to open
(or create) and a list of flags. In the logger example following flags are
used ”FA_OPEN_APPEND | FA_WRITE | FA_READ”. This set of flags
indicates to the FatFs that the file should be opened if it exists and the new
information should be appended to the end of the file. If a file does not exist
then it should be created.

To perform a write operation to the file, the function f_printf is used. It is
a handy way of creating formatted strings. The syntax is the same as for the
C language function printf, but additionally, a pointer to the file is passed
to the function. To use this function in the configuration file of the system
option ”FF_USE_STRFUNC” should be enabled.

When the write operation to a file is completed The file should be closed
with f_close and unmounted if no other operations will be performed with
this volume. To do this, function f_mount with the last argument equal 0 is
used.

6.3 Example Application

The example application is an extension of the multi-core CAN example
with SPI communication. Briefe recapitulation of multi-core CAN example
properties:. CAN communication using iLLD drivers. HW message filtering. 3 ISR1 interrupts from the CAN module (New message received, message

lost, transmission completed). Keep-alive message with counters of received, transmitted and lost mes-
sages.. CAN SW buffer.Messages received on CPU0 and transmitted from CPU1

59 May 24, 2024

6. Serial Peripheral Interface (SPI).............................
The application has been extended with one more SW buffer, this time for

storing logs of transmitted or received messages. Implementation of the SW
buffer for logs is the same, as for the SW buffer used in the CAN example.
Functions have been renamed and a new spinlock is added.

The Erika Enterprise configuration has been extended with a handler for a
GPT T3 interrupt (type ISR1) and a new task that handles the log writing
process. A new task is done as an infinite loop that continuously checks the
state of the log buffer. This task can be preempted by the CAN message reply
task, so the controller is still able to respond to all messages with adequate
latency.

The process of writing something over SPI communication to an external
device is much longer than handling memory inside of microcontroller. The
performance is also downgraded by the fact that SW implementation of
interrupt is used instead of the QSPI module. That means that during write
or read operations, the microcontroller will receive an interrupt every 500 ns.
With the CPU running at 300 MHz (each cycle 33.33 ns), the controller will
be almost constantly busy with handling the SPI communication. The task
that services a log buffer is a copy of the task that services a CAN SW buffer
in a multi-core example. The example of output logs stored on the SD card
looks the following way:

CAN: DIR: 2 ID 518 DATA: 0x01 0x00 0x00 0x00 0x00 0x00
CAN: DIR: 2 ID 514 DATA: 0x00 0x00 0x00 0x00 0x00 0x00
CAN: DIR: 2 ID 518 DATA: 0x01 0x00 0x00 0x00 0x00 0x00
CAN: DIR: 2 ID 514 DATA: 0x00 0x00 0x00 0x00 0x00 0x00
CAN: DIR: 2 ID 518 DATA: 0x01 0x00 0x00 0x00 0x00 0x00
CAN: DIR: 2 ID 514 DATA: 0x00 0x00 0x00 0x00 0x00 0x00

Data are written to an SD card in a formatted way, very similar to the
debug mode output of can single-core example. The only difference is the
new column ”DIR” that specifies the direction of the communication. It is
set by the parameter log_type in log_item structure. The value is an enum
where 0 – EMPTY,1 –RX_EVENT, 2 – TX_EVENT and 3 – INFO_EVENT
is reserved for additional usage (for example system activities like stack usage).

The source code for this example is located in a folder can_logger.

6.4 CPU frequency

This section describes how the frequency of the CPU is derived using registers
and the schematics for the microcontroller. This information is then used
in the section 6.5. The ”manual” computation of CPU frequency is needed
because Erika does not set the frequency of the CPU for the TC387QP, even
if the frequency is specified in the configuration file.

May 24, 2024 60

.................................. 6.5. Benchmark Results

According to the general scheme Figure 6.3. The building blocks of the
clocking system mentioned in user manual [6] are:. Basic clock generation (Clock Source). Clock speed up-scaling (PLLs). Clock distribution (CCU). Individual clock configuration (Peripherals).

To determine what is the frequency of the CPU, the external crystal
oscillator frequency should be known. According to the schematic of the
MCU, the frequency of the oscillator is 20 MHz. This value is within allowed
for the MCU range, from 16 MHz to 40 MHz. And since the external crystal
is used, frequency is labelled as fosc0 in user manual [6]. Configuration of
the oscillator in the Oscillator Circuit Control Register (OSCCON) is not
discussed in this diploma thesis. There is no need to change the values in this
register.

Figure 6.3: TC3xx family general structure of the clocking system. Source [6].

6.5 Benchmark Results

Benchmark tests were done to find the data write bandwidth.
Firstly latency of the application has been measured. The length of data

written to the SD cards has been set to 1 byte only, and then Performance
Counters (more in architecture manual [15]) of the CPU were used to log the
number of CPU cycles between the start of the writing function and its end.
Since we know from section 3.3.2 that the CPU frequency is 300 MHz we
can find the time elapsed between two events. Knowing the SW overhead
in communication we can find data write bandwidth. Multiple tests with
different data payloads were done.

Now with the results from the table 6.1 the data write bandwidth without
SW overhead can be calculated. The overhead in this test is the additional

61 May 24, 2024

6. Serial Peripheral Interface (SPI).............................
Data payload
[byte]

Number of
samples [N]

Mean [ms] Standard
deviation
[ms]

1 1000 40.75 4.33
66 1000 45.03 4.80
128 1000 47.04 5.58
256 (100 times) 100 38.08 9.06

Table 6.1: SPI communication test results

time that is needed for SW to initialize the SD card, mount the file system
and open the file. Additionally, the speed of the SD card plays an important
role in this test.

The variable T is the total communication time with the SD card measured
using Performance Counters. Calculated as the difference between the 1-byte
test and the 128-byte test, then T = 0.0063s. Assuming that the 1-byte test
is a pure SW overhead of communication. The value T then represents the
time needed to transfer the data between the microcontroller and the SD
card without the SW overhead. The number of bytes transferred for the time
T is N = 127 since 1 byte of 128-byte payload is already included in T . Now
let’s find the write bandwidth for 128-byte payload B128.

B128 = N

T
= 127

0.0063 = 19725 Byte/s = 19.73 kB/s (6.1)

So even though the CLK signal for SPI is set to be 1 MHz or 125 kB/s,
due to the big overhead in communication, the real write bandwidth is only
around 20.16 kB/s for a 128-byte payload. The SW overhead is around 41
milliseconds according to results in table 6.1. However the bigger is the
number of bytes to be written in one access to the file, the higher is the write
bandwidth. One file access means that the SD card was initialized only once
and the file was opened only once during the communication.

For example, writing a sequence of 256-byte long data repeated 100 times
within one file access (25 kB) takes only 300 ms. After subtracting the
overhead of the communication time with the SD card (T = 0.381s). Then
write bandwidth B256 for 256 byte payload is 73.53 kB/s, calculated using
the equation 6.1.

B256 = 25600
0.340 ∗ 1024 = 73.53 kB/s (6.2)

The value obtained from 6.2 is much closer to the maximum theoretical value
than the value calculated for a 128-byte payload.

Table 6.1 also has the time needed to write one CAN log. The size of a
log for an 8-byte CAN message with a 3-digit ID (for example ID 555) is 66
bytes including the newline character. The in this case is T = 0.0045s or 4.5
ms. If CAN messages are sent with a lower period than 4.5 ms (plus a time
to process them), messages will start to accumulate in the LOG buffer which

May 24, 2024 62

.................................. 6.5. Benchmark Results

will eventually lead to the buffer being locked for writing and the log will be
lost.

The results are the following. During one access to the file, the application
should write the most possible amount of data, due to the high overhead
equal to 41 ms. However, the size of the data written should be reasonably
high so it does not take too much space in the memory of the microcontroller.

Another limitation is the SW-defined SPI or ”bit-bang” SPI. When the
communication will be switched to the QSPI module of the MCU the commu-
nication speed can be raised to much higher values, which will also positively
affect data write bandwidth.

However, even facing the above-mentioned limitations the application works
correctly as it is intended and the data are transmitted from the microcon-
troller to the SD card and the file can be opened on the PC afterwards.

63 May 24, 2024

May 24, 2024 64

Chapter 7
Conclusion

The main goal of this thesis was to add the support of TriCore TC387QP
and iLLD drivers to Erika Enterprise and to develop examples that can
demonstrate that the Erika Enterprise now works with iLLD and TC387QP.

Source files of Erika Enterprise were changed to provide support for Tri-
Core TC38X MCU. Also, ”MAKE” files of Erika Enterprise were changed to
include a compilation of iLLD drivers.

To test CAN communication, with iLLD and Erika Enterprise, two examples
are done. One example demonstrates the basics with a single core. The
second, more complex, multi-core example demonstrates some of the multi-
core capabilities of TriCore MCU and Erika Enterprise such as accessing the
same module from multiple cores. This example can be used as a base for
other demo applications.

The implementation of the CAN examples has been tested. The latency
for CAN communication for a single-core example is around 12 µs. The
execution time of the interrupt service that receives an incoming message and
ends a reply message is 3.5 µs.

Unfortunately, the QSPI module of the MCU has not been tested due
to HW limitations of the development board. However, an example that
implements SW-defined SPI using the GPT module has been provided by
Garrett Motion Inc.. And on the base of this example, a simple CAN logger
has been done.

As a test of the implementation, the data write bandwidth has been mea-
sured. The bigger the data payload to be transferred during one access to a file
on the SD card, the higher is the data write bandwidth. SPI communication
speed is set to 125 kB/s and the maximum data write bandwidth reached
with a 256-byte payload is 73.53 KB/s.

All examples that were developed in this diploma thesis can be found
in GitHub1. Changes that were made to Erika Enterprise can be found in
another GitHub repository2

1https://github.com/Darth-Bujar/examples_erika
2https://github.com/Darth-Bujar/erika3-tc38x/

65 May 24, 2024

https://github.com/Darth-Bujar/examples_erika
https://github.com/Darth-Bujar/erika3-tc38x/

May 24, 2024 66

Bibliography

[1] AUTOSAR. Explanation of Interrupt Handling within AUTOSAR. Au-
tosar. Available at: https://www.autosar.org/fileadmin/standards/
R22-11/CP/AUTOSAR_EXP_InterruptHandlingExplanation.pdf.

[2] ERIKA Enterprise Minimal API Manual (December 11, 2012). Available
at: https://download.tuxfamily.org/erika/webdownload/manuals_
pdf/ee_minimal_refman_1_1_3.pdf.

[3] OSEK (July 1, 2004) System Generation OIL: OSEK Implementa-
tion Language Version 2.5. Available at: https://www.irisa.fr/alf/
downloads/puaut/TPNXT/images/oil25.pdf.

[4] ERIKA3 OIL specification. Available at: https://www.
erika-enterprise.com/wiki/.

[5] OSEK/VDX (2005): OSEK/VDX Operating System Specifica-
tion 2.2.3. Available at https://www.irisa.fr/alf/downloads/puaut/
TPNXT/images/os223.pdf.

[6] Infineon AURIX™ TC3xx User Manual, Part 1. Avail-
able at: https://www.infineon.com/dgdl/Infineon-AURIX_
TC3xx_Part1-UserManual-v02_00-EN.pdf?fileId=
5546d462712ef9b701717d3605221d96.

[7] Infineon AURIX™ TC3xx User Manual, Part 2. Avail-
able at: https://www.infineon.com/dgdl/Infineon-AURIX_
TC3xx_Part2-UserManual-v02_00-EN.pdf?fileId=
5546d462712ef9b701717d35f8541d94.

[8] Robert Bosch, GmbH. (1991). CAN 2.0 specification. Available at: http:
//esd.cs.ucr.edu/webres/can20.pdf.

[9] Lennartsson, K. Comparing CAN FD with classical can. Kvaser.
Available at: https://www.kvaser.com/wp-content/uploads/2016/
10/comparing-can-fd-with-classical-can.pdf.

[10] M. Sojka, P. Píša and Z. Hanzálek, ”Performance Evaluation of Linux
CAN-related system calls,” 2014 10th IEEE Workshop on Factory

67 May 24, 2024

https://www.autosar.org/fileadmin/standards/R22-11/CP/AUTOSAR_EXP_InterruptHandlingExplanation.pdf
https://www.autosar.org/fileadmin/standards/R22-11/CP/AUTOSAR_EXP_InterruptHandlingExplanation.pdf
https://download.tuxfamily.org/erika/webdownload/manuals_pdf/ee_minimal_refman_1_1_3.pdf
https://download.tuxfamily.org/erika/webdownload/manuals_pdf/ee_minimal_refman_1_1_3.pdf
https://www.irisa.fr/alf/downloads/puaut/TPNXT/images/oil25.pdf
https://www.irisa.fr/alf/downloads/puaut/TPNXT/images/oil25.pdf
https://www.erika-enterprise.com/wiki/
https://www.erika-enterprise.com/wiki/
https://www.irisa.fr/alf/downloads/puaut/TPNXT/images/os223.pdf
https://www.irisa.fr/alf/downloads/puaut/TPNXT/images/os223.pdf
https://www.infineon.com/dgdl/Infineon-AURIX_TC3xx_Part1-UserManual-v02_00-EN.pdf?fileId=5546d462712ef9b701717d3605221d96
https://www.infineon.com/dgdl/Infineon-AURIX_TC3xx_Part1-UserManual-v02_00-EN.pdf?fileId=5546d462712ef9b701717d3605221d96
https://www.infineon.com/dgdl/Infineon-AURIX_TC3xx_Part1-UserManual-v02_00-EN.pdf?fileId=5546d462712ef9b701717d3605221d96
https://www.infineon.com/dgdl/Infineon-AURIX_TC3xx_Part2-UserManual-v02_00-EN.pdf?fileId=5546d462712ef9b701717d35f8541d94
https://www.infineon.com/dgdl/Infineon-AURIX_TC3xx_Part2-UserManual-v02_00-EN.pdf?fileId=5546d462712ef9b701717d35f8541d94
https://www.infineon.com/dgdl/Infineon-AURIX_TC3xx_Part2-UserManual-v02_00-EN.pdf?fileId=5546d462712ef9b701717d35f8541d94
http://esd.cs.ucr.edu/webres/can20.pdf
http://esd.cs.ucr.edu/webres/can20.pdf
https://www.kvaser.com/wp-content/uploads/2016/10/comparing-can-fd-with-classical-can.pdf
https://www.kvaser.com/wp-content/uploads/2016/10/comparing-can-fd-with-classical-can.pdf

7. Conclusion......................................
Communication Systems (WFCS 2014), Toulouse, France, 2014, pp.
1-8, doi: 10.1109/WFCS.2014.6837608. keywords: Logic gates;Sock-
ets;Linux;Kernel;Protocols;Hardware;Performance evaluation. Available
at: https://ieeexplore.ieee.org/abstract/document/6837608.

[11] Piyu Dhaker. (2018, September). Introduction to SPI interface.
Introduction to SPI Interface | Analog Devices. Available at:
https://www.analog.com/media/en/analog-dialogue/volume-52/
number-3/introduction-to-spi-interface.pdf.

[12] Wikipedia, The Free Encyclopedia. 12 May 2024, SD card. Available
at: https://en.wikipedia.org/w/index.php?title=SD_card&oldid=
1223534233

[13] File allocation table (2024) Wikipedia. Available at: https:
//en.wikipedia.org/wiki/File_Allocation_Table(Accessed:
13May2024).

[14] ChaN. FatFs – Generic FAT Filesystem Module. Available at: http:
//elm-chan.org/fsw/ff/

[15] Infineon Technologies AG. TriCore™ TC1.6.2 core architecture
manual Volume 1. Available at: https://www.infineon.com/dgdl/
Infineon-AURIX_TC3xx_Architecture_vol1-UserManual-v01_00-EN.
pdf?fileId=5546d46276fb756a01771bc4c2e33bdd.

[16] Infineon Technologies AG. TriCore™ TC1.6.2 core architecture
manual Volume 2. Available at: https://www.infineon.com/dgdl/
Infineon-AURIX_TC3xx_Architecture_vol2-UserManual-v01_00-EN.
pdf?fileId=5546d46276fb756a01771bc4a6d73b70.

[17] Michal Sojka (October 18 2022). Project report, Erika Enterprise 3 for
AURIX Studio and TC387.

May 24, 2024 68

https://ieeexplore.ieee.org/abstract/document/6837608
https://www.analog.com/media/en/analog-dialogue/volume-52/number-3/introduction-to-spi-interface.pdf
https://www.analog.com/media/en/analog-dialogue/volume-52/number-3/introduction-to-spi-interface.pdf
https://en.wikipedia.org/w/index.php?title=SD_card&oldid=1223534233
https://en.wikipedia.org/w/index.php?title=SD_card&oldid=1223534233
https://en.wikipedia.org/wiki/File_Allocation_Table (Accessed: 13 May 2024)
https://en.wikipedia.org/wiki/File_Allocation_Table (Accessed: 13 May 2024)
https://en.wikipedia.org/wiki/File_Allocation_Table (Accessed: 13 May 2024)
http://elm-chan.org/fsw/ff/
http://elm-chan.org/fsw/ff/
https://www.infineon.com/dgdl/Infineon-AURIX_TC3xx_Architecture_vol1-UserManual-v01_00-EN.pdf?fileId=5546d46276fb756a01771bc4c2e33bdd
https://www.infineon.com/dgdl/Infineon-AURIX_TC3xx_Architecture_vol1-UserManual-v01_00-EN.pdf?fileId=5546d46276fb756a01771bc4c2e33bdd
https://www.infineon.com/dgdl/Infineon-AURIX_TC3xx_Architecture_vol1-UserManual-v01_00-EN.pdf?fileId=5546d46276fb756a01771bc4c2e33bdd
https://www.infineon.com/dgdl/Infineon-AURIX_TC3xx_Architecture_vol2-UserManual-v01_00-EN.pdf?fileId=5546d46276fb756a01771bc4a6d73b70
https://www.infineon.com/dgdl/Infineon-AURIX_TC3xx_Architecture_vol2-UserManual-v01_00-EN.pdf?fileId=5546d46276fb756a01771bc4a6d73b70
https://www.infineon.com/dgdl/Infineon-AURIX_TC3xx_Architecture_vol2-UserManual-v01_00-EN.pdf?fileId=5546d46276fb756a01771bc4a6d73b70

Appendix A
List of Abbreviation

Symbol Meaning

RTOS Real-time operating system
QP Quadratic Programming
CAN Controller area network
MCU Microcontroller unit
SPI Serial Peripheral Interface
QSPI Queued SPI
FAT File Allocation Table
iLLD Infineon Low Level Drivers
AUTOSAR Automotive Open System Architecture
ASIL Automotive Safety Integrity Level
CRC Cyclic redundancy check or Cyclic redundancy Code
SD Secure Digital
Erika or EE Erika Enterprise RTOS
ADS Aurix Development Studio
ROM Read-only memory
RAM Random access memory
OSEK German:Offene Systeme und deren Schnittstellen für die

Elektronik in Kraftfahrzeugen. English: Open Systems and
their Interfaces for the Electronics in Motor Vehicles

VDX Vehicle Distributed eXecutive
OIL OSEK Implementation Language
ISR1 Category 1 interrupts according to AUTOSAR[1]
ISR2 Category 2 interrupts according to AUTOSAR[1]
MCMCAN New regeneration of MultiCAN+ module used in TriCore

TC3xx family
ICU Interrupt Compression Unit
SCU System Control Unit
CCU Clock Control Unit
GPT General Purpose Timers

69 May 24, 2024

May 24, 2024 70

Appendix B
Interrupt mapping into groups

Figure B.1: Interrupt mapping to groups. Taken from [7].

71 May 24, 2024

May 24, 2024 72

Appendix C
Benchmark results

Figure C.1: Single-core CAN example latency communication with Debug mode
turned on.

73 May 24, 2024

C. Benchmark results

Figure C.2: Single core CAN example latency with a hardware buffer size set to
1 message

Figure C.3: Single core CAN example latency with hardware buffer size set to
10 messages

May 24, 2024 74

................................... C. Benchmark results

Figure C.4: Single core CAN example latency with hardware buffer size set to
32 messages

Figure C.5: Multi-core CAN example latency with reply task period 1 ms SW
buffer size 512 messages and HW buffer size 1 message

75 May 24, 2024

C. Benchmark results

Figure C.6: Multi-core CAN example latency with reply task period 1 ms SW
buffer size 512 messages and HW buffer size 32 message

Figure C.7: Multi-core CAN example latency with reply task period 5 ms SW
buffer size 512 messages and HW buffer size 32 message

May 24, 2024 76

................................... C. Benchmark results

Figure C.8: Multi-core CAN example latency with reply task period 10 ms SW
buffer size 512 messages and HW buffer size 32 message

77 May 24, 2024

	Introduction
	Background
	ERIKA Enterprise RTOS
	Configuration of ERIKA
	Interrupt configuration in Erika

	Controller Area Network (CAN)
	CAN latency measurement

	SD card interface
	SPI
	SD card
	File Allocation Table

	Infineon TriCore TC387QP
	CAN module
	SPI module
	Context Save Area

	Compiling Erika with Aurix Development Studio
	Installation
	Creating a project
	Using iLLD drivers with Erika
	Erika's source code changes
	Startup initialization difference

	Basic Erika examples
	Scheduler example a GPIO
	Semaphore example

	CAN communication
	Single-Core Example
	Erika configuration
	CAN drivers – iLLD

	Multi-Core Example
	Erika configuration
	CAN Driver – iLLD and SW buffer

	Benchmark results

	Serial Peripheral Interface (SPI)
	SPI Drivers – iLLD & bit-bang
	FAT Library
	Example Application
	CPU frequency
	Benchmark Results

	Conclusion
	Bibliography
	List of Abbreviation
	Interrupt mapping into groups
	Benchmark results

