České vysoké učení technické v Praze Fakulta elektrotechnická

BAKALÁŘSKÁ PRÁCE

Modelování fyzikálních systémů ve Virtual Řeality Toolboxu

Borek, 2007

Autor: Karel Boček

Prohlášení

Prohlašuji, že jsem svou bakalářskou práci vypracoval samostatně a použil jsem pouze podklady (literaturu, projekty, SW atd.) uvedené v přiloženém seznamu.

Nemám závažný důvod proti užití tohoto školního díla ve smyslu § 60 Zákona č.121/2000 Sb. , o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon).

V Borku dne

podpis

Poděkování

Děkuji především vedoucímu bakalářské práce Jiřímu Roubalovi za trpělivost a čas, který mi věnoval. Obzváště za pomoc při psaní a korekce textu.

Abstrakt

Cílem této bakalářské práce je vytvořit několik několik modelů s virtuální realitou pro účely výkuky v předmětech zabývajících se analýzou a modelováním systémů (např. SAM). Výhodou modelů s virtuální realitou je mnohem vyšší přehlednost a názornost chování modelu před prostými grafy. V této práci bude provedena analýza několika mechanických systémů a pro každý budou nejprve odvozeny pohybové rovnice a vytvořena simulační schémata s virtuální realitou.

Abstract

The goal of this bachleor project is to create several models in Simulink with virtual reality. These models are about to be used in courses working at analysis of dynamic systems (such as SAM). The biggest advantage of models with virtual reality is better clearness of behavior than use of simple plots. In this project will be made ananlysis of several mechanical systems and for each will be calculated differential equations of movement and created Simulink schemes with virtual reality.

Katedra řídicí techniky

Školní rok: 2006/2007

Zadání bakalářské práce

Student: Karel Boček

Obor: Kybernetika a měření

Název tématu: Modelování fyzikálních systémů ve Virtual Reality Toolboxu

Zásady pro vypracování:

- 1. Seznamte se s Virtual Reality Toolboxem v Matlabu.
- Odvoďte matematický model dynamického chování několika jednoduchých fyzikálních systémů.
- 3. Odsimulujte tyto matematické modely v Simulinku a připravte k nim virtuální realitu.

Seznam odborné literatury:

- Petr Horáček, Systémy a modely, Praha 2000
- Web SARI, http://dce.felk.cvut.cz/sari/
- Jan John, Systémy a řízení, Praha 1999
- http://www.mathworks.com/access/helpdesk/help/toolbox/vr/

Vedoucí bakalářské práce: Ing. Jiří Roubal, Ph.D.

Datum zadání bakalářské práce: zimní semestr 2006/07

Termín odevzdání bakalářské práce: 15.8.2007

Prof. Ing. Michael Šebek, DrSc. vedoucí katedry

Ngarb

Prof. Ing. Zbyněk Škvor, CSc. děkan

V Praze, dne 28. 2. 2007

Obsah

Se	eznar	n obrázků	ix
1	Úvo	od	1
2	Vir	tual reality toolbox v Matlabu	3
	2.1	Ovládání virtuální reality z prostředí Simulink	3
3	Sou	stava závaží na pružině	7
	3.1	Úvod	7
	3.2	Matematický popis systému	8
		3.2.1 Odvození pohybových rovnic pomocí Newtonovy mechaniky	8
		3.2.2 Odvození pohybových rovnice pomocí Lagrangeových rovnic druhého	
		druhu	9
		3.2.3 Výpočet přenosů \ldots	12
	3.3	Simulační schéma	13
	3.4	Virtuální realita	14
		3.4.1 Ovládání virtuální reality	16
	3.5	Simulační pokusy	18
4	Sou	stava dvou závaží na pružinách	23
	4.1	Úvod	23
	4.2	Matematický popis systému	24
		4.2.1 Převedení rovnic na přenosy	26
	4.3	Simulační schéma	27
	4.4	Virtuální realita	29
		4.4.1 Ovládání virtuální reality	31
	4.5	Simulační pokusy	33

5 Závěr

A Obsah přiloženého CD

37

Ι

Seznam obrázků

2.1	Nabídka bloku VR Sink	4
3.1	Systém závaží na pružině	7
3.2	Simulinkové schéma modelu závěsu podle rovnice (3.5)	13
3.3	Simulinkové schéma modelu závaží na pružině podle rovnice (3.3) $\ .$	13
3.4	Kompletní simulinkové schéma	14
3.5	Vzhled virtuální reality pro závaží na pružině	15
3.6	Struktura bloku na výpočet transformací pro VR $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	16
3.7	Odezva systému na počáteční podmínku y_{10}	19
3.8	Bodeho frekvenční charakteristiky přenosu mezi polohou závěsu \boldsymbol{y} a polo-	
	hou závaží y_1 (3.8)	20
3.9	Odezva systému na vstup $y(t) = \sin(\omega t), \ \omega \ll \omega_v \ldots \ldots \ldots$	20
3.10	Odezva systému na vstup $y(t) = \sin(\omega t), \ \omega = \omega_v \ldots \ldots \ldots \ldots$	21
3.11	Odezva systému na vstup $y(t) = \sin(\omega t), \ \omega \gg \omega_v \dots \dots \dots$	21
4.1	Systém dvou závaží na pružinách	23
4.2	Simulinkové schéma pro závěs podle rovnice (4.4) $\ldots \ldots \ldots \ldots \ldots$	28
4.3	Simulinkové schéma pro pohyb závaží podle rovnice (4.1) a (4.2)	28
4.4	Kompletní simulinkové schéma soustavy závaží na pružinách $\ .\ .\ .\ .$	29
4.5	Vzhled virtuální reality pro závaží na pružinách	30
4.6	Struktura bloku na výpočet transformací pro VR $\ \ldots \ \ldots$	31
4.7	Odezva systému na nulové počáteční podmínky y_{10} a y_{20} bez buzení	33
4.8	Podebo charalitaristika dumamiku hamiha závaží (přepod v – v v)	34
	bodeno charakteristika dynamiky normno zavazi (prenos $y \to y_1$)	94
4.9	Odezva systému na vstup $y(t) = \sin(\omega t), \ \omega \ll \omega_v \dots \dots \dots$	35
 4.9 4.10 	Dodeno charakteristika dynamiky normno zavaží (přenos $y \to y_1$) Odezva systému na vstup $y(t) = \sin(\omega t), \ \omega \ll \omega_v$	35 35

Kapitola 1

Úvod

V rámci této bakalářské práce budou odvozeny diferenciální rovnice popisující pohyb několika fyzikálních systémů a podle nich budou připravena simulační schémata. K simulačním schématům bude připravena virtuální realita. Fyzikální systémy pro analýzu budou mechanické soustavy a to konkrétně soustava závaží na pružině s pohyblivým závěsem a soustava dvou závaží na pružinách zavěšených pod sebou také s pohyblivým závěsem a kulička na ploše. Modely v Simulinku budou přiloženy k této práci na CD. K vytvoření modelů byl použit Matlab, verze r2006b se Simulinkem verze 6.5 a programem pro tvorbu virtuální reality V-Realm Builder verze 2.0.

V kapitole 2 bude stručně popsán Virtual reality toolbox a základní informace k použití tohoto toolboxu pro tvorbu a ovládání jednoduchých modelů. V kapitole 3 bude prozebrán první modelový příklad pro soustavu závaží na pružině. V kapitole 4 bude rozebrán druhý, složitější příklad a to pro soustavu dvou závaží na pružinách zavěšených pod sebou. Po-slední model bude popisovat pohyb kuličky po ploše.

Kapitola 2

Virtual reality toolbox v Matlabu

Virtuální realita ve Virtual reality toolboxu v Matlabu (dále jako VR) se vytváří v programu V-Realm Builder, který je již obsažen v instalaci Matlabu společně s Virtual reality toolboxem. Práce v tomto programu je uživatelsky přívětivá a dost intuitivní. Je třeba vytvořit virtuální svět, takový, jaký bude v klidu, neboli výchozí stav. Dále ve V-Realm Builderu při tvorbě virtuálního světa nastavíme závislosti a vazby objektů.

Při tvorbě virtuální reality je výhodné, co nejvíc se přiblížit vnitřním vazbám reálného objektu. K tomuto můžeme využít dědění. Objekty ve virtuální realitě jsou uspořádány do struktur. Objekt může mít libovolně potomků, ale vždy jen jednoho rodiče. Přičemž platí, že potomek dědí vlastnosti rodiče. Například máme-li kuličku na ploše a ve VR je kulička potomkem plochy, tak její poloha vzhledem k pozorovateli se bude měnit v závislosti na pohybu plochy. Z toho také přímo vyplývá, že parametry potomka jsou vztaženy k rodičovskému objektu. Dědění vlastností lze velmi výhodně využít pro zjednodušení řídicích signálů VR. Například pro kuličku na ploše při použití dědění stačí měnit pouze polohu ve směrech os x a z, bez dědění by bylo nutné složitě synchronizovat veškerý pohyb kuličky s pohybem plochy.

Objekty virtuální reality je třeba pojmenovat jednoznačným jménem, protože pouze objekty s jiným než výchozím jménem, lze externě ovládat.

2.1 Ovládání virtuální reality z prostředí Simulink

Virtuální realitu lze z Matlabu ovládat prostředníctvím Simulinku nebo přímo z konzole (resp. m-file). V rámci této bakalářské práce je s ohledem na potřebu simulace modelů výhodnější ovládání ze Simulinku. Virtuální realitu lze do Simulinku přidat pomocí bloku "VR Sink". Tento blok po zadání souboru Virtuální reality (formát *.wrl) nabídne uživateli, které hodnoty ve VR bude chtít měnit (stačí zaškrtnout) viz obr. 2.1.

Parameters: VR Sink VR Sink Writes Simulink values to virtual world node fields. Fields to be checkboxes in the tree view. Every marked field corresponds World properties Source file	a written are marked by to an input port of the block. 	
Joudiciussessement Browse View Edit Output Open VRML Viewer automatically Image: Allow viewing from the Internet Description: Block properties Sample time (-1 for inherit): 0.1	ROOT ⊕ - (Background) ⊕ - (Viewpoint) ⊕ - (SRotation) ⊕ - (Viewpoint) ⊕ - (Viewpoint)	
	OK Cancel Help	Apply

Obrázek 2.1: Nabídka bloku VR Sink

Po úspěšném načtení souboru se na bloku "VR Sink" objeví odpovídající počet vstupů. Na ty je třeba přivést řídicí signály z modelované soustavy. VR potřebuje pro správnou funkci relativně složité signály, které většinou mají více složek. Pro jejich snažší pochopení rozebereme jednotlivé transformace objektů virtuální reality.

Jako první rozebereme posun (translation). Pro provedení posunu potřebujeme vstupní vektor [x, y, z], kde x, y a z jsou složky vektoru posunu ve směru os. Tyto složky se přičtou k aktuálním souřadnicím a tím vznike nová poloha.

Další velmi častou transformací je změna velikosti (scale). Pro změnu velikosti objektu potřebujeme opět vektor [x, y, z], kde x, y a z jsou složky ve směru os. Rozdíl oproti posunu je ten, že při změně velikosti se těmito složkami násobí výchozí hodnota a tím vznikne nová velikost.

Pro rotaci obektu potřebujeme vektor o čtyřech složkách $[x, y, z, \varphi]$, kde x, y a z jsou složky ve směru os a φ je o kolik se těleso natočí při hodnotě na vstupu velikosti 1.

Střed transformací se přesouvá (běžným posunem) a tím se mění střed souměrnosti objektu. Pro všechny základní transformace je tento bod středem souměrnosti a také neutrálním prvkem.

Dále můžeme každého objektu měnit přímo jeho rozměry. Například u válce výšku,

kvádru délky stran apod. Většinou pro tyto transformace stačí jednorozměrný signál (výška válce), to vždy závisí na konkrétním tělese a v případě potřeby dohledáme v nápovědě.

Nejsnáze lze toto pochopit na příkladech viz kapitola 3 a 4 v částech o ovládání virtuální reality.

Kapitola 3

Soustava závaží na pružině

3.1 Úvod

Prvním systémem je kmitavý systém tvořený závažím zavěšeným na pružině. Takovýto fyzikální systém je sice velmi jednoduchý, ale je často součástí složitějších zařízení. Například tlumiče kol u aut nebo kabina výtahu při uvažování pružnosti lana vykazují podobné vlastnosti jako náš model.

Systém závaží na pružině se skládá ze tří částí: závěsu o hmotnosti m, kterým pohybujeme, pružiny s konstantou k_1 přenášející tento pohyb na závaží o hmotnosti m_1 . Jako vstup systému uvažujeme buď budicí sílu F_u působící na závěs nebo přímo jeho polohu y. Výstupem systému je poloha závěsu y a poloha závaží y_1 . V našem příkladě ještě uvažujeme několik předpokladů a specifik. Pružinu považujeme vzhledem k závaží a závěsu jako nehmotnou

Obrázek 3.1: Systém závaží na pružině

bez nelinearit s koeficientem tlumení b_1 . Dále předpokládejme, že zdroj síly je tvrdý a závaží na pružině zpětně neovliňuje dynamiku závěsu.

3.2 Matematický popis systému

3.2.1 Odvození pohybových rovnic pomocí Newtonovy mechaniky

Nyní můžeme odvodit pohybové rovnice našeho modelu například z Newtonovské fyziky. Vycházíme ze základní rovnice

$$\vec{F}_i = \sum \vec{F}_j \,,$$

kde $\vec{F_i}$ je výsledná síla působící na *i*-té těleso a $\sum \vec{F_j}$ je součet vektorů sil působících na dané těleso.

Před odvozením rovnic ještě poznámka k chování pružiny. Při působení síly na pružinu dochází k její deformaci, na kterou reaguje pružina reakční silou odpovídající Hookovu zákonu (FEYNMAN, R. P. et al. Feynmanovy přednášky z fyziky 2/3, 2001) $F_o = ks$ a tlumící silou $F_z = b\dot{s}$. Tyto síly působí na obě tělesa připevněná na koncích pružiny stejnou silou s opačným směrem směřujícím doprostřed pružiny. Při předpokladu nulové klidové délky pružiny (viz. úvod předpoklad, že pružina nemá nelinearity) je s délka pružiny a k a b jsou konstanty pružiny.

V našem příkladě máme tělesa dvě, takže budeme mít dvě rovnice. První pohybovou rovnicí je rovnice závěsu

$$\vec{F}(t) = \vec{F}_u(t) + \vec{F}_g + \vec{F}_z(t) + \vec{F}_{z1}(t) + \vec{F}_{o1}(t)$$

Ve zvoleném souřadném systému se síly působící dolů odčítají a síly působící nahoru přičítají. \vec{F}_u je vstupní síla a platí $\vec{F}_u = +F_u$, \vec{F}_g je gravitační síla a platí $\vec{F}_g = -F_g$ a \vec{F}_z je síla ztrát pohybu závěsu a platí $\vec{F}_z = b\dot{y}$, kde b je koeficient útlumu. Dále na závěs působí síly pružiny a platí $\vec{F}_{z1} = -b_1(\dot{y}-\dot{y}_1)$ a $\vec{F}_{o1} = -k_1(y-y_1)$. Jak bylo řečeno v úvodu, u dynamiky závěsu neuvažujeme působení sil pružiny. Proto členy \vec{F}_{z1} a \vec{F}_{o1} nezahrneme do rovnice pro pohyb. Statické působení ovšem uvažujeme a v klidovém stavu na závěs působí závaží gravitační silou $\vec{F}_{g1} = -F_{g1} = -m_1g$. Tato síla pouze způsobí konstantní zvýšení zátěže na vstupní sílu, na dynamice pohybu se vůbec neprojeví. Rovnici můžeme tedy zapsat ve tvaru

$$F(t) = F_u(t) - F_g - F_{g1} - F_z(t),$$

$$m\ddot{y}(t) = F_u(t) - mg - m_1g - b\dot{y}(t).$$

Výsledná rovnice pro dynamiku závěsu tedy je

$$m\ddot{y}(t) + b\dot{y}(t) = F_u(t) - mg - m_1g.$$

3.2. MATEMATICKÝ POPIS SYSTÉMU

Druhou pohybovou rovnicí je rovnice popisující pohyb závaží. Postup pro odvození pohybové rovnice je obdobný jako u rovnice předchozí. Vycházíme z rovnice

$$\vec{F}_1(t) = \vec{F}_{g1} + \vec{F}_{z1}(t) + \vec{F}_{o1}(t) ,$$

kde \vec{F}_{g1} je gravitační síla, pro kterou platí $\vec{F}_{g1} = -m_1 g$. $\vec{F}_{z1}(t)$ je tlumící síla pružiny a platí $\vec{F}_{z1}(t) = b_1 (\dot{y}(t) - \dot{y}_1(t))$.

 $\vec{F}_{o1}(t)$ je síla odporu pružiny a platí $\vec{F}_{o1}(t) = k_1 (y(t) - y_1(t))$. Po dosazení můžeme psát rovnici ve skalárním tvaru

$$m_1 \ddot{y}_1(t) = b_1(\dot{y}(t) - \dot{y}_1(t)) + k_1(y(t) - y_1(t)) - m_1 g,$$

neboli

$$m_1 \ddot{y}_1(t) + b_1 \dot{y}_1(t) + k_1 y_1(t) = b_1 \dot{y}(t) + k_1 y(t) - m_1 g_1$$

3.2.2 Odvození pohybových rovnice pomocí Lagrangeových rovnic druhého druhu

Výsledky musí být samozřejmě totožné, oba postupy zde uvádíme pouze pro porovnání. Při výpočtu pohybových rovnic pomocí Lagrangeovy mechaniky se vychází ze základní rovnice (NOSKIEVIČ, P. Modelování a identifikace systémů, 1999)

$$\frac{d}{dt}\frac{\partial L(t)}{\partial \dot{q}_i(t)} - \frac{\partial L(t)}{\partial q_i(t)} = \frac{\partial W(t)}{\partial q_i(t)}, \qquad (3.1)$$

kde W je zobecnělá práce nekonzervativních (vnějších) sil, q_i je zobecněná souřadnice a L je takzvaný Lagrangián pro který platí

$$L(t) = E_k(t) - E_p(t), (3.2)$$

kde E_k je kinetická energie celého systému a E_p je potenciální energie celého systému.

V našem příkladě je zobecněnou souřadnicí poloha závěsu y a poloha závaží y_1 . Kinetickou energii určíme jako součet kinetické energie závěsu a kinetické energie závaží (pružinu uvažujeme vzhledem k závaží jako nehmotnou)

$$E_k(t) = \frac{1}{2}mv^2(t) + \frac{1}{2}m_1v_1^2(t)$$

$$E_k(t) = \frac{1}{2}m\dot{y}^2(t) + \frac{1}{2}m_1\dot{y}_1^2(t).$$

Potenciální energii určíme jako součet potenciální energie závěsu E_{p1} , závaží E_{p2} a potenciální energii pružiny E_{pk}

$$E_p(t) = E_{p1}(t) + E_{p2}(t) + E_{pk}(t)$$

Kde $E_{pk}(t)$ je potenciální energie pružnosti a spočítá se integrací Hookova zákona (FEYN-MAN, R. P. et al. Feynmanovy přednášky z fyziky 2/3, 2001)s mezemi od nuly po okamžitou délku pružiny.

$$E_{pk}(t) = \int_{0}^{y(t)-y_{1}(t)} ks \, ds$$

$$E_{pk}(t) = \frac{1}{2} k_{1} [s^{2}]_{0}^{y(t)-y_{1}(t)}$$

$$E_{pk}(t) = \frac{1}{2} k_{1} (y(t) - y_{1}(t))^{2}$$

Celková potenciální energie tedy je

$$E_p(t) = mgy(t) + m_1gy_1(t) + \frac{1}{2}k_1(y(t) - y_1(t))^2$$

Po dosazení vyjde Lagrangián

$$L(t) = \frac{1}{2}m\dot{y}^{2}(t) + \frac{1}{2}m_{1}\dot{y}_{1}^{2}(t) - mgy(t) - m_{1}gy_{1}(t) - \frac{1}{2}k_{1}(y(t) - y_{1}(t))^{2}.$$

Pro výpočet zobecnělé práce vnějších sil využijeme opět vztah $W = \int F ds$. Dále uvažujme, že síla odpovídající útlumu pružiny je $F = b_1 \dot{s}$, kde s je délka pružiny a integrál má meze opět od nuly do okamžité délky pružiny

$$W = W_u - W_z,$$

$$W = \int_0^{y(t)} F_u ds - \frac{d}{dt} \int_0^{y(t)} bs \, ds - \frac{d}{dt} \int_0^{y(t) - y_1(t)} b_1 s \, ds,$$

$$W = F_u y(t) - \frac{1}{2} \frac{d}{dt} by^2(t) - \frac{1}{2} \frac{d}{dt} b_1 (y(t) - y_1(t))^2.$$

Nyní již můžeme začít vyjadřovat jednotlivé pohybové rovnice. Místo zobecněné souřadnice q_i v rovnici (3.1), dosadíme postupně jednotlivé proměnné y a y_1 a rovnice vyřešíme. Jako první odvodíme pohybovou rovnici závaží

$$\frac{d}{dt} \frac{\partial L(t)}{\partial y_1(t)} - \frac{\partial L(t)}{\partial \dot{y}_1(t)} = \frac{\partial W(t)}{\partial y_1(t)},$$
$$\frac{d}{dt} m_1 \dot{y}_1(t) - \left(-m_1 g - \frac{1}{2} k_1 \times 2(y(t) - y_1(t))(-1)\right) = -\frac{1}{2} b_1 \times 2(\dot{y}(t) - \dot{y}_1(t))(-1)$$

$$m_1 \ddot{y}_1(t) - k_1 y(t) + k_1 y_1(t) = +b_1 \dot{y}(t) - b_1 \dot{y}_1(t) - m_1 g_1(t) - m_1 g_1(t)$$

$$m_1 \ddot{y}_1(t) + b_1 \dot{y}_1(t) + k_1 y_1(t) = b_1 \dot{y}(t) + k_1 y(t) - m_1 g.$$
(3.3)

Obdobně odvodíme pohybovou rovnicí závěsu

$$\frac{d}{dt} \frac{\partial L(t)}{\partial \dot{y}(t)} - \frac{\partial L(t)}{\partial y(t)} = \frac{\partial W(t)}{\partial y(t)},$$
$$\frac{d}{dt} m \dot{y}(t) - \left[-mg - k_1 \left(y(t) - y_1(t) \right) \right] = F_u(t) - b \frac{d}{dt} y(t) - b_1 \frac{d}{dt} \left(y(t) - y_1(t) \right).$$

$$m\ddot{y}(t) + b\dot{y}(t) = F_u(t) - b_1\left(\dot{y}(t) - \dot{y}_1(t)\right) - k_1(y(t) - y_1(t)) - mg$$
(3.4)

Protože uvažujeme, že závaží na pružině zpětně neovlivňuje pohyb závěsu, můžeme v této rovnici zanedbat všechny členy vyjadřující působení závaží na závěs, tedy členy $b_1(\dot{y}(t) - \dot{y}_1(t))$ a $k_1(y(t) - y_1(t))$. Ovšem uvažujeme statické působení (viz. úvod). Proto je nutné ho spočítat.

Statické působení spočítáme z popisu soustavy v klidu. Všechny derivované členy jsou nulové. Rovnice se tak zredukuje na tvar

$$0 = F_u - k_1(y_0 - y_{10}) - mg.$$

Je zřejmé že pro výpočet potřebujeme i klidovou polohu závaží. Tu vyjádříme z rovnice (3.3) jako

$$k_1 y_{10} = k_1 y_0 - m_1 g \,,$$

což dosadíme do předchozí rovnice a obdržíme

$$0 = F_u + k_1 y_0 - k_1 y_0 - m_1 g - mg ,$$

$$0 = F_u - m_1 g - mg .$$

Při porovnání pravých stran rovnic zjistíme, že člen $k_1(y_0 - y_{10})$ se v rovnici zredukoval na m_1g , což je námi hledané statické působení. Z toho vyplývá, že v klidu je vstupní síla zatěžována tíhou závěsu i závaží. Výsledná pohybová rovnice závěsu pak je

$$m\ddot{y}(t) + b\dot{y}(t) = F_u(t) - mg - m_1g.$$
(3.5)

Rovnice (3.5) a (3.3) plně popisují dynamické chování našeho systému. Poznamenejme ještě, že na tomto příkladu se zdá být použití Lagrangeových rovnic zbytečně složité, ovšem u složitějších systémů je jejich použití velmi rozšířené a užitečné hlavně z důvodu, že energii lze většinou snáze určit než řešit všechny síly každé vazby. Navíc je jejich použití mnohem přehlednější a není nutné pracovat s vektory sil.

3.2.3 Výpočet přenosů

Nyní přepočítáme pohybové rovnice na přenosy mezi vstupní silou F_u a polohou závěsu y a mezi vstupní silou F_u a polohou závaží y_1 .

Nejprve je nutné zvolit vstupní, stavové a výstupní proměnné. Jak bylo napsáno v úvodu, vstupem do soustavy u je síla působící na závěs. Výstupní proměnné jsou polohy závěsu a závaží y a y_1 . Jako stavové proměnné je praktické zvolit x, x_1 , tak že se přímo rovnají výstupním proměnným.

Při linearizaci vypočítáme pracovní body všech stavových proměnných a odchylkový model. Při výpočtu pracovních bodů se uvažuje ustálený stav a všechny derivivané členy jsou nulové. Soustava rovnic popisující systém se potom zredukuje na rovnice

$$0 = u - (m + m_1)g$$

$$k_1x_1 = k_1x - m_1g$$

Řešení této soustavy vyjdou pracovní body. Pracovní bod polohy závěsu x_0 nelze určit a při splnění podmínky $u = (m + m_1)g$ může být kdekoli. Pro přehlednost byl zvolen do počátkou souřadné soustavy. Pracovní bod pro polohu závaží vyjde

$$x_0 = 0 \qquad \qquad x_{10} = -\frac{m_1}{k_1} g$$

h

Pohybové rovnice v odchylkovém tvaru budou

$$\Delta \ddot{x} + \frac{b}{m} \Delta \dot{x} = \Delta u$$
$$\Delta \ddot{x}_1 + \frac{b_1}{m_1} \Delta \dot{x}_1 + \frac{k_1}{m_1} \Delta x_1 = \frac{b_1}{m_1} \Delta \dot{x} + \frac{k_1}{m_1} \Delta x.$$

Po Laplacově transformaci

$$s^{2}X + \frac{b}{m}sX = U$$
$$s^{2}X_{1} + \frac{b_{1}}{m_{1}}sX_{1} + \frac{k_{1}}{m_{1}}X_{1} = \frac{b_{1}}{m_{1}}sX + \frac{k_{1}}{m_{1}}X$$

Z pohybových rovnic v odchylkovém tvaru již lze přímo vyjádřit přenosy

$$P(s) = \frac{\Delta X(s)}{\Delta U(s)} = \frac{\frac{1}{m}}{s\left(s + \frac{b}{m}\right)}.$$
(3.6)

$$P_1(s) = \frac{\Delta X_1(s)}{\Delta U(s)} = \frac{\frac{1}{mm_1} (b_1 s + k_1)}{s \left(s + \frac{b}{m}\right) \left(s^2 + \frac{b_1}{m_1} s + \frac{k_1}{m_1}\right)} .$$
(3.7)

Uvažujeme-li, že vstupem do systému je přímo poloha závěsu, pak se tento přenos zredukuje na P(s) = 1.

3.3 Simulační schéma

Z rovnic (3.5) a (3.3) lze přímo sestavit simulační schémata popisující dynamiku soustavy.

Obrázek 3.2: Simulinkové schéma modelu závěsu podle rovnice (3.5)

Obrázek 3.3: Simulinkové schéma modelu závaží na pružině podle rovnice (3.3)

Dvě schémata obr. 3.2 a obr. 3.3 jsou jádrem celé simulace. Kompletní simluační schéma bude následovné:

Obrázek 3.4: Kompletní simulinkové schéma

Ve schématu je jediný vstup "u", který přivádí signál odpovídající vstupní síle v Newtonech do subsystému "Suspension". Tento subsystém obsahuje simulační schéma z obr. 3.2 a jeho výstupem je poloha závěsu v metrech (y [m]). Poloha závěsu je přivedena na vstup susbsystému "Mass 1", který obsahuje simulační schéma obr. 3.3 a jehož výstupem je poloha závaží také v metrech (y_1 [m]). Signály y a y_1 jsou výstupy, které jsou před vyvedením přepočteny z metrů na centimetry, pro lepší zobrazení výstupu.

Oba výstupní signály jsou přivedeny do bloku "to VR". Ten z jejich hodnot vypočítá transformace pro virtuální realitu. Vnitřní struktura tohoto bloku a vystvětlení jeho funkce je v kapitole 3.4. Blok "VR Sink" přímo reprezentuje virtuální realitu.

Celý tento systém je pro potřeby uživatele uzavřen a použit jako maskovaný subsystém. Parametry simulace lze nastavit v dialogu k této masce.

3.4 Virtuální realita

Nyní rozebereme virtuální realitu k soustavě závaží na pružině.

3.4. VIRTUÁLNÍ REALITA

Obrázek 3.5: Vzhled virtuální reality pro závaží na pružině

Celý systém ve virtuální realitě rozdělíme na dvě zcela samostatné části, první je soustava závěsu se závažím na pružině a druhou částí je měřítko. Měřítko je pouze statický objekt pro lepší posouzení pohybu. čísla odpovídají poloze ve směru osy y v [cm] a přesněji tak, že dolní základna je přesně tou hodnotou. Hlavní částí je samozřejmě závěs se závažím na pružině.

Závěs je reprezenotván černým kvádrem jehož poloha je dána polohou závěsu y. Závěs je zároveň rodičovským objektem pro zbytek soustavy. U něj se mění pouze poloha (translation).

Pružina je reprezentována válcem spojujícím závěs se závažím. Je potomkem závěsu, což je výhodné kvůli synchronizaci (není nutné posouvat pružinu při každém pohybu závěsu) a také se tím ušetří vstupy. Mění se u ní poloha (translation), velikost (scale), délka (height) a střed transformace (center). Souřadnice pro polohu jsou vztaženy k rodičovskému objektu neboli k závěsu.

Závaží je reprezentováno žlutou krychlí. To je potomkem závěsu, sice by bylo ideální, aby byla potomkem pružiny, čímž by se vyřešilo napojení těchto objektů, bohužel to ale není možné, protože při změně velikosti pružiny by se měnila velikost závaží a to by se natahovalo. U závaží se mění poloha (translation) a velikost (size).

V této virtuální realitě délka 1 odpovídá délce 1 dm, proto je nutné všechny vstupní signálu tomu uzpůsobit.

3.4.1 Ovládání virtuální reality

Virtuální realita (dále jen VR) našeho systému je celá ovládaná ze Simulinku. Blok VR potřebuje k chodu v tomto případě značné množství signál. Pro potřeby jejich výpočtu je použitý blok "to VR". Vnitřní struktura bloku "to VR" je následující.

Obrázek 3.6: Struktura bloku na výpočet transformací pro VR

Toto schéma je na první pohled relativně nepřehledné, dále následuje jeho popis k vystvětlení funkce.

Na vstupu jsou oba vstupní signály (polohy) převedeny z metrů na decimetry.

Do virtuální reality jde několik signálů s konstantní hodnotou. Konkrétně to jsou výstupní porty "2", "4", "5" a "7", které pouze nastaví konstanty ve virtuální realitě podle aktuálního nastevní konstant v simulačním schématu. Na port "5" je přivedena

výchozí délka pružiny, která se rovná pracovnímu bodu závaží

$$l_0 = y_{10} = \frac{m_1}{k_1} g \,.$$

Hodnota je vypočtena v masce systému. Na port "2" je přiveden posun středu transformace pružiny (center). To je nutné z důvodu, aby se pružina protahovala od horního konce a ne od prostředka, kde je standartně střed transformací. V našem případě chceme pouze posun ve směru osy y a proto jsou složky x a z rovny nule. Posun ve směru osy y je polovina délky pružiny (právě aby střed transformací byl v horním konci pružiny). Na port "4" je přiveden posun pružiny. Při změně délky pružiny by její konec byl nad závěsem. Ve směru osy y je posun o polovinu délky pružiny dolů. Posun v ostatních směrech je nulový. Na port "7" je přivedena velikost zavěšené krychle reprezentující závaží a to přímo jako délka hran. Tato délka je nastavena v masce systému konstantně.

Zbylé výstupy "1", "3" a "6" jsou již dynamické a řídí chod virtuální reality. Na port "1" je přímo přivedena poloha závěsu v dm jako vektor posunu. Na port "3" je přivedena změna délky pružiny. V našem případě je třeba, aby se měnila délka jen v ose y, proto je ve směru os x a z konstantně 1. Ve směru osy y je situace složitější. Požadovaná délka pružiny je $l_r = y(t) - y_1(t)$. Číslo, kterým je nutné vynásobit původní výchozí pružiny l_0 , abychom dostali žádanou délku je

$$k = \frac{y(t) - y_1(t)}{l_0}$$

Na port "6" je přivedena poloha závaží. Tato poloha je vztažena k závěsu, tudíž nelze prostě přivést polohu závaží. Řešení není nijak složité. Stačí vzít vzdálenost závěsu od závaží (délku pružiny) $l = y(t) - y_1(t)$, k ní přičíst polovinu hrany krychle a nakonec otočit znaménko. Přičtení poloviny hrany krychle je nutné, protože poloha krychle ve VR je určena středem. Otočení znaménka otočí polohu závaží pod závěs (kladné hodnoty jsou nad závěsem).

3.5 Simulační pokusy

Nyní provedeme několik simulačních experimentů na vytvořeném modelu a srovnáme s předpoklady. Pro simulace budeme používat tyto konstanty: hmotnost závěsu m = 20 kg, koeficient tlumení pohybu závěsu b = 2 kg/s, tuhost pružiny $k_1 = 15$ Nm⁻¹, koeficient tlumení pružiny $b_1 = 0.5$ kg/s a hmotnost závaží $m_1 = 2$ kg. Přenos vstupní síly F_u na polohu závaží y_1 podle rovnice (3.7) má jednu nulu

$$z_1 = -\frac{k_1}{b_1} \,,$$

a čtyři póly

$$p_1 = 0,$$
 $p_2 = -\frac{b}{m},$ $p_{3,4} = -\frac{b_1}{2m_1} \pm j\sqrt{\frac{k_1}{m_1} - \left(\frac{b_1}{2m_1}\right)^2}.$

Je tedy čtvrtého řádu s astatismem prvního řádu $(p_1 = 0)$. U tohoto přenosu jsou dominantními póly astatický pól $p_1 = 0$ a dvojice komplexně sdružených pólů. Ty způsobí to, že má systém kmitavou odezvu, což jsme u pružiny předpokládali. V přenosu (3.7) této dvojici komplexně sdružených pólů odpovídá polynom $(s^2 + \frac{b_1}{m_1}s + \frac{k_1}{m_1})$. Obecný polynom kmitavých pólů má tvar $(s^2 + 2\delta\omega_0 s + \omega_0^2)$, kde ω_0 je přirozená frekvence a δ je relativní tlumení. Z toho lze přímo spočítat parametry kmitů našeho přenosu. Přirozená frekvence a relativní tlumení jsou

$$\omega_0 = \sqrt{\frac{k_1}{m_1}}, \qquad \qquad \delta = \frac{b_1}{2\sqrt{k_1m_1}}.$$

Odtud můžeme spočítat vlastní frekvenci ω_v

$$\omega_v = \omega_0 \sqrt{1 - \delta^2} \,.$$

(Učebnice SARI [online], 2001) Závaží má tendenci kmitat s vlastní frekvencí ω_v . To lze demonstrovat na simulaci, kdy na vstup přivedeme pouze konstatní sílu na vyrovnání gravitace a závaží vychýlíme z rovnovážné polohy, viz obr. 3.7. Z obrázku je dobře vidět, že frekvence kmitání vůbec nezávisí na počáteční poloze y_{10} , ta ovlivňuje pouze amplitudu kmitů. Frekvence kmitů je pro oba případy stejná a přesně odpovídá vlastní frekvenci ω_v .

Obrázek 3.7: Odezva systému na počáteční podmínku y_{10}

Ověření, že se frekvence kmitů rovná vlastní frekvenci

 $\omega_v \doteq 2.73 \, \mathrm{rad/s}$

výpočet: odečtení z grafu: $\omega_v = \sqrt{\frac{k_1}{m_1}}$ $\omega = \frac{2\pi}{T}$ kde T = 2,3 s $\omega \doteq 2.73 \, \mathrm{rad/s}$

Je zřejmé, že kruhová frekvence vypočtená oběma postupy je stejná.

Pro názornost následujících simulací je výhodné použít jako vstup do soustavy přímo polohu závěsu y. Přenos mezi polohou závěsu a polohou závaží je

$$P_1(s) = \frac{\Delta Y_1(s)}{\Delta Y(s)} = \frac{\frac{1}{m_1} (b_1 s + k_1)}{s^2 + \frac{b_1}{m_1} s + \frac{k_1}{m_1}}.$$
(3.8)

Vlastnosti systému můžeme popisovat pomocí frekvenčních charakteristik, například Bodeho frekvenčních charakteristik. Bodeho frekvenční charakteristiky přenosu (3.8) jsou na obr. 3.8. V amplitudové charakteristice je dobře patrná rezonanční špička, kterou způsobuje právě komplexně sdružený kmitavý pól. Poloha této špičky je přesně na vlastní frekvenci ω_v . Výška rezonanční špičky je dána velikostí tlumení δ , pokud by bylo nulové, což by odpovídalo pro $b_1 = 0$, byla by špička nekonečně vysoká. Při námi nastavených konstantách vyjde, že $\omega_v \doteq 2,73 \, \mathrm{rad/s}.$

Obrázek 3.8: Bodeho frekvenční charakteristiky přenosu mezi polohou závěsu y a polohou závaží y_1 (3.8)

V několika následujících pokusech demonstrujeme odezvu na vstupní sinusový signál o různých frekvencích. Při těchto simulacích nám půjde hlavně o polohu závaží a budeme uvažovat přenos (3.8). Po odeznění přechodových jevů bude závaží kmitat s frekvencí stejnou, jako má zdroj. Tento signál bude ovšem příslušně zesílen a posunut vůči vstupnímu signálu podle Bodeho frekvenčních charakteristik.

Obrázek 3.9: Odezva systému na vstup $y(t)=\sin(\omega t),\ \omega\ll\omega_v$

Obrázek 3.10: Odezva systému na vstup $y(t) = \sin(\omega t), \ \omega = \omega_v$

Z obr. 3.10 je vidět, že amplituda kmitání je výrazně vyšší. Poslední simulace ukazuje útlum frekvencí vyšších než vlastní frekvence. Tento útlum roste se zvyšující se frekvencí. Dále je na průbězích vidět zpoždění výstupu systému za vstupem systému. To odpovídá Bodeho fázové frekvenční charateristice a pro vyšší frekvence je výraznější.

Obrázek 3.11: Odezva systému na vstup $y(t) = \sin(\omega t), \ \omega \gg \omega_v$

Pro ověření posunu fáze stačí odečíst fázi v grafu obr. 3.9, kde je rozdíl fáze přibližně 0 a v grafu obr. 3.11, kde je fázový posun zhruba 180° .

KAPITOLA 3. SOUSTAVA ZÁVAŽÍ NA PRUŽINĚ

Kapitola 4

Soustava dvou závaží na pružinách

4.1 Úvod

Tento příklad popisuje složitější kmitavý systém. Cílem tohoto příkladu je demostrace vlivu kmitavých pólů a nul na dynamiku systému.

Náš systém je složen z pěti částí. Závěsem o hmotnosti m a s tlumením b, na který přímo působí vstupní síla F_u . Dále horní pružina o tuhosti k_1 bez nelinearit a s tlumením b_1 . Na horní pružině je zavěšeno horní závaží o hmotnosti m_1 . Za toto závaží je zavěšena dolní pružina s tuhostí k_2 také bez nelinearit a tlumením b_2 . Na konci této pružiny je zavěšeno dolní závaží o hmotnosti m_2 . Celá soustava je na obr. 4.1 se všemi parametry. Vstupem do soustavy je síla na závěs nebo přímo poloha závěsu. Výstupy jsou poloha závěsu která je dále značena jako y, poloha horního závaží y_1 a poloha dolního závaží y_2 .

Obrázek 4.1: Systém dvou závaží na pružinách

V našem příkladě ještě uvažujeme pár specifik. Hmotnost pružin zanedbáváme a zdroj

síly považujeme za tvrdý a přímo působící na závěs. Proto v popisu dynamiky závěsu nebudeme uvažovat zpětné působení závaží při pohybu.

4.2 Matematický popis systému

V této kapitole odvodíme pohybové rovnice pro popis dynamiky závěsu a obou závaží. Postup pro výpočet pohybových rovnic pomocí Lagrangeových rovnic lze nají v literatuře (FEYNMAN, R. P. et al. Feynmanovy přednášky z fyziky 2/3, 2001) nebo v kapitole 3, kde se tento postup používá.

V příkladě dvou závaží na pružinách zavěšených nad sebou je použití Lagrangeových rovnic velmi užitečné, protože v tomto případě postup výpočtu pomocí Newtonova zákona je již značně nepřehledný.

Následuje zkrácený výpočet Lagrangiánu L a práce vnějších sil W. Kinetickou energii určíme jako součet kinetické energie závěsu a obou závaží

$$E_k(t) = \frac{1}{2}mv^2(t) + \frac{1}{2}m_1v_1^2(t) + \frac{1}{2}m_2v_2^2(t)$$
$$E_k(t) = \frac{1}{2}m\dot{y}^2(t) + \frac{1}{2}m_1\dot{y}_1^2(t) + \frac{1}{2}m_2\dot{y}_2^2(t).$$

Potenciální energii určíme jakou součet potenciálních energií závěsu, obou závaží a potenciálních energií pružnosti obou pružin,

$$E_p(t) = mgy(t) + m_1gy_1(t) + m_2gy_2(t) + \int_0^{y(t)-y_1(t)} k_1sds + \int_0^{y_1(t)-y_2(t)} k_2sds$$
$$E_p(t) = mgy(t) + m_1gy_1(t) + m_2gy_2(t) + \frac{k_1}{2} \left(y(t) - y_1(t)\right)^2 + \frac{k_2}{2} \left(y_1(t) - y_2(t)\right)^2$$

Lagrangián vypočítáme jako

$$L(t) = E_k(t) - E_p(t) ,$$

a po dosazení energií

$$L(t) = \frac{1}{2}m\dot{y}^{2}(t) + \frac{1}{2}m_{1}\dot{y}_{1}^{2}(t) + \frac{1}{2}m_{2}\dot{y}_{2}^{2}(t) - mgy(t) - m_{1}gy_{1}(t) - m_{2}gy_{2}(t) - \frac{k_{1}}{2}\left(y(t) - y_{1}(t)\right)^{2} - \frac{k_{2}}{2}\left(y_{1}(t) - y_{2}(t)\right)^{2}.$$

Práce vnějších sil je

$$W(t) = \int_0^y F_u(t)ds - \int_0^y b\dot{s}ds - \int_0^{y(t)-y_1(t)} b_1\dot{s}ds - \int_0^{y_1(t)-y_2(t)} b_2\dot{s}ds,$$

$$W(t) = F_u(t)y - \frac{b}{2}\frac{d}{dt}y^2(t) - \frac{b_1}{2}\frac{d}{dt}(y(t) - y_1(t))^2 - \frac{b_2}{2}\frac{d}{dt}(y_1(t) - y_2(t))^2.$$

Nyní již můžeme vyjadřovat jednotlivé pohybové rovnice. Pohybová rovnice pro horní závaží je

$$\frac{d}{dt}\frac{\partial L(t)}{\partial \dot{y}_1(t)} - \frac{\partial L(t)}{\partial y_1(t)} = \frac{\partial W(t)}{\partial y_1(t)} ,$$

$$\frac{d}{dt}m_1\dot{y}(t) - \left(-m_1g + k_1(y(t) - y_1(t)) - k_2(y_1(t) - y_2(t))\right) = \\ = \frac{d}{dt}b_1(y(t) - y_1(t)) - \frac{d}{dt}b_2(y_1(t) - y_2(t)),$$

 $m_1 \ddot{y}_1(t) + m_1 g + k_1 y_1(t) - k_1 y(t) + k_2 y_1(t) - k_2 y_2(t) = b_1 \dot{y}(t) - b_1 \dot{y}_1(t) - b_2 \dot{y}_1(t) + b_2 \dot{y}_2(t)$ $m_1 \ddot{y}_1(t) + b_1 \dot{y}_1(t) + b_2 \dot{y}_1(t) + k_1 y_1(t) + k_2 y_1(t) = b_1 \dot{y}(t) + k_1 y(t) + b_2 \dot{y}_2(t) + k_2 y_2(t) - m_1 g$

$$m_1 \ddot{y}_1(t) + (b_1 + b_2) \dot{y}_1(t) + (k_1 + k_2) y_1(t) = b_1 \dot{y}(t) + k_1 y(t) + b_2 \dot{y}_2(t) + k_2 y_2(t) - m_1 g.$$
(4.1)

Pohybovou rovnici pro dolní určíme z

$$\frac{d}{dt} \frac{\partial L(t)}{\partial \dot{y}_2(t)} - \frac{\partial L(t)}{\partial y_2(t)} = \frac{\partial W(t)}{\partial y_2(t)} ,$$

$$\frac{d}{dt} m_2 \dot{y}_2(t) - \left(-m_2 g + k_2 \left(y_1(t) - y_2(t) \right) \right) = \frac{d}{dt} b_2 \left(y_1(t) - y_2(t) \right) ,$$

$$m_2 \ddot{y}_2(t) - k_2 y_1(t) + k_2 y_2(t) + b_2 \dot{y}_2(t) = b_2 \dot{y}_1(t) - m_2 g ,$$

$$m_2 \ddot{y}_2(t) + b_2 \dot{y}_2(t) + k_2 y_2(t) = b_2 \dot{y}_1(t) + k_2 y_1(t) - m_2 g.$$
(4.2)

Pohybová rovnici pro závěs určíme obdobně

$$\frac{d}{dt}\frac{\partial L(t)}{\partial \dot{y}(t)} - \frac{\partial L(t)}{\partial y(t)} = \frac{\partial W(t)}{\partial y(t)} ,$$

$$\frac{d}{dt}m\dot{y}(t) - \left(-mg - k_1\left(y(t) - y_1(t)\right)\right) = F_u(t) - b\dot{y}(t) - b_1\left(\dot{y}(t) - \dot{y}_1(t)\right) ,$$

$$m\ddot{y}(t) - b\dot{y}(t) = F_u(t) - b_1\left(\dot{y}(t) - \dot{y}_1(t)\right) - k_1\left(y(t) - y_1(t)\right) - mg .$$
(4.3)

Jelikož zdroj považujeme za tvrdý, můžeme zanedbat členy popisující zpětné působení závaží, což jsou členy $k_1(y(t) - y_1(t))$ a $b_1(\dot{y}(t) - \dot{y}_1(t))$. Ty v sobě ovšem zahrnují i statické působní, které v příkladu uvažujeme. Pro jeho výpočet potřebujeme popis soustavy v klidu. V tom případě se rovnice (4.3) zredukuje na

$$0 = F_u + k_1 y_{10} - k_1 y_0 - mg.$$

Pro výpočet potřebujeme klidovou polohu závaží. Klidové polohy závaží získáme z rovnic (4.1) a (4.2). Po dosazení vyjde

$$0 = F_u + k_1 y_0 - k_1 y_0 - mg - m_1 g - m_2 g ,$$

$$0 = F_u - mg - m_1 g - m_2 g .$$

Z této rovnice je patrné, že v klidu je vstupní síla zatěžována pouze tíhou závěsu a závaží. Při porovnání této rovnice s rovnicí (4.3) je vidět, že všechny členy kromě $-m_1g$ a $-m_2g$ jsou již obsaženy. Námi hledané statické působení závaží na závěs je tedy $-m_1g - m_2g$. Výsledná pohybová rovnice závěsu pak je

$$m\ddot{y}(t) + b\dot{y}(t) = F_u(t) - mg - m_1g - m_2g.$$
(4.4)

Nyní již máme kompletní popis dynamiky celého systému v rovnicích 4.4, 4.1 a 4.2.

4.2.1 Převedení rovnic na přenosy

Nyní přepočítáme pohybové rovnice na přenosy mezi vstupní silou F_u a polohou závěsu y, mezi vstupní silou F_u a polohou horního závaží y_1 a mezi vstupní silou F_u a polohou dolního závaží y_2 .

Nejprve je nutné zvolit vstupní, stavové a výstupní proměnné. Jak bylo napsáno v úvodu, vstupem do soustavy u je síla působící na závěs. Výstupní proměnné jsou polohy závěsu a jednotlivých závaží y,y_1 a y_2 . Jako stavové proměnné je praktické zvolit x, x_1, x_2 , tak že se přímo rovnají výstupním proměnným.

Při linearizaci vypočítáme pracovní body všech stavových proměnných a odchylkový model. Při výpočtu pracovních bodů se uvažuje ustálený stav a všechny derivivané členy jsou nulové. Soustava rovnic popisující systém se potom zredukuje na rovnice

$$0 = u - mg - m_1g - m_2g$$
$$(k_1 + k_2)x_1 = k_1x + k_2x_2 - m_1g$$
$$k_2x_2 = k_2x_1 - m_2g$$

4.3. SIMULAČNÍ SCHÉMA

Řešení této soustavy vyjdou pracovní body. Pracovní bod polohy závěsu x_0 nelze určit jednoznačně a při splnění podmínky $u = (m + m_1 + m_2)g$ může být kdekoli. Pro přehlednost byl zvolen do počátkou souřadné soustavy. Pracovní body pro závaží pototm vyjdou

$$x_0 = 0$$
, $x_{10} = -\frac{1}{k_1} (m_1 + m_2)g$, $x_{20} = -\frac{k_2(m_1 + m_2) - k_1m_2}{k_1k_2}g$.

Pohybové rovnice v odchylkovém tvaru jsou

$$\Delta \ddot{x}(t) + \frac{b}{m} \Delta \dot{x}(t) = \frac{1}{m} \Delta u(t) \,,$$

$$\begin{aligned} \Delta \ddot{x}_1(t) + \frac{b_1 + b_2}{m_1} \,\Delta \dot{x}_1(t) + \frac{k_1 + k_2}{m_1} \,\Delta x_1(t) &= \frac{b_1}{m_1} \,\Delta \dot{x}(t) + \frac{k_1}{m_1} \,\Delta x(t) + \frac{b_2}{m_1} \,\Delta \dot{x}_2(t) + \frac{k_2}{m_1} \,\Delta x_2(t) \,, \\ \Delta \ddot{x}_2(t) + \frac{b_2}{m_2} \,\Delta \dot{x}_2(t) + \frac{k_2}{m_2} \,\Delta x_2(t) &= \frac{b_2}{m_2} \,\Delta \dot{x}_1(t) + \frac{k_2}{m_2} \,\Delta x_1(t) \,. \end{aligned}$$

Rovnice pro výstup jsou

$$y(t) = \Delta x(t) + x_0$$
, $y_1(t) = \Delta x_1(t) + x_{10}$, $y_2(t) = \Delta x_2(t) + x_{20}$

Z pohybových rovnic v odchylkovém tvaru již lze přímo vyjádřit přenosy

$$P(s) = \frac{\Delta X}{\Delta U} = \frac{\frac{1}{m}}{s\left(s + \frac{b}{m}\right)}$$
(4.5)

$$P_{1}(s) = \frac{\Delta X_{1}}{\Delta U} = \frac{\frac{1}{m} \left(\frac{b_{1}}{m_{1}}s + \frac{k_{1}}{m_{1}}\right) \left(s^{2} + \frac{b_{2}}{m_{2}}s + \frac{k_{2}}{m_{2}}\right)}{s \left(s + \frac{b}{m}\right) \left[\left(s^{2} + \frac{b_{1} + b_{2}}{m_{1}}s + \frac{k_{1} + k_{2}}{m_{1}}\right) \left(s^{2} + \frac{b_{2}}{m_{2}}s + \frac{k_{2}}{m_{2}}\right) - \frac{1}{m_{1}m_{2}} \left(b_{2}s + k_{2}\right)^{2}\right]}$$
(4.6)

$$P_2(s) = \frac{\Delta X_2}{\Delta U} = \frac{\frac{1}{m} \left(\frac{b_1}{m_1} s + \frac{k_1}{m_1}\right) \left(\frac{b_2}{m_2} s + \frac{k_2}{m_2}\right)}{s \left(s + \frac{b}{m}\right) \left[\left(s^2 + \frac{b_1 + b_2}{m_1} s + \frac{k_1 + k_2}{m_1}\right) \left(s^2 + \frac{b_2}{m_2} s + \frac{k_2}{m_2}\right) - \frac{1}{m_1 m_2} \left(b_2 s + k_2\right)^2\right]}$$
(4.7)

Uvažujeme-li, že vstupem do systému je přímo poloha závěsu, pak se přenos (4.5) zredukuje na P(s) = 1.

4.3 Simulační schéma

V rovnicích (4.4), (4.1) a (4.2) máme popsanou dynamiku celého systému. Přímo z těchto rovnic sestavíme simulační schéma.

Obrázek 4.2: Simulinkové schéma pro závěs podle rovnice (4.4)

Simulinkové schéma pro rovnice (4.1) a (4.2) nelze jednoduše rozdělit, pohyb obou závaží se vzájemně ovlivňuje, proto bude simulační schéma pohybu závaží na obr. 4.3

Obrázek 4.3: Simulinkové schéma pro pohyb
 závaží podle rovnice (4.1) a(4.2)

Celý model vznikne spojením obou simulačních schémat z obr. 4.2 a obr. 4.3.

Obrázek 4.4: Kompletní simulinkové schéma soustavy závaží na pružinách

Simlaci lze zahájit po připojení vstpního signálu na vstup u a sledováním výstupů y, y_1 a y_2 .

4.4 Virtuální realita

Nyní rozebereme virtuální realitu k soustavě dvou závaží na pružinách.

Obrázek 4.5: Vzhled virtuální reality pro závaží na pružinách

Podle obrázku obr. 4.5 snadno popíšeme celou virtuální realitu k našemu systému. Celá virtuální realita (dále jen VR) obsahuje dvě hlavní části a to měřítko a soustavu závaží na pružinách. Měřítko je stejně jako v kapitole 3.4 pouze statický objekt pro lepší posouzení pohybu. Hodnoty na měřítku odpovídají pozici na ose y v centimetrech, tak že spodní hrana čísel je přesně odpovídajicí hodnota.

Hlavní částí je soustava závaží na pružinách. Hlavním objektem je závěs tvořený ve VR černým kvádrem a je zároveň rodičovským objektem pro celou soustavu. U něj se mění pouze poloha.

Horní pružina je žlutý válec a je přímým potomkem závěsu. U horní pružiny se mění velikost, poloha, délka a střed transformací. Horní závaží je žlutá krychle a je potomkem závěsu, ani v tomto případě není možné použít jako rodičovský objekt pružinu stejně jako v 3.4. U závaží se mění poloha a velikost. Dolní pružina je fialový válec a je potomkem závěsu, nelze použít horní závaží jako rodiče. Tím se ovšem ovládání VR stane složitějším. U dolní pružiny se mění poloha, velikost, délka a střed transformací. Dolní závaží je tvořeno fialovou krychlí a je také potomkem závěsu.

4.4.1 Ovládání virtuální reality

Virtuální realita je celá ovládána ze Simulinku. Dále rozebereme blok vytvářející řídící signály pro VR. Tímto blokem je simulinkový subsystém "to VR" s následjující strukturou.

Obrázek 4.6: Struktura bloku na výpočet transformací pro ${\rm VR}$

Toto schéma je dost složité, následuje popis k vystvětlení funkce. Na vstupní porty "1", "2" a "3" jsou přivedeny jako vstup polohy závěsu y, horního závaží y_1 a dolního závaží y_2 v centimetrech. Všechny polohy jsou nejprve převedeny na decimetry. Vstupní signály y_1, y_2 jsou v Simulinku přímo polohy závaží, ale ve VR jsou to vzdálenosti od rodičovského objetku, proto je nutné od polohy závěsu odečíst jednotlivě polohy závaží. Dále jsou signály upraveny saturací, aby pružina nemohla mít zápornou délku a závaží nebyla v sobě.

Na výstup jde 13 signálů, z čehož jsou následující konstantní a řídí pouze vzhled VR a ostatní řídí dynamiku VR.

Na výstupní port "6" je přivedena velikost krychle horního závaží, délka její hrany je nastavena v masce schématu. Na port "2" je přiveden posun středu transformacví pro horní pružinu, je posunut do horního konce pružiny, aby se pružina natahovala odtud. Na port "4" je přiveden posun pružiny vůči závěsu, pružina je posunuta o polovinu délky dolů, aby navazovala na závěs horním koncem. Na port "5" je přivedena přímo délka klidová pružiny, ta mění se pouze při změně klidové délky pružiny (vypočteno v masce schématu). Na port "11" je přivedena přímo klidová délka dolní pružiny. Na port "8" posun jejího středu transformací. Na port "6" je přivedena velikost hrany krychle horního závaží. Na port "12" je přivedena velikost krychle dolního závaží.

Ostatní výstupy již řídí pohyb VR.

Na port "1" je přivedena poloha závěsu a to jako vektor posunu. Na port "3" je přivedena změna velikosti horní pružiny, žádoucí je jen prodloužení v ose y, proto jsou složky x, z = 1 a složka v ose $T_y = (y - y_1)/l_1$, kde l_1 je klidová délka pružiny. Na port "7" je přivedena poloha závaží, cílová poloha je délka horní pružiny plus polovina hrany krychle. Závaží je pod závěsem, proto je nutné nakonec otočit znaménko. Na port "10" je přiveden posun dolní pružiny. Od polohy horního závaží stačí odečíst polovinu hrany krychle a polovinu délky dolní pružiny. Na port "9" je přivedena změna velikosti dolní pružiny. Opět je žádoucí pouze změna ve směru osy y a to taková, že $S_y = (y - y_1 - y_2 - a_1)/l_2$, kde l_2 je klidová délka dolní pružiny a a_1 hrana horního závaží. Posun o velikost horního závaží nahoru je nutný, protože matematický popis uvažuje závaží o nulových rozměrech.

Na port "13" je přiveden posun dolního závaží. Vzdálenost dolního závaží od závěsu je $T_y = -(y - y_2)$. Je ale nutné ještě posunout závaží o polovinu dolní krychle dolů.

4.5 Simulační pokusy

Nyní provedeme několik pokusů, na kterých budeme demostrovat vlastnosti tohoto systému. Pro simulace budeme uvažovat následující nastevní. Hmotnost závěsu bude $m = 20 \text{ kg a odpor prostředí jeho pohybu } b = 1 \text{ kgs}^{-1}$. Nastavení horní pružiny a horního závaží budou: hmotnost horního závaží $m_1 = 2 \text{ kg}$, tuhost pružiny $k_1 = 36 \text{ Nm}^{-1}$ a útlum pružiny $b_1 = 1 \text{ kgs}^{-1}$, hmotnost dolního závaží bude $m_2 = 1 \text{ kg}$, tuhost dolní pružiny $k_2 = 16 \text{ Nm}^{-1}$ a její útlum $b_2 = 0 \text{ kgs}^{-1}$.

Pro následující simulace je výhodnější použít jako vstup přímo polohu závěsu. Z přenosů (4.6) a (4.7) je třeba odebrat přenos (4.5). Budícím signálem bude sinusový signál s proměnnou ferkvencí.

Pro snažší popis vlastností systému je třeba jej upravit do tvaru, ve ktrerém budou v přenosu kořenoví činitelé. Pro námi zvolené konstanty simulace vyjdou přenosy ve tvaru

$$P_1(s) = \frac{\Delta Y_1}{\Delta Y} = \frac{0.5(s+36)(s^2+16)}{(s^2+0.15s+8.65)(s^2+0.35s+33.5)} ,$$

$$P_2(s) = \frac{\Delta Y_2}{\Delta Y} = \frac{8(s+36)}{(s^2+0.15s+8.65)(s^2+0.35s+33.5)} .$$

V následujícím případě rozebereme přechodové jevy obou závaží (přenosů) pro y = 0, což odpovídá nepohyblivému závěsu. Obě závaží začnou kmitat kolem rovnovážných poloh s frekvencí odpovídající vlastní frekvenci kmitavého pólu.

Obrázek 4.7: Odezva systému na nulové počáteční podmínky y_{10} a y_{20} bez buzení

Přenosy polohy závěsu na polohy závaží obsahují dva kořenové činitele kmitavých pólů (neboli obsahují čtyři kmitavé póly). Jak lze odečíst z grafu, závaží budou kmitat s frekvencí odpovídající nižší z těchto dvou frekvencí ($\omega_0 \doteq 2.9 \,\mathrm{rads}^{-1}$). To lze zdůvodnit tím, že póly blíže počátku jsou dominantní a proto se jimi bude systém řídit.

V následujících pokusech budeme demonstrovat vliv kvadratické kořenového činitele v čitateli přenosu (4.6). Reprezentuje komplexně sdružené kmitavé nuly a ty mají přesně opačný vliv než kmitavé póly. Namísto zesilování určité frekvence (rezonance) určitou frekvenci zeslabují. To je dobře vidět na Bodeho charakteristice na obrázku obr. 4.8

Obrázek 4.8: Bodeho charakteristika dynamiky horního závaží (přenos $y \to y_1)$

Náš kořenový činitel v čitateli je $\left(s^2 + \frac{b_2}{m_2}s + \frac{k_2}{m_2}\right)$. Obecný kvadratický člen má tvar $(s^2 + 2\delta\omega s + \omega_0^2)$. Tudíž přirozená frekvence nuly a relativní tlumení jsou

$$\omega_0 = \frac{k_2}{m_2} , \qquad \qquad \delta = \frac{b_2}{2\sqrt{k_2 m_2}}$$

Frekvence, kterou tento kořenový činitel tlumí je jeho vlastní frekvence, neboli ω_v . Intenzita zeslabení je dána relativním tlumením kořenového činitele δ . V našem příkladě jsme zvolili $\delta = 0$, kdy je útlum frekvence nekonečný a závaží nebude vůbec kmitat. Vlastní frekvence se rovná $\omega_v = \omega_0 \sqrt{1 - \delta^2}$ (Učebnice SARI [online], 2001), v našem příkladě je $\omega_v = \omega_0$, díky nulovému tlumení δ .

Pohyb pro nízké frekvence je běžné nucené tlumené kmitání. Po odeznění přechodových jevů budou obě závaží kmitat s frekvencí zdroje. Zvolená frekvence je nižší než

vlastní frekvence kmitavé nuly a zároveň, aby nevyšla do žádného pólu.

Obrázek 4.9: Odezva systému na vstup $y(t)=\sin(\omega t),\ \omega\ll\omega_v$

Obrázek 4.10: Odezva systému na vstup $y(t)=\sin(\omega t),\ \omega=\omega_v$

Pro vyšší frekvence se bude značně projevovat útlum systému a kmity budou mít velmi malou amplitudu. Navíc se bude výrazněji projevovat zpoždění systému a fáze kmitů bude značně posunuta.

Obrázek 4.11: Odezva systému na vstup $y(t)=\sin(\omega t),\;\omega\gg\omega_v$

Kapitola 5

Závěr

Tato bakalářská práce obsahuje tři hlavní kapitoly. V kapitole 2 je rozebrána obecně virtuální realita ve Virtual reality toolboxu v Matlabu a základní informace o jejím ovládání. Kapitoly 3 a 4 obsahují dva vyřešené mechanické systémy, ke kterým byla vytvořena virtuální realita i s popisem.

Prvním popsaným systémem je jednoduchý kmitavý systém závaží na pružině viz kapitola 3, na kterém je podrobně vyřešeno odvození rovnic popisujících dynamiku dané soustavy. Oba předvedené postupy jsou čistě teoretické a jsou to odvození rovnic pomocí Newtonovy mechaniky a Lagrangeových rovnic druhého druhu. Druhým systémem je složitější kmitavý systém závaží zavěšených na pružinách pod sebou viz kapitola 4, kde je odvození rovnic o poznání složitější a proto byl výpočet proveden pomocí Lagrangeových rovnic druhého druhu a zkrácen o některá vysvětlení. U obou systémů bylo vytvořeno simulační schéma (popis je u jednotlivých kapitol) s virtuální realitou (opět popsáno). Tato simulinková schémata jsou přiložena na CD. Posledním modelovaným systémem je kulička na ploše. Pro ni bylo také sestaveno Simulnikové schéma s virtuální realitou, které je přiloženo na CD. Odvození a popis nejsou obsaženy v této práci, protože by její délka byla neúměrná.

Problémy, které jsme pozorovali, nebo mohou nastat při použití simulačních modelů, jsou následující. Při simulaci modelů v jiné verzi Matlabu, než ve které byly vytvořeny, může být problém se změnou parametrů simulace (pozorováno pro jinou verzi Simulinku). Hlavním nedostatkem simulace s Virtuální realitou je rychlost simulace. Simulace vždy běží podle možností počítače, proto je rychlost pohybu objektů virtuální reality závislá na výkonu a vytížení počítače. Při běhu na výkonném počítači je pohyb objektů tak rychlý, že jej již není možné rozumně pozorovat. Jedním z možných řešení je v nabídce "Simulation/Configuration Parameters" nastavit hodnotu "Max step size" na velmi malou (zhruba 1e-4),čímž se simulace zpomalí.

Na vytvořených modelech je velmi dobře vidět hlavní výhoda modelů s virtuální realitou. Chování modelovaných systémů je velmi názorné a dobře se popisuje.

Literatura

- NOSKIEVIČ, P.; (1999), Modelování a identifikace systémů, Montanex, a.s., Ostrava.
- FEYNMAN, R. P., LEIGHTON, R. B. a SANDS, M.; (2001), Feynmanovy přednášky z fyziky 2/3, Fragment.
- FRANKLIN, G. F., POWELL, J. D. a EMAMI-NAEINI, A.; (2005), Feedback Control of Dynamic Systems 5th ed., Prentice-Hall.
- FUKA, J., JOHN, J. a KUTIL, M.; (2002), *Učebnice SARI* [online], [cit. 2005-03-01] (http://dce.felk.cvut.cz/sari/)

LITERATURA

Příloha A

Obsah přiloženého CD

K této práci je přiloženo CD, na kterém jsou uloženy Simulační modely a zdrojové kódy.

• mass_on_spring:

MassOnSpring.mdl MassOnSpring_VR.wrl

 $MassOnSpring_Image.tif$

• double_mass_on_spring:

doubleMassOnSpring_mdl doubleMassOnSpring_VR.wrl doubleMassOnSpring_Image.tif

 \bullet ball_on_plate:

BallOnPlate.mdl BallOnPlate_VR.wrl BallOnPlate_Image.tif

• protokol:

BP.tex BP.pdf

– složky s TeXovými soubory a obrázky pro jednotlivé kapitoly