
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Predicting Counter-Strike Game Outcomes
with Machine Learning

Ondřej Švec

Supervisor: Ing. Gustav Šír, Ph. D.
Field of study: Cybernetics and Robotics
January 2022

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

483800Personal ID number:Švec OndřejStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and RoboticsStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Predicting Counter-Strike Game Outcomes with Machine Learning

Bachelor’s thesis title in Czech:

Predikce výsledků ve hře Counter-Strike s pomocí strojového učení

Guidelines:
The e-sports industry experiences an unprecedented growth in popularity and impact, however, predictive analytics studies
in the domain are still considerably rare. Moreover, in contrast to classic sports matches, there are also rich data records
collected from the virutal game enviroment, allowing for a range of machine learning
methods to be tested. The subject of this thesis is such an exploratory machine learning study into the most popular e-sport
- CS:GO.
1) Review the state of predictive analytics in CS:GO.
2) Collect statistically significant amount of match data.
3) Perform exploratory data analysis and preprocessing.
4) Experiment with a range of sample representations and models.
5) Analyse and compare your results against selected baselines.

Bibliography / sources:
[1] Björklund, Arvid, et al. Predicting the outcome of CS: GO games using machine learning. BS thesis. Chalmers University
of Technology, 2018.
[2] Makarov, Ilya, et al. "Predicting winning team and probabilistic ratings in “Dota 2” and “Counter-Strike: Global Offensive”
video games." International Conference on Analysis of Images, Social Networks and Texts. Springer, Cham, 2017.
[3] Minka, Tom, Ryan Cleven, and Yordan Zaykov. "Trueskill 2: An improved bayesian skill rating system." Tech. Rep.
(2018).
[4] Zhou, Jie, et al. "Graph neural networks: A review of methods and applications." AI Open 1 (2020): 57-81.

Name and workplace of bachelor’s thesis supervisor:

Ing. Gustav Šír, Ph.D., Department of Computer Science, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 04.01.2022Date of bachelor’s thesis assignment: 20.05.2021

Assignment valid until: 19.02.2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Gustav Šír, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Acknowledgements

I would like to thank my supervisor Ing.
Gustav Šír, Ph. D. greatly for leading me
throughout the year.

Computational resources were supplied
by the project "e-Infrastruktura CZ" (e-
INFRA CZ LM2018140) supported by
the Ministry of Education, Youth and
Sports of the Czech Republic.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, date 4. January 2022

v

Abstract

The surge of the esports industry, along-
side the rise in popularity of machine
learning, provides unique opportunities
for improving currently used methods of
match outcome predictions.

This thesis aims to give a new perspec-
tive to predicting outcomes of Counter-
Strike matches. In order to achieve that,
first, high volume dataset consisting of
over 40,000 matches was obtained and an-
alyzed. Three sample representations, two
types of data preprocessing, six machine
learning models and a model utilizing Elo
rating were proposed, cross-validated and
compared to a selected baseline. Model
utilizing Elo rating proved to be consis-
tently the best one, with test set accuracy
of 64 %, closely followed by Random For-
est model with test set accuracy of 63
%.

Keywords: machine learning, neural
networks, Counter-Strike, esports,
predicting outcomes

Supervisor: Ing. Gustav Šír, Ph. D.

Abstrakt

Vzestup odvětví esportů spolu s nárůstem
popularity strojového učení poskytuje je-
dinečné příležitosti pro zlepšení aktuálně
používaných metod předpovědí výsledků
zápasů.

Tato práce si klade za cíl poskytnout
nový pohled na predikci výsledků zápasů
Counter-Strike. Aby toho bylo dosaženo,
byl nejprve získán a analyzován velký ob-
jem dat skládající se z více než 40 000 zá-
pasů. Byly navrženy tři reprezentace dat,
dva typy preprocessingu dat, šest modelů
strojového učení a model využívající hod-
nocení Elo, které byly křížově ověřeny a
porovnány s vybraným výchozím stavem.
Model využívající hodnocení Elo se proká-
zal být nejlepším, s přesností na testovací
sadě 64 %, těsně následovaný modelem
Random Forest s přesností na testovací
sadě 63 %.

Klíčová slova: strojové učení,
neuronové sítě, Counter-Strike, esports,
předpověď výsledků

Překlad názvu: Predikce výsledků ve
hře Counter-Strike s pomocí strojového
učení

vi

Contents

1 Introduction 1

1.1 Problem and goals 2

2 Background 3

2.1 CS:GO and betting 3

2.2 State of predictive analytics in
CS:GO . 4

2.3 Rules of CS:GO 5

2.4 Player ranking - Elo 6

2.5 Machine Learning 6

2.5.1 Non-neural network models . . 6

2.5.2 Neural network models 10

2.5.3 Loss function 13

3 Data collection 15

3.1 Data research 15

3.2 Data scraping 17

3.2.1 Data scraping software 17

3.2.2 HLTV site structure 18

3.2.3 Scraping process 20

3.2.4 Parallelization of the scraping
process . 21

3.3 Database structure 22

4 Data analysis 25

4.1 Contextual statistics 25

4.1.1 Matches 25

4.1.2 Maps . 26

4.1.3 Rosters 28

4.1.4 Weaponry 28

4.2 Feature selection 29

4.3 Turning data into features 29

4.3.1 Player features 30

4.3.2 Roster features 30

4.4 Missing data 31

4.4.1 Dropping maps with no
economy data 32

5 Experimentation process 33

5.1 Working with dataset 33

vii

5.1.1 Training set 33

5.1.2 Validation set 33

5.1.3 Testing set 34

5.1.4 Growing window 34

5.1.5 Data preprocessing 35

5.1.6 Sample representations 36

5.2 Implemented models 36

5.2.1 Using non-neural machine
learning models 37

5.2.2 Using the linear model 37

5.2.3 Using the convolutional model 38

5.2.4 Using of the embedding model 39

6 Results 41

6.1 Chosen architectures and
hyperparameters of different models 41

6.1.1 Linear model 41

6.1.2 Convolutional model 42

6.1.3 Embedding model 43

6.2 Evaluation of learned models . . . 43

6.2.1 Baseline model 44

6.2.2 Evaluation of non-neural
network models 44

6.2.3 Evaluation of neural network
models . 45

6.3 Test set evaluation 47

6.4 Feature importance 48

7 Conclusion 53

7.1 Future improvement 54

A Bibliography 55

viii

Figures

2.1 The logistic sigmoid function [22]. 7

2.2 Binary decision tree functionality
illustrated [26] 8

2.3 k-NN classifier illustration. For
k = 3, lp is red triangle, for k = 5, lp
is blue square [28]. 9

2.4 Fully connected layer illustration
[29] . 11

2.5 Dot product of convolutional layer
[29] . 11

2.6 Illustration of too big of a learning
rate resulting in overstepping the
minimum [33]. 13

2.7 Cross-entropy loss function image
for y = 1 [32] 14

3.1 Direct WebDriver-Browser
communication diagram [35] 17

3.2 HLTV’s results page 18

3.3 HLTV’s Match Page layout 19

3.4 HLTV’s Map Overview Page
layout . 20

3.5 HLTV’s Map Economy Page
layout . 20

3.6 HLTV’s Map Heatmap Page
layout . 21

3.7 Scraping process visualized 21

3.8 Database layout 24

4.1 Comparison of LAN played
portions of dataset in relation to
Covid-19 pandemic 26

4.2 Count of matches played in
different BO formats 27

4.3 Counts of map matches played
divided by in-game levels 27

4.4 Map played counts over time . . . 28

4.5 Weapon Class Kills Distribution 29

5.1 Comparation of gradient descent in
unnormalized and normalized
datasets (image taken from [36]) . . 35

6.1 Linear layers of linear model . . . 42

6.2 Logistic regression accuracy based
on sample representation 45

6.3 Logistic regression accuracy based
on missing data management 45

6.4 k-Nearest Neighbors accuracy
based on sample representation . . . 46

ix

6.5 k-Nearest Neighbors accuracy
based on missing data management 46

6.6 Random Forest accuracy based on
sample representation 47

6.7 Random Forest accuracy based on
missing data management 47

6.8 Linear model performances on
different sample representations. . . 48

6.9 Linear model performances with
different preprocessing methods. . . 48

6.10 Convolutional model
performances on different sample
representations. 49

6.11 Convolutional model
performances with different
preprocessing methods. 49

6.12 Embedding model performances
on different sample representations. 49

6.13 Embedding model performances
with different preprocessing
methods. 50

6.14 Feature importances 51

Tables

3.1 Comparison of dataset sources . . 16

5.1 Growing window row sizes 35

6.1 Accuracy values obtained by
predicting the test set 47

x

Chapter 1

Introduction

Sports have been around us for as long as we can remember, with the
documented history going back thousands of years. What may have started
as one of the ways to prepare for an incoming war or perhaps a hunt, became
an important part of today’s cultural society. Over the years, sports have
developed from throwing spears and rocks in a numerous different ways for
people to compare their skills [1]. Some of these sparking up a discussion
about what exactly sport is, what it embodies and what it does not. For
some, sporting is an activity involving physical exertion and competition, for
others the latter suffices [2].

With the invention of the computer and the internet, possibly the latest
addition to sports arose - esports. Often talked in the context of the fastest
growing sports industry (placed as the best sport rated by potential to
grow revenues globally by PwC in 2018 [3], 2019 [4] and 2020 [5]), esports’
worldwide market revenues estimates rose from 130 million U.S. dollars to
nearly 1.1 billion U.S. dollars, making the predictions for 2024 reach over
1.6 billion U.S. dollars [6]. 1 The grow is has caught interest of traditional
sports’ organizations looking to diverge. In the last couple of years, sports
organisations’ level of engagement with esports grew rapidly, evolving from
scepticism to embracing [5].

Counter-Strike: Global Offensive (CS:GO for short) has been launched in
2012 and has since become the highest ranking game on Steam in terms of
average players each month with approximately 549 thousand players [11].

1According to [7], the esports audience grew 9.5 % from 397.8 to 435.9 million of
occasional viewers with 220.5 million of esports enthusiasts.

1

1. Introduction
One of its biggest advantages is the simplicity of core game mechanics, unlike
in many other cases of other esports titles, making it very easy to pick up
both playing and watching the game. To this day, CS:GO holds a standard
of how a competitive FPS game is supposed to be like.

Sports and gambling have always gone hand in hand. Ancient Greek
artefacts indicate that there was betting already on the Olympic Games [8].
However, with the invention of online betting, sports gambling is currently
experiencing a huge boom. What used to be a small market, now is a billion-
dollar industry. Sports betting is recently more and more, in terms of revenue,
being compared to traditional sports [9].

With computational power being more accessible every year, machine
learning became very popular in nearly every specialization in our lives.
Thanks to machine learning, areas, such as speak recognition or image
recognition, were greatly accelerated. Every other cellphone has nowadays
got a speech recognition function powered by a machine learning model, and
each year a steps towards fully autonomous vehicles are taken. In relation to
sports predicting and betting, other methods are still preferred to machine
learning. However, some preliminary research has already been done in the
area, with some positive results.

1.1 Problem and goals

Machine learning models showed promising results in recent studies, improving
predictions of outcomes, both, in traditonal sports and esports. This thesis
tries to come up with different sample representations and prediction models
to predict outcomes of CS:GO matches.

In this study, we have chosen to tackle the problem directly as classification
task, i.e. predicting the winner of the game as one of the competing teams.
Proposed sample representations then consist of player representation con-
sisting of player statistics calculated to round average, team representation
consisting of roster’s ability to win percentages of classified rounds, and
representation combining the two representations.

The models selected to approach this task then consist of various neural
networks, standard machine learning models and an Elo rating-based model.

2

Chapter 2

Background

In this chapter we provide the necessary background to the game of CS:GO
and the various machine learning concepts that will be utilized later in the
thesis.

2.1 CS:GO and betting

Intersection of esports and betting is not one to take lightly. Since its launch
in July 2012 to July 2013, CS:GO had averaged up to 20 thousand players on
a month-to-month basis [11]. In August 2013, the Arms Deal update came
out, allowing for trading and, especially, betting of in-game items, which, in
turn, skyrocketed the interest in CS:GO. A full year later, in August 2014,
CS:GO averaged 133 thousand players. Adding one more year, the count
rose up even higher, to 357 thousand average players [11]. CS:GO is not
the only esports title to heavily rely on gambling. Nearly 59 % of the 2021
esports revenue streams, valued at 641 million $, was made of sponsorship
[7]. Conventional industries are getting themselves involved in esports as
sponsors from all around, though, one of the biggest supporting forces in the
industry is the gambling industry [12]. Interestingly, not only the teams take
up gambling sponsorships, the tournament organizers do, too [13].

3

2. Background
2.2 State of predictive analytics in CS:GO

With machine learning’s rise in popularity, attempts to implement it one way
or another in connection with CS:GO have been made, however, not many in
terms of predicting match outcomes. Some people try teaching bots play via
unsupervised learning like human players, to either gain an advantage, or to
substitute human players when missing [16].

In 2017, [17] tried predicting outcomes of matches by using features calcu-
lated from so-called after-plant situations. After-plant situations occur when
the attacking side (T side) plants a bomb and the timer before explosion
starts to countdown. Features are made of data from each second of the
after-plant. The study harvests data from 162 map demos (demo contains all
actions happening in the game) played from February 2016 to March 2017.
It achieves a 62 % accuracy. In this thesis, rather than observing a small
dataset and trying to predict based on very specific features, a huge dataset
is obtained and more of a general approach, in terms of features chosen, is
taken.

CS:GO allows to record statistics from any match played in the game.
This means anyone can gather data by playing the game and saving demo
files. And many third party sites also allow viewing detailed statistics of
any player. In 2018, [18] analyzed 6,000 matches of 1,000 top players from
matching site FaceIt.com1. The study’s goal was to collect in-game statistics,
group players into clusters and predict a winning team by the clusters present
in each match’s teams. It achieved accuracy of 65.11 %, which showed an
improvement compared to predictions made solely by observing FaceIt’s ranks.
However, this method favors from the fact that FaceIt matching doesn’t take
clustering of players in consideration at all, meaning it’s perfectly possible
for a team to have players preferring the same role in the game. This seems
to be hardly transferable to professional match predicting, as teams are not
made up by an algorithm, but by players teaming up, themselves.

Interestingly enough, as opposed to the lack of studies linking CS:GO and
machine learning predictions of outcomes, number of studies for MOBA2

games exist.

1FaceIt is third-party service, where players queue up and get matched based on rank
FaceIt calculates for each player based on their perfomance in previous matches.

2“Multiplayer Online Battle Arena”, a popular genre of esports games

4

................................... 2.3. Rules of CS:GO

2.3 Rules of CS:GO

Counter-Strike is a team-based multiplayer first person shooter. Two teams of
five players each compete in multiple rounds with the goal of winning enough
rounds to win a map. Most matches are played in either a best-of-1, best-of-3,
or best-of-5 (often shortened to just BO1, BO3 and BO5) setting, meaning,
that winning majority of a given count of maps results in a win.

Each map takes place in one of seven in-game levels3 called “Active Duty
Map Pool”. The order of maps in a match is set via a “vote-ban system”
where teams first decide maps that they do not want to play by banning
them and follow up by picking maps that are then played. Every level is
substantially different from all the others.

A map starts by deciding which team plays which side first. The usual
way to decide the starting sides is performing a single knife round in which
both teams play with only knives as weapons. The winner then chooses the
preferred starting side. Maps are in most cases played as a best-of-30. First
fifteen rounds are played, then sides are changed and rest of the rounds is
played out until one of the teams reaches a majority (sixteen) of rounds or
the map comes to a tie (15-15 score)4.

To win a round, a team has to fulfill one of a few conditions depending
on the side the team is playing in the round. Attacking side (often called
“Terrorist side” or “T side” for short) wins a round by successfully planting
and exploding a bomb in one of designated areas in a level. Defending side’s
(often called “Counter-Terrorist side” or “CT side” for short) goal is to prevent
the bomb from exploding by either defusing an already planted bomb or
delaying the attacking team enough for the round to close as time runs out.
Both sides also win the round by eliminating all players of the other team
before reaching their goal.

Economy plays a crucial role in Counter-Strike. A round starts with both
teams locked in “buy zones” for the duration of “buy time”. Teams buy
armor, utility and weapons in order to maximize the chances of winning the
round. At the end of each round, both teams receive bonus money for next
round. While the losing team receives a higher bonus, multiple member of
the winning team usually survive the round, which results in keeping the
bought equipment for the next round without having to rebuy it.

3In this thesis level and map is used interchangeably, as well, as map and match,
depending on the context.

4In which case, an overtime is usually played.

5

2. Background
2.4 Player ranking - Elo

Elo is a rating system developed by Arpad Elo and used since 1970. It was
developed, and to this day used, for rating chess players [19]. Nowadays, Elo
rating and its derivatives are used in countless of sports and competitions,
though, usually tweaked.

At the beginning, all players start with Elo rating of 1500. After the match
ends, resulting in one of the sides taking a win, Elo ratings are recalculated
using following formula [20]:

EA = 1
1 + 10(RB−RA)/400 ,

R′A = RA +K · (SA − EA),

where RA stands for rating of side A before the match, RB for rating of side
B before the match, RA for rating of side A after the match, SA the actual
outcome of the match from side A’s perspective (1 for a win, 0 for a loss,
0.5 for a tie), EA is the probability of side A winning the match and K a
chosen scaling factor. In this study, RA, RB are calculated as means of theirs
respective players. To update the Elo values, difference R′A −RA is added to
each of the players’ ratings.

In this thesis, Elo rating serves a role of non-machine learning model, for
comparison purposes.

2.5 Machine Learning

In this section, background is laid out to the used machine learning tools.
First sub-section explains non-neural network models used in this thesis,
second describes elemental layers of neural network models, that have been
used, with the last two subsections explaining loss function and optimizers.

2.5.1 Non-neural network models

With the ever-growing expansion of machine learning, countless of very
advanced models exist. For the lack of studies in CS:GO’s outcome prediction

6

.................................. 2.5. Machine Learning

Figure 2.1: The logistic sigmoid function [22].

using machine learning, we apply Occam’s razor, or, as often called, the
principle of parsimony [21]. What is meant by that, is the fact, that rather
than trying high-end machine learning models, simple machine learning are
tested to see how they perform.

Logistic regression

One of the oldest classification models, Logistic regression, is named after the
use of a sigmoid (logistic) function

σ(x,w) = 1
1 + e−xT ·w , (2.1)

where x stands for vector of input features and w stands for vector of weights.
If we look at the image of function σ (figure 2.1, we can see that values are
in range (0, 1). This means that the probabilty of predicted class in a binary
classification task can be defined as follows

P (y = 0|x) = σ(x,w), (2.2)
P (y = 1|x) = 1− σ(x,w), (2.3)

where y ∈ {0, 1} is predicted label.

Optimal weights w are found minimizing a selected loss function (more in
section 2.5.3).

7

2. Background

Figure 2.2: Binary decision tree functionality illustrated [26]

Random forest

A binary decision tree is a structure based on a subsequent decision process
made by asking a series of questions. Starting from the root of the tree, a
feature is evaluated and, depending on the outcome, one of the two branches
is selected to proceed further. This procedure is repeated until a leaf of the
tree is reached [23]. This leads to the binary decision tree being one of the
most intuitive, as, instead of having to observe calculated weights, one can
simply look at the “questions asked”.

To acquire such questions, first, a dataset distribution has to be measured
and suitably divided. This can be achieved using Gini index, which is a sum-
mary statistic measuring the equability of dataset distribution. Considering
the dataset is ideally split, the split receives a Gini score of 0. Otherwise, val-
ues range from 0 to 0.5, where 0.5 stands for the worst split5. After splitting
the dataset in numerous ways and evaluating all splits by a chosen criterion
function (in this case, Gini index), the best performing split is chosen as the
node in the tree [25]. Starting from the root, all nodes are calculated until
maximmum tree depth is achieved. Maximum tree depth is a hyperparameter
stating number of nodes from the root node of the tree to the leaves. The
higher value of tree depth, the higher chance of overfitting [25].

To obtain a higher performance, binary trees are used in ensembles, meaning,
many trees are used and their predictions are averaged for the final output
value, helping the overall stability of the classification. However, this can
only be achieved, if each tree is created based on a different dataset, done by
dividing the whole training set into smaller sets [26]. One of the algorithms
for dividing training sets is called Bootstrap aggregating. It, first, generates
m uniform training subsets with replacements, meaning, a fraction of the
dataset consists of repeating values. This helps random forests tremendously,

5The calculating process of the Gini index can be seen at [24].

8

.................................. 2.5. Machine Learning

Figure 2.3: k-NN classifier illustration. For k = 3, lp is red triangle, for k = 5, lp
is blue square [28].

as even a small change in the dataset can result in a very different decision
tree [27].

k-Nearest Neighbors algorithm

Another model known for its simplicity and intuitivity. Suppose n rows with
m continuous features exist. First, all of the rows are placed in Rm space.
Let

Ci = (ci1, . . . , cim) ∈ Rm, i ∈ {1, . . . , n} (2.4)

be coordinates of i-th row in the training set. Then cij , j ∈ {1, . . . ,m} stands
for j-th feature of the i-th row. Also, let

li ∈ {0, 1}, i ∈ {1, . . . , n} (2.5)

be the label value for i-th element in the set.

Predicting label lp of an input with feature values resulting in coordinates
Cp starts with ordering all Ci coordinates by a selected norm:

||Cp − C1|| ≤ · · · ≤ ||Cp − Cm||, (2.6)

resulting in (C1, . . . , Ck) being k ∈ N nearest neighbors. Label value with the
highest amount of appearances in (l1, . . . , lk) becomes the predicted label lp.
The process is also illustrated in figure 2.3.

9

2. Background
2.5.2 Neural network models

With the increase of computational power, neural networks recently gained a
lot of popularity. Two types are especially important, as others are often built,
at least partly, from them - fully connected neural nets and convolutional
neural nets [29].

Fully connected layers

Fully connected layers are made of layers of neurons, often described in
comparison to the neurons of a human brain. Each neuron in a layer n takes
each value passed from previous layer n − 1, xn−1,i, multiplies it with the
neurons learned weight wi and adds bias b [29]:

yn,j(xn−1) = f(wj · xn−1 + b), (2.7)

where yn,j stands for output of j-th neuron in n-th layer and f(x) stands for
non-linear activation layer. Often times, we write the equation 2.7 as matrix
multiplication:

yn(xn−1) = f(W · xn−1 + b), W = (w1, . . . ,wJ)T ∈ RI×J , (2.8)

where I stands for number of neurons in layer n − 1 and J for number of
neurons in layer n. The situation is illustrated in figure 2.4.

Convolutional layers

Convolutional layers introduce sliding dot product kernel of weights. Now,
only of partion of neurons from previous layer impacts neurons in the next
layer, however, thanks to this, number of learnable weights is a lot smaller,
making the network a lot more flexible, and also, much more observable,
especially in case of classificating images [29].

Process of calculating the output values of a convolutional layer is illustrated
in figure 2.5. Many parameters can be set, in respect to the kernel. Size
determines number of weights in each kernel. Number of kernels is set by
the output dimension of convolutional layer. Stride stands for the size of
increment in each sliding of the kernel.

10

.................................. 2.5. Machine Learning

Figure 2.4: Fully connected layer illustration [29]

Figure 2.5: Dot product of convolutional layer [29]

Embedding layer

Embedding layer is a popular way of working with discrete-valued features in
neural nets.

Embedding layer’s number of weights W is determined by the count of
unique discrete values ps (pool size) passed to the layer, and a hyperparameter
called embedding dimension d. The unique values are, first, assigned indices.

11

2. Background
Using these indices, one-hot encoded vectors are created:

v =



0
...
0
1
0
...
0


∈ Rps. (2.9)

The whole process of calculating the output values for two one-hot vectors
looks as follows:

Y = W ·
[
v1 v2

]
, Y ∈ Rd×2, W ∈ Rd×ps

Optimizers

Having a loss function allows for performing the backpropagation algorithm
for calculating derivation of the loss function with respect to the input values
given. With partial derivations of all learnable weights, many algorithms
are able to start the process of tuning weights. We call these algorithms
optimizers [33].

Gradient descent is one of the oldest optimizers, and also very intuitive.
Let wn, wn+1 be current weight values and weight values after the next step
gradient descent, then

wn+1 = wn − γ · ∇L(wn), (2.10)

where γ is a learning rate and ∇L a gradient of loss function. The only
parameter passed to the algorithm is the learning rate. Choosing a learning
rate might be very tricky part of the learning process. High learning rate
leads to overstepping (illustrated in figure 2.6), while low learning rate might
lead to finding a local minimum and being unable to step out of it.

Many other advanced algorithms exist to make the learning process faster
and more robust. In this study, Adam, in other words, adaptive moment
estimation algorithm is used as optimizer. It utilizes the momentum by
adding fractions of previously calculated gradients to the current one [33].

12

.................................. 2.5. Machine Learning

Figure 2.6: Illustration of too big of a learning rate resulting in overstepping
the minimum [33].

2.5.3 Loss function

Directly calculating optimal weights of machine learning models is, in most
cases, with currently discovered tools, an impossible task, once number of
weights exceeds a certain amount. Instead, the problem is essentially narrowed
to an optimization task of finding the lowest value of a loss function by
navigating n-dimensional space (n stands for number of learnable parameters
- weights). The loss function, sometimes called cost function, is used to
evaluate how well the predicted values of a model match the ground truth
labels [31]. It reduces all aspects of a possibly complex system down to a
single continuous scalar, which allows to compare found partial solutions.
Due to that, it is very important to choose a loss function well fitting to our
goals [30].

Cross-entropy loss

In the context of binary classification, cross-entropy loss function, also called
logarithmic loss, or logistic loss, is very popular. Cross-entropy loss value is
calculated this way:

L(y, ŷ) = −y log ŷ + (1− y) log(1− ŷ), (2.11)

where y ∈ {0, 1} is the actual label value and ŷ ∈ [0; 1] is the predicted value.
It can be observed, that depending on the value of an actual label, either
first, or second part of the expression is used [31].

As we can see in figure 2.7, small differences of predicted and true labels
result in really small loss function values, meanwhile, large differences result
in a really high loss function values.

13

2. Background

Figure 2.7: Cross-entropy loss function image for y = 1 [32]

14

Chapter 3

Data collection

Data collection process navigates the content of this chapter. It starts with
researching available options in terms of datasets. After that, process of data
scraping, and tools used to reach certain goals, are described. Chapter is
ended by section regarding database structure designing.

3.1 Data research

While no official application containing data of competitive matches exists,
there is a few options in terms of third party applications.

Sites providing API services are posing a very convenient way to obtain
large chunks of data. For a considerable fee, data are given within hand’s
reach as there is no need to program any scraper to start working. There is a
trade off of getting only a fraction of features that can be obtained in other
ways.

First of the two sites in table above that require scraping is called Wewatch.
It provides complete match feed (rounds and kills in chronological order),
meaning most of the features that are otherwise provided by other applications
could be potentially computed after the scrape. Potentially new features
could also be computed afterwards. Unfortunately, Wewatch only provides a
very small dataset of matches.

15

3. Data collection
HLTV Panda

Score

Game
Score

keeper
Wewatch Kaggle

dataset

Number of
matches ∼ 65,000 ? ? < 1000 ∼ 25,000

Match feed 7 7 7 3 7

Round results 3 3 7 3 3

Round
economy 3 7 7 3 3

Detailed
player stats 3 3 7 3 3

Vote-ban 3 7 3 7 3

Kill matrix 3 7 7 3 7

GOTV demos 3 7 7 7 7

Heatmaps 3 7 7 7 7

API 7 3 3 7

Price 7
$150

per month ? 7 7

Table 3.1: Comparison of dataset sources

HLTV is Counter-Strike’s household name. It offers data of every match of
any importance in the competitive scene of Counter-Strike: Global Offensive.
Not only is the dataset quite large, HLTV also shows most of the features,
that can be obtained about a match. Beside the usual features such as round
results and detailed player stats for each map, it also offers features such as
vote-ban phase, round economy data, GOTV demos, event phase (groups,
playoffs, ...), information about whether a match was played on LAN or online,
player kill matrices and more. Sadly, some of the features, such as round
economy, are only present in matches played since various dates (discussed
further in 3.2). HLTV also provides no API and data, often presented on
multiple URL’s at the time, requiring many HTTP requests, need to be
obtained via scraping.

Kaggle dataset posted by a user called @mateusdmachado1 poses as an
interesting alternative. Its data are scraped from HLTV and hold approxi-
mately 25,000 matches dating from November, 2015 to March, 2020. The
only downside is that around 15,000 matches have been played since March,
2020, meaning a scraping is still the preferred way.

1Dataset URL: https://www.kaggle.com/mateusdmachado/csgo-professional-matches

16

.................................... 3.2. Data scraping

Figure 3.1: Direct WebDriver-Browser communication diagram [35]

3.2 Data scraping

3.2.1 Data scraping software

After careful considerations, it has been decided to go the way of scraping
the HLTV site’s data. Regarding scraping software, there is a few options to
choose from.

First one to come in mind is Scrapy. It is a web crawling framework, used
to scrape websites and extract structured parsed data [34]. One of Scrapy’s
biggest advantages is being easy to pick up and scalable at the same time.
However, it lacks any advanced tools for working with data exchanged by a
scraped server and client’s browser (such as cookies). Scrapy pretty much
only offers to change the User-Agent request header, meaning, if the scraped
server puts up any effort in recognizing the difference between a real browser
and a scraping tool, Scrapy is very likely to fail.

That is where Selenium WebDriver comes in. Selenium WebDriver handles
a browser natively, as a real human user would, either locally, or on a remote
machine [35]. Selenium goes a step further to act as a human user to the
outside world. “At its minimum, WebDriver talks to a browser through a
driver. Communication is two way: WebDriver passes commands to the
browser through the driver, and receives information back via the same route.”
[35] The driver (the red part of the diagram in figure 3.1) is specific to the
browser used to scraping. Thanks to this layout, setting various cookies and
also loading site’s JavaScript scripts is possible.

17

3. Data collection

Figure 3.2: HLTV’s results page

3.2.2 HLTV site structure

To get URL links to each of the matches of the dataset, one has to first enter
the “Results” part of the site via the navigation bar button (number 1 in
figure 3.2). Each results page holds exactly one hundred matches (match
number range shown next to number 2 in the same figure; page elements
referring to individual matches as number 3). The simplest way to obtain
links to all of approx. 64,000 matches is to cycle through results pages
using generated URL addresses https://www.hltv.org/results?offset=i,
where i ∈ {0, 100, ..., 64000} and saving the href attribute value of each
match element.

Entering match page, a number of potential features is shown. Match
information (text field, number 1 in figure 3.3) contains information about
whether the match has been played Online or on LAN and the series format.
Next, there is text field showing vote-ban sequence (number 2 in the same
figure). The main match page also offers a link to the GOTV demo files2

of the played maps (number 4). However, as stated before, HLTV presents
match features (and especially individual map features) spread out in multiple
pages entered via “STATS” buttons (number 3).

First such page is called “Overview” (fig. 3.4), where a round history of
the played map is shown (number 1 in the figure), as well as detailed player
statistics collected at the end of the map (table, number 2 in the figure).

2GOTV demos are files containing every action happening in a match. Anyone having
CS:GO installed on their computer can run GOTV demo to receive lossless rerun of the
recorded match.

18

.................................... 3.2. Data scraping

Figure 3.3: HLTV’s Match Page layout

Both are expected to be key features in future experiments. While the
player statistics give somewhat accurate idea of which players had the highest
impact on the match outcome, round history describes the development of
the map. What makes round history especially interesting, is the number
of possibilities, in terms of features, it generates (especially, when combined
with map economy data - figure 3.5).

“Economy” page gives complementary data to overview’s round history.
The significance of the economy to the game has already been described in
detail in chapter 2.3. Money spent by a team in a round is saved as css title
attribute of an image corresponding to the round and team.

Finally, there is the “Heatmaps” subsection (figure 3.6). It allows generating
heatmaps for very specific filters (number 1 in the figure) - filtering individual
players, kills, deaths, play sides. Unfortunately, each generated heatmap also
requires a new HTTP request, meaning, collecting the heatmaps easily pumps
up the number of requests per map from 3 to 80, or even 160.

The other feature in this subsection is hidden in roll-down menus (number
2). It contains data about individual guns used by each player to kill. For
example, this feature can give an idea of which player performs well in pistol
rounds, or using sniper rifles.

19

3. Data collection

Figure 3.4: HLTV’s Map Overview Page layout

Figure 3.5: HLTV’s Map Economy Page layout

3.2.3 Scraping process

HLTV’s anti-scraping protection at the beginning of this project’s data
collection (namely February 2021) allowed full scraping using Scrapy, which
made selection of scraping software very convenient. At first, the data were
parsed using Scrapy and immediately saved into database. That allowed
for very quick data collection, however, at a cost. Should the wanted list of
features change, the whole scraping process would have to be repeated. To
avoid that, it was later decided to perform a two-step scraping process (figure
3.7), where all HTML requests are first scraped and saved as whole HTML
files, that are parsed into database in the second step. This proved to be very
helpful as it improved project’s scalability and also helped uncovering data
hidden in the CSS attributes.

20

.................................... 3.2. Data scraping

Figure 3.6: HLTV’s Map Heatmap Page layout

Figure 3.7: Scraping process visualized

Files are saved following this hierarchy:
data_<results offset>

missed_pages.txt
matches

<date>
<time>_<match ID>

<map number>_<map ID>_<map name>
overview.html
heatmap.html
economy.html

The missed_pages.txt file stores URL’s of all requests that ended with
an unhandled error, as throughout the year, HLTV changed its anti-scraping
protection, leading to certain pages being unscrapable using Scrapy.

3.2.4 Parallelization of the scraping process

With the ambition to scrape heatmap data, resulting in 80+ requests per
map, and the site only allowing a minimum delay of 2-3 seconds, it became
apparent that parallelization of the process would be needed.

21

3. Data collection
The first solution to come in mind is using proxy servers as using proxy

servers is natively supported by Scrapy. That would allow executing each
script on the same computer. Unfortunately, proxy servers offered for free
turned out to be very unstable and unreliable to be of any use, and paid
proxy server services usually allow for significantly lower number of requests
per month (in a reasonable price range). For example, the ScraperAPI proxy
servers offered specifically for scraping cost $249 per month and allow up to 3
M requests. Total amount of requests needed for the whole scraping process
is around 10 M requests.

Next in line is the use of distributed computing infrastructure such as
MetaCentrum Virtual Organization. It consists of computing and storage
resources owned by CESNET and is free for researchers and students of
academic institutions in the Czech Republic. Its two main services are grid
and cloud computing. Grid computing uses multiple distributed resources,
while Cloud computing is a method of sharing resources, such as storage
space. For the parallelization part, the grid services are certainly more fitting,
while cloud services suit the parsing task better.

MetaCentrum VO Grid services

Using grid services is all about creating jobs and passing them to a scheduler
that assigns resources based on number of various variables (duration of the
job, needed CPU and RAM resources, ...). Running a job can be done in
two ways - either by creating a batch script or interactively. Running an
interactive job suits best for figuring out a working script to pass to scheduler
in batches. A job’s key argument passed to scheduler is cluster wanted by
the client to run the job. Using different clusters works exactly as running
the scraper on different computers.

3.3 Database structure

After running all HTTP requests and storing the HTML files, data need to
be parsed and saved to a database. There is a number of database engines
to choose from. Due to the fact, that during the work on this project, many
computers were used, an appropriate engine would be ideally plug-and-play
and also allow for moving data quickly. Sqlite is very lightweight database
engine that store all database data in a single file, that fit the needs of this

22

.................................. 3.3. Database structure

project, hence chosen.

The key entities represented by individual tables in the database would be:

.match,.map,. round,. roster,. player.

Match, as an entity, allows to look at all the data in the context of time, and
so, in the context of other matches. It allows for the main entity, Map, to take
date and time of happening, number in the match series, recognize whether
match was played online or on LAN event. Some of the improvements, such
as storing the event phase data and also the addition of veto phase, would
also be tied to Match.

Map is possibly the most important entity of the whole project. The same
way Match allows Map to take place in time, Map allows grouping and ordering
of Round instances, linking Roster instances and individual PlayerStats.
Each instance of Map is also linked to a table named MapName via an ID,
allowing for filtering data by each individual level in the game.

Round holds the data used for computing majority of team features. Each
Round instance corresponds to a single Roster instance (via MapID and
RosterNumber), meaning, there are two instances in the table for each in-
game round. It also contains information about playing side and round result.
Both of these ID’s are links to different tables PlaySide and RoundResult.

Each Match instance spawns a new pair of Roster instances, meaning,
same roster can have multiple instances with different ID’s. RosterHash is
calculated from sorted PlayerID’s of its players and serves the purpose of
linking the same rosters together.

PlayerStats tie Map and Player instances to offer the player features.
Each PlayerStats instance can also relate to many WeaponKills instances.

23

3. Data collection

M
at
ch

PK
M
at
ch
ID

M
at

ch
D

at
eT

im
e

M
at

ch
O

nl
in

e

M
at

ch
Fo

rm
at

BO

M
ap

PK
M
ap
ID

M
ap

N
um

be
r

FK
M

ap
N

am
eI

D

FK
M

at
ch

ID

M
ap
N
am

e

PK
M
ap
N
am

eI
D

M
ap

N
am

e

Pl
ay
er
St
at
s

PK
Pl
ay
er
St
at
sI
D

Ki
lls

...

FK
Pl

ay
er

ID

FK
M

ap
ID

Pl
ay
Si
de

PK
Si
de
ID

Si
de

N
am

e

Pl
ay
er

PK
Pl
ay
er
ID

Pl
ay

er
N

am
e

R
os
te
r

PK
R
os
te
rID

R
os

te
rN

am
e

R
os

te
rH

as
h

R
ou

nd

PK
R
ou

nd
ID

R
ou

nd
N

um
be

r

R
ou

nd
Eq

ui
pV

al
ue

...

FK
Si

de
ID

FK
R

os
te

rN
um

be
r

FK
R

es
ul

tID

FK
M

ap
ID

R
ou

nd
R
es
ul
t

PK
R
es
ul
tID

R
es

ul
tN

am
e

W
ea
po

nK
ill
s

PK
W
K
ID

W
ea

po
n

Ki
lls

FK
Pl

ay
er

St
at

sI
D

FK
W

ea
po

nI
D

W
ea
po

nN
am

e

PK
W
ea
po

nI
D

W
ea

po
nN

am
e

ro
st
er
_p
la
ye
r

FK
R

os
te

rID

FK
Pl

ay
er

ID

m
at
ch
_r
os
te
r

FK
M

at
ch

ID

FK
R

os
te

rID

FK
R

os
te

rN
um

be
r

Figure 3.8: Database layout

24

Chapter 4

Data analysis

4.1 Contextual statistics

Now, with data scraped and parsed in database, a time has come to take a
look at the data. In this section, an effort is spent to give context to the data
and offer an explanation to various variables and phenomena.

4.1.1 Matches

In regards of matches, we can tell what BO format is each match, and
whether it has been played online or on LAN. As we can see in figure 4.1a,
approximately four fifths of scraped matches played since April 2017 to 2021
were played online. It makes perfect sense considering that many lower-tier
tournaments are played online, as the costs of running LAN tournaments grow
high, both for teams that spend money travelling to the area, and organizers
hosting the event. What has helped skewing data the most, is Covid-19 global
pandemic. In the figure 4.1b, we can see, that since the start of 2020, only
very small fraction of matches were played on LAN, showing how big of an
impact it had on the sport.

In relation to predicting of match outcomes, knowing if a match is played
online can, in specific cases, play a role. Those would occur, when players

25

4. Data analysis.....................................

Online LAN
0

10000

20000

30000
Co

un
t o

f m
at

ch
es

34501.0

8073.0

LAN/Online distribution
04/2017-2021

(a) : Counts of matches played On-
line and on LAN throughout the whole
dataset

Online LAN
0

5000

10000

Co
un

t o
f m

at
ch

es

14008.0

843.0

LAN/Online distribution
2020-2021

(b) : Counts of matches played Online
and on LAN throughout the Covid-19
epidemic

Figure 4.1: Comparison of LAN played portions of dataset in relation to Covid-19
pandemic

with no history of LAN play in the match, as no experience with playing in
front of an audience tend to cause additional stress, especially, considering
younger players. Another such case would be a newly assembled roster, with
no prepared tactics, relying on in-game skill, that tends to drop when under
stress of playing on stage.

Figure 4.2 shows, that the vast majority of matches is played in either
BO1 or BO3 format. BO1 matches are usually taken less seriously, than BO3
matches. It is broadly believed, that the more maps in a series, the lower
chance of an underdog winning it. However, it is yet to be proven, if there
actually is consistency difference in different BO formats in CS:GO.

BO2 matches are only used at league format tournaments. Leagues are
very unusual in CS:GO compared to, let’s say, League of Legends, where
majority of professional matches are played in leagues. Thus, such a small
representation in the dataset.

4.1.2 Maps

We can see (figure 4.3), that some maps are being played a lot more often
than others. Two of the most played maps, Mirage and Inferno, have been
played about 5,000 more times than the next most played map. That is not
entirely caused by being players’ favorites, as it could seem at first glance, but
also competitive map pool (list of maps featured in competitive environment;

26

................................. 4.1. Contextual statistics

BO1 BO2 BO3 BO5
0

5000

10000

15000

20000

Co
un

t o
f m

at
ch

es 16192.0

825.0

22539.0

213.0

BO Format distribution

Figure 4.2: Count of matches played in different BO formats

Anci
en

t
Cach

e

Cob
ble

sto
ne

Dust
2

Inf
ern

o
Mira

ge
Nuke

Ove
rpa

ss
Tra

in
Tus

can
Ve

rtig
o

0

5000

10000

Co
un

t o
f m

ap
s

13
71

2.0

13
36

9.0

89
41

.0
88

23
.0

85
56

.0

74
16

.0

43
28

.0

32
86

.0

23
88

.0

69
4.0

5.0

Map distribution

Figure 4.3: Counts of map matches played divided by in-game levels

also called the active duty group) rotations made by the developers of the
game. Some maps have entered the active duty group recently, for example
Ancient (released May 3, 2021), some have been out of the group for months,
due to an ongoing development of revised versions, other maps have been put
out of the group and never placed back, such as Cobblestone (visualized in
figure 4.4).

For predicting, it is important to take into consideration, that a newly
revised map is often very different, in terms of tactics and gameplay, to its
predecessor, and should be treated as a different map.

27

4. Data analysis.....................................

17
-08

-06

18
-02

-22

18
-09

-10

19
-03

-29

19
-10

-15

20
-05

-02

20
-11

-18

21
-06

-06

21
-12

-23

Date

0

2000

4000

6000

8000

10000

12000

14000

C
ou

nt
 o

f m
ap

s

Map Count Over Time (2017-2021)

Ancient
Cache
Cobblestone
Dust2
Inferno
Mirage
Nuke
Overpass
Train
Vertigo

Figure 4.4: Map played counts over time

4.1.3 Rosters

Predicting outcomes could possibly benefit from knowing how long have the
playing teams been playing with the same roster. Roster changes can help
freshen up and ’rekindle a spark’ to the long lasting teams. On the other
hand, teams usually achieve in-depth tactics after spending longer amounts
of time together.

Considering the whole scraped dataset, teams average 24 days together
before making a roster change. However, half of the dataset is made of teams
having only played 1 match. After removing such teams, we get mean of 53
days and median of 22 days. Even after removing teams with 1 match (0
days), half of the dataset is made of teams lasting under 22 days. That is not
a long time. Perhaps, this feature could be helpful when only evaluating top
tier teams, as in case of the best teams, players are usually held by signed
contracts with organizations.

4.1.4 Weaponry

Currently, there is six weapon classes in the game, four of which could be of
importance - rifles, snipers, pistols and SMG’s. From figure 4.5, it can be
observed, that kills with rifles are in significant majority.

28

................................... 4.2. Feature selection

rifle sniper pistol smg grenade
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Co
un

t o
f m

ap
s

1e7

10353236

2045186
1988649

962946
191545

Weapon Class Kills Distribution

Figure 4.5: Weapon Class Kills Distribution

By itself, kills with rifles have no value. Every single player in the game
gets kills with rifles. However, it can be used as benchmark for other classes.
For example, ratio of sniper kills to rifle kills helps recognize AWP players
(AWP is an in-game sniper rifle). While predicting round to round outcomes,
ratio of pistol and SMG kills to rifle kills might help recognize teams with
strong economy rounds (rounds with low equipment value bought).

4.2 Feature selection

In this study, entirely all features used for predicting are made of in-game
features, with an exception of calculated elo rating.

4.3 Turning data into features

This section goes through making features suitable for acting as input for
predicting models. To achieve that, two popular Python libraries, Pandas
and NumPy, are used.

29

4. Data analysis.....................................
4.3.1 Player features

The goal is to get player feature values divided by number of rounds a player
has played up to a certain point. Usually, players’ statistics are used in “per
map” context, however, in case of predicting CS:GO outcomes, it is important
to take into account, that some maps only last 16 rounds, while others last
up to 30 rounds, meaning, stats from some maps carry more weight than
from others.

At the beginning, table Map is merged with table Round to gain the num-
ber of rounds played for each map, resulting in a new Pandas DataFrame
MapWithRoundCount. Merging the newly created DataFrame with table
PlayerStats leaves us with a DataFrame containing all players statistics
with rounds played on the side, map_playerstats_dfs[’all’].

The next step is to calculate cumulative sums and perform dividing with
cumulative sum of round count:

1 map_playerstats_dfs [’all ’] = map_playerstats_dfs [’all ’]. join(
2 map_playerstats_dfs [’all ’]. groupby (’PlayerID ’).agg ({
3 ’Kills ’: np.cumsum ,
4 ’Headshots ’: np.cumsum ,
5 [...]
6 ’RoundCount ’: np.cumsum ,
7 }). add_suffix (’_cum ’))
8

9 for col in stats_to_round :
10 map_playerstats_dfs [’all ’][col + ’PerRoundExpanding ’] =

map_playerstats_dfs [df_name][col + ’_cum ’]

Listing 4.1: Calculating of player stats’ cumulative sums

Process is, then, repated for all the maps separately in different DataFrames.

4.3.2 Roster features

Roster features make more sense expressed in percentages. For example,
instead of “EcoRoundsWonPerRound” it makes more sense to have “Eco-
RoundsWonPercent”.

The process starts with summing Round table grouped by MapID and
RosterNumber:

30

.....................................4.4. Missing data

1 rndf = rndf. groupby ([’MapID ’, ’RosterNumber ’]).agg ({
2 ’TeamWonRound ’: np.sum ,
3 ’TeamCtWin ’: np.sum ,
4 ’TeamTWin ’: np.sum ,
5 [..] ,
6 ’RoundsCount ’: np.size
7 }). reset_index ()

Listing 4.2: Calculating sums of round features

Next, Round DataFrame is merged with Roster DataFrame to allow for
calculating of cumulative sum grouped by RosterHash. Lastly, percentages
are calculated:

1 map_teamstats_dfs [’all ’] = map_teamstats_dfs [’all ’]. join(
map_teamstats_dfs [’all ’]. groupby (’RosterHash ’).agg ({

2 ’TeamWonRound ’: np.cumsum ,
3 ’TeamCtWin ’: np.cumsum ,
4 ’TeamTWin ’: np.cumsum ,
5 [...] ,
6 ’RoundsCount ’: np.cumsum ,
7 }). add_suffix (’_cum ’))
8

9 for perc_col , (round_col , win_col) in perc_stats_cols .items ():
10 map_teamstats_dfs [’all ’][perc_col] = \
11 map_teamstats_dfs [’all ’][win_col] / map_teamstats_dfs [’

all ’][round_col]
12 map_teamstats_dfs [’all ’][’TeamTWinPerc ’] = \
13 map_teamstats_dfs [’all ’][’TeamTWin_cum ’] / (
14 map_teamstats_dfs [’all ’][’RoundsCount_cum ’] -

map_teamstats_dfs [’all ’][’TeamCtPlayed_cum ’])

Listing 4.3: Calculating of player stats’ cumulative sums

Once again, the process is repeated for all maps separately in different
DataFrames.

4.4 Missing data

There are many ways to treat missing data in a dataset. Essentially, there
are two options. Either deleting rows with missing values, or imputing the
values in some way.

Deleting rows with missing values, while being the simplest option, carries
two risks. First, it can create bias in data, if dropped data are not randomly

31

4. Data analysis.....................................
distributed. Secondly, it can result in losing large amounts of data, drastically
decreasing dataset size.

Imputing missing values with one selected value per feature is another
convenient way to treat missing data. Usually, data are imputed either with
mean or median. This approach is running a risk of losing covariance between
features.

In this study, both approaches are tested, to see whether one dominates
the other, and also combined.

4.4.1 Dropping maps with no economy data

Specific case of missing data in the dataset is presented by missing economy
statistics in all of the maps before a given date. Due to this fact, all the
maps before April 28, 2017 are dropped from the dataset, as it makes little
to no sense to impute two years of continuous missing data. This results
in dropping 14,954 rows of maps, leaving a total amount of 72,247 rows to
analyse and predict from.

32

Chapter 5

Experimentation process

5.1 Working with dataset

Throughout the experimenting part of this study, data from the dataset
are split into three categories. This approach aims to prevent models from
overfitting by splitting the training process into three phases.

5.1.1 Training set

Models, accompanied by chosen optimizers and loss functions, use the training
dataset to set the learnable parameters. Usually, a model is passed the training
set in cycles over and over again. Each iteration of the cycle is called an
epoch. As a sign of successful fitting process, we expect the loss over training
dataset (training loss) to keep dropping to zero each epoch.

5.1.2 Validation set

While it is nice to see the training loss drop to zero, it can (and, in most
cases, does) mean that the model is overfitting and will not perform when

33

5. Experimentation process................................
passed unknown values.

To successfully recognize the moment a model starts overfitting the training
dataset, each epoch we also evaluate the value of loss function over the
validation dataset (test loss), however, this time without calculating backward
propagation. At first, validation loss should be dropping similarly to the
training loss. Once validation loss starts raising, it is a sign that model is
starting to overfit.

5.1.3 Testing set

Last step of evaluating the performance of a model is to pass it completely
new data from the reserved testing set. This is to ensure that the design of
the model is not overfitted to the validation set.

5.1.4 Growing window

Ideally, each time an outcome is predicted for a map, a model would be
trained on precisely all the data in the dataset that chronologically happened
before the map in mind.

To accelerate the process, some of the accuracy is sacrificed and the training
dataset is grown by chunks of data. In other traditional sports, each chunk
would be a single season.

As previously mentioned, CS:GO is not running in seasonal league format.
Instead, heaps of tournaments by different tournament organizers from all
over the world are hosted. Each year, a tournament called major is played.
It is a huge tournament overseen by the developers themselves, and carries a
large amount of prestige. Usually teams practice all season to measure forces
at major events. Not everyone can win, though, which means some teams
usually disband. This makes ends of the major events good places to split
individual chunks of data.

Dataset sizes for the growing window algorithm are shown in the table 5.1
below.

34

................................. 5.1. Working with dataset

Major event
name

End date of
training set

End date of
validate set

Number
of rows

in
training

Number
of rows

in
validate

EL
Major 2018 2018-01-19 2018-01-28 7,735 291

StarSeries 4 2018-02-17 2018-02-25 8,399 353
FaceIt
Major 2018 2018-09-12 2018-09-23 17,973 355

IEM
Katowice 2019 2019-02-20 2019-03-03 23,683 390

ESL One
Cologne 2019 2019-07-02 2019-07-07 29,093 119

Table 5.1: Growing window row sizes

Figure 5.1: Comparation of gradient descent in unnormalized and normalized
datasets (image taken from [36])

5.1.5 Data preprocessing

All features used in this study, besides the roster hash and player ID features,
are continuous. Different features’ values have different distributions. Some
features’ values range from 0 to 100, some range from 0 to 1. This leads to
problems with learning via gradient descent. The reason is illustrated in the
figure 5.1 below, where gradient descent is shown. In the left portion of the
picture, steepest gradient is found, yet, due to the features’ varying ranges,
optimizer overshoots each step, resulting in oscillation.

Hence, each feature is normalized by, first, subtracting a calculated mean
from the values, and then, by dividing the values by calculated standard
deviation:

35

5. Experimentation process................................

new_value = (old_value− µ)/σ (5.1)

This is very effectively achieved by using StandardScaler, a class from
scikit-learn Python library. Following code, first, calculates means and
standard deviations by executing StandardScaler’s fit function. In this
case, both training and validation sets are used for calculations. Next, values
are normalized by calling the transform function on each set separately.

1 from sklearn . preprocessing import StandardScaler
2

3 sc = StandardScaler ()
4

5 sc.fit(np. concatenate ((X_train , X_test), axis =0))
6 X_train = sc. transform (X_train)
7 X_test = sc. transform (X_test)

Listing 5.1: Using StandardScaler to perform data preprocessing

5.1.6 Sample representations

Data are represented by roster and player features calculated from all pre-
viously played maps, across all map levels, and feature calculated from
previously played maps on the same map level.

In this thesis, three separate sample representations are tested - player
features representation only, roster features representation only, and then the
concatenation of both.

5.2 Implemented models

This study tests non-neural network models and different designs of neural
network models, aiming to figure out best ways for predicting match outcomes.
Proposed neural network models use combinations of linear, convolutional
and embedding layers, and compare their performances to other selected
machine learning models, as well as a selected baseline.

36

................................. 5.2. Implemented models

5.2.1 Using non-neural machine learning models

Choosing the same models as previously described in the Background chapter,
we end up with three non-neural network machine learning models:

. Logistic Regression,. Random Forest classifier,. k-Nearest Neighbors classifier.

First in the list, the logistic regression, is implemented from module
sklearn.linear_model. The second listed model, the Random Forest classi-
fier is implemented from module sklearn.ensemble. Lastly, k-NN classifier
is implemented from module sklearn.neighbors. For these models, calling
a function fit once is enough for the process to be finished. Example of
usage is shown in listing 5.2.

1 models = [
2 linear_model . LogisticRegression (parameters_lr),
3 ensemble . RandomForestClassifier (parameters_rfc),
4 neighbors . KNeighborsClassifier (parameters_knn),
5]
6

7 for model in models :
8 model.fit(X_train , y_train , sample_weight = sample_weights)

Listing 5.2: Using non-NN machine learning models

5.2.2 Using the linear model

Linear model is instance of class basic_model/NeuralNetwork that inherits
from PyTorch’s nn.Module. An instance is created by calling:

1 model = basic_model . NeuralNetwork (
2 file_name = file_path_string , # path model is loaded /saved

from
3 epoch_count = EPOCH_COUNT , # integer value
4 learning_rate =LR , # float value
5 dropout = dropout_percentage , # float value from 0 to 1
6 batch_size =50, # integer value
7 ts_size =len(TS_cols)//2, # integer value
8 ps_size =len(PS_cols)//2, # integer value
9 linear_base =128

37

5. Experimentation process................................
10)

Listing 5.3: Creating linear neural network class instance

Where ts_size stands for number of roster features per roster and ps_size
for number of player features per roster.

Model is trained by calling function trainf:
1 model. trainf (X_train , y_train ,
2 X_test , y_test ,
3 weights_train = sample_weights , # bool
4 shuffle_train =False
5)

Listing 5.4: Calling training function of linear model

Where X_train stands for NumPy matrix of dimensions m× n, where m
is number of rows in train dataset and n is number of all features combined.
y_train is NumPy vector of length m. Same goes for parameters X_test
and y_test. Sample weights are a vector of length m. They are used for
weighing samples of the training dataset.

Order of features passed is not important to this model as long, as it’s kept
same as used in training.

5.2.3 Using the convolutional model

Convolutional model is instance of class conv_model/NeuralNetwork, inher-
iting from nn.Module. An instance of model is created by executing:

1 model = conv_model . NeuralNetwork (
2 file_name = file_path_string , # string
3 epoch_count = EPOCH_COUNT , # integer
4 learning_rate =LR , # float
5 dropout = dropout_percentage , # float 0 to 1
6 batch_size =50, # integer
7 ts_size =len(TS_cols)//2, # integer
8 ps_size =len(PS_cols)//10 , # integer
9 linear_base =32, # integer

10 conv_depth =64 # integer
11)

Listing 5.5: Creating convolutional neural network class instance

38

................................. 5.2. Implemented models

There are two differences to creating the linear model. One is, that parameter
ps_size is passed as number of features per single player. The other is
conv_depth, that is used in the previous section 6.1.2.

The trainf function is passed same arguments as in the case of linear
model. The only difference is, that this time the order of features matters.
First ts_size of features are expected to be first roster’s team statistics, then
5×ps_size of first roster’s player variables, followed by the same amount of
features of the second team in the same order.

5.2.4 Using of the embedding model

Same as both previously mentioned models, embedding model’s class
embedding_model/NeuralNetwork is also a child of the nn.Module. Con-
structor is called this way:

1 model = embedding_model . NeuralNetwork (
2 file_name = file_path_string , # string
3 epoch_count = EPOCH_COUNT , # integer
4 learning_rate =LR , # float
5 embedding_dim =10,
6 roster_pool = roster_pool ,
7 player_pool =None ,
8 weights =weights ,
9 ts_size =len(TS_cols)//2,

10 ps_size =len(PS_cols)//2,
11 linear_base =64,
12 batch_size =20
13)

Listing 5.6: Creating embedding neural network class instance

In this case, passing of either roster or player pool is needed for correct
initialization of the model. One of the two values is expected to be None and
the other a NumPy vector containing unique identifiers of all rosters/players
(hash/ID). embedding_dim stands for a hyperparameter characteristic to
embedding layers. ps_size is passed same way it is in the case of the linear
model.

The trainf function used for training the model requires four new param-
eters. Let’s say there is n1 samples in the training dataseta and n2 samples
in the testing dataset. The RH_train (PID_train) and RH_test (PID_test)
should then have n1 and n2 rows respectively.

1 model. trainf (X_train , y_train ,

39

5. Experimentation process................................
2 X_test , y_test ,
3 RH_train , PID_train ,
4 RH_test , PID_test ,
5 weights_train = sample_weights ,
6 shuffle_train =False
7)

Listing 5.7: Calling training function of embedding model

40

Chapter 6

Results

6.1 Chosen architectures and hyperparameters of
different models

Hyperparameters were found out using a method, were each model only barely
manages to overfit the training dataset.

6.1.1 Linear model

Two different architectures were tested with different sets of parameters.
Specifically, a pyramid architecture and architecture used now were tested.
The theory behind a pyramid architecture, where each layer further from
inputs is smaller, is that data about the input get more condensed and proper
representation of the input for outputting the required class is achieved. In
this case, however, different types of architectures performed very similarily
and the second architecture was selected, performing a tiny bit better.

Linear model used in this study consists of four hidden linear layers. The
hidden layers have symmetric dimensions. Dimensions of all hidden linear

41

6. Results

Figure 6.1: Linear layers of linear model

layers are hyperparameters set by model’s attribute called linear_base:

dimension of outer layers = linear_base,

dimension of inner layers = 2× linear_base.

linear_base used in the experiments equaled the number of input features.

In the figure 6.1, outer hidden layers are represented by layers with 4 nodes,
inner hidden by layers with 8 nodes. The first layer, consisting of three nodes,
is an input layer, while the last one (to the right) is an output layer.

Each layer, besides the output layer, is accompanied by batch norm, dropout
and activation (Tanh) layer. Dropout is another hyperparameter, set by
model’s attribute dropout. As default value, dropout is set to 50 %. The
output layer has Sigmoid activation on the output.

6.1.2 Convolutional model

Convolutional neural network designed in this thesis inherits linear layers
from the previous linear model. Difference is, that player features are not
directly passed to the input linear layer. Instead, they are passed to three
convolutional layers.

In the first convolutional layer, i one-dimensional filters of length ps_size
and stride ps_size iterate through player features of a single team. This
results in 5×1× i values. Next layers divides depth by 2. Third convolutional
layer has k one-dimensional filter of length 2, stride 1 and depth j. 4× 1× k
values are flattened into a single vector and concatenated to roster features.

42

..............................6.2. Evaluation of learned models

The i, j, k values are defined by model’s parameter conv_depth:

i = conv_depth,

j = conv_depth
2 ,

k = conv_depth
4 .

Throughout the experiments, values of linear_base = 32, conv_depth =
64 performed the best.

6.1.3 Embedding model

Embedding model is pretty much the same as linear model with one exception.
Values of hashes (or ID’s in case of player embedding) are first mapped to
their indices, passed to an embedding layer and output is then concatenated
to the input features.

embedding_dim of value 10 was used.

6.2 Evaluation of learned models

In this section, all learned models’ performances are evaluated based on their
accuracies and compared to the selected baseline. The evaluating process
consists of comparing two values for each model and window size.

The first criterion is models’ average validation accuracy for different
sample representations. To calculate this average accuracy, accuracy over
validation set with imputed missing values and accuracy over validation set
with dropped missing values (trained on training sets with same methods of
data treatment).

The second criterion is models’ average validation accuracy for datasets with
dropped and imputed missing values over different sample representations.

Based on these criteria, one model from neural networks and one non-neural

43

6. Results
machine learning model is chosen and test loss is calculated to give this study
an output.

6.2.1 Baseline model

In this thesis, one baseline model is used for comparison to the selected
models. The baseline model only predicts the first team to win. While there
is no clear reason why, as no home advantage exists in Counter-Strike, and
HLTV does not inform users of placing teams with higher ranking in the
left side, all dataset splits are skewed to the left (roster_number = 0 in the
database) creating an impression that some underlying system of placing
teams with higher chance of winning to the left is, indeed, used. It will be
often referred to as the T1 baseline for short.

6.2.2 Evaluation of non-neural network models

All three models show no difference in validation accuracy for different
treatment of missing values in the dataset. The reason was not found and
more investigation needs to be done in the future.

Logistic regression’s accuracy started quite high with the first two windows.
It managed to reach over the 60 % accuracy mark with all three sample
representations, with player and combined representation sets beating the Elo
model. With growing training set, accuracy of logistic’s regression trained
on team representation plummeted to 52 %, below the T1 baseline model.
Still, two other sample representations managed to keep accuracy over 60 %,
though, below the Elo ranking prediction model.

k-Nearest Neighbors model never really managed to get over the 60 %
accuracy mark, only barely beating the T1 baseline. kNN model proved to
be unfitting of the task.

Random forest’s performance proved to be the most consistent one. Even
with team-based sample representation only, random forest managed to beat
the T1 baseline, as the only one from non-neuron machine learning models
selected.

44

..............................6.2. Evaluation of learned models

eleague2018

starseries4

faceit2018

katowice2019

cologne2019

Window name

0.55

0.60

0.65

Ac
cu

ra
cy

Team vs. Player vs. Combined representation comparison
Logistic Regression

T1 baseline
Elo rating model
player_avg
team_avg
combined_avg

Figure 6.2: Logistic regression accuracy based on sample representation

eleague2018

starseries4

faceit2018

katowice2019

cologne2019

Window name

0.55

0.60

0.65

Ac
cu

ra
cy

Imputing vs. Dropping missing values comparison
Logistic Regression

T1 baseline
Elo rating model
mean_avg
drop_avg

Figure 6.3: Logistic regression accuracy based on missing data management

Due to that, random forest is chosen as the model to be tested further on
the test set.

6.2.3 Evaluation of neural network models

Linear model with fully connected layers managed to keep up with Elo ranking
model pretty well, however, not to beat it. Team-based sample representation
experienced a drop, though, not as bad as it did with model using embedding
layer.

There is a phenomenon observable from figures 6.9 and 6.11 (marginally,
also from 6.13), where accuracies of neural network models start higher for
training sets with imputed values and, as higher volume of data appear in
the training set, dropping missing values starts being beneficial, as there is
presumably enough data to sacrifice some of it.

45

6. Results

eleague2018

starseries4

faceit2018

katowice2019

cologne2019

Window name

0.55

0.60

0.65

Ac
cu

ra
cy

Team vs. Player vs. Combined representation comparison
k-Nearest Neighbors

T1 baseline
Elo rating model
player_avg
team_avg
combined_avg

Figure 6.4: k-Nearest Neighbors accuracy based on sample representation

eleague2018

starseries4

faceit2018

katowice2019

cologne2019

Window name

0.55

0.60

0.65

Ac
cu

ra
cy

Imputing vs. Dropping missing values comparison
k-Nearest Neighbors

T1 baseline
Elo rating model
mean_avg
drop_avg

Figure 6.5: k-Nearest Neighbors accuracy based on missing data management

Convolutional neural network, of course, doesn’t have averages calculated
for team-based sample representations, as its main functionality revolves
around working with player’s statistics and player representations. Similar
results to the linear model were measured.

All things considered, embedding model did pretty good, comparing it
to non-neural network models. However, it is not really consistent with its
accuracy jumping up and down each window (figure 6.12.

Convolutional neural network is selected for calculating the test precision.

46

.................................. 6.3. Test set evaluation

eleague2018

starseries4

faceit2018

katowice2019

cologne2019

Window name

0.55

0.60

0.65

Ac
cu

ra
cy

Team vs. Player vs. Combined representation comparison
Random Forest

T1 baseline
Elo rating model
player_avg
team_avg
combined_avg

Figure 6.6: Random Forest accuracy based on sample representation

eleague2018

starseries4

faceit2018

katowice2019

cologne2019

Window name

0.55

0.60

0.65

Ac
cu

ra
cy

Imputing vs. Dropping missing values comparison
Random Forest

T1 baseline
Elo rating model
mean_avg
drop_avg

Figure 6.7: Random Forest accuracy based on missing data management

6.3 Test set evaluation

Left out test set is made of 28,766 maps to predict. Random Forest, reaching a
99.8 % accuracy on the training set with combined sample representation and
dropped missing values, managed to predict 63.0 % of the test set outcomes
right. Convolutional neural network managed to learn on the same dataset
for 20 epochs before valid loss started rising. It got test accuracy of 59.8 %.

Model Missing
data

Sample
representation

Training set
Accuracy

Test set
Accuracy

Random Forest Dropped Combined
(team + player) 99.8 % 63.0 %

CNN Dropped Combined
(team + player) 66.4 % 59.8 %

T1 baseline 55.0 %
Elo-based model 64.0 %

Table 6.1: Accuracy values obtained by predicting the test set

47

6. Results

eleague2018

starseries4

faceit2018

katowice2019

cologne2019

Window name

0.55

0.60

0.65

Ac
cu

ra
cy

Team vs. Player vs. Combined representation comparison
Linear NN

T1 baseline
Elo rating model
player_avg
team_avg
combined_avg

Figure 6.8: Linear model performances on different sample representations.

eleague2018

starseries4

faceit2018

katowice2019

cologne2019

Window name

0.55

0.60

0.65

Ac
cu

ra
cy

Imputing vs. Dropping missing values comparison
Linear NN

T1 baseline
Elo rating model
mean_avg
drop_avg

Figure 6.9: Linear model performances with different preprocessing methods.

6.4 Feature importance

With Scikit’s Random Forest Classificator having native attribute of feature
importances, that can be plotted, it makes sense to observe, what features
managed to make a difference.

Using the MDI method described in Scikit’s documentation, we plot feature
importances in figure 6.14. Only features with mean decrease in impurity of
value equal to 0.12 and higher are shown, to make the plot a bit cleaner.

Unsuprisingly, elo averages are one of the features showcased, as elo consis-
tently dominated all selected models throughout the thesis. Other than that,
KD ratios and, also, separately kills and deaths show as important features,
which makes sense, considering the nature of the game.

48

..................................6.4. Feature importance

eleague2018

starseries4

faceit2018

katowice2019

cologne2019

Window name

0.55

0.60

0.65

Ac
cu

ra
cy

Team vs. Player vs. Combined representation comparison
Conv NN

T1 baseline
Elo rating model
player_avg
combined_avg

Figure 6.10: Convolutional model performances on different sample representa-
tions.

eleague2018

starseries4

faceit2018

katowice2019

cologne2019

Window name

0.55

0.60

0.65

Ac
cu

ra
cy

Imputing vs. Dropping missing values comparison
Conv NN

T1 baseline
Elo rating model
mean_avg
drop_avg

Figure 6.11: Convolutional model performances with different preprocessing
methods.

eleague2018

starseries4

faceit2018

katowice2019

cologne2019

Window name

0.55

0.60

0.65

Ac
cu

ra
cy

Team vs. Player vs. Combined representation comparison
Embedding NN

T1 baseline
Elo rating model
player_avg
team_avg
combined_avg

Figure 6.12: Embedding model performances on different sample representations.

49

6. Results

eleague2018

starseries4

faceit2018

katowice2019

cologne2019

Window name

0.55

0.60

0.65

Ac
cu

ra
cy

Imputing vs. Dropping missing values comparison
Embedding NN

T1 baseline
Elo rating model
mean_avg
drop_avg

Figure 6.13: Embedding model performances with different preprocessing meth-
ods.

50

..................................6.4. Feature importance

Gu
nW

in
Pe

rc
_a

ll_
ro

st
er

0
Te

am
Ct

W
in

Pe
rc

_a
ll_

ro
st

er
0

Te
am

TW
in

Pe
rc

_a
ll_

ro
st

er
0

Ki
lls

Pe
rR

ou
nd

Ex
pa

nd
in

g_
al

l_t
ea

m
av

g0
De

at
hs

Pe
rR

ou
nd

Ex
pa

nd
in

g_
al

l_t
ea

m
av

g0
Fir

st
Ki

lls
Pe

rR
ou

nd
Ex

pa
nd

in
g_

al
l_t

ea
m

av
g0

el
o_

te
am

av
g0

KD
_a

ll_
te

am
av

g0
KD

_m
ap

_t
ea

m
av

g0
Gu

nW
in

Pe
rc

_a
ll_

ro
st

er
1

Te
am

Ct
W

in
Pe

rc
_a

ll_
ro

st
er

1
Te

am
TW

in
Pe

rc
_a

ll_
ro

st
er

1
Ki

lls
Pe

rR
ou

nd
Ex

pa
nd

in
g_

al
l_t

ea
m

av
g1

As
sis

ts
Pe

rR
ou

nd
Ex

pa
nd

in
g_

al
l_t

ea
m

av
g1

De
at

hs
Pe

rR
ou

nd
Ex

pa
nd

in
g_

al
l_t

ea
m

av
g1

Fir
st

Ki
lls

Pe
rR

ou
nd

Ex
pa

nd
in

g_
al

l_t
ea

m
av

g1
De

at
hs

Pe
rR

ou
nd

Ex
pa

nd
in

g_
m

ap
_t

ea
m

av
g1

el
o_

te
am

av
g1

KD
_a

ll_
te

am
av

g1

0.010

0.015

0.020

0.025

0.030

0.035

M
ea

n
de

cr
ea

se
 in

 im
pu

rit
y

Feature importances using MDI

Figure 6.14: Feature importances

51

52

Chapter 7

Conclusion

This thesis’ goal was to perform an exploratory machine learning study
regarding outcome prediction in professional matches of CS:GO.

In pursue of this goal, first, a dataset of substantial volume had been
scraped and stored in a database specifically designed to allow for future work
and scalability, exceeding any other datasets freely available, both, in size,
and features offered.

Next, in chapter 4, data were closely analyzed in order to gain a better
understanding of the problem. Three sample representations were designed,
based on this newly acquired knowledge. One consisting exclusively of player
features, one consisting of team features, and one as combination of the two
approaches. To tackle the problem of predicting outcomes with features
developing in time, an expanding window view of the data has been utilized
in the cumulative feature creation process in order to respect the natural
chronological order of the data.

Three standard statistical and three neural network machine learning
models were used to perform a series of testing. These machine learning
models are directly compared to a model based on Elo ratings of players,
and a baseline only predicting one side based on the observed data skewness.
Accuracy of 64,0 % has been achieved with the best performing model based
on the Elo rating of players, followed by 63,0 % accuracy with the random
forest model and 59.8 % accuracy with the convolutional neural network, all
beating the baseline model with 55.0 % accuracy. Compared to the 62.0 %

53

7. Conclusion......................................
accuracy reported in a previous work [17] on a significantly smaller dataset,
two of our models managed to achieve better predictive accuracy.

7.1 Future improvement

Although beating the selected baseline, the Elo rating being the highest
ranking model signalizes a lot of room for improvement. Seeing Elo perform
so well, a question arises whether some better rating-based models, such as
TrueSkill 2 or Gecko ratings, could perform even better.

Moreover, the predictions might also profit from other sample representa-
tions based on features like tournament phase, vote-ban phase, map number
in a series, previous head-to-head team performances, and such, providing
further context to each match.

54

Appendix A

Bibliography

[1] BELLIS, Mary. A Brief History of Sports: From Rocks and Spears to
Laser Tag. ThoughtCo [online]. 2019 [cit. 2022-01-04]. Available from:
https://www.thoughtco.com/history-of-sports-1992447

[2] SCALETTA, Kelly. Settling the Debates: Is It a Sport or Not a
Sport? Bleacher Report [online]. 2011 [cit. 2022-01-04]. Available
from: https://bleacherreport.com/articles/848465-settling-the-debates-is-
it-a-sport-or-not-a-sport

[3] PwC’s Sports Survey 2018 [online]. 2018 [cit. 2022-01-04]. Available from:
https://www.pwc.ch/en/insights/sport/sports-survey-2018.html

[4] PwC’s Sports Survey 2019 [online]. 2019 [cit. 2022-01-04]. Available from:
https://www.pwc.ch/en/insights/sport/sports-survey-2019.html

[5] PwC’s Sports Survey 2020 [online]. 2020 [cit. 2022-01-04]. Available from:
https://www.pwc.ch/en/insights/sport/sports-survey-2020.html

[6] ESports market revenue worldwide from 2019 to 2024.
Statista [online]. 2021 [cit. 2022-01-04]. Available from:
https://www.statista.com/statistics/490522/global-esports-market-
revenue/

[7] Global Esports Live Streaming Market Report [on-
line]. Newzoo, 2021 [cit. 2022-01-04]. Available from:
https://resources.newzoo.com/hubfs/Reports/2021_Free_Global
_Esports_and_Streaming_Market_Report_EN.pdf

[8] GAINSBURY, Sally. Editorial. International Gambling Studies [on-
line]. 2010, 10(1), 1-4 [cit. 2022-01-04]. ISSN 1445-9795. Available from:
doi:10.1080/14459791003760882

55

A. Bibliography.....................................
[9] TURCU, I., G.B. BURCEA a D.L. DIACONESCU. THE IMPACT OF

THE BETTING INDUSTRY ON SPORTS. In: Series IX Sciences of
Human Kinetics [online]. 2020, s. 251-258 [cit. 2022-01-04]. ISSN 23442026.
Available from: doi:10.31926/but.shk.2020.13.62.2.32

[10] BLOCK, Sebastian, Florian HAACK a T. KLIESTIK. ESports: a new
industry. In: SHS Web of Conferences [online]. 2021 [cit. 2022-01-04].
ISSN 2261-2424. Available from: doi:10.1051/shsconf/20219204002

[11] SteamCharts: An ongoing analysis of Steam’s concurrent players [online].
[cit. 2022-01-04]. Available from: https://steamcharts.com/app/730All

[12] SHENG, Albert. As esports grows, so too do its sponsorships. WIN.gg
[online]. [cit. 2022-01-04]. Available from: https://win.gg/news/as-esports-
grows-so-too-do-its-sponsorships/

[13] 1xBet becomes Official Global Betting Partner for ESL Pro Tour
CS:GO and ESL One Dota 2 [online]. 2021 [cit. 2022-01-04]. Available
from: https://about.eslgaming.com/blog/2021/03/1xbet-becomes-official-
global-betting-partner-for-esl-pro-tour-csgo-and-esl-one-dota-2/

[14] FIALHO, Gabriel, Aline MANHÃES a João Paulo TEIXEIRA.
Predicting Sports Results with Artificial Intelligence – A Proposal
Framework for Soccer Games. Procedia Computer Science [online].
2019, 164, 131-136 [cit. 2022-01-04]. ISSN 18770509. Available from:
doi:10.1016/j.procs.2019.12.164

[15] KHANTEYMOORI, Alireza a Davoodi ELNAZ.
Horse racing prediction using artificial neural net-
works [online]. 2010 [cit. 2022-01-04]. Available from:
https://www.researchgate.net/publication/228847950_Horse_racing
_prediction_using_artificial_neural_networks

[16] PEARCE, Tim a Jun ZHU. Counter-Strike Deathmatch with Large-Scale
Behavioural Cloning. CoRR [online]. 2021 [cit. 2022-01-04]. Available from:
https://arxiv.org/abs/2104.04258

[17] MAKAROV, Ilya, Dmitry SAVOSTYANOV, Boris LITVYAKOV a
Dmitry I. IGNATOV. Predicting Winning Team and Probabilistic Rat-
ings in “Dota 2” and “Counter-Strike: Global Offensive” Video Games.
Analysis of Images, Social Networks and Texts [online]. Cham: Springer
International Publishing, 2018, 2018-12-21, , 183-196 [cit. 2022-01-04].
Lecture Notes in Computer Science. ISBN 978-3-319-73012-7. Available
from: doi:10.1007/978-3-319-73013-4_17

[18] BJÖRKLUND, Arvid. Predicting the outcome of CS:GO games using
machine learning [online]. Gothenburg, Sweden, 2018 [cit. 2022-01-04].
Available from: https://hdl.handle.net/20.500.12380/256129. Bachelor
Thesis. Chalmers University of Technology / Department of Computer
Science and Engineering (Chalmers).

56

..................................... A. Bibliography

[19] HOEKSTRA, Kyle. Who Was Chess Master Arpad Elo, and What is the
Elo Rating System? History Hit [online]. 2021 [cit. 2022-01-04]. Available
from: https://www.historyhit.com/gaming/arpad-elo-rating-system/

[20] MADDEN, Ryan. Adapting Elo for Relative Player Ranking in
Team-Based Games [online]. 2017 [cit. 2022-01-04]. Available from:
https://ryanmadden.net/posts/Adapting-Elo

[21] DUIGNAN, Brian. Occam’s razor. Britannica [online]. 2018 [cit. 2022-
01-04]. Available from: https://www.britannica.com/topic/Occams-razor

[22] LEIBOVICH-RAVEH, Tali, Daniel LEWIS, Saja AL-RUBAIEY, Kad-
him AL-RUBAIEY a Daniel ANSARI. A new method for calculating
individual subitizing ranges [online]. 2018 [cit. 2022-01-04]. Available from:
https://www.researchgate.net/publication/325868989

[23] BONACCORSO, Giuseppe. Machine Learning Algorithms: A Reference
Guide to Popular Algorithms for Data Science and Machine Learning.
Birmingham: Packt Publishing, 2017. ISBN 978-1-78588-962-2.

[24] FRANK A. FARRIS. The Gini Index and Measures of Inequality. The
American Mathematical Monthly [online]. 2010, 117(10) [cit. 2022-01-04].
ISSN 00029890. Available from: doi:10.4169/000298910x523344

[25] BROWNLEE, Jason. How To Implement The Decision
Tree Algorithm From Scratch In Python. Machine Learn-
ing Mastery [online]. 2016 [cit. 2022-01-04]. Available from:
https://machinelearningmastery.com/implement-decision-tree-
algorithm-scratch-python/

[26] YIU, Tony. Understanding Random Forest. Towards Data
Science [online]. 2019 [cit. 2022-01-04]. Available from:
https://towardsdatascience.com/understanding-random-forest-
58381e0602d2

[27] ASLAM, Javed A., Raluca A. POPA a Ronald L. RIVEST, MAR-
TINEZ, Ray a David WAGNER, ed. On Estimating the Size and
Confidence of a Statistical Audit. Proceedings of the 2007 USENIX/AC-
CURATE Electronic Voting Technology Workshop [online]. Boston,
Massachusetts: USENIX, 2007 [cit. 2022-01-04]. Available from:
http://www.usenix.org/events/evt07/tech/full_papers/aslam/aslam.pdf

[28] SRIVASTAVA, Tavish. Introduction to k-Nearest Neighbors: A pow-
erful Machine Learning Algorithm (with implementation in Python
R). Analytics Vidhya [online]. 2014 [cit. 2022-01-04]. Available
from: https://www.analyticsvidhya.com/blog/2018/03/introduction-k-
neighbours-algorithm-clustering/

57

A. Bibliography.....................................
[29] UNZUETA, Diego. Convolutional Layers vs Fully Connected Lay-

ers. Towards Data Science [online]. 2021 [cit. 2022-01-04]. Avail-
able from: https://towardsdatascience.com/convolutional-layers-vs-fully-
connected-layers-364f05ab460b

[30] REED, Russell. Neural Smithing: Supervised Learning in Feedforward
Artificial Neural Networks. Cambridge, Massachusetts: The MIT Press,
1999. ISBN 978-0262527019.

[31] BROWNLEE, Jason. Loss and Loss Functions for Training Deep Learning
Neural Networks. Machine Learning Mastery [online]. 2019 [cit. 2022-01-
04]. Available from: https://machinelearningmastery.com/loss-and-loss-
functions-for-training-deep-learning-neural-networks/

[32] GODOY, Daniel. Understanding binary cross-entropy / log loss: a
visual explanation. Towards Data Science [online]. 2018 [cit. 2022-01-04].
Available from: https://towardsdatascience.com/understanding-binary-
cross-entropy-log-loss-a-visual-explanation-a3ac6025181a

[33] Introduction to optimizers [online]. 2018 [cit. 2022-01-04]. Available from:
https://algorithmia.com/blog/introduction-to-optimizers

[34] Scrapy: A fast and powerful scraping and web crawling framework
[online]. [cit. 2022-01-04]. Available from: https://scrapy.org/

[35] WebDriver. Selenium [online]. [cit. 2022-01-04]. Available from:
https://www.selenium.dev/documentation/webdriver/

[36] WILLAERT, Jorrit. How To Calculate the Mean and Standard Deviation
— Normalizing Datasets in Pytorch. Towards Data Science [online]. 2021
[cit. 2022-01-04]. Available from: https://towardsdatascience.com/how-
to-calculate-the-mean-and-standard-deviation-normalizing-datasets-in-
pytorch-704bd7d05f4c

58

	Introduction
	Problem and goals

	Background
	CS:GO and betting
	State of predictive analytics in CS:GO
	Rules of CS:GO
	Player ranking - Elo
	Machine Learning
	Non-neural network models
	Neural network models
	Loss function

	Data collection
	Data research
	Data scraping
	Data scraping software
	HLTV site structure
	Scraping process
	Parallelization of the scraping process

	Database structure

	Data analysis
	Contextual statistics
	Matches
	Maps
	Rosters
	Weaponry

	Feature selection
	Turning data into features
	Player features
	Roster features

	Missing data
	Dropping maps with no economy data

	Experimentation process
	Working with dataset
	Training set
	Validation set
	Testing set
	Growing window
	Data preprocessing
	Sample representations

	Implemented models
	Using non-neural machine learning models
	Using the linear model
	Using the convolutional model
	Using of the embedding model

	Results
	Chosen architectures and hyperparameters of different models
	Linear model
	Convolutional model
	Embedding model

	Evaluation of learned models
	Baseline model
	Evaluation of non-neural network models
	Evaluation of neural network models

	Test set evaluation
	Feature importance

	Conclusion
	Future improvement

	Bibliography

