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Abstrakt

Tato diplomová práce ukazuje možnost zrychlenı́ stávajı́cı́ch postupů pro výpočet

maticových rovnic na základě znalosti struktury matic. Zaměřuje se na řešenı́ poly-

nomiálnı́ Diofantické rovnice, často potřebné při analýze systému a návrhu regulačnı́ch

obvodů a filtrů, pro které je rychlost jejı́ho výpočtu podstatná. Byla implementována

funkce pro prostředı́ Matlab, založená na Sylvestrově metodě, která dosahuje zrychlenı́

při zachovánı́ přesnosti výpočtu. Funkce spolupracuje s knihovnou ”Polynomial toolbox

for Matlab” a využı́vá externı́ho solveru LAPACKu, umožnujı́cı́ho efektivnějšı́ výpočet

matic se známou strukturou.
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Abstract

This diploma thesis shows possibilities of acceleration of existing methods for com-

putation of matrices equations and is based on the knowledge of the matrix structure. It

focuses on solving the Diophantine equation, which is often required in analysis of con-

trol systems where computation speed plays an essential role. A function for MATLAB

based on Sylvester method have been implemented, which accelerates the method while

preserving the precision of solution. This function co-operates with the ”Polynomial Tool-

box for Matlab” and uses an external solver LAPACK that has functions for matrices of

known structure.
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Chapter 1

Introduction

The purpose of this thesis is to explore the possibilities of improving the algorithm which

solves Diophantine equations based on the knowledge of the matrix structure. To profit

from the special structure we decided to solve the polynomial Diophantine equation

through the Sylvester method using an external solver. There are no solvers for the spe-

cial structure of Sylvester matrix, so we chose the solver LAPACK, because it contains

functions for band matrices that cover Sylvester case. We insert the Sylvester matrix in

a general band matrix since the structure of Sylvester matrix is a special case of band

matrices. Because of certain limitations of LAPACK we had to implement some wrapper

routines.

1.1 Polynomial design methods

Speaking in broad terms, we can distinguish three main approaches to analysis and design

of linear control systems.

• The classical frequency-domain methods have evolved from the analysis of fre-

quency responses of linear dynamics systems. Their main formal mathematical tool

is the theory of functions of complex variable, in particular the Laplace transform in

case of continuous-time and the Z-transform for the discrete-time systems. Systems

are described in terms of their transfer functions reflecting just the external input-

output relations, which brings about some difficulties related to the internal stability

of the closed loop and to the realization of the compensator. The used formalism

also causes that the domain of classical methods is reduced to SISO time-invariant

linear systems. But despite these limitations, the classical methods still remain very

popular, namely in the community of practicing engineers, for their simplicity and
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CHAPTER 1. INTRODUCTION 2

effectivity in many control problems encountered in industry.

The classical methods are suitable for computational processing and a lot of soft-

ware tools supporting the design process are available.

• The drawbacks of the classical approach and the increasing complexity of systems

to be controlled resulted in new methods of synthesis, usually called the state-space

or modern approach. The methods rely upon the exact definition of the state that

is systematically used both for the deeper analysis of the plant (the state provides

the insight into the internal structure of the system) and for the synthesis of the

compensator (the knowledge of the state is employed for compensation). The main

formal tools are differential equations, vector spaces and matrix theory. The modern

methods are applicable to much wider class of situations than the classical ones, e.g.

to MIMO and time-varying systems. However, they have not become so popular,

namely among the practicing engineers, for the necessity of finding the state-space

model and for the need of state reconstruction in case it cannot be directly measured.

From the numerical point of view, the state-space design methods for linear systems

rely on numerical linear algebra which is a powerful tool. Since the 50’s a lot

of effort has been devoted to the development of accurate and numerically stable

algorithms for linear algebra problems encountered in a large number of scientific

computations.

• The origin of the polynomial or algebraic approach is dated to the early 70’s. The

polynomial matrices forming polynomial matrix fractions are introduced to handle

MIMO cases. Systems are described by input-output relations, however the trans-

fer functions are not regarded as functions of complex variable but as algebraic

objects. The design procedure is then reduced to algebraic operations with ratio-

nal and polynomial matrices, typically to solving algebraic Diophantine equations.

This approach does not only enable us to resolve many existing control problems in

more elegant and unifying way but also provides further insight into the structure

of the control systems and shows new relationships between various control tasks.

The algebraic methods are closely related to the Czech science. Among many oth-

ers, let us remember prof. Vladimı́r Kučera who is well known as the pioneer of

algebraic approach in the field of control theory [11, 12, 13].
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1.2 Diophantine equations in control

We will not exaggerate too much if we say that almost all polynomial or algebraic designs

lead to linear equations in the form

AAA(s)XXX(s) + BBB(s)YYY (s) = CCC(s), (1.1)

where AAA(s), BBB(s) and CCC(s) are polynomials or polynomial matrices. These equations are

called Diophantine polynomial equations.

We recall a few cases in the following.

• Pole placement

Pole placement design is often used to stabilize an unstable plant or to achieve

required tracking properties. This is done by replacing the original plant’s poles

with others that are for some reason more desirable, [10].

• Minimum variance control

Let us consider a stochastic system where the plant output is distributed by an ad-

ditive disturbance modelled as an output of a linear filter driven by white noise.

Here the Diophantine equation is essential for finding the controller. The control

objective is to minimize the variance of the output k steps ahead, given information

up to the current time only.

The standard approach to this problem is to use the system model to make prediction

for the output k steps into the future and then set this prediction (or rather that part

of it that can be influences by feedback) to zero [14].

• Predictive control

Predictive control involves prediction for horizon longer then the time delay. When-

ever there is a prediction, we can also expect a Diophantine equation to arise - in

fact as the predictive cost function often involves a summation, there will be also

more then one Diophantine equation. However, unlike the minimum variance con-

trol case, the solution of these equations will not normally appear explicitly in the

controller [14, 20].

• Robust stabilization

We shall now consider the design of controller for imprecisely known plants. Thus

a nominal plant description is available, together with a description of the plant

uncertainty, and the objective is to design a controller that stabilizes all plants lying
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within the specified band of uncertainly. Such the controller is said to robustly

stabilize the family of plants [20].

Diophantine equation plays important role also in other solutions of control problems like

LQ, reference tracking, finite impulse response, non-linear systems etc[20, 21].

We briefly discuss existence of solution of Diophantine polynomial equation below and

describe main methods to solve it: Interpolation, symbolic methods and most useful

Sylvester method.

Diophantine equation in scalar case is solvable if and only if every common divisor of

aaa(s) and bbb(s) is a divisor of ccc(s). Since the Diophantine equation is linear, any and all

solutions pairs of 1.1 are given by

xxx(s) = xxx0(s) + bbb(s)qqq(s), yyy(s) = yyy0(s) − aaa(s)qqq(s), (1.2)

where

qqq(s) = qqq0 + qqq1 sss + qqq2 sss2..

is an arbitrary polynomial such that xxx0(s) + bbb(s)qqq(s) is non-zero.

Polynomial matrix Diophantine equations can be handled alike. In general, if AAA(s),

BBB(s) and CCC(s) are matrices of dimensions m x p, m x k and m x q, respectively, then

equation 1.1 has a solution { XXX0(s), YYY 0(s) } if and only if any common divisor of AAA(s)

and BBB(s) is a left divisor of CCC. Any and all solutions pairs of Diophantine equation 1.1 in

matrix case are given by

XXX(s) = XXX0(s) + BBB(s)QQQ(s),YYY (s) = YYY 0(s) −AAA(s)QQQ(s), (1.3)

where

QQQ(s) = QQQ0 + QQQ1 sss + QQQ2 sss2..

is an arbitrary polynomial matrix such that XXX0(s) + BBB(s)QQQ(s) is non-zero.

Because matrices multiplication isn’t commutative, there is also equation

XXX(s)AAA(s) + YYY (s)BBB(s) = CCC(s), (1.4)

where AAA(s), BBB(s) and CCC(s) are polynomial matrices. With this equation can be handled

alike as with the Diophantine equation.
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1.3 Numerical algorithms for Diophantine equations

The existing methods for solving of Diophantine equations are:

• Interpolation

• Symbolic procedures

• Sylvester matrix method

1.3.1 Interpolation

Interpolation is a useful tool for handling polynomial matrices. It can be used both for

evaluation of various functions of polynomial matrices (e.g. products, scalar power, de-

terminant, adjoin, etc.) and for polynomial matrix equations and other more complicated

problems encountered in control.

The basic idea is as follows: The input polynomial matrices are evaluated at suitably

chosen point at first. In this way, an equivalent representation of the problem in terms

of constant matrices is obtained. The computation is then performed within these con-

stants and the desired solution is finally recovered, typically by solving a Vandermonde

or generalized Vandermonde linear system.

The solution to the most parts of control problems involving polynomial matrices

including Diophantine equations via this approach have been given in the survey paper

[15].

The problematic points of the methods are the estimation of the number of interpola-

tion points and their placement.

The choice of the interpolation points appears crucial. The numerical reliability of the

particular interpolation algorithm strongly depends on the location of the points. Usually

the points are chosen either equidistantly spaced on the real or imaginary axis (see for

instance [19]) or random in some way [17]. In the sequel we will give the novel results

showing the remarkable benefit of the use of Fourier points in this context.

1.3.2 Symbolic procedures

Polynomials can be represented by their coefficients which are finite-precision numbers.

In principle it is also possible to represent polynomial matrices as symbolic entities and to

employ symbolic computation tools (e.g. SYMBOLIC MATH TOOLBOX [18], MATH-

EMATICA [16]). However, this approach suffers from rather severe difficulties. A great
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problem with symbolic routines is their computational time consumption. The methods

are rather costly even for small-size problems and, what is more, the execution time in-

creased usually exponentially with the size of task. The efficiency of the methods also

depend on the particular data - for instance they are much faster for matrices with inte-

ger entries and extremely slow for coefficients with many decimal digits. All number are

handled without rounding which also affects large memory requirements of alghorithm.

These limitations make this approach practically unusable for the purposes of control

systems design.

On the positive side, the methods return precise results for small size problems when

the execution time and memory requirements are acceptable.

1.3.3 Sylvester matrix method

Many computations with polynomial matrices can be expressed in terms of related Sylvester

matrix. This interpretation is straightforward and leads to the set of constant linear equa-

tions the numerical methods of which are well understood. On the other hand the size of

the related Sylvester matrices are usually rather high and the method when implemented

require a large amount of memory. For all that the Sylvester method is most useful from

all remarked methods.

The first step is to transfer Diophantine equation 1.1 to a special form of matrix poly-

nomial equation.

ÂAA(s) X̂XX(s) = B̂BB(s), (1.5)

A parameterisation of solution is

ÂAA(s) = [AAA(s)BBB(s)], X̂XX(s) =

[
XXX(s)

YYY(s)

]
, B̂BB(s) = CCC(s), (1.6)

Next we find solution of special form of matrix polynomial equation 1.5 where ÂAA(s) is a

given m x n polynomial matrix, B̂BB(s) is a given m x p polynomial matrix and X̂XX(s) is an n

x p polynomial matrix to be found. Write the polynomial matrices in term of increasing

powers of the indeterminate s, i.e.

AAA(s) = AAA0 + sAAA1 + ... + sdA AAAdA

BBB(s) = BBB0 + sBBB1 + ... + sdB BBBdB

XXX(s) = XXX0 + sXXX1 + ... + sdX XXXdX

where dA = degA(s), dB = degB(s) and dX = degX(s). From the equation 1.5 flows

the unequation dA + dX ≤ dB. The equality does not hold, if some leading matrix
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coefficients in ÂAA(s) or B̂BB(s) is zero. Thanks to the equality of the powers of s in the above

matrix polynomial equation, we can build an equivalent linear system of equations

A0 0

A1 A0

... A1
. . .

AdA

... A0

AdA
A1

. . . ...

0 AdA


︸ ︷︷ ︸


X0

X1

...

XdX


︸ ︷︷ ︸

=


B0

B1

...

BdB


︸ ︷︷ ︸

〈A〉dX
X B

, (1.7)

Matrix 〈AdX
〉 is referred to as the Sylvester matrix of ÂAA(s) of order dX . It has (dA +dX +

1) m rows and (dX + 1) n columns. Since matrix polynomial equation 1.5 and linear

system 1.7 are equivalent, solving 1.7 for a constant solution X amounts to solving 1.5

for a polynomial solution X̂XX(s).

The problematic point in this approach is clearly the estimation of dX , the degree of

the solution X̂XX(s). This is a key parameter influencing the size of the Sylvester matrix,

thus the number of equations and unknowns in the equivalent linear system of equation

1.7. We shall see that, in some cases, an upper bound on dX can be found. In other cases,

some assumptions on matrices ÂAA(s) and B̂BB(s) will guarantee the existence of solution

X̂XX(s)of a given degree.

1.4 Structure of Sylvester and block Sylvester matrices

Before finishing this introduction we would like to describe different structure of Sylvester

and block Sylvester matrix.

When we build Sylvester matrix from polynomial, i.e.

AAA(s) = aaa0 + saaa1 + ... + sdA aaadA

where ai is a scalar and dA = degA(s), as is shown in section 1.3.3, we get the Sylvester
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matrix like 

a0 0

a1 a0

... a1
. . .

adA

... a0

adA
a1

. . . ...

0 adA


. (1.8)

On the other hand when we build Sylvester matrix from polynomial matrices

AAA(s) = AAA0 + sAAA1 + ... + sdA AAAdA

where AAAi is m x n matrix

AAAi =


ai

1,1 ai
1,2 . . . ai

1,n

ai
2,1 ai

2,2 . . . ai
2,n

...
... . . . ...

ai
m,1 ai

m,2 . . . ai
m,n


and dA = degA(s), we get the block Sylvester matrix. For example see the block

Sylvester matrix build from 3 x 3 matrix of polynomial degree dA in the equation 1.9.

The difference between structure of Sylvester matrix and block Sylvester matrix is

obvious from the matrix 1.8 and the matrix 1.9.

The Sylvester matrix is lower triangular band matrix. It has values only under or

on the diagonal. The block Sylvester matrix is special band matrix with the number of

superdiagonal same as the number of rows in the coefficient matrices of matrix from

which we have the Sylvester matrix built.
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a0

1,1 a0
1,2 a0

1,3

a0
2,1 a0

2,2 a0
2,3

a0
3,1 a0

3,2 a0
3,3

 0


a1

1,1 a1
1,2 a1

1,3

a1
2,1 a1

2,2 a1
2,3

a1
3,1 a1

3,2 a1
3,3




a0
1,1 a0

1,2 a0
1,3

a0
2,1 a0

2,2 a0
2,3

a0
3,1 a0

3,2 a0
3,3


...


a1

1,1 a1
1,2 a1

1,3

a1
2,1 a1

2,2 a1
2,3

a1
3,1 a1

3,2 a1
3,3

 . . .


adA

1,1 adA
1,2 adA

1,3

adA
2,1 adA

2,2 adA
2,3

adA
3,1 adA

3,2 adA
3,3

 ...


a0

1,1 a0
1,2 a0

1,3

a0
2,1 a0

2,2 a0
2,3

a0
3,1 a0

3,2 a0
3,3


adA

1,1 adA
1,2 adA

1,3

adA
2,1 adA

2,2 adA
2,3

adA
3,1 adA

3,2 adA
3,3




a1
1,1 a1

1,2 a1
1,3

a1
2,1 a1

2,2 a1
2,3

a1
3,1 a1

3,2 a1
3,3


. . . ...

0


adA

1,1 adA
1,2 adA

1,3

adA
2,1 adA

2,2 adA
2,3

adA
3,1 adA

3,2 adA
3,3





. (1.9)



Chapter 2

Objectives

The objectives of this work is to explore the possibilities of using an external solver that

profits from a knowledge of special structure of matrices to improve the existing methods

for polynomial and structured matrices.

We decided to test our idea on the solution of Diophantine equation through the

Sylvester method. The reason of our choice was that the Diophantine equations are very

often solved in control theory and they are indispensable part of control synthesis.

We didn’t want to design new algorithms because we wanted to accelerate calculations

of polynomial and structured matrices in practice control design in short time and without

big cost. Design of new algorithms is work for a long time and mathematical hard.

10



Chapter 3

Implementation

In chapter Introduction we made an overview of methods for solving polynomial Dio-

phantine equation. We also explained Sylvester approach and structure of Sylvester ma-

trix. In this chapter we present our implementation of Sylvester method to solve Diophan-

tine equation using external banded matrix solver.

3.1 Selection of software platform

As a software framework for implementation and for testing of improving the existing

algorithms for Sylvester method of solving Diophantine equation based on knowledge of

the matrix structure the MATLAB and the Polynomial Toolbox for MATLAB were taken.

For computation with band matrices we took the solver LAPACK. There were several

reasons for this decision, indicated below.

All these have been implemented and tested under Microsoft Windows. According to

the documentation there might be slight differences under other operation system.

3.1.1 Polynomial Toolbox

The Polynomial Toolbox (PT), provided by the Polyx, Ltd company [8], offers objects

and functions for easy manipulation with polynomials and polynomial matrices. It offers

standard functions for handling polynomials such as addition, determinant, computing

divisor, solving algebraic equation, etc. The PT is moreover focused on control analysis

and synthesis problems. Solving of Diophantine equation is also implemented in the PT

and it is the reference function for our modified algorithm and benchmarks.

A simple example of work with PT follows. Suppose three polynomial matrices AAA, BBB

and CCC

11
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>> AAA = [1 + s, 1; 1 − s, 1],BBB = [1, 1 − s; 1, 1 + s],CCC = [1 + s, 1 + s; 1 + s, 1 + s]

AAA =

1 + s 1

1 − s 1

BBB =

1 1 − s

1 1 + s

CCC =

1 + s 1 + s

1 + s 1 + s

thus the matrices AAA,BBB and CCC are set we use PT’s function for find solution [XXX YYY ] of

Diophantine equation AAAXXX + BBB YYY = CCC

>> [XXX,YYY ] = axbyc(AAA,BBB,CCC)

XXX =

0.25 + 0.25s 0.25 + 0.25s

0.25 + 0.25s 0.25 + 0.25s

YYY =

0.25 + 0.25s 0.25 + 0.25s

0.25 + 0.25s 0.25 + 0.25s

it is easy to test the solution

>> AAAXXX + BBB YYY −CCC

0 0

0 0
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if we want to know a Sylvester matrix build from matrix AAA

>> SSSA = sylv(AAA,2,’col’)

SSSA =

1 1 0 0 0 0

1 1 0 0 0 0

1 0 1 1 0 0

−1 0 1 1 0 0

0 0 1 0 1 1

0 0 −1 0 1 1

0 0 0 0 1 0

0 0 0 0 −1 0

3.1.2 LAPACK

LAPACK is written in Fortran 77 and provides routines for solving systems of simul-

taneous linear equations, least-squares solutions of linear systems of equations, eigen-

value problems, and singular value problems. The associated matrix factorisations (LU,

Cholesky, QR, SVD, Schur, generalized Schur) are also provided, as are related compu-

tations such as reordering of the Schur factorisations and estimating condition numbers.

Dense and banded matrices are handled, but not general sparse matrices. In all areas,

similar functionality is provided for real and complex matrices, in both single and double

precision. LAPACK routines are written so that as much as possible of the computation

is performed by calls to the Basic Linear Algebra Subprograms (BLAS) [4].

The original goal of the LAPACK project was to make the widely used EISPACK [6]

and LINPACK [5] libraries run efficiently on shared-memory vector and parallel proces-

sors. On these machines, LINPACK and EISPACK are inefficient because their memory

access patterns disregard the multi-layered memory hierarchies of the machines, thereby

spending too much time moving data instead of doing useful floating-point operations.

LAPACK addresses this problem by reorganizing the algorithms to use block matrix op-

erations, such as matrix multiplication, in the innermost loops. These block operations

can be optimized for each architecture to account for the memory hierarchy, and so pro-

vide a transportable way to achieve high efficiency on diverse modern machines.
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LAPACK routines are written so that as much as possible of the computation is per-

formed by calls to the Basic Linear Algebra Subprograms (BLAS). While LINPACK and

EISPACK are based on the vector operation kernels of the Level 1 BLAS, LAPACK was

designed at the outset to exploit the Level 3 BLAS – a set of specifications for Fortran

subprograms that do various types of matrix multiplication and the solution of triangular

systems with multiple right-hand sides. Because of the coarse granularity of the Level 3

BLAS operations, their use promotes high efficiency on many high-performance comput-

ers.

LAPACK is a freely available software package provided on the World Wide Web

via netlib, anonymous ftp, and http access [3]. Thus it can be and has been included in

commercial packages (MATLAB).

3.1.3 MATLAB and LAPACK

For using LAPACK’s functions in MATLAB, the company MathWorks provides an ex-

ternal interface, MEX-files. These files can be written in programming language C or

Fortran. It is a gate between Matlab and functions from LAPACK library. Calling the

well-known LAPACK library as external solver is well described for example in the Mat-

lab Help or in [7].

We explain creating of MEX-file on example of calling LAPACK function, which

compute LU factorisation of band rectangular matrix, dbgtrf.f. The example is in language

C.

MEX-file has set structure. It contains function mexFunction, which is interface be-

tween MATLAB and LAPACK functions. This mex function has four parameters: num-

ber of input parameters, array of pointers to input parameters, numbers of output parame-

ters and array of pointers to output parameters. To retrieve the values of input parameters

and store them into local variables mexFunction uses appropriate MATLAB functions.

When it’s done we call the LAPACK function. The pointers to output are stored to array

of the mexFuction and the local arrays are destroyed.

Code of MEX file with explanatory comment:

# i n c l u d e ”mex . h ”

/ / i n t e r f a c e f u n c t i o n

void mexFunct ion ( i n t n lhs , mxArray ∗ p l h s [ ] ,

i n t nrhs , c o n s t mxArray ∗ p r h s [ ] )

{
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/ / d e c l a r e v a r i a b l e

double ∗AB, ∗ temp , ∗ temp1 , ∗ temp2 , z e r o = 0 . 0 ;

i n t ∗ IPIV ;

i n t LDAB, M, N, In fo , k , KL, KU, min , MB, NB;

char msg [ 1 0 0 ] ;

/ / w r i t e message t o MATLAB workspace

m e x P r i n t f ( ” S t a r t mex i n t e r f a c e ” ) ;

/ / T e s t o f number i n p u t / o t p u t parame te r

i f ( n r h s != 5)

{
mexErrMsgTxt ( ” F ive i n p u t a rgumen t s r e q u i r e d . ” ) ;

} e l s e i f ( n l h s > 2)

{
mexErrMsgTxt ( ”Too many o u t p u t a rgumen t s . ” ) ;

} ;

/ / read o f i n p u t p a r a m e t e r s

/ / s i z e o f f i r s t i npu parameter , m a t r i x AB

MB = mxGetM ( p r h s [ 0 ] ) ;

NB = mxGetN ( p r h s [ 0 ] ) ;

/ / s t o r e f i r s t i n p u t parame te r i n t o l o c a l v a r i a b l e AB

AB = mxCalloc (MB∗NB, s i z e o f ( double ) ) ;

temp = mxGetPr ( p r h s [ 0 ] ) ;

f o r ( k =0; k<NB∗MB; k ++)

{
AB[ k ] = temp [ k ] ;

} ;

/ / read o f l a s t f o u r p a r a m e t e r s i n t o l o c a l v a r i a b l e s

/ / ( number o f s u b d i a g o n a l , s u p p e r d i a g o n a l , s i z e o f m a t r i x A )

i f ( ! mxIsDouble ( p r h s [ 1 ] ) | | mxIsComplex ( p r h s [ 1 ] ) | |
mxGetN ( p r h s [ 1 ] ) ∗mxGetM ( p r h s [ 1 ] ) != 1 ) {

mexErrMsgTxt ( ” I n p u t KL must be a s c a l a r . ” ) ;

}
KL = mxGetSca la r ( p r h s [ 1 ] ) ;

i f ( ! mxIsDouble ( p r h s [ 2 ] ) | | mxIsComplex ( p r h s [ 2 ] ) | |
mxGetN ( p r h s [ 2 ] ) ∗mxGetM ( p r h s [ 2 ] ) != 1 ) {
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mexErrMsgTxt ( ” I n p u t KU must be a s c a l a r . ” ) ;

}
KU = mxGetSca la r ( p r h s [ 2 ] ) ;

i f ( ! mxIsDouble ( p r h s [ 3 ] ) | | mxIsComplex ( p r h s [ 3 ] ) | |
mxGetN ( p r h s [ 3 ] ) ∗mxGetM ( p r h s [ 3 ] ) != 1 ) {

mexErrMsgTxt ( ” I n p u t M must be a s c a l a r . ” ) ;

}
M = mxGetSca la r ( p r h s [ 3 ] ) ;

i f ( ! mxIsDouble ( p r h s [ 4 ] ) | | mxIsComplex ( p r h s [ 4 ] ) | |
mxGetN ( p r h s [ 4 ] ) ∗mxGetM ( p r h s [ 4 ] ) != 1 ) {

mexErrMsgTxt ( ” I n p u t N must be a s c a l a r . ” ) ;

}
N = mxGetSca la r ( p r h s [ 4 ] ) ;

i f (M>N)

min = N;

e l s e
min = M;

/ / s e t n e c e s s a r y p a r a m e t e r s f o r c a l l i n g LAPACK f u n c t i o n

/ / Lead ing d i m e n s i o n o f m a t r i x AB

LDAB=MB;

IPIV = mxCalloc ( min , s i z e o f ( i n t ) ) ;

/ / C a l l LAPACK f u n c t i o n

d g b t r f (&M,&N, &KL,&KU, AB,&LDAB, IPIV ,& I n f o ) ;

i f ( I n f o < z e r o )

{
s p r i n t f ( msg , ” I n p u t %d t o DGBTRF had an i l l e g a l v a l u e ” ,− I n f o ) ;

mexErrMsgTxt ( msg ) ;

} ;

/ / s t o r e o u t p u t p a r a m e t e r s

/ / f a c t o r i z a t e d m a t r i x

p l h s [ 0 ] = mxCrea teDoubleMat r ix (MB, NB, mxREAL ) ;

temp1 = mxCalloc (MB∗NB, s i z e o f ( double ) ) ;
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f o r ( k = 0 ; k < MB∗NB; k ++)

{
temp1 [ k ] = AB[ k ] ;

}
mxSetPr ( p l h s [ 0 ] , temp1 ) ;

/ / IPIV array , a r r a y o f p e r m u t a t i o n s

p l h s [ 1 ] = mxCrea teDoubleMat r ix ( 1 , min , mxREAL ) ;

temp2 = mxCalloc ( min , s i z e o f ( double ) ) ;

f o r ( k = 0 ; k < min ; k ++)

{
temp2 [ k ] = ( double ) IPIV [ k ] ;

}
mxSetPr ( p l h s [ 1 ] , temp2 ) ;

/ / f r e e l o c a l v a r i a b l e s

mxFree (AB ) ;

mxFree ( IPIV ) ;

re turn ;

}

To compile and link the MEX-file at the MATLAB prompt, type:

mex mex file name.c {MATLAB home}\extern\lib\win32\lcc\libmwlapack.lib.

For correct recalling of parameters of MATLAB’s mex function see help mex in MAT-

LAB.

3.2 Implementated functions

In this section we discuss integration of external solver in the calculation of Diophantine

equation and taking advantage of the knowledge of the structure of resolved matrices.

Our function finds a particular solution [XXX0 ,YYY 0] of the polynomial and matrix poly-

nomial Diophantine equation AAAXXX + BBB YYY = CCC. If no polynomial solution exists then all

the entries of [XXX0 , YYY 0] are set equal to NaN. The solution is finding through Sylvester

method using the LAPACK and the minimum degree is finding through Binary search.

Interfaces of the LAPACK’s functions that we need to call when solving the Diophan-

tine equations must be compiled in advance. By interfaces we mean mex-files whose

creation is described above - see 3.1.3. The mex-files are compiled into dynamical li-
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braries and MATLAB works with them in the same manner as with standard MATLAB’s

m-files.

In our function we also use auxiliary MATALAB function STORAGE2 that stores

band matrix in required form for LAPACK. See below for further details. An m x n band

matrix with kl subdiagonals and ku superdiagonals may be stored compactly in a two-

dimensional array with 2 ∗ kl + ku + 1 rows and n columns. Columns of the matrix are

stored in corresponding columns of the array, and diagonals of the matrix are stored in

rows of the array as follows:

AAAB (kl + ku + 1 + i − j, j) = AAA (i, j) for max(1, j − ku) <= i <= min(m, j + kl)

This storage scheme should be used in practice only if kl, ku << min(m, n).

See example of storage:

band matrix AAA

A =



a11 a12 0 0 0 0 0

a21 a22 a23 0 0 0 0

a31 a32 a33 a34 0 0 0

0 a42 a43 a44 a45 0 0

0 0 a53 a54 a55 a56 0

0 0 0 a64 a65 a66 a67


is stored into 2 ∗ kl + ku + 1 matrix AAAB

AB =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 a12 a23 a34 a45 a56 a67

a11 a22 a33 a44 a55 a66 0

a21 a32 a43 a54 a65 0 0

a31 a42 a53 a64 0 0 0


First kl rows are used in LAPACK function that computes LU factorisaton of band matrix.

Now we describe our function for types of Diophantine equations.
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3.2.1 Scalar case

• Description

First part of our function axbycL finds solution of the scalar case of polynomial

Diophantine equation

AAA(s)XXX(s) + BBB(s)YYY (s) = CCC(s), (3.1)

where AAA, BBB and CCC are polynomials.

• Syntax

[XXX,YYY ] = axbycL(AAA,BBB,CCC)

• Method

First part of function axbycL finds solution [XXX,YYY ] of the polynomial Diophantine

equation 3.1 through Sylvester method using external solver Lapack.

First the degree of solution is set according to

degXXX = degBBB - 1,

degYYY = degAAA - 1 pro degAAA + degBBB > degCCC,

degYYY = degCCC - degBBB pro degAAA + degBBB ≤ degCCC.

Next the Sylvester matrices SSSA and SSSB from polynomial AAA and polynomial BBB are

created . The orders of matrices are determined by degrees of XXX and YYY , respec-

tively.

Then a constant matrix equation SSS XXXY = CCCc is composed and computed by LA-

PACK function. Matrix SSS is double Sylvester matrix joined from the Sylvester

matrices SSSA and SSSB. Vector CCCc is composed from coefficients of polynomial CCC.

The vector XXXY contains coefficients of finding solution of Diophantine equation.

XXXY =



x0

x1

...

xdegX

y0

y1

...

ydegy


(3.2)
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LAPACK doesn’t contain functions for compute linear equations with block Sylvester

matrix 1.4 so we used function for compute band matrix because structure of block

Sylvester matrix is close to structure of band matrix see below.

Sylvester matrix =



a1 0 0 0 b1 0 0

a2 a1 0 0 b2 b1 0

a3 a2 a1 0 b3 b2 b1

0 a3 a2 a1 b4 b3 b2

0 0 a3 a2 0 b4 b3

0 0 0 a3 0 0 b4



band matrix =



xx xx xx xx xx 0 0

xx xx xx xx xx xx 0

xx xx xx xx xx xx xx

0 xx xx xx xx xx xx

0 0 xx xx xx xx xx

0 0 0 xx xx xx xx


• Example

Suppose three polynomials

>> A = [1+2∗s+s2+2∗s3], B = [s+s2+3∗s3], C = [4+5∗s+s2+5∗s3+s4]

AAA =

1 + 2s + s2 + 2s3

BBB =

s + s2 + 3s3

CCC =

4 + 5s + s2 + 5s3 + s4
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thus the polynomials AAA,BBB and CCC are set we use our function axbycL for find so-

lution [XXX YYY ] of Diophantine equation AAAXXX + BBB YYY = CCC

>> [XXX,YYY ] = axbycL(AAA,BBB,CCC)

XXX =

4 − 2s + 0.36s2

YYY =

−1 + 1.6s − 0.24s2

3.2.2 Matrix case

• Description

Second part of function axbycL finds a particular solution [XXX0,YYY 0] of the matrix

case of polynomial Diophantine equation

AAA(s)XXX(s) + BBB(s)YYY (s) = CCC(s), (3.3)

where AAA, BBB and CCC are polynomial matrices.

• Syntax

[XXX,YYY ] = axbycL(AAA,BBB,CCC)

[XXX,YYY ] = axbycL(AAA,BBB,CCC, DEGREE)

If DEGREE is not specified then a solution of minimum overall degree is computed.

Otherwise function seeks a solution [XXX0,YYY 0] of degree DEGREE.

• Method

The process of our calculation of matrix Diophantine equation start with finding of

upper and lower bound of degree of the solution. In scalar case, see 4.1, the degree
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of the solution is exactly set. In the matrix case we can only found the bounds of

the solution.

Minimum degree of solution is finding through binary search. Binary search is

search of sorted array, in our case all possibilities degrees of the solution, by repeat-

edly dividing the search interval in half. Begin with an interval covering the whole

array. If the value of the search key, degree in our case, is less than the item in the

middle of the interval, narrow the interval to the lower half. Otherwise narrow it to

the upper half. Repeatedly check until the value is found or the interval is empty.

In the loop of the binary search we are finding the solution of the Diophantine

equation using the LAPACK. The solution has degree destined by binary search.

The finding of the solution for test degree in the loop of binary search combines

creation of constant linear equation with Sylvester matrix

DDDXXX = CCCc, (3.4)

where DDD is the Sylvester matrix created from the matrices AAA and BBB, matrix CCCc is

composed from coefficients of polynomial matrix CCC and the matrix XXXY contains

coefficients of finding solution of Diophantine equation, and finding of a solution of

this equation. On base of size of Sylvester matrix is called one LAPACK’s function

or our routine with series of LAPACK’s functions.

If the Sylvester matrix is square, not very frequent, we call same LAPACK’s func-

tion as in the scalar case of Diophantine equation. This function solves constant

linear equation AAAXXX = BBB, where AAA is square band matrix.

If the Sylvester matrix has more rows then columns, also not very frequent, we

proceed from fact that if AAA is an m x n tall matrix where m > n, then AAA\BBB is the

same as (AAA′AAA)\(AAA′BBB). Through this method we create from the tall band matrix a

square band matrix and then we call also LAPACK’s functions for solving constant

linear equation AAAXXX = BBB, where AAA is square band matrix.

If Sylvester matrix has more columns then rows, we call our interface file with

wrapper routines and LAPACK’s functions. The process of finding solution of lin-

ear equation in mex file is as follow. We call LAPACK function for LU factorisation

of band matrix. We get lower triangular matrix LLL and upper trapezoidal triangular

matrix UUU .

DDD = LLLUUU (3.5)
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We multiply equation from left side with matrix LLL−1 and we get equation

UUU XXX = LLL−1 BBB. (3.6)

Then we call LAPACK function for decomposition trapezoidal matrix UUU to the

upper triangular form by means of orthogonal transformations. The m x n upper

trapezoidal matrix UUU is factored as

UUU = (RRR000)ZZZ, (3.7)

where ZZZ is an n x n orthogonal matrix and RRR is an m x m upper triangular matrix.

After this factorisation we call LAPACK’s function that solves constant linear equa-

tion AAAXXX = BBB, where AAA is upper triangular square matrix and LAPACK’s function

that solves constant linear equation AAAXXX = BBB, where AAA is square orthogonal matrix.

If an error happens in LAPACK’s function during the calculation, LAPACK does

not signal it in any way and return an invalid result. Due to this we have to test

correctness of solution.

• Example

Suppose three polynomial matrices

>> AAA = [1 + s + s2, 1 + 2 ∗ s + s2, 1 + s + 2 ∗ s2; 1 + s2, 1 + 3 ∗ s + s2, 1 + s; 2 +

s + s2, 2 + 2 ∗ s2, 1 + s + s2]

AAA =

1 + s + s2 1 + 2s + s2 1 + s + 2s2

1 + s2 1 + 3s + s2 1 + s

2 + s + s2 2 + 2s2 1 + s + s2

>> BBB = [3 + 3 ∗ s + s2, 1 + 5 ∗ s + 2 ∗ s2, 2 + 8 ∗ s; 1 + s + s2, 1 + 3 ∗ s +

2 ∗ s2, 1 + s + s2; 1 + s + s2, s + 2 ∗ s2, 1 + s + s2]

BBB =

3 + 3s + s2 1 + 5s + 2s2 2 + 8s

1 + s + s2 1 + 3s + 2s2 1 + s + s2

1 + s + s2 s + 2s2 1 + s + s2
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>> CCC = [5 + 5 ∗ s + 5 ∗ s2, 1 + s + s2, 2 + s + 6 ∗ s2; 1 + 4 + s + s2, 3 +

4 ∗ s + 5 ∗ s2, s + 3 ∗ s2; s2, 1 + s + 2 ∗ s2, 3 + s + s2]

CCC =

5 + 5s + 5s2 1 + s + s2 2 + s + 6s2

5 + s + s2 3 + 4s + 5s2 s + 3s2

s2 1 + s + 2s2 3 + s + s2

thus the polynomial matrices AAA,BBB and CCC are set we use our function axbycL for

find solution [XXX YYY ] of Diophantine equation AAAXXX + BBB YYY = CCC

>> [XXX,YYY ] = axbycL(AAA,BBB,CCC)

XXX =

−2 + 4.9s 0.31 − 2.1s 1.4 − 8s

−1.9 − 1.3s −0.52 + s 0.63 + 1.7s

4.8 + 1.3s 3.1 − s 0.96 − 1.7s

YYY =

−2.9 − 18s −0.26 + 2.7s 4 + 19s

1.1 + 5.9s 1.8 + 0.2s −0.97 − 4.8s

5.9 + 2.6s −1.5 − 2.1s −6 − 3.5s

if we can find solution of degree 2, write command

>> [XXX,YYY ] = axbycL(AAA,BBB,CCC, 2)

XXX =

−2.4 − 0.67s + 0.75s2 0.45 − 0.65s − 0.037s2 2 − 0.65s − 0.66s2

−1.9 + 0.3s − 0.29s2 −0.46 + 0.73s − 0.021s2 0.94 + 0.17s + 0.063s2

8 − 2.7s + 0.29s2 2.3 − 0.61s + 0.021s2 −3.4 + 0.96s − 0.063s2
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YYY =

−0.73 − 2s − 0.33s2 −0.76 − 0.95s − 0.13s2 1.4 + 0.47s + 0.43s2

0.65 + 2.7s − 0.36s2 2 + 0.92s + 0.074s2 −0.095 − 1.2s + 0.14s2

1.5 − 1.5s + 0.59s2 −0.49 − s + 0.043s2 −0.88 + 1.5s − 0.13s2
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Numerical experiments

We compare Polynomial toolbox and our function for finding the solution of polynomial

Diophantine equation. We are interested in the result precision and the computing time.

We presume our functions are faster then function from Polynomial toolbox.

The computing time in all testing is measured by Matlab function stopwatch timer.

All tests are performed under operating system Windows XP and in Matlab R14.

Before we verify our idea on computation of Diophantine equation we show that find-

ing of solution using LAPACK is faster then standard MATLAB functions and the result

precision is comparable. We demonstrate it on finding the solution of equation

AAAXXX = BBB, (4.1)

where AAA is band matrix. This equation is computed through finding of solution of Dio-

phantine equation by Sylvester method.

The random band matrices, using in the testing, are generated by created function

>> AAA = randbandmatrix(M, N, KL, KU),

where M, N, KL, KU represent number of rows, number of columns, number of subdiag-

onals and number of superdiagonals, respectively.

• First test

Our first test compares Matlab function left matrix divide and LAPACK function,

DGBSV, for band square matrix in equation 4.1.LAPACK function is called through

mex-file genB. The results are shown on the figure 4.1.

26
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Figure 4.1: Comparison of Matlab function left matrix divide and LAPACK function, for

band square matrix in equation 4.1

• Second test

Our second test compares Matlab function left matrix divide and our function, ma-

trixMslN, using LAPACK for band rectangular matrix in equation 4.1. The results

are shown on the figure 4.2.
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Figure 4.2: Comparison of Matlab function left matrix divide and our function for band

rectangular matrix in equation 4.1

Now we compare Polynomial toolbox and our function for finding of the solution of

polynomial Diophantine equation.

• Third test: scalar case of Diophantine equation

Our third test compares Polynomial toolbox’s function axbyc and the part for scalar

case of Diophantine equation 1.1 of our funtion axbycL . The results are shown on

the figure 4.3.



CHAPTER 4. NUMERICAL EXPERIMENTS 29

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Degree of polynomial [−]

C
om

pu
ta

tio
n 

tim
e 

[s
]

Our function axbycL
Polynomial toolbox function axbyc

Figure 4.3: Comparison of Polynomial toolbox’s function axbyc and our function axbycL

for scalar case of Diophantine equation 1.1

• Fourth test: polynomial matrix Diophantine equation

Our fourth test compares Polynomial toolbox’s function axbyc and the second part

of our funtion axbycL for matrix case of Diophantine equation 1.1. The results are

shown on the figure 4.4.
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Figure 4.4: Comparison of Polynomial toolbox’s function axbyc and our function axbycL

for matrix case of Diophantine equation 1.1
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Conclusion

The main part of our work is devoted to the possibilities of improving the existing algo-

rithms that solve Diophantine equation based on the knowledge of the matrix structure.

We focus on solving Diophantine equation through Sylvester method, where special struc-

ture of Sylvester matrix appears. For acceleration of calculation we used external solver

LAPACK. Because LAPACK does not contain functions for solving equations with ma-

trices of special Sylvester structure, we used LAPACK functions for band matrices and

we inserted Sylvester matrix in a general band matrix. We could do that because Sylvester

matrix is special case of band matrix.

The achieved results of our work can be summarized as follows:

• Choice of the external solver

We choose LAPACK as external solver. This choice based on a good co-operation

between LAPACK and MATLAB and on knowledge that LAPACK contains func-

tions for solving band matrices. When we closely study functions which are offered

by LAPACK, we detect that LAPACK has function for solve the equation AAAXXX = BBB,

where AAA is square band matrix, and function for LU factorisation of general band

matrix. When we solve the equation AAAXXX = BBB, where AAA is general band matrix, we

use function for LU factorisation and get matrix factors but after it we have to call

other LAPACK’s functions to find the solution of equation. These callings wrap our

routines. but they are not optimized as well as LAPACK itself.

This optimizing problem with our routine for general band matrix can be seen on the

first and second test, see 4. Solving of the equation AAAXXX = BBB, where AAA is square

band matrix is computed directly through LAPACK function and it is faster then

standard MATLAB function, as we assumed. But when AAA is general band matrix

in the equation AAAXXX = BBB, we computed this equation through our routines with

31
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more then one LAPACK function the difference between computing times is not so

big. Computing time of MATLAB function and computing time of our routine with

LAPACK functions are comparable.

• Diophantine equation

The usability of proposed improving of Sylvester method using external solver is

realistic. It is possible to see on the third test and fourth test, see 4. Solving of

Diophantine equation using function with external solver is faster then the function

of Polynomial toolbox. For the scalar case the acceleration of method is obvious

but for the matrix case there is not the acceleration so big.

• The future possibilities

The idea of improving of method speed for solving problems in design control

can be used also in other problems than solving of Diophantine equation. Some

difficulty with this idea can be solved by choosing suitable external solver.
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