
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

BACHELOR’S THESIS

Jaroslav Janoš

Inspection Planning for Firefighting

with Unmanned Aerial Vehicle

Department of Cybernetics

Thesis supervisor: Ing. Robert Pěnička

Prague – 05/2020

Author statement for undergraduate thesis

I declare that the presented work was developed independently and that I have listed
all sources of information used within it in accordance with the methodical instructions for
observing the ethical principles in the preparation of university theses.

Prague, date............................. ...

signature

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

474435Personal ID number:Janoš JaroslavStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and RoboticsStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Inspection Planning for Firefighting with Unmanned Aerial Vehicle

Bachelor’s thesis title in Czech:

Plánování inspekce budovy s požárem pomocí autonomního bezpilotního prostředku

Guidelines:
1. Get familiar with the task of inspection planning in 3D environments and compare similar approaches for inspection of
urban structures.
2. Implement a suitable approach for the visible surface determination problem in an environment with obstacles.
3. Propose a motion planning method for urban structure inspection, which maximizes the covered area considering the
constraints given by an UAV.
4. Experimentally evaluate in simulator the proposed inspection planning method for fire detection.

Bibliography / sources:
[1] R. Penicka, J. Faigl, and M. Saska, “Physical Orienteering Problem for Unmanned Aerial Vehicle Data Collection
Planning in Environments With Obstacles”, IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 3005-3012, 2019.
[2] B. Englot and F. Hover, “Inspection planning for sensor coverage of 3Dmarine structures”, in 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2010, pp. 4412-4417.
[3] P. Janousek and J. Faigl, “Speeding up coverage queries in 3D multi-goal path planning”, in 2013 IEEE International
Conference on Robotics and Automation, 2013, pp. 5082-5087.
[4] A. Randa, T. Taha, L. Seneviratne, J. Dias, G. Cai, P. Z. Peng, and D. F. Lin, “Aircraft Inspection Using Unmanned
Aerial Vehicles”, in International Micro Air Vehicle Competition and Conference 2016, 2016, pp. 43-49.

Name and workplace of bachelor’s thesis supervisor:

Ing. Robert Pěnička, Multi-robot Systems, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 22.05.2020Date of bachelor’s thesis assignment: 07.01.2020

Assignment valid until: 30.09.2021

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
doc. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Robert Pěnička
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Acknowledgements

I would like to express my deepest gratitude to my advisor, Ing. Robert Pěnička, for all
the materials and source codes he gave me, as well as advices and guidance throughout the
research and writing of the thesis.

I would also like to thank the Multi-robot Systems Group: the real-time simulation of
the proposed algorithm could have not been done without their previous work and knowledge.

Last but not least, I would like to thank my family and my friends for their mental
support during not only this research, but also during my whole studies.

ii

iii

Abstract

The aim of this work is to propose a method for planning of an inspection
path for a fire detection in an urban area by an unmanned aerial vehicle.
Assuming that the fire spreads on the objects located near the surfaces,
e. g. floors, the main objective of the resulting inspection is to analyze as
large area of these surfaces as possible. However, the path planning has
to consider a limited length of the trajectory and a limited visibility of
the scene. The stated challenge was divided into two consecutive steps:
a generation of positions in the configuration space of the used vehicle, and
the multi-goal path planning over the generated positions. The generation
was tested using two different approaches. Firstly, by a tetrahedral decom-
position of the space, and secondly by a random sampling based on the
probabilistic roadmap methods. The visibility of the surfaces is then deter-
mined by back-face culling, or ray tracing. The path planning builds upon
an existing solution for the physical orienteering problem. A new approach
to the system of rewards in the orienteering problem was proposed, where
the sum of collected rewards is replaced by a union over the visible surfaces
corresponding to the visited positions.

Keywords: coverage path planning, building inspection, unmanned aerial
vehicle, ray tracing, back-face culling, probabilistic roadmap planner, ori-
enteering problem

iv

v

Abstrakt

Ćılem této práce je vytvořit vhodnou metodu pro plánováńı inspekčńı
trasy pro detekci požáru v budovách či podobných objektech autonomńım
vzdušným prostředkem. Hlavńım předpokladem této metody je, že oheň se
š́ı̌ŕı na objektech umı́stěných pobĺıž povrch̊u jako jsou podlahy – úkolem
výsledné inspekce je tedy analyzovat co největš́ı část těchto povrch̊u. Při
plánováńı je však nutné brát v úvahu omezenost maximálńı délky trajek-
torie i limitovanou viditelnost objekt̊u. Uvedený problém byl rozdělen na
dvě navazuj́ıćı části: nalezeńı pozic v konfiguračńım prostoru použitého
robotu a plánováńı pro v́ıce ćılových bod̊u s nalezenými pozicemi. Pro
hledáńı pozic byly vyzkoušeny dva př́ıstupy: rozklad prostoru na čtyřstěny
a také náhodné vzorkováńı prostoru, založené na metodách probabilistic
roadmap. Viditelné části povrchu byly poté určeny algoritmem back-face
culling, nebo metodou ray tracing (sledováńı paprsk̊u). Samotné plánováńı
trasy pak stav́ı na již existuj́ıćım řešeńı pro physical orienteering problem.
Byl navržen nový př́ıstup k systému odměn pro orienteering problem, kdy
je suma nasb́ıraných odměn nahrazena sjednoceńım viditelných povrch̊u,
odpov́ıdaj́ıćıch navšt́ıveným pozićım.

Kĺıčová slova: coverage path planning, inspekce budov, bezpilotńı
vzdušný prostředek, metoda sledováńı paprsk̊u, back-face culling, prob-
abilistic roadmap, orienteering problem

vi

Contents

1 Introduction 1

1.1 Specification . 2

2 Related works 5

2.1 Methods of coverage path planning . 6

2.1.1 Exact cellular decomposition . 6

2.1.2 Grid-based methods . 7

2.1.3 3D coverage problem . 8

2.2 Motion planning . 10

2.3 Orienteering problem . 12

2.4 Visible surface determination . 13

2.4.1 Ray tracing . 13

2.4.2 Other approaches . 14

3 Generation of viewpoints 15

3.1 Space-decomposition approach . 15

3.1.1 Algorithm overview . 15

3.1.2 Implementation . 17

3.1.3 Basic testing of the proposed algorithm 18

3.2 Sampling-based approach . 21

3.2.1 Algorithm overview . 21

3.2.2 Implementation . 23

4 Path planning 25

4.1 Algorithm overview . 25

4.2 Implementation . 31

viii Contents

5 Results 33

5.1 Viewpoints extension . 35

5.2 Relative visibility of the area of interest . 37

5.3 Prioritization of objects of interest . 37

5.4 Viewpoints extension sampling strategies . 39

5.5 PRM smoothing . 40

6 Simulation 45

7 Conclusion 49

Bibliography 51

Appendices 55

Appendix Full results of testing 57

Appendix CD Content 65

List of Figures

1.1 Illustration of the method’s function in a housing estate – the left figure depicts
an example of a final inspection path, the right figure illustrates the sensor’s
field of view during the fire detection . 2

2.1 Trapezoidal decomposition of an rectangular environment with a demonstra-
tion of the back-and-forth motion . 6

2.2 Boustrophedon decomposition [1] . 7

2.3 Complete coverage by the grid-based distant wavefront algorithm [2] 7

2.4 Execution of the Spanning Tree Covering algorithm [3] 8

2.5 Approximation of urban structures and the corresponding trajectory of UAV [4] 9

2.6 Example of a coverage space [5] . 9

2.7 Example solution for the POP in a building [6] 13

3.1 Environments for testing of the space-decomposition method 20

3.2 Wrong transitive dependency propagation – reality and scheme 20

5.1 Environment 1 – single 4-floor building . 34

5.2 Environment 2 – a housing estate . 34

5.3 Average reward for the environment 1, based on the budget and the viewpoints
extension strategy . 36

5.4 Average reward for the environment 2, based on the budget and the viewpoints
extension strategy . 37

5.5 Average percentage of the visible points of interest for the environment 1 . . 38

5.6 Average percentage of the visible points of interest for the environment 2 . . 38

5.7 Share of the visible points of interest per object of interest in the environment 2 39

5.8 Average reward based on the viewpoints extension strategy for the environment 1 40

5.9 Average reward based on the viewpoints extension strategy for the environment 2 41

5.10 Average path length based on the PRM conditions 42

5.11 Average reward based on the PRM conditions 42

x List of Figures

6.1 Path evaluation for the environment 1 . 46

6.2 Visible points of interest in the environment 1 47

6.3 Path evaluation for the environment 2 . 47

6.4 Collision avoidance and viewpoints sampling in the environment 2 47

6.5 Visible points of interest in the environment 2 48

6.6 Comparison of the visible points of interest from the algorithm’s output and
the simulation . 48

List of Tables

5.1 Comparison of the results for evaluated viewpoints extension strategies for the
environment 1 . 35

5.2 Comparison of the results for evaluated viewpoints extension strategies for the
environment 2 . 36

5.3 Comparison of the average results for different extension sampling strategies
for the environment 1 . 39

5.4 Comparison of the average results for different extension sampling strategies
for the environment 2 . 40

5.5 Comparison of the average results for different PRM extension strategies . . . 41

1 List of all tested configurations . 57

2 Results for the configuration 1 . 58

3 Results for the configuration 2 . 58

4 Results for the configuration 3 . 58

5 Results for the configuration 4 . 58

6 Results for the configuration 5 . 59

7 Results for the configuration 6 . 59

8 Results for the configuration 7 . 59

9 Results for the configuration 8 . 59

10 Results for the configuration 9 . 60

11 Results for the configuration 10 . 60

12 Results for the configuration 11 . 60

13 Results for the configuration 12 . 60

14 Results for the configuration 13 . 61

15 Results for the configuration 14 . 61

16 Results for the configuration 15 . 61

17 Results for the configuration 16 . 61

18 Results for the configuration 17 . 62

xii List of Tables

19 Results for the configuration 18 . 62

20 Results for the configuration 19 . 62

21 Results for the configuration 20 . 62

22 Results for the configuration 21 . 63

23 Results for the configuration 22 . 63

24 Results for the configuration 23 . 63

25 Results for the configuration 24 . 63

26 CD Content . 65

Chapter 1

Introduction

The progress in the robotic research allows their deployment in settings where it was
not possible just few years ago. One of these rapidly progressing robots are unmanned aerial
vehicles (UAVs). Besides its usage in the industry, a robot may be used nowadays in ex-
ploratory and rescue operations at places where the life threatening risk for people is too
high. Firefighting is one of these situations. In 2019 there were more than 20,000 fires in the
Czech Republic alone, most of them in buildings or similar objects [7]. It is a prompt interven-
tion which plays especially significant role for firefighting, together with an early localization
of the fire and its scope.

This paper has been inspired by one of the challenges of MBZIRC 20201 international
competition, where the task was to localize as well as extinguish a set of fires in a high-rise
building. This task was executed by a team of three UAVs together with one unmanned
ground vehicle (UGV). The first part, the localization of the fire sources, might be generally
divided into two distinct processes:

1. sensoric detection of the fire itself, by e. g. thermal camera, and

2. motion planning of a robot, whose task is the localization of the fire sources.

The main objective of this paper is to solve the second subchallenge: to propose a method,
which resolves the motion planning problem for one UAV.

This method must take into account an area of visible surfaces (e. g. floors, walls or
ceilings) in an inspected building (possibly also a housing estate), since the fire spreads on
objects near the surfaces, or even directly on these surfaces, as the present author assumes.
Maximization of the visible area should therefore increase the probability of the fire detection.
Another constraint is the requirement for minimal cost of the inspection path and other
limitations, as described in the detailed specification (see Section 1.1).

This thesis is organized thus: firstly, the current state of the art of the coverage path
planning is summarized, namely in 2D as well as in the 3D environments. The exact ap-
proaches are compared with heuristic algorithms and methods for the visible surface determi-
nation are then shortly introduced. In the method overview part, the challenge is then divided

1Mohamed Bin Zayed International Robotics Challenge is an international robotics competition, which aims
on a demonstration of the current state of the art in robotics, https://www.mbzirc.com/challenge/2020

https://www.mbzirc.com/challenge/2020

2 Chapter 1. Introduction

into two subchallenges, the generation of so called “viewpoints” and the path planning. The
viewpoints generation consists of finding suitable positions of the robot in the configuration
space and in obtaining corresponding visible surfaces in the inspected building. This is solved
by two methods; first based on a division of the space into smaller reference cells, and second
based on a random sampling. These points are then filtered and linked together by a path
planning algorithm, as explained in the next chapter. The whole method is tested on 24 ap-
propriate scenarios in terms of coverage or path utilization in two urban environments, and
finally the validity and correctness are checked in a real-time simulator.

Figure 1.1: Illustration of the method’s function in a housing estate – the left figure depicts
an example of a final inspection path, the right figure illustrates the sensor’s field of view
during the fire detection

1.1 Specification

What is meant by the term “unmanned aerial vehicle”? Pajares [8] counts UAV among
“unmanned aerial system” (UAS), which is an “auto platform or remotely controlled platform
through a remote station together with a communication system, including the corresponding
protocol”. That means, that the UAV is not only the aircraft itself, but also the full system
with control and other auxiliary elements. This category consists of military fixed-wing UAVs
as well as smaller (quad-, hexa-, octo-) copters with an ability to hold fixed position while
flying. Even the smaller vehicles are able nowadays to carry a wide variety of sensors. These
sensors might be used for both navigation purposes, e. g. GPS, Inertial Navigation Sensors
or MEMS gyroscopes and accelerometers, or data collection purposes, e. g. cameras, thermal
cameras, or smoke detectors (with regard to the firefighting). Apart from these, the UAVs
can also perform many activities with actuators and other tools including extinguishers, fire
blankets etc. These, altogether with the capacity of used batteries and weight of the aircraft
itself, have a great impact on the maximal time of flight.

The vehicle endurance must be considered as a factor, thus the deciding parameter is
a travel budget Tmax (i. e. the maximum length of the inspection path), which must not be
exceeded. Violation of this rule might even lead to a destruction of the UAV, since it might
for example perform an emergency landing right into the flames. The complete visibility of
the surfaces is then not assured, which means, that the purpose of the desired inspection
should not be in a search for the first signs of an impending fire, but rather in a localization
of an existing fire of a greater size for any subsequent rescue operations. Another restriction

1.1. Specification 3

resulting from the target application is the limited space of operation. Since the insides of the
building might be, due to the flames and smoke, hazardous even for a robot to operate, the
path must be located entirely outside the analysed buildings and the UAV must also avoid
other obstacles.

As many other free objects in 3D space, UAVs have theoretically 6 degrees of freedom
(DOF) possibly with other redundant 3 DOF added by the used camera (if it is not fixed).
However, presented methods are specialized and verified in 5 DOF (position in 3D, yaw and
pitch), as the “roll” position might be in practice hard to achieve and would increase the
difficulty of the problem. The extension on 6 DOF is possible anyway, when specified in the
input for the method.

The main objective of the considered path planning is therefore to find a suitable path
within the limited travel budget for an inspection of a building with fire so that the visible
area of the analysed surfaces during the inspection is as large as possible. This path leads
from a given starting point not only to a given ending point, but should also cross some of
the generated viewpoints, thus the planning is multi-goal. Non real-time path planning of the
inspection before its deployment is assumed, as well as a known model of the environment
(i. e. blueprint of the building and its surroundings). Additionally, the object of interest must
be precisely specified and must be sampled on an equally spaced and sufficiently dense point
grid. Each point then represents a small subarea of the object of interest (e. g. all the floors
of the inspected building). Another important input is the 3D model of an UAV. The output
is the best trajectory represented by a list of points with their correct order, together with
a list of visible points of interest.

4 Chapter 1. Introduction

Chapter 2

Related works

The path planning problem, sometimes referred to as motion planning, is defined as
a method to “find a collision-free motion between an initial and a final configuration within
a specified environment” [9]. The term “motion” can be then viewed as a sequence of valid
configurations of the given robot. However, as Choset [10] points out, these methods do not
address problems and applications such as lawn mowing, painting or harvesting, as well as
inspections of various structures. Methods solving these tasks are known as Coverage Path
Planning algorithms (CPP). They add an additional constraint to the previous definition,
namely the path must pass over all points of an area or a volume (considering 3D environ-
ment).

The CPP problem might be also viewed as the Covering Salesman Problem (CSP),
which is a variant of the generally known Travelling Salesman Problem (TSP). In CSP,
an agent must visit a neighbourhood of each city, contrary to TSP, where each city must
be visited directly [10, 11]. Some works also refer to a prize collecting travelling salesman
problem, or prize collecting rural postman problem respectively, in which an agent needs to
find a minimum-cost closed walk accross a graph with a prize located on each edge. However,
this prize is collected only on the first traversal [6, 12]. All of these problems are proven to
be NP-hard [10, 12].

Bearing in mind the problem of a visible surface determination, one can also refer to
the Art Gallery Problem (AGP), where the main objective is to find a minimum number of
guards, who need to be placed in an n-vertex polygon, so that all points in the interior are
visible [13]. An extension with the relaxation of form of mobile guards is the Watchman Route
Problem (WRP). This problem aims to find an optimal watchman route, for which a polygon
is covered in a way, that the optimal route is the shortest possible route [13]. The AGP is
NP-hard for polygonal maps, and so is the WRP [5].

As all of the aforementioned problems originate in coverage path planning methods,
a basic overview of principles used in 3D as well in 2D environments will be presented in the
next section.

6 Chapter 2. Related works

2.1 Methods of coverage path planning

The CPP problems might be classified as either online, or offline (based upon a priori
knowledge of the target environment). Although the offline models might be unrealistic in
many scenarios, they form a foundation for online algorithms, which utilize real-time sensor
measurements and adapt the resulting path accordingly [11]. These are also known as sensor-
based coverage algorithms [10]. The main task of this work is based on offline methods, on
that account offline methods are discussed primarily.

According to Galceron et al. [11], CPP problems might be additionally classified as
heuristic or complete depending on whether they provably guarantee complete coverage of
a free space. This property might be on the one hand very important in applications like mine
detection, on the other hand they require more sensory and computational power [10], which
must be taken into account when cosidering robots with limited travel budget. Therefore, the
cost-per-quality of coverage might be better with randomized (i. e. heuristic) approaches [10].

2.1.1 Exact cellular decomposition

Exact cellular decomposition methods split the free space of the target environment
into smaller obstacle-free units called cells. This way, the task shrinks to visiting each of
these cells by using a graph-based search and covering them with a basic back-and-forth
motion [10, 11, 9, 14, 15].

Figure 2.1: Trapezoidal decomposition of an rectangular environment with a demonstration
of the back-and-forth motion

The typical and simple technique is the trapezoidal decomposition, depicted in Fig-
ure 2.1, where the environment is split into cells of the trapezoidal shape. Such configuration
allows usage of the aforementioned back-and-forth motion to cover each cell [16]. The complete
coverage is ensured by an exhaustive walk through the adjacency graph [10]. The application
is for example in the agronomy, for the navigation of autonomous tractors or other mobile
robots in fields with various shapes [17].

Moreover, some of these cells might be joined into bigger units, as shown in Figure 2.2.
This problem addresses Boustrophedon decomposition, where a line segment is swept through
the environment, while the boundaries of the cells are determined by the current number of
intersections of the line segment with the particular obstacle [1]. This method can be also
generalized using other shapes than the line segment. Such decomposition is proposed by

2.1. Methods of coverage path planning 7

the authors of [15] and is called Morse-based cellular decomposition. The mentioned shape of
the sweep segment is decribed by a so called Morse function. By choosing a different Morse
function, more complex cell patterns and decompositions might be obtained, e. g. Spiral,
Spike and Squarel Patterns or Brushfire decomposition. As [11] points out, these might be
useful for robots with various kinematic constraints.

Figure 2.2: Boustrophedon decomposition [1]

2.1.2 Grid-based methods

Grid-based methods decompose the free space into small cells of the same size and
shape. Furthermore, a value representing obstacle presence (might be also a real number
representing the probability) is assigned to each cell. Despite the fact, that the complete
coverage is not guaranteed and is dependent on the resolution of cells, these methods are the
most commonly used in coverage problems [11]. The shape of the cells is usually rectangular,
some authors propose a substitution by a triangular mesh, which offers higher resolution and
thus better coverage [11]. The size of the cells often represents a footprint of the used robot
or its end effector [10]. An example of a grid-based coverage is depicted in Figure 2.3.

The coverage path might be then determined by conventional state-space search meth-
ods. One of them is wavefront algorithm, which computes the distance of the cells from the
goal state. During the execution robot performs a “pseudo-gradient ascent”, when it starts
with the furthest cells from the goal and continues to the closer ones [2]. The authors of [18]
further exploit this offline approach to an online Iterate Wavefront algorithm, which is, how-
ever, outperformed by the proposed Delayed Greedy-Scan algorithm.

Figure 2.3: Complete coverage by the grid-based distant wavefront algorithm [2]

8 Chapter 2. Related works

Another online algorithm, called Spanning Tree Covering, constructs a systematic spiral
path generated from a spanning tree of the partial grid map which is being incrementally built
using onboard sensors [3]. Its function is shown in Figure 2.4.

Figure 2.4: Execution of the Spanning Tree Covering algorithm [3]

Promising solution based on neural networks is also presented in [19, 20]. Each cell is
then associated to a single neuron. As the algorithm is used for floor cleaning, each neuron
represents the “cleanness” of the concerned cell, which is globally spread and “attracts” the
robot.

2.1.3 3D coverage problem

However, some problems cannot be simplified and solved by 2D methods, therefore more
complex 3D methods must be considered. Many of them are though based on the same concept
of cellular decomposition, problems with configuration spaces of higher dimensionality (five
degrees of freedom or more) rely mostly on sampling-based algorithms.

Decomposition-based algorithms

Torres et al. [21] modify described 2D methods for usage by UAVs with a fixed camera,
so that the camera footprint on the analysed surface is determined only by the height of the
flight and camera parameters such as field of view (FOV) and aspect ratio. The main task is an
energy optimization by decreasing the number of turns as well as the choice of a suitable start
and end point of the considered back-and-forth motion. The authors propose calculation of
an optimal line sweep direction and “coverage alternatives” to address this problem. Complex
polygonal areas are decomposed to subpolygons, similar to the Boustrophedon decomposition
technique.

Very often is the main area of application an underwater inspection or seabed mapping
which is relative to an aerial application with the dimensionality of the configuration space.
Conventional 2D methods are not feasible as they do not reflect complex structure of the
ocean floor with caves or islands of different shapes. One of the solutions, presented in [22],
is to cover these so called inlets and islands as soon as they are discovered and then continue
with the conventional back-and-forth motion. It is moreover ensured, that every part of the
surface is covered exactly once. This algorithm however does not deal with caves.

2.1. Methods of coverage path planning 9

Another field of interest is inspection and coverage of urban structures such as buildings
or even whole cities. In [4] the authors propose approximation of buildings by hemispherical
and cylindrical coverage models, as shown in Figure 2.5a. Such approximation enables appli-
cation of the same approach to buildings of different shapes and sizes. The trajectory of the
model consists of circular paths in different heights according to robot’s camera parameters,
and the transition between them is determined with respect to the minimum of the time of
flight. A complete trajectory for a cylindrical model can be seen in Figure 2.5b. However,
such principle cannot be used for the solution of the main task of this work, as the models
and trajectory do not reflect the visibility of the objects inside and focus only on the outter
shell of the concerned urban structure.

(a) Coverage model for a general urban envi-
ronment

(b) Generated UAV trajectory for a cylindrical
coverage model

Figure 2.5: Approximation of urban structures and the corresponding trajectory of UAV [4]

Figure 2.6: Example of a coverage space [5]

The urban environment is also the main subject of Janoušek and Faigl [5]. In their work,
a supporting structure for visibility queries – set of covering spaces – has been proposed. For
each object of interest a coverage space constisting of polyhedra is built and used to determine
an inspection path by a technique of self-organizing maps. The planning algorithm is basically

10 Chapter 2. Related works

an unsupervised learning procedure for fully connected neural network. The coverage spaces,
depicted in Figure 2.6, and their construction represent a promising and fast way to calculate
visibility queries using fewer operations which is an inseparable part of the building scanning
process. They are therefore discussed in a greater detail in Section 2.4.

Sampling-based algorithms

A different approach to the whole coverage problem choose Englot and Hover [12].
The base idea behind their algorithm for autonomous inspection of complex ship hull parts1

is a division on the art gallery problem and the prize-collecting rural postman problem.
Conventional modular approaches would be infeasible in such constrained environments, as
the robot cannot move through the spaces between component structures [11]. The art gallery
problem is solved by a quasi-random sampling of the configuration space so that the whole
discretized model of the hull is swept by the bathymetry sensor volume. In contrast to [5], the
ray tracing algorithm for visibility queries has been implemented, thus this method will be also
thoroughly described in Section 2.4. These random points in the free space are then connected
to a minimum-cost closed walk. The authors of [23] use almost the same principle, but for
the inspection of aircrafts using UAVs. Moreover, they improve the presented algorithm by
an heuristic algorithm for the path planning with “increased possibility of obtaining an optimal
path as the discretization resolution increases” [23].

Similar method to the ray tracing is proposed in [24]. The authors utilize photon map-
ping algorithm for solution of the WRP. This technique offers more robust, physics-accurate
approach as it takes into account media’s effect on the propagation of photons as well as type
of used sensor’s electromagnetic radiation.

The division of the problem on AGP part and TSP part might, however, pose a problem
for a path planning of a robot with differential constraints as some generated viewing points
might not be reachable from other points in the free space [11, 25]. To address this problem,
the authors of [25] propose an inspection algorithm that does not separate the problem and
despite uses the random sampling techniques described above. This algorithm incrementally
constructs a tree of feasible configurations and checks the newly created trajectory for op-
timality. The algorithm asymptotically converges to the optimal inspection trajectory with
probability one.

2.2 Motion planning

The motion planning part of [12] is based on Probabilistic RoadMap (PRM) planner,
since it solves the problem of collision avoidance in the environments with obstacles. The
target environment of the method proposed in this work is in this manner very similar,
therefore the methods of PRM are in the following section shortly introduced.

The PRM planner is a planning method proposed by Kavraki et al. [26] suitable espe-
cially for robots with many degrees of freedom, where decomposition methods often fail. The
operation might be divided into two phases: learning phase and query phase. In the learning

1This approach is combined with the previously described back-and-forth motion in 3D environment for
non-complex parts of the ship hull.

2.2. Motion planning 11

phase a free configuration space of the robot is sampled and generated configurations are
connected with some neighbouring configurations using a local planner. This way a graph
with nodes and edges representing the configurations and the computed connections is cre-
ated. The following query phase uses the generated graph to answer queries about a free path
between two configurations of the robot. Other expansion phases, whose principle is almost
the same as the learning phase, might follow.

However, there are many possible implementations of the described methods, especially
in the learning phase. They differ in used sampling methods or in base principle of the local
planner. In [27], the authors present different approaches to the sampling. They distinguish
two basic types: uniform and advanced sampling. The uniform sampling techniques include
random sampling, grid-based sampling with increasing density of a grid, Halton points set or
cell-based sampling, which is basically a random sampling in smaller cells that leads to a better
spreading of the samples throughout the configuration space. The overall best results have
Halton point sets [27]. Each technique has even so its advantages in specific environments. The
advanced sampling should be used in more complex environments with narrow passages or
large obstacles, as the techniques (gaussian, obstacle based, bridge test, etc.) produce samples
with higher density among the occupied areas. As authors of [27] also suggest, the choice of
the local planner for collision checking and determination of the free path might be also
crucial. One approach to the local planning is incremental planning which takes small steps
on the path and examines possible collisions for each step; the other one is binary planning,
using the principle of binary search applied on the incremental approach. A combination of
the previous ones is known as line planning, which checks the origin first and then proceeds
with the mentioned binary method.

Karaman and Frazzoli [28] further exploit and compare several methods of choice of
neighbour nodes in the learning phase. Generally, all of the given solutions, including the
basic one, mark as the neighbour of c a node fulfilling certain criteria. Either, the distance
from the node to c must not exceed given threshold d, or it must be between k nearest nodes of
c. Furthermore, this node must not be in the same, already connected, component. However,
according to [28], a fixed k or d might lead to probabilistic incompleteness and such algorithm
is not asymptotically optimal. Therefore, the authors come with PRM* algorithm, where the
threshold d is dependent on the actual number of nodes in the graph n as well as on the
dimensionality of the configuration space l:

d = γPRM

(

log n

n

)
1

l

, (2.1)

γPRM > 2

(

1 +
1

l

)
1

l

(

µ(χfree)

ζl

)
1

l

, (2.2)

where µ(χfree) denotes Lebesque measure of the obstacle-free space and ζl is the volume of
the unit ball in the l-dimensional Euclidean space [28]. More suitable is another version of
the algorithm, the k-nearest PRM*, where the number of nearest neighbours k is computed
in similar but simpler manner:

k = kPRM log n, (2.3)

kPRM > e

(

1 +
1

l

)

. (2.4)

12 Chapter 2. Related works

Note that “kPRM is a constant that depends only on l, and . . . kPRM = 2e is always a valid
choice” [28]. The authors further prove the asymptotical optimality and overall better per-
formance, compared to the other approaches.

The other commonly used sampling-based algorithm is Rapidly exploring Random Trees
(RRT), which is, in contrast to the PRM planner, only a single-query planner and thus is not
suitable for the offline multi-goal planning [29, 28], which is the concern of this work. There
are many other variants of both PRM and RRT, but their reconnaissance is not the subject
of this work and may be found e. g. in [29].

2.3 Orienteering problem

In previous CPP algorithms, a complete coverage of an object of interest was the main
concern of the proposed algorithms. However, some applications, such as fire detection, do not
require this feature, as the size of the examined phenomenon exceeds size of the smallest part
of the target environment. Another important feature, especially for mobile battery-powered
robots as UAVs, might be the time of flight constraint, also known as travel budget. Such cases
are then rather classified as Orienteering Problems (OP). In the OP, a set of vertices, each
with assigned reward, is given, while the starting and goal nodes are fixed. The objective is
to maximize the sum of collected rewards from visited vertices, so that the trajectory does
not surpass the given travel budget [30]. In the case of this work, the rewards represent the
area of the desired surfaces to be scanned (e. g. building floors or walls) from such vertices.

According to [30], several authors propose for the solution of OP exact algorithms such
as branch-and-bound or branch-and-cut. However, these are able to solve problems with up to
500 vertices, for more complex tasks a heuristic approach must be used. Most of the heuristic
approaches are based on the 2-OPT heuristic for TSP. The best result has been achieved by
a five step heuristic introduced by Chao et al. [31]. At first, an ellipse over all points satisfying
the given travel budget and, secondly, a greedy algorithm are used to find initial feasible
paths. The most promising path P is then improved by performing a two point exchange,
where a point from P is exchanged with some point from other path, so that the insertion is
as cheap as possible and the total reward is increased or at worst only slightly decreased. The
next improvement step, called one-point movement, consists of a placement of a point from
the other path into P , under the same criteria as in the previous part. The iteration ends
with the 2-OPT procedure and a final optimization, where the “least efficient” points are
removed. As the authors of [30] state, only one approach involving a multi-objective variable
neighbourhood search algorithm outperformed this heuristic, which has been validated by
a newer survey [32].

Variable Neighbourhood Search (VNS) is a widely applicable approach to the design
of heuristics for solution of various problems as combinatorial problems, a central problem
of discrete location theory and others proposed by Hansen and Mladenović [33]. The basic
VNS algorithm comprises of shake step, where a random point x′ in the neighbourhood of
an initial solution x is generated and local search step, where a local optimum x′′ is found by
state space search methods starting in x′. The solutions x and x′′ are then compared and the
better one is used for next iterations.

The orienteering problem for data collection in urban-like environments with obstacles
is the main subject of work presented by Pěnička et al. [6]. The described problem is denoted

2.4. Visible surface determination 13

as the Physical Orienteering Problem (POP). In their VNS-PRM* based solution of this
problem, they combine into a single optimization problem the VNS heuristic methods for the
solution of the orienteering problem with the methods of PRM* assuring the avoidance of
obstacles. These methods are tightly coupled, as the VNS methods “links” together the paths
between nodes found by the planner to maximize the sum of the collected rewards, and PRM*
methods incrementally build a roadmap according to a feedback from the VNS methods. The
new PRM* points are sampled in hyperellipsoids between neighbouring nodes, the exact
number of added points is based on the possible reward gain as well as the actual density of
points in the particular area. This approach decreases the computational complexity, since
the roadmap is densely sampled only in promising areas. The resuls were also verified in
3D urban-like environments, as depicted in Figure 2.7.

Figure 2.7: Example solution for the POP in a building [6]

2.4 Visible surface determination

Many of the aforementioned methods in Section 2.1.3 solve a common problem of com-
puter graphics – determination of visible surfaces of a target object. These methods are
primarily used for a correct and efficient projection of 3D objects on a 2D image, taking into
account the occlusions of the scene, caused by the obstacles in the field of view. This principle
is quite relative to the principle of all camera-like sensors, including the ones reffered in this
thesis. In this case, these methods are therefore used for the determination of the visible parts
of the surfaces (e. g. building floors) in the field of view of the used sensor, because the view
may be also blocked by the obstacles or the building itself.

2.4.1 Ray tracing

The most commonly method used for the visibility problem is ray tracing [12, 23, 24].
The ray is actually an approximation of a photon’s path. Rather than trace a photon from

14 Chapter 2. Related works

the source of the light with a high probability, that it does not even contribute to the image
and ends up out of the scope (which is known as forward ray tracing), it is determined for
each pixel in the image buffer which photon contributed to its final form, what its source was
and how its trajectory was. This method is called backward ray tracing. Such approach would
be, however, in most cases too expensive and purposeless, as all what is needed to know is
the last object of the photon’s reflection. When referring to the ray tracing, it is therefore
searched only for the “first object hit by a ray” coming de facto from its destination [34].

In the real implementation, every object at the scene is tested for an intersection with
the ray, while looking for the closest one [35]. As the intersection with the non-trivial ob-
jects might be computationally demanding, the object’s surface should be in the case of
the visible surface detection triangulated. The triangulation then simplifies the problem on
a ray-triangle intersection. The authors of [36] compare algorithms to address this problem:
Badouel’s algorithm [37] builds on the idea of barycentric coordinates and expresses with them
an intersection of the ray and the plane defined by the concerned triangle. Then three basic
comparations lead to the result. Moeller-Trumbore’s algorithm [38] exploits Badouel’s algo-
rithm by a transformation of the triangle into a basis with the triangle’s edges as base vectors.
This step reduces the storage time and space, because it is not neccessary to store the normal
of the plane. In contrast to these methods, Segura and Feito [36] introduce an algorithm which
does not directly calculate the intersection point – that means another improvement in the
computational time.

2.4.2 Other approaches

Janoušek and Faigl [5] solve the visibility problem by sufficiently dense discretization
of the free space to polyhedra using the Delaunay tetrahedralization implemented e. g. in
TetGen [39]. For each polyhedron P and each object of interest O, a smallest possible set S of
facets of P is found, so that every ray starting in P with a direction to any point in O intersects
only the facets in S. This technique is similar to the back-face culling algorithm [35]. In the
environment with obstacles, a graph of transitive dependency is built. The algorithm is further
described in Section 3.1. The authors promise better performance than the aforementioned
ray tracing technique [5]. However, as the subsequent implementation and testing showed,
the tetrahedralization of complex structures is quite demanding and the process itself is not
working on the target environments presumed by this work. The details of these issues are
discussed in Sections 3.1.2 and 3.1.3.

Chapter 3

Generation of viewpoints

As it was already stated in the previous chapter, there are several ways to solve the
assigned challenge of finding the inspection path. Were the main concern be the complete
visibility, the author of this thesis would have chosen an approach similar to methods described
in [12], [23] or [5]. However, none of the mentioned considers a limited length of the final
path, i. e. the travel budget. To the best of author’s knowledge, the constraint of the travel
budget has never been described in any similar coverage path planning method. The closest
relative problem, which takes into account the travel budget, is the orienteering problem, that
motivates the formulation of this particular inspection planning.

The solution is divided into two subsequent steps. The first one is similar to the AGP,
i. e. visibility determination problem, whose output is a set of points, hereafter dubbed as
viewpoints, with a subreward associated with each of them. This subreward represents the
number of visible subareas, i. e. number of parts of the divided object of interest located in
the FOV of the used sensor and not occluded by obstacles. The subareas, hereafter dubbed
as points of interest, are moreover weighted by a priority multiplier. The second step is the
path planning over the set of found (or generated) viewpoints.

The viewpoints represent an approximation of the function, which assigns the number
of visible points of interest to any position in the configuration space of the used UAV. The
more points are sampled, the more accurate the approximation is. However, the computational
demands increase at the same time. Without such approximation, the considered methods for
path planning would not be feasible. Two approaches concerning the generation of viewpoints
are proposed: the back-face-culling based approach from [5] and the random-sampling based
technique, with the use of the ray tracing algorithms.

3.1 Space-decomposition approach

3.1.1 Algorithm overview

According to Section 1.1, a space of obstacles M and a set of points of interest N are
given. Each obstacle m ∈M consists of a set of vertices VM and a set of corresponding facets
FM . Considering additionally a working space W ⊆ R

3, a free space R ⊆ W is then defined

16 Chapter 3. Generation of viewpoints

as:

R = {w ∈W | w /∈M}. (3.1)

The space R, however, does not correspond with a space, in which the UAV is allowed to move.
This space is hereafter marked as O. The motion is namely restricted not only by the analysed
objects and other obstacles, but also by their interior. Here arises an important question: how
to define an interior of an object? Possible solutions include any concave hulls, which are not
uniquely defined, so that additional parameters for each object would be required, and they
are quite difficult to compute. Because of these reasons a simple convex hull is used1:

O = {w ∈W | w /∈ convex hull of M} ⊆ R. (3.2)

For the correct function of the following back-face culling algorithm, it is necessary to subdi-
vide the spaces R, and O correspondingly, to smaller subspaces. For this purpose the 3D De-
launay triangulation2 was chosen, similar to [5], which produces tetrahedral meshes TR and
TO. It is then possible to exactly define the analysed challenge:
For each tetrahedron o in O find a set of points Q from N so that every point is fully visible
from o.

To verify the full visibility the back-face culling method proposed in [5] was adapted:
given n ∈ N and t ∈ TR, the algorithm returns the smallest possible set of facets S so, that
every ray starting in t and heading to n crosses only facets in S. Any facet from S must not
be then transitively dependent on any obstacle. To determine all facets of S, an out-pointing
normal of each facet f ∈ Ft is tested by a cross product with a line from n to opposite vertex
p ∈ Vt of f . If the result is greater than or equal to 0, the facet is inserted into S. This method
is hereafter denoted as criticalFacets(n, t).

The next challenge is how to connect the points in N with R, i. e. how to find the
starting tetrahedra t0 ∈ R, covering some point n ∈ N , in order to start the construction
of a graph of transitive dependency. The proposed solution is to find a set of facets, whose
points lie in the same level as n (and thus ensuring equality of one coordinate). Then it is
performed a test determining, whether the point lies in a triangle (considering only the two
dimensions left), using the barycentric coordinates [40]: point n lies in a triangle defined by
vertices v1, v2 and v3, when equation

n = v1 + (v2 − v1) · s+ (v3 − v1) · t (3.3)

is valid, while s ≥ 0, t ≥ 0 and 1− s− t ≥ 0.

The algorithm flow continues as depicted in Algorithm 1: a graph G of transitive depen-
dency is built, which means, that every descendant of an inserted tetrahedron on the “path”
heading to the point of interest must not border with any obstacle. Set Tclose therefore repre-
sents tetrahedra transitively dependent on some obstacle and set Tfree represents all tetrahe-
dra, which have not been processed yet. The output of an auxiliary function neighbors(t) is
a set of all tetrahedra, which share a facet with the given tetrahedron t. After the construction
of G(TG, H) (Algorithm 2) it is decided, if the tetrahedron can be inserted into the graph
of all viewpoints Q(TQ, K) (Algorithm 3). The inserted tetrahedron must be part of O and
must meet the camera visibility range constraint ρ for every visible point of interest.

1The convex hull is an ideal solution for classic cuboid and sphere-like buildings, but it may too harshly
restrict solutions for curvy or ring-shaped buildings.

2For the 3D Delaunay triangulation an external library will be used, therefore the principle and algorithm
of triangulation will not be described in any greater detail. More information can be found e. g. in [39].

3.1. Space-decomposition approach 17

Algorithm 1 Overview of the space decomposition method
Input N – set of points of interest
Input M – space of obstacles
Input ρ – maximal visibility range
Output Q(TQ, K) – graph of viewpoints and corresponding visible points of interest

1: R← {w ∈W | w /∈M}
2: O ← {w ∈W | w /∈ convex hull of M}
3: T ← tetrahedralization of R
4: for ∀n ∈ N do
5: Tclose ← ∅
6: Tvisible ← ∅
7: K ← ∅
8: t0 ← starting tetrahedron for n, t0 ∈ T
9: Tfree ← T \ {t0}

10: while ∃t ∈ Tfree : t ∈ neighbors(e) ∧ e ∈ Tvisible do
11: G(TG, H)← getDependency(n, t, Tfree, Tclose)
12: Q(TQ, K)← Q(TQ, K)∪ processVisibility(n, Tclose, G(TG, H))
13: end while
14: end for
15: return Q(TQ, K)

3.1.2 Implementation

The first version of the program was designed to test the basic functionality of the
base algorithm and the used external libraries, therefore many of the proposed steps have
been executed manually. However, even the basic tests failed, as will be described later in
Section 3.1.3, thus no further improvements have been performed. The main program is
written in C++, version C++17 and was compiled using g++ compiler. The auxiliary scripts for
plotting were coded in Python 3.6.

The program works as follows: first it reads input file with three categories of objects:
obstacle, object of interest and surrounding free space. Note, that the objects of interest and
free-space objects must be uniquely named in the input file and these names must be passed
in the call to the program along with the file path. The objects must be triangulated, for
the correct function of the tetrahedralization process. The aforementioned input file must be
in Wavefront OBJ format, a format for “...defining a 3D geometry for the surface of one or
more objects.” [41]. Files in this format are easy to parse, as every line starts with one or
two characters defining the type of a record, and is followed by the data in specified format.
However, only three types of records are supported in the designed implementation: v as
a vertex, f as a facet and o as an object (the defining header for each 3D object).

After the parsing process, the free-space object is tetrahedralized using an external
library TetGen [39], which corresponds to the implementation of [5]. Although other avail-
able libraries for tetrahedralization has been taken into account, e. g. CGAL, TetGen offers
lightweight and simple command-line-like interface and, apart from tetrahedralized object,
produces also other usable outputs. For example the lists of the neighbouring tetrahedra.
Such outputs spare computational time of the following methods.

The implementation of the construction of covering spaces corresponds more or less to

18 Chapter 3. Generation of viewpoints

Algorithm 2 Construction of dependency graph
Input n – point of interest
Input t – tetrahedron to process
Input Tfree – set of free tetrahedra
Input Tclose – set of blocking tetrahedra
Output G(TG, H) – graph of dependency

1: function getDependency(n, t, Tfree, Tclose)
2: Ttmp ← {e | e ∈ Tfree, e ∈ neighbors(t)}
3: H ← ∅
4: TG ← ∅
5: while Ttmp ∩ Tfree 6= ∅ do
6: ei ← pop from Ttmp such that ei ∈ Tfree

7: Tfree ← Tfree \ {ei}
8: Fnbr ← criticalFacets(n, ei)
9: if ∃f ∈ Fnbr : f abuts on an obstacle then

10: TG ← TG ∪ {ei}
11: Tclose ← Tclose ∪ {ei}
12: else
13: for ∀enbr ∈ {e | f ∈ e, f ∈ Fnbr} do
14: Ttmp ← Ttmp ∪ (Tfree ∩ {enbr})
15: TG ← TG ∪ {enbr}
16: H ← H ∪ {(ei, enbr)}
17: end for
18: end if
19: end while
20: return G(TG, H)
21: end function

the Algorithms 2 and 3. The visibility of the points of interest from a tetrahedron is neverthe-
less represented by Boolean values, which could theoretically improve the memory usage – for
the larger sets of the points of interest an identification number might be otherwise repre-
sented by 64bit data types, as opposed to vector<bool>, where only 1 bit is required. Despite
this fact, please note, that this algorithm might be quite memory-consuming, especially for
dense meshes and great sets of points of interest.

The output of this primitive testing version is not the set of outter tetrahedra with
a list of visible points of interest, i. e. the graph Q, but only the so called coverage spaces
– the coverage space of a point of interest n is a set of tetrahedra, from which the n is fully
visible.

3.1.3 Basic testing of the proposed algorithm

In order to test the time complexity and correctness of the designed algorithms, two
primitive testing environments were created. The environment 1 (see Figure 3.1a) consists
of three cubes, the top of the middle one is marked as an object of interest. The environ-
ment 2 represents typical target environment: a cuboidal building with 4 floors marked as
objects of interest. Both of the scenarios have been run on Intel Core-i7 6500U with 16 GB
DDR3L 1600 MHz RAM, 8 GB swap partition on Samsung 840 EVO Solid state drive and
Ubuntu 18.04 LTS operating system.

3.1. Space-decomposition approach 19

Algorithm 3 Addition of viewpoints to graph
Input n – point of interest
Input Tclose – set of points of interest
Input G(TG, H) – graph of dependency
Output Q(TQ, K) – graph of viewpoints

1: function processVisibility(n, Tclose, G(TG, H))
2: TQ ← ∅
3: K ← ∅
4: Ttmp ← Tclose

5: while ∃tact ∈ Ttmp do
6: Tclose ← Tclose ∪ {tact}
7: Tdep ← {e | e /∈ Tclose ∧ (tact, e) ∈ H}
8: Ttmp ← Ttmp ∪ Tdep

9: end while
10: for ∀tvis ∈ TG \ Tclose do
11: Tvisible ← Tvisible ∪ {tvis}
12: if tvis ⊂ O ∧ ‖tvis, n‖ < ρ then
13: TQ ← TQ ∪ {tvis, n}
14: K ← K ∪ {(tvis, n)}
15: end if
16: end for
17: return Q(TQ, K)
18: end function

The first runs revealed serious issues in the environment 2, where the input objects could
not be tetrahedralized by TetGen library. The cause lied in the model of the building, where
single floors and walls overlapped themselves, and thus did not fullfil the requirements on
Piecewise Linear Complexes [39]. Even the Boolean “Union” operation did not solve the issue
and so every wall and floor object must have been shrunk. In this way, however, small gaps
were created, which led to a generation of hundreds of thousands small tetrahedra. TetGen
furthermore does not support any constraints of the minimum size of a single tetrahedron.
The duration of the tetrahedralization process alone is dependent on the specified options,
e. g. maximal size or quality of tetrahedra, of TetGen. The process lasted for this simple model
of the building from 2 to 15 minutes according to the different configurations of TetGen, which
is not suitable for any complex environments.

The next issue discovered in the environment 2 was the memory consumption. Since the
number of previously generated tetrahedra was in order of millions, the size of the “visibility
matrix” was in order of gigabytes. A possible solution is to store a list of identification numbers
of visible points for each tetrahedron and moreover to limit the number of such tetrahedra.

The most weighty issue concerns the algorithm correctness. During the construction of
the transitive dependency graph the collision with an obstacle is wrongly propagated. The
method marks as “closed” every tetrahedron, even if only one of its critical facets is incident
with the obstacle or another “closed” tetrahedron, although not all the incoming lines of sight
are blocked. This case is illustrated in Figure 3.2b, where at first T4 is (rightfully) marked
as “closed”, since not all the points in T4 have full visibility on the area of interest. This
is (again rightfully) propagated to T3 and T2, but erroneously to T1, whose points have the
full visibility on the point of interest. The error is propagated further and creates a “cap”

20 Chapter 3. Generation of viewpoints

(a) Environment 1: basic model for a check of
algorithm correctness (b) Environment 2: simple model of a building

Figure 3.1: Environments for testing of the space-decomposition method

(a) Boundaries of the constructed coverage
space for the environment 1

(b) Illustration scheme of the wrong propaga-
tion

Figure 3.2: Wrong transitive dependency propagation – reality and scheme

above the analysed area of interest which is the result of testing environment 1, depicted in
Figure 3.2a.

A possible solution is to test each tetrahedron separately with e. g. ray tracing which
increases nevertheless the time complexity and is incoherent with the statement that this
method is faster than the ray tracing. The algorithm might work only in the urban open-
space environments as presented in [5], or the authors probably wanted to propose only
the structure (space divided by tetrahedralization on smaller subspaces with ability to hold
visibility information), as the title of [5] suggests.

Because of the described time complexity issues of tetrahedralization, as well as the
limits of the proposed algorithm, and possible additional harsh constraints on the supported
input objects, the author of this thesis decided to leave this approach and fully focus on the
sampling-based methods.

3.2. Sampling-based approach 21

3.2 Sampling-based approach

3.2.1 Algorithm overview

In the same manner as in the space-decomposition approach, the working space is
denoted asW , the free space as R, the operating space of the UAV as O and the set of all points
of interest as N . Contrary to it, not only the visibility range, but also all other constraints
of the given sensor, namely aspect ratio and the field of view (FOV), are considered from the
beginning. Therefore, the configuration space C of the UAV was additionally defined:

C = O × (−π, π〉3, (3.4)

where the first 3 dimensions represent the position of the UAV and the other 3 stand for the
orientation of the sensor in the yaw-pitch-roll representation. As described in Section 1.1, the
usage of roll position was not practically tested, even though it is theoretically considered.

The examined challenge might be then defined as follows:
Sample the configuration space C and obtain a set of viewpoints V , so that every v in V has
a clear line of sight with at least some3 points from N .

The basic overview of a solution is given in Algorithm 4.

Algorithm 4 Overview of the sampling based method
Input N – set of points of interest
Input M – space of obstacles
Input F – viewing frustum (defined by aspect ratio, range and FOV of the sensor)
Input P – number of target points
Output Q(TQ, K) – graph of viewpoints and corresponding visible points of interest

1: R← {w ∈W | w /∈M}
2: O ← {w ∈W | w /∈ convex hull of M}
3: C ← free configuration space of the UAV
4: I ← 0
5: while I < P do
6: t← random configuration of the robot and sensor, t ∈ C
7: V ← getVisibleInterests(t, N , F)
8: if |V | ≥THRESHOLD then
9: I ← I + 1

10: TQ ← TQ ∪ {t}
11: for ∀v ∈ V do
12: TQ ← TQ ∪ {v}
13: K ← K ∪ {(t, v)}
14: end for
15: end if
16: end while
17: return Q(TQ, K)

First of all, the space C is randomly sampled. This procedure is divided into two con-
secutive steps: obtaining a valid random position of the UAV in O, followed by sampling
a rotation of the sensor. For the position of the UAV, any strategy presented in Section 2.1.3

3The exact threshold is dependent on the total number of the points of interest.

22 Chapter 3. Generation of viewpoints

might be used, as the whole procedure is based on the aforementioned PRM* algorithm.
The “pure random” strategy with an uniform distribution was chosen for the purposes of
this work, as the implementation is simple and the performance is sufficient for the target
environments. Again, the sampled point must not collide with any of the given objects nor be
placed in their interior. By the term “interior” are meant the convex hulls of the obstacles,
as described in Section 3.1.

For the rotation of the camera, the same principle might be applied. However, each of the
obtained viewpoints should have a clear line of sight with some points of interest and uniform
sampling would produce too many invalid viewpoints. On that account the distribution of
every base angle is normal with mean and dispersion based on the sensor’s capabilities and
placement. The only exception is the case of the yaw angle, where the mean is dependent on
the center of the closest building. This might potentionally eliminate some viewpoints with
a clear line of sight with some unique points of interest, nonetheless it increases the probability
of validity of the viewpoint.

The next step is to obtain a set of all visible points from the sampled viewpoint, rep-
resented in Algorithm 4 with the method getVisibleInterests. For this purpose, two al-
gorithms are employed. The major one is the Moeller-Trumbore ray-triangle intersection
algorithm introduced in Section 2.4. It is based on aforementioned barycentric coordinates,
discussed in Section 3.1. Assuming, that the ray R and triangle T intersect, it is possible to
write an equation for the intersection point P :

P = s · v1 + t · v2 + u · v3, (3.5)

s+ t+ u = 1, (3.6)

where v1, v2 and v3 are vertices of T and s, t, u ∈ R
+
0
.

As it is also possible to define P with parametric equation as P = OR + w · dR, where OR is
the origin of R and dR is the direction vector of R, the Equation (3.5) may be rewritten as:

OR + w · dR = (1− t− u) · v1 + t · v2 + u · v3, (3.7)

OR − v1 = t · (v2 − v1) + u · (v3 − v1)− w · dR. (3.8)

When the Equation (3.7) has at least one solution, R intersects T .
The validity of the Equation (3.7) is tested for every ray, coming from the viewpoint and
heading to each of the points of interest, with every object.

This process might be, however, computationally demanding, especially in environments
with many points of interest. To speed it up, all the points of interest are preprocessed and
filtered by the second algorithm based on frustum culling presented in [23]. Every point of
interest p is therefore transformed to the coordinate system of the deployed sensor (with the
viewpoint as an origin):

psen = Tsen
0 p, (3.9)

where Tsen
0 is a 4-by-4 transformation matrix, transforming from the space O to the space of

the sensor sen:

T0
sen =

[

R v
0 1

]

, (3.10)

Tsen
0 =

[

RT −RTv
0 1

]

, (3.11)

3.2. Sampling-based approach 23

where R is a 3-by-3 rotation matrix determined by the orientation of the sensor and v is
a vector of the viewpoint’s coordinates.
The position of the transformed point psen is then checked for the visibility within the given
range and FOV.

The viewpoints generation process always takes place before the path planning, never-
theless it is also possible to generate new viewpoints during the path planning. On the one
hand, this approach may extend the set of visible points and thus expand the visible surface
too, on the other hand it increases demand on the computational power and slows down
the process of the path planning. The new viewpoints should be, therefore, generated with
as high probability of an addition to the existing path as possible. This concerns especially
more distant viewpoints, since the total length of the path is limited and such addition would
probably trespass the given threshold. Because of this, the “pure random” sampling strategy
is not suitable: new viewpoints should be generated as close to the existing path as possible.
To satisfy this demand, two sampling strategies are proposed, “Ellipse” and “Sphere”.

During the Ellipse sampling, new viewpoints are generated only in a hyperellipsoid
around the trajectory between two random viewpoints, neighbouring to each other in the
existing path. These points lie on the surface of the hyperellipsoid, length of one of its axis is
thus the distance between the concerned viewpoints. Similar principle use Pěnička et al. [6]
for the roadmap expansion.

The Sphere sampling should be more adaptable for the target environment, as the valid
viewpoints appear only near to windows and other transparent objects. New viewpoints are
thus generated only in a sphere, which center is a random viewpoint in the existing path. The
circumference of the sphere was experimentally estimated as a quarter of the average length
of the trajectory between two neighbouring viewpoints.

Exact number of generated viewpoints in the initial phase as well as in the extension
phase cannot be generally determined and is highly dependent on every single target envi-
ronment, especially on its size and complexity. Therefore it is, along with the performance of
the proposed sampling strategies, tested later in Chapter 5.

3.2.2 Implementation

The program is written in C++, version C++17 and was compiled using clang++ compiler.
The main input is a configuration file in XML format4, in version 1.0. This file contains links
to the input models in OBJ format mentioned in Section 3.1.2, information about the sensor
capabilities and orientation, sampling range and configuration etc. Complete overview and
structure might be found in an enclosed README file.

The parsing of all models happens in the same way as in the previous approach. The
only difference are the requirements. Every input file may contain only 2 types of objects:
obstacles and objects of interest. The objects of interest must be uniquely named and these
names must be explicitly specified in the configuration file. Every object of interest must
be equally divided on smaller subobjects without any requirement on shape of each of them,
since only the points are taken into account. Every other object is automatically considered as
an obstacle and must be therefore triangulated. Contrary to the tetrahedra approach, objects

4https://www.w3.org/XML/Schema

https://www.w3.org/XML/Schema

24 Chapter 3. Generation of viewpoints

might overlap themselves. During this process a convex hull of the concerned model is created,
using CGAL external library5.

After the parsing procedure, the viewpoints are generated according to the stated al-
gorithm. For the generation of pseudo-random numbers, 48-bit RANLUX generator is used.
This generator is based on the lagged Fibonacci algorithm, which promises to be faster than
other pseudo-random algorithms [42]. In the beginning, it is seeded by the actual time from
the high-resolution clock. The initial sampling is done using uniform distribution and cartesian
coordinates. For Ellipse and Sphere sampling strategies the spherical coordinates with uni-
form distribution of corresponding angles were implemented. The position of every generated
point is then compared with the convex hull using the aforenamed CGAL library and potential
collisions are checked using RAPID library6. If the viewpoint is not valid which means that
it is located inside the convex hull or collides with it, the process of sampling is repeated.
Number of such repetitions in not limited in the beginning of problem solution which implies
that the exact number of desired viewpoints is sampled. However, the number of repetitions is
limited in the extension phase during the path planning, where the generation and validation
are repeated for at worst 50 times per one desired viewpoint to be sampled.

The set of the visible points of interest is expanded using the author’s own implemen-
tation of the said algorithms. For the raytracing algorithm external libraries like CGAL were
considered and tested but they failed in the closed urban environments. Other algorithms were
quite difficult to implement and would pointlessly increase the size of the resulting program.
The performance of the own implementation of Moeller-Trumbore algorithm is sufficient, com-
pared to the complexity of the following path planning algorithms. The size of the viewpoint’s
set of the visible points of interest is compared to the thresholds stated in the input file. It is
possible to specify two different thresholds, one for the initial sampling and the other one for
the sampling throughout the path planning.

5https://doc.cgal.org/latest/Convex_hull_3/index.html
6RAPID (Rapid and Accurate Polygon Interference Detection) is an algorithm for collision detection using

oriented bounded boxes [43]. This library was adapted from [6].

https://doc.cgal.org/latest/Convex_hull_3/index.html

Chapter 4

Path planning

For the reasons presented in the previous sections, especially because of the limited
travel budget, methods solving the Orienteering Problem (OP) were applied to the current
challenge of finding an inspection path. Moreover, the proposed algorithm is built on the
implementation of the VNS-PRM* approach to the Physical Orienteering Problem, presented
in [6] which is correspondingly modified and extended to fulfill the specification of the con-
sidered inspection planning.

The most significant modification is made to the system of rewards collected by an UAV
in OP. Usually, the total reward is the sum of collected rewards from individual viewpoints as
they are fully additive. However, in this case the individual rewards represent extents of the
visible surface and multiple observations of the same subarea are equal to a single observation.
This is relative to the described prize-collecting rural postman problem (see Chapter 2), where
a reward is collected only on the first passage through a reward point. Measures addressing
this issue are proposed in the next section.

4.1 Algorithm overview

The path planning procedure is tied with the preceding viewpoints generation and as
such, the same terminology is used. Therefore the working space is denoted as W , the free
space as R, the operating space of the UAV as O, the set of all points of interest as N and
the free configuration space of the UAV as C, with the same relations. Furthermore, another
input is the set of generated viewpoints V ⊆ C along with the information about the visibility
of the points of interest. Hereafter, a set Nq of all visible points of interest from q ∈ V , is the
output of the reward function:

r : r(q) = Nq. (4.1)

Another input information are the start and goal configurations, qS , qG ∈ C. The path is then
defined as an ordered sequence of feasible configurations, τ ⊆ C, while τ1 = qS and τk = gG,
where k = |τ |. To correctly define the considered cost function, a function A : C → O must be
declared. Function A only omits the orientation of the sensor and preserves the information
about a position of the UAV in O. This also means, that the cost of transitions between sensor

26 Chapter 4. Path planning

states as well as UAV’s orientations in the space is not considered. The cost function is then
declared as:

c : O2 → R. (4.2)

As it presents the length of the path between two configurations q and q′, the author of this
thesis defines it as:

c(q, q′) = ‖A(q), A(q′)‖2, (4.3)

where ‖·‖2 is the Euclidean distance. To ensure a collision-free path, function o denotes,
whether the path between two configurations collides with any obstacle:

o : C2 → {0, 1}. (4.4)

The value is either 0 for a collision-free path, or otherwise 1. The whole method of finding an
inspection path might be then defined as an optimization task:

max

∣

∣

∣

∣

∣

⋃

q∈τ

r(q)

∣

∣

∣

∣

∣

,

s.t.

k−1
∑

i=1

c(τi, τi+1) ≤ Tmax,

k−1
∑

i=1

o(τi, τi+1) = 0,

τ1 = qS , τk = qG.

(4.5)

According to Equation (4.5), the aim of the method is to maximize the total area
of visible surfaces, i. e. the sum of the points of interest. The sum of the costs for single
trajectories between the neighbouring configurations in the sequence τ must not exceed the
given travel budget. The sequence must start in the given starting configuration and must
finish in the given goal configuration. Furthermore, the whole path must be collision-free, that
is implied by the sum of collisions represented by the function o, which must be equal to zero.

An overview of an algorithm solving of the described problem is depicted in Algorithm 5,
including the preceding methods of the viewpoints generation, initialViewpointSampling
and expansionViewpointSampling.

The solution is based on a combination of VNS and PRM* methods, in the same manner
as the solution in [6]. The VNS method focuses on the searching for a sequence of viewpoints
with the highest reward and with a cost smaller than the given travel budget. Contrary to
it, PRM* methods rather seek for the shortest collision-free paths between viewpoints, for
a so called roadmap. They also ensure avoiding any obstacles. This roadmap is continuously
expanded with a feedback from VNS about the quality of particular locations in the environ-
ment. The PRM* methods thus reduce the cost of the actual path sequence as well as the
cost of an addition of other promising viewpoints.

The fundamental principles of PRM were presented in Section 2.1.3. The used meth-
ods are summarized in Algorithm 6. During the initialization (corresponding to the learning

4.1. Algorithm overview 27

phase), the configuration space C is uniformly sampled using the “pure random” strategy and
these points are then connected with their nearest neighbours1, in case that this connection is
collision-free. For this purpose, an incremental local planner is implemented. Its advantage is
simplicity and small amount of “overheading” code, contrary to a binary local planner, which
has been also tested. Due to the significantly longer computational time in every tested config-
uration, this idea was abandoned. The distances between single PRM points are determined
using the classic Dijkstra’s algorithm.

The roadmap is further expanded by every iteration (see Algorithm 5). The only differ-
ence between the initial and the extension sampling is the strategy, since during the extension,
new points are sampled in hyperellipsoids around the path between two neighbouring view-
points. Unlike the viewpoints generation, the desired number of points to expand is split
among every feasible trajectory between any pair of viewpoints. The number of added points
is based on the current sampling density and the possible reward increase on the particular
trajectory. This technique is fully adapted from [6]. The final path is furthermore smoothed
(method PRMSmoothing), which means, that all redundant PRM points are removed from
every path between any two viewpoints, while the particular path remains collision-free. The
PRMSmoothing might be performed during every iteration as well. This might reduce the total
cost of the actual best path, on the other hand it significantly extends the computational
time of every iteration. Effectiveness of this technique is shown in Chapter 5.

The VNS part starts with initialGreedySolution, which adds viewpoints to the path
on the basis of their “added length” versus “added reward” ratio. Its output is not only
a path sequence τ , but also a general vector of viewpoints µ. The vector µ includes all
viewpoints, which structure is fixed during the whole algorithm execution. Considering τ =
{qS , q2, q3, . . . , qk−1, qG}, then:

µ = {q2, q3, . . . , qk−1, qk, . . . , q|V |}. (4.6)

The position of particular viewpoints changes throughout the iterations, but first k− 2 view-
points of µ always form the path sequence τ . The main VNS method, shake and localSearch,
whose theoretical principle was described in Section 2.3, are then executed in a loop, as de-
picted in Algorithm 5. The loop is broken when the number of iterations trespasses given
threshold, the path is not improved for a certain number of iterations, or the alloted time
runs out. The Algorithm 7 further clarifies the application of VNS on the particular challenge,
or the physical orienteering problem respectively [6].

The shake procedure consists of two alternating behaviours, Path move and Path ex-
change. In the first case, a random coherent sequence of viewpoints from µ is moved forward,
and de facto inserted into τ . In the second case, two random sequences from µ are exchanged
between themselves. In both cases, the number of viewpoints in τ is eventually adjusted so,
that it fits the given travel budget.

The local search procedure works in a very similar manner, too. Its alternating sub-
methods, One point move and One point exchange, take one random viewpoint from µ and
move it to τ , or exchange it with another random viewpoint in τ respectively. These steps
are executed |V |2 times, where V is the set of all viewpoints. The changes, which do not im-

1The exact number of neighbours is given by the used PRM* principle and is further explained in Sec-
tion 2.1.3.

28 Chapter 4. Path planning

Algorithm 5 Inspection planning algorithm
Input N – set of points of interest
Input M – space of obstacles
Input Pinit, exp – desired number of viewpoints in initial and expansion phase
Input Hinit, exp – desired number of PRM points in initial and expansion phase
Input F – viewing frustum (camera configuration)
Input Tmax – travel budget
Output τ – inspection path

1: V ← initialViewpointSampling(N , M , F , Pinit)
2: G← initialPRMSampling(M , Hinit)
3: Q← find the best paths between viewpoints in V using G
4: τ µ← initialGreedySolution(Q, Tmax)
5: while stopping condition not met do
6: I ← 1
7: while I ≤ 2 do
8: τ ′, µ′ ← shake(τ , I, µ)
9: τ ′′, µ′′ ← localSearch(τ ′, I, µ′, |V |)

10: if (length(τ ′′) ≤ Tmax and reward(τ ′′) ≥ reward(τ)) or
11: (reward(τ ′′) = reward(τ) and length(τ ′′) < length(τ)) then
12: τ ← τ ′′

13: µ← µ′′

14: I ← 1
15: else
16: I ← I + 1
17: end if
18: end while
19: V ← V ∪ expansionViewpointSampling(N , M , F , Pexp)
20: G← expansionPRMSampling(M , Hexp)
21: Q← update best paths between viewpoints in V using G
22: end while
23: τ ← PRMSmoothing(τ)
24: return τ

4.1. Algorithm overview 29

Algorithm 6 Methods of PRM*
Input M – space of obstacles
Input H – number of PRM points to sample
Input/Output G(D,E) – (existing) roadmap

1: R← {w ∈W | w /∈M}
2: O ← {w ∈W | w /∈ convex hull of M}
3: C ← free configuration space of the UAV
4: function PRMSampling(M , H)
5: I ← 0
6: Dnew ← ∅
7: while I < H do
8: p← random sample (uniform/in hyperellipsoid), p ∈ C
9: D ← D ∪ {p}

10: Dnew ← Dnew ∪ {p}
11: end while
12: G← createRoadmap(G, Dnew)
13: return G
14: end function
15:

16: function createRoadmap(G, Dnew)
17: for ∀d ∈ Dnew do
18: J ← kNearest(d)
19: for ∀j ∈ J do
20: if collisionFree(d, j) then
21: E ← E ∪ {(d, j)}
22: end if
23: end for
24: end for
25: return G
26: end function

30 Chapter 4. Path planning

prove the current path, are discarded. The travel budget is not considered, due to the PRM
extension strategy, as described in [6].

Algorithm 7 Methods of VNS

Input I – variant of the method, I ∈ {1, 2}
Input |V | – number of generated viewpoints
Input/Output µ – partly ordered vector of feasible viewpoints
Input/Output τ – currently best path

1: function shake(τ , I, µ)
2: if I = 1 then ⊲ Path move
3: X ← random sequence of viewpoints from µ
4: P ← random position in τ , outside of X
5: τ, µ← move X to P
6: else ⊲ Path exchange
7: X ← random sequence of viewpoints from µ
8: Y ← random sequence of viewpoints from µ, X ∩ Y = ∅
9: τ, µ← exchange X with Y

10: end if
11: τ ← optimize τ to fit the budget Tmax

12: return τ, µ
13: end function
14:

15: function localSearch(τ , I, µ, |V |)
16: for |V |2 do
17: if I = 1 then ⊲ One point move
18: X ← random viewpoint from µ
19: P ← random position in τ , must not be the position of X
20: τ ′, µ′ ← move X to P
21: else ⊲ One point exchange
22: X ← random viewpoint from µ
23: Y ← random viewpoint from τ , X 6= Y
24: τ ′, µ′ ← exchange X with Y
25: end if
26: if reward(τ ′) ≥ reward(τ) or
27: (reward(τ ′) = reward(τ) and length(τ ′) < length(τ)) then
28: τ ← τ ′

29: µ← µ′

30: end if
31: end for
32: return τ, µ
33: end function

A solution of the reward challenge is indicated even in the problem definition, Equa-
tion (4.5): the summation of rewards must be replaced by a union over the sets of points of
interest, hereafter referred as “reward sets”, corresponding to the viewpoints contained in the
path τ . To prioritize some objects of interest, the points of interest have moreover certain
“weight”, specified by the user input. The areas visible during the transitions between single
viewpoints are not considered. The function reward (in Algorithm 7 and Algorithm 5) returns
then the “weighted cardinality” of the global reward set (corresponding to the whole path τ).
The complexity of a viewpoint addition to the path is 2(n1 + n2), where n1 is the number of

4.2. Implementation 31

the points of interest in the global reward set and n2 is the number of points of interest in the
reward set of the viewpoints2. Contrary to it, the complexity of a removal of any viewpoint
and its reward set is due to the inclusion-exclusion principle rather 2n2

1, since a union over
the remaining reward sets must be performed.

For this reason the present author wanted to propose a heuristic for a rough assumption
of viewpoint’s “quality”. The method is inspired by the Conditional Random Fields used in
image segmentation [44]. The main assumption is, that near pixels in the image with similar
color should belong to the same object in the image. In the same manner, it is assumed, that
near viewpoints with similar orientation of the sensor should have a visibility of the same
points of interest. On the one hand, no reward sets are required in this process, on the other
hand, it does not reflect sensor’s parameters or the boundaries of the objects of interest.
Moreover, the implementation would be difficult and the computational demands presumably
even higher than in the case of the global reward set.

To reduce the complexity of a removal, a counter was added for every point of interest in
the global reward set. The complexity of a viewpoint addition is still 2(n1 + n2), whereas the
complexity of a viewpoint removal is 2(n1 + n2), assuming that the complexity of a creation,
a destruction, an increase and a decrease of the counter is constant. On the other hand,
a memory complexity has increased from n to 2n.

4.2 Implementation

The implementation of the path planning algorithm is built upon the previous imple-
mentation of viewpoints generation and as such, it shares its structures and object models.
It also expands the configuration file with input parameters like travel budget, PRM points
counts and other PRM settings, stopping conditions, starting and goal points, or output
settings. Once again, the majority of the added code is based upon the implementation of [6].

After the viewpoints generation, the program continues with the initial PRM sampling.
This sampling uses ranges and collision models from the sampling of viewpoints. Every newly
sampled viewpoint is connected with k nearest neighbours, according to the PRM* strategy.
These neighbours are found using FLANN external library3 and collisions on the corresponding
paths are checked using CGAL and RAPID as in Section 3.2.2. Single queries are solved using
Dijkstra’s algorithm with an adjusted heap and switchable PRM smoothing.

The program keeps distances of all paths among viewpoints, these are updated after
every PRM and viewpoints expansion. The early tests have shown, that this update is a bot-
tleneck of the whole program, therefore it has been parallelized. The number of assigned
threads can be specified during the compilation by definition of the NUM_THREADS define.

The VNS methods were implemented roughly in the same manner as depicted in Al-
gorithm 7. The random sequences and the viewpoints are generated using the same pseudo-
random engine as in Section 3.2.2. The path operations are optimized by memorizing of all

2Considering only the addition of the corresponding reward set, which is ordered as well as the global reward
set.

3FLANN is a library for nearest neighbor search using approximate solution, which has proven to be good
enough for majority of cases [45].

32 Chapter 4. Path planning

distances between the visited viewpoints from the beginning to the end, as well as in reverse,
from the end to the beginning of the path.

Finally, the system of rewards was implemented in two ways:

1. Performing union over the reward sets, using an ordered set from the standard library,
and the set_union function from algorithm library (i.e. the straightforward approach).

2. Keeping a counter for every point of interest, using map structure from the standard
library.

Even though the complexity of the second approach is not 2(n1 + n2), as advertised in the
theoretical part, but n2 log n1, it was still in average about 10 times faster than the first
straightforward approach.

The output files of the whole algorithm comprise:

1. a set of all sampled viewpoints,

2. a set of all sampled PRM points,

3. a set of all visible points of interest,

4. the final inspection path, and

5. a plain file containing an information about the total reward and the length of the path,
as well as the total number of elapsed iterations.

All sets are in the OBJ format, the final path is in OBJ format (only points positions) and
in SSV format4 (points positions along with the corresponding yaw angles). The SSV format
is used by the UAV for trajectory following either in simulation or with a real drone.

4SSV stands for space-separated values

Chapter 5

Results

The proposed solution and its features were tested on two urban environments. The
results of the evaluation should answer these questions:

❼ Is the extension of the viewpoints during the path planning efficient?

❼ With an adequate travel budget, is the area of the visible surfaces sufficient?

❼ Does the proposed method of prioritization of certain objects of interest work?

❼ Which one of the proposed sampling strategies for viewpoints extension does perform
better?

❼ How much does the PRM smoothing method improve the algorithm’s utilization of the
given travel budget?

The first of the testing environments is a classical cuboidal building (Figure 5.1), which
is already used in Section 3.1.3. Its 4 floors with dimensions 8 × 8 m are equally divided on
25,092 points of interest with the weight 1 and are visible from every side. Each point of
interest represents then an area of 0.01 m2.

The second environment is represented with a small housing estate, with three buildings
and other obstacles in form of trees. It is depicted in Figure 5.2, along with the starting point
of an UAV, since it is, contrary to the first environment, a decisive factor for the path planning
algorithm. Each of the buildings corresponds to the building in the environment 1, therefore
the subdivision of the floor area is the same. The side buildings are marked as priority, with
weight 3. The motion of an UAV is further restricted to the area between the buildings, the
right wall of the right back building and the left wall of the left back building are therefore
inaccessible.

To answer the stated hypothesis, 24 testing configurations were formed. They are shortly
introduced in the following sections, along with the comparison of the results and their evalu-
ation. The full overview of configurations and their raw results are available in the Appendix,
Full results of testing.

Each of the configurations was executed 5 times, the algorithm was stopped after one
of the following stopping conditions had been met: 1,000 iterations, 80 iterations without any

34 Chapter 5. Results

Figure 5.1: Environment 1 – single 4-floor building

(a) Front view with the starting point of UAV (b) Back view

Figure 5.2: Environment 2 – a housing estate

5.1. Viewpoints extension 35

improvement (except for the path length reduction due to the PRM extension), or exceeded
time of execution (3 hours).

The UAV is substituted by a simple cylindrical model with radius 0.5 m and height
0.7 m. The camera’s parameters correspond to the FLIR Lepton 3.5 thermal camera with
a resolution 160×120 and the FOV 57➦. The minimum and maximum range were determined
by the resolution of the camera and the size of a sample in the previously presented models
as 0.3 m and 5.5 m respectively. The main criterion is a reliable fire detection, with a small
probability of false alarms. Therefore the fire must be detected by all pixels in a 3× 3 frame.

To ensure equal conditions, all the configurations were run on one computer with an
Intel Core i7-6500U processor, 16 GB DDR3L 1600 MHz RAM, 8 GB swap partition on
Samsung 840 EVO Solid state drive and Ubuntu 18.04 LTS operating system.

5.1 Viewpoints extension

The proposed method of the viewpoints generation was tested in both environments,
with travel budgets 50 m, 100 m and 200 m for the environment 1 and 100 m, 200 m and
400 m for the environment 2. The choice is random, partly based on the primal basic tests.
The evaluated extension strategies, a ratio of viewpoints generated in the initial phase referred
as “base” and viewpoints generated in the extension phase referred as “extension”, are 200/0,
100/5 and 50/10 for the environment 1 and 300/0 and 100/10 for the environment 2. The
number prior to the slash marks base viewpoints, the number after the slash marks extension
viewpoints. The choice is again random, with regards to the computational complexity for
higher numbers of extension viewpoints. The extension sampling strategy for all the configu-
rations is Sphere, PRM sampling rate is 5000/50 for the environment 1 and 5000/150 for the
environment 2, using similar marking as for the viewpoints generation.

Table 5.1: Comparison of the results for evaluated viewpoints extension strategies for the
environment 1

Budget
Base/ext.

Average reward Average path Average count
[m] [-] length [m] of iterations [-]

50 200/0 9898.0± 236.6 47.3± 0.1 124.6± 15.1
50 100/5 13634.8± 701.4 47.8± 0.2 567.0± 26.2
50 50/10 13460.2± 421.1 48.1± 0.5 358.0± 12.2

100 200/0 16463.6± 327.5 96.6± 1.3 119.6± 17.7
100 100/5 21553.2± 402.4 98.9± 1.0 478.4± 24.4
100 50/10 20465.4± 608.5 98.9± 1.1 351.2± 23.9

200 200/0 21206.4± 136.9 194.9± 2.2 275.6± 35.0
200 100/5 24158.4± 135.4 192.6± 2.1 540.4± 30.1
200 50/10 22853.6± 241.2 195.5± 2.7 407.4± 22.4

The comparison of the average rewards from 5 tests, along with the average path length
and average count of elapsed iterations, is shown in Table 5.1 and for a better illustration
also in Figure 5.3. The number after ± sign denotes the standard deviation. As the graph
shows, the extension sampling strategies clearly outperform 200/0 strategy in every travel

36 Chapter 5. Results

Figure 5.3: Average reward for the environment 1, based on the budget and the viewpoints
extension strategy

budget. However, a higher number of extension viewpoints does not ensure better results, as
it is computationally demanding and lowers the total number of elapsed iterations during the
3-hours execution span (the maximum time of execution was the stopping condition in all
cases, except for configurations with the strategy 200/0).

Table 5.2: Comparison of the results for evaluated viewpoints extension strategies for the
environment 2

Budget
Base/ext.

Average reward Average path Average count
[m] [-] length [m] of iterations [-]

100 300/0 46270.8± 1030.1 96.8± 0.8 164.2± 25.6
100 100/10 58642.6± 1376.8 96.3± 0.3 219.6± 5.2

200 300/0 91774.8± 1260.0 198.5± 1.1 209.0± 31.8
200 100/10 100512.6± 1087.6 191.8± 0.1 151.0± 1.1

400 300/0 115645.6± 1324.7 387.1± 3.0 256.8± 27.9
400 100/10 114513.6± 2660.7 388.9± 3.8 142.8± 1.6

The results for the environment 2 are in the same manner as for the environment 1
depicted in Table 5.2 and in Figure 5.4. They confirm the conclusion from the environment 1,
that the extension strategies do perform better than the initial-sampling-only strategies. The
difference is not so significant, which is probably caused by the complexity of the environment
itself (as it contains more objects than the environment 1) and by a low number of elapsed
iterations with a minimal deviation.

5.2. Relative visibility of the area of interest 37

Figure 5.4: Average reward for the environment 2, based on the budget and the viewpoints
extension strategy

5.2 Relative visibility of the area of interest

The same testing configurations and even the same data, depicted in Tables 5.1 and 5.2,
were also used to evaluate the relative coverage, i. e. relative visibility, of the areas of interest
in both environments.

The results for the environment 1 in Figure 5.5 show, that the coverage is almost
complete for the travel budget 200 m and the extension sampling strategy 100/5. The best
achieved result for the environment 1 is even 97.84 % of the total count of the points of
interest, according to Full results of testing in Appendix.

However, the results for the environment 2 are not so promising. Surprising is the small
gap between configurations with the travel budget 200 m a 400 m, which is probably caused by
the low number of elapsed iterations, or a small number of base viewpoints for such a spacious
environment.

5.3 Prioritization of objects of interest

As it was already mentioned above, the objects in the environment 2 have different
weights (rewards) on their points of interest. To check the correct functionality, the paths of
the best runs for the configurations from Section 5.1 were further analysed for the distribution
of the visible points of interest among the single buildings.

The results are depicted in Figure 5.7. From the total number of visible points of interest
during the inspection, the share of the visible points in the objects with a higher priority is
higher than in the objects with a lower priority, while the share in the objects with an equal
priority is almost equal. This is valid for all tested configurations. For the 100 m budget only

38 Chapter 5. Results

Figure 5.5: Average percentage of the visible points of interest for the environment 1

Figure 5.6: Average percentage of the visible points of interest for the environment 2

5.4. Viewpoints extension sampling strategies 39

Figure 5.7: Share of the visible points of interest per object of interest in the environment 2

one high-priority object of interest is visited, the points of interest of the low-priority building
are “collected” along the path. One of the high-priority buildings is chosen randomly. The
configurations with sampling strategy 100/10 perform better also in this case, except for the
configuration with the travel budget 100 m, where the share is higher. However, the total
number of visible points of interest is higher too.

5.4 Viewpoints extension sampling strategies

To compare the proposed viewpoints extension strategies, Sphere and Ellipse, some of
the previous configurations with Sphere extension strategy were repeated with the Ellipse
strategy. This concerns configurations with the travel budget 200 m for the environment 1
and the configuration with the same budget for the environment 2. Other parameters remain
the same.

Table 5.3: Comparison of the average results for different extension sampling strategies for
the environment 1

Base/ext.
Sampling Average reward Average count Average count of
strategy [-] of iterations [-] extended viewpoints [-]

100/5 Sphere 24158.4± 135.4 540.4± 30.1 373.6± 19.5
100/5 Ellipse 24270.8± 59.7 554.0± 26.5 405.4± 16.9

50/10 Sphere 22853.6± 241.2 407.4± 22.4 752.4± 52.6
50/10 Ellipse 23671.2± 213.3 487.8± 18.3 678.4± 36.4

The results for the environment 1 are presented in Table 5.3 and the comparison of
the average rewards alone is depicted in Figure 5.8. As the data shows, the Ellipse strategy

40 Chapter 5. Results

Figure 5.8: Average reward based on the viewpoints extension strategy for the environment 1

outperforms the Sphere strategy both in the total reward as well as in the count of extended
points (the results for the extension rate 50/10 are due to the great deviation rather unclear).

Table 5.4: Comparison of the average results for different extension sampling strategies for
the environment 2

Base/ext.
Sampling Average reward Average count Average count of
strategy [-] of iterations [-] extended viewpoints [-]

100/10 Sphere 100512.6± 1087.6 151.0± 1.1 1030.8± 14.1
100/10 Ellipse 95082.4± 953.9 228.4± 15.0 490.8± 8.0

Contrary to results for the environment 1, the Sphere strategy shows better results in
the environment 2 than the Ellipse strategy, in the manner of the reward as well as in the count
of the extended viewpoints. This behaviour is probably caused by the rules for the diameter of
the sampling sphere, namely a quarter of the average path length between two neighbouring
viewpoints in the final path. This average is bigger for the spatious environment 2 and better
covers window and door areas, than the sphere in the environment 1. The Ellipse strategy
produces too many invalid points for the environment 2, but covers the whole area of doors
and windows in the environment 1.

5.5 PRM smoothing

Finally, the PRM techniques and their impact on the reward were examined. Current
configurations with the PRM settings 5000/50, hereafter referred as “Normal conditions”,
were compared with PRM settings 5000/500, hereafter referred as “Tenfold extension”. After-
wards, “Normal conditions” were compared with the PRM settings 5000/50 with the proposed

5.5. PRM smoothing 41

Figure 5.9: Average reward based on the viewpoints extension strategy for the environment 2

concurrent PRM smoothing (the smoothing is thus executed after every iteration). Similarly
to the viewpoints generation, the number prior to the slash marks PRM points sampled in
the initial learning phase, the number after the slash marks then PRM points sampled in
a single extension phase. The tests were performed only in the environment 1, since the PRM
smoothing is computationally demanding and the results for the environment 2, with such
limited time of execution, would not be satisfying. The travel budget is set to 100 m, the
viewpoints extension strategies are 200/0, 100/5 and 50/10 with the viewpoints extension
strategy Sphere.

Table 5.5: Comparison of the average results for different PRM extension strategies

PRM* conditions Base/ext.
Average Average path Average count
reward [-] length [m] of iterations [-]

Normal conditions 200/0 16463.6± 327.5 96.6± 1.3 119.6± 17.7
Normal conditions 100/5 21553.2± 2576.4 98.9± 1.5 478.4± 181.1
Normal conditions 50/10 20465.4± 2091.4 98.9± 1.6 351.2± 118.2

Tenfold extension 200/0 16713.6± 250.7 97.9± 0.7 334.2± 37.0
Tenfold extension 100/5 20782.2± 2056.4 95.9± 1.0 277.8± 28.6
Tenfold extension 50/10 18426.6± 862.5 96.4± 1.0 218.4± 58.0

PRM smoothing 200/0 16697.4± 381.9 99.8± 0.1 197.2± 50.7
PRM smoothing 100/5 20387.0± 1970.7 99.7± 0.2 157.4± 21.1
PRM smoothing 50/10 18505.6± 939.2 99.9± 0.1 104.6± 46.5

The results are presented in Table 5.5 and further illustrated in Figures 5.10 and 5.11.
The graph in Figure 5.10 clearly shows better utilization of the travel budget for the concurrent
PRM smoothing, contrary to the tenfold extension rate, where the superfluous number of
PRM points even extends the length between viewpoints and the majority of points is removed

42 Chapter 5. Results

Figure 5.10: Average path length based on the PRM conditions

Figure 5.11: Average reward based on the PRM conditions

5.5. PRM smoothing 43

during the final PRM smoothing. The only exception is the viewpoints extension rate 200/0,
which is probably rather random, moreover the difference is not so significant (bearing in mind
the standard deviation). However, this improvement does not reflect in the total number of
the visible points, according to Figure 5.11. The best rewards are achieved in normal PRM
conditions, the worst ones by using the concurrent PRM smoothing. This is caused by the
aforementioned computational demands of the PRM smoothing, as shown in the count of
elapsed iterations in Table 5.5. On the other hand the dispersion is so great, that some of the
results are not so convincing.

44 Chapter 5. Results

Chapter 6

Simulation

The proposed solution was also evaluated using the real-time simulator Gazebo1 and
the output OBJ files were visually checked using the Blender graphic editor. The main
purpose was to verify the validity and the collisionlessness of the generated path as well as
the conformity of the visible areas (algorithm output versus simulation output).

The configuration of the used UAV is almost the same as the UAV used in the Fire
challenge of the MBZIRC 2020 competition. It is based on the Tarot 650 base, with 4 pro-
pellers, the mvBlueFOX camera, Intel Realsense D435 Depth Camera (capable of taking
depth, infrared and RGB images), FLIR Lepton 3.5 thermal camera module and other sen-
sors, i.e. Garmin GPS module, Garmin range finder, RPLidar, etc. It does not carry any
water gun, fire blanket, or any other extinguisher, because the main objective is only the fire
localization part of the firefighting task. The camera is fixed, which means, that the change
of the yaw angle is performed by the rotation of the whole UAV. Other angles were not con-
sidered (they were fixed). The output of the thermal camera was substituted by the output
of the infrared camera, with parameters (the visibility range and FOV) matching the used
thermal camera. The UAV is controlled by the Robotic Operating System with an extension
and additional firmware created by the Multi-Robot Systems group. The function of the used
system is described e. g. in [46] or [47].

The simulated environments are the same as those in Chapter 5. At first, there was
an assumption, that the best paths from the referred section will be used also for the simula-
tion, early tests showed, however, that the safety gap between the UAV and any obstacle is
too small, which together with the jitter in the GPS signal often caused a collision. Although
the position estimator was later switched from classic GPS to RTK GPS2, the model has
been enlarged and some of the configurations were run again – namely configuration with the
viewpoints extension rate 100/5 and the travel budget 100 m for the environment 1 and with
the viewpoints extension rate 100/10 and the travel budget 100 m for the environment 2.

The majority of the tests was only visual, the output videos for both environments are
available on the attached CD, see CD Content in Appendix, or on YouTube3. The flow of
the incoming messages was unfortunately too high for the used ROSBag recording utility and

1http://gazebosim.org/
2Real Time Kinematics (RTK) is a technique for better position estimation, as it receives a correction signal

besides the signal from the satellites [48].
3Inspection Planning for Firefighting with UAV: https://youtu.be/e-Lysl2o-Mg

http://gazebosim.org/
https://youtu.be/e-Lysl2o-Mg

46 Chapter 6. Simulation

installed solid state drive, therefore the quality of the videos is low. To the best of author’s
knowledge, there is no better way for video capturing from Gazebo simulator as well as from
the simulated onboard cameras.

The evaluation of the generated path for the environment 1 was at first performed in
Blender, Figure 6.1b, then the flight was simulated in Gazebo, Figure 6.1a. The path does
not collide with the building. However, its validity is questionable, as the ideal strategy would
be to visit only the opposing middle windows of each floor. The problem may lie in the
insufficient initial sampling, or in the time of execution – maybe after few more iterations the
path would “fall” in this global optimum.

(a) Screenshot from the Gazebo simulation
with the camera outputs

(b) Evaluation of the generated path in
Blender editor

Figure 6.1: Path evaluation for the environment 1

The visible area of interest corresponds more or less with the output of the algorithm
which is partly depicted in Figure 6.2. The coverage of all floors is sufficient and appropriate
for the fire detection, with regards to the travel budget.

In the same manner, the visual checks were also performed on the generated path for
the environment 2, as can be seen in Figure 6.3. The path does not collide with any of the
obstacles, and is adjusted accordingly to them. This is highlighted in Figure 6.4a, which is
also a screenshot from the simulation. Even though the path is collision-free, the simulation
revealed an issue with the system of cost. The UAV exploits the “overlay” of the middle and
the left building to capture visible points of interest from both of them, which causes constant
rotations between every corresponding viewpoint. It is unrealistic that these rotations would
consume no energy. However, this might be avoided by using a revolving camera with a small
power consumption, or by redefining the cost system of the algorithm by adding a small price
for any rotation.

The environment 2, contrary to the enviroment 1, also better illustrates the function of
the viewpoints sampling algorithm. In Figure 6.4b can be seen that viewpoints are generated
in groups, near the existing viewpoints, so that the additional distance to the path length
would be minimal.

An overview of the visible areas of interest in the environment 2 is depicted in Figure 6.5.
The coverage is rather unsatisfactory, for both buildings, but the main cause lies in the low

47

(a) Overview of the visible points (depicted in
black)

(b) Detail of the visible points for the second
floor

Figure 6.2: Visible points of interest in the environment 1

(a) Screenshot from the Gazebo simulation with
camera outputs

(b) Evaluation of the generated path in Blender
editor

Figure 6.3: Path evaluation for the environment 2

(a) Collision avoidance in the environment 2 (b) All sampled viewpoints in the environment 2

Figure 6.4: Collision avoidance and viewpoints sampling in the environment 2

48 Chapter 6. Simulation

(a) Overview of the visible points (depicted in
black)

(b) Detail of the visible points for the second floor
of the left-most building

Figure 6.5: Visible points of interest in the environment 2

(a) Output of the algorithm, visualized in Blender
editor

(b) Corresponding image from the onboard in-
frared camera

Figure 6.6: Comparison of the visible points of interest from the algorithm’s output and the
simulation

travel budget. The coverage is better in the left building, with the higher weight of points of
interest.

The accuracy of the algorithm output, compared to the shot from the infrared camera,
is depicted in Figure 6.6.

Chapter 7

Conclusion

The main objective of this thesis was to propose a suitable algorithm for planning
of a building inspection path for firefighting. During the inspection flight, the UAV should
explore as large area of objects of interest as possible and thus maximize the probability
of the fire detection and of its precise localization. The trajectory is further constrained by
a travel budget and also by the inaccesibility of the insides of the objects of interest. The
path is computed on the basis of given models and parameters of the installed camera such
as visibility range, aspect ratio, and field of view.

The assigned challenge was given into a context of similar well-known problems, whose
methods of solution were shortly introduced. This concerns the visibility determination meth-
ods, e. g. ray tracing, as well as the path planning methods in 2D and 3D environments,
e. g. PRM planner. The described techniques were then applied on the assigned challenge,
which was divided into two separate problems: the generation phase of the so called view-
points, and their appropriate connection (the path planning phase).

The generation phase was solved by two different approaches: the space decomposition
method and the sampling based method. The first of the named is based on a decomposition
of the space on so called tetrahedra and the determination of the visible surface by the back-
face culling technique. The sampling based method is inspired by the PRM* algorithm, thus
it randomly picks points in the configuration space of the UAV. The sampling is executed
in the beginning as well as during the path planning phase. For the extension sampling
two strategies were proposed: “Sphere” and “Ellipse”. The visible surface determination is
performed by a custom implementation of the ray tracing.

The path planning phase builds upon the existing VNS-PRM* solution for the Physical
Orienteering Problem, therefore it combines the VNS methods for the solution of the Ori-
enteering Problem with PRM* methods for the path planning which were improved by the
smoothing of the final path. However, the main difference is in the system of rewards, where
a simple addition is replaced by a union over the surfaces visible from the corresponding
viewpoints which are part of the resulting path.

The final algorithm and its proposed methods were subsequently verified on 24 configu-
rations in two urban environments, representing a single building as well as a housing estate.
The results showed that the generated paths meet the stated constraints and sufficiently cover
the analysed objects of interest when given a sufficient computing time and resources. The

50 Chapter 7. Conclusion

extension of the viewpoints during the path planning phase was proved to perform better than
the initial-only samplings. The rates of sampled viewpoints should be chosen with regards to
the target environment and the computational complexity. However, none of the proposed
sampling strategies clearly outperformed the other one. In the same manner as the rates for
the viewpoints generation, the rates of sampled points for the PRM planner should also be
chosen with regards to the computational complexity. Any superfluous points decrease the
number of elapsed iterations, and thus decrease the final area of the visible surface. The pro-
posed PRM smoothing improves on the one hand the utilization of the given travel budget, on
the other hand, this improvement significantly increases the computational complexity and
thus any increases of reward were not proved.

Finally, the generated outputs were visually checked in a graphic editor as well as in
the Gazebo real-time simulator. These tests revealed an issue in the used cost system, where
changes of the UAV’s orientation were not penalized.

Any future research based on this work could focus on the improvement of the cost
system, e. g. adding a small penalization to the transitions in the UAV’s orientation. Another
suitable area for further development include the sampling strategies. The proposed “Sphere”
stategy might be redefined to extend the visibility better, other strategies might be designed
as well. To improve the overall performance, the path planning methods might be further
optimized by parallelization, or by any other suitable techniques and substitutions.

This work successfully presented one of the possible approaches to the coverage path
planning problems with regards to the travel budget and other constraints. Together with
a suitable detection algorithm, it might be used for the surveillance of specific building or
other urban objects. The field of application is not strictly restricted to the fire detection,
the only condition is a relatively greater size of the examined phenomenon than the smallest
visible unit of the object. Therefore, it can be used e. g. for the detection and localization of
people in rescue operations.

Bibliography

[1] H. Choset and P. Pignon, “Coverage path planning,” Field and Service Robotics, pp.
203–209, 1998.

[2] A. Zelinsky, R. Jarvis, J. C. Byrne, and S. Yuta, “Planning paths of complete coverage
of an unstructured environment by a mobile robot,” in In Proceedings of International
Conference on Advanced Robotics, 1993, pp. 533–538.

[3] Y. Gabriely and E. Rimon, “Spiral-stc,” Proceedings IEEE International Conference on
Robotics and Automation, pp. 954–960, 2002.

[4] P. Cheng, J. Keller, and V. Kumar, “Time-optimal uav trajectory planning for 3d urban
structure coverage,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2008, pp. 2750–2757.

[5] P. Janousek and J. Faigl, “Speeding up coverage queries in 3d multi-goal path planning,”
in IEEE International Conference on Robotics and Automation, 2013, pp. 5082–5087.

[6] R. Penicka, J. Faigl, and M. Saska, “Physical orienteering problem for unmanned aerial
vehicle data collection planning in environments with obstacles,” IEEE Robotics and
Automation Letters, vol. 4, no. 3, pp. 3005–3012, 2019.

[7] Ministerstvo vnitra, generálńı ředitelstv́ı Hasičského záchranného sboru České
republiky, “Statistická ročenka 2019,” Praha, 2020. [Online]. Available: https:
//www.hzscr.cz/soubor/statisticka-rocenka-2019.aspx

[8] G. Pajares, “Overview and current status of remote sensing applications based on un-
manned aerial vehicles (uavs),” Photogrammetric Engineering & Remote Sensing, vol. 81,
no. 4, pp. 281–330, 2015-04-01.

[9] A. Gasparetto, P. Boscariol, A. Lanzutti, and R. Vidoni, “Path planning and trajectory
planning algorithms,” Motion and Operation Planning of Robotic Systems, vol. 2015, pp.
3–27, 2015.

[10] H. Choset, “Coverage for robotics – a survey of recent results,” Annals of Mathematics
and Artificial Intelligence, vol. 31, no. 1/4, pp. 113–126, 2001.

[11] E. Galceran and M. Carreras, “A survey on coverage path planning for robotics,” Robotics
and Autonomous Systems, vol. 61, no. 12, pp. 1258–1276, 2013.

https://www.hzscr.cz/soubor/statisticka-rocenka-2019.aspx
https://www.hzscr.cz/soubor/statisticka-rocenka-2019.aspx

52 Bibliography

[12] B. Englot and F. Hover, “Inspection planning for sensor coverage of 3d marine struc-
tures,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010,
pp. 4412–4417.

[13] N. Chesnokov, “The art gallery problem,” pp. 1–13. [Online]. Available: http:
//www-math.mit.edu/∼apost/courses/18.204 2018/Nicole Chesnokov paper.pdf

[14] V. Lumelsky, S. Mukhopadhyay, and K. Sun, “Dynamic path planning in sensor-based
terrain acquisition,” IEEE Transactions on Robotics and Automation, vol. 6, no. 4, pp.
462–472.

[15] E. U. Acar, H. Choset, A. A. Rizzi, P. N. Atkar, and D. Hull, “Morse decompositions
for coverage tasks,” The International Journal of Robotics Research, vol. 21, no. 4, pp.
331–344, 2016-07-02.

[16] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, 1st ed.
New York: Springer Science & Business Media, 1985.

[17] T. Oksanen and A. Visala, “Coverage path planning algorithms for agricultural field
machines,” Journal of Field Robotics, vol. 26, no. 8, pp. 651–668, 2009.

[18] V. Shivashankar, R. Jain, U. Kuter, and D. Nau, “Real-time planning for covering an
initially-unknown spatial environment.” 2011.

[19] C. Luo and S. X. Yang, “A bioinspired neural network for real-time concurrent map build-
ing and complete coverage robot navigation in unknown environments,” IEEE Transac-
tions on Neural Networks, vol. 19, no. 7, pp. 1279–1298, 2008.

[20] C. Luo, S. Yang, D. Stacey, and J. Jofriet, “A solution to vicinity problem of obstacles
in complete coverage path planning,” Proceedings IEEE International Conference on
Robotics and Automation, pp. 612–617, 2002.

[21] M. Torres, D. A. Pelta, J. L. Verdegay, and J. C. Torres, “Coverage path planning with
unmanned aerial vehicles for 3d terrain reconstruction,” Expert Systems with Applica-
tions, vol. 55, pp. 441–451, 2016.

[22] S. Hert, S. Tiwari, and V. Lumelsky, “A terrain-covering algorithm for an auv,” Under-
water Robots, pp. 17–45, 1996.

[23] A. Randa, T. Taha, L. Seneviratne, J. Dias, G. Cai, P. Z. Peng, and D. F. Lin, “Aircraft
inspection using unmanned aerial vehicles,” in International Micro Air Vehicle Compe-
tition and Conference, 2016, pp. 43–49.

[24] B. Johnson, J. Isaacs, and H. Qi, “A comparative study of methods to solve the watchman
route problem in a photon mapping-illuminated 3d virtual environment,” IEEE Applied
Imagery Pattern Recognition Workshop (AIPR), pp. 1–8, 2014.

[25] G. Papadopoulos, H. Kurniawati, and N. M. Patrikalakis, “Asymptotically optimal in-
spection planning using systems with differential constraints,” IEEE International Con-
ference on Robotics and Automation, vol. 2013, pp. 4126–4133, 2013.

http://www-math.mit.edu/~apost/courses/18.204_2018/Nicole_Chesnokov_paper.pdf
http://www-math.mit.edu/~apost/courses/18.204_2018/Nicole_Chesnokov_paper.pdf

Bibliography 53

[26] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic roadmaps for
path planning in high-dimensional configuration spaces,” IEEE Transactions on Robotics
and Automation, vol. 12, no. 4, pp. 566–580, 1996.

[27] R. Geraerts and M. Overmars, “Sampling techniques for probabilistic roadmap planners,”
Institute of Information and Computing Sciences.

[28] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,”
The International Journal of Robotics Research, vol. 30, no. 7, pp. 846–894, 2011.

[29] A. Short, Z. Pan, N. Larkin, and S. van Duin, “Recent progress on sampling based
dynamic motion planning algorithms,” IEEE International Conference on Advanced In-
telligent Mechatronics (AIM), pp. 1305–1311, 2016.

[30] P. Vansteenwegen, W. Souffriau, and D. V. Oudheusden, “The orienteering problem,”
European Journal of Operational Research, vol. 209, no. 1, pp. 1–10, 2011.

[31] I.-M. Chao, B. L. Golden, and E. A. Wasil, “A fast and effective heuristic for the orien-
teering problem,” European Journal of Operational Research, vol. 88, no. 3, pp. 475–489,
1996.

[32] A. Gunawan, H. C. Lau, and P. Vansteenwegen, “Orienteering problem,” European Jour-
nal of Operational Research, vol. 255, no. 2, pp. 315–332, 2016.

[33] P. Hansen and N. Mladenović, “Variable neighborhood search,” European Journal of
Operational Research, vol. 130, no. 3, pp. 449–467, 2001.

[34] A. Glassner, “An overview of ray tracing,” in An Introductiton to Ray Tracing, 2nd ed.
San Francisco: Morgan Kaufmann, 2002, pp. 1–26.

[35] J. Bell, “Visible surface determination,” Chicago, Illinois, 2019. [Online]. Available:
https://www.cs.uic.edu/∼jbell/CourseNotes/ComputerGraphics/VisibleSurfaces.html

[36] R. J. Segura and F. R. Feito, “Algorithms to test ray-triangle intersection. comparative
study,” in The 9-th International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision, 2001, pp. 76–81.

[37] D. Badouel, “An efficient ray — polygon intersection,” Graphics Gems, pp. 390–393,
1990.

[38] T. Möller and B. Trumbore, “Fast, minimum storage ray-triangle intersection,” Journal
of Graphics Tools, vol. 2, 2005.

[39] H. Si, “Tetgen,” Berlin, 2013. [Online]. Available: http://wias-berlin.de/software/
tetgen/1.5/doc/manual/manual.pdf

[40] E. W. Weisstein, “Barycentric coordinates,” c1999-2020. [Online]. Available: http:
//mathworld.wolfram.com/BarycentricCoordinates.html

[41] “Wavefront obj file format,” 2020. [Online]. Available: https://www.loc.gov/
preservation/digital/formats/fdd/fdd000507.shtml#notes

https://www.cs.uic.edu/~jbell/CourseNotes/ComputerGraphics/VisibleSurfaces.html
http://wias-berlin.de/software/tetgen/1.5/doc/manual/manual.pdf
http://wias-berlin.de/software/tetgen/1.5/doc/manual/manual.pdf
http://mathworld.wolfram.com/BarycentricCoordinates.html
http://mathworld.wolfram.com/BarycentricCoordinates.html
https://www.loc.gov/preservation/digital/formats/fdd/fdd000507.shtml#notes
https://www.loc.gov/preservation/digital/formats/fdd/fdd000507.shtml#notes

54 Bibliography

[42] “Pseudo-random number generation,” 2020. [Online]. Available: https://en.cppreference.
com/w/cpp/numeric/random

[43] M. Figueiredo, L. Marcelino, and T. Fernando, “A survey on collision detection tech-
niques for virtual environments,” Proc. of V Symposium in Virtual Reality, Brasil, vol.
307, 2002.

[44] P. Krähenbühl and V. Koltun, “Efficient inference in fully connected crfs with gaussian
edge potentials,” in Advances in Neural Information Processing Systems 24, J. Shawe-
Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, Eds. Curran
Associates, Inc., 2011, pp. 109–117.

[45] M. Muja and D. Lowe, “Flann - fast library for approximate nearest neighbors,”
Computer Science Department, University of British Columbia, 2013. [Online]. Available:
https://www.cs.ubc.ca/research/flann/uploads/FLANN/flann manual-1.8.4.pdf

[46] T. Baca, D. Hert, G. Loianno, M. Saska, and V. Kumar, “Model predictive trajectory
tracking and collision avoidance for reliable outdoor deployment of unmanned aerial vehi-
cles,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2018, pp. 6753–6760.

[47] V. Spurný, T. Báča, M. Saska, R. Pěnička, T. Krajńık, J. Thomas, D. Thakur,
G. Loianno, and V. Kumar, “Cooperative autonomous search, grasping, and deliver-
ing in a treasure hunt scenario by a team of unmanned aerial vehicles,” Journal of Field
Robotics, 10 2018.

[48] An Introduction to GNSS, Second edition ed. Calgary, Alberta, Canada: NovAtel Inc.,
2015.

https://en.cppreference.com/w/cpp/numeric/random
https://en.cppreference.com/w/cpp/numeric/random
https://www.cs.ubc.ca/research/flann/uploads/FLANN/flann_manual-1.8.4.pdf

Appendices

Full results of testing

Below are the raw results of the testing phase, with computed average values and
highlighted best tests. The number of final parameters may differ for various configurations,
as they are used for evaluation of different aspects of the algorithm.

Table 1: List of all tested configurations

Environ- Viewpoints Extension PRM points Concurrent Budget
ment strategy strategy generation path [m]

(base/extension) (base/extension) smoothing?

1 1 200/0 – 5000/50 no 50
2 1 200/0 – 5000/50 no 100
3 1 200/0 – 5000/50 no 200
4 1 100/5 Sphere 5000/50 no 50
5 1 100/5 Sphere 5000/50 no 100
6 1 100/5 Sphere 5000/50 no 200
7 1 50/10 Sphere 5000/50 no 50
8 1 50/10 Sphere 5000/50 no 100
9 1 50/10 Sphere 5000/50 no 200
10 1 100/5 Ellipse 5000/50 no 200
11 1 50/10 Ellipse 5000/50 no 200
12 1 200/0 – 5000/500 no 100
13 1 100/5 Sphere 5000/500 no 100
14 1 50/10 Sphere 5000/500 no 100
15 1 200/0 – 5000/50 yes 100
16 1 100/5 Sphere 5000/50 yes 100
17 1 50/10 Sphere 5000/50 yes 100
18 2 300/0 – 5000/150 no 100
19 2 300/0 – 5000/150 no 200
20 2 300/0 – 5000/150 no 300
21 2 100/10 Sphere 5000/150 no 100
22 2 100/10 Sphere 5000/150 no 200
23 2 100/10 Sphere 5000/150 no 300
24 2 100/10 Ellipse 5000/150 no 200

58 Appendix . Full results of testing

Table 2: Results for the configuration 1

Reward [-] Length [m] Iterations [-]

1 9932 47.319 106
2 9940 46.834 104
3 9716 47.562 110
4 9217 47.447 119
5 10685 47.322 184

Avg. 9898 47.297 125

Table 3: Results for the configuration 2

Reward [-] Length [m] Iterations [-]

1 17260 99.723 122
2 16233 93.966 184
3 15792 94.600 90
4 17224 99.892 118
5 15809 94.977 84

Avg. 16463.6 96.631 120

Table 4: Results for the configuration 3

Reward [-] Length [m] Iterations [-]

1 20938 188.880 340
2 21719 196.349 269
3 21009 199.095 145
4 21181 199.719 294
5 21185 190.352 330

Avg. 21206.4 194.879 276

Table 5: Results for the configuration 4

Reward [-] Length [m] Iterations [-]

1 13335 47.391 604
2 15584 48.138 551
3 12516 47.988 626
4 14879 47.520 475
5 11860 48.183 579

Avg. 13634.8 47.844 567

59

Table 6: Results for the configuration 5

Reward [-] Length [m] Iterations [-]

1 21763 99.927 410
2 20688 99.991 440
3 22297 99.895 478
4 20537 99.950 530
5 22481 94.849 534

Avg. 21553.2 98.922 478

Table 7: Results for the configuration 6

Reward [-] Length [m] Iterations [-] Inserted ext. viewpoints [-]

1 23995 198.130 647 383
2 24388 196.729 539 374
3 24551 189.183 465 331
4 23811 187.799 508 339
5 24047 190.988 543 441

Avg. 24158.4 192.566 540 374

Table 8: Results for the configuration 7

Reward [-] Length [m] Iterations [-]

1 14504 47.440 367
2 14008 47.361 341
3 12188 49.992 395
4 13794 47.966 364
5 12807 47.750 323

Avg. 13460.2 48.102 358

Table 9: Results for the configuration 8

Reward [-] Length [m] Iterations [-]

1 20975 99.968 325
2 22137 99.999 289
3 18586 94.603 351
4 19692 99.914 434
5 20937 99.968 357

Avg. 20465.4 98.890 351

60 Appendix . Full results of testing

Table 10: Results for the configuration 9

Reward [-] Length [m] Iterations [-] Inserted ext. viewpoints [-]

1 22204 199.835 363 872
2 23011 199.953 377 795
3 22667 199.783 380 839
4 22718 189.673 434 648
5 23668 188.245 483 608

Avg. 22853.6 195.498 407 752

Table 11: Results for the configuration 10

Reward [-] Length [m] Iterations [-] Inserted ext. viewpoints [-]

1 24395 193.023 554 428
2 24201 197.980 653 387
3 24371 194.463 546 444
4 24314 194.006 511 419
5 24073 193.384 506 349

Avg. 24270.8 194.571 554 405

Table 12: Results for the configuration 11

Reward [-] Length [m] Iterations [-] Inserted ext. viewpoints [-]

1 24028 193.624 445 738
2 22938 192.984 499 600
3 23940 199.876 504 692
4 23436 193.744 449 772
5 24014 199.749 542 590

Avg. 23671.2 195.995 488 678

Table 13: Results for the configuration 12

Reward [-] Length [m] Iterations [-]

1 15929 95.794 296
2 17298 99.892 433
3 16436 97.217 386
4 16719 97.192 338
5 17186 99.204 218

Avg. 16713.6 97.860 334

61

Table 14: Results for the configuration 13

Reward [-] Length [m] Iterations [-]

1 20421 95.962 283
2 21688 95.811 263
3 20677 95.202 271
4 19949 96.692 291
5 21176 95.675 281

Avg. 20782.2 95.868 278

Table 15: Results for the configuration 14

Reward [-] Length [m] Iterations [-]

1 18285 95.519 230
2 18382 95.280 214
3 18784 96.261 218
4 18196 95.822 224
5 18486 99.338 206

Avg. 18426.6 96.444 218

Table 16: Results for the configuration 15

Reward [-] Length [m] Iterations [-]

1 15306 99.825 82
2 17320 99.946 218
3 16668 99.387 83
4 16726 99.896 263
5 17467 99.830 340

Avg. 16697.4 99.777 197

Table 17: Results for the configuration 16

Reward [-] Length [m] Iterations [-]

1 20208 99.972 165
2 21262 99.092 159
3 22007 99.449 173
4 17906 99.989 131
5 20552 99.983 159

Avg. 20387 99.697 157

62 Appendix . Full results of testing

Table 18: Results for the configuration 17

Reward [-] Length [m] Iterations [-]

1 19174 99.909 106
2 18931 99.991 99
3 17720 99.987 104
4 18332 99.649 121
5 18371 99.821 93

Avg. 18505.6 99.871 105

Table 19: Results for the configuration 18

Reward [-] Length [m] Iterations [-] Share of visible points of int. [-]

1 46137 96.665 157
2 42452 94.880 82
3 48552 96.882 230 2379:0:15391
4 47210 99.607 205
5 47003 95.814 147

Avg. 46270.8 96.769 164

Table 20: Results for the configuration 19

Reward [-] Length [m] Iterations [-] Share of visible points of int. [-]

1 93449 199.838 117
2 93627 193.981 160 8535:14096:14268
3 93427 199.508 288
4 87020 199.592 265
5 91351 199.483 215

Avg. 91774.8 198.480 209

Table 21: Results for the configuration 20

Reward [-] Length [m] Iterations [-] Share of visible points of int. [-]

1 114239 398.804 293
2 112332 382.381 149
3 115041 386.521 302
4 116359 383.000 281
5 120257 384.867 259 13340:17384:18255

Avg. 115645.6 387.115 257

63

Table 22: Results for the configuration 21

Reward [-] Length [m] Iterations [-] Share of visible points of int. [-]

1 58488 96.146 204
2 62459 96.301 213 5279:19054:0
3 54947 96.043 220
4 56461 95.323 233
5 60858 97.441 228

Avg. 58642.6 96.251 220

Table 23: Results for the configuration 22

Reward [-] Length [m] Iterations [-] Share of visible points of int. [-]

1 104114 191.816 150 7562:16070:16114
2 101445 191.885 148
3 100153 191.468 150
4 97727 191.578 153
5 99124 192.009 154

Avg. 100512.6 191.751 151

Table 24: Results for the configuration 23

Reward [-] Length [m] Iterations [-] Share of visible points of int. [-]

1 108535 397.122 146
2 121979 382.254 140 11627:18001:18783
3 109952 385.110 146
4 112546 399.046 144
5 119556 380.994 138

Avg. 114513.6 388.905 143

Table 25: Results for the configuration 24

Reward [-] Length [m] Iterations [-] Inserted ext. viewpoints [-]

1 96479 194.660 260 494
2 93546 195.270 269 500
3 97337 195.459 195 467
4 92213 193.934 210 480
5 95837 195.111 208 513

Avg. 95082.4 194.887 228 491

64 Appendix . Full results of testing

CD Content

In Table 26 are listed names of all root directories on CD.

Directory name Description

final-method sources source code of the final algorithm
space-decomposition sources source codes for the space decomposition
simulation simulation videos for both environments
thesis the thesis in pdf format
thesis sources latex source codes

Table 26: CD Content

66 Appendix . CD Content

67

	Introduction
	Specification

	Related works
	Methods of coverage path planning
	Exact cellular decomposition
	Grid-based methods
	3D coverage problem

	Motion planning
	Orienteering problem
	Visible surface determination
	Ray tracing
	Other approaches

	Generation of viewpoints
	Space-decomposition approach
	Algorithm overview
	Implementation
	Basic testing of the proposed algorithm

	Sampling-based approach
	Algorithm overview
	Implementation

	Path planning
	Algorithm overview
	Implementation

	Results
	Viewpoints extension
	Relative visibility of the area of interest
	Prioritization of objects of interest
	Viewpoints extension sampling strategies
	PRM smoothing

	Simulation
	Conclusion
	Bibliography
	Appendices
	Appendix Full results of testing
	Appendix CD Content

