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Abstract

2D segmentation is nowadays used for mul-
tiple applications, ranging from medical
imaging to object recognition. 2D seg-
mentation requires tens of thousands of
annotated images. This paper aims to
describe the process of creation of those
training images from a 3D model of real
environment.

Instance masks are created from a 3D
model that was scanned using Hololens
2 and Azure Kinect. The sparse recon-
struction was obtained using COLMAP
and the dense reconstruction using Azure
Kinect SDK and Hololens 2. Afterward,
the dense reconstruction was improved by
SPSG algorithm to fill in the holes and
improve the overall quality of the mesh.
The masks were rendered from dense re-
construction by AI habitat. Using those
masks a dataset in COCO format was gen-
erated and employed for training using
YOLACT. The results show that training
instance segmentation using this pipeline
is possible, however the hypothesis pre-
dicting that results will improve while us-
ing SPSG, did not prove to be right.

Keywords: SPSG, Azure kinect,
Hololens 2, AI Habitat, COLMAP,
YOLACT,instance segmentation,
optimization of dense recontruction

Supervisor: Ing. Michal Polic
Contact: michal.polic@cvut.cz,
ferbrjan@fel.cvut.cz

Abstrakt

V dnešní době je 2D segmentace apli-
kována v mnoha různých částech vý-
zkumu.Tyto aplikace zahrnují například
zobrazování medikálních obrazů či roz-
poznávání objektů.2D segmentace ale vy-
žaduje desetitisíce anotovaných snímků.
Tato práce se zaměřuje na popis procesu
generování těchto trénovacích snímků z
3D modelu reálného prostředí.

Masky instancí jsou vytvářeny za po-
moci 3D modelu, který byl naskenován
pomocí Hololens 2 a Azure Kinect. Řídká
rekonstrukce byla vytvořena za pomoci
softwaru COLLMAP a hustá rekonstrukce
byla vytvořena za pomoci Azure Kinect
SDK a softwaru od Hololens 2. Poté byl
3D model z husté rekonstrukce zdokona-
len za pomoci SPSG, s cílem zaplnit díry a
zvýšit celkovou kvalitu a přesnost modelu.
Z tohoto modelu v podobě husté rekon-
strukce byly poté vytvořeny masky, které
následně byly použity v datasetu na učení
za pomoci projektu YOLACT. Výsledky
ukazují, že učení segmentace instancí za
pomocí této pipeliny je možné, avšak hy-
potéza předpovídající zlepšení přesnosti
při použití SPSG se nepotvrdila.

Klíčová slova: SPSG, Azure kinect,
Hololens 2, AI Habitat, COLMAP,
YOLACT, segmentace instancí,
optimalizace husté rekonstrukce

Překlad názvu: Generování trénovacích
dat pro 2D segmentaci
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Chapter 1

Introduction

The instance segmentation of 2D images is a widely researched topic in
the computer vision community with many practical applications. These
applications can range from object detection and classification in robotics
[1] to segmentation of medical images [2]. One of the obstacles to overcome,
is the amount of data required for training. These data are in the form
of images with annotations and the creation of this data requires a lot of
resources (gathering training images, time to create annotations). In these
days, there exist a lot of frameworks for 3D model creation (e.g., COLMAP
[3], PatchmatchNet [4]). The annotation of 3D mesh is much faster and
more efficient than the annotation of thousands of images for each object
class. However, the biggest challenge of this approach is creating a sufficiently
detailed 3D model, that can be used for generating realistically looking images
and instance segmentation masks. Unfortunately, the models generated by the
state-of-the-art commercial software (Capturing Reality [5]) are not detailed
enough to provide reasonable training data for object detection in complex
scenes.

This work aims to enhance the 3D model by employing SPSG [6], which
can complete the holes in the mesh obtained from a dense point cloud. The
result should be a more accurate model, leading to more realistically looking
training images and masks.

1



1. Introduction .....................................

Figure 1.1: Enhancing 3D model using SPSG [6].

This thesis describes the generation of training data, steps to create a
reconstruction, improving the 3D model, its segmentation, and lastly, training
and the evaluation of the 2D segmentation network. We start with the data
collection process, describing each scanning device used. Secondly, the thesis
focuses on processing the data to create 3D models. The third step focuses
on improving 3D models. The fourth part evaluates the segmentation of
the models, annotation of the models and creation of datasets in COCO
[7] format for training. The last part describes the training of the data by
YOLACT [8] and its evaluation.

2



Chapter 2

Key concepts

2.1 Scanning

We first focus on scanning a specific environment (e.g., construction site/factory
environment). The goal was to obtain a 3D model of some testing area. Mul-
tiple scanner devices were used to build a complete and accurate digital copy
of the environment usable for rendering.

We start with a brief description of each scanning device. More details are
listed in chapter 4.

2.1.1 Azure Kinect

Azure Kinect is a scanner device that contains a depth (time-of-flight (ToF))
camera and RGB camera. The Azure Kinect was chosen as a scanning
device because of the ability to record accurate depth data, that are ideal
for creating 3D models. Moreover, a software called Azure Kinect SDK
[9] provides a function wrapping depth images into RGB images and thus
perfectly synchronizes those frames (the usefulness of this function is discussed
later). Another helpful feature is the access to camera frame meta-data that
enables the selection of frames with given timestamps and getting used camera
configurations. The output of Azure Kinect is a .mkv file containing all the

3



2. Key concepts.....................................
data from a single recording.

More informations regarding hardware and software specifications are in
section 4.2.1.

Figure 2.1: Azure Kinect [10].

2.1.2 Hololens 2

Hololens 2 is an augmented reality device equipped with four grayscale
cameras, one RGB camera and one ToF sensor. The advantage of this device
is the range of different sensors. Another advantage for 3D scanning is a
spatial mapping option that allows real-time environment meshing. This
feature, that can be found in Hololens 2 Github [11], was employed as the
primary method for dense scene reconstruction.

More information regarding hardware and software specifications is in
section 4.2.2.

4



............................ 2.2. Sparse and dense reconstruction

Figure 2.2: Hololens 2 [12].

2.1.3 Samsung Galaxy S10e

In order to stick all the images into a more complete scene, a Samsung Galaxy
S10e, featuring a 16-MP ultra-wide camera, was used. The wide-angle of the
camera provides multiple frames that capture the same area of the scanned
environment, allowing for better connection of frames during SfM. Moreover
the high resolution is responsible for better details during the MVS.

More information regarding S10e is in section 4.2.3.

2.2 Sparse and dense reconstruction

The idea of sparse and dense reconstruction is described as taking a set of
scanned depth and RGB images and aligning them into a 3D representation of
the scene. Sparse reconstruction refers to camera extrinsics, camera intrinsics
and sparse pointcloud, while dense reconstruction refers to a complete 3D
scan of the environment. (dense point cloud or mesh representation) For our
sparse reconstruction, we worked with COLMAP software, and for our point
cloud/mesh creation, we used software provided by Hololens 2.

5



2. Key concepts.....................................
2.2.1 COLMAP

COLMAP is a general-purpose, end-to-end image-based 3D reconstruc-
tion pipeline (i.e., Structure-from-Motion (SfM)[4] and Multi-View Stereo
(MVS)[3]) with a graphical and command-line interface. We utilized it to
estimate camera poses or RGB images from all the recording devices. These
poses refer to world to camera transformations, which was one of the main
inputs for the SPSG software described later in the thesis. The main parts of
SfM are feature extraction, matching, and mapping.

Feature extraction is a process of finding distinguishable patches in images.
These patches are described by the coordinates of their center in the image
and the feature vector. The main goal is to eliminate redundant data by
transforming the image into a set of different feature vectors. Those feature
vectors are called features. The features refer to specific patches, and they
should be invariant to scale, rotation and translation. A widely used example
of a feature detector and descriptor is SIFT [13].

The next step of SfM is matching of features between pairs of images. At
first, the tentative matches are found by selecting the pairs of feature vectors
with the smallest distance. The tentative matches realize correspondences
between the distinguishable patches in pairs of images. Secondly, the tentative
matches are verified by relative pose geometry constraints.

COLMAP offers multiple types of matching: exhaustive matching, sequen-
tial matching, vocab-tree matching, spatial matching, or transitive matching.
We chose a vocab-tree matching [14] method in this thesis. This method
speeds up the process, because each feature vector is matched to a database
of already existing feature vectors, which allows clustering of similar feature
vectors.

The last step of SfM is mapping. Firstly a pair of initial frames is chosen.
Then, using the correspondences of patches, new image is registered and
triangulated in order to obtain a relative pose. Using the relative pose, the
2D to 3D correspondences are found and the absolute pose is calculated for
given frame. After the absolute pose is obtained, another frame is registered,
triangulated and the same process is applied again.

More information regarding COLMAP is in the data processing part at
section 5.3.

6



............................ 2.2. Sparse and dense reconstruction

Figure 2.3: The structure of SfM pipeline [4].

2.2.2 Hololens 2

As mentioned in prior, Hololens 2 software [11] also includes an option for
real-time environment meshing. Moreover, Hololens 2 track the camera poses
and provides extrinsics and intrinsics, as so as the lookup table for converting
depth frames into dense point clouds. The extrinsic parameter allows us
mapping of all the point clouds into a single coordinate system. After creating
such point cloud, it can be easily pruned and meshed using any 3D meshing
software. (e.g., Meshlab [15], blender [16])

Hololens 2 preprocessing converts the recorded images and depth maps
into a simple pinhole camera model. Such a format can be employed in the
Open3D implementation of TSDF. TSDF describes a 3D model representation
using voxels, where each voxel represents the distance to the closest surface.
The mesh created using this TSDF function was used for our thesis.

More information regarding Hololens 2 software is in section 4.2.2.

Figure 2.4: Hololens 2 pinhole projection RGB frame.

7



2. Key concepts.....................................
2.3 SPSG

SPSG [6] is software that tries to complete the missing parts of a 3D model
using 2D renderings of the incomplete 3D model of a scene. SPSG uses a
self-supervised approach to improve a model by using an incomplete version
of the same model and learning to inpaint it back to its original form.

The key idea of the neural network is to formulate an autonomous approach
based on 2D view-guided synthesis. Since it is important to learn on realistic
data, the program needs to be able to learn from incomplete target scan data,
as it is impossible to obtain ground truth for real-world scans. Thus, the
learning process is based on the correlation between the incomplete target
data and the "more incomplete" version of the same data. In other words,
the training process splits input RGB-D images to two subsets. One subset
is employed to create TSDF and the second one realizes training outputs for
estimation of missing parts.

SPSG formulates 2D rendering losses that guide color and geometry predic-
tions of the output. These losses are obtained by rendering the target RGB-D
images in a differentiable fashion, generating color, depth and world-space
normal images for a given view. Using these normal images, the adversarial,
perceptual and reconstruction losses are obtained. The reconstruction loss is
used to fix the geometry and color predictions as can be seen in figure 2.5,
as well as the perceptual and adversarial losses are used to provide a more
realistic appearance for the final prediction.

The SPSG is fully convolutional and end-to-end trainable. The algorithm
first predicts geometry and then colors so that the color predictions can be
inspired by the geometric predictions. The data format used for SPSG is
mainly .sdf, a TSDF representation of the scene. This data is then standardly
processed in chunks of 64x64x128 voxels, with a voxel size of 2cm3.

More information regarding SPSG is in section 5.4.

8



............. 2.4. Semantic segmentation, instance segmentation and instance masks

Figure 2.5: SPSG network architecture [6].

2.4 Semantic segmentation, instance segmentation
and instance masks

Semantic segmentation is the process of categorizing a scene into sets of objects
that belong to the same class. The downside of semantic segmentation is
that if there are two objects from the same category in one frame, they are
categorized, but they are not distinguishable in the semantic frame.

On the other hand, instance segmentation [17] differs from semantic seg-
mentation by not only categorizing each object into a given class, but also
distinguishing between multiple objects in each of those classes. While se-
mantic segmentation only refers to different classes for each pixel, instance
segmentation also contains id for each object in a given class.

Instance masks are the product of instance segmentation. Those masks
contain information for each object in the frame, including its class, its id
and the range of pixels referring to that specific instance.

Figure 2.6: Difference semantic segmentation and instance segmentation [18]

9



2. Key concepts.....................................
2.4.1 AI Habitat

AI Habitat [19] is an agent simulation software from Facebook, that is made
for research in embodied AI. It supports 3D scans of various scenes and
allows artificial agents to move inside those environments. Moreover, it allows
configurations of multiple sensors, including a RGB sensor and a semantic
sensor. Using this simulation software, we can easily create a dataset of any
size, that will contain RGB images and instance segmentation masks.

More information regarding AI habitat is in section 6.0.2.

2.5 Training

The training part of this thesis focuses on training a model that recognizes
environment-specific objects in a 2D picture. By creating a dataset containing
images and annotations, we can use software that will learn to carry out
instance segmentation by creating instance masks in real-time.

2.5.1 Yolact

YOLACT [8] is a fully-convolutional model for real-time instance segmentation.
YOLACT works using two main steps.

The first step is the creation of a dictionary of non-local prototype masks.
This step predicts a set of k prototype masks. Usually, prototype masks are
used to realize features, but YOLACT uses prototypes to realize masks in
the given image.

The second step consists of predicting coefficients for each instance (object)
in the image. Compared to standard detectors that only have two branches
in their prediction heads, YOLACT contains three branches. One branch
predicts the class confidence, the second predicts the four bounding box regre-
sors and the third YOLACT-unique branch predicts the k mask coefficients,
one corresponding to each prototype.

10



............................. 2.6. Convolutional neural networks

Figure 2.7: YOLACT architecture with k = 4 [8]

Lastly, assembling the instance segmentation for the complete image is
accomplished by a linear combination of the prototypes and cropping by the
predicted bounding box.

More information regarding YOLACT software is in section 6.1.

2.6 Convolutional neural networks

Let us briefly explain what a convolutional neural network (CNN) is, since
YOLACT and SPSG work in a fully convolutional way.

A neural network is a structure of layers used for learning AI. It should
represent a set of layers, each containing input and output. Each node in
each layer can receive an input, process it, and send it to the next node in
the next layer. The goal of the neural network is to produce an output or a
set of outputs from an input or a set of inputs by sending the inputs through
multiple layers that process them. In other words, a neural network is a
function created as a concatenation of simpler functions.

11



2. Key concepts.....................................

Figure 2.8: Diagram of neural network.

A specific type of neural network is a convolutional neural network. It is
necessary to define what discrete convolution is. Convolution of f and g is
written as f ∗ g and is defined as:

(f ∗ g)(x, y) =
k∑

i=−k

k∑
j=−k

f(x − i, y − j)h(i, j) (2.1)

where, x is the x coordinate in an image, y is the y coordinate and k defines
the dimensions of the kernel. In practice, convolution can be used in order to
detect features in images by defining specific kernels. Each kernel is used to
find a particular feature, and combining multiple convolutional layers in a
network makes it possible to obtain complex features in each image.

12



Chapter 3

Structure of the thesis summarized using a
diagram

In order to summarize all the necessary steps made during this thesis a
diagram was created. This diagram mentions all the processes/software used
in this project, and all the inputs/outputs of these processes.

This diagram shows not only the paths that have been used in this project,
but also tries to show other possible methods for solving the problematic.
Every dotted arrow in this diagram shows a possible path, while the classic
arrows depict our used paths.

Every circle depicts a data format and the bounded squares refer to software
used in the process.

The diagram is divided into 3 main parts that can be seen on the left
in figures 3.1 and 3.2. Those parts correspond to chapters in the thesis,
mentioning data collection 4, data processing 5 and segmentation & training
6.
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3. Structure of the thesis summarized using a diagram ....................

Figure 3.1: Project structure diagram part 1.
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.................... 3. Structure of the thesis summarized using a diagram

Figure 3.2: Project structure diagram part 2.
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Chapter 4

Data collection

This section of the thesis describes the process of collecting the recordings.
First of all, the scanned area is described. Next, the output format of each
device is summarized, and the "usefulness" of the data is estimated based on
our findings.

The diagram describing the data collection process is in figure 3.1.

4.1 B-635 laboratory

The scene chosen for scanning was a B-635 laboratory located in the Czech
Institute of Informatics, Robotics and Cybernetics (CIIRC) in Prague. This
scene was chosen because of its complexity and amount of details. We believe,
that if we could scan this kind of complex environment, then there should
not be any major issue with no other environment.

The scene contains a lot of different objects that should be ideal for instance
segmentation. These objects can be categorized easily. The scene contains
multiple chairs, tables, computers, and shelves. This diversity of objects
should challenge the object detection training, but the scene’s complexity also
makes the reconstruction process more complex and potentially less accurate.
Hence, we used multiple scanning devices and produced a significant amount
of RGB and RGB-D images from different viewing angles.
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4. Data collection ....................................

(a) : Front view (b) : Back view

Figure 4.1: View of B-635 laboratory - RGB format.

(a) : Front view (b) : Back view

Figure 4.2: View of B-635 laboratory - depth format.

An example of recording images can be seen in figures 4.1 and 4.2.

4.2 Recording devices

4.2.1 Azure Kinect

The first recording device we used for the scanning process was Azure Kinect.
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.................................. 4.2. Recording devices

Hardware specifications

Azure Kinect contains two cameras. The depth camera is a one-megapixel
Time-of-flight camera. The regime of depth camera used for scanning was
WFOW (wide field of view) unbinned regime. This regime supports 1024x1024
resolution, up to fifteen frames per second (5FPS was used), and the operating
range is 0.25 meters up to 2.21 meters. NFOV (natural field of view) or
passive IR are other possible regimes.

The RGB camera is a twelve-megapixel CMOS sensor with a rolling shutter.
For the RGB camera, a 4096x3072 resolution was used. This resolution
supports up to 15 FPS, but only 5FPS were for this thesis. RGB camera
supports six different resolution modes and two different aspect ratios. Other
resolutions support up to 30FPS.

Field of views of Azure Kinect are shown in figure 4.3.

Figure 4.3: Azure Kinect - fields of view [20].

Data format

The output from azure Kinect is in the form of .mkv recordings. The
depth and RGB frames can be easily extracted into two directories, one for
each recording. Depth frames are in .png format and 1024x1024 resolution,
and RGB frames in .png format and 4096x3072 resolution. In total, three
recordings were made for this project.
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4. Data collection ....................................
The table below shows the number of frames for each recording and the

corresponding time of each recording.

Recording Number of images Length of recording
1 2642 2642 frames × 0.2 s

frames ≈ 528s

2 2306 2306 frames × 0.2 s
frames ≈ 461s

3 2020 2020 frames × 0.2 s
frames ≈ 404s

Total 6968 1373s

Table 4.1: Number of images and length of recordings of Azure Kinect.

Usefulness of data

The downside with the output data format from Azure Kinect was that the
dimensions of the depth frames were not matching the dimensions of the RGB
frames. Therefore the whole recording required further post-processing in
order to be used by SPSG (see section 5.4.8 that describes this problematic).
On the other hand, the RGB frames produced by Kinect could have been
directly inputted into COLMAP for reconstruction. Also, the depth frames
produced by Kinect could have been immediately used for point cloud creation
by Kinect SDK software.

4.2.2 Hololens 2

The second recording device we used for the scanning process was Hololens 2.

Hardware specifications

Hololens 2 features six different sensors. Firstly it has an 8-MP RGB camera.
The regime that has been selected for our thesis was a Videoconferencing,
100 BalancedVideoAndPhoto, 120 regime, that outputs 15 frames per second
in 760x428 resolution. Secondly, four head tracking visible light cameras are
present on Hololens 2. They record frames in 640 x 480 resolution. Those
cameras are located on the sides of the device to scan all the surroundings,
and they scan the scene in grayscale format. Lastly, a 1-MP ToF depth
sensor was employed. This sensor operates in two modes. The first mode is a
high-frequency mode, usually used for hand tracking. The second mode, used
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.................................. 4.2. Recording devices

for this thesis, is a long throw low-frequency mode that captures up to five
frames per second. This is the advised mode for spatial mapping processes.

All these devices and configuration options can be accessed by running
Hololens 2 in research mode.

Data format

The output format for each Hololens 2 recording is a folder containing multiple
.tar and .bin files. The whole directory can be processed using stream recorder
code provided in [21].

For converting all images into their .png or .pgm format, a script con-
vert_images.py was used. Another option is to use process_all.py in order
to convert images into a visualizable format, but also create point clouds
from depth maps and meshes from pinhole camera representation. More
information about mesh creation can be found in section 5.2.2.

In total, four recordings were captured during the recording session. The
first recording contained approximately 10 000 non-depth frames from the
four visible light cameras. The second recording also contained about 10
000 non-depth frames, and the last two recordings contained around 5000
non-depth frames each.

Usefulness od data

The data from Hololens 2 were a crucial component for the dense reconstruc-
tion. Using Hololens 2, the meshes were created. Yet, the format of the depth
frames was not matching the format of the RGB frames, so further processing
was necessary for SPSG. Also, Azure Kinect’s RGB and depth frames were
in much higher resolution and therefore were more suitable for SPSG. In
conclusion, Hololens 2 data was used only for meshing and COLMAP SfM.
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4. Data collection ....................................
4.2.3 Samsung galaxy S10e

The third recording device we used for the scanning process was Samsung
galaxy S10e.

Hardware specifications

Samsung Galaxy S10e features a 16MP ultrawide camera.

Data format

The number of acquired frames for this project was 450 RGB images. The
dimensions of each frame are 4608x3456 px. The images are saved in .jpg
format. The FOV of the ultrawide camera is 123°.

Usefulness of data

Data from this device were mainly used in COLMAP SfM, because of the
wide angle of capturing. Therefore it helped COLMAP in order to complete
the scene more precisely. However, this device does not have any IR sensor
for depth, and therefore it could not be used for SPSG. The pure intention
of using this device was to have a wider variety of cameras for COLMAP
reconstruction and to add wider images that capture a bigger area of the
environment.
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Chapter 5

Data processing

The diagram describing the data processing is in Figure 3.1.

5.1 Azure Kinect

5.1.1 Image processing

The total number of RGB images obtained from Azure Kinect added up to
6968 frames. Because of the scanning method the data contained a high rate
of blurry images.

The first step in image processing was removing the blurry images from the
dataset. For this, we created a simple python script that used the Laplacian
function from the OpenCV library[22]. For each photo, a variance of the
Laplacian operator serves as a simple blurriness description. This method
works on the principle of measuring the second derivative of an image and
then finding its standard deviation. The Laplace operator is also used for
edge detection. Higher score from the laplacian function means that the
image contains more edges. If the variance of the Laplace operator is below a
given threshold, the image is considered blurry. Our experimentally selected
threshold was chosen as 700. (i.e., blur_threshold = 700). Fraction of code
from Github repostiory [23] is listed below.
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5. Data processing....................................
score = cv2.Laplacian(image, cv2.CV\_64F).var()
if score < blur\_threshold:

os.remove(image)

5.1.2 Depth image alignment

Another challenge that has been faced during this project was the alignment
of depth images with RGB frames. Azure Kinect records depth frames in
1024 x 1024 format, and RGB frames are in 4096x3072 format. For SPSG, the
input format consists of RGB frames and Depth frames with equal dimensions
and equal camera intrinsics. So, one of the options was to obtain depth
frames in the format of RGB frames.

This has been achieved by using Azure Kinect SDK [9]. This software
allows access to depth camera recording and RGB camera recording, so it was
used for the initial extraction of data from the recording file. Moreover the
Azure Kinect SDK library contains multiple useful functions, one of which is
the k4a_transformation_depth_image_to_color_camera().

Using this function and an example transformation script from Azure
Kinect Sensor SDK, it was possible to extract the depth images in RGB
format. The steps were:

Step 1: Installing the OpenCV library into the visual studio project containing
the script.

Step 2: Adding a saving command using openCV’s imwrite() function for
transformed_depth_image.

The example transformation script can be obtained at [24].
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.....................................5.1. Azure Kinect

Figure 5.1: visualization of k4a transformation depth image to color camera()
[25].

Afterward, a simple script in python was written in order to extract the
transformed depth images for each desired timestamp. The transformation
example (depth_to_color.exe in our case) takes four arguments...1. The first one defines playback or capture mode. In our case, we used

playback mode, because the goal was to extract frames from a recording...2. The second argument is the path to the recording .mkv file...3. The third argument is the timestamp from which the depth image should
be extracted...4. The last argument is the output path for the transformed image to be
saved.
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5. Data processing....................................
The script example is listed below:

cnt = 1
for i in range (init_timestamp, end_timestamp, 1/FPS_in_miliseconds):

command = f"path/_to/_depth/_to/_color.exe playback"\
"path\_to\_recording.mkv {i} {cnt}.png"
os.system(command)
\indent cnt += 1

The timestamp for the first recording starts at 216ms. For the second
recording the initial timestamp was 416ms.

5.1.3 Point cloud/mesh

Another feature that Azure Kinect SDK offers is the point cloud creation from
transformed depth images. The name of the function is k4a_transformation_depth
_image_to_point_cloud.

The quality of those point clouds can be seen in Figure 5.2a, however
the point clouds were not aligned with each other. This requires aligning
each point cloud based on the RGB camera pose obtained from COLMAP.
We developed codes for aligning dense point clouds into a single coordinate
system. However this solution was not used in practice because an easier
solution for dense point cloud creation using Hololens 2 was discovered.

(a) : Point cloud (b) : RGB frames

Figure 5.2: RGB image and its corresponding point cloud created by Azure
Kinect SDK.
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......................................5.2. Hololens 2

5.2 Hololens 2

5.2.1 Image processing

From the four recordings, a total of 32 084 non-depth frames were captured.
This number includes frames from all five cameras (i.e., four grayscale tracking
and one RGB photometric camera).

All the four tracking cameras are rotated by 90 degrees. Therefore the first
step was rotating all their frames. All the frames from the tracking cameras
only consist of one color channel (mono). It was decided that the amount of
data is redundant and therefore it needs subsampling.

The method chosen for subsampling the dataset was to keep all the PV
camera frames and take every fourth frame from the tracking cameras. So,
the total number of frames was reduced to 12 533 frames. All the Hololens 2
frames were not as blurry as the Azure Kinect images, so it was not necessary
to remove blurry images using the same method as was used for Kinect.

Thus, an easy python script for rotating all images and erasing 3
4 of the

images was written. The code featured two functions, one for rotating and
the second for erasing. Those functions can be found here [23].

The main part consisted of reading the image using the OpenCV library,
creating the desired rotation matrix and applying the rotation matrix to
the image using the warpAffine function (included in the CV2 library). The
erasing process consisted of a modulo operation for selecting every fourth
image.

5.2.2 Point cloud/mesh

The last step in processing data from Hololens 2 was to obtain a mesh from
the scanned scene. This could have been done in two ways. The first option
was to compute the point cloud for each depth frame captured by Hololens 2.
The second option was to use the TSDF function provided by Hololens 2. [21]
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5. Data processing....................................
We started with the point cloud transformation into a common coordinate

system, in order to recreate the scene. Using the save_pclouds.py [26] script,
one point cloud was generated for each depth image in a recording. In total,
more than 2000 point clouds were generated. Those point clouds were then
fused together.

Figure 5.3: Single point cloud generated by save_pclouds.py.

A simple python script has been written in order to fuse the point clouds
together. It used the pymeshlab library [15] in order to work with each
of those point clouds. Each of the point clouds has been loaded using
ms.load_new_mesh(file_path) function. After all the point clouds were
loaded into separate layers, ms.flatten_visible_layers (mergevisible=False)
was called and then the final point cloud was saved using ms.save_current
_mesh(output_path).

The downside of this dense reconstruction option is that the size of the
generated point cloud was 1.74GB. Even though it could be subsampled
and transformed into a mesh, the TSDF function allows generating mesh
automatically and with a much smaller size.
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......................................5.2. Hololens 2

Figure 5.4: Fused point cloud generated using pymeshlab library.

The sample script for TSDF integration allows for reconstructing the scene
using the depth and RGB frames and also head poses. The outputs are
in the form of a point cloud but also a mesh. The fusion works using the
Open3D library. Open3D is a library for manipulating 3D models [27]. The
size of the output mesh was 12.9MB which is approximately 130 times smaller
than the result of the first method. Smaller data are an advantage because
the computing time for SPSG and AI habitat will decrease. Moreover, by
reducing the size, the quality remained the same.

Figure 5.5: Mesh generated using TSDF integration.
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5. Data processing....................................
5.3 COLMAP

The next step after extracting and pre-processing all the frames from all
devices was COLMAP. The goal of COLMAP was to create sparse recon-
struction, in order to have camera extrinsics in the world to camera format,
that are required for SPSG. The following section describes the process of
using COLMAP.

5.3.1 COLMAP input

We decided to use RGB frames as the input for COLMAP and to use the
–single_camera_per_folder argument. This argument ensures that each
image is categorized to its corresponding recording device. Each recording
device therefore has its own camera model. The type of matcher we chose
was a vocab_tree_matcher. In total, 19791 RGB images were used during
COLMAP reconstruction.

The COLMAP work directory, before starting any work, looked like this:
COLMAP_work_dir

images
HL_LF
HL_LL
HL_PV
HL_RF
HL_RR
Kinect
S10

vocab_tree_flickr100K_words1M.bin

5.3.2 Sparse reconstruction

The description of COLMAP can be found in section 2.2.1. COLMAP allows
multiple approaches to complete the sparse reconstruction, including an auto-
mated version of reconstruction pipeline using a feature extractor, exhaustive
matcher, and mapper. The command for this automated reconstruction is:
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...................................... 5.3. COLMAP

colmap automatic_reconstructor
--workspace_path $DATASET_PATH
--image_path $DATASET_PATH/images

We chose to use vocab_tree_matcher instead of exhaustive_matcher.
Therefore we did not use the automatic_reconstructor. This part mainly
focuses on the commands and arguments used for sparse reconstruction in
this thesis.

The first step was feature_extractor. Initially, the $DATASET_PATH is
set to aim to the working directory seen in section 5.3.1. The script for the
feature_extractor can be run using:

colmap feature\_extractor
--database_path $DATASET_PATH/database.db
--image_path $DATASET_PATH/images

The second step was to use the vocab_tree_matcher. In order to use
the vocab tree matching, a database needs to be downloaded from https:
//demuc.de/colmap/ . Then, we can execute.

colmap vocab_tree_matcher
--database_path $DATASET_PATH/database.db

Finally, the sparse reconstruction part could be done using the map-
per. Some important values were used for this part, so let us briefly ex-
plain them. Firstly the argument --Mapper.ba_global_images_ratio has
been increased to 1.3 and the --Mapper.ba_global_points_ratio has also
been increased to 1.3. This is because the bundle adjustment takes place
less frequently and therefore speeds up the reconstruction process. Sec-
ondly, the --Mapper.ba_global_max_num_iterations has been reduced to
20 from the default 50 in order to reduce computation time. Thirdly, --
Mapper.ba_global_max_refinements has been decreased to 2, and lastly,
--Mapper.ba_global_points_freq has been doubled to 500000 points. All
these modifications were used in order to decrease the time needed to complete
the sparse reconstruction. The overall reconstruction with these arguments
took around four days. According to our initial experiments, the COLMAP
with using the default arguments, would take more than ten times more time
to finish the reconstruction process.
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5. Data processing....................................
colmap mapper
--database_path $DATASET_PATH/database.db
--image_path $DATASET_PATH/images
--output_path $DATASET_PATH/sparse
--Mapper.ba_global_images_ratio 1.3
--Mapper.ba_global_points_ratio 1.3
--Mapper.ba_global_max_num_iterations 20
--Mapper.ba_global_max_refinements 2
--Mapper.ba_global_points_freq 500000

5.3.3 COLMAP output

The main output after the sparse reconstruction were two text files called
cameras.txt and images.txt.

The file cameras.txt contains the camera parameters (intrinsics) for each
camera used during the reconstruction. The first parameter refers to the
camera distortion model, which in our case has always been the SIM-
PLE_RADIAL camera model. We chose the model based on the exper-
imental evaluation. The next two parameters refer to the image dimensions
of each camera. Those dimensions are all mentioned in chapter 4. The next
parameters define the single focal length of the camera and principal point
location. The structure, therefore, looks like this:

CAMERA_ID CAMERA_MODEL WIDTH HEIGHT FOCAL_LENGTH
PRINCIPAL_POINT_X PRINCIPAL_POINT_Y DISTORTION

Since the distortion for each camera has been less than 0.05, it has been
neglected in all future processing.

The images.txt contains the parameters for each image (extrinsics) used
in the reconstruction. For us, the most important parameter has been the
extrinsic parameter that defines the world to the camera position. This
parameter is important because SPSG requires the camera to world matrix.
Two lines in the images.txt file describe each image file. The first line is
structured like this:

IMAGE_ID qw qx qy qz Tx Ty Tz CAMERA_ID FILE_NAME
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The quaternion q = [qw, qx, qy, qz] realizes rotation of the camera. Tx, Ty

and Tz describe the translation of the camera in the world coordinate system.
The second line contains information about each image key point. These key
points have not been further used in our thesis, therefore they are ignored in
this description.

5.4 SPSG

Running the SPSG software was one of the main goals of this thesis. It should
create the main difference between our approach and the SoTA approach.
However, installing and running the software was much harder than expected.

Firstly the lack of any documentation made this task extremely difficult.
The correct inputs and outputs were achieved experimentally by trying
different options, adding missing parts of the source code and comparison of
different results.

Secondly, many mistakes and missing parts of the code were discovered
during the process and hence many changes needed to be implemented. The
only solution for resolving these issues was to communicate with the authors,
which was not optimal because of the time it took to receive a response and
because of the abstraction of the answers. On the other hand, it would not
be possible to get to the final results without their help and therefore their
time is highly appreciated.

In the following section, the whole process of running SPSG is explained.
This section might contain some ambiguities, but as mentioned above, that is
mainly caused by the lack of documentation and many inconsistencies in the
SPSG software. Note that we provide the first available description of how
to install, run and use custom datasets with SPSG [6].

5.4.1 Installation

The installation process is straightforward. SPSG is running on python 2.7
and Pytorch 1.2.0. The optimal way for installing is to create an anaconda
environment with the correct version of python.
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5. Data processing....................................
After enabling the environment it is necessary to install the correct version

of Pytorch. This part has been a bit challenging, because while installing
Pytorch with CUDA, PyTorch is dependent on NVIDIA drivers installed. The
SPSG software was supposed to run on a remote server where multiple other
applications are installed, so while trying to update to the correct version
of Pytorch, the NVIDIA drivers were updated, which caused SPSG to work,
but other applications crashed.

Therefore the goal was to find an optimal version of the NVIDIA driver that
supports both PyTorch and all the other software installed on the server. After
experimenting, the NVIDIA-SMI 440.33.01 with driver version: 440.33.01 was
found. This driver was running CUDA version 10.2 and allowed all processes
on the server to run correctly.

After successfully installing PyTorch and enabling the conda environment
with python 2, all the extension modules were installed by running the
install_utils.sh script provided by the authors.

5.4.2 Testing on data provided by the authors

The next step was to test the software on the example data provided by the
authors. After successfully downloading all the data, we managed to run
training.py and eval.py scripts on the example data without any issues. Since
everything was running as it should, we moved on to the next step, which
was running SPSG on our custom dataset.

5.4.3 Structure of SPSG

To correctly explain the process of running SPSG on a custom dataset, it is
necessary to refer back to figure 3.1
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Figure 5.6: Data processing and SPSG.

In this state, we already obtained a mesh, camera intrinsics, extrinsics and
depth frames aligned with RGB frames. The input for SPSG is in form of
.sdf, .knw and .colors files. All information about creating these three files
is missing and is not available on the official Github page nor in the short
documentation.

After some investigation and communication with the authors, it was made
clear that there is another part of the software that has been used for the
creation of .sdf files in the past. This part of the software is called datagen
and was available on the Github page of the SGNN project [28]. SGNN is
another scene completion project written by the same authors.

When the datagen was installed, another obstacle was discovered. Datagen
requires specific input data. However, it was unclear where to obtain them.
Luckily, we found that the example data are from the Matterport 3D dataset
[29]. That allowed us to examine the datagen input format. The datagen
requires a mesh as the input. This mesh has to be in some "reduced" form.
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5. Data processing....................................
Since there was no mention of what the "reduced" form is, we found out the
number of faces smaller than the full number of faces leads to working code.

Finally, datagen generated .sdf data. For SPSG however, .colors and
.knw files are required. After another communication with the authors, they
provided the correct version of datagen, that has been used for SPSG. This
version was finally producing correct data, that could be used by SPSG, so
the only missing part was to run datagen on our custom dataset.

Since there was no mentioned requirement about the orientation of the
mesh, we had to find out that datagen needs to have its principal axis aligned
in a way that the Z-axis is aiming up towards the roof of the scan. Moreover
datagen required all the data provided in the form of a .sens file, but there
exists no script or code that would compress data into this format.

To summarize things, a list of necessary steps to run SPSG is provided:

Step 1: Gather all necessary data (intrinsics, extrinsics and RGB-D frames).

Step 2: Install SPSG.

Step 3: Install datagen [30].

Step 4: Align principal axis.

Step 5: Create .sens file.

Step 6: Run datagen in order to create .sdf/.knw/.colors files.

Step 7: Run SPSG.

5.4.4 Datagen

When the correct version of datagen was obtained from the authors, the first
step was to install it correctly.

Datagen requires a few additional dependencies to be installed and linked to
the project. Firstly the mLib and mLibExternal libraries need to be installed
and linked to the project. However, we found out that the version of the
libraries provided is incorrect and they need to be updated. After downloading
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the correct version [31] of libraries and installing them, we needed to add
them to the additional include directories in the Visual Studio project.

Figure 5.7: Additional include directories.

Secondly, two other libraries not mentioned in the datagen documentation
needed to be installed. These are FW1FontWrapper.lib and Freeimage.lib.
Those needed to be written into additional dependencies like this:

Figure 5.8: Additional Dependencies.

37



5. Data processing....................................
The input for datagen comprises of .sens file, which is a file containing

RGB frames, depth frames, camera extrinsics, camera intrinsics (all in binary
format) and the reduced mesh. Reduced mesh is a mesh that has its face
attributes removed. Another input part is the zParametersScanMP.txt file,
which defines all the required paths and optional arguments. All the arguments
from zParametersScanMP.txt are listed below:

argument value
s_bDebugVis True

s_sceneFileList path_to_scene_file_list
s_scanPath path_to_sscanpath

s_scanLabelFile not required
s_labelName not required

s_labelIdName not required
s_incompleteFramePath path_to_output_incomplete_frames
s_outputCompletePath path_to_output_complete

s_outputIncompletePath path_to_output_incomplete
s_maxNumScenes 0 //no maximum
s_maxNumSens 3 //depends on your number of .sens
s_renderWidth 320
s_renderHeight 240

s_BRDF 0
s_cameraFov 60.0f
s_minDepth 0.4f
s_maxDepth 6.0f

s_addNoiseToDepth false
s_depthNoiseSigma 0.01f
s_filterDepthMap true
s_depthSigmaD 5.0f
s_depthSigmaR 0.1f

s_edgeNeighborhoodThresh 0.7f
s_edgeDepthThresh 0.25f

s_voxelSize 0.02f
s_renderNear 0.1f
s_renderFar 10.0f

s_scenePadding 6
s_heightPad 3

s_bSaveSparse true
s_bUseRenderedDepth false

s_trajCachePath ./output/traj_cache
s_chanceDropFrames 0.8f

s_bGenerateSdfs true
s_bGenerateKnown true
s_bGenerateColors true

Table 5.1: zParametersScanMP.txt argumets.
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The s_sceneFileList parameter points to the file that should summarize all
scene parts. In this project, we have one scene with one room. Thus the file
only includes one line (B-635_room0).

The s_scanPath parameter defines the path to the directory with the .sens
files and the reduced mesh. The scan directory should have form:

scans
scene_name (B-635 in our case)

region_segmentations
region0.reduced.ply

sens
scene_name_0.sens
scene_name_1.sens
scene_name_2.sens

The rest of the parameters are advised, by the authors, to be set as it is in
Table 5.1. The specification refers to three .sens files in case we have three
different cameras with different intrinsics. In case only one camera was used,
the remaining two .sens files can be empty, or the data can be distributed
into multiple .sens files or the number of sens files in zParametersScanMP.txt
can be set to 1.

Since the nyu40 dataset used for labeling is unnecessary, line 14 in visual-
izer.cpp [30] using the s_scanLabelFile can be commented.

5.4.5 Point cloud alignment

The mesh used for datagen has been generated by Hololens 2. However, the
camera extrinsics were generated by COLMAP. Those two softwares have
different coordinate systems that need to be aligned first.

This has been done by aligning camera centers from Hololens 2 and the
corresponding camera centers from COLMAP and using the Matlab pro-
crustes() function. This function provides us with rotation, translation, and
scale parameters. As a result, we can use extrinsics provided by COLMAP
and employ images captured by Kinect, because they have the best accuracy,
resolution and overlap between depth and RGB frames.
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5. Data processing....................................
Firstly, it is necessary to explain how to obtain camera centre from the

projection matrix. Projection matrix is in the form:


r1,1 r1,2 r1,3 tx

r2,1 r2,2 r2,3 ty

r3,1 r3,2 r3,3 tz

0 0 0 1

 (5.1)

Where R =

r1,1 r1,2 r1,3
r2,1 r2,2 r2,3
r3,1 r3,2 r3,3

 is the rotation matrix and t =

tx

ty

tz

 is the

translation vector. To obtain the camera centre we can use the :

C = −RTt (5.2)

Where C ∈ R3 represents the camera center and RT represents the transpose
of R.

Figure 5.9: representation of α, β, γ in geogebra 3D [32].

Hololens 2 uses this format of extrinsic parameters. However, COLMAP
uses a slightly different format ,i.e., a quaternion and translation. To explain
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how quaternions work, we need to define two values. The first value represents
the angle of rotation. Lets define this value as θ. The second value is the
axis of rotation around which we want to rotate. Let us define this value as
vector b consisting of 3 values representing the angles between the vector and
the three positive coordinate axes (seen in figure 5.9). We can also call the
components of the vector direction cosines. From the figure above we can see
the axis of rotation x (visualized by line connecting origin and point X) and
the corresponding direction cosines.

Using values θ and b =

α
β
γ

 we can define quaternion as:


qw

qx

qy

qz

 =


cos(θ/2)

sin(θ/2)cos(α)
sin(θ/2)cos(β)
sin(θ/2)cos(γ)

 . (5.3)

The formula for conversion between quaternion and rotation matrix is
defined as [33]:

R =

2(q2
w + q2

x) − 1 2(qxqy − qwqz) 2(qxqz + qwqy)
2(qxqy + qwqz) 2(q2

w + q2
y) − 1 2(qyqz − qwqx)

2(qxqz − qwqy) 2(qyqz + qwqx) 2(q2
w + q2

z) − 1

 . (5.4)

After transforming both extrinsics from COLMAP and Hololens 2 to the
camera centres we are ready to use the procrustes() function in matlab. Lets
label camera centres from COLMAP as CCOLMAP and camera centres from
Hololens 2 as Chololens. The function can then be used as:

[d, Z, transform] = procrustes(CCOLMAP , Chololens)

The output of procrustes() then returns the transformation in the form
of s =transform.b representing the scale, R =transform.T representing the
rotation and t = transform.c representing the translation. The formula for
transforming each point XH ∈ R3 of the Hololens 2 mesh into the COLMAP
coordinate system (i.e. XC ∈ R3), is:
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XC = s × XH × R + t. (5.5)

Saving the transformed model as a point cloud was necessary after trans-
forming each point of the original mesh, because we only transformed points
and not the normals. The script used for point cloud alignment is called
align_holo2colmap.m and it can be found here [23].

5.4.6 Point cloud rotation

After aligning the point cloud to the correct coordinate system, the next
necessary step was rotating the model to the correct orientation. Each
point of the point cloud has been rotated using a rotation matrix that has
been obtained using simple linear algebra. Moreover, the extrinsics in the
COLMAP model also needed to be rotated to be used by datagen. The
following section defines the mathematics behind this process.

First of all, 2 points were extracted from the point cloud to create a
reference vector v. This vector v consisted of three values, each representing

a difference of two points in the desired axis. v =

x1 − x2
y1 − y2
z1 − z2

 Then, we needed

to create a vector that would define our new coordinate system. Since we

needed the z coordinate to point upwards we chose a vector u =

0
0
1



Using those two vectors, we obtain the axis of rotation w and the angle α.
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Figure 5.10: representation of α and w in geogebra 3D [32].

Axis of rotation w is perpenidcular to u and v, therefore we can use the
cross product of normalized u and v. In the thesis we specifically used formula

w = u × v

∥v∥
(5.6)

because u is already a normalized vector.

The angle α can be obtained using the dot product:

α = vTu

∥v∥
. (5.7)

Now, the goal was to create a rotation matrix R using w =

w1
w2
w3

 and α.

The formula for generating the rotational matrix using [33] is:

R = cos(α)I + (1 − cos(α))wTw + sin(α)[w]×, (5.8)
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in other words:

R = cos(α)

1 0 0
0 1 0
0 0 1

+(1−cos(α))

w1w1 w1w2 w1w3
w2w1 w2w2 w2w3
w3w1 w3w2 w3w2

+sin(α)

 0 −w3 w2
w3 0 −w1

−w2 w1 0

 .

(5.9)

Each point p of the point cloud can be rotated by using:

prot = Rp. (5.10)

This process rotates the whole point cloud, so the z-axis is aimed upwards.
The script that made this transformation is called align_scene_to_main_axis.m
[23]. However, rotating the point cloud was not the only necessary script since
the camera extrinsics from COLMAP needed to be transformed. Therefore
we also load the COLMAP positions, transforms them, and write them into
a new images.txt file.

In order to derive the equations 5.13, 5.14, 5.15 we need to state the
definition of projection equation:

λ

[
u
1

]
= K

[
Qx + t

]
= K

[
Qrotx + trot

]
(5.11)

where K is the calibration matrix. From original images.txt the extrinsics
are loaded as rotation Q and translation t. Using those two parameters it is
possible to define a camera centre C using:

C = −QTt. (5.12)

This camera centre C can be then rotated using the rotation matrix R:

Crot = RC. (5.13)
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The updated rotation matrix Qrot used in extrinsics is then:

Qrot = QRT. (5.14)

The updated translation vector is then:

trot = t. (5.15)

5.4.7 Point cloud to mesh

The previous two sections describing point cloud alignment and point cloud
rotation work with point clouds and not meshes. So, the next step is to
transform the point cloud back to mesh. For this process, we used meshlab.
[15]

The conversion from point cloud to mesh can be done in 3 phases: comput-
ing normals, optimizing the point cloud and converting the optimized point
cloud into a mesh.

The first phase can be done using the filter called Compute Normals for
Point Sets and selecting the default settings.

Optimizing the point cloud can be obtained by point cloud simplification
and reducing the number of samples. In this thesis, it was not necessary to
drastically reduce the number of samples because our point cloud was not
that big and detailed. The number of vertices of our mesh is approximately
300 000.

Lastly, using the "surface reconstruction: ball pivoting" filter and using the
default settings makes it possible to recreate the surfaces and obtain a mesh.

5.4.8 .sens file creation

As previously mentioned, one of the necessary inputs for datagen is a .sens
file. It describes sensor data type, and it consists of multiple parts. Each
.sens file needs to contain a struct that is structured as follows (according to
ScanNet [34]):
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struct SensorData {

unsigned int m_versionNumber;
std::string m_sensorName;

CalibrationData m_calibrationColor; //4x4 intrinsic matrix
CalibrationData m_calibrationDepth; //4x4 intrinsic matrix

COMPRESSION_TYPE_COLOR m_colorCompressionType;
COMPRESSION_TYPE_DEPTH m_depthCompressionType;

unsigned int m_colorWidth;
unsigned int m_colorHeight;
unsigned int m_depthWidth;
unsigned int m_depthHeight;
float m_depthShift; //conversion from float[m] to ushort

std::vector<RGBDFrame> m_frames; // <= Main data
std::vector<IMUFrame> m_IMUFrames;

}

This whole file is encoded in binary format. If the scan does not contain
any IMU frames, those IMU frames can be left out. Also, each RGB-D frame
should contain the following data: RGB frame in .jpg format, depth frame
compressed using zlib, camera extrinsic (i.e., the camera pose) for a given
frame, and timestamp for each frame (that can be left as 0).

The calibration data defines the camera intrinsics. In order to make things
more simple, our depth frames were converted into the format of our RGB
frames, therefore the intrinsics for depth and RGB frames are the same. The
calibration matrix can be obtained by using the focal length and principal
point coordinates. Lets label our focal lengths as fx and fy and principal
points as cx, cy. Since we chose a camera mode that only specifies a single
focal length let us assume that fx = fy.

calibration_matrix =


fx 0 cx 0
0 fy cy 0
0 0 1 0
0 0 0 1

 (5.16)

No official code for compression into .sens has been published by the authors.
Therefore we publish a script called compresser.py [23] that has been created
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to compress data into .sens files. The input for compresser.py needs to be
structured as follows:

./
color

RGB_frame_1
...

depth
depth_frame_1
...

intrinsic
intrinsic_color
intrinsic_depth
extrinsic_color
extrinsic_depth

pose
camera_extrinsic_1
...

It is unclear what is meant by extrinsic_color and extrinsic_depth, but
in the Matterport 3D dataset, those files were each a four-by-four identity
matrix. Therefore, the same was implied for our dataset, and an identity
matrix was used.

All the camera extrinsics from modified colmap COLMAP images.txt
and cameras.txt files have been extracted and transformed into matrixes
using extract_poses.py script [23]. Note that compared to COLMAP, SPSG
requires the matrixes in camera to world format so an inverse of the matrix
needs to be computed.

5.4.9 SPSG

Finally, after producing all the necessary data for running datagen, it is possi-
ble to move on and use the SPSG. Datagen generates two output directories,
with complete and incomplete reconstructions. Those two reconstructions
are in the form of .sdf, .colors, and .knw files, which is the required input
for SPSG. Therefore, those two obtained directories are used as the primary
data for SPSG.

SPSG software can be divided into two parts, training, and testing. The
training part trains the model on example data, and the testing part takes care
of the actual reconstruction using the pre-trained model. In our thesis, the
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5. Data processing....................................
provided pre-trained model has been used. The pre-trained model spsg.pth
can be found on the official Github repository of SPSG [30]. Using this
pre-trained model, we run the testing part on our dataset. We believe that
retraining may improve the results, however it is unclear how to run it.

Since there is no exact documentation describing all the possible arguments,
the default arguments provided by the example command were used. The
incomplete output from datagen has been used as input, and the complete
data has been used as the target. The command that we have used for
reconstruction is:

python test_scene_as_chunks.py
--gpu 0 --input_data_path path/to/datagen/incomplete
--target_data_path path/to/datagen/complete
--test_file_list ../filelists/your_sdf_files.txt
--model_path path/to/SPSG.pth
--output output/directory
--num_to_vis 20
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The following pictures show the reconstructed scene using SPSG:

(a) : Front view SPSG (b) : Front view without SPSG

Figure 5.11: SPSG reconstruction front view.

(a) : Back view SPSG (b) : Back view without SPSG

Figure 5.12: SPSG reconstruction back view.

(a) : Side view SPSG (b) : Side view without SPSG

Figure 5.13: SPSG reconstruction side view.
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Even though SPSG was able to fill in the holes, the overall quality of the

reconstruction decreased. Many artifacts and flying objects can be found in
the SPSG version, and also the whole roof is missing. Initially, it was thought
that the SPSG was running incorrectly. However, after multiple tests, it has
been concluded that this is the correct output that SPSG should produce.
More details about the quality of the reconstruction and the "usefulness" of
the software are discussed in section 7.3. We observe the same behaviour on
the official example as can be seen in Figures 7.1 7.2 and 7.3.
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Chapter 6

Segmentation and training

This chapter describes the process of 3D segmentation, the creation of instance
masks used in the COCO dataset, training YOLACT and the evaluation of
the training of our instance segmentation.

6.0.1 Meshlab segmentation of 3D model

After generating the adjusted mesh using SPSG, the next step was to segment
different objects manually. This process has been done using Meshlab [15].

Our goal was to segment two different meshes, the one with SPSG recon-
struction and the second one without the SPSG reconstruction. Since SPSG
rescales the mesh used, the SPSG mesh had to be rescaled approximately
back to its original size.

For the SPSG model, the mesh was segmented into four object categories.
Those categories are chair, PC, table, and wardrobe. The non-SPSG model
has been segmented into seven object categories: chair, PC, pole, robot, table,
unidentifiable, and wardrobe. The non-SPSG model has more categories
because by using SPSG, many of the objects merged and created weird-
looking objects that could not be segmented. Moreover, the robots segmented
in the non-SPSG model disappeared during the reconstruction and thus could
not be segmented. However, the main categories for segmentation which are
chair, PC, wardrobe and table, remained the same for comparison of results.
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In the Figures 6.1 6.2a and 6.2b examples of the 3D segmentation can be

seen. It is visible that the model does not look realistic, however there is a
possibility of using the original scanned images with the mask, if the masks
did not contain any holes.

Figure 6.1: Segmented empty map of non-SPSG model.

(a) : Segmented chair (b) : Segmented robot

Figure 6.2: Segmented object examples.
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6.0.2 AI Habitat

To generate the training data (i.e., RGB images and instance segmentation
masks), AI habitat was used. The script that has been written is a modified
version of a previously written [35] script used for experiments in BROCA
hospital.

The objects were converted using obj2glb.py script [23], and the training
data have been generated using generate_dataset.py [23].

Conversion to .glb

Firstly, all the segmented models needed to be converted into .glb format.
This means that both scenes and all objects needed to be transformed from
.ply/.obj into .glb. This has been achieved using obj2gltf software [36]. The
essential thing is that all the data used by AI habitat need to have their roof
aiming towards the positive y-axis. To do that, all the objects and meshes
were rotated 90° around the x-axis.

Additionally, a corresponding .json file needs to be created for each object.
It is enough if this .json contains only the name of the .glb file.

Generation of NavMesh

Another important step is to generate .navmesh for both scenes. The NavMesh
represents the area where the center of the agent can move. This has been
done using datatool software provided by habitat. For the generated .glb
scene file with the correct orientation, it was sufficient to run:

./datatool create_navmesh
input_file.glb
output_file.navmesh

After the .navmesh file is created, the only necessary steps are to load
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the correct scene file with its corresponding .navmesh file and add all the
segmented objects into the scene in AI habitat.

Semantic camera

Since all the segmented objects have been sorted into directories based on their
category, each object has been added to the scene with a label corresponding to
its original directory. Addition of files from corresponding category directories
can be seen at [23] in script generate_dataset.py, on lines 161 - 178.

After using AI habitat to add all the objects into the scene with their
corresponding category ids, it is possible to start using the semantic camera.
The semantic masks display colors based on the category id of the object that
is visible in the frame. Visualization of the semantic camera can be seen in
Figure 6.3.

(a) : RGB camera (b) : semantic camera

Figure 6.3: RGB frame with itscorresponding semantic frame.

Generating instance masks from semantic camera

The next step was to generate training data for YOLACT. It is necessary
to have RGB frames with corresponding segmentation masks in the COCO
dataset format [7]. This has been achieved by placing the agent in the AI habi-
tat into a random navigable point using env.sim.sample_navigable_point()
and assigning him a semi-random camera rotation. This rotation has been
adjusted to not point fully to the ground or the ceiling.

We generated an RGB image and its corresponding instance mask using
the semantic image. All the necessary information has been written into a
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corresponding .json format in the COCO dataset format.

For both models, 2000 training and 1000 evaluation images have been
generated with their corresponding annotations.

COCO dataset

COCO dataset is a standard format used in object detection training. It
is a dictionary that consists of: "info", "licences", "images", "categories" and
"annotations". Each section contains specific information about the given
section. For our purpose of training YOLACT, the "info" and "licenses"
sections were left out.

Firstly, the "images" dictionary item is a structure containing four values for
each image. Those values are "id," which represents the id of the given image,
"file_name," which defines the name of the RGB frames file, and "height"
and "width," which represent the image dimensions. The image structure,
therefore, looks like this:

image[n]
id
file_name
height
width

Secondly, the "categories" dictionary item is a structure containing two
values for each category in the list. These values are "id" representing the
category id and "name" representing the category name. The structure for
each category follows this structure:

category[n]
id
name

Lastly, the "annotations" dictionary item contains seven values for each
object annotation. The first value is the annotation "id" required to be unique
for each new annotation. The second value is the "image_id" depicting the
image in which the annotation is. The third value is the "category_id" that
describes the category of the object in the given image. The next three values
define the segmentation of the object in the picture. Those values are "b_box"
representing the bounding box of the segmentation, "segmentation," which
is an array defining the exact location of the object, and "area" defining the
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area that the object covers in the frame. The bounding box has been located
using a simple function written in python (part of generate_dataset.py [23]).
The segmentation and area were obtained using a COCOstuffAPI library. [7].

The structure for each annotation therefore looks like this:
annotation[n]

id
image_id
category_id
bbox
segmentation
area
iscrowd : 0

The full .json annotation file has a following structure:
.json

images
image[n]
...

categories
category[n]
...

annotations
annotation[n]
...

This .json has been created using a dictionary format in python with exactly
the same structure as the output .json file. After completing the dictionary
the .json file was created using outfile.write(json.dumps(dictionary)).

Using COCO_Assistant API [37] it was poosible to visualize these two
datasets:

(a) : example 1 (b) : example 2

Figure 6.4: COCO annotations on images from dataset without SPSG.
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(a) : example 1 (b) : example 2

Figure 6.5: COCO annotations on images from dataset with SPSG.

6.1 YOLACT

6.1.1 Training YOLACT

For training object detection, we used YOLACT with two custom datasets.
The two custom datasets consist of a set of images and an annotation .json
file. It was expected that the dataset made from a scene reconstructed with
SPSG would produce better results during the evaluation of the YOLACT
training.

To train YOLACT, the software was installed according to installation
instructions available on Github [8]. The only necessary step was to modify
the config.py file to specify the custom dataset. We specified the paths to
test, validation datasets, and corresponding categories for both datasets and
a custom config called example_base_config was created using those defined
datasets. Examples of custom datasets specifications are written below.

spsg_dataset = dataset_base.copy({
’name’: ’SPSG Dataset’,
’train_images’: ’data/images/SPSG_train’,
’train_info’: ’data/annotations/SPSG_train.json’,
’valid_images’: ’data/images/SPSG_val’,
’valid_info’: ’data/annotations/SPSG_val.json’,

’has_gt’: True,
’class_names’: ("wardrobe", "chair", "table", "PC")

})
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no_spsg_dataset = dataset_base.copy({

’name’: ’NO-SPSG Dataset’,
’train_images’: ’data/images/NO_SPSG_train’,
’train_info’: ’data/annotations/NO_SPSG_train.json’,
’valid_images’: ’data/images/NO_SPSG_val’,
’valid_info’: ’data/annotations/NO_SPSG_val.json’,

’has_gt’: True,
’class_names’: ("PC", "wardrobe", "unidentifiable",
"chair" ,"robot" ,"table" ,"pole" )

})

Example of the custom config that has been used can be seen below.

example_base_config = coco_artwin_base_config.copy({
’name’: ’no_spsg’,
# Dataset stuff
’dataset’: spsg_dataset, #kuka_env_pybullet_dataset
’num_classes’: len(spsg_dataset.class_names) + 1,
#The +1 stands for "background" class

# Image Size
’max_iter’: 10000,
’lr_steps’: lr_steps

})

The command for running YOLACT training used is:

train.py
--batch_size=2
--config=example_base_config

The batch size has been reduced to 2 because of the amount of available
memory. Note, that all the masks smaller than 16 pixels (4 width, four height)
have to be removed from the dataset. When trying to specify the image size,
some other bugs occurred because the size of RGB frames was larger than
the recommended 550 (i.e., 756 x 1344). By experimental evaluation, we
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discovered that it is better not to specify the image size because YOLACT
resizes the frames automatically.

6.1.2 YOLACT evaluation

We trained the YOLACT using 10 000 iterations for each dataset. Three
different directories with testing data were created and used during the
evaluation. Those directories were images from the SPSG dataset, the non
SPSG dataset, and real photos captured with Kinect. Each dataset was
evaluated on real data and the corresponding testing images.

The command used for evaluations is:

eval.py
--score_threshold=0.15
--trained_model=path/to/trained/model
--images=path/to/test/images:path/to/output
--config=example_base_config
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The results were obtained in the form of images with masks and bounding

boxes. The images below show examples of the output data for each evaluation.
The in-depth results are discussed in the next chapter, section 7.4.

(a) : example 1 (b) : example 2

Figure 6.6: YOLACT eval.py results on non SPSG dataset and non SPSG
images.

(a) : example 1 (b) : example 2

Figure 6.7: YOLACT eval.py results on SPSG dataset and SPSG images.

Figures 6.6 and 6.7 show results on non-real images. We can see that the
results are relatively accurate based on the quality of the input dataset. The
following two figures show the results on real images, where the accuracy is
much lower. We can conclude that object detection does not work on real
images from Azure Kinect, because the masks and rendered images do not
look realistically.
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(a) : example 1 (b) : example 2

Figure 6.8: YOLACT eval.py results on non SPSG dataset and real images.

(a) : example 1 (b) : example 2

Figure 6.9: YOLACT eval.py results on SPSG dataset and real images.
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Chapter 7

Result analysis

In the following chapter, we discuss all the experiments, conclude results, and
propose improvements. Some strengths and weaknesses of the process are
listed, and the standard pipeline without SPSG is compared with the new
pipeline (with SPSG) that we proposed as a better alternative.

An important thing to mention is, that the primary goal of the thesis was
to evaluate the possibilities of training 2D instance segmentation from the
segmented 3D scene. We expected that the process of running all the software
will not be that time consuming. Most of the tasks consisted of enhancing
and creating multiple codes in order to run the key parts of the thesis. Thus,
from a project that was supposed to study a specific topic, it transformed
into a more software project.

7.1 Scanning process

First of all, let us discuss the scanning process. The number of scanned
images used for reconstruction was sufficient. In the case of having fewer
images, the models would be less detailed. On the other hand, having more
images might slightly improve the quality of models, but the computing
times for reconstruction would increase. We believe that for our purpose,
approximately 20 000 images were enough.
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Moreover, we employed multiple devices because each device allowed us

to enhance the different properties of the 3D model and added a unique
feature to the project. By having only one scanning device, we would lose
the opportunity to choose the most accurate device or for example lose most
of the tracks by not having wide-angle images at the input. This variability
helped us choose the most straightforward paths and sped up the process.

In conclusion, the scanning process was successful. Examples of the scanning
and processing data can be found at [23].

7.2 COLMAP

Secondly, we discuss the COLMAP reconstruction. COLMAP was a handy
software that perfectly reconstructed the scene.

However, one issue was encountered during the process. During the first
run of COLMAP we did not specify the argument –single_camera_per_folder
and it caused some deformations and bad geometry of the scene.

When using the correct parameters, the camera intrinsics and camera
extrinsics were relatively accurate and while working with data from COLMAP,
it was relatively easy to find all the needed information because of the available
documentation for all the parts of the software.

All the data obtained from SPSG did not contain any errors, and therefore
it can be concluded that COLMAP is a reliable software. The COLMAP
database might have included some errors and artifacts, but this would have
been only a small number of samples used. No actual errors were found
during the project.

7.3 SPSG

The biggest issue we encountered was bounded with SPSG. First of all, the lack
of documentation made it difficult to understand the software and its usage.
The article about SPSG perfectly describes the theoretical part. However, all
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the practical information was missing. This caused a considerable delay in
the proposed schedule, and it took more than six months to run all the parts
necessary correctly.

Secondly, the presented results in the article are not depicting the reality of
the reconstructions. After running the software on the data provided by the
authors and comparing the results with the results presented, it was surprising
to find out that, in reality, the results are not as accurate as presented.

The results are presented in the following figures, compared to our results
with the same scenes but looking from different angles and positions. Firstly,
let us look at the presented results and the results obtained by running the
program.
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Figure 7.1: Results presented by SPSG. [6]

Figure 7.2: Our results from the same room.

As it can be seen, the results look very similar, if not the same. The
reconstruction appears to work well, filling all the holes and repairing all the
inconsistencies. However, this is not true while observing the model from a
different position.
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Figure 7.3: Our results from the same room but different position.

We can see that the scan contains new artifacts and holes that were not
present in the input scan that was used. We can conclude that the software
is not working perfectly as presented at the oral presentation of CVPR 2021.

We initially believed, that the software was not working correctly because
of some mistake in our dataset. However, from the comparison of the data
presented by the authors and the output of SPSG on this data, we can see
the same artifacts and missing parts of the 3D model. Our observation is
that the software is not working as expected.

7.4 YOLACT

The results from YOLACT are defined by mean average precision (mAP) [38]
for the bounding boxes and the predicted segmentation masks. Firstly let us
summarize the results from the dataset without SPSG.
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Category bbox mAP [%] mask mAP [%]

All categories together 29.58 28.93
Pole 29.22 32.64
Table 30.10 12.62
Robot 19.23 10.24

Unidentifiable 9.04 5.46
Wardrobe 60.28 67.66

PC 26.37 37.32
Chair 32.82 36.58

Table 7.1: mAP results non-SPSG

The results show that the mAP of the bounding box estimation was
approximately 30%, and the mask was estimated with mAP of approximately
29%.

Secondly let’s introduce the results for the SPSG dataset:

Category bbox mAP [%] mask mAP [%]
All categories together 24.81 23.86

Table 21.96 17.96
Wardrobe 54.32 54.92

PC 19.95 19.19
Chair 3.02 3.38

Table 7.2: mAP results SPSG

These results show that the mAP of the correct bounding box and mask is
lower than in the non-SPSG model. They are equal to approximately 25%
and 24%.

The category with the highest mAP for both bounding boxes and masks
was wardrobe. This can be caused by the fact that it was usually the largest
object in the model, and therefore it was the easiest to detect.

These results were evaluated using rendered 3D images from the 3D model
as the testing images. We can observe that better results are obtained on the
images from the AI habitat than on the real images. However, we cannot
calculate exactly the mAP for the real images since no segmentation masks
(ground truth) were created.
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................... 7.5. Comparison of non-SPSG pipeline vs. SPSG pipeline

Moreover, our hypothesis that evaluation would have higher accuracy on
the SPSG enhanced model did not prove right. This was mainly caused by
the SPSG approach and the pretrained model.

7.5 Comparison of non-SPSG pipeline vs. SPSG
pipeline

The last note compares the classic SfM pipeline featuring COLMAP and the
enhanced pipeline composed of COLMAP and SPSG.

The COLMAP pipeline works well for creating the 3D representations
of the scene. However, for object detection training it is not accurate and
realistical enough, and it would need another software to improve the overall
quality, e.g., IBRNET [39]. Such experiments are, however out of the scope
of this thesis.

We expected the SPSG model to be more suitable for semantic segmen-
tation, but it did not prove accurate enough. The SPSG did not meet our
expectations, because the quality of both models was almost the same. The
only benefit of using SPSG found is that it can close all the holes in the floor
of the scan and therefore allow better navigation of agents in AI habitat.

Therefore, there is no real point in using this version of the SPSG.

7.6 Possible improvements

This section discusses the possible approaches that could improve the results
of YOLACT evaluation. These ways are purely theoretical, and are planned
to be evaluated in future work.
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7. Result analysis ....................................
7.6.1 More scanned data

The first suggestion would be to have more images used for the dense recon-
struction. Even though the amount of data was sufficient, we should achieve
higher precision at the places that were not observed by any device. The best
approach would be to see what the models produced and scan the missing
inaccurate areas that did not reconstruct perfectly.

On the other hand, having more data would lead to longer processing and
computation times. Moreover, the size of all the files we operated with would
increase, leading to much more time spent on the project itself. This could
be solved by having better computers for all the tasks, but since this project
was mostly done on servers with high CPU and GPU, the computation time
cannot be optimized much more. Therefore, an advanced keyframe selector
would be required to have well spread images with the best possible coverage
of the environment.

7.6.2 SPSG trained model

Another possible improvement is to train the SPSG model on our data. The
SPSG model used in this thesis was trained on a Matterport 3D dataset
composed of images with different resolutions, different camera sensors, and
different scanning methods. Higher reconstruction accuracy might have been
achieved by training the model on our data.

7.6.3 Number of YOLACT iterations

Thirdly, the number of YOLACT iterations might also improve the results of
real-time segmentation. Even though this suggestion is the least efficient one
and it should improve the results only slightly.

The downside of this suggestion is that at a certain amount of iterations,
the mAPs almost stop increasing. However we cannot say that the increase
of those values entirely stops. In Figure 7.4, the trend of increasing mAP vs.
the number of iterations can be found. From this graph, we can observe the
mAP dependence on the number of iterations.
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................................ 7.6. Possible improvements

Figure 7.4: mAP vs. number of iterations.

7.6.4 Other improvements

Another possible improvement is the employment of the latest SoTA al-
gorithms for SfM and MVS. Not all of those algorithms are employed in
COLMAP. Using this tactic it might be possible to employ pixel-perfect SfM
to optimize the 3D model and camera poses.

Another improvement might be the usage of NERF-based methods. That
would allow us to generate new images that look realistically and can be used
for training. (i.e., usage of IBRNET [38].

Also, we could use a different method for point cloud completion. Especially,
we could try to fill the missing parts in-depth maps estimated by MVS, from
depth maps captured by ToF cameras. After training such neural network
we could then focus on depth maps instead of point clouds.
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7. Result analysis ....................................
7.7 Conclusion

The goal of this work was to evaluate the 2D instance segmentation on data
generated from 3D models. The biggest challenge is to have a 3D model that is
realistic enough to produce sufficient data for instance segmentation training.
We tried to optimize the 3D model by employing SPSG, but discovered that
it is not really possible.

Training of 2D instance segmentation using YOLACT did not work on
real images captured by Azure Kinect. Moreover the scene enhanced by
SPSG was still not accurate enough to produce realistically looking data. The
hypothesis stating that data from the SPSG model will have higher YOLACT
mAPs, did not prove to be correct.
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Chapter 8

Code

All codes used in this thesis are attached in file codes.zip. These are also
available in Github repository [23]

73



74



Appendix A

Bibliography

[1] Xiaoke Shen. A survey of object classification and detection based on
2d/3d data. CoRR, abs/1905.12683, 2019.

[2] Shuchao Pang, Anan Du, Zhenmei Yu, and Mehmet Orgun. 2d medical
image segmentation via learning multi-scale contextual dependencies.
Methods, 05 2021.

[3] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-
Michael Frahm. Pixelwise View Selection for Unstructured Multi-View
Stereo. In European Conference on Computer Vision (ECCV), 2016.

[4] Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-
Motion Revisited. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[5] Tapio Hellman and Mikko Lahti. Photogrammetric 3d modeling for
virtual reality, 08 2018.

[6] Angela Dai, Yawar Siddiqui, Justus Thies, Julien Valentin, and Matthias
Nießner. Spsg: Self-supervised photometric scene generation from rgb-d
scans. In Proc. Computer Vision and Pattern Recognition (CVPR),
IEEE, 2021.

[7] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross
Girshick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence
Zitnick, and Piotr Dollár. Microsoft coco: Common objects in context,
2014.

[8] Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae Lee. Yolact:
Real-time instance segmentation. In ICCV, 2019.

75



A. Bibliography.....................................
[9] Microsoft. Azure-kinect-sensor-sdk. https://github.com/microsoft/

Azure-Kinect-Sensor-SDK, 2020.

[10] Microsoft. device-wire. https://docs.microsoft.com/en-us/azure/
kinect-dk/media/resources/hardware-specs-media/device-wire.
png, 2021.

[11] Microsoft. Hololens2forcv. https://github.com/microsoft/
HoloLens2ForCV, 2020.

[12] Microsoft. hololens2-exploded-view-diagram. https://docs.microsoft.
com/en-us/hololens/images/hololens2-exploded-view-diagram.
png, 2021.

[13] David G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60:91–110, 2004.

[14] San Jiang, Wanshou Jiang, and Bingxuan Guo. Leveraging vocabulary
tree for simultaneous match pair selection and guided feature matching
of uav images. ISPRS Journal of Photogrammetry and Remote Sensing,
187:273–293, 2022.

[15] Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane,
Fabio Ganovelli, and Guido Ranzuglia. MeshLab: an Open-Source Mesh
Processing Tool. In Vittorio Scarano, Rosario De Chiara, and Ugo Erra,
editors, Eurographics Italian Chapter Conference. The Eurographics
Association, 2008.

[16] Blender Online Community. Blender - a 3D modelling and rendering
package. Blender Foundation, Stichting Blender Foundation, Amsterdam,
2018.

[17] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask
R-CNN. CoRR, abs/1703.06870, 2017.

[18] Patrick Langechuan Liu. Single stage instance segmentation — a review.
2020.

[19] Manolis Savva*, Abhishek Kadian*, Oleksandr Maksymets*, Yili Zhao,
Erik Wijmans, Bhavana Jain, Julian Straub, Jia Liu, Vladlen Koltun,
Jitendra Malik, Devi Parikh, and Dhruv Batra. Habitat: A Platform for
Embodied AI Research. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2019.

[20] Microsoft. camera-fov. https://docs.microsoft.com/en-us/azure/
kinect-dk/media/resources/hardware-specs-media/camera-fov.
png, 2021.

[21] Dorin Ungureanu, Federica Bogo, Silvano Galliani, Pooja Sama, Xin
Duan, Casey Meekhof, Jan St{"uhmer, Thomas J. Cashman, Bugra
Tekin, Johannes L. Sch{"onberger, Bugra Tekin, Pawel Olszta, and Marc

76

https://github.com/microsoft/Azure-Kinect-Sensor-SDK
https://github.com/microsoft/Azure-Kinect-Sensor-SDK
https://docs.microsoft.com/en-us/azure/kinect-dk/media/resources/hardware-specs-media/device-wire.png
https://docs.microsoft.com/en-us/azure/kinect-dk/media/resources/hardware-specs-media/device-wire.png
https://docs.microsoft.com/en-us/azure/kinect-dk/media/resources/hardware-specs-media/device-wire.png
https://github.com/microsoft/HoloLens2ForCV
https://github.com/microsoft/HoloLens2ForCV
https://docs.microsoft.com/en-us/hololens/images/hololens2-exploded-view-diagram.png
https://docs.microsoft.com/en-us/hololens/images/hololens2-exploded-view-diagram.png
https://docs.microsoft.com/en-us/hololens/images/hololens2-exploded-view-diagram.png
https://docs.microsoft.com/en-us/azure/kinect-dk/media/resources/hardware-specs-media/camera-fov.png
https://docs.microsoft.com/en-us/azure/kinect-dk/media/resources/hardware-specs-media/camera-fov.png
https://docs.microsoft.com/en-us/azure/kinect-dk/media/resources/hardware-specs-media/camera-fov.png


..................................... A. Bibliography

Pollefeys. HoloLens 2 Research Mode as a Tool for Computer Vision
Research. arXiv:2008.11239, 2020.

[22] OpenCV. Open source computer vision library, 2015.

[23] Jan Ferbr. Thesis 2022. https://github.com/ferbrjan/thesis_2022,
2022.

[24] Microsoft. Azure kinect transformation example. https:
//github.com/microsoft/Azure-Kinect-Sensor-SDK/tree/
develop/examples/transformation, 2020.

[25] Microsoft. image-transformation. https://docs.microsoft.
com/en-us/azure/kinect-dk/media/how-to-guides/
image-transformation.png, 2020.

[26] Microsoft. Hololens2forcv. https://github.com/microsoft/
HoloLens2ForCV/tree/main/Samples/StreamRecorder, 2020.

[27] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A modern
library for 3D data processing. arXiv:1801.09847, 2018.

[28] Angela Dai, Christian Diller, and Matthias Nießner. Sg-nn: Sparse
generative neural networks for self-supervised scene completion of rgb-d
scans. In Proc. Computer Vision and Pattern Recognition (CVPR),
IEEE, 2020.

[29] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias
Niessner, Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang.
Matterport3D: Learning from RGB-D data in indoor environments.
International Conference on 3D Vision (3DV), 2017.

[30] Angela Dai. Spsg. https://github.com/angeladai/spsg, 2021.

[31] Prof. Matthias Nießner. mlib. https://github.com/niessner/mLib,
2015.

[32] M. Hohenwarter, M. Borcherds, G. Ancsin, B. Bencze, M. Blossier,
A. Delobelle, C. Denizet, J. Éliás, Á Fekete, L. Gál, Z. Konečný, Z. Kovács,
S. Lizelfelner, B. Parisse, and G. Sturr. GeoGebra 4.4, December 2013.
http://www.geogebra.org.

[33] Tomáš Pajdla. Elements of geometry for robotics. 2021.

[34] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas
Funkhouser, and Matthias Nießner. Scannet: Richly-annotated 3d
reconstructions of indoor scenes. In Proc. Computer Vision and Pattern
Recognition (CVPR), IEEE, 2017.

[35] Stanislav Steidl. habitatros. https://gitlab.com/ssteidl/
habitat-ros, 2021.

77

https://github.com/ferbrjan/thesis_2022
https://github.com/microsoft/Azure-Kinect-Sensor-SDK/tree/develop/examples/transformation
https://github.com/microsoft/Azure-Kinect-Sensor-SDK/tree/develop/examples/transformation
https://github.com/microsoft/Azure-Kinect-Sensor-SDK/tree/develop/examples/transformation
https://docs.microsoft.com/en-us/azure/kinect-dk/media/how-to-guides/image-transformation.png
https://docs.microsoft.com/en-us/azure/kinect-dk/media/how-to-guides/image-transformation.png
https://docs.microsoft.com/en-us/azure/kinect-dk/media/how-to-guides/image-transformation.png
https://github.com/microsoft/HoloLens2ForCV/tree/main/Samples/StreamRecorder
https://github.com/microsoft/HoloLens2ForCV/tree/main/Samples/StreamRecorder
https://github.com/angeladai/spsg
https://github.com/niessner/mLib
http://www.geogebra.org
https://gitlab.com/ssteidl/habitat-ros 
https://gitlab.com/ssteidl/habitat-ros 


A. Bibliography.....................................
[36] CesiumGS. obj2gltf. https://github.com/CesiumGS/obj2gltf/

commits/0.1.0, 2015.

[37] Ashwin Nair. Coco-assistant. https://github.com/ashnair1/
COCO-Assistant, 2019.

[38] Paul Henderson and Vittorio Ferrari. End-to-end training of object class
detectors for mean average precision. CoRR, abs/1607.03476, 2016.

[39] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul P. Srinivasan,
Howard Zhou, Jonathan T. Barron, Ricardo Martin-Brualla, Noah
Snavely, and Thomas A. Funkhouser. Ibrnet: Learning multi-view
image-based rendering. CoRR, abs/2102.13090, 2021.

78

https://github.com/CesiumGS/obj2gltf/commits/0.1.0
https://github.com/CesiumGS/obj2gltf/commits/0.1.0
https://github.com/ashnair1/COCO-Assistant
https://github.com/ashnair1/COCO-Assistant

	Project Specification
	Introduction
	Key concepts
	Scanning
	Azure Kinect
	Hololens 2
	Samsung Galaxy S10e

	Sparse and dense reconstruction
	COLMAP
	Hololens 2

	SPSG
	Semantic segmentation, instance segmentation and instance masks
	AI Habitat

	Training
	Yolact

	Convolutional neural networks

	Structure of the thesis summarized using a diagram
	Data collection
	B-635 laboratory
	Recording devices
	Azure Kinect
	Hololens 2
	Samsung galaxy S10e


	Data processing
	Azure Kinect
	Image processing
	Depth image alignment
	Point cloud/mesh

	Hololens 2
	Image processing
	Point cloud/mesh

	COLMAP
	COLMAP input
	Sparse reconstruction
	COLMAP output

	SPSG
	Installation
	Testing on data provided by the authors
	Structure of SPSG
	Datagen
	Point cloud alignment
	Point cloud rotation
	Point cloud to mesh
	.sens file creation
	SPSG


	Segmentation and training
	Meshlab segmentation of 3D model
	AI Habitat

	YOLACT
	Training YOLACT
	YOLACT evaluation


	Result analysis
	Scanning process
	COLMAP
	SPSG
	YOLACT
	Comparison of non-SPSG pipeline vs. SPSG pipeline
	Possible improvements
	More scanned data
	SPSG trained model
	Number of YOLACT iterations
	Other improvements

	Conclusion

	Code
	Bibliography

