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Abstract

Object-oriented Java library for operating on polynomial matrices was created in this work.
It provides developers and control engineers with a programming interface for implementing
applications relying on manipulation with polynomial matrices. A polynomial matrix is a math-
ematical tool for description of both continuous and discrete dynamical systems. A new efficient
object structure of classes storing various information about polynomial matrices was designed
and it enables very efficient and reliable object oriented development of applications. Basic lin-
ear algebra operations with polynomial matrices were implemented. These algorithms are based
on computation with constant matrices. Therefore existing Java library for computing with con-
stant matrices was chosen. Syntax and semantics of implemented methods were documented
and shown in simple examples of usage. Functionality of all methods was exceedingly tested
and computational performance of more demanding operations was assessed by means of ex-
haustive numerical experiments. This initial version of Java library is fully functional and can be
used in practice by applications that require operations on polynomial matrices.

Abstrakt

V této praci byla vytvéena objektova knihovna v jazyku Java pro préaci s polynomialnimi
maticemi. Knihovna poskytuje vyvdjam a navrh&im regulatorli programéatorské rozhrani pro
implementaci aplikaci, které vyuzivaji polynomialni matice. Polynomiélni matice je matema-
ticky nastroj slouzici k popisu dynamickych systémd jak spojitych tak diskrétnich. Byla navrzena
objektové strukturaftd uchovéavajicich informace o polynomialni matici. Byly implementovany
zakladni algebraické operace nad polynomialnimi maticemi. Tyto algoritmy jsou zaloZeny na
vypocCtech s konstantnimi maticemi, proto byla pouzita existujici javovska knihovna pro préaci
s konstantnimi maticemi. Je popsana syntaxe a sémantika implementovanych metod a jejich
pouZiti je ukazano na jednoduchydhiftadech. Spravna furtikost vSech metod byla otestovana.
Déle byla zn&ena a vyhodnocena doba vygio Casoe nar@néjSich operaci. Tato prvni verze
javovské knihovny je plé funkéni a mlze byt pouZita v praxi v aplikacich, které vyzaduiji
vypoCty s polynomialnimi maticemi.
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Chapter 1

Introduction

Polynomial matrix is a mathematical tool for description of dynamical systems. A dynamical
system can be described by set of differential or difference equations or by polynomial matrices.
Properties of dynamical system can be found by solving differential equations or by studying
algebraic properties of polynomial matrix. Furthermore, polynomial matrix can be used for
advanced controller design (LQGI, H., etc.) or in signal processing applications (Wiener
filters, Kalman filters, etc.) [18].

Only a few packages for computing with polynomial matrices exist. Namely, Polynomial
Toolbox [19] for Matlab, a commercial package developed and distributed by PolyX company,
Scilab [12], a library in a free Matlab clone developed by researchers at INRIA and finally,
Maple [14], a commercial CAS system (Computer Algebra System), whose support of polyno-
mial matrices is very simple. But things are changing now, reflecting a growing need for reliable
tools for polynomial matrices on diverse platforms. There are also rumours that some polyno-
mial package is being prepared for Mathematica, a commercial CAS system produced by Wol-
fram Research company. At the same time, a very mature Mathematica package for polynomial
matrices has been developed by Jiri Kujan and the development still continues. An astonishingly
efficient C++ package named PolPackt+ [7] has been developed by Leos Halmo. A simple li-
brary for TI-89/T1-92 programmable calculators was coded by Petr Stefko. Last but not least, a
purely symbolic package is being developed by Petr Augusta for commercial MuPAD package.
All these new packages have been developed at the Department of Control Engineering at CTU
FEE in Prague.

The aim of this work is to create object-oriented package for polynomial matrices similar to
mentioned products. It should be operating system independent and therefore Java language is
used for implementation. It should offer functional and fast enough application programming
interface for basic linear algebra operations on polynomial matrices to enable develop software
using polynomial matrices. Created package should be basis of graphical user interface of ap-
plications for design of robust controllers or optimal filters. These applications should run espe-
cially on the Internet and Java is the best solution for creating web applications. The portability of
Java allows deploying applications both on Unix and Windows platforms without any changes in
code. The advantage is that Java is distributed for free, it can be extended with existing libraries
and it is independent on universal, expensive environments as Matlab or Mathematica.
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CHAPTER 1. INTRODUCTION

1.1 Contribution of the Work

1. Arigorous analysis of suitability of Java for numerical computation.
2. Complete list of available software packages and their comparison.
3. Design of classes.

4. Implementation of the package.

5

. Web page.

1.2 Features of the Library

| created package that is collection of classes that enable storing continuous and discrete-time
(two-sided) polynomial matrices. These classes also enable performing basic linear algebra op-
erations - addition, subtraction, multiplication, conjugation, transposition, norm, value, scaling,
determinant, rank and roots of polynomial matrix. | based algorithms for computing determi-
nant, rank and roots of polynomial matrix on evaluation of a polynomial matrix at a set of points
equally distributed along the unit circle using FFT and on interpolation of a set of constant ma-
trices by a polynomial matrix using inverse FFT. The package offers solvers of linear equations
A(s)B(s)=X(s),A(z)B(z)=X(z) andA(s)X(s)+B(S)Y (s)=C(s). Furthermore, | created supportive
classes for exporting polynomial matrices into MathML and other formats, functionality tests
with graphical outputs, testing framework for performance tests. Executed performance tests
generate outputs for further statistical processing and corresponding tests of Polynomial Toolbox
for Matlab. The package is fully documented programming interface with number of examples
for better understanding.

1.3 Overview of the Document

This document is divided into chapters describing proposal of library, implemented appli-
cation programming interface (API) and tests. Thmalysis and Desigrhapter starts with
discussing issue of numerical computing in Java. Then the most suitable existing Java library
for basic linear algebra computations with constant matrices and complex numbers is chosen.
Basic classes and their structure are designed in the final pari.ibteey Descriptionchapter
describes implemented API. Syntax and semantics of each method are described. Examples of
usage and basic idea of implemented algorithm are shown for more complex methods. Function-
ality and performance tests are discussed inTésschapter. Frameworks used for both types
of tests are described and pieces of implemented tests are shown. Test results are summarized in
the Conclusionchapter.

Source codes (i.e. method names, code examples. class names, etc.) are written in courier
font (e.g.toString() ). Comments of code are written in courier font in italic (elgs is
a comment).

12



CHAPTER 1. INTRODUCTION

Attached CD

The CD attached to this document contains:

This document in PDF format,

Offline version of project’'s web pages, includes:

- browsable examples,

- outputs of performance tests,

- builds to download,

- documents related to project (proposal, poster, polynomial research group information),
- browsable version of design diagrams,

- links related to project,

- contact information,

Build of Java package for operating on polynomial matrices from January 2004,

Complete source codes including examples,

Java documentation of created programming interface,

Useful downloads (Java Runtime Environment, MathPlayer, etc.).

For more information semdex.htmffile in the root directory of CD.

13



Chapter 2

Analysis and Design

It is necessary to consider suitability of Java for numerical computing and find an existing
Java library for basic linear algebra algorithms. Design of the important objects (especially
classes keeping information about polynomial matrices) must be done. A few Java libraries that
enable performing basic linear algebra algorithms on constant matrices exist. It is necessary to
choose one of them, which fits best the needs of implementation polynomial matrices library.
Its structure must be taken into account during design as well. All these mentioned issues are
discussed in this chapter.

2.1 Java and Numerics

In this section general advantages and disadvantages of Java language are mentioned first,
then issues concerned to Java and numerics are described more particularly and the best solutions
reducing disadvantages are explained.

Java is the platform independent language (the same code works on Windows, Unix and
the other platforms). It supports modern technologies as Internet applications, working with
databases, multithreading, networking, etc. It has protected memory access (i.e. there are no
pointers, only object references exist), automatic memory allocation and deallocation (garbage
collector). Java is the object language easy to understand for developers. Java documentation is
standard documentation that very effectively introduces to developers usage of API (application
programming interface) [6].

Java and numerics issues are discussed at the Numerics Working Group of the Java Grande
Forum [5]. The goals of the Numerics Working Group of the Java Grande Forum are to assess
the suitability of Java for numerical computation, to work towards community consensus on ac-
tions which can be taken to overcome deficiencies of the language and its run-time environment,
and to encourage the development of APIs for core mathematical operations. The Group hosts
open meetings and other forums to discuss these issues. It is supported by the Mathematical and
Computational Sciences Division of the NIST Information Technology Laboratory. The Numer-
ics Working Group has contributors from many companies and universities involved in Java and
numerics (Sun, IBM, MathWorks - professor Cleve Moler contributed, Visual Numerics, etc.).

14



CHAPTER 2. ANALYSIS AND DESIGN

Java language is not always suitable for implementation of numerical algorithms. Java as
interpreted language is slower than compiled languages and executing of code is therefore slower.
This disadvantage is partly removed by Just-In-Time compiler [10], included in the Java HotSpot
Virtual Machine [22], that increases performance of executed code. Arrays and multidimensional
arrays (need for operating on matrices) are in Java treated similarly as objects. There is no
primitive data type for complex numbers. It is not possible to define overloaded operator.

2.1.1 Multidimensional Arrays

Arrays and multidimensional arrays (needed for operating on matrices) are treated similarly
as objects in Java. It means that each array element is referenced and it is the reason why multi-
dimensional arrays are allowed to have different sizes of arrays in each dimension - multidimen-
sional array is array with references to arrays (e.g. in two-dimensional case each row of matrix
might have different numbers of columns). Because of reference behaviour array elements might
access the same memory area.

Once allocated arrays cannot be resized any more. Java automatically checks array bounds
whenever an arrays is accessed.

It is proposed[5] to store matrices, i.e. multidimensional arrays of primitive data types (e.g.
double , int ), as classes. Constructors of such classes should check the rectangularity of an
array. New array must be allocated when a matrix is resized.

2.1.2 Complex Numbers

There is no primitive data type for complex numbers. Primitive data types are kept in stack
memory, which has fast access. Dynamically allocated objects are stored in heap having slower
access|[6]. Complex numbers must be defined as objects having defined operations on com-
plex numbers. It is necessary to distinguish between semantics of operators. Opesatisr
value of primitive data type or it sets reference to memory area with an object instance. Op-
erator == compares values of primitive data types or it compares two references pointing to
memory areas with object instances [5].

2.1.3 Operator Overloading And Lightweight Classes

It is more readable to use operators instead of methods substituting operatca (.o
instead ofa.add(b) ) but Java does not enable overload operators (which would be useful e.g.
for class storing complex numbers, §ee 2.1.2) [5].

It would be useful to create classes having some properties of primitive data types (e.g. op-
erator semantics, see 2.[1.2) which could have positive influence on performance (object would
be stored in stack with faster access than heap). Properties of lightweight classes are described
in [5]. Lightweight classes are not taken in account because it is non-standard Java usage.

15



CHAPTER 2. ANALYSIS AND DESIGN

2.2 Library Choice

Algorithms for polynomial matrices are based on operating on constant matrices. It is there-
fore a right strategy to base this polynomial package on some existing high quality library for
constant matrices. There are both commercial and open source Java libraries for basic linear
algebra algorithms. Their properties are listed in t.2.1

] H JNL \ JMSL \ JMAT \ NINJA \ JAMA \ COLT \
Open Source no no yes yes yes yes
Last Update 1997 2003 2003 1999 1999 2001

Java Grande Req. no no yes yes yes yes
Real Vector yes yes yes yes yes yes
Real Matrix yes yes yes yes yes yes

Complex Vector yes yes no yes no no
Complex Matrix yes yes no yes no no
Linear Algebra yes yes yes no yes yes

Table 2.1: Libraries for basic linear algorithms

JMSL 2.0 by Visual Numerics has been chosen for its complexity, availability, graphical
interface, web application interface and support as the most suitable library for further design
and implementation.

2.2.1 The JMSL Library and Visual Numerics

The JMSL Library [24] marketed by Visual Numerics is a complete collection of mathemat-
ical, statistical and charting classes that are used for developing network-centric, cost effective
applications. Itis written 100% in Java and easily fits into any Java application. Itincludes linear
algebra, zero finding, splines, ordinary differential equations, linear programming, nonlinear op-
timization, FFTs, special functions, regression, ANOVA, ARMA, Kalman filters. It can be used
in both standalone and Web environments. The library can be typically applied in these areas:

¢ Risk Management and Portfolio Optimization in Finance and Insurance,

Manufacturing Yield Analysis, Process Control,

R&D Analytical Tools for Data Analysis and Product Optimization,

Energy Consumption Analysis,

Customer and Market Visual Data Analysis,

linformation were gathered in February 2003

16



CHAPTER 2. ANALYSIS AND DESIGN

e Extending Analysis and Visualization Capabilities for ISVs
- Business Intelligence
- Databases
- Supply Chain.

Created library for polynomial matrices uses JMSL 2.0 but new JMSL 2.5 was released in June
2003. New version includes new, more robust, non-linear optimization routines, curve fitting
functions for graphical display, data mining and statistical algorithms and charting enhance-
ments.

There is a few disadvantages or missing functionalities of JMSL 2.0 required for implemen-
tation and using library for polynomial matrices:

e JMSL is a commercial product,
e Class for complex matrix is missing some linear algebra methods,

e 2-D and 3-D FFT algorithm is missing.

Cooperation with Visual Numerics

The license was obtained from Visual Numerics for free. It is valid until this work is fin-
ished (spring 2004). People from Visual Numerics are interested in the package for polynomial
matrices and would like negotiate further cooperation with Faculty of Electrical Engineering,
CTU in Prague.

2.3 Design

The purpose of created library is to provide a developer with an efficient application program-
ming interface (API) for operating on polynomial matrices. It should be primarily object-oriented
library and its structure and algorithms should consider Java limits for numerical computing men-
tioned above (s€e 2.1). Algorithms for polynomial matrices should use methods for calculating
with constant matrices provided by JMSL 2.0 from Visual Numerics (s€e[[23], 2.2).

The API should enable to developer define object of polynomial matrix, its properties and
execute mathematical operations using interface methods.

The most important issue of design is to decide how to store coefficients of polynomial matrix
in array. Often used mathematical operations on polynomial matrices are effectively calculated
when coefficients of polynomial matrix are stored as 3-dimensional arrays having degrees in the
first dimension, rows in the second dimension and columns in the third dimension (i.e. polyno-
mial matrix is a polynomial having constant matrices as coefficients). An example of coefficients
storage is shown in figufe A.7. Polynomial matrix object should keep information about degree
of polynomial matrix, its number of rows and columns, etc. All of these information are needed
later when performing operations on polynomial matrix.

17



CHAPTER 2. ANALYSIS AND DESIGN

It is useful to distinguish continuous-time polynomial matrices and discrete-time polynomial
matrices. Discrete polynomial matrices are allowed to have polynomials with negative powers.
Discrete-time polynomial matrices are also called two-sided polynomials or Laurent polynomial
matrices. They are supported only by the Polynomial Toolbox for Matlab out of the existing
few packages (see chapjtér 1). The advantage of having both positive and negative powers in one
polynomial matrix stands out in optimal control and estimation problems. Most of algorithms
for both continuous and discrete polynomial matrices have common basis and therefore it is

reasonable to define abstract claBslynomialMatrix ). PolynomialMatrix class is
ancestor of continuous and discrete polynomial matrix clagsest(nuousPolynomial-
Matrix , DiscretePolynomialMatrix ).

Designed principal classes, their structure and relations between classes are found in ap-
pendix/A. Semantics of diagrams is explained(ih [1]. The following chapter describes imple-
mented API and its usage.

18



Chapter 3

Library Description

In this chapter application programming interface (API) of implemented library is described.
This chapter is divided into sections according to existing classes. They are ancestor of polyno-
mial matrix objectsolynomialMatrix ), class for operating on continuous polynomial ma-
trices ContinuousPolynomialMatrix ), class for operating on discrete polynomial matri-
ces DiscretePolynomialMatrix ), class performing fast Fourier transform on polynomial
matrices PolynomialMatrixFFT ), class solving linear equation with polynomial matrices
(ContinuousAXB, DiscreteAXB, AXBYC ) and class enabling exporting polynomial ma-
trix into MathML format and its transform$V{athMI| ). Class usage is shortly explained and its
location (package) is given at the beginning of each section. Each section is divided into subsec-
tions describing constants and APl methods of class (public methods). The functionality of each
method is shortly explained, the syntax is described (i.e. method’s parameters, return values,
thrown exceptions), usage of method is shown on a simple example and finally implementa-
tion of more complex algorithms is described. Special section describing exceptions used for
handling errors is found at the beginning of this chapter. More detailed information about all
implemented classes and their APl can be found in Java documentation [16], see example on

figure[E.7.
3.1 EXxceptions

All exceptions are stored in one package reserved for them. All of them are inherited from
java.lang.Exception [22,110,[6]. Only these exceptions can be thrown by library meth-
ods. Itis said in each section describing method whether and which exceptions is thrown. In case
of throwing exception by method, it must be wrapped in try-catch block [10, 6]. Each exception
contains text describing reason for throwing exception.

Package
cz.ctu.fee.dce.polynomial.exceptions

All exceptions are listed in tabfe 3.1.

19



CHAPTER 3. LIBRARY DESCRIPTION

] Exception Description

lllegalPMCoefficientsException | Exception indicates illegal polynomial matrix co-
efficients (e.g. coefficients, i.e. constant matrices,
have different sizes for each degree or are not rect-
angular.)

PMAXBEXxception Exception indicates that linear equation
A(s)X(s) = B(s) with polynomial matrices cannot
be computed.

PMAXBY CException Exception indicates that linear equation
A(s)X(s) + B(s)Y(s) = C(s) with polynomial ma-
trices cannot be computed.
PMDeterminantException Exception indicates that determinant of polyno-
mial matrix cannot be computed (e.g. when paly-
nomial matrix has different number of rows and

columns).

PMNormException Exception indicates than norm of polynomial ma-
trix cannot be computed.

PMRootsException Exception indicates that roots of polynomial ma-
trix cannot be computed.

PMsAddException Exception indicates that polynomial matrices can-
not be added or subtracted.

PMScaleException Exception indicates that polynomial matrix cannot
be scaled.

PMsMultiplyException Exception indicates the polynomial matrices can-

not be multiplied.

Table 3.1: List of exceptions

3.2 ClassPolynomialMatrix

PolynomialMatrix class is the ancestor @ontinuousPolynomialMatrix and
DiscretePolynomialMatrix classes. It is abstract class and therefore it cannot be in-
stanced. It contains implemented functionalities common for both descendants. Some function-
ality is the same for both continuous and discrete polynomial matrix. It is the reason why some

methods implemented iRolynomialMatrix class do not need to be overloaded in its de-
scendants. Some of the overloaded methods might use functionality from this class. In this case
subsections describing descendant claggm{inuousPolynomialMatrix , Discrete-

PolynomialMatrix ) methods will refer to subsections described in this section explaining
inherited functionality.

Package

cz.ctu.fee.dce.polynomial

20



CHAPTER 3. LIBRARY DESCRIPTION

Constants

e public static final char S_SYMBOL - symbol “s” used for displaying poly-
nomials

e public static final int MULTIPLY_DEFAULT - default multiplication of poly-
nomial matrices (sge 3.3]10)

e public static final int MULTIPLY_DFT - multiplication of polynomial ma-
trices using discrete Fourier transform (5ee 3]3.10)

e public static final int NORM_ABSOLUTE - absolute norm (1-norm) of poly-
nomial matrix (seg€ 3.2.17)

e public static final int NORM_QUADRATIC - quadratic norm (2-norm) of poly-
nomial matrix (se¢ 3.2.17)

e public static final int NORM_INFINITE - infinite norm (Eo-norm) of poly-
nomial matrix (se¢ 3.2.17)

e public static final int NORM_FROBENIUS - Frobenius norm of polynomial
matrix (see 3.2.17)

e public static final int NORM_METHOD_BLOCK - block method used for com-

putation of norm of polynomial matrix (s¢e 3.2/17)

e public static final int NORM_METHOD_LEAD - leading coefficient method
used for computation of norm of polynomial matrix (§ee 3.2.17)

e public static final int NORM_METHOD_MAX - maximal norm method used
for computation of norm of polynomial matrix (see 3.2.17)

3.2.1 Constructor(double[][][], char)

Creates instance of polynomial matrix. It cannot be used for creating instarieel\ef
nomialMatrix class becausBolynomialMatrix is the abstract class. It used by con-
structors of descendants@ntinuousPolynomialMatrix andDiscretePolynomial-

Matrix classes).

Syntax

public PolynomialMatrix(double[][][] aCoef, char aSymbol)
throws lllegalPMCoefficientsException
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Example

Sed 3.3/1 dr3.4.2.

Algorithm

ConstructorPolynomialMatrix(double[][][]) (seq 3.2.) is called for passed co-
efficients and passed symbol for displaying polynomials is set to private attribute holding its
value.

3.2.2 Constructor(double[][][])

Creates instance of polynomial matrix. It cannot be used for creating instarieelyof
nomialMatrix class becausBolynomialMatrix is the abstract class. It used by con-
structors of descendants@ntinuousPolynomialMatrix andDiscretePolynomial-

Matrix classes).

Syntax

public PolynomialMatrix(double[][][] aCoef)
throws lllegalPMCoefficientsException

Example

Sed 3.3 dr3.41.

Algorithm

First of all rectangularity of passed coefficients is checked. It means that each coefficient
of polynomial must be matrix (i.e. each row must have the same number of columns) and all
coefficients of polynomial must have the same sizes. If any of mentioned conditions is not
satisfied, then the exception is thrown.

3.2.3 Constructor(PolynomialMatrix)

Creates instance of polynomial matrix. It cannot be used for creating instarieel\yef
nomialMatrix class becausBolynomialMatrix is the abstract class. It used by con-
structors of descendants@ntinuousPolynomialMatrix andDiscretePolynomial-

Matrix classes).

Syntax

public PolynomialMatrix(PolynomialMatrix aPm)
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Example

Sed 3.3.8 dr3.45.

Algorithm

All encapsulated attributes (i.e. coefficients of polynomial matrix, its degree, its number of
rows, its number of columns, symbol used for displaying and zeroing coefficient) are copied
from passed polynomial matrix (passed argument). Attributes are just copied. Rectangularity
and sizes of coefficients do not need to be checked because they have been already checked
when instance of passed polynomial matrix has been created.

3.2.4 Methodequals()

Compares polynomial matrix with another object.

Syntax
public boolean equals(Object aObject)

Algorithm

Object compared to polynomial matrix must be an instandeéatynomialMatrix , de-
grees and matrix sizes must equal, symbols used for displaying polynomials must be the same
and coefficients must equal.

This method is used in JUnit tests for comparing expected and computed polynomial matri-
ces (see chaptgf 4).

Equal objects must have equal hash code and therefore mietisbCode() (seg 3.2.113)
must be implemented when metheduals exists [22].

3.2.5 MethodgetCoefficients()

Returns coefficients of polynomial matrix.

Syntax
public final double[][][] getCoefficients()

3.2.6 MethodgetColumnDegrees()

Returns array containing degrees of columns. The i-th array element corresponds to degree
of i-th column of polynomial matrix.
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Syntax
public int[] getColumnDegrees()

Example

Figure[ 3.1 shows the example of getting column degrees of polynomial matrix. The polyno-
mial matrix

T+s 2s 9) (3.1)

A<S):< 4 —s 6

is created and its column degrees are

Il coefficients of polynomial matrix A
double[][][] aCoef = {
{7, 0, 9} {4, 0, 6}}, I/l coefficients at s™O
{1, 2, 0}, { O0,-1, O} I/l coefficients at s"1
I3

/I polynomial matrix A
ContinuousPolynomialMatrix cpmA =
new ContinuousPolynomialMatrix(aCoef);

/I gets column degrees of polynomial matrix A
int[] columnDegrees = cpmA.getColumnDegrees();

Figure 3.1: Example ojetColumnDegrees() method usage

Algorithm

Non-zero coefficient belonging to highest degree in each column is found and the degree is
stored in return value for given column.

3.2.7 MethodgetNumberOfColumns()

Returns number of columns of polynomial matrix.

24



CHAPTER 3. LIBRARY DESCRIPTION

Syntax
public final int getNumberOfColumns()

3.2.8 MethodgetNumberOfRows()

Returns number of rows of polynomial matrix.

Syntax
public final int getNumberOfRows()

3.2.9 MethodgetRowDegrees()

Returns array containing degrees of rows. The i-th array element corresponds to degree of
i-th row of polynomial matrix.

Syntax
public int[] getRowDegrees()

Example

Figure[3.2 shows the example of getting row degrees of polynomial matrix. The polynomial
matrix[3.] is created and its column degrees are

(1)

Algorithm

Non-zero coefficient belonging to highest degree in each row is found and the degree is stored
in return value for given row.

3.2.10 MethodgetSylvesterMatrix(int)

Creates Sylvester matrix|[8] from coefficients of polynomial matrix. Coefficients are put in
column.

Syntax

public double[][] getSylvesterMatrix(int aNumberOfColumns)
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/I coefficients of polynomial matrix A
double[][][] aCoef = {
{7, 0, 9} {4, 0, 6}}, /I coefficients at s"™O
{1, 2, 0}, { O0,-1, O} Il coefficients at s"1
¥

/I polynomial matrix A
ContinuousPolynomialMatrix cpmA =
new ContinuousPolynomialMatrix(aCoef);

/I gets row degrees of polynomial matrix A
int[] rowDegrees = cpmA.getRowDegrees();

Figure 3.2: Example ojetRowDegrees() method usage

Example

Figure[3.B shows creation of Sylvester matrix. The continuous polynomial matfix 3.1 is
created and then Sylvester matrix

70 90 0 00 0 O
4 0 6 0 0 00 0 O
1 2 07 0 90 0 O
0 -1 04 0 6 0 0 O
0o 0 01 2 07 0 9
0 0 00 -104 0 6
0 0 00 0 01 2 0
0 0 00 0 0O0 —-120

having three coefficients in a row is created.

Algorithm
There is polynomial matrix
A(s)=Ag+Ais+...+A,s"

At first the constant matrix



CHAPTER 3. LIBRARY DESCRIPTION

/I coefficients of polynomial matrix A
double[][][] aCoef = {
{7, 0, 9} {4, 0, 6}}, /I coefficients at s"™O
{1, 2, 0}, { O0,-1, O} I/l coefficients at s"1
¥

/I polynomial matrix A
ContinuousPolynomialMatrix cpmA = new
ContinuousPolynomialMatrix(aCoef);

/I creates Sylvester matrix from A
/I having 3 coefficients in a row
double[][] sylvester = cpmA.getSylvesterMatrix(3);

Figure 3.3: Example ofetSylvesterMatrix() method usage

is created from polynomial matrix's coefficients by putting them under each other. Sylvester
matrix S is created by putting matri® in diagonal of zero matrix having desired number of
columns

B o ---0

0 B 0
S =

0O 0 --- B

3.2.11 MethodgetSymbol()

Returns symbol for displaying polynomials in polynomial matrix.

Syntax
public final char getSymbol()

3.2.12 MethodgetZeroingCoefficient()

Returns number of decimal places used for zeroing (evaluating numbers as zeros). It is
number of decimal places following decimal point which must be equal to zero to evaluate double
number as zero. Used for "inaccurate"” operations (e.g. computation of determinant using FFT).
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Syntax

public final int getZeroingCoefficient()

3.2.13 MethodhashCode()

Returns hash code of polynomial matrix object. Equal objects must have equal hash code and
therefore methodhashCode() must be implemented when metheduals()  (se€[3.2.1]3)
exists [22].

Syntax
public int hashCode()

3.2.14 MethodisSquare()

Returns true when polynomial matrix is square, otherwise returns false.

Syntax

public final boolean isSquare()

Algorithm

Number of rows and number columns must be the same when a polynomial matrix is square
matrix.

3.2.15 MethodisZero()

Checks whether polynomial matrix is zero polynomial matrix.

Syntax

public final boolean isZero()

Algorithm

Zero polynomial matrix must have degree 0 and its coefficient must be zero matrix.

3.2.16 Methodmultiply(double)

Multiplies polynomial matrix by real number.
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Syntax

public final void multiply(double aNumber)

Example

Figure[3.4 shows the example of multiplication polynomial matrix by real number. The
polynomial matrix 3.1 is created. After multiplication Bypolynomial matrix

[ 14+2s 4s 18
A(S)_< 8  —92s 12)'

Il coefficients of polynomial matrix A
double[][][] aCoef = {
{7, 0, 9} {4, 0, 6}}, I/l coefficients at s"0
{1, 2, 0}, { 0,-1, O} /I coefficients at s"1
3

/I polynomial matrix A
ContinuousPolynomialMatrix cpmA =
new ContinuousPolynomialMatrix(aCoef);

/I multiplies polynomial matrix A by 2
cpmA.multiply(2);

Figure 3.4: Example amultiply() method usage

Algorithm

Each coefficient (i.e. constant matrix belonging to degree) is multiplied by given number.

3.2.17 Methodnorm(int, int)

Computes norm of polynomial matrix.

Syntax

public double norm(int aType, int aMethod)
throws lllegalArgumentException, PMNormException
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Example

Figure[3.5 shows the example of computation norm of polynomial matrix. The polynomial
matrix[3.] is created and its absolute norm computed using “block” methidsl is

/I coefficients of polynomial matrix A

double[][][] aCoef = {
{7 0 9} {4, 0, 6}}, /I coefficients at s"O
{1, 2, 0}, { O0,-1, O} /Il coefficients at s"1

J§

/I polynomial matrix A
ContinuousPolynomialMatrix cpmA =
new ContinuousPolynomialMatrix(aCoef);

/I computes absolute norm of polynomial matrix A

/I using "block” method

double norm = cpmA.norm(
PolynomialMatrix.NORM_ABSOLUTE,
PolynomialMatrix. NORM_METHOD_BLOCK

);

Figure 3.5: Example afiorm() method usage

Algorithm

Norm of polynomial matrix is computed as norm of constant matrix [21, 23] created from
coefficients of polynomial matrix. There are several ways for creating constant matrix from
coefficients of polynomial matrix [17]:

¢ Block method PolynomialMatrix. NORM_METHOD_BLOCK )
There is polynomial matrix

A(s)=Ag+Ais+...+A,s"
Constant matrix

A=(A; A - A,)
is created from coefficients of polynomial matAXs).

¢ Leading coefficient methodP?plynomialMatrix. NORM_METHOD_LEAD )
Leading coefficient is coefficient of polynomial matrix by highest degree.
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e Maximal norm methodFolynomialMatrix. NORM_METHOD_MAX )
Norm for each coefficient of polynomial matrix is computed and norm of polynomial ma-
trix is the maximum of these norms.

3.2.18 Methodrank()

Computes rank of polynomial matrix. Uses interpolation algorithm [9].

Syntax
public int rank()

Example

Figure[3.6 shows the example of evaluating rank of polynomial matrix. The polynomial
matrix [3.1 is created and its computed ranR.is

Il coefficients of polynomial matrix A
double[][][] aCoef = {
{7, 0, 9} { 4, 0, 6}}, I/l coefficients at s™0
{1, 2 0} {01, 0} /I coefficients at s”"1
I3

/I polynomial matrix A
ContinuousPolynomialMatrix cpmA =
new ContinuousPolynomialMatrix(aCoef);

/I computes rank of polynomial matrix A
int rank = cpmA.rank();

Figure 3.6: Example afank() method usage

Algorithm

Polynomial matrix is evaluated in set of complex values. The appropriate method for evalu-
ating polynomial matrix in set of complex values is direct discrete Fourier transform (gee 3.5).
Number of iterations and number of complex values evaluating polynomial matrix are given by
estimated degree of determinant of polynomial mairix [9]. Rank of constant complex matrix is
computed in each iteration of interpolation and maximal value of computed ranks is chosen. If

31



CHAPTER 3. LIBRARY DESCRIPTION

some of evaluations has maximal possible rank of polynomial matrix, rank of polynomial matrix
was found and algorithm stops.

3.2.19 Methodroots()

Computes roots of polynomial matrix. Roots of polynomial matrix are defined as roots of its
determinant [1/7].
Syntax

public Complex[] roots() throws PMRootsException

Example

Figure[3.7 shows the example of computing roots of polynomial matrix. The polynomial
matrix[3.1 is created and no roots were found.

/I coefficients of polynomial matrix A
double[][][] aCoef = {
{7, 0, 9} {4, 0, 6}}, /I coefficients at s"0
{1, 2, 0}, { 0,-1, O} /I coefficients at s"1
I3

/I polynomial matrix A
ContinuousPolynomialMatrix cpmA =
new ContinuousPolynomialMatrix(aCoef);

/I computes roots of polynomial matrix A
Complex[] roots = cpmA.roots();

Figure 3.7: Example afoots()  method usage

Algorithm

Roots of determinant (i.e. roots of polynomial) are found in case of square polynomial ma-
trix. In case of non-square or singular polynomial matrix two square polynomial matrices are cre-
ated by multiplying original polynomial matrix by random constant matrices from left and right.
Determinants for both "squared” polynomial matrices are found. Then roots of first "squared”
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polynomial matrix are found. Each of these found roots is used as point for evaluation of deter-
minant of second "squared” matrix and it is root of original polynomial matrix when evaluation
of determinant is zero (i.e. both "squared” polynomial matrices have common roots).

3.2.20 MethodsetSymbol(char)

Sets symbol used for displaying polynomials in polynomial matrix.

Syntax
public final void setSymbol(char aSymbol)

3.2.21 MethodsetZeroingCoefficient(int)

Sets number of decimal places used for zeroing (evaluating numbers as zeros). It is number
of places following decimal point which must be equal to zero to evaluate double number as zero.
Used for "inaccurate"” operations (e.g. computation of determinant using FFT).

Syntax

public final void setZeroingCoefficient(int aDigits)
throws lllegalArgumentException

3.2.22 MethodvalueAt(Complex)

Computes value of polynomial matrix at specified complex point. Horner scheme algorithm
is used computation [25].

Syntax
public Complex[][] valueAt(Complex aPoint)

Example

Figure[3.8 shows the example of evaluating polynomial matrix in complex number. The
polynomial matrix 3.1 is created and its value in complex ppist

au= (T B0

3.2.23 MethodvalueAt(double)

Computes value of polynomial matrix at specified real point. Horner scheme is used compu-
tation [25].
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/I coefficients of polynomial matrix A
double[][][] aCoef = {
{7, 0, 9} {4, 0, 6}}, /I coefficients at s"™O
{1, 2, 0}, { O0,-1, O} I/l coefficients at s"1
¥

/I polynomial matrix A
ContinuousPolynomialMatrix cpmA =
new ContinuousPolynomialMatrix(aCoef);

/l computes value of polynomial matrix A
/[ at complex point |
Complex[][] value = cpmA.valueAt(new Complex(0, 1));

Figure 3.8: Example ofalueAt() = method usage

Syntax
public double[][] valueAt(double aPoint)

Example

Figure[ 3.9 shows the example of evaluating polynomial matrix in real number. The polyno-
mial matrix[3.] is created and its value in real pdiris

A(l):<i 2 2)

3.3 ClassContinuousPolynomialMatrix
This class enables operating on continuous polynomial matrices.
Package

cz.ctu.fee.dce.polynomial

3.3.1 Constructor(double[][][], char)

Creates instance of continuous polynomial matrix.
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/I coefficients of polynomial matrix A
double[][][] aCoef = {
{7, 0, 9} {4, 0, 6}}, /I coefficients at s"™O
{1, 2, 0}, { O0,-1, O} Il coefficients at s"1
¥

/I polynomial matrix A
ContinuousPolynomialMatrix cpmA =
new ContinuousPolynomialMatrix(aCoef);

/I computes value of polynomial matrix A at point 1
double[][] value = cpmA.valueAt(1);

Figure 3.9: Example ofalueAt() = method usage

Syntax
public ContinuousPolynomialMatrix(double[][][] aCoef,
char aSymbol) throws IllegalPMCoefficientsException
Example

Figure 3.1D shows how the instance of continuous polynomial matrix

1 —32% 8z —4x? 3 — 5x?
—622 2—Tx* —2x — 8x?

is created.

Algorithm

ConstructoiPolynomialMatrix(double[][][], char) from ancestor class is

called (seé 3.2]1).

3.3.2 Constructor(double[][][])

Creates instance of continuous polynomial matrix.

Syntax

public ContinuousPolynomialMatrix(double[][][] aCoef)
throws lllegalPMCoefficientsException
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/I coefficients of polynomial matrix A
double[][][] aCoef = {

{1, 0, 3} { O, 2, O}}, I/l coefficients at x"0
{{ 0, 8 0}, { 0, 0,-2}}, I/l coefficients at x"1
{{-3,-4,-5}, {-6,-7,-8}} I/l coefficients at x"2

I3

/I polynomial matrix A is created
ContinuousPolynomialMatrix cpmA = new
ContinuousPolynomialMatrix(aCoef, 'X’);

Figure 3.10: Creation of continuous polynomial matrix instance
Example

Figure 3.1l shows how the instance of continuous polynomial matrix

1—3s> 8s—4s° 3 — 5s?
—6s> 2—7T7s> —2s—8¢>

is created.

/I coefficients of polynomial matrix A
double[][][] aCoef = {

{1, 0, 3} {0, 2, O}}, Il coefficients at s"O
{{ 0, 8, 0}, { 0, 0,-2}}, /Il coefficients at s"1
{{-3,-4,-5}, {-6,-7,-8}} I/l coefficients at s"2

|8

/I polynomial matrix A is created
ContinuousPolynomialMatrix cpmA = new
ContinuousPolynomialMatrix(aCoef);

Figure 3.11: Creation of continuous polynomial matrix instance
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Algorithm

ConstructoPolynomialMatrix(double[][][]) from ancestor class is

called (se€ 3.2]2).

3.3.3 Constructor(ContinuousPolynomialMatrix)

Creates instance of continuous polynomial matrix.

Syntax

public ContinuousPolynomialMatrix(
ContinuousPolynomialMatrix aCpm)

Example

Figure 3.12 shows how the instance of continuous polynomial matrix

1—3s® 8s—4s° 3 — 5s?
—6s2 2—17T7s> —2s—8¢>

is created from the existing instance of continuous polynomial matrix.

Il coefficients of polynomial matrix A
double[][][] aCoef = {

{1, 0, 3} {0, 2, 0}}, /I coefficients at s"O
{0, 8, 0} {0, 0,-2}}, /Il coefficients at s"1
{{-3,-4,-5}, {-6,-7,-8}} Il coefficients at s"2

I3

/I polynomial matrix A is created
ContinuousPolynomialMatrix cpmA = new
ContinuousPolynomialMatrix(aCoef);

/I polynomial matrix B is created from existing

/[ continuous polynomial matrix A

ContinuousPolynomialMatrix cpmB = new
ContinuousPolynomialMatrix(cpmA);

Figure 3.12: Creation of continuous polynomial matrix instance

37



CHAPTER 3. LIBRARY DESCRIPTION

Algorithm

ConstructoiPolynomialMatrix(PolynomialMatrix) from ancestor class is

called (se€ 3.2]3).

3.3.4 Methodadd(ContinuousPolynomialMatrix)

Adds continuous polynomial matrix.

Syntax

public void add(ContinuousPolynomialMatrix aCpm)
throws PMsAddEXxception

Example

Figure[3.1B shows the example of polynomial matrices addition. Polynomial matrices

1 —3s% 8s— 4s? 3 — 52
A(s) = ( —6s> 2—Ts*> —2s—8s? ) (3-2)

T+s 25 9
B(S):< 4 s 6)

are created. Polynomial matriB(s) is added to polynomial matrik(s). After addition

and

Als) = 8+ s—3s 10s — 4s? 12 — 5s?
1T 4-682 2-15—7s2 6—2s— 82

andB(s) remains unchanged.

Algorithm

Sizes of added polynomial matrices are checked at first. The exception is thrown in case of
different sizes. Then corresponding coefficients (constant matrices) are added. Finally degree of
result is lowered when coefficients at highest degrees are zero matrices.

3.3.5 Methodconjugate()

Conjugates polynomial matrix [17].

Syntax

public void conjugate()

38



CHAPTER 3. LIBRARY DESCRIPTION

/I coefficients of polynomial matrix A
double[][][] aCoef = {

{1, 0, 3} { O, 2, O}}, I/l coefficients at s"O

{{ 0, 8 0}, { 0, 0,-2}}, Il coefficients at s"1

{{-3,-4,-5}, {-6,-7,-8}} I/l coefficients at s"2
¥

/I coefficients of polynomial matrix B
double[][][] bCoef = {
{7, 0, 9}, { 4, 0, 6}}, I/l coefficients at s™0
{1, 2, 0} { 0,1, 0} Il coefficients at s”1
I3

/I polynomial matrix A
ContinuousPolynomialMatrix cpmA =
new ContinuousPolynomialMatrix(aCoef);

/I polynomial matrix B
ContinuousPolynomialMatrix cpmB =
new ContinuousPolynomialMatrix(bCoef);

/l adds B to A

/I A changes: A=A+B
/[ B is unchanged
cpmA.add(cpmB);

Figure 3.13: Example addd() method usage

Example

Figure 3.14 shows the example of polynomial matrix conjugation. The polynomial fatrix 3.2
is created. After conjugation

1—3s? —8s—4s*> 3 —5s?
A(S)_( 65 275 23—8s2>'

Algorithm

Each coefficient at odd degree is multiplied-iy
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/I coefficients of polynomial matrix A
double[][][] aCoef = {

{1, 0, 3} { O, 2, O}}, I/l coefficients at s"O
{{ 0, 8 0}, { 0, 0,-2}}, I/l coefficients at s"1
{{-3,-4,-5}, {-6,-7,-8}} I/l coefficients at s"2

I3

/I polynomial matrix A
ContinuousPolynomialMatrix cpmA =
new ContinuousPolynomialMatrix(aCoef);

/I conjugates A
cpmA.conjugate();

Figure 3.14: Example afonjugate() method usage

3.3.6 MethodconjugateAndTranspose()

Transposes and conjugates polynomial malrix [17].

Syntax

public void conjugateAndTranspose()

Example

Figure[3.1b shows the example of polynomial matrix conjugation and transposition. The
polynomial matrix 3.2 is created. After conjugation and transposition

1— 3s? —65s?
A(s)=| —8s—4s*> 2—-7s* |.

3—5s2 25— 852

Algorithm
Polynomial matrix is transposed and then it is conjugated|(se€ 3.3.5).

3.3.7 Methoddeterminant()

Computes determinant of continuous polynomial matrix.
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/I coefficients of polynomial matrix A
double[][][] aCoef = {

{1, 0, 3} { O, 2, O}}, I/l coefficients at s"O
{{ 0, 8 0}, { 0, 0,-2}}, I/l coefficients at s"1
{{-3,-4,-5}, {-6,-7,-8}} I/l coefficients at s"2

I3

/I polynomial matrix A
ContinuousPolynomialMatrix cpmA =
new ContinuousPolynomialMatrix(aCoef);

/I conjugates and transposes A
cpmA.conjugateAndTranspose();

Figure 3.15: Example afonjugateAndTranspose() method usage

Syntax
public ContinuousPolynomialMatrix determinant()
throws PMDeterminantException

Example

Figure[3.1p shows the example of computing determinant of polynomial matrix. The poly-
nomial matrix

1 —3s% 85— 4s?
Als) :< —65> 27> )

is created and its determinant
detA(s) =( 2 — 1357 + 485> — 35" )
is computed.

Algorithm

The FFT algorithm([11] is used. At first it is checked whether polynomial matrix is square
matrix (if not exception is thrown). Then degree of determinant is estimated. Polynomial matrix
is transformed using direct FFT algorithm (gee] 3.5), where number of points used for trans-
formation equals to estimated degree. Direct FFT produces set of constant complex matrices.
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/I coefficients of polynomial matrix A
double[][][] aCoef = {

{1, 0}, { O, 2}}, Il coefficients at s"0
{{ 0, 8}, { 0, O}}, /Il coefficients at s"1
{{-3,-4}, {-6,-7}} /Il coefficients at s"2

I3

/I polynomial matrix A
ContinuousPolynomialMatrix cpmA =
new ContinuousPolynomialMatrix(aCoef);

/I computes determinant of A
ContinuousPolynomialMatrix det = cpmA.determinant();

Figure 3.16: Example adeterminant() method usage

Determinant for each of this constant matrix is computed, i.e. set of constant complex numbers
is produced. These numbers are transformed using inverse FFT (see 3.5). This transformation
produces determinant (coefficients of determinant) of polynomial matrix.

3.3.8 MethodgetDegree()

Returns degree of continuous polynomial matrix.

Syntax
public int getDegree()

3.3.9 Methodmultiply(ContinuousPolynomialMatrix)
Multiplies polynomial matrix by polynomial matrix using default method (see 3]3.10)

Syntax

public void multiply(ContinuousPolynomialMatrix aCpm)
throws PMsMultiplyException

3.3.10 Methodmultiply(ContinuousPolynomialMatrix, int)

Multiplies polynomial matrix by polynomial matrix using given method for multiplication.
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Syntax
public void multiply(ContinuousPolynomialMatrix aCpm,
int aMethod) throws PMsMultiplyException

Example

Figure[3.1¥ shows the example of polynomial matrices multiplication. Polynomial matri-
ced 3.2 and

T+s 4
B(s)=| 2s —ls
9 6

are created. Polynomial matrik(s) is multiplied with polynomial matrixB(s) using DFT
method. After multiplication

As) = 34+ s—50s* —11s® 22— 50s? 4 4s°
57\ Z14s — 11452 — 208 —14s — 7252 + 753

andB(s) remains unchanged.

Algorithm

First of all algorithm for multiplication is chosen, then sizes of matrices for multiplication
are checked (in case of incorrect sizes excep@dsMultiplyException is thrown). It is
possible to choose one of these multiplication methods:

e default methodRolynomialMatrix. MULTIPLY_DEFAULT ) - coefficients (constant
matrices) of multiplied polynomial matrices are multiplied, added and set to corresponding
degrees of result polynomial matrix. Degree of polynomial matrix is lowered in case of
zero coefficients by highest degrees.

e DFT method [[17[ 11] PolynomialMatrix. MULTIPLY_DFT ) - multiplied polyno-
mial matrices are transformed using direct FFT algorithm[(Sge 3.5). Direct FFT produces
set of constant complex matrices, where number of points used for transformation equals
to estimated degree of result matrix. Corresponding matrices from each set are multiplied,
i.e. set of complex multiplied matrices is produced. This set is transformed using inverse
FFT (seq 3/5). This transformation produces result of multiplication. Result is zeroed

(sed3221).

3.3.11 Methodscale()

Scales polynomial matrix with automatically set scaling coefficient.
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/I coefficients of polynomial matrix A
double[][][] aCoef = {

{1, 0, 3} { O, 2, O}}, I/l coefficients at s"O
{{ 0, 8 0}, { 0, 0,-2}}, Il coefficients at s"1
{{-3,-4,-5}, {-6,-7,-8}} I/l coefficients at s"2

I3

/I coefficients of polynomial matrix B

double[][][] bCoef = {
{7, 4} {0, 0} {9, 6}}, /I coefficients at s"0
{1, 0}, { 2,-1}, { O, O}} /I coefficients at s"1

|8

/I polynomial matrix A
ContinuousPolynomialMatrix cpmA =
new ContinuousPolynomialMatrix(aCoef);

/I polynomial matrix B
ContinuousPolynomialMatrix cpmB =
new ContinuousPolynomialMatrix(bCoef);

/I multiplies A with B using DFT method

/[ A changes: A=A*B

/[ B is unchanged

cpmA.multiply(cpmB, PolynomialMatrix. MULTIPLY_DFT);

Figure 3.17: Example ahultiply() method usage

Syntax

public ContinuousPolynomialMatrix scale()
throws PMScaleException

Example

Figure[3.18 shows the example of scaling polynomial matrix. The polynomial matfix 3.2 is
created. Methodcale()  produces scaled polynomial matrix

4—3s% 17s —4s®> 13 —5s2
—6s2 9—7s2 —4s—8s% |°
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/I coefficients of polynomial matrix A
double[][][] aCoef = {

{1, 0, 3} { O, 2, O}}, I/l coefficients at s"O
{{ 0, 8 0}, { 0, 0,-2}}, I/l coefficients at s"1
{{-3,-4,-5}, {-6,-7,-8}} I/l coefficients at s"2

I3

/I polynomial matrix A
ContinuousPolynomialMatrix cpmA =
new ContinuousPolynomialMatrix(aCoef);

/I scales matrix A with scaling coefficient
/I set automatically
ContinuousPolynomialMatrix scaledCpm = cpmA.scale();

Figure 3.18: Example cdcale() = method usage

Algorithm

Scaling coefficient [17] is set as
JnormA,,
normA,’
A(s)=Ag+Ais+...+A,s", (3.3)

A, is first non-zero coefficient of polynomial matrix(s) by lowest degree andl= n— x. Then
methodscale(double) (sed 3.3.112) with passed scaling coefficient is called.

where

3.3.12 Methodscale(double)

Scales polynomial matrix with given scaling coefficient.

Syntax

public ContinuousPolynomialMatrix scale(double aScaling)
throws PMScaleException
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Example

Figure[3.19 shows the example of scaling polynomial matrix. The polynomial matfix 3.2 is
created. Created polynomial matrix is scaled with scaling coeffi€idrdnd scaled polynomial
matrix

0.01 —3s® 0.8s —4s®> 0.03 — 552
—652 0.02 —7s> —0.2 — 8s?

is produced.

/I coefficients of polynomial matrix A
double[][][] aCoef = {

{1, 0, 3} {0, 2, 0}}, Il coefficients at s"O
{{ 0, 8, 0}, { 0, 0,-2}}, Il coefficients at s"1
{{-3,-4,-5}, {-6,-7,-8}} I/l coefficients at s"2

I3

/I polynomial matrix A
ContinuousPolynomialMatrix cpmA =
new ContinuousPolynomialMatrix(aCoef);

/I scales matrix A with scaling coefficient 0.1
ContinuousPolynomialMatrix scaledCpm =
cpmA.scale(0.1);

Figure 3.19: Example ddcale() = method usage

Algorithm
Polynomial matrix 3.3 scaled with coefficieais polynomial matrix

S S\ "
a"Ag+a" AL+ A, () ,
a a

i.e. each coefficient of polynomial matrix is multiplied by given scaling [17].
3.3.13 Methodsubtract(ContinuousPolynomialMatrix)

Subtracts continuous polynomial matrix.
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Syntax

public void subtract(ContinuousPolynomialMatrix aCpm)
throws PMsAddException

Example

Figure[3.2D shows the example of polynomial matrices subtraction. Polynomial matrices 3.2

and
T+s 2s 9
B(s) _< 4 —1s 6 )
are created. Polynomial mati(s) is subtracted from polynomial mati(s). After subtraction

Als) = —6—1s—3s> 65 —4s> —6 — 5s?
- —4 — 65> 24 5—Ts®> —6—2s — 8s?

andB(s) remains unchanged.

Algorithm
Subtracted polynomial matrix is multiplied b (se€ 3.2.16) and then it is added (see 3.3.4).

3.3.14 MethodtoString()

Converts continuous polynomial matrix 8iring . Method should be used for debugging
purposes only.

Syntax
public String toString()

3.3.15 Methodtranspose()

Transposes continuous polynomial matrix.

Syntax

public void transpose()
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/I coefficients of polynomial matrix A
double[][][] aCoef = {

{1, 0, 3} { O, 2, O}}, I/l coefficients at s"O

{{ 0, 8 0}, { 0, 0,-2}}, Il coefficients at s"1

{{-3,-4,-5}, {-6,-7,-8}} I/l coefficients at s"2
¥

/I coefficients of polynomial matrix B
double[][][] bCoef = {
{7, 0, 9}, { 4, 0, 6}}, I/l coefficients at s™0
{1, 2, 0} { 0,1, 0} Il coefficients at s”1
I3

/I polynomial matrix A
ContinuousPolynomialMatrix cpmA =
new ContinuousPolynomialMatrix(aCoef);

/I polynomial matrix B
ContinuousPolynomialMatrix cpmB =
new ContinuousPolynomialMatrix(bCoef);

/I subtracts B from A
/I A changes: A=A-B
/[ B is unchanged

cpmA.subtract(cpmB);

Figure 3.20: Example cdubtract() method usage

Example

Figure[3.2]l shows the example of polynomial matrix transposition. The polynomial ma-
trix 8.2 is created. After transposition

1—3s? —652
A(s) =| 8s—4s* 2—7Ts? :

3—5s> —2s—8s2

Algorithm

Each coefficient of polynomial matrix is transposed.
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/I coefficients of polynomial matrix A
double[][][] aCoef = {

{1, 0, 3} { O, 2, O}}, I/l coefficients at s"O

{{ 0, 8 0}, { 0, 0,-2}}, I/l coefficients at s"1

{{-3,-4,-5}, {-6,-7,-8}} I/l coefficients at s"2
¥

/I polynomial matrix A
ContinuousPolynomialMatrix cpmA =
new ContinuousPolynomialMatrix(aCoef);

/I transposes A
cpmA.transpose();

Figure 3.21: Example dfanspose() method usage

3.4 ClassDiscretePolynomialMatrix
This class enables operating on discrete or two-sided polynomial matrices.
Package
cz.ctu.fee.dce.polynomial
Constants

e public static final char Z_SYMBOL - symbol “z” used for displaying poly-
nomials

3.4.1 Constructor (double[][l[])

Creates instance of discrete polynomial matrix.

Syntax

public DiscretePolynomialMatrix(double[][][] aCoef)
throws lllegalPMCoefficientsException
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Example

Figure 3.22 shows how the instance of discrete polynomial matrix

1—322 8z—422 3—522
—622 2 — 722 —27— 822

is created.

Il coefficients of polynomial matrix A
double[][][] aCoef = {

{1, 0 3} {0, 2 0} /I coefficients at z"0
{0, 8, 0} {0, 0,-2}}, Il coefficients at z"1
{{-3,-4,-5}, {-6,-7,-8}} Il coefficients at z"2

J§

/I polynomial matrix A is created
DiscretePolynomialMatrix dpmA = new
DiscretePolynomialMatrix(aCoef);

Figure 3.22: Creation of discrete polynomial matrix instance

Algorithm

ConstructorPolynomialMatrix(double[][][], char) from ancestor class with
attributeaSymbol set to value of constart_SYMBOL(seg 3.14) is called (s¢e 3.P.1) and the
attribute holding value of lowest power of polynomial is set to zero.

3.4.2 Constructor(double[][][], char)

Creates instance of discrete polynomial matrix.

Syntax

public DiscretePolynomialMatrix(double[][][] aCoef,
char aSymbol) throws IllegalPMCoefficientsException
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Example

Figure 3.2B shows how the instance of discrete polynomial matrix

1—3x% 8r—4z?2 3 —522
—6x2 2 — T2 —2x — 8x2

is created.

Il coefficients of polynomial matrix A
double[][][] aCoef = {

{1, 0 3} {0, 2 0} /I coefficients at x"0
{0, 8, 0} {0, 0,-2}}, Il coefficients at x"1
{{-3,-4,-5}, {-6,-7,-8}} Il coefficients at x"2

J§

/I polynomial matrix A is created
DiscretePolynomialMatrix dpmA = new
DiscretePolynomialMatrix(aCoef, 'X’);

Figure 3.23: Creation of discrete polynomial matrix instance

Algorithm

ConstructoiPolynomialMatrix(double[][][], char) from ancestor class is
called (se¢ 3.2]1) and the attribute holding value of lowest power of polynomial is set to zero.

3.4.3 Constructor(doublel][][], int)

Creates instance of discrete polynomial matrix.

Syntax

public DiscretePolynomialMatrix(double[][][] aCoef,
int aLowestPower) throws lllegalPMCoefficientsException

51



CHAPTER 3. LIBRARY DESCRIPTION

Example

Figure 3.24 shows how the instance of discrete polynomial matrix

2z 1—-32 8—4z 3z !'-52
—6z 2V -7z —2-82

is created.

Il coefficients of polynomial matrix A
double[][][] aCoef = {

{1, 0 3} {0, 2, 0}}, /Il coefficients at z"-1
{0, 8, 0} {0, 0,-2}}, /I coefficients at z"0
{{-3,-4,-5}, {-6,-7,-8}} Il coefficients at z"1

J§

/I polynomial matrix A is created
DiscretePolynomialMatrix dpmA = new
DiscretePolynomialMatrix(aCoef, 1);

Figure 3.24: Creation of discrete polynomial matrix instance

Algorithm

ConstructoDiscretePolynomialMatrix(double[][][], int, char)

tributeaSymbol set to value of consta@ SYMBOL(seg 3.4) is called (sée 3.4.4).

3.4.4 Constructor(double[][][], int, char)

Creates instance of discrete polynomial matrix.

Syntax

public DiscretePolynomialMatrix(double[][][] aCoef,
int aLowestPower, char aSymbol)
throws lllegalPMCoefficientsException
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Example

Figure 3.2b shows how the instance of discrete polynomial matrix

x4 —3x7% 8r 3 —4dx 2 3r*—5Hr?
—6x2 2t —Tx™2 —2x 3 —8x 2

is created.

Il coefficients of polynomial matrix A
double[][][] aCoef = {

{1, 0 3} {0, 2, 0}}, I/l coefficients at x"-4
{0, 8, 0} {0, 0,-2}}, Il coefficients at x"-3
{{-3,-4,-5}, {-6,-7,-8}} Il coefficients at x"-2

J§

/I polynomial matrix A is created
DiscretePolynomialMatrix dpmA = new
DiscretePolynomialMatrix(aCoef, 4, 'X));

Figure 3.25: Creation of discrete polynomial matrix instance

Algorithm

ConstructoPolynomialMatrix(double[][][], char) from ancestor class is call-
ed (se¢ 3.2]1). Positive value of parameteowestPower is checked and the attribute hold-
ing value of lowest power of polynomial is set to value of paramate&westPower . In case
or negative or zero value of parametdrowestPower the lllegalPMCoefficients-

Exception informing about wrong value of parameter is thrown.

3.4.5 Constructor(DiscretePolynomialMatrix)

Creates instance of discrete polynomial matrix.

Syntax

public DiscretePolynomialMatrix(
DiscretePolynomialMatrix aDpm)
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Example

Figure 3.26 shows how the instance of discrete polynomial matrix

272-3 8 1—-4 3:2%2_5
—6 2:72 -7 —2271_-8

is created from the existing instance of discrete polynomial matrix.

Il coefficients of polynomial matrix A
double[][][] aCoef = {

{1, 0, 3}, { O, 2, O}}, I/l coefficients at z"-2
{{ 0, 8 0}, { 0, 0,-2}}, Il coefficients at z"-1
{{-3,-4,-5}, {-6,-7,-8}} Il coefficients at z"0

I3

/I polynomial matrix A is created
DiscretePolynomialMatrix dpmA = new
DiscretePolynomialMatrix(aCoef, 2);

/I polynomial matrix B is created from existing

/[ continuous polynomial matrix A

DiscretePolynomialMatrix dpmB = new
DiscretePolynomialMatrix(dpmA);

Figure 3.26: Creation of discrete polynomial matrix instance

Algorithm

ConstructoPolynomialMatrix(PolynomialMatrix) from ancestor class is called
(sed 3.2.8) and the attribute holding value of the lowest power of polynomial is the lowest power
of passed discrete polynomial matrix instance.

3.4.6 Methodadd(DiscretePolynomialMatrix)

Adds discrete polynomial matrix.

Syntax

public void add(DiscretePolynomialMatrix aDpm)
throws PMsAddEXxception
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Example

Figure[3.2¥ shows the example of polynomial matrices addition. Polynomial matrices

Als) = < AR ) (3.4)

and

Tz7b 41 9271
B(s) :< 4271 6271 >

are created. Polynomial matriB(s) is added to polynomial matrik(s). After addition

- T2V 4342 927141
A<S)< 52741 6271+ 2

andB(s) remains unchanged.

Algorithm
See algorithm i 3.3]4.

3.4.7 Methodconjugate()

Conjugates discrete polynomial matrix.

Syntax

public void conjugate()

Example and Algorithm

See example and algorithm[in 3.3.5.

3.4.8 MethodconjugateAndTranspose()

Transposes and conjugates discrete polynomial matrix.

Syntax

public void conjugateAndTranspose()

Example and Algorithm

See example and algorithm[in 3.3.6.
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/I coefficients of polynomial matrix A
double[][][] aCoef = {

/I coefficients of polynomial matrix B
double[][][] bCoef = {

|8

/I polynomial matrix A
DiscretePolynomialMatrix dpmA =

/I polynomial matrix B
DiscretePolynomialMatrix dpmB =

/l adds B to A

/I A changes: A=A+B
/[ B is unchanged
dpmA.add(dpmB);

{{ 0, 0}, { 1, O}}, Il coefficients

{ 2, 1}, { 1, O}}, Il coefficients

{1, 0} { O, 1}} Il coefficients
¥

{7 9 {4 e} Il coefficients
{1, 0} {0, O}} Il coefficients

new DiscretePolynomialMatrix(aCoef, 1);

new DiscretePolynomialMatrix(bCoef, 1);

at
at
at

at
at

zN-1
z"0

Figure 3.27: Example addd() method usage

3.4.9 Methoddeterminant()

Computes determinant of discrete polynomial matrix.

Syntax

public DiscretePolynomialMatrix determinant()
throws PMDeterminantException

Example and Algorithm

See example and algorithm[in 3.3.7.
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3.4.10 Methodequals()

Compares discrete polynomial matrix with another object.

Syntax

public boolean equals(Object object)

Algorithm
See algorithm in 3.2}4

3.4.11 MethodgetDegree()

Returns degree of discrete polynomial matrix part with positive powers.

Syntax
public int getDegree()

3.4.12 MethodgetLowestPower()

Returns degree of discrete polynomial matrix part with negative powers.

Syntax

public int getLowestPower()

3.4.13 MethodisTwoSided()

Returns true if polynomial matrix is two-sided (it has both positive and negative powers),
otherwise returns false.

Syntax
public boolean isTwoSided()

3.4.14 Methodmultiply(DiscretePolynomialMatrix)

Multiplies discrete polynomial matrix by discrete polynomial matrix using default method

(seq 3.4.15).

57



CHAPTER 3. LIBRARY DESCRIPTION

Syntax

public void multiply(DiscretePolynomialMatrix aDpm)
throws PMsMultiplyException

Example and Algorithm

See example and algorithm[in 3.3.10.

3.4.15 Methodmultiply(DiscretePolynomialMatrix, int)

Multiplies discrete polynomial matrix by discrete polynomial matrix choosing method for
multiplication.

Syntax

public void multiply(DiscretePolynomialMatrix aDpm,
int method) throws PMsMultiplyException

Example and Algorithm

See example and algorithm[in 3.3.10.

3.4.16 Methodscale()

Scales polynomial matrix with scaling coefficient set automatically.

Syntax

public DiscretePolynomialMatrix scale()
throws PMScaleException

Example and Algorithm

See example and algorithm[in 3.3.11.

3.4.17 Methodscale(double)

Scales polynomial matrix with given scaling coefficient.

Syntax

public DiscretePolynomialMatrix scale(double scaling)
throws PMScaleException
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Example and Algorithm

See example and algorithm[in 3.3.12.

3.4.18 Methodsubtract()

Subtracts discrete polynomial matrix.

Syntax

public void subtract(DiscretePolynomialMatrix aDpm)
throws PMsAddEXxception

Example and Algorithm

See example and algorithm[in 3.3.13.

3.4.19 MethodtoString()

Converts polynomial matrix t&tring . Method should be used for debugging purposes
only.

Syntax
public String toString()

3.4.20 Methodtranspose()

Transposes discrete polynomial matrix.

Syntax

public void transpose()

Example and Algorithm

See example and algorithm[in 3.3.15.

3.4.21 MethodvalueAt(Complex)

Computes value of polynomial matrix at specified complex point. Horner scheme [25] is
used computation.
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Syntax
public Complex[][] valueAt(Complex point)

Example

See example in 3.2.P2.

3.4.22 MethodvalueAt(double)

Computes value of polynomial matrix at specified complex point. Horner scheme [25] is
used computation.

Syntax
public double[][] valueAt(double point)

Example
See example in 3.2.P3.

3.5 ClassPolynomialMatrixFFT

This class enables performing direct and inverse fast Fourier transform (FFT) on polynomial
matrices.

Package

cz.ctu.fee.dce.polynomial

3.5.1 MethoddirectFFT(ContinuousPolynomialMatrix, int)

Evaluates real continuous polynomial matrix at given number of points equally distributed
along the unit circle in complex plane. Direct fast Fourier transform (FFT) is used for evaluation.

Syntax

public static Complex[][][] directFFT(
ContinuousPolynomialMatrix aCpm, int aSamples)
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Example

Figure[3.28 shows the example of direct and inverse FFT on continuous polynomial matrix.
The polynomial matrix

1 —3s% 8s—4s> 3 —5s?
Als) _< —6s2 2—7s> —2s5— 8s? )

is created. Direct FFT is applied on polynomial matifs) at three points. It produces set of
constant complex matrices

-2 4 =2 25+3526 —-2£710.39 —5.5£74.33
-6 -5 —10 )7\ 3%752 5.5+£36.06 5E 5.2 ’

This set is transformed back using inverse FFT and polynomial ma{gxis reconstructed.

/I coefficients of polynomial matrix A
double[][][] aCoef = {

{1, 0 3} {0, 2 0} /I coefficients at s™O
{0, 8, 0} {0, 0,-2}}, Il coefficients at s"1
{{-3,-4,-5}, {-6,-7,-8}} Il coefficients at s"2

J§

/I polynomial matrix A
ContinuousPolynomialMatrix cpmA =
new ContinuousPolynomialMatrix(aCoef);

/I direct FFT transform on polynomial

/[ matrix A in 3 samples

Complex(][l[] cpmATransformed =
PolynomialMatrixFFT.directFFT(cpmA, 3);

/I inverse FFT transform producing continuous

/I polynomial matrix of degree 3

ContinuousPolynomialMatrix cpmB =
PolynomialMatrixFFT.inverseFFTContinuous(
cpmATransformed, 3);

Figure 3.28: Example of direct and inverse FFT on continuous polynomial matrix
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Algorithm

Discrete Fourier transform of polynomial matrix is described in [11]. Set of polynomials

Dij = [Po,ij, P1iijs - - - Prijl,t €< iz >, j €< Ly > (3.5)

from polynomial matrix
P(s)=Py+Pis+...+P,s" (3.6)

of degreer with z rows andy columns, where

Prki1 Pri2 0 DPkly
Pk21 Pk22 - DPk2

P, = , - o ke<0;r >, (3.7)
Pkl Pkaz2 - Pkay

is created. Each polynomial; is transformed irs samples using FFT algorithrn [23], i.e. sets
of complex numberg;; are computed. Finally set of constant complex matrices

Qi1 Q12 o Qiy
Q21 Q22 Q2

Q=| " " Y olle<0;s > (3.8)
Qz1 Qa2 ql,acy

is reconstructed from;; corresponding to discrete Fourier transform of polynomial méd(s).

3.5.2 MethoddirectFFT(DiscretePolynomialMatrix, int)

Evaluates real discrete polynomial matrix at given number of points equally distributed along
the unit circle in complex plane. Direct fast Fourier transform (FFT) is used for evaluation.

Syntax

public static Complex[][][] directFFT(
DiscretePolynomialMatrix aDpm, int aSamples)

Example

See example in 3.28.

Algorithm
See algorithm in 3.5]1.
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3.5.3 MethodinverseFFTContinuous(Complex][][][], int)

Interpolates real continuous polynomial matrix from set of constant complex matrices. These
constant complex matrices correspond to real polynomial matrix evaluated at points equally dis-
tributed along the unit circle. Inverse fast Fourier transform (FFT) is used for interpolation.

Syntax

public static ContinuousPolynomialMatrix
inverseFFTContinuous(Complex([][][] aTransformedCPM,
int aDegree)

Example

See example in 3.28.

Algorithm

Inverse discrete Fourier transform of polynomial matrix is described in [11]. Sets of complex
numbers

Qi = 90,5, Qij» - - - Gsij), 1 €< Ly > j €< iy >

are created from transformed polynomial mafrix 3.8. Eachyses transformed in- samples
using inverse FFT algorithm [23], i.e. sets of numbgysare computed. Finally coefficierjts B.7

of polynomial matrix 3.p are reconstructed from set of polynonfials 3.5 corresponding to inverse
discrete Fourier transform bf 3.8.

3.5.4 MethodinverseFFTDiscrete(Complex[][][], int, int)

Interpolates real discrete polynomial matrix from set of constant complex matrices. These
constant complex matrices correspond to real polynomial matrix evaluated at points equally dis-
tributed along the unit circle. Inverse fast Fourier transform (FFT) is used for interpolation.

Syntax

public static DiscretePolynomialMatrix inverseFFTDiscrete(
Complex[][][] aTransformedDPM, int aDegree, int aLowestPower)

Example

See example in 3.28.
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Algorithm
See algorithm i 3.53.

3.6 ClassContinuousAXB

This class enables solving of linear equatid(s)X(s) = B(s) with continuous polynomial
matrices.

Package

cz.ctu.fee.dce.polynomial

3.6.1 Constructor

Solves linear equatioA(s)X(s) =B(s) with polynomial matrices.

Syntax

public ContinuousAXB(ContinuousPolynomialMatrix aA,
ContinuousPolynomialMatrix aB) throws PMAXBEXxception

Example

Figure] 3.29 shows how linear equation

(2 )x0=(1)

is solved. The solution

is found.
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/I coefficients of polynomial matrix A
double[][][] aCoef = {
{{1, 0}, {0, 1}}, /Il coefficient at s™0
{{0, 0}, {1, O} Il coefficient at s"1
¥
/I coefficients of polynomial matrix B
double[][][] bCoef = {
{{1, 0}, {0, 1}}, Il coefficient at s™0
{{0, 0}, {1, O} Il coefficient at s"1
¥
/I polynomial matrix A
ContinuousPolynomialMatrix cpmA = new
ContinuousPolynomialMatrix(aCoef);

/I polynomial matrix B
ContinuousPolynomialMatrix cpmB = new
ContinuousPolynomialMatrix(bCoef);

/I instance of A(s)X(s) = B(s)

/I equation solver is created

/I solution X(s) is found

ContinuousAXB axb = new ContinuousAXB(cpmA, cpmB);
ContinuousPolynomialMatrix cpmX = axb.getX();

Figure 3.29: Solving of linear equation

Algorithm

The algorithm is described in![8,17]. The linear equation with continuous polynomial ma-
trices A(s)X(s) = B(s), whereA(s), B(s) are known polynomial matrices axqs) is searched
polynomial matrix, is converted to the linear equation with constant matrices

AgXc = Bg,

where
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AO 0 0 By

A1 AO 0 XO Bl

A . . "l x g 5
S — AnA AnA71 AO ) C — , DC — BnB

: Xnx :

0 0 - A, 0

and
A(s)=Ag+Ais+...+A,,s",

X(s) =X+ Xis+ ...+ X, ",
B(S) = BO + BlS + ...+ BnBSnB.

At first lower and upper bounds of degneg of searched polynomial matriX(s) are found. Bi-
nary halving algorithm finds the minimal degneg, if exists (ranks of Sylvester matrkgmust

equal to rank of extended matr(xAs Bc )). Then solution of equati.9 is found. And
finally polynomial matrixX(s) is recreated from column matrkc.

3.6.2 MethodgetX()
Gets solutiorX(s) of linear equatio\ (s)X(s) =B(s).

Syntax

public ContinuousPolynomialMatrix getX()

Example

See example in 3.29.

3.7 ClassDiscreteAXB

This class enables solving of linear equatkfz)X(z) = B(z) with discrete (one-sided only)
polynomial matrices.

Package

cz.ctu.fee.dce.polynomial

3.7.1 Constructor

Solves linear equatioA(z)X(z) = B(z) with polynomial matrices.

66



CHAPTER 3. LIBRARY DESCRIPTION

Syntax

public DiscreteAXB(DiscretePolynomialMatrix aA,
DiscretePolynomialMatrix aB) throws PMAXBEXxception

Example

Figure] 3.3D shows how linear equation

ERTEE

is solved. The solution

is found.

Algorithm

One sided discrete polynomial matric&éz) andB(z) are converted to continuous polyno-
mial matrices. Continuous solution (gee|3.6) is found and it is converted to discrete polynomial
matrix.

3.7.2 MethodgetX()
Gets solutionX(z) of linear equatio\(2)X(z) =B(2).

Syntax
public DiscretePolynomialMatrix getX()

Example
See example in 3.30.

3.8 ClassAXBYC

This class enables solving of linear equatid(s)X(s) + B(s)Y(s) = C(s) with continuous
polynomial matrices.

Package

cz.ctu.fee.dce.polynomial
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/I coefficients of polynomial matrix A
double[][][] aCoef = {
{{ 0, 0}, { 1, O}}, /Il coefficients at z"-1
{1, 0} { O, 1}} Il coefficients at z"0
¥

Il coefficients of polynomial matrix B
double[][][] bCoef = {
{{ 1}, { O}}, /I coefficients at z"-1
{{ 0o}, { 1} /I coefficients at z"0
I3

/I polynomial matrix A
DiscretePolynomialMatrix dpmA =
new DiscretePolynomialMatrix(aCoef, 1);

/I polynomial matrix B
DiscretePolynomialMatrix dpmB =
new DiscretePolynomialMatrix(bCoef, 1);

/I instance of A(z)X(z) = B(2)

/I equation solver is created

/I solution X(z) is found

DiscreteAXB axb = new DiscreteAXB(dpmA, dpmB);
DiscretePolynomialMatrix dpmX = axb.getX();

Figure 3.30: Solving of linear equation
3.8.1 Constructor
Solves linear equatioA(s)X(s) + B(s)Y (s) =C(s) with polynomial matrices.

Syntax

public AXBYC (ContinuousPolynomialMatrix aA,
ContinuousPolynomialMatrix aB, ContinuousPolynomialMatrix aC)
throws PMAXBYCException
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Example

Figure[B.] shows how linear equation

(3 ) w3 ) o =(%)

is solved. Solutions

are found.

Algorithm

The linear equation with continuous polynomial matrig€s)X (s) + B(s)Y(s) =C(s) is con-
verted to the linear equation

(A(s) B(s)) ( ?Ejg ) — C(s). (3.10)
whereA(s), B(s), C(s) are known polynomial matrices aXds), Y (s) are searched polynomial

matrices. Solution of equatign 3]10is found with usage of da@stinuousAXB (se€] 3.6).
This solution in split into two searched polynomial matriegs), Y(s).

3.8.2 MethodgetX()
Gets solutionX(s) of linear equatioi\ (s)X(s) +B(s)Y (s) =C(s).

Syntax

public ContinuousPolynomialMatrix getX()

Example

See example in B|1.

3.8.3 MethodgetY()
Gets solutiony (s) of linear equatioi\ (s)X(s) +B(s)Y (s) =C(s).

Syntax

public ContinuousPolynomialMatrix getY()
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Example

See example in Bl1.

3.9 ClassMathMl

This class enables exporting polynomial matrices into commonly used formats.
Package

cz.ctu.fee.dce.polynomial.utils

3.9.1 The MathML Format

MathML defined by W3C is intended to facilitate the use and re-use of mathematical and
scientific content on the web, and for other applications such as computer algebra systems, print
typesetting, and voice synthesis. MathML can be used to encode both the presentation of mathe-
matical notation for high-quality visual display, and mathematical content, for applications where
the semantics plays more of a key role such as scientific software or voice synthesis.

MathML is cast as an application of XML. As such, with adequate style sheet support, it
will ultimately be possible for browsers to natively render mathematical expressions. For the
immediate future, several vendors (e.g. MathPlayer by Design Science) offer applets and plug-
ins which can render MathML in place in a browser [3].

Robert Hornych, a graduate of class 2001 at CTU FEE Department of Control Engineering,
devised a couple of Matlab functions for converting polynomial matrix objects from Matlab
to MathML and vice versa. Mathematica and Maple claim the same features in their latest
releases. Converting polynomial matrix objects to MathML is also available in this package
using class MathMI. An example of polynomial matrix displayed by an Internet browser is

shown in figur¢ E3.

3.9.2 MethodpmToMmI(String, PolynomialMatrix)

This method converts polynomial matrix (both continuous and discrete) into MathML format.
Polynomial matrix stored in MathML format can be for example very easily presented on web
pagesl[15].

Syntax

public static void pmToMmI(String aFile, PolynomialMatrix aPm)
throws Exception
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Example

Figure[3.3]l shows implementation of conversion polynomial matrix
1 —3s? 8s—4s?
—6s* 2 —Ts?

into MathML format. Generated file is shown in figlire B.2.

/I coefficients of polynomial matrix A
double[][][] aCoef = {

{1, 0}, { O, 2}}, /I coefficients at s™O
{{ 0, 8}, { 0, O}}, /Il coefficients at s"1
{{-3,-4}, {-6,-7}} /Il coefficients at s"2

h

/I polynomial matrix A
ContinuousPolynomialMatrix cpmA =
new ContinuousPolynomialMatrix(aCoef);

/I saves matrix A into matrix.mml
/I file(MathML format)
MathMl.pmToMmlI("matrix.mml", cpmA);

Figure 3.31: Conversion of polynomial matrix into MathML

Algorithm

At first DOM (Document Object Model) [2]is created from existing polynomial matrix ob-
ject. Created DOM corresponds to MathML structure having presentation markup eléments [15].
It is transformed([2] to the standard XML format and saved as a file.

3.9.3 MethodtransformMmi()

This method transforms polynomial matrix stored in MathML format into format defined by
given transformation.

As it was said in subsectidn_3.9.1 the MathML format is universal format for mathemat-
ical notations. It is transformable by XSLT into any other format by existing transformation
file (XSL) [2]. For example polynomial matrix saved in MathML format can be transformed into
both HTML or TgX format.
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Syntax

public static void transformMml(String, String, String)
throws Exception

Example

Figure[3.32 shows conversion of file in MathML format (it can be polynomial matrix) into
file having X format using XSLT transformation.

/I transforms existing matrix matrix.mml in MathML

/I format into matrix.tex file in TeX format using

/I XSLT transformation defined in mmlitex.xsl file

MathMl.transformMmlI("matrix.mml", "xsl/mmitex.xsl",
"matrix.tex");

Figure 3.32: Conversion of MathML file intgeX file

Algorithm

The XSLT transformatior |2] is used.
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Chapter 4

Tests

It is necessary to test implemented methods in order to provide usable library. All methods
must prove correct functionality of implemented algorithms. Functionality tests are discussed
in the first section. If an error was reported by functionality test, it was fixed. Functionality
tests can be launched by library user to see the error report. It is also necessary to have as fast
as possible algorithms enabling on-line usage. Performance tests of methods are described in
the second section. The performance of algorithms was taken in account concerning Java and
numerical computing during implementation. The performance was improved where necessary
and possible.

4.1 Functionality Tests

In this section it is described how functionality tests are constructed. It is explained how tests
are implemented using JUnit framework and simple example of functionality test is shown.

Functionality test are called JUnit tests because JUnit testing frameWork![4, 13] is used.
Functional testing is based on comparing expected and computed output data for the same input
data. Input and expected data are easily generated by Polynomial Toolbox for Matlab [17] and
exported to Java format or they can be created by hand. Expected and computed data are com-
pared using some of overloaded static methadsert.assertEquals() . Each method
of provided programming interface (all public methods are tested) is tested for several different
data. Itis tested for randomly generated data and then for special cases, i.e. case when exception
is thrown or zero division, etc. Not only output data are tested but input data are tested that they
were not changed as well. Test of each method for particular data is implemented in particular
test methods Figure[4.1 shows the example of test method for polynomial matrices addition.
The following paragraph describes tests structure.

The test class calletbst caseextendingTestCase class is created for each class of pro-
vided programming interface. It contains test methods. Most of test methods uses same input
data. This data are set in overloaded meteetUp() and destroyed in overloaded method
tearDown() . These methods are launched before, respectively after, running of each test
method automatically by JUnit framework. All test cases are launched from classtealisdite
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public void testAdd() {

I/l expected matrix A for comparison
ContinuousPolynomialMatrix expectedA =
new ContinuousPolynomialMatrix(expectedCoefl);

I/l expected matrix B for comparison
ContinuousPolynomialMatrix expectedB =
new ContinuousPolynomialMatrix(bCoef);

try {
Il tested method variables cpmA and cpmB

/I were set in setUp() method
cpmA.add(cpmB);

} catch (Exception e) {
/I handle exception
System.out.printin(e);

}

/I comparison of expected and output data
Assert.assertEquals(expectedA, cpmA);
Assert.assertEquals(expectedB, cpmB);

Figure 4.1: The example of test method

Test suite displays tests structure and their results. Methssisrt.assertEquals() pro-
duce messages when errors occur. Classes with JUnit tests are placed in paaktadee.-
dce.polynomial.tests.junit and they are listed in appendix A. Examples of JUnit test
output can be found in appendix C.

4.2 Performance Tests

It is described how performance tests are constructed in this section. It is explained how tests
are implemented using framework for performance tests and simple example of performance test
is shown.

The framework for launching performance tests (see appérjdix A) was written. Performance
tests are based on measuring duration of tested method. Input data are randomly generated for
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tests. Time is measured by usifgne.init() andTime.getElapsedTime() methods
(see figuré A4,[[16]). Test of each method is implementetédt method Each test method
writes result of test (elapsed time) to a text file and generates Matlab command into m-file for
launching the same test in Polynomial Toolbox for Matlab [17]. Figure 4.2 shows the example of
test method for polynomial matrices addition. The following paragraph describes tests structure.

public void testMutliplyDefault() throws Exception {

/I saves the initial time
Time.init();

/I performs test method, cpmA and cpmB
I/l are created by setUp() method
cpmA.multiply(cpmB,

PolynomialMatrix.MULTIPLY_DEFAULT
);

/I saves elapsed time to file and
/I generates Matlab command A*B to m-file
writeResult(Time.getElapsedTime(), "A*B");

Figure 4.2: The example of test method

The test class calle@st casextendingPerformanceTest  class is created for each class
of provided programming interface. It contains test methods. Most of test methods use the
same input data. This data are set in overloaded metbtidp() and destroyed in overloaded
methodtearDown() . These methods are launched before, respectively after, running of each
test method automatically by test framework. Test cases are launchedP&dormance-
Runner class. It uses Java Reflection[22] for launching test cases. Each test case is launched
several times for different sizes of matrix and different degrees of matrix. Number of runs,
maximal matrix size and maximal matrix degree are given as parameters. Results of test (test
case) are written to the text file for further statistical processing and Matlab m-file is generated
for performing the same test case in Polynomial Toolbox for Matlab [17]. All test cases are
launched from clas#llPerformanceTests calledtest suite Classes with performance
tests are placed in package.ctu.fee.dce.polynomial.tests.performance and
they are listed in appendjix| A.

Both JUnit and performance tests were described. Graphical results of performance tests can
be found in appendix|D. Test results are assessed in the following chapter.
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Conclusion

This chapter includes summary of the whole thesis with comparison of the proposed package
with Polynomial Toolbox for Matlab. Some future plans for the package are outlined.

5.1 Comparison with Polynomial Toolbox for Matlab

Methods that use more complex algorithms were tested for their time performance on several
environments and compared to corresponding methods of Polynomial Toolbox version 3.0.10 for
Matlab 6.5 (see appendiX D). These results were found out:

e Computational times increase slower with increasing degree than with increasing size of
the polynomial matrix. It is due to proposed storage of coefficients of polynomial matrix.
Coefficients are stored as 3-dimensional array where degree index is at the first dimension
and row and column indexes are at the second and at the third index of array.

e The method for computing value of polynomial matrix at given point is faster than corre-
sponding method in Polynomial Toolbox for Matlab. Polynomial Toolbox converts scalar
to constant matrix of the same sizes as sizes of polynomial matrix and evaluates polyno-
mial matrix in three nested loops contrary to one loop without any conversions of scalar in
Java package.

e Scaling method has got much better performance than the scaling method in Polynomial
Toolbox for Matlab. It might be caused by several checks of input arguments correctness
in Polynomial Toolbox contrary to no need to check input arguments in Java package.

e All algorithms for two-sided polynomial matrices seem to be as fast as the algorithms
for one-sided polynomial matrices contrary to slower methods for two-sided polynomial
matrices in Polynomial Toolbox for Matlab.

e Methods which use discrete Fourier transform (determinant, roots, rank) have worse per-
formance than methods in Polynomial Toolbox for Matlab. CRaisnomialMatrix-
FFT uses fast Fourier transform algorithm of set of points. It would be more efficient if

76



CHAPTER 5. CONCLUSION

existed method for fast Fourier transform of set of constant matrices (at the time of im-
plementation library JIMSL 2.0 included classes for fast Fourier transform of set of points
only). This is the reason why default algorithm for multiplication of polynomial matrices
is faster than the algorithm using discrete Fourier transform of polynomial matrix.

e The performance of the other methods is comparable to performance of corresponding
methods in Polynomial Toolbox for Matlab.

5.2 Summary

An object-oriented library application programming interface enabling operating on polyno-
mial matrices was created. It was designed, implemented and properly tested both for function-
ality and for performance.

The structure of classes was designed while considering advantages and disadvantages of
Java language for numerical computing. Working with multidimensional arrays and complex
numbers are the most important issues that were considered during analysis. These aspects
had the main influence on choice of Java library for computing with constant matrices. The
algorithms for operating on polynomial matrices are based on algorithms for operating on con-
stant matrices. The JMSL 2.0 library by Visual Numerics was chosen. There are two classes

ContinuousPolynomialMatrix andDiscretePolynomialMatrix inheriting from
abstract clas$olynomialMatrix . Base functionality common for both child classes is
included inPolynomialMatrix . ContinuousPolynomialMatrix enables operating
on continuous polynomial matrices afdscretePolynomialMatrix enables operating

discrete-time polynomial matrices or two-sided polynomial matrices.

Base classes were implemented in correspondence with proposed structure. They contain
methods that enable performing basic linear algebra operations on polynomial matrices. The
classPolynomialMatrixFFT for inverse and direct discrete Fourier transform of polynomial
matrix was implemented using fast Fourier transform algorithm. This algorithm is used in some
algorithms like computing determinant or rank of polynomial matrix. Cla€seginuousAXB
DiscreteAXB andAXBYCwere created. They can be used for solving linear equations with
polynomial matrices.

All methods of programming interface were tested for functionality using JUnit framework.
About 100 successful tests were launched. Methods that use more complex algorithms were
tested for their time performance on several environments and compared to corresponding meth-
ods of Polynomial Toolbox for Matlab.

This is fully functional, usable and documented initial version of library providing applica-
tion programming interface for operating on polynomial matrices. It is operating system inde-
pendent. The JDK (Java Development Kit) distributed for free and JMSL 2.0 by Visual Numer-
ics are needed for its usage. Such a library can be used by programmers who want to develop
software (deployed on the Internet or locally) for automatic control system design and signal pro-
cessing applications, it can be used for educational purposes or by researchers. More information
about project can be found at [16], screenshots of project’s home page are found in appendix E.

77



CHAPTER 5. CONCLUSION

5.3 Future Extensions
It is planned to implement other functionalities like:

e Greatest common divisor (right and left) of two polynomial matrices,

e Fast solvers foA(s)X(s)=0 based on displacement rank theory for block Toeplitz matri-
ces [26],

¢ Reliable triangularization of a polynomial matrix [8],

e Spectral factorization of a para-Hermitian polynomial matrix,
i.e. a quadratic equatiok(-s)X(s)=A(S) andX(z'l)X(z):A(z,z'l) [20],

¢ J-spectral factorization of a para-Hermitian polynomial matrix,
i.e. a quadratic equatiod(-sIX(s)=A(s) andX(z' 1)IX(2)=A(z,z 1) [20].
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[EN
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+ DiscretePolynomialtd atri:
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classes.

]

Fackage contains i
supplementany classes for
AFl and dewelopment of

cr.ctu fee doe polynomial exceptions

AP

+ Complexhd atrix

+ Ganarator

B + Mathbdl

B + Matlab

B + hatrix

+ hethodsRunner

+ FerformanceRunner
+ Pedomance Nest

B + Time

+ lllegalPMCoefficientsException
+ PMaxBException

+ PMAxBYCException

+ PMDetereminantExeeption

+ PMHormException

+ PMRootsException

+ PMzaddException

+ PMScaleException

+ PhistdultiplyException

Fackage contains

cz.ctufee dee.polynomizl tests . junit

exceptions thrown by AR
methods,

e
Package contains | P
functionality (JUnit) tests of

APl methods.

+ AllIURitTasts
+ AXBYCTest

=
B + ContinuousAXBTest

B + CPMTest
+ Discrete AXBTest
+ DPMTest
+ TestCase

cz oty fee doe polynomial examples

[

cz.ctufee doe polynomial tests performance

B + AxBrCExample

+ ContinuousAXBExample
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Fackage contains exarnplels
of APl usage.
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performane tests of AF|
methods,

+ AllPerformanceTests

+ AXBEYCRerformance

+ ContinuousAXBF erformance
B + CPMPerformance

+ DiscreteAXBFerformance

+ DPMFPerformance
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libraries

Required librariez:

- JUnit 3.8.1 (JUnit test framewodd

[

- JAEP 1.2 (davaThl AR for XML Frocessing)
- JMEL 2.0 (JIMEL Numerical Library 2.0 for Java by Visual Numerics, Inc.)

Figure A.1: Package diagram
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+  getSymbal]: char + determinant : DiscreteFolynomialhd atrix
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o+ direcAF F T(Dizcrete P olynomialhd atriz, int) : Complex[IQ
+ inwerseFFT(Complex[[[. int): ContinuausPolynomialhd atrix
+ inverseFFT{Complex][[. int): DiscreteP olynomialbdatriz
Folymomizl Matri:DFT
+ directDF T(ContinuousPokhvnomialhdatriz, int): Complex(QQ
+  diretDF T(DiscretePolynomialbdatriz, inf) : Complex(OQ
+ inverseDFT{Complex[[[. int): ContinueusFolynomialhdatriz
+ inverseDFTIComplex[[. int): DiscretePalynomialhd atris

Figure A.2
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wexceptions
llegal P M Coefficiants Exception

wexceptions
P i Root=sException

wexceptions
FrAXBException

wexceptions
FPtisAddException

wexceptions
PriAXEY CException

wexceptions

Jjawalang:Exception

aqexcaptions
Pt Detere minantException

wexceptions
F b= bulti pl wException

wexceptions
PMScaleException

wexceptions
FrMormException

Figure A.3: Class diagram of package ctu.fee.dce.polynomial.exceptions
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Matriz

addidoublef][], dounle[): double

isZarohd atriz{double[): boolean
mergehdatricesidouble(][]l, double[[li: double[l]
multiphidouble]][], double[][): double]]

multiplyhd atrizByNumbenComplex, double[][: Complex][
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+ o+ o+ o+ o+ o+ o+
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T
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that are not implemented in
JMSL 2.0,

addiComplex[[. doublefQ): Complex[]
conjugatelComplex][): Complex][
createComplexhdatrizing, int): Camplex[][]

multiplyhd atrizByNumberComplex, Complex[[1: Complex][
rankComplex cint

realiComplex[[): double][]

+ o+ o+ o+ o+ o+
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+ transformbdmi(String. String, String) @ woid
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auzen s SR
+ cpmTohdatlabiContinuousP olynomialhdatrix, String) : String ' + randomPMEoetficientsint, int, int): double[]
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Figure A.4: Class diagram of package ctu.fee.dce.polynomial.utils
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Al UnitTests

AXBYCTest

junit.swingui ;:TestRunner

CPMTest

junit framework: TestCase

#  tearbown( : void
#  setUpd) : woid

/N

DiscreteAXBTest

Cortinuous AXEBTest

OF MTest

Figure A.5: Class diagram of package ctu.fee.dce.polynomial.tests.junit

AllPerformanceTests

AXEYCPerfor mance

wcalls

Cortinuous AXEBPerfor mance

cr.ctu fee doe polymomial dils::
Perfor manceRunner

+  runlString, int): void

T
'

'
acalls
'

'

Ui

cr.cfy fee doe polpronmial wils::
Ferfarmance Test

+ zetlog ; void

+7 tearDownar ) ;o woid
///D # writeFesultsString, String) : woid \

FMFerfor mance

CPMPerformance Discrete AXBPerfor mance

DFMPerformance

Figure A.6: Class diagram of packaggectu.fee.dce.polynomial.tests.performance
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Polynomial mairix:

2 2 2
1=3s" 8g—4s® 3-57 | _[103]0,({08 0 1,[=3-4-5]2
L6529 T752 _ng_ 942 020 00 -2 B
Coefficients in Java:

A cosfficients of polyvynomial matrix
double[ ][][] coefficient=s = {
{1, 0, 3%, £ 0, 2, 0}}. ~ coefficients at =70
{{ 0, 8, 0¥, £ 0, 0,2}, ~* coefficients at =71
f1-3,-4,-5%, {-5.-7,-8}} .~ coefficients at ="72

i
storage of coefficients:
0 1 2 powers (degrees)
2lele
o1 i A o1 rows
ol ol ol
e f iy .
¢ % i L ¢ % columns
o] 1 o] 0 o 0 ol 0 of -3 ol -6
11 0 11 2 11 8 11 0 11 -4 1 -7
2l 3 21 0 21 0 2] -2 2] -5 2l -8
1] 1 2 powers (degtees)
s|e|e
h 4 \ mattices
1j0]3 08| 0 314]|-5
01210 0|10]-2 6 |-7]|-8
1] 1 2 1] 1 2 1] 1 2
1] 1 2
s = s

Figure A.7: Storage of coefficients
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APPENDIX B. CODE EXAMPLES

/I coefficients of polynomial matrix A
double[][][] aCoef = {

{{1, 0}, {0, 1}}, /I coefficient at s™0

{{o, 0}, {1, O} Il coefficient at s"1
¥
Il coefficients of polynomial matrix B
double[][][] bCoef = {

{{1, 0}, {0, 1}}, /I coefficient at s™0

{{o, 0}, {1, O} Il coefficient at s"1
3
/I coefficients of polynomial matrix C
double[][][] cCoef = {

{{0}, {2}}, /I coefficient at s™0

{{2}, {O}} /I coefficient at s"1

J§

/I polynomial matrix A
ContinuousPolynomialMatrix cpmA = new
ContinuousPolynomialMatrix(aCoef);

/I polynomial matrix B
ContinuousPolynomialMatrix cpmB = new
ContinuousPolynomialMatrix(bCoef);

/I polynomial matrix C
ContinuousPolynomialMatrix cpmC = new
ContinuousPolynomialMatrix(cCoef);

/I instance of A(S)X(s) + B(s)Y(s) = C(s)

/I equation solver is created

/I solution X(s) and Y(s) is found

AXBYC axbyc = new AXBYC(cpmA, cpmB, cpmC);

/I solution X(s) and Y(s)
ContinuousPolynomialMatrix cpmX = axbyc.getX();
ContinuousPolynomialMatrix cpmY = axbyc.getY();

Figure B.1: Solving of linear equation
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<?xml version="1.0" encoding="UTF-8"?>
<math xmins="http://www.w3.0rg/1998/Math/MathML">
<mfenced close=")" open="(">
<mtable>
<mtr>
<mtd><mrow>
<mo/><mn>1</mn>
<mo>-</mo><mn>3</mn>
<msup><mi>s</mi><mn>2</mn></msup>
</mrow></mtd>
<mtd><mrow>
<mo/><mn>8</mn><mi>s</mi>
<mo>-</mo><mn>4</mn>
<msup><mi>s</mi><mn>2</mn></msup>
</mrow></mtd>
</mtr>
<mtr>
<mtd><mrow>
<mo>-</mo><mn>6</mn>
<msup><mi>s</mi><mn>2</mn>
</msup>
</mrow></mtd>
<mtd><mrow>
<mo/><mn>2</mn>
<mo>-</mo><mn>7</mn>
<msup><mi>s</mi><mn>2</mn>
</msup>
</mrow></mtd>
</mtr>
</mtable>
</mfenced>
</math>

Figure B.2: Polynomial matrix in MathML format
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APPENDIX C. FUNCTIONALITY TESTS

=Y

Junit

Test class name:

‘cz.ctu.fee.dce.pnlynumial.tests.junit.nIIJUn'rtTes’ls |"'H || Run |

[v] Reload classes every run

e ————————————==s) RN | |

Runs: 100/100 X Errors: 0O X Failures: 0

Results:

1 Testfor polynomial.tests
& [ cz.ctufee.dee.polynomial tests junit ContinuousPalynomialMatrixTe 7
& cz.ctufee dee polynamialtests. junit.DiscretePalynomialmatrixTest
@ [ cz.ctufee. dee.polynomial tests junit ContinuousAxETest
" testAiE1
i testaE2
i testAxE3

.
m = Test Hierarchy |

1] L]

|Finished: 8,06 seconds Exit

Figure C.1: Output of JUnit tests - all tests passed
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=Y

Junit

Test class name:

‘bz.ctu.fee.dce.pnlynumial.tests.junit.nIIJUn'rtTes’ls |"'H || Run |

[v] Reload classes every run

I . (U

Runs: 100/100 X Errors: 0 * Failures: 2

Results:

xtest\-’alueAﬂ(cz.ctu.fee.dce.puIvnumial.tests.junit.DiscreteF‘uIvnumialM s ‘ Run
X testyalueAt2(cz.ctufee. dee.polynomial tests junit.DiscretePolynormial

X Failures

junitframewark AssedionFailedErrar: expected:=-2.0+1.0i= hut was:=-2.0-5/*
at cz.ctu fee.dee polynomial tests junit. DiscretePalynomialMatrixTe st te sty

at sun.reflect MativemethodAccessorimplinvokeD{Mative Method)

at sun reflect MativeMethodAccessorimplinvake(MativeMethodAccessorlm

at sun.reflect DelegatingMethodAccessarimplinvoke(DelegatingMethodAc

-

L]

Finished: 9,37 seconds Exit

Figure C.2: Output of JUnit test - tests with errors
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Test Protocol

Date

200312413

Polynomial Matrices in Java

build 200311131804 (200311513 15:04)

OSPWindows P Home Edition fversion 5.1, build 26003
JRE|Sun Java 2 SE 1.4.2
Matlahls 5.0 15809135 (R13)
Polynomial Toolbox|3.0.10
CPU|Intel Celeron, 1200 MHz, 256 kB L2 Cache
RAM|354 MB
Java Before Test After Test
Total Memory 845 mB 945 MB
Total Memory Occupied g8 MB aa MB
Total Memory Occupied - Peak 148 MB 164 MB
Matlah Before Test After Test
Total Memory H45 MB 45 WB
Total Memory Occupied 133 WiB 247 WB
Total Memory Qccupied - Peak 164 B 269 MB

Figure D.1: Test protocol of performance tests
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Time [ms]

Time [ms]

W Sylvester - Java
H Sylvester - Matlab
= Mutliply - Java

PolynomialMatrix Class Performance
polynomial matrix size: 5x5

7 g 9 10 1

Polynomial matrix degree

PolynomialMatrix Class Performance
polynomial matrix degree: 5

6 e
ahutliply - Matlab
m Mo - Java
B Marrm - Matlab
5 4 i —
44 =
3 4 -
24
14
0 T T
1 2 3 4
? e
W Sylvester - Java
H Sylvester - Matlab
g4 (B Mutliply - Java
o Mutliply - Matlab
E Morrm - Java
54 [EMorm - Matlab - -
4 N
3 4 e s
2 4
1 4
0 T T T T
11 2u2 3x3 x4

5%5 BB it Gx8 98 10:10 11«11 12¢12 13x13 14x14  15x15

Polynomial matrix size
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Time [ms]

Time [ms]

PolynomialMatrix Class Performance
polynomial matrix size: 5x5

@50 mE2.1

40 4

B Rank - Java

& Rank - Matlab M
35 4 |@Roots - Java M

B Roots - Matlab
0 m%alue, complex - Java

EYalue, complex - Matlab

mYalue, double - Java
25 4 |BYalue, double - Matlab
20 4 Il
15 4 1 . i
10
5 i
gt o [

1 2 3 7 g 9 12 13 14 15
Polynomial matrix degree
PolynomialMatrix Class Performance
polynomial matrix degree: 5

120 4 mRank - Java =

@ Rank - hMatlab B

O Roots - Java

O Roots - Matlab
100

mYalue, complex - Java

E%alue, complex - Matlab

malue, double - Java
80 1 |m“alue, double - Matlab A i
B0

1x1 252 3x3 TH7 Bxb 99 12¢12  13x13  14x14  15x15

Polynomial matrix size
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Cont inuousPolynomialMatrix Class Performance

polynomial matrix size: 5x5

= o
= = =
T oL T =
S a2
s 2= R E =
T oo = .
hamwwatt
s =0T E 55
&2 e UL, fs S
DEZssEEEEE
s £ == Z & o
oo E5EEE =282
29 33 2 2 2 o o
€L <€ NnWwEZZEoo
200 @ 8@ A
T T T T
[ix} L -t [z}
[sw] auny

Polynomial matrix degree

Cont inuousPolynomialMatrix Class Performance

polynomial matrix degree: 5

1 maa

@49

@551

@31

m741

e —
-
=]
e
725
]
P 2 Y ——
=
| |
=
=) =1
= = K
o L T o=
F2Lor 2
T = m S =
= m T & = .
B8z e 000 oo
aﬂ__JJMMW
Wmtt___nn
L T T
T EsEs=ss5s EE
S s ==25 &
O 9O 8O 9 = = = o =
2 9 33 2 2 2 o o
4 a4 N EZEZEOCO
8 008 B @@ A
T T T T T 1
= ) = Lo = L [}
] o ] - -
[sw] auny

2x2 3x3 4xd ax5 GxE 7x7 GxB 99 1010 111 12x12 13x13 14x14  15x%15

1x1

Polynomial matrix size
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Cont inuousPolynomialMatrix Class Performance
polynomial matrix size: 5x5

45 4
B Scale automatically - Java
H Scale automatically - Matlab
01 | mscale - Java :E: []
o Scale - Matlab
35 =
30 i
E. 25 :
@ K
£ i
= 201 M K
15 i
10 i
5 e
0 T T T T T T T T
1 2 3 4 5 5 7 14
Polynomial matrix degree
Cont inuousPolynomialMatrix Class Performance
polynomial matrix degree: 5
25 q W Scale automatically - Java
& Scale automatically - Matlab
B Scale - Java
O Scale - Matlab
JEITRE
151 W 2 2 7 B i
7 b b =
= i B b
w o o =
E i i =
= b i bl
104 = = i
5 =
0 T T T T T T T T T T T el

Tl 9 10x10 1= 12:12  13x13 14x14 15x15
Polynomial matrix size
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DiscretePolynomialMatrix Class Performance

polynomial matrix size: 5x5
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[sw] auny

Mote: degrees 6 to 15 are two-sided polynomials

Polynomial matrix degree

W Conjugate - Java

H Conjugate - hMatlab

O Conjugate and transpose - Java

O Conjugate and transpose - Matlab

B Transpose - Java

H Transpose - Matlab

DiscretePolynomialMatrix Class Performance

polynomial matrix degree: 5

2

05 A

T
w
o

[sw] auny

04

0.2 4

98 10x10  11x11 12612 13x13 144 15%15

G
Polynomial matrix size

=

Mote: one sided paolynomials
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DiscretePolynomialMatrix Class Performance
polynomial matrix size: 5x5

APPENDIX D. PERFORMANCE TESTS
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Mote: one sided polynomials
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APPENDIX E. PROJECT'S HOME PAGE

Polynomial Matrices in Java

Home

News

To Do List

Examples

Performance

Downloads

Design

Javadoc

Links

Contact

Home
Project description

Development of a Java package for computing with polynomials and polynorial matrices, with special ermphasis on applications in control
systemn design and signal processing. The package will be based on JMSL 2.0 library of Java numerical algorithrms.

The package will include a new class Polynomialtatriz and a set of numerical algorithms like basic arithmetic operations, determinants,

adjoints, irverses, pseudoinverses, left and right greatest common denominators, test of stability (roots distribution), row- and colurmn-
degree reduction, linear Diophantine eguations with polynormial matrices, spectral factorization and plus-minus factorization.

Why palynornial matrices?
Palynomials and polynomial matrices arise as a natural and versatile tool for description of dynamical systems (describable by differential
or difference equations) like electrical circuits, servomotors, robot arms, evaporators, aircraft and even communication channels for mobile

phones.

Studying the algebraic properties of polynomial matrices reveals a lot about dynamical behavior of the corresponding physical systems
without actually solving the associated set of differential equations.

The theory of palynomial matrices can also be used fo design contrallers for automatic contral system (LQG, H,, H; 4 1y, ..) and filters far

signal processing (Wiener filters, Kalman filters, ...}
Why Java?

Reliability, maintainability, platform independence, orientation on network.

Wby JMSL 207

A scan of available Java numerical libraries (JMSLAUNL, JMAT, JAMA, JAMPACK, COLT, MINJA) has been made by the proposers of the
project. It turns out that most of the projects that enthusiastically started at 1998 as a result of activities of Java Grande Forum Mumerics
Working Group have stalled (JAMA by The Mathworks and MIST, MINJA by IBM) or are only a compilation of previous projects (IMAT,
COLT).

JMSL appears a truly professional project with continuous development and technical support. Great support for complex numbers.

Paotential users of the package

+ Developers of software for automatic control system design and signal processing applications.

Figure E.1: Home page
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News

On this page you can find latest information related to project Polynomial Matrices in Java.

Date Description

20031214 Mew performance testwas added (Intel Celeron 1.2 GHz, 384 MB RANM)

2003H 2011 Section Perforrnance was added. There are shown graphical results of performance tests there

200311013 Section Examples was updated. Examples of computing roots, value of palynomial matrix, solving of equation A= B (hoth with continuous and discrete

palynomial matrices) and solving of eguation AX + BY = C were added.
20031113 Mew build was released (see downloads section)

It is possible to solve linear equation AX + BY = C with continuous polynorial matrices (see AXBYC).

It is possible to compute roots of non-sgquare polynonial matrix (see Polnomiaiatrie roots]). So far it was possible to compute roots of square
polynomial matrix only.

Method ContinuousPolnomiailatri solvedx B0 was replaced by class ContinuowsA X B and Method DiscreteFPolynomiaiMativ solved X B() was
replaced by class DiscreteAX B

Examples of APl usage are found in package cz.ctu fee.dee polynomial examples (AXBYTExample, ContinuousAXBExarmpie,

DiscratedX BExample, MathllExample, PMExample are finished).

Functionality (JUnit) tests are found in package cz.ctu fee. doe polynornial tests. funit.

Framewark for performance tests was created (classes cz.ctu fee. doe polynomial utils. PerdormanceRunner and

cz. ctw fee doe polnomial utils. Performance Test.

Performance tests are found in package cz.ctw fee.dee polinomial tests peformance. Classes create text outputs with measured time in ms and
Matlab m-files for generating correspondings performance results of Polynomial Toolbox for Matlab are created.

20031112 Section Design was added. Logical structure {UML class diagrams) of library is described here.

200301 0028 Section To Do Listwas added.

20034 0i27 Firstwersion of these weh pages was realeased on the Internet.

20031018 Mew build was released. It possible to solve linear equation AX = B with polynomial matrices (see ContinvousPolynomiziMatric 2X'B()). New method

FolynormniaiMatri get Sylvesterilatrix] retums Sylvester matrix created from coefficients of polynomial matrix. There was created new class
cz.ctu fee. doe palpnormial util MathML |t enables storing polynomial matrix in MML format and transforming MWL file into another format. It can be found
at downloads

Lastmodifted on 127152003 19302405

Figure E.2: News page
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=« hack

Let's have linear equation with polynomial matrices A(s)X(s) + B{s)¥(s)= Cis), where

10
a1

Als)= { ] Bis) = [ ; ?] Cis) =[ 228 ] and X(g), ¥{s) are searched solutions of this equation.

With usage of polynorial jar library we find solutions of linear eguation:

s« coefficients of polynomial matrix A
double[]1[][] aClosf = {

{{1. 0}. {0. 1}}. /v coefficient at =70
{{0, 0}, {1, 0}} v coefficient at ="1

S« coefficientz of polyvynomial matriz B
double[]1[][] bCloef = {
{{1. 0}. {0. 1}}. ~// cosfficient at s
{{0, 0}. {1. D0}} ~~ coefficient at =

s+ coefficients of polynomial matriz C
double[][][] cCoef = {
{{0}. {2}}. -7 coefficient at =70
{{2}. {0}} -~ coefficient at s"1

77 polynomial matriz A
ContinuousPolynonialldatriz cpmd = mnew ContinuousPolynomialMatriz{aCoesf):

< polynomial matrizx B
ContinuousPolynonialdatriz cpmB = new ContinuousPolynomialMatriz{bCoesf):

S polynomial matrix C
ContinuousPolynomnialMatriz cpms = new ContinuousPolynomialMatriz{cCoef);

A4 instace of A(=)H{=) + B(=)¥(=) = C({=) egquation solver iz created
S zolution E(=) and Y(=) i= found
ANBYC axbyc = new ANBYC{cpmi. cpmd, cpmB):

A4 soulution Xis)
ContinuousPolynomialMatriz cpm¥ = azbyc geti{):

A4 soulution ¥i=)
ContinuousPolynonialMatriz com¥ = axbyc get¥():

There were found solutions X(s) = [ ; g J and ¥(s) = [ g 3 ]

Figure E.3: Code example
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Performance

On this page you can perfarmance of APl methods provided by Java library for operating on polynomial matrices compared to Polynomial Toolbox for batlab.

Performance Test 1

Link
Test Protocol
shoe
show

Show

Performance Test 2

Description

Information about test environrment

PolynomialMatrix - Sylvester matrix, multiplication by number, norm for different degrees.
PolynomialMatrix- rank, roots, value for different degrees.

ContinuousPolynomialMatrix - conjugation, transposition for different degrees
ContinuousPolynomialMatrix - addiion, subtraction, multiplication, determinant for diffierent degrees
ContinuousPolynomialMatrix- scale for different degrees

PolynomialMatrix- Sylester matrix, multiplication by number, norm for different matrix sizes
PolynomialMatrix- rank, roots, value for different matrix sizes.

ContinucusPolynomialMatrix- conjugation, transposition for different matrix sizes
ContinuousPolynomialMatrix- addition, subtraction, multiplication, determinant for different matrix sizes.
ContinuousPolynomialMatrix - scale for different matrix sizes.

DiscretePolynomialMatrix - conjugation, transposition for different matrix sizes.
DiscretePolynomialMatrix - addition, subtraction, multiplication, determinant for different matrix sizes.

DiscretePolynomialMatrix - scale for different matrix sizes

Link
Test Protocol
show
show

show

show

CPLU Intel Celeron 1 MB RARN, ..

Description

Infarmation about test environment

PolynomialMatrix- Sylvester matrix, multiplication by number, norm for different degrees.
PolynomialMatrix- rank, roots, value for different degrees.

ContinuousPolynomialMatrix - conjugation, transposition for different degrees.
ContinuousPolynomialMatrix- addition, subtraction, multiplication, determinant for different degrees.
ContinucusPolynomialMatrix- scale for different degrees.

DiscretePolynomialMatrix - conjugation, transposition for different degrees.
DiscretePolynomialMacrix - addition, subtraction, multiplication, determinant for different degrees.
PolynomialMatrix- Sylvester matrix, multiplication by number, norm for different matrix sizes
PolynomialMatrix- rank, roots, value for different matrix sizes.

ContinuousFolynomialMatrix - conjunation, transposition for diffierent matrix sizes

Figure E.4: Performance tests
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Downloads

On this page you can find all releases of Java library for operating on polynomial matrices and other related downloads.

Releases 3 s of polynomial jar library

Date Name Size Description

200311613 200311131804 71 2147 kB Solver oflinear equation Ax + BY = C, performance tests, examples of AP usage, roots of nan-
LSRR sguare polynomial matri

20034 0118 2003101816152 2,097 kB Salver of linear equation Ax = B. Sylvester matrix creation, MML outputs generation and its

transforms.

20031014 200310142113 unofficial.zip 2121 kB Unofficial release contains Sylvester matrix creation, MML outputs generation and its transforms.

2003mar11 200309111112 7ip 399 kB Rank, scaling, value, norm of polynomial matrix, exceptions implemented.

20030412 200304121116 zip 331 kB

20030315 200303151637 zip zkB Initial public release.

Documents dable documents

Date Name Size Description

20031 0527 poster 2003 Ad pdf 462 kB Froject presentation for Poster 2003 at Czech Technical University.

20031 0527 projectproposal.doc 30 kB Project proposal.

20031 0727 e asearthore in o 27k Short description of paricipants from the "polynomial research group” at Department of Caontral

Engineering by CTU FEE.

Lastarodiffed on {41352003 20009:32

Figure E.5: Downloads
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Logical View

=

Data Model
Logical Model
[E  ez.ctufee.dee.pohmomial

cz.ctufee.dce.

cz.ctufee.dee.p p

cz.ctufee.dce.pohmomial.tests junit

cz.ctufee.dce.p

tests.performance
cz.ctufee.dee.pobmomial.utils

Java.lang

junit.framework

junit.swingui

libraries

cz.ctu.fee.dce.polynomial

[0 E0 [0 [0 [0 [ [ 0

cz.ctu.fee.dce.pohmomial
AXBYC

ContinuousAXE
ContinuousPohmomialMatrix
DiscreteAXB
DiscretePolynomialfatrix
PolynomialMatriz
PohmomialMatrizDFT
PolynomialiMatrixFFT

>4l

Figure E.6: Design
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logical diagram: cz.ctu.fee.dce.polynomial —
PolyromialMafriz Continuous Pol ynorni al Matrix AXEYC
- 5_SYMBOL: ch ; ; e
B e : 2::-(5°:fe'"0".°v”:i:°'Wmmat"x)'"°'d whizen |+ getx(: ContinuousPo
- MULTIPLY_DFT: int = L2 o | i alhd atri S [+ T C L,
- HORM_ABSOLUTE: int kl—+  multiplyiContinuousPolynemialMatis) : void
. ugzm_ﬁ‘iﬁﬂ?:”?-‘ i +  multiph(ContinuousFalynomialhstrix, inf) : woid |
= — el + scale(: void :
= HORVSRRTFER] DS i + seale(double) : void T
= [N OGS (e +  subtrast(ContinuousFolynomialhatrig s vaid e !
: i TMAY: in :
+ comjugateAnd fremspose () - woid Cortirn
+ equalsiObject): boolean
+ getCoefficients]): double
3 Eewolumnb:ﬁem imguu DizcretePolynomial hstrix +  geti): ContinuousP
47 getDegree() it
+  gathumberCalumns : int - Z_STMBOL: char
+  getMumberOfRows] : int
+ getRowbegress) : inf] +  addiDiseretePolynamialbatrixd : woid
+  getSylresterb atrisgint) : double[ i sonjugate( : void : : Discretes:
+  getSymbald) : char + determinant) : DiscretePolynomialhd atriz
+ getZercingCoefficient) : int +  getlowestPowen] : int
+ hashCode(:int + isTwoSided() : boolean «uses |+ getd]: DiscretePoln
+ izSquared: boolean +  multiplyDizcretePolynomialhd atriz) : void
A e +  multiplyiscreteP olmomialhd atriz, int) : woid
+  multiphidouble) : void + seale): void )
+  normiint, int): double + scale(double) : woid
4 st +  subtrachDisereteF olynomialidatri=) : void
Y oot Cormplenl +  transposef) : void
+  setymbolichar : void s
+  sefZercingCoefficientint) : void
+7 0 Sting () - Sk Polynamizl MatrixF FT
+ walueAtlComplex): Complex][
+ walueAt(double): doubl
ralueatdoublea);;dovblell +  directfF T(ContinuousPolynamialh atriz, inf) : Complex]]
+  directFF T(DiscreteF olynomialhdatrie, int): ComplexO]
+ inverseFFT(Complex| Lint): ContinuousP olynomialhdatrix:
+ inverseFFT(Complex[[)l], inf) : DisereteF olynomialtdatrix
Polynamial MatrixOFT
+  directDF T(ContinuousP alynomialMatriz, inf) : Complex[[
+  directDF T(DiscreteFolynomialMatii, int): Complex[[[
+  inwerseDFT(Complex| Lint): ContinuousPolynomialhdatrix
+  inwerseDFT(Complex][[. int): DiscreteFolynomiald atix
logical diagram: cz.ctu.fee.dce.polynomial
Author: Michal Padera
=
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All Classes

Packages
cz.ctu fee.doe polynormnial

cz.ctufes.doe.palynomial.exceptio

Field Summary

Fields inherited from class cz.ctufee.dce.polynomial. Polymomiallatrix

cz.ctu fee.doe polynormial utils

1 |

MULTIPLY DEFAULT, MULTIPLY DFT, MULTIPLY SYLVESTER, WNORN ABSOLUTE, NORM FROEBENIUS,
NORM INFINITE, WORM METHOD BLOCKE, NORM METHOD LEAD, NORM METHOD MAX, NORN QUADRATIC,

5_SYMBOL

Constructor Summary

All Classes

AHBYC

Complextdatrix
continuousAxE
ContinuousPokynamizlbiatrix
DiscreteAxB
DiscretePolynomialtdatrix
Generator
llegalPMCoefficientsException
Mathtdl

hatiab

I atrix

MethodsREunner
PraAxBExCeption
PrAXBYCEXCeption
EmDeterminantExcention
ErtormException
PMREootsException
PrScaleException
ErsAddExcention
ErstdultiphyException
EerformanceRunner
EerformanceTest
Polynomialtdatrix
PolynomialtatrizDF T
PolyvhomialtdatrizFFE T
Tirne:

ContinuousPolynomialMatrix (ContinuousPolynomialMatrix aCpm)
Constructor for ContinuousP elynomialtfatriz

ContinuousPolynomialMatrix(double[][][] aCoef)
Constructor for ContinuousP elynomialllatriz

ContinuousPolynomialMatrix(double[][][] aCoef, char alymbol)
Constructor for ContinuousP alynomiallatriz.

Method Summary

weid

add (ContinuousPolynomialMatrix cpm)
Adds continuous polynomial matriz

woid

conjugate ()
Conjugates continuous polynomial matriz

woid

conjugatedndTranspose ()
Transposes and conjugates continuous polynomial matrix

Cont inuousFolynomialMatzin | gop opminant 0

Computes determmninant of continuous polynomial matrx

ygetDegree ()
Eetums degree of continuous polynomial matrsx

woid

multiply (ContinuousPolyhomialMatrix cpm)
Iultiplies continuous polynedal matris by continuous polyhomial matriz using default method

veid lmnltiply (ContinucusPolynomialMatrix cpm, int methaod)

Ilultiplies continuous polynedal matriz by polynomial matriz choosing method for
multiplication

Figure E.7: Java documentation
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Links

On this page you can find links to sites concerning to project of Polynomial Matrices in Java

Link
hitp:irnanvni.carm
hittpyihnnnw. po by com
hitp:ifdce. felk cvut.cz

Description

Visual Numerics

Polyx - producer of the Polynomial Toolhox for Matlab

Cepartment of Control Engineering by Czech Technical University Faculty of Electrical Engineering

loprnent in J

Link

hitp:ifjava.sun.cam

hitp:itina vii.corfproductsfimslijm sl htrml
hitp:itirsw eclipse.org

hitp:ibinaai junit.arg

hitp:ifant apache.org

Description

Sun.Java

JMEL Mumerical Library for Java Applications by Yisual Mumerics
Eclipse - Java IDE

JUnit - library used for functional testing

Ant- tool for creating builds

Java and Numerics

Link

hitp:imath. nist govijavanumerics
hitp:ifjava.sun.comipeaplefadf P htrml
hitp-ifimat sourceforge net

hitp-ithoschek home cerm chihoschekicolt

Description

Java Grande Farum Numerics Warking Group

The Evolution of Murnerical Cormputing in Java

Java MATrix tools package

Open Source Libraties for High Performance Scientific and Technical Computing in Java

Algorithms

Link

hittpdhnana. N cOIM

hitp:iteennw. netlib.oroiblas
hitp:ifwenan |aa s fif~henrion/publis htrml

hitp:ifmathwarld walfram.camiHormersMethod. htrml

Description

Mumerical Recipes

BLAS (Basic Linear Aluebra Subprograms)

Didier Henrion's publications, linear equations, rank, Sylvester matrix, norms
Harner scheme

Other unfolded links.

Link
hitp: i w3 aroibdathi

bbb thinnans daeeei cavatnninendede bl qune

Description
W3C Math Home

MethDlaunv e nrad fre dicnlauine Meth b Aaisdinne amnoosab maene

Figure E.8: Links
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