
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

BACHELOR’S THESIS

Aleš Novotný

Reactive collision-free motion planning of a helicopter
using data from onboard stereo camera

Department of Cybernetics

Thesis supervisor: Ing. Vojtěch Spurný





Prohlášeńı

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré
použité informačńı zdroje v souladu s Metodickým pokynem o dodržováńı etických prin-
cip̊u při př́ıpravě vysokoškolských závěrečných praćı.

V Praze, dne. . . . . . . . . . . . . . . . . . . . . . . . . . . . Podpis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .





BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

457209Personal ID number:Novotný AlešStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

Systems and ControlBranch of study:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Reactive collision-free motion planning of a helicopter using data from onboard stereo camera

Bachelor’s thesis title in Czech:

Reaktivní plánování bezkolizního letu helikoptéry s využitím dat z onboard stereo kamery

Guidelines:
A motion planning algorithm will be designed that enables to avoid currently detected obstacles (trees) in the task of
autonomous flying in a forest-like environment. The following points will be solved:
- To design and implement methods for reconstruction of objects (trees) in 3D Point Cloud obtained from the stereo camera
during flight.
- To create a local map of detected objects.
- To design and implement a reactive collision-free technique for control of a Micro Aerial Vehicle (MAV) (e.g., VFH [1]).
- To integrate the methods into the ROS system being designed at MRS group, CTU in Prague [2,3].
- To implement a model of stereo camera sensor into the Gazebo robotic simulator.
- To verify system functionalities in the simulator.
- To conduct a real-world experiment with MAV (MAV localization in GPS-denied environment is not a part of this thesis;
a combination of GPS data and the designed obstacle detection technique will be used in the experiment).

Bibliography / sources:
[1] J. Borenstein and Y. Koren, The vector field histogram-fast obstacle avoidance for mobile robots, in IEEE Transactions
on Robotics and Automation, vol. 7, no. 3, pp. 278-288, 1991.
[2] T. Baca, P. Stepan and M. Saska. Autonomous Landing On A Moving Car With Unmanned Aerial Vehicle. In The
European Conference on Mobile Robotics (ECMR), 2017.
[3] G. Loianno, V. Spurny, J. Thomas, T. Baca, D. Thakur, D. Hert, R. Penicka, T. Krajnik, A. Zhou, A. Cho, M. Saska, and
V. Kumar. Localization, Grasping, and Transportation of Magnetic Objects by a
team of MAVs in Challenging Desert like Environments. In IEEE ICRA and RAL, 2018.

Name and workplace of bachelor’s thesis supervisor:

Ing. Vojtěch Spurný, Multi-robot Systems FEL

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 25.05.2018Date of bachelor’s thesis assignment: 30.01.2018

Assignment valid until: 30.09.2019

_________________________________________________________________________________
prof. Ing. Pavel Ripka, CSc.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
Ing. Vojtěch Spurný
Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1





Acknowledgements

First of all, I would like to thank Ing. Vojtěch Spurný for his supervision in this
project. I would also like to thank other people from Multi-robot Systems group for their
advice and assistance with technical problems and eventually my family, relatives, and
friends for support during studying.





Abstract

The aim of this work is to design obstacle detection system for Un-
manned Aerial Vehicle (UAV) equipped with a depth camera. Especially,
we propose methods for image filtering, real-time automatic detection of
obstacles in a forest-like environment in which the UAV fly, and obstacle
avoidance algorithm based on Vector Field Histogram (VFH) which is
used for reactive collision-free motion planning. The proposed system is
modular and it can be used for processing of data from different types
of cameras with the same function principle. The functionality of the
system has been tested in several simulations and real-world experiments.

keywords:
[unmanned aerial vehicle, depth camera, vector field histogram, reactive
motion planning, obstacle avoidance]





Abstrakt

Ćılem této práce je navrhnout systém, který detekuje překážky pro
bezpilotńı letadla vybavené hloubkovou kamerou. Předevš́ım navrhu-
jeme metody pro filtrováńı vstupńıho obrazu, automatická detekce
překážek v reálném čase a nezávisle na prostřed́ı, ve kterém se bezpilotńı
letadlo pohybuje a algoritmus pro vyhýbáńı se překážkám založený na
metodě vector field histogram, která se použ́ıvá pro reaktivńı bezkolizńı
plánováńı letu. Navržený systém je modulárńı a může být použit pro
zpracováńı dat z r̊uzných typ̊u kamer založených na stejném principu
funkce. Funkčnost systému byla testována v několika simulaćıch a
experimentech v reálném světě.

kĺıčová slova:
[bezpilotńı letadlo, hloubková kamera, vector field histogram, reaktivńı
plánováńı letu, vyhýbáńı se překážkám]





CONTENTS

Contents

1 Introduction 1

2 Processing of point cloud 4

2.1 Transformation to UAV frame . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Introduction into filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Removing ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Downsampling point cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Removing outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.1 Radius outlier removal filter . . . . . . . . . . . . . . . . . . . . . . 9

2.5.2 Statistical outlier removal filter . . . . . . . . . . . . . . . . . . . . 10

2.6 Reconstructing objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6.1 Delaunay triangulation . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6.2 Reconstructing into cylinders . . . . . . . . . . . . . . . . . . . . . 13

3 Local map 18

3.1 Creating of the local map . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Preparing data for reactive collision-free technique . . . . . . . . . . . . . 19

4 Implementation of reactive collision-free technique 21

4.1 Introduction into VFH algorithm . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Implementation of VFH algorithm . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.1 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.2 Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.3 Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Implementation of a depth camera model in Gazebo robotic simulator 25

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2 Depth camera model implementation . . . . . . . . . . . . . . . . . . . . . 26

i



CONTENTS

6 Simulation of flight 28

6.1 Simulation of trajectory planner . . . . . . . . . . . . . . . . . . . . . . . . 28

6.2 Simulation of avoiding a single obstacle . . . . . . . . . . . . . . . . . . . . 29

6.3 Simulation of avoiding tree wall . . . . . . . . . . . . . . . . . . . . . . . . 30

6.4 Simulation of complicated environment . . . . . . . . . . . . . . . . . . . . 33

7 Real-world experiments 35

7.1 Experimental verification of trajectory planner . . . . . . . . . . . . . . . . 36

7.2 Experimental verification of the proposed reactive collision-free technique . 36

7.3 Experimental verification in a more complicated surroundings . . . . . . . 37

8 Conclusion 39

Appendix A DVD Content 43

Appendix B List of abbreviations 45

ii



LIST OF FIGURES

List of Figures

1 Intel RealSense R200. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Examples of using sensors for detection of obstacles mounted on UAVs. . . 2

3 Post-processing pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Comparison of view detected by different cameras. . . . . . . . . . . . . . . 4

5 Rotation of the input data 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 5

6 Input point cloud from depth camera transformed into UAV frame. . . . . 6

7 Point cloud after application of PassThorugh filter. . . . . . . . . . . . . . 7

8 Point cloud after downsampling. . . . . . . . . . . . . . . . . . . . . . . . . 8

9 Principle of using radius outlier removal filter. . . . . . . . . . . . . . . . . 9

10 Point cloud after removing outliers with radius outlier removal filter. . . . 10

11 Point cloud after removing outliers with statistical outlier removal filter. . . 11

12 Center of circumcircle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

13 Result of triangulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

14 Longitudinal elongation of detected trees received from the camera. . . . . 14

15 Comparison between two modification of reconstructing by cylinders. (In
the top-left is for comparison, image from the color camera.) . . . . . . . . 15

16 Local map with detected cylinders. . . . . . . . . . . . . . . . . . . . . . . 19

17 Example of histogram with obstacle detection distribution. . . . . . . . . . 20

18 Decisions tree for the collision-free control of the UAV. . . . . . . . . . . . 23

19 Example of Gazebo simulation world with terrain and model. . . . . . . . . 25

20 Visualization of implemented Gazebo model representing depth camera R200. 26

21 The trajectory of UAV during simulation of trajectory planner. . . . . . . . 28

22 Avoiding maneuver of UAV in simulation with a single obstacle. . . . . . . 29

23 Trajectory of UAV during simulation of avoiding single obstacle. . . . . . . 30

24 The initial response of the UAV due to tree wall. . . . . . . . . . . . . . . 31

25 The UAV after forgetting information about obstacles. . . . . . . . . . . . 32

26 Simulation with complicated dense tree arrangement. . . . . . . . . . . . . 33

27 Initial tree detection and choosing flying the most advantageous direction. 34

28 The final trajectory of UAV during simulation in the complicated environment. 34

29 Terrain for the real-world experiment. . . . . . . . . . . . . . . . . . . . . . 35

iii



LIST OF FIGURES

30 The trajectory of the UAV during experimental verification of trajectory
planner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

31 The trajectory of UAV during experimental verification of reactive collision-
free technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

32 The final trajectory of UAV in the experiment with many obstacles. . . . . 38

iv



INTRODUCTION

1 Introduction

In the recent years, there has been a significant progress in the aerial vehicles tech-
nologies. This led to the creation of aerial vehicles without a pilot aboard called Unmanned
Aerial Vehicles (UAVs) or Micro Aerial Vehicles (MAVs). UAVs are currently very popular
due to their relatively low cost and very diverse range of activities that suit them. They
can be used for example for shooting videos from high heights, to operate in environments
that are dangerous for humans [1], transport medication [2], [3], [4], area mapping [5], [6],
[7] etc.

The UAV in order to achieve its goals can be controlled either by a person using some
remote control or fly autonomously if it is capable. One of the main advantages of a flight
which is controlled by a human is that the pilot who controls the UAV can easily react to
unpredictable situations. On the other hand, the piloted flight is expensive, the information
comes delayed, and in some situations, the human factor can cause a collision. These UAVs
often carries a large number of sensors which can quickly and accurately detect an obstacle
at the direction of the flight at any moment. Thanks to this information, it is possible to
react quickly and replan the trajectory before colliding.

Figure 1: Intel RealSense R200 2.

Majority of the sensors have a strictly limited area of usage to specific environments
and applications. Most of the sensors for detecting obstacles are based on technology using
the emission of electromagnetic radiation at a certain frequency and evaluating detected
obstacles from radiation reception.

One of the most commonly used obstacle detection technology is Radio detection and
ranging (RADAR), which uses electromagnetic radiation at frequencies ranging from MHz
to tens of GHz. It is mainly used to identify objects over long distances. RADAR is used in
larger UAVs [8] that weigh hundreds of kilograms, but there are also lower power versions
suitable for smaller UAVs weighing kilograms. However, this technology, even in smaller
versions puts a lot of emphasis on dimensions (see Figure 2a).

2Source: http://reconstructme.net/qa faqs/intel-realsense-r200-review/

1/46



INTRODUCTION

Another technology is Light Detection and Ranging (LIDAR), the method of remote
measurement of distances using a wavelength of roughly 1000 nm [9]. There are many
types of these sensors. Some of them are directional and designed to measure depth in a
predefined direction, others are rotating and scan depth in all directions (see Figure 2b).
The dimension of these sensors is appropriate for using on small autonomous vehicles for
reactive collision-free technique [10]. However, when these sensors are in small dimensions,
the measurement is usually done only in 2D that is not providing enough information for
recognizing shapes of obstacles and their reconstructing.

In this thesis, we deal with a depth camera which is small, can be mounted on UAV
easily (see Figure 2c) and provide a large amount of information about shapes of detected
obstacles. In our case, we work with Intel RealSense R200 (see Figure 1) that is based on
stereo vision technology assisted by the infrared laser projector and two infrared imagining
sensors. This camera outputs depth video stream, which is similar to color video stream
but every pixel has the value representing the distance from the camera instead of color
information. The distance is calculated using shift between images from both imagining
sensors [11].

(a) UAV with RADAR 3. (b) UAV with LIDAR 4. (c) UAV with depth camera5.

Figure 2: Examples of using sensors for detection of obstacles mounted on UAVs.

This thesis further deals with the processing of data from this camera which is
mounted on the UAV, and with the use of this data for reactive collision-free technique,
which allows the UAV to reach the target position without collision. Collision-free flight
planning is done by motion planning algorithm called Vector Field Histogram (VFH) [12].
The proposed collision avoidance methods do not use any information about the location
of obstacles in the space and respond to obstacle detection by rescheduling the direction of
flight. The reconstruction of obstacles is done by approximation by cylinders and polygons.
All of the presented methods are embedded into Robotic Operating System (ROS) [13].

The thesis is structured as follows. Firstly in chapter 2 is described processing input
point cloud, starting with transformations into a convenient frame, simplifying point cloud
and continuing with removing outliers. Furthermore, in this section, a processed point

3Source: https://aerotenna.com/aerotenna-releases-360-sense-avoid-radar-advances-drones-closer-
autonomous-flight/

4Source: https://www.spar3d.com/news/lidar/vol14no5-discovering-the-potential-of-affordable-lidar/
5Source: https://software.intel.com/en-us/aero

2/46



INTRODUCTION

cloud is used for object reconstruction. In following chapter 3 is described the creation of
a local map and in chapter 4 are data from this map used for an implementation of the
collision-free technique. In chapter 5 is described the implementation of a simulated model
of the camera and in chapter 6 is verified its functionality. Finally in the last chapter 7 are
presented results from real-world experiments.

3/46



PROCESSING OF POINT CLOUD

2 Processing of point cloud

Transforms
Pass through

filter
Downsampling

Outlier
removal

Detection and
Reconstruction

Input
point cloud

Detected
objects

Figure 3: Post-processing pipeline.

The R200 depth camera has resolution 480x360 and can be running at frame rate
60 Frames Per Second (FPS). The reader can come to a conclusion that every sample has
information about 172,800 points and every second come information about 10 million
points which need to be processed. The input point cloud also contains a large amount
of noise, unnecessary information such as the points representing the ground or excessive
density of points representing the object (see Figure 4a). For the fast running of the pro-
gram and reducing a probability of obstacle false detection, the incoming data need to be
processed before we start reconstructing and use data for reactive collision-free technique.
The sequence of procedures which we apply to the point cloud is shown in figure 3. In this
section, we will present functionality of the proposed procedures on data from the scene
shown in figure 4a.

5

0

x

-5
0

2

4

2

y

z

1

6

0

8

-1

10

-10-2 -3 -4

(a) Example point cloud detected by
depth camera.

(b) Example view detected by normal
camera.

Figure 4: Comparison of view detected by different cameras.

4/46



PROCESSING OF POINT CLOUD

2.1 Transformation to UAV frame

Figure 5: Rotation of the input data 6.

The input data that comes from the camera are oriented as it is shown in figure 5. It
is convenient to transform point cloud into UAV frame first due to this step the obtained
data are more understandable and other parts of processing are easier. For this transform
(see equation 1), affine transformation is used.


xnew
ynew
znew
d

 =

[
R T
0 1

]
·


xold
yold
zold
1

 (1)

where R is rotation matrix, T is translation matrix. To determine the direction in
which the camera is focused on and where the obstacles are located, it is necessary to know
the UAV rotation, this information is obtained by Inertial Measurement Unit (IMU). It is
important to synchronize the data rotation with camera data because processing of data
from the camera takes some time. Otherwise, the UAV could transform point cloud using
the current orientation instead of the orientation when the data were taken, this will lead to
inappropriate placement of the objects respectively to the UAV. By applying maneuvers
to avoid these objects, the UAV can in the worst case collide with a real obstacle. For

6Source: https://www.slideshare.net/bemyapp/first-steps-with-intel-realsense-sdk-by-xavier-hallade

5/46



PROCESSING OF POINT CLOUD

synchronization of IMU and data from the camera we use a buffer, that store information
about orientation and rotation, therefore we are able to look back and assign the right
orientation to data from the camera (see results of transformation in Figure 6).

10

x

5-2

-1

0

6

1

y

z

4

2

2

3

0

4

0-2 -4 -6

Figure 6: Input point cloud from depth camera transformed into UAV frame.

2.2 Introduction into filtering

For processing the input cloud, the Point Cloud Library (PCL) is used. This is an
open source library that is focused on dealing with point clouds. Due to the size of the
input data, it is important to make modifications that are not computationally demanding
and removes a lot of information that is not useful for detection of obstacles. One of these
modifications is for removing points representing the ground. For the UAV flying in low
altitudes. The ground is represented by a lot of points which in our case do not give any
useful information because this information may lead to confusing the algorithm which
detects objects. Furthermore, the objects detected by the camera are presented by very
dense point cloud. For increasing speed of the program is convenient to find an algorithm

6/46



PROCESSING OF POINT CLOUD

that reduces the density of the point cloud with the cost of minimal loss of information.
Finally, the input data usually contains a lot of outliers, which may influence the object
detection, thus it is important to find the way how to remove outliers or eliminate the
impact of outliers on the obstacle detection.

2.3 Removing ground

For this task is used a filter called PassThrough filter, which removes from the input
data points which do not lie in the area defined by criterion. We have experimentally
found out that when the UAV flies with low velocities (up to 1 ms−1) the tilt of the UAV
is small. Therefore we can make an assumption that points that are below 10 cm on the
z-axis represent ground and can be removed (see Figure 7). This range needs to be adjusted
due to concrete application and placement of the camera on the UAV.

10

x

5-2

-1

0

6

1

y

z

4

2

2

3

0

4

0-2 -4 -6

Figure 7: Point cloud after application of PassThorugh filter. (Red points which are under
0 on z-axis are removed.)

7/46



PROCESSING OF POINT CLOUD

2.4 Downsampling point cloud

After removing the ground, the point cloud still contains a large number of points. To
speed up processing it is convenient to use a method that would reduce its number without
losing information or only with a minimal loss of information. For our purposes, we use
the VoxelGrid filter (described in [14]). Using this method, the three-dimensional space is
first divided into voxels (3D box in a space). In the boxes that contain a one and more
points from the point cloud, the geometric center (centroid) of these boxes is calculated to
represent all points in a cube and the remaining points are removed (see Figure 8). Using
this method, it is very important to choose the correct size of the box. If the dimension
of the box is too big and a sensor does not give us enough points, it will lead to loss of
information. On the other hand, if box size is too small, the downsampling will not have
the effect.

10

x

50

0.5

1

1.5

6

2

y

z

4

2.5

2

3

3.5

0

4

0-2 -4 -6

Figure 8: Point cloud after downsampling.

8/46



PROCESSING OF POINT CLOUD

2.5 Removing outliers

After applying methods to reduce point cloud size, it is important to identify and
remove individual points distant from others (outliers) because these outliers could confuse
reconstructing algorithm. For this purpose, we compare two methods for removing outliers
based on different principles.

2.5.1 Radius outlier removal filter

For using this filter we define a minimum number of neighbors which must each
point have and the radius in which the neighbors are counted. The filter then counts the
total number or neighbors for every point in defined radius. If the number of neighbors
is bigger or equal to defined one, this point is not considered as an outlier, otherwise,
the point is removed from point cloud (see Figure 9). For the proper use of this filter, it
is necessary to adjust parameters, the minimum number of neighbors and radius, to the
type of depth camera and environment where the UAV is flying. The number of minimum
neighbors must correspond to the density of point cloud and to the defined radius. The
radius depends on a minimum distance between obstacles and the density of the point
cloud. If the radius is bigger than the minimum distance between obstacles, all outliers
do not have to be recognized. On the other hand, if the radius is too small, points in the
parts of the obstacles where the density is lower are removed. The example of removing
the outliers from a point cloud is shown in figure 10.

Figure 9: Principle of using radius outlier removal filter. Yellow point will be removed.

Source: http://pointclouds.org/documentation/tutorials/remove outliers.php

9/46



PROCESSING OF POINT CLOUD

10

x

50

0.5

1

4

1.5

y

z

2

2

2.5

0

3

0-2 -4

Figure 10: Point cloud after removing outliers with radius outlier removal filter.

2.5.2 Statistical outlier removal filter

The second filter that we tested is a statistical filter which uses mathematical anal-
ysis for its function. For each point, the mean distance from all neighbors is calculated.
Assuming Gaussian distribution, points which have mean distances outside of an interval
defined by global distances mean and standard deviation are considered to be outliers and
removed (see Figure 11).

For this filter, two parameters are needed to be set. The first one is a number of
neighbors used for the analysis and the second one is a standard deviation multiplier,
which means how many times the average distance of point can differ from the global
average distance of two points without the point being considered as an outlier.

10/46



PROCESSING OF POINT CLOUD

10

x

50

0.5

1

1.5

4

2

y

z

2

2.5

3

0

3.5

4

-2 0-4 -6

Figure 11: Point cloud after removing outliers with statistical outlier removal filter.

2.6 Reconstructing objects

After deploying of the filters and transformations we have obtained a point cloud
prepared for application of reconstructing algorithm. This point cloud contains clusters
of points when each of these clusters represents one detected obstacle. It is convenient to
replace these clusters with objects that would clearly determine boundaries of detected
obstacles, allow the fast and accurate determination of obstacle position and size.

There are many ways to reconstruct obstacles from the depth camera image. In this
thesis, we present two reconstructing methods. First is so-called Delaunay triangulation.
This method uses triangles for reconstructing shapes of the object. The second method is
based on the assumption that we have some knowledge about terrain and we know that the
detected obstacles are trees. Thus we can use this knowledge and approximate the cluster
by a simple geometric object that represents tree trunks, a cylinder.

11/46



PROCESSING OF POINT CLOUD

2.6.1 Delaunay triangulation

This method is based on the principle that a triangle can be constructed between
every three points in the point cloud, if there is not another point inside the circumcircle
in this triangle [15]. Firstly, it is necessary to find the center of circumcircle for every three
points in the point cloud (see Figure 12). By definition, the center of the circumcircle
is defined as an intersection of the axis of the triangle sides. To find the center of the
circumcircle from three points in 3D, it is necessary to determine the intersection of at
least two lines located on the plane defined by the three points. For that, we need to know
the normal vector of the plane on which the axes must lie. Then it is possible to determine
the parametric equations of the axes and in their intersection is the searched center of the
circumcircle. The Delaunay triangulation is explained by pseudocode in algorithm 1.

Figure 12: Center of circumcircle.

The result from this method assures that the surface will be smoothly connected to
neighbors (see Figure 13). The surface is formed largely only by triangles represent shapes.
It reduces the number of triangles, improves results of triangulation and saves computation
power.

12/46



PROCESSING OF POINT CLOUD

Figure 13: Result of triangulation. (In the top-right is for comparison, image from the color
camera.)

2.6.2 Reconstructing into cylinders

This algorithm is based on the knowledge of the obstacle shapes in the terrain where
UAV is flying. We assume a specific case, that the obstacles are trees with the shape of a
stem which is similar to a cylinder. With this assumption, we can describe reconstructed
objects more simply than by the triangulation. Each detected object is described by a
point in space representing the center of the cylinder, a quaternion for the exact definition
of cylinder rotation, and by two variables defining radius and height.

For proper identification, it is important to separate the points representing individual
trees into individual clusters using clustering algorithm. This algorithm use the maximum
distance from a point to the neighbor point to consider if the point is a part of the cluster
or not. Furthermore, the minimum and maximum cluster sizes are set. The algorithm is
explained by pseudo code in the algorithm 2.

It should be noted that this clustering algorithm performs the same work as the
previously mentioned outlier removal filter does. It is therefore possible to turn off the
filter for this type of reconstruction and thus speed up the overall identification process.
After dividing the point cloud into individual clusters that represent detected objects, it is
necessary to apply procedures that accurately determine the centers of the cylinders, their

13/46



PROCESSING OF POINT CLOUD

sizes, and orientations. As the first, we calculate the centroid that represents the center
of the cylinder that tree. This is the geometric center of all points in the cluster and has
the average value of the coordinates of all points in the cluster. It is also necessary to
determine the sizes of the cylinder, its radius, and height. Ideally, this task could be solved
by detecting a limit value of each coordinate in the cluster. The height would be determined
as the difference between the maximum and minimum values on the z-axis. The diameter
could be determined as the average of the maximum and minimum difference values on the
x and y-axes. In our case, this cannot be applied, it is clear from experimental data that
there is a large error in the size of the longitudinal sides of the obstacles (see Figure 14).
Obstacles seem to be more elongated than they really are. If we decide to ignore this fact,
this error would cause the diameter of the cylinders to be much larger than it is in reality,
and the rotation of the trees would not match too.

Figure 14: Longitudinal elongation of detected trees received from the camera (Marked by
red ellipse).(In the top-right is for comparison, image from the color camera.)

The reader may notice that the width corresponds to reality and can be therefore used
to correct this error. Due to this fact, we apply rotation on the points in the cluster that
are rotated so that the tail is centered in the y-axis direction. Now we use x-axis deviation
which must correspond to y-axis deviation and remove error points. In the same time, we
determine the diameter of the cylinder which equals to maximum x-axis deviation, height
corresponds z-axis deviation and center is evaluated as a centroid of this cluster. Next, we
use a so-called Principal Component Analysis (PCA) algorithm to determine the vector in
which the largest number of points is located [16]. This information allows us to determine
the most likely direction of cylinder orientation. The rotation in 3D space is represented
in this thesis by a quaternion. In the case when the UAV accidentally leans and detects
the ground or detect an inappropriate obstacle that is not similar to the expected shape,
it is necessary to insert a safety check that defines the maximum and minimum limits for

14/46



PROCESSING OF POINT CLOUD

the size of the tree and its rotation (see Figure 15b). If such a check is not set, incorrect
fitting of the cylinder could occur in exceptional cases (see Figure 15a).

(a) Accidental ground detection. (b) Accidental ground detection with fuse.

Figure 15: Comparison between two modification of reconstructing by cylinders. (In the
top-left is for comparison, image from the color camera.)

Reconstructing of a point cloud from the forest-like environment using approximation
by cylinders is faster, more resistant against the influence of noise, and the detected objects
are described more clearly than by using reconstructing method based on triangulation
(see Table 1). Due to our specific application, the advantage of the method based on
triangulation will not appear because our UAV will fly only in a forest-like environment.
For this reason, in the rest of this thesis, we will consider only method which reconstructs
objects into cylinders.

Method Average publishing rate [Hz]
Delaunay triangulation 6.066
Reconstruction by cylinders 12.647

Table 1: Comparision of publishing rate between two reconstructing methods.

15/46



PROCESSING OF POINT CLOUD

Algorithm 1: Delaunay triangulation algorithm

input : pointCloud input - filtered input point cloud
int k - k nearest neighbors

output: vectorOfTriangles output - triangles representing shapes of obstacle
begin

int iterationNumber = 0;

// While there is any possible combination of triangle, iterate

while isUniqueTriangle(input, iterationNumber) == true do

// Get unique combination of new triangle for testing

triangle testedTriangle = getTriangle(input, iterationNumber);
iterationNumber++;

// Center of the circle and radius

point S = cicumcircleSearchAlgorithm(testedTriangle);
float r = getDistance(S, testedTriangle);

// Get subcloud including only closest neighbors of center

pointCloud neighbors = getKnearestNeighbors(input, k, S);

// Count forbidden area of circle where no points can be

situated except points of tested Triangle

bool isFineTriangle = pointsInsideOfCircle(neighbors, testedTriangle, S,
r);

// If fine triangle add it to output vector

if isFineTriangle then
output.add = testedTriangle;

end

end
return output;

end

16/46



PROCESSING OF POINT CLOUD

Algorithm 2: Clustering algorithm

input : pointCloud input - input cloud
float radius - maximum radius of search
int minSize - minimum size of cluster
int maxSize - maximum size of cluster

output: vectorOfCLouds clusters - center of circumcircle
begin

queue q;
// Go through all points in cloud

int i = 0;
for i <input.points.size do

// Is point actually member of any cluster?

if input.points.at(i).processed == false then

// If no, add point to a queue and search for all his

neighbors representing cluster

q.pushBack(input.points.at(i));
input.points.at(i).processed = true;
int j = 0;
for j <q.points.size() do

pointCloud neighbors = getNeighbors(q.points.at(j), radius);
int k = 0;

// Test if all neighbors are participants of any cluster,

if no, add them to new cluster

for k <neighbors.points.size() do
if neighbors.points.at(k).processed == false then

q.pushBack(neighbors.points.at(k));
neighbors.points.at(k).processed = true;

end

end

end

// When cluster is complete, test if size is appropriate and

then add it to output

if q.size() <maxSize AND q.size() >minSize then
clusters.pushBack(q);
q.makeEmpty();

end

end

end

end
return(clusters);

17/46



LOCAL MAP

3 Local map

Until now, we can process incoming point cloud from the camera into a set of detected
obstacles. However, to meet the goal to be able to implement an avoidance algorithm, this
is still not enough. At this level, the obstacles are too dynamic, frequently changing their
position and shape, depending on each camera shot. Obstacle information is at the moment
series of flashbacks with actual information about a position which does not have a long
duration and thus cannot be used as a relevant information for planning.

In order to plan a collision-free flight, we need to know the approximate position of
the obstacle which would be ideally placed statically in one place, or changing position
only little. Therefore, it is necessary to design an algorithm that will suitably handle data
about the detected obstacles, save them regardless of whether new data has come from
the camera or not. It must be recognized if the new shoot from the camera describes new
obstacles or if they have been already detected. In addition, errors due to an inappropriate
UAV flight need to be filtered out. For example, the UAV accelerates too quickly and the
depth camera leans and detects the ground despite of application PassThrough filter. It is
unacceptable for the UAV to consider the ground as an obstacle and to start an evasive
maneuver. Such behavior leads to the wasting of battery capacity, it could cause oscillation
and in the worst case, collide with an object located a few meters behind the UAV. All this
has to be incorporated into an algorithm that defines a local map. This map must contain
short-term information about obstacles in the environment and be updated by each shot.

3.1 Creating of the local map

The simplest local map, that could be implemented, is just method that stores the
received data in memory and erased them after a certain time. However, such a simple
solution has a number of disadvantages. In particular, it is computationally and memory
demanding for trajectory planning in a more complex terrain. Thus it is necessary to
make a local map which takes into account how old detected obstacles are. By using
ROS we can advantage of time information included in each ROS message. Due to this
information, it is possible to compare the time at which the obstacle was created with the
current time, and set a frequency of deleting old obstacles in the map memory according
to the planned maximum UAV speed. All detected obstacles have information about the
number of occurrences and only when a certain limit is exceeded, they are marked as
detected objects. This is for an elimination of an error when some object is detected
once and considered as a potential obstacle (For example accidentally detected ground).
Additionally, the number of detected objects is reduced by comparing obstacles that are
currently detected with the obstacles that have occurred in new shot. Positions of the new
detected obstacles are tested whether they match to some already detected obstacle. In this
case the position of the already detected obstacle is updated, otherwise the new obstacle is

18/46



LOCAL MAP

embedded. Implemented local map has information about how far the obstacle is located
and in what direction from the UAV is. After applying all aforementioned rules, we have
a local map that reliably stores information about detected obstacles in the surroundings
(see Figure 16).

Figure 16: Local map with detected cylinders. (In the top-right is for comparison, image
from the color camera.)

3.2 Preparing data for reactive collision-free technique

In this thesis, we present reactive collision-free technique, which does not keep in-
formation about all detected objects within the map. It only keeps information about the
detected obstacles in the closest surrounding, this allows us to work only with the nec-
essary information. It is therefore important to divide space and define where obstacles
are located and where the UAV can fly. If we detect trees in the UAV frame, where the
UAV is the center of the coordinate system, the individual obstacles are represented as a
position and a certain direction towards the UAV. Thus it is possible to divide the space
into directions in which the UAV can flight. Each of these directions will have information
about a number of detected obstacles and it will provide us information how safe is to fly
this way (see Figure 17). This is called polar histogram [17].

19/46



LOCAL MAP

Figure 17: Example of histogram with obstacle detection distribution.

For safety purposes, it is necessary to work with the thickness of the obstacles. If we
only consider the central point for simplicity, we would not be able to identify obstacles
going beyond other corridors, which by following the collision-free path in the worst case
would lead to a collision. It is important to incorporate the diameter and count angle which
is occupied by the obstacle using formula

Φ = Ψ ± arctan(r/l), (2)

where Φ is maximum and minimum angle occupied by an obstacle, Ψ is a direction
of the obstacle center, r is a radius of a tree and l is a distance of tree from UAV. If we use
the angle of the center of the obstacle and occupied angle we can mark all corridors that
are occupied by the obstacle. Now we have information about free and occupied directions
and we are able to implement the reactive collision-free technique.

20/46



IMPLEMENTATION OF REACTIVE COLLISION-FREE TECHNIQUE

4 Implementation of reactive collision-free technique

The algorithm for planning collision-free trajectories for UAVs is the most important
part of this thesis. It covers the entire processing of input data and it decides about the
success of the mission or its failure. Initially, a suitable method for reactive collision-free
planning has to be selected (described in [18]). Such a method is a VFH (Vector Field
Histogram) based on polar histograms. This is the field of n-sectors where each sector is m
degrees wide. Each sector holds the number of occurrences of obstacles that have occurred
in that direction. If this number exceeds the defined value, the sector is considered as
ineligible. After time t the histogram is reset (see section 3.2). More complexly described
in [12], [18] and [17].

4.1 Introduction into VFH algorithm

The VFH algorithm is based on the polar histogram which holds the information of
all the obstacles and on the knowledge of the direction towards the target. If the number
of detections in this direction exceeds the threshold, there is a slight deflection of flight
direction into the nearest sector, where the number of detection is still below the limit and
therefore it is possible to fly this way. For the application and proper function of the VFH
algorithm for collision-free flight planning, several assumptions need to be met.

We need to know the coordinates of the UAV and the target to which the UAV is
heading. This is essential for planning the flight path and for planning evasive maneuvers.
It is not important how precisely the location is determined, since inaccurate localization
of the UAV the result in the same displacement of localized obstacles and the error is
eliminated. The depth camera must be mounted at the front of the UAV, or the UAV
must fly, so the depth camera is focused in the direction of the flight. This is necessary in
order to be able to detect the obstacles approaching from the front because these obstacles
need to be detected. A setting of the polar histogram corridor width must match with the
environment in which the UAV moves. If the corridor width is too large, it may happen
that the UAV is not able to reach the target in the finite time, because no collision-free path
toward target position is found. Objects that are detected must be embedded in a polar
histogram with a certain margin reserve to avoid tight passes or collisions. In practice, this
means that the diameter of trees was inflated by the size of the UAV or the requirements
for the safe flight.

4.2 Implementation of VFH algorithm

Implementation of the algorithm itself is divided into three parts. The first is the
part that takes care of the evaluation of the data stored in the polar histogram and the

21/46



IMPLEMENTATION OF REACTIVE COLLISION-FREE TECHNIQUE

determination of the flight strategy. There are also two parts that are in direct contact with
the MPC (Model Predictive Control) tracker, implemented in Multi-robot Systems Group
in Department of Cybernetics, CTU in Prague, and take care for the UAV translation and
rotation planning [19].

4.2.1 Control

To design simple and effective UAV controller and trajectory planner, it is important
to determine the number of events that may occur. If the number of possible events is not
big and it is easily identifiable, it is possible to split the UAV behavior in several cases
and use a finite-state machine. In our case, the UAV can record a total of four events. The
first is the ”Do nothing” instruction. This instruction is recorded if the UAV has already
reached its destination and have the proper rotation, thus nothing needs to be done. In
this case, the UAV use only small interventions to keep in the target position and wait for
further instructions. The second instruction is ”Rotate about the angle”. This instruction
must be called before any change, of course, to make the depth stereo camera still focused
on the objects before the UAV. Similarly, this instruction may be recorded in the target
position (including specific rotation) and the UAV must then rotate in this case too. The
third instruction is ”Move from position A to position B”. At this point, it is assumed
that the UAV is rotated correctly and a trajectory from A to B is planned. The last is
the information ”You are in a collision course”. In the case of receiving this information,
if the UAV is not in the target position, an evasive maneuver must be performed and the
trajectory must be rescheduled over the nearest free angle. At this point, we use a transition
point, which is located at a certain distance in the collision-free direction and where the
UAV flies until the desired angle is marked as the collision. Every combination of these
events is a big number (256 combinations if we assume using only unique combinations)
and it is not fine for using the finite-state machine. But assuming only the real situations, in
which the UAV can really occur, simplify solutions and we are able to make flight manager
composed from a finite-state machine with only 4 states (see Figure 18).

4.2.2 Translation

In order to create a path from point A to B, to be executed by the UAV, it is necessary
to know the step to follow, which depends on the MPC tracker settings, in our case, it
requires information about the position of next point per 200 ms. Thus when determining
the UAV velocity, for example at 1 ms−1, we can easily determine how far the points need
to be for keeping set speed (see Formula 3).

step = v · d = 0.2 m (3)

22/46



IMPLEMENTATION OF REACTIVE COLLISION-FREE TECHNIQUE

Rotate only Move from 
A to B

Move from
A to B via C.

Is the target position
the same as a position 

of the UAV?

Yes

Is the target rotation
the same as a rotation

of the UAV?

Yes No

Is the desired course
 collision-free?

No

Yes No

Do nothing

Figure 18: Decisions tree for the collision-free control of the UAV.

When establishing a trajectory approximation into a straight line is sufficient, there
is no reason for joining two or three points with a difficult curve. The vector which defines
the direction of the flight is known as well as the starting point. Thus we can shift starting
point with step in direction of the vector and get all points from point A to point B. The
sum of these points is searched trajectory (see Algorithm 3).

4.2.3 Rotations

When planning a rotation, as in scheduling translation, splitting the rotation into a
few steps is necessary. In the case of a shift, we determined the UAV translation velocity.
In this case, we have to determine the angular velocity and the phase shift as a step. First,
it is necessary to determine whether it is faster to rotate in the clockwise direction or in
the counterclockwise. For that two angles need to be found; first angle, if the UAV rotates
clockwise and second if it rotates counterclockwise. Direction with smaller angle is then
selected. After defining the rotation direction, it is necessary to define the desired angular
velocity and the step that is added or subtracted from the current angle depending on the
direction of rotation. This defines all the points on the trajectory (see Algorithm 4).

Everything necessary for implementing the VFH algorithm is now available. There
is a logic that evaluates the current situation in which the UAV is and also that plans
adequate responses.

23/46



IMPLEMENTATION OF REACTIVE COLLISION-FREE TECHNIQUE

Algorithm 3: Get shift trajectory

input : float v - velocity of UAV
point A - point A in local origin frame
point B - point B in local origin frame

output: trajectory output - trajectory from start to end
begin

int counter = 1;
float step = 0.2v;
float t = step/getDistance(A, B);
point tmp = A;
vector u = getVector(B, A);
while getDistance(B, tmp) >0 do

// set point shifted about u · t · counter
tmp = setPoint(tmp, u, t, counter);

trajectory.pushBack(tmp);
counter = counter + 1;

end
return(trajectory);

end

Algorithm 4: Get rotation trajectory

input : float ω - angular velocity of UAV
point A - point A in local origin frame
point B - point B in local origin frame

output: trajectory output - trajectory from start to end
begin

int counter = 1;
int dir = getShortestDirection(A, B);
float step = 0.2ω;
point tmp = A;
while getAngularDiference(B, tmp) >0 do

// set point shifted about step · counter
tmp = setPoint(tmp, dir, step, counter);

trajectory.pushBack(tmp);
counter = counter + 1;

end
return(trajectory);

end

24/46



IMPLEMENTATION OF A CAMERA MODEL IN GAZEBO ROBOTIC SIMULATOR

5 Implementation of a depth camera model in Gazebo

robotic simulator

The basis of a successful project in the robotics sector is the possibility of simulating
the functionality of the program. For nearly every program of a control system composed
of mechanical components, it is necessary to set parameters that define certain quantities,
which then influence the behavior of the whole system. This is especially true in the aviation
industry, where each failure can be fatal.

For our purposes, we use the Gazebo simulator to realistically simulate outdoor con-
ditions for a wide range of robotic applications ranging from robotic vehicles, robot popu-
lations to flying objects. Into the world of Gazebo simulator, it is possible to interfere with
the ROS interface and use service and messages to control models and gain information
from the world of Gazebo simulator (see Figure 19).

Figure 19: Example of Gazebo simulation world with terrain and model.

25/46



IMPLEMENTATION OF A CAMERA MODEL IN GAZEBO ROBOTIC SIMULATOR

5.1 Introduction

Models in Gazebo simulator are described using SDF (Simulation Description For-
mat). SDF is an XML (eXtensible Markup Language) format that describes objects and
environments in robotic simulators and visualizations. This is a years-proven format capa-
ble of describing all aspects of robots, environments as well as physics.

From the stereo camera model, features such as resolution, FOV (Field Of View),
minimum detection distance, maximum range, and UAV positioning are required to match
the real sensor. On the other hand, the characteristics of camera dimensions can be defined
approximately because they are not so important for our application.

5.2 Depth camera model implementation

Figure 20: Visualization of implemented Gazebo model representing depth camera R200.

It would be possible to implement the entire environment, the robot properties and
obstacles exclusively using XML files, but the file containing this information would be very
long and unclear. This is one of the reasons why the so-called Xacro (XML macro) files

26/46



IMPLEMENTATION OF A CAMERA MODEL IN GAZEBO ROBOTIC SIMULATOR

are used. Using these macros, which represent larger XML expressions, keeps information
describing the world in more readable format.

These macros have one more useful feature. For example, if we have a macro that
defines a depth camera, we can use this macro to define the next level of macros that more
specifically defines the properties of a specific camera, such as resolution, the minimum
distance from the obstacle etc.

For our purposes, a general depth camera Xacro is implemented and then explicit
R200 camera Xacro is defined. Parameters are set as the manufacturer defines, for example,
resolution, the FOV, etc. For visualization is used a block with approximate dimensions of
the R200 camera (see Figure 20).

27/46



SIMULATION OF FLIGHT

6 Simulation of flight

Simulations are extremely important in the aerospace industry. In our case, we try
to prepare a simulation for a situation where the UAV is in a plane with trees where it
detects trees and its goal is to fly from UAV position to target position. The environment
contains a finite number of obstacles with more unspecified sizes. All we know is that the
obstacles in the environment are trees. It is therefore very important to set simulations and
check the functionality of the proposed technique to correct setting of all parameters. The
result of the simulation is ideally a tuned program which is able to deal with every real
situation for which is prepared for. For this thesis, we have set four simulations in which
the program’s functionality is tested in particular. It is necessary to test the functionality
of all the parts we have implemented so far. From filtering and processing of a point cloud
to object reconstruction and trajectory planning.

6.1 Simulation of trajectory planner

First of all, it is important to test the trajectory planner and logic that control the
UAV. In this simulation, we test the functionality of trajectory planning for co-ordinates
entered during the flight and track the UAV behavior during achieving goals. There is no
obstacle present on the map in this simulation.

Figure 21: The trajectory of UAV during simulation of trajectory planner (Target positions
are marked by red arrows.)

28/46



SIMULATION OF FLIGHT

First, a simple, rotate-free trajectory was set up to determine if the UAV is capable
of planning. Additionally, the target for which the UAV has to be rotated in the direction
of the target has been added, and the sequence of instructions and UAV rotation speeds
have been observed. In addition, it was tested how the UAV shift while rotating in place.
Finally, the functionality of in-flight re-planning was tested. When the UAV was assigned
a target, the target coordinates were repeatedly changed during the flight and the response
and magnitude of the fluctuations were observed. The whole trajectory is shown (green
line) on the Figure 21.

6.2 Simulation of avoiding a single obstacle

In the second simulation, we test the decision making of the trajectory scheduler’s
control unit to detect obstacles on the collision course. This is the easiest possible situation
to test the evasive maneuvers, but it is essential for testing the functionality of the program.
A single tree model is built on the map directly in front of the camera so that the UAV
does not have to rotate and there is no deflection that could cause the UAV not to be in a
collision course when passing a tree pattern. On a line that passes through the geometric
center of the UAV and the tree, a target is defined at a certain distance from the tree so
that the UAV has to fly around the tree and apply the evasive maneuver when flying the
shortest possible trajectory.

Figure 22: Avoiding maneuver of UAV. On the top-left is shown the actual situation in
simulation world, below this, is the situation when the UAV detects tree (cylinder) and
change direction (red arrow) to avoid the obstacle. The target position is presented by the
red arrow pointing down into the map.

29/46



SIMULATION OF FLIGHT

In the Figure 22 , the target is shown with a red arrow pointing down into the map.
Furthermore, the direction in which the UAV wants to fly is shown with a red arrow followed
by a green line showing the UAVs trajectory. After detecting the obstacle by the UAV, the
flight direction is diverted to the nearest collision-free course leading to the target. The
collision-free trajectory of the UAV after reaching the target is shown in Figure 23.

Figure 23: Trajectory (green line) after achievement target position (red arrow pointing
into the map) of UAV during simulation of avoiding the single obstacle. (Position of the
obstacle is highlighted by the black circle)

6.3 Simulation of avoiding tree wall

For the third simulation, we designed a specific tree formation to test how the control
unit handles a situation where there are more obstacles placed close to each other. The
goal was to find out if proposed method evaluates these obstacles as one big obstacle, or
whether the algorithm is able to recognize them correctly.

It can be seen in Figure 24 that the algorithm correctly detects the obstacles. During
the flight, the algorithm chose the most advantageous direction, which is in this case larger
than in simulation with one obstacle, shown in Figure 22.

The situation which appeared after a certain time when the UAV has forgotten that
there are the obstacles between the UAV and target position is described in Figure 25.
Due to that, the UAV tried to fly directly to the target position. However, it began again
to detect the obstacles and thus to fly the collision-free course. It is clear that this will
be repeated once again because in the current situation the UAV is again considering the
direct direction as free, which is shown the red arrow pointing directly to the target. Now,
there will be only slight deflection because there are no more trees on the sides that would
force the UAV to use such a disadvantageous angle as previous.

30/46



SIMULATION OF FLIGHT

Figure 24: The initial response of the UAV due to tree wall. The UAV detects obstacles
(marked as cylinders) which do not allow using a straight line to the target position (red
arrow pointing down). The UAV changed direction (red arrow) to closest collision-free
direction.

31/46



SIMULATION OF FLIGHT

Figure 25: The UAV after forgetting information about obstacles. The UAV is going to
rotate and try to fly in this direction if it is free.

32/46



SIMULATION OF FLIGHT

6.4 Simulation of complicated environment

In the last simulation, we test a complicated situation when a group of trees is
approximately as wide as the long (see Figure 26). The aim of this simulation is to test the
ability of the implemented logic to deal with situations where the obstacles form a dense
tree arrangement.

Figure 26: Simulation with complicated dense tree arrangement.

The result from this simulation is shown in Figure 27 where the UAV detects the
trees and selects the most advantageous collision-free angle that leads to the target. This
direction it flew as long as the angle is still considered to be the most advantageous, or
until the direction is still marked as a collision.

The final trajectory is displayed in Figure 28. There can be seen that the original
direction was not, in the end, sufficient and collision-free. The UAV had to change direction
once again to select another collision-free direction. Subsequently, no obstacle was detected
in this direction and previously detected obstacles were already forgotten. Therefore, the
most advantageous direction that would lead to the goal was reevaluated. Then it was
possible to choose direct direction because there were no obstacles in the way. Therefore
we verified the proper function of the proposed method in Gazebo simulator and thus it is
prepared for testing in by real-world deployment.

33/46



SIMULATION OF FLIGHT

Figure 27: Initial tree detection and choosing flying the most advantageous direction.

Figure 28: The final trajectory of UAV during simulation in the complicated environment
(Position of obstacles is highlighted by the black rectangle.).

34/46



REAL-WORLD EXPERIMENTS

7 Real-world experiments

Every program designed for the autonomous control of the system should be tested
in practice before it is normally used. Even though the program is tested in the simulator
and has fail-safe checks, during real-world deployment new errors which were not exposed
in the simulator can appear. A set of three experiments was selected to ensure that the
proposed method works properly. For this experiments, was chosen a remote place, where
a probability of contact with the rest of the world is minimized (see Figure 29). For safety
reasons, the UAV was controlled by the safety pilot, who was responsible for interfering
with unpredictable UAV behavior to prevent the collision.

Figure 29: Terrain for the real-world experiment.

UAV localization is not a part of this thesis and the UAV platform used for eval-
uation of the proposed method is not ready for flying without the Global Navigation
Satellite System (GNSS), the system was tested by deployment in the simulated forest-
like environment under GNSS. For tree simulations, cylindrical obstructions have been
used. A video attachment to this thesis is available at website http://mrs.felk.cvut.

cz/novotny2018thesis.

35/46

http://mrs.felk.cvut.cz/novotny2018thesis
http://mrs.felk.cvut.cz/novotny2018thesis


REAL-WORLD EXPERIMENTS

7.1 Experimental verification of trajectory planner

The first experiment aims to test trajectory planner functionality. The map is for this
experiment without any obstacles in surroundings. The UAV is set to fly into the target
position (see Figure 30).

Figure 30: The trajectory of the UAV during experimental verification of trajectory plan-
ner.

7.2 Experimental verification of the proposed reactive collision-
free technique

The second experiment aims to test evasive maneuvers in the simplest case where
there is only one tree in the neighborhood. The target position is in this case on a collision
course with the obstacle and the UAV must apply an evasive maneuver to avoid the obstacle
and reach the target position (see Figure 31a). In the second part of the experiment,
the UAV should return to the initial position. However, the UAV is in start position
inappropriately rotated and the obstacle is in immediate proximity. Therefore the UAV
has less time for application evasive maneuver but still, there wes no collision with the
obstacle (see Figure 31b).

36/46



REAL-WORLD EXPERIMENTS

(a) Testing of the collision-free technique for
the longer distance.

(b) Testing of the collision-free technique
from immediate proximity.

Figure 31: The trajectory of UAV during experimental verification of reactive collision-free
technique (Obstacles are approximately marked by black circles.).

7.3 Experimental verification in a more complicated surround-
ings

In the last experiment, the UAV aims to test evasive maneuvers in a more complicated
environment where it has to deal with several obstacles. In this experiment, UAV has to
fly through the formation of obstacles shown in Figure 29. Initially, the UAV has to handle
with two obstacles placed closed to each other which has to test recognition ability and
finally there is an obstacle in the straight line distance to the goal which has to test the
ability of quick adapting to new environment. The result of this experiment is shown in
Figure 32. All of three experiment was successful and thus we have verified the proper
function of the proposed method in real-world experiments.

37/46



REAL-WORLD EXPERIMENTS

Figure 32: The final trajectory of UAV in the experiment with many obstacles (Obstacles
are approximately marked by black circles.).

38/46



CONCLUSION

8 Conclusion

This thesis deals with reactive collision-free planning for the UAV equipped with the
depth camera in the forest-like environment.

The first subtask of this thesis was to implement methods allowing the reconstruction
of objects from the input cloud of points. This is solved in chapter 2. For that, at first, it is
necessary to transform a point cloud into the correct frame, that brings information about
the points relative to the UAV. Furthermore, it is also convenient to simplify the point cloud
and apply the filters so that the reconstruction is not affected by the external influences
and does not evaluate false conclusions. Two methods were proposed for reconstructing of
obstacles one dealing with the reconstruction of the point cloud by triangulation, and one
that uses the assumption of knowledge about the shape of the obstacles and reconstructs
them as cylinders. In practice, the approximation by cylinders is faster, more accurate and
less sensitive to noise than triangulation in the forest-like environment (see results in Table
1). Therefore this method was selected for reconstructing obstacles.

The next subtask was to create a local map of detected objects. This map is im-
plemented in the form of a polar histogram that is convenient for the following subtask,
that is the reactive collision-free technique for flight trajectory planning based on the VFH
algorithm.

The next point was to integrate the proposed technique into the ROS system designed
by the MRS group at CTU in Prague [19] [20] [21]. This point enabled real communication
between the UAV and the proposed technique.

For safe testing, it was necessary to create a stereo camera model in a Gazebo robotic
simulator (explained in chapter 5) and to do the set of simulations that proof the functional-
ity of the complete system extended by proposed collision-free planning method (explained
in chapter 6).

The last subtask of this thesis was to experimentally verify the functionality of the
complete system by real-world deployment. The results from the set of three experiments
have been presented in chapter 7, all three have been successful and did not lead to a
collision with the obstacles.

39/46



CONCLUSION

40/46



CONCLUSION

References

[1] N. Wen, X. S. L. Zhao, , and P. Ma, “Uav online path planning algorithm in a low alti-
tude dangerous environment,” IEEE/CAA JOURNAL OF AUTOMATICA SINICA,
vol. 2, no. 2, pp. 173–185, 2015.

[2] C. A. Thiels, J. M. Aho, S. P. Zietlow, and M. D. H. Jenkins, “Use of unmanned
aerial vehicles for medical product transport,” Air Medical Journal, vol. 34, no. 2, pp.
104–108, 2015.

[3] L. A. Haidari, S. T. Brown, M. Ferguson, E. Bancroft, M. Spiker, A. Wilcox, R. Am-
bikapathi, V. Sampath, D. L. Connor, and B. Y. Lee, “The economic and operational
value of using drones to transport vaccines,” Vaccine, vol. 34, pp. 4032–4067, 2016.

[4] Otiede, Odeyemi, Nwaguru, Onuoha, Awal, Ajibola, Adebayo, Itoro, Ejejigbe, Ejo-
fodomi, and Ofualagba, “Delivering medical products to quarantined regions using
unmanned aerial vehicles,” Journal of Applied Mechanical Engineering, vol. 6, no. 1,
pp. 1–4, 2017.

[5] S. Siebert and J. Teizer, “Mobile 3d mapping for surveying earthwork projects using
an unmanned aerial vehicle (uav) system,” vol. 41, pp. 1–14, 2014.

[6] Y. Lyu, Q. Pan, Y. Zhang, C. Zhao, H. Zhu, T. Tang, and L. Liu, “Simultaneously
multi-uav mapping and control with visual servoing,” Unmanned Aircraft Systems
(ICUAS), 2015 International Conference on, pp. 125–131, 2015.

[7] A. M. Samad, N. Kamarulzaman, M. A. Hamdani, T. A. Mastor, and K. A. Hashim,
“The potential of unmanned aerial vehicle (uav) for civilian and mapping applica-
tion,” System Engineering and Technology (ICSET), 2013 IEEE 3rd International
Conference on, pp. 313–318, 2013.

[8] C. E. Schwartz, T. G. Bryant, J. H. Cosgrove, G. B. Morse, and J. K. Noonan, “A
radar for unmanned air vehicles,” The Lincoln Laboratory Journal, vol. 3, no. 1, pp.
119–143, 1990.

[9] T. Agawal, “All you know about lidar systems and applications,” IEEE Transactions
on, vol. 3, no. 1, pp. 119–143, 2015.

[10] C. Luo, G. E. Jan, J. Zhang, and F. Shen, “Boundary aware navigation and mapping
for a mobile automaton,” IEEE, 2017.

[11] “Intel R©realsenseTM camera r200,” 2016, available at https://www.intel.com/content/
dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/
realsense-camera-r200-datasheet.pdf.

41/46

https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/realsense-camera-r200-datasheet.pdf
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/realsense-camera-r200-datasheet.pdf
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/realsense-camera-r200-datasheet.pdf


CONCLUSION

[12] J. Borenstein and Y. Koren, “The vector field histogram-fast obstacle avoidance for
mobile robots,” IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp.
278–288, 1991.

[13] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler,
and A. Ng, “Ros: an open-source robot operating system,” ICRA workshop on open
source software., vol. 3, no. 3, pp. 1–5, 2009.

[14] S. Orts-Escolano, V. Morell, J. Garćıa-Rodŕıguez, and M. Cazorla, “Point cloud data
filtering and downsampling using growing neural gas,” The 2013 International Joint
Conference on Neural Networks (IJCNN), pp. 1–8, 2013.

[15] P. Maur, “Delaunay triangulation in 3d,” Doctoral Thesis on University of West Bo-
hemia in Pilsen, 2002.

[16] Lindsay and Smith, “A tutorial on principal components analysis,” 2002, available at
http://www.cs.otago.ac.nz/cosc453/student tutorials/principal components.pdf.

[17] H. Wang, L. Wang, J. Li, and L. Pan, “A vector polar histogram method based obstacle
avoidance planning for auv,” IEEE Transactions on, pp. 1–5, 2013.

[18] M. Hoy, A. S. Matveev, and A. V. Savkin, “Algorithms for collision-free navigation
of mobile robots in complex cluttered environments: a survey,” Cambridge University
Press, vol. 33, pp. 463–497, 2014.

[19] G. Loianno, V. Spurny, T. J, T. Baca, D. Thakur, D. Hert, R. Penicka, T. Krajnik,
A. Thou, A. Cho, M. Saska, and V. Kumar, “Localization, grasping, and transporta-
tion of magnetic objects by a team of mavs in challenging desert-like environments,”
IEEE Transactions on, vol. 3, no. 3, pp. 1576–1583, 2018.

[20] T. Baca, P. Stepan, and M. Saska, “Autonomous landing on a moving car with un-
manned aerial vehicle avoidance for mobile robots,” IEEE Transactions on, pp. 1–6,
2017.

[21] V. Spurný, T. Báča, M. Saska, R. Pěnička, T. Krajńık, G. Loianno, J. Thomas,
D. Thakur, and V. Kumar, “Cooperative autonomous search, grasping and delivering
in a treasure hunt scenario by a team of uavs,” 2017, (submitted to the special issue
on “MBZIRC 2017 - Challenges in Autonomous Field Robotics”).

42/46

http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf


APPENDIX REFERENCES

Appendix A DVD Content

In Table 2 are listed names of all root directories on CD.

Directory name Description
code implemented program for UAV
doc this thesis in LaTeX and pdf
cam videos from experiment and simulation

Table 2: DVD Content

43/46



APPENDIX REFERENCES

44/46



APPENDIX REFERENCES

Appendix B List of abbreviations

In Table 3 are listed abbreviations used in this thesis.

Abbreviation Meaning
FOV field of view
FPS frames per second
GNSS global navigation satellite system
IMU inertial measurement unit
LIDAR light detection and ranging
MAV micro aerial vehicle
MPC model predictive control
PCA principal component analysis
PCL point cloud library
RADAR radio detection and ranging
ROS robot operating system
SDF simulation description format
UAV unmanned aerial vehicle
VFH vector field histogram
Xacro XML macro
XML extensible markup language

Table 3: Lists of abbreviations

45/46



APPENDIX REFERENCES

46/46


	Introduction
	Processing of point cloud
	Transformation to UAV frame
	Introduction into filtering
	Removing ground
	Downsampling point cloud
	Removing outliers
	Radius outlier removal filter
	Statistical outlier removal filter

	Reconstructing objects
	Delaunay triangulation
	Reconstructing into cylinders


	Local map
	Creating of the local map
	Preparing data for reactive collision-free technique 

	Implementation of reactive collision-free technique
	Introduction into VFH algorithm
	Implementation of VFH algorithm
	Control
	Translation
	Rotations


	Implementation of a depth camera model in Gazebo robotic simulator
	Introduction
	Depth camera model implementation

	Simulation of flight
	Simulation of trajectory planner
	Simulation of avoiding a single obstacle
	Simulation of avoiding tree wall
	Simulation of complicated environment

	Real-world experiments
	Experimental verification of trajectory planner
	Experimental verification of the proposed reactive collision-free technique
	Experimental verification in a more complicated surroundings

	Conclusion
	Appendix DVD Content
	Appendix List of abbreviations

