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Abstract
In this thesis, we evaluate the interference
between multiple GPU (Graphics process-
ing unit) kernels running in parallel based
on artificial random and sequential walks,
the 2D Convolution benchmark provided
by polybench and the KCF (Kernelized
Correlation Filter) tracker implemented
by Vít Karafiát and Michal Sojka. To
achieve a reduction of the interference be-
tween the running kernels and to reduce
the resulting execution jitter, we used a
time-triggered execution on the GPU. To
enable the synchronization, we assessed
two synchronization mechanisms available
on Tegra X2 platform: one based on zero-
copy memory and one based on the glob-
altimer. We found that the NVIDIA pro-
filer (nvprof) reconfigures the resolution
of globaltimer from 1 µs to 160 ns. With
this resolution, we were able to reduce
the execution time jitter of a tiled 2D
convolution kernel from 6.47% to 0.15%
while maintaining the same average ex-
ecution time by use of a time-triggered
GPU execution.
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Chapter 1
Introduction

Autonomous machines such as self-driving cars will certainly be a part of our future.
Nowadays, both industry and researchers work heavily on various aspects of those
machines. One aspect that is still not satisfactorily addressed is how to ensure
their safe operation. Those machines require vast computational power to process
all the sensor data, and reason about them in real-time, but safety systems are
traditionally implemented with slow, simple but reliable computing elements. In
contrast to that, autonomous machines are powered with heterogeneous computing
architectures, where a multi-core Central Processing Unit (CPU) is accompanied
by one or more accelerators such as Graphics processing units (GPU)s or Field-
programmable gate arrays (FPGAs), often in the same chip. These are called
Multi-Processor Systems-on-Chip (MPSoC).

While FPGAs can offer precise timing, GPUs seems to be more popular in
these applications, perhaps due to their easier programmability. However, GPUs
originate from industrial domains, where average-case performance was tradition-
ally more important than real-time and safety guarantees. In this work, we use
NVIDIA Tegra X2.

To reason about safety properties, the functional safety standard for road
vehicles ISO 26262 defines the term “freedom from interference”. Freedom from
interference between software elements in the system allows those elements to
be analyzed independently, simplifying the whole safety process. Elements are
free from interference when certain faults, for example “incorrect allocation of
execution time”, are not present.

We believe (and safety standards agree) that time triggered scheduling gives
stronger safety guarantees. One reason is that it is easier to control contention
on shared hardware resources (caches, buses, memories) and thus control the
inter-task interference. Our longer-term goal is to schedule execution on the
whole MPSoC (CPUs and GPU) in time triggered manner. In our past work [1],
we reduced interference between tasks on a multi-core CPU by time triggered
scheduling.

Another reason for time triggered scheduling is that traditional synchronization
schemes such as semaphores and spinlocks are more expensive on larger platforms.
Therefore we aim to use time triggered scheduling within shorter time intervals and
then occasionally (re)synchronize these intervals using traditional synchronization
techniques.
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1. Introduction ........................................
Correct execution time allocation must be derived from the Worst case execution

time (WCET) analysis. If the results of WCET analysis are too pessimistic, more
time must be allocated and the computational power provided by the MPSoC is
wasted and may not be sufficient for required autonomous operation.

In this thesis, we concentrate on the GPU execution only, and we try to
characterize the interference between GPU kernels running in parallel and the
resulting increase of their average execution time. Based on these findings, we
want to show under which circumstances the resulting execution jitter is low or
high.

To describe the interference between GPU kernels, we analyze the interference
between kernels performing sequential and random walks in parallel. Further,
we evaluate how interference induced from the CPU affects the average element
access times during those walks.

In a next step, we analyzed this contention with a less artificial kernel than
the sequential and random walk kernels. We analyzed memory sensitivity of the
available polybench [2] kernels and found the 2D Convolution an appropriate
to show how the launch of multiple instances running in parallel influences the
execution jitter.

Later we reimplemented the 2D Convolution kernel to split the processed dataset
into multiple tiles which fit into the GPUs shared memory. This change allowed
us to break the tile processing into three phases: 1) prefetch data into shared
memory, 2) perform the computation on the shared memory, and 3) write back
the results from shared memory to global memory.

More specifically, we adopt the concept of Predictable Execution Model (PREM)
proposed by Pellizzoni et al. [3], where computation is split into memory and
compute phases, and these phases are scheduled to not interfere with each other.
For example, by not running two memory phases in parallel.

To be able to synchronize the PREM phases, we assessed two synchronization
mechanisms available on the Tegra X2 platform: One based on Zerocopy memory
and one based on the globaltimer residing on the GPU.

Finally, we performed multiple experiments by scheduling the processed tiles and
the PREM phases with different offset to determine how the reduced interference
affects the resulting execution time and execution jitter.

To evaluate our findings on an application closer to reality, we measured
the interference between the complex matrix operation kernels present in the
Kernelized Correlation Filter (KCF) tracker [4] to understand which kernels
interfere the most and where the reduced interference might provide the biggest
benefits.

Parts of this thesis have been accepted as the paper Experiments for Predictable
Execution of GPU Kernels by OSPERT19 1.

1https://ospert19.tudos.org/
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Chapter 2
Background

2.1 Real time applications

In many technical applications, such as process or engine control applications, it
is compelling that the systems react in a given deadline. This might be less of a
problem for temperature controlling applications, but for safety-critical systems,
where serious harm as injuries, death or material damage can happen. The main
task of such a system is to deliver the correct result of a job within a given deadline.
This deadline can have an arbitrary length from multiple hours to a few us/ns.
Depending on the task to solve. There are different definitions of deadlines in
real-time systems:

Hard deadline
A hard deadline is defined that the system has to deliver the correct results
between a specified time interval. If the result is delivered too early or too late,
serious harm can happen to the system or users. A typical example of a hard
deadline is an airbag in a car.

Soft deadline
A soft deadline is defined that the results are delivered in average in the specified
time interval. If the result is provided earlier or later in some cases, no conse-
quences happen. An example might be a video stream application.

Firm deadline
No immediate harm happens if a deadline is missed, but the result of the job
cannot be used in this interval. To achieve this goal a real-time system must run
deterministically and predictable and needs to provide enough resources to serve
the events correctly even though they arrive in high frequencies. In real-time
applications, most commonly no operating system or a real-time operating system
is used to ensure that the real-time jobs finish within their deadline requirements.
The main difference between real-time operating systems and standard operating
systems is that a less important task can be preempted immediately and high
priority tasks are not delayed by other work that needs to be performed first.
Further, the used platform requires to provide predictable access and execution
times (worst case guarantees) on shared resources as, CPU, memory (cache, bus,

3



2. Background ........................................

Figure 2.1: Estimation of the Worst-Case Execution Time, and the over-estimation
problem [5]

memory controller), IO peripherals and other resources.

2.1.1 WCET

To ensure that a job can fulfill a deadline requirement every time, it is necessary
to retrieve its WCET. The WCET specifies the longest time a task takes to finish
its assigned goal. To get the WCET of a program on a modern multiprocessor
system, it is necessary to include all possible branches, used data and all possible
contention with other active components in the system since no guarantee of
exclusive execution can be given. This is done by measurement methods (start
to end measurement with stressing benchmarks running in parallel) and static
methods (instruction counting, detailed hardware model) [5]. Both approaches
have their limitations, and an error margin needs to be taken into account.
Especially since systems are getting more and more complex, it is difficult to
estimate the error margin which leads to conservative WCET estimation and
therefore low utilization of the system (see Figure 2.1).

2.1.2 Predicatbility problems in COTS

Today, it is more and more common to build real-time system using Commercial Off-
The-Shelve (COTS) components, since computation demand on real-time systems
increases (illustrated in Figure 2.2) and costs still need to be in a competitive
range. These systems are designed to achieve high average throughput and
perform therefore often much better than custom built real-time Hardware (HW)
platforms. As a trade-off, the design did not consider worst-case timing guarantees
required by real-time systems to ensure the hight average throughput. COTS
systems often include optimizations as pipelining, out-of-order execution, data
and branch speculation to parallelize instruction execution as much as possible
in their cores. Additionally, they consist of multiple active components (CPU,
IO-peripherals) that can independently initiate access to shared resources as the

4



...........................................2.2. PREM

Figure 2.2: Evolution of code size in space, avionic and automotive embedded systems
[5]

main memory. In the worst case, this can lead to contention on communication
buses, memory devices, and caches and therefore to degraded access times. Due to
these optimizations, the WCET is estimated very pessimistically. As an example
R. Pellizzoni et al.,2010 showed that the computation time of a task could increase
linearly with the number of suffered cache misses due to contention in main
memory. This means that if there are three active components in the system, the
WCET can nearly triple.[6]

2.2 PREM

To cancel the contention problem and constantly achieve short and predictable
response times for real-time task COTS components, it is necessary to control the
operation-point of each shared resource and maintain it below saturation limits [3]
to ensure no unpredictable processing delays occur. To tackle the contention on
the level of bus communication and shared memory, the PRedictable Execution
Model (PREM) is introduced [3]. Code of real-time tasks is analyzed and scheduled
among all other active components in the system so that contention on accesses to
shared resources is resolved and accesses to shared memory resources is scheduled
without exceeding their saturation level. This means each task has exclusive access
to the resources which allows a much more optimistic estimation of the WCET.

5



2. Background ........................................
P C C W
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CPU1
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Figure 2.3: Predictable interval [1]

2.2.1 Concept

To apply PREM, a real-time task is scheduled as a sequence of intervals of two
different types: predictable and compatible.

Compatible interval

No transformations are performed for compatible intervals. During their execu-
tions, caches misses may happen any time, and the code is allowed to use OS
calls. Compatible intervals can be preempted by interrupt handlers of associated
peripherals. To reduce pessimism on the WCET, it is recommended to minimize
the number of compatible intervals, and to keep them as short as possible. There-
fore blocking calls performed within a compatible interval need to have some
reasonable timeout.

Predictable interval

Predictable intervals are split into three phases: prefetch phase, compute phase,
and writeback phase. The prefetch phase and writeback phase are also referred
as memory phases. Figure 2.21 visualizes a predictable interval consisting of
the mentioned phases. During the initial prefetch phase, the CPU accesses the
main memory and prefetches the data used in the Compute phase into the last
level cache. Since only one task in the system is allowed to be in a memory
phase at once, no contention on the shared main memory happens. Since all
the cache lines are already prefetched, the following execution of the compute
phase experiences almost zero cache misses. Therefore the CPU which is currently
running a compute phase does not access the main memory and another memory
phases can be scheduled during this time. This allows the next predictable interval
to enter its memory phase. To ensure that other active components in the system
have enough time to perform their memory phases, the compute phase has a
constant execution time. If it finishes earlier, it busy-waits until its deadline. At
the end of a compute phase, another memory phase, called writeback phase, takes
place to write back the memory. During the execution of a predictable interval,
the CPU cannot be preempted by the OS or interrupt handlers.

6



......................................2.3. GPU introduction

PREM - transformation

To transform written code to PREM intervals, a particular compiler is used which
is built on top of the LLVM Compiler infrastructure. The compiler is devel-
oped by ETHZ and is accessible under Hercules-public 1. The compiler selects
PREM-intervals and transforms them into the three phases prefetch, compute
and writeback. First, the predictable interval is duplicated three times. On each
instance of the duplicated code different transformations are applied that corre-
spond to the single phases. [1]

Prefetch/Writeback
All instructions not related to memory access or calculating memory addresses,
including control-flow, branches, and calculations are removed. Load instructions
are replaced with prefetch instructions. After this transformation, the prefetch
phase is reduced to its minimum. The writeback phase experiences a similar
transformation, but load instructions are replaced with cache flush and invalidate
instructions.[1]

Compute
The compute phase is taken as is. Since data is prefetched in the prefetch phase,
these phases should not experience any cache misses during its execution. Except
if the cache replacement policy has evicted some cache lines during the prefetch
phase.[1]

PREM - scheduling

After the PREM intervals are determined and transformed, they need to be
scheduled to meet the requirements specified by PREM. There are two possibilities
to schedule the PREM phases: With an ordered schedule, which is computed
offline or using an event-based schedule where each task tries to acquire a memory
phase online and waits until no other tasks are in memory phase. The first
approach was described and used by Joel Matějka et al. [1], where the gains
of PREM have been shown nicely on the application of a GEneralized Matrix
Multiplication (GEMM), a Fast Fourier Transform (FFT) and a binary search
tree. This approach allowed to reduce the variance of completion times by the
factor of 9 for optimal scheduling solutions and by the factor of 5 for scheduling
solutions generated by use of a heuristic.

2.3 GPU introduction

In the early 1992 3D graphic cards were still very rare and a topic of scientific
research and high-tech development. By the end of this decade, first 3D-graphic
cards came to marked to fill this cap in personal computers. With the first
graphic cards, the demand for video-games, advanced 3D-modeling in industry
could be satisfied. The first available graphic cards on the marked were strictly

1https://iis-git.ee.ethz.ch/H2020-Compiler/HerculesCompiler-public
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2. Background ........................................
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Figure 2.4: GPU rigid pipeline

designed to target the problem of 3D rendering and visualization. They had to
output a rendered 3D model up to 60 times a second. Therefore they consisted
of a rigid 3D-pipeline shown in figure 2.4. This pipeline consisted of five main
stages: Vertex shader, Geomtry shader, Setup & Rasterizer, Pixel shader and
Raster operation. The input was a 3D model of the scene using vertexes and edges
and the output was a rendered 3D scene. In the first stage the vertexes of the
model are manipulated (transformation, rotation, scaling) and vertex lightening is
added, then the geometry shader removes hidden vertexes. In the pixel shader
stage texture of colors and pixels is defined and added as pixel fragments. In the
last stage those pixel fragments are rendered to pixels and aggregated to the final
output image.[7]

Later GPUs have evolved from the rigid hardware pipeline to a more multi-
ple purpose implementation. Fixed function units have been transformed to a
grid of unified processors (called Streaming Multiprocessor (SM) for NVIDIA
hardware) that can perform those tasks and much more. This transformation
has been done through the iteration of many GPU generations. This lead to
the GPU-architecture presented in Figure 2.5 where the GPU consists of several
general multiple purpose processors. This changes in the graphic pipeline opened
completely new possibilities to use the GPU for different compute intensive tasks
and not only for graphics related problems. Since in the last years the throughput
and performance of GPUs (See Figure 2.6) has increased to a multiple of the
performance offered by CPUs, industry and research use GPUs increasingly to
parallelize compute intensive tasks. Due to the pipelined and parallelized architec-
ture (Single Instruction Multiple Data (SIMD)), not all algorithms can efficiently
utilize the cores of a GPU. Applications which are not well parallelizable and use
incoherent and unpredictable memory accesses are not applicable to the streaming
multiprocessors of a GPU. Compute intense tasks or streaming jobs on data sets
map well to the GPUs streaming architecture. If the algorithms are chosen wisely
the GPU can be used as a very efficient accelerator.[7]

2.3.1 GPU on the Jetson TX2

NVIDIA Tegra X2 is a high-performance embedded MPSoC consisting of two CPU
clusters and one Pascal GPU with 256 CUDA cores. The memory bus is shared
across the entire chip. However, each CPU cluster and GPU have a separate L2
cache. These caches are not coherent. The GPU is composed of two independent
computing blocks called SM, Figure 2.7 shows a high level overview of such an SM
in the of a GP100 Pascal GPU. In contrast to the GP100 GPU, the TX2 offers
128 CUDA-cores each having its L1 cache, instruction cache, shared memory, and
four warp schedulers. For each warp scheduler the SM offers an instruction buffer,
two dispatch units, a register file, 32 CUDA cores, 16 Double-Precision (DP)

8
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Figure 2.5: “Graphics pipeline evolution.The NVIDIA GeForce 8800 GPU replaces
the traditional graphics pipeline with a unified shader architecture in which vertices,
triangles, and pixels recirculate through a set of programmable processors.The flexibil-
ity and computational power of these processors invites their use for general-purpose
computing tasks.” [7]

units, 8 Load/Store (LD/ST) units and 8 Special Function Units (SFUs) (sqrt,
sin, cos...). Since one SM on the TX2 has 128 CUDA-cores and is partitioned
into 4 warp schedulers, the threads are executed in groups of 32 threads, called
a warp. If a workload is assigned to the SM the instructions are placed in the
Instruction Cache. From there the workload is partitioned and distributed to
the four warp schedulers Instruction Buffers. Unfortunately NVIDIA did not
publicate how the partitioning is performed but it might be based on the assigned
warp-id. The instructions in the Instruction Buffer are marked as ready if all
dependencies are satisfied. The warp scheduler tries to fill both dispatch units
with instructions marked as ready. Each cycle the warp scheduler gets the number
of free Functional Units (FUs) and Dispatch Units. If there are not enough FUs
available for the next ready instruction the warp-scheduler stalls or tries to issue
another independent instruction to hide the latency. In the Dispatch Unit the
warp-id is used to calculate the absolute address for each thread in the register file
and the thread mask to decide which threads need to be executed in the next cycle.
Then it sends the instruction to the free FUs. If not enough FUs are available
the remaining instructions are queued for the next cycle and the dispatch unit
remains busy for more than one cycle.

As previously mentioned the thread mask is used to mask the execution of
threads for an instruction if they have diverged inside the warp. This happens if
the warp has to execute a conditional branch as shown in Figure 2.8. In this case
the first 4 threads take one branch and the other 4 threads the other branch. First,
the thread mask is set to mask the latter 4 threads to execute the instructions A
and B. If those threads reach the reconverge point the mask is inverted to mask
the first 4 threads for the execution of instructions X and Y. After this point the
unmasked execution takes place again for all threads to execute instruction Z
[9]. This needs to be considered since this branching behaviour can reduce the
parallelization in the GPU and nearly double the execution time in the worst case.

To visualize the warp-scheduling with more clarification, the Instruction Buffer
can be imagined as a storage containing 16 warp contexts (instruction, warp id
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Figure 2.6: CPU vs GPU performance[8]

and the thread mask). The warp scheduler checks if one of those warp contexts
is ready and schedules on the designated warp lane or dispatch unit. Each warp
lane executes a warp, i.e., a group of up to 32 threads performing the same
instruction on different data. Since NVIDIA does not publish all details about
their GPU architectures, it is difficult to estimate architecture details, and how
GPU workload is scheduled on the available warp lanes. Based on publicly
available documentation, previous work by Amert [10] and Capodieci [11], and our
experiments, we assume the architecture of one streaming multiprocessor to be
as depicted in Figure 2.9. The workload is inserted by CPUs into stream queues,
then by rules revealed by Amert [10], put into the execution engine queue and
assigned to an SM if enough resources are available. We assume that up to 16
warps can be assigned to a single warp lane. The warps from CUDA blocks are
placed in the available warp context slots, which store their architectural state,
and are run by the hardware warp scheduler (WS) as soon all dependencies of
the threads are satisfied. The warp scheduler issues and interleaves instructions
from the associated warps, hiding latencies caused by waiting for shared resources.
After all warps in a block have finished, the occupied warp context slots are freed
and can be reused by warps from the next block. Warp scheduling is similar to
hyperthreading used in CPUs. Multiple running warps share CUDA cores and
other resources such as multiple LD/ST units, SFUs and DP units in one warp
lane. Latencies generated by instruction or data cache misses or other unsatisfied
dependencies can be hidden by scheduling another warp-context. This way the
GPU is busy as long there are enough threads ready to be executed.
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Further the two SMs feature a shared nanosecond timer, called globaltimer,
which runs synchronously on the GPU.

Figure 2.7: GP100 Pascal micro-architecture [9]

Figure 2.8: Diverged Warp execution [9]

TX2 streaming multiprocessor – 128 CUDA cores

32 cores 32 cores 32 cores 32 cores

RF WS

warp lane

warp context warp context warp context warp context

warp context warp context warp context warp context

warp context warp context warp context warp context
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15
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warp
architectural states

EE queue

stream queues

64k shared memory
L1 cache
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Figure 2.9: Estimated architecture of one SM of TX2
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2.4 CUDA

To allow an easy and straight forward implementation of computational work on
the GPU NVIDIA introduced the CUDA framework 1. To offload computation
to the GPU, programmers write so called kernels, i.e., functions that execute in
parallel on the GPU. When a kernel is launched the programmer specifies, with
a special syntax, the kernel execution configuration: the number of threads and
how those threads are organized into groups (CUDA-blocks or thread-blocks).
Launched CUDA kernels are placed into queues called streams where they are
executed in FIFO order. By default, there is one stream per process. More streams
can be created to execute kernels in parallel if enough resources are available. All
kernel launches are asynchronous, meaning that if a CPU needs to wait for kernel
completion, it has to invoke explicit synchronization operation. A good starting
point to familiarize with the CUDA framework is the CUDA C Best Practices
Guide2.

2.4.1 Programming model

The CUDA-Programming model splits a program into host and device code. Host
code runs on the CPU and can only access data available on the CPU side. Device
code on the other side runs on the GPU and can access data stored on the
GPU. CUDA offers a framework to write programs that are able to run on both
platforms. The code segment performing the transition of the execution from
the CPU to the GPU is named kernel and can be called with a special syntax
from the CPU side. To differentiate the code segments between host, kernel and
device code CUDA offers two important keywords: __global__ and __device__.
The __global__ keyword marks a function as kernel code. Those functions can
be called from the CPU and issue a kernel launch on the GPU. The __device__
marks device functions. Those functions can not be called from the CPU but
only from the GPU. Further this keyword allows to create global variables on the
device accessible inside the running kernels.

Listing 2.1 shows the code of a simple CUDA program. First, the data is
allocated and initialized on the CPU (host). Then, if the traditional memory
model (see 2.4.2 Memory model) is used, memory is allocated on the GPU and
the data is copied into this device environment using the GPUs copy engine. This
data transfer step can be omitted sometimes if a different memory model is used.
After the data is available on the GPU the kernel can be launched. To launch a
kernel, the programmer specifies the number of threads to be used in the kernel
and how those threads are grouped together into thread blocks. Further, the size
of the used shared memory in a kernel and the stream, where the kernel launch is
enqueued, can optionally be specified. Since all kernel launches are asynchronously,
the programmer needs to place a cudaDeviceSychronize() call to issue an explicit
synchronization before copying back the results. After the synchronization point
the resulting data is copied back to the CPU and is available for further processing.

1https://docs.nvidia.com/cuda/cuda-c-programming-guide/
2https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
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(a) : CUDA programming model [13] (b) : CUDA memory model[13]

Figure 2.10: CUDA models

Figure 2.10a shows how a kernel is launched in a grid (collection of CUDA-
blocks) of thread blocks. The grid and the blocks can have up to 3 dimensions
where each thread can be identified according to his X and Y block and thread
ids, stored in the threadIdx.x, threadIdx.y, blockIdx.x, blockIdx.y registers.

During the kernel execution the thread and block ids indicate the running thread
which element to access. If more elements need to be processed than threads are
available the kernel implementation can be changed to use grid-stride loops to
instruct threads to process more than one element.

Threads in one block can synchronize by use of barriers or communicate through
the shared memory. One streaming multiprocessor can execute multiple blocks
until some register, memory, thread limitations occur. But a CUDA block can
not be split between two streaming multiprocessors since threads could not longer
share their memory or synchronize.

The CUDA programming model has the disadvantage, that the offloading
of algorithms to the GPU need some rewriting of the code. There are other
possibilities, as for example OpenMP and OpenACC, to offload kernels by simple
compiler directives. Those frameworks use the CUDA driver API behind the
scenes and the algorithms are implicitly transformed to the CUDA language.
Chapter 2.5 OpenMP offloading shows how GPU offloading using OpenMP works
in more detail.

2.4.2 Memory model

On the GPU, memory can be accessed in different locations. Figure 2.10b gives a
short overview of the CUDA memory model. The red blocks represent fast, on-chip
memory whereas the orange blocks represent slower memory. The registers are
available per thread and CUDA-core and can be used for local storage. The second
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Listing 2.1: Example kernel in CUDA: saxpy [12]

# include <stdio.h>

__global__ void saxpy(int n, float a, float *x, float *y)
{

int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n) y[i] = a*x[i] + y[i];

}

int main(void)
{

int N = 1<<20;
float *x, *y, *d_x, *d_y;
x = (float*)malloc(N*sizeof(float));
y = (float*)malloc(N*sizeof(float));

cudaMalloc(&d_x, N*sizeof(float));
cudaMalloc(&d_y, N*sizeof(float));

for (int i = 0; i < N; i++) {
x[i] = 1.0f;
y[i] = 2.0f;

}

cudaMemcpy(d_x, x, N*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_y, y, N*sizeof(float), cudaMemcpyHostToDevice);

// Perform SAXPY on 1M elements
// kernel<<<gridDim, threadDim, sMem, stream>>>(ptr_data);
saxpy<<<(N+255)/256, 256>>>(N, 2.0f, d_x, d_y);
cudaDeviceSychronize()

cudaMemcpy(y, d_y, N*sizeof(float), cudaMemcpyDeviceToHost);

float maxError = 0.0f;
for (int i = 0; i < N; i++)

maxError = max(maxError, abs(y[i]-4.0f));
printf("Max error: %f\n", maxError);

cudaFree(d_x);
cudaFree(d_y);
free(x);
free(y);

}
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on-chip memory is given by the shared memory (scratchpad memory) which gives
the threads the possibility to communicate with each other and to exchange data
since it is shared inside a CUDA-block. Further there is local, global, constant
and texture memory. If data is loaded from global memory, data is by default
cached in the L2 cache only. The L1 cache is only used for local memory to ensure
that local data, which was stored in local memory due to register spilling, is not
evicted by global loads cached in L1 cache. This behavior can be changed by the
compiler flag -dlcm=ca to instruct NVIDIA CUDA Compiler (NVCC) that global
loads should be cached in L1 cache.

Traditional memory

In the traditional memory model the host and device manage separate memory
locations. Before a kernel can process a dataset located in host memory, the
programmer needs to allocate the memory on the GPU and issue a copy operation
to copy the data to the GPU. After the kernel execution the resulting data needs
to be copied back to the host.

// Allocate Matrix A
// Allocate B and D on the device
// and copy B to the device
// Run kernel using A, B and C
// Copy back B and D to the host

// Allocate C
// Run kernel using A and storing results in C
// Copy back C to the host

// Free all device memory

A

B,
D

C

Copy B

Copy B,D

Copy C

Host        Device

Figure 2.11: Traditional mem-
ory model.

To avoid a lot of copy operations, already allocated device memory can be
reused to share memory between multiple kernels. This enables a more fine grained
control about the data movement during the execution. The use of shared memory
segments between multiple kernel calls is shown in Figure 2.11. It can be seen
that matrix A is allocated in the device data environment. All kernels launches
afterwards can access this data and work with it. The first kernel copies data
B to the device environment and allocates D in it. Then it performs some work
with AB and D. At the end of the kernel B and D are copied back to the host
environment. The second kernel allocates C on the target and performs again
with A and C. At the end C is copied to the host environment. This way the
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Figure 2.12: TX2 block diagram[10]

copying of A can be avoided while different kernels can work on the same memory.

Zero-copy memory

As we can be seen in Figure 2.12, the Jetson TX2 platform shares memory between
the CPUs and GPU. This enables to use host-pinned memory (not pageable) and
unified managed memory in zerocopy mode. This means that the host CPU and
GPU have pointers to the same memory location to work on data without the
copy operations from host to device or vice-versa. Host pinned Zerocopy-memory
retrieves a device pointer to a memory segment which is pinned to the CPU (not
pageable). Using this device pointer the GPU can access the memory location.
To ensure coherence of this memory location caches are disabled which lead to a
significant slowdown in performance. The unified managed memory model offers
an abstraction layer to the memory access. Memory is allocated in the unified
memory space and therefore in host and device memory. The Unified memory
model ensures the consistency between those two memory location behind the
scenes using page on demand technology. For the programmer point of few its
seems to work with only one pointer on the GPU and CPU without explicit copy
operations to the device and back. Since the Jetson TX2 platform offers shared
memory, the unified memory model allocates the memory segment only once and
uses therefore also Zerocopy-memory but this time with caches enabled. This
has the advantage of a speed up compared to the host pinned Zerocopy-memory
but needs cache flushes to ensure synchronization between CPU and GPU caches
and can induce some unpredictable overhead on page misses, since some CPU
interaction is need to resolve the page miss. Listing 2.2 shows the calls to allocate
host-pinned and managed unified memory segments.
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Listing 2.2: Host pinned zero copy memory

double * A;
double * A_target;

// Allocate memory on host
cudaHostAlloc(&A,

NX*sizeof(double),
cudaHostAllocMapped);

// Get corresponding device pointer
cudaHostGetDevicePointer((void **) &A_target, A, 0);

// Allocate memory using managed unified memory
cudaMallocManaged(&A,

NX*sizeof(double),
CudaMemAttachGlobal);

...

2.4.3 Coalescent access

In a kernel launched on the GPU, multiple threads might work in parallel and access
memory in parallel. Therefore it would be desirable that the access to memory of
the single threads are not evicting already cached memory of other threads. This
can be achieved by using a as coalescent memory access as possible.Figure 2.13,
shows an access pattern where each block processes 1024 consecutive elements in
memory. This leads to a fast and efficient access since the thread in one block have
less competition for memory. If a coalescent access to the data in global memory
can not be provided a solution can be to copy a memory segment into the shared
memory of the block to provide a coalescent during the further computations.

0 1 2 3 ... 1023 0 1 2 3 ... 1023 0 1 2 3 ... 1023 0 1 2 3 ... 1023

Block 0 Block 1 Block 2 Block n

Thread ID

Index = Block id * num_threads + thread id

Figure 2.13: Coalescent memory access
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2.5 OpenMP offloading

OpenMP (Open Multi-Processing) is an API that supports multi-platform shared
memory multiprocessing programming in C, C++, and Fortran. It consists of a set
of compiler directives, library routines, and environment variables that influence
run-time behavior. OpenMP uses a portable and scalable model that gives
programmers a simple and flexible interface for developing parallel applications
for platforms ranging from the standard desktop computer to the supercomputer.
It is a multi threading implementation which instructs a master thread to fork
the code segment to a specified number of slave threads (See 2.14).

A B C A B C D A B C

A

B

C

A

B

C

A

B

C

D

Master thread

Figure 2.14: OpenMP model

To parallelize a section of code, for example a for loop, it is marked with
appropriate compiler directives to specify how to distribute it along the slave
threads. Each thread has its unique id starting at 1, whereas the master thread
has the id 0. By default each slave thread executes the code by its own. Using
work sharing constructs allows to distribute the workload along the available slave
threads so each thread performs its particular piece of work. An easy example
how the parallelization work, is shown in listing 2.3. Here a parallel region is
executed once by each launched thread. Each thread prints out its assigned id.
For the master thread it is id 0 and for the slave threads the incremented number
starting from 1. The threads can use the OpenMP runtime library to retrieve their
id during the execution. In this example the call to omp_get_thread_num() was
used. Listing 2.4 shows an example how a for loop is parallelized using openMP.
The workload is distributed by OpenMP along the optimal number of threads,
which is usually the number of available cores in the system. In more detail, the
omp parallel clause marks the for loop as a parallel region and the omp for clause
instructs the compiler to distribute the work along the available threads. The
omp schedule directive defines to use a static schedule with chunk size 1. Therefore
each thread processes one element per iteration. If the chuck size would be bigger,
for example 10, each thread would perform 10 iterations until it is free for the
next 10 elements. Since the omp nowait clause was not used, the threads wait at
the end of the parallel region until every thread has finished. Therefore a implicit
barrier is generated.
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Listing 2.3: OpenMP Hello World!

int main(int argc, char* argv[]) {
# pragma omp parallel

{
int ID = omp_get_thread_num();
printf("Hello World from core: %d\n", ID);

}
return 0;

}

Listing 2.4: OpenMP example on CPU

void foo(int n, float *a, float *b) {
# pragma omp parallel for \

schedule(static, 1)
for (int i=1; i<n; i++){

b[i] = (a[i] + a[i-1]) / 2.0;
}

}

2.5.1 Offloading kernels

To instruct OpenMP to offload a kernel the omp target clause is needed. This
clause generates a target region which copies data to the target environment
executes the kernel and copies the results back. This section describes the offloading
process on the generalized matrix multiplication of Polybench-C. Listing 2.5 shows
the offloaded kernel.

Listing 2.5: GEMM - sequential c

for (int i = 0; i < NX; i++){
for (int j = 0; j < NY; j++){

C[i][j] *= beta;
for (int k = 0; k < NZ; ++k)

C[i][j] += alpha * A[i][k] * B[k][j];
}

}

Simple offloading

With the omp target clause the offloading to the target is triggered as shown in
listing 2.6. Each target region is also a data region which means that data used
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in the kernel is mapped to the device. If not specified with the omp target map
clause, data is mapped using the tofrom classifier. This means, data is copied to
the device before the kernel execution and copied back after the kernel execution.
This does not necessarily apply to constant variables since they can be used
as absolute values. Since no omp target teams clause was used, the compiler
generates one team (CUDA-block) whose master thread executes the parallel
region. The omp parallel for (thread_limit) launches the slave threads on the
device and distributes the work along them. If the number of threads is not
defined the maximum number allowed per CUDA-block is used.

Listing 2.6: GEMM - simple offloading

# pragma omp target map(from: C[0:NX][0:NY]) \
map(to: A[0:NX][0:NZ], \

B[0:NZ][0:NY])
# pragma omp parallel for
for (int i = 0; i < NX; i++){

for (int j = 0; j < NY; j++){
C[i][j] *= beta;
for (int k = 0; k < NZ; ++k)

C[i][j] += alpha * A[i][k] * B[k][j];
}

}

Teams and Threads

This subsection describes the parallelization and work sharing constructs omp
parallel, omp teams, omp for and omp distribute working with teams and threads.
These OpenMP clauses can be combined to instruct how the workload should
be distributed and to achieve as much parallelism as possible. In OpenMP, the
threads are launched in teams. An OpenMP team corresponds to a CUDA block.
The omp parallel clause launches a team of slave threads, where each slave thread
executes the same parallel region (See Figure 2.15a). To distribute the code of
a parallel region along the slave threads the clause omp for clause can be used.
This clause instructs the compiler to split the parallel region, in this case a for
loop, into multiple chunks and assigns those chunks to the slave threads (See
Figure 2.15b). The chunk size and the schedule which are assigned to the threads
can be specified using the clause omp schedule(type,chunk size).

Since GPUs can hide latencies if multiple thread blocks are executing concur-
rently it is desirable to distribute the parallel work also across multiple teams.
This is done in CUDA using the concept of grid and blocks. This is solved
similarly in OpenMP using the omp teams directive which launches multiple teams
of threads (CUDA-blocks). As shown in Figure refpic:openmpteams multiple
teams are launched but each master thread of the teams executes the same region
of code. Therefore the omp teams distribute clause is needed to distribute the
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OMP PARALLEL
    0     1    2     3     4    5

(a) : omp parallel launches team of
threads where each thread executes the
same parallel region.

OMP FOR

OMP PARALLEL

    0     1    2     3     4    5

(b) : omp parallel for distributes the
work load across the threads in a team

Figure 2.15: OpenMP parallel launch

OMP TEAMS

(a) : omp teams launches a league of
teams, where the master threads of the
teams execute the same parallel region

OMP TEAMS

OMP DISTRIBUTE

(b) : omp teams distribute launches
a league of teams and distributes the
workload along the master threads. The
distribution within the teams is not spec-
ified yet and needs further work sharing
constructs as omp parallel for

Figure 2.16: OpenMP teams launch

region along the teams (Figure 2.16b). But there is still the problem, that only
the master threads of the teams are executing the assigned region. Therefore the
omp teams distribute needs to be combined with omp parallel for to achieve
also full parallelism within the teams. It is important to note, that there is no
synchronization between the teams.
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2.6 GPU scheduling on the TX2

As described previously, the CUDA kernels are executed in multiple blocks consist-
ing of several threads. Those blocks are assigned to the SMs if enough resources
are available and the warp scheduler, which is implemented in hardware, swaps
warps immediately if stalls (example waiting for memory) in a running warp
occur. This way memory latencies can be hidden and the SM is fully utilized.
This scheduling is done in hardware and can not directly be influenced by the
programmer. CUDA offers streams to order GPU operations. Operations in
a stream are executed in FIFO order, but the order along different streams is
determined by the GPU scheduling policy. It is possible to assign priorities to
the streams to prioritize the execution of certain streams. Therefore kernels from
multiple streams may execute congruently or out of launch time order. The rules
the GPU uses to schedule blocks originating from different streams is not well
documented, but Tanya Amert et al. have revealed some restrictions with different
experiments [10]. Their research considers multiple running instances of synthetic
benchmarks with different configuration of block resource requirements, kernel
durations and copy operations. Further they assume several queues where kernel
and copy operations are enqueued:. Execution engine queue (EEQ): Queue which holds blocks to be assigned to

a SM (FIFO). Copy engine queue (CEQ): Queue which holds copy operations to be assigned
to copy engine (FIFO). One FIFO queue per CUDA stream.

Figure 2.17 shows the assumed queue architecture. Generally said, the head
of all stream queues is placed in FIFO order in the EEQ. Only the blocks of
the kernel placed at the head of the EEQ can be assigned to the SMs if enough
recourses are available. If all blocks of a kernel are assigned, this kernel is removed
from the EEQ. After all blocks of a kernel have completely finished their execution
on the SMs, the kernel is also removed from its stream queue. Then the next
kernel from the stream queue can be placed in the EEQ. This rules, discovered by
Tanya Amert et al.[10], can help a programmer to implement and tune a CUDA
application to be scheduled the way as expected.
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Figure 2.17: TX2 queue architecture [10]

2.7 Related work

Similarly to our work, recent research by Cavicchioli et al. characterized interfer-
ence on main memory and communication bus level between the CPU and GPU
[14]. Other researchers [15, 16] developed various microbenchmarks to understand
GPUs and their memory system. Our work differs from those by using time
triggered scheduling.

The scheduling behavior of many GPUs is unknown in most cases due to a lack
of publicly available and open documentation. Therefore, GPUs are mostly treated
as a black boxes, and different approaches for predictable execution of different
workloads have been developed to bypass this uncertainty. An often used method
is to ensure that only one process can access the GPU resources at a time by use
of a locking mechanism [17]. The cost of this approach may be an underutilization
of powerful GPUs. Dividing the workload into smaller preemptable chunks could
reduce this problem [18, 19]. Others evaluated techniques to manage accesses to
memory [20] to reduce contention between GPU and CPU applications.

Further Otternes et al. assessed the NVIDIA TX1 platform regarding real-time
behavior concerning co-scheduling of multiple kernels [18][19], and additionally,
Amert et al. derived a set of the GPU scheduling rules used in the Jetson TX1 and
TX2 platforms to brighten up the black box nature of those platforms [10]. They
ran different experiments to understand how the GPU schedules work if submitted
from the same or different processes. They found that the GPU workload launched
from different processes shares the GPU by the use of multiprogramming, where
each kernel runs exclusively on the GPU during its assigned time slice and does
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not overlap other GPU computation. For GPU workload submitted from the same
process, the computation can overlap and is scheduled according to the derived
rules. Bakita et al. proposed a validation framework to validate those derived
rules for future GPU generations [21].

Capodieci et al. [11] changed how the GPU workload is scheduled by using an
EDF scheduler combined with a Constant Bandwidth Server. Their scheduler
is implemented in a hypervisor and works by replacing the run list inside the
GPU-host.

2.7.1 GPU-GUARD

To adapt the GPU execution to the Predictable execution model, the kernels are
also premized similar to the CPU premization mentioned in the previous chapter
2.2 by use of the Hercules compiler [22]. Therefore kernels are separated into
the Memory and Compute phases. Really short kernels which are not usefully
premizable are hold as is and treated as Memory phases. The other kernels are
tiled into loop segments only accessing data segments of the size of 48kBytes. This
size comes from the limitation that each thread block can use up to 48kBytes
of shared memory called scratch pad memory. In the following compute phases
the running threads can access their data in the scratchpad memory (shared
memory) without further memory misses. To synchronize the PREM phases with
PREM phases running on the host, the tool GPU-Guard was introduced by Björn
Forsberg et al. [20]. Figure 2.18 shows the initial architecture of GPU-Guard. It
consists of the CUDA/GPUguard program and the GPUguard Loadable Kernel
Module (LKM). Since the only way to communicate between the GPU and CPU
on the Jetson TX2 platform is through main memory, the communication between
the LKM and the kernel on the GPU is based on polling on a host pinned memory
location. Each thread block in the CUDA code writes to its shared memory
location to indicate that it wants to enter a new PREM phase. Then it is busy
waiting on this location until the request is acknowledged by the GPU-guard
LKM. In the beginning of a CUDA-kernel execution each thread block performs
a checks in request to GPUguard. This way GPUguard knows how many CUDA
blocks belong to a single kernel. The same happens at the end of a CUDA-kernel
where each thread block requests a checks out. After all CUDA blocks performed
a successful checkout, GPUguard know s that the kernel has finished and is ready
to synchronize the next kernel. After all blocks have checked in, the single blocks
acquire a memory phase and busy wait on their shared memory locations until it is
acknowledged. GPUguard on the other side only acknowledges the Enter memory
phase request after all running blocks have requested it. The same happens on
the request Enter compute phase. This way it is ensured that all blocks running
on the SM congruently are entering a memory phase the same time. Therefore the
whole GPU (all running block on the GPU) is either in memory phase or compute
phase. This process is illustrated in Figure 2.19.

The GPUguard LKM consist of a high resolution timer callback function and
throttle threads. After the GPU was allowed to enter a memory phase, the throttle
threads are launched on all cores to throttle down the CPU execution. This way it
is ensured, that the CPU is not accessing the communication bus or the memory.
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Figure 2.18: An architectural overview of the implemented GPUguard.[20]

To enable a real synchronization with the PREM applications on the host, those
throttling threads were replaced with call to Memguard to acquire a memory
phase. This call is blocking until a new Memory phase slot is available. In this
case GPUguard acknowledges the GPU Enter memory phase and the GPU enters
the memory phase. On a Enter compute phase request on the other hand the lock
in Memguard is returned, so other PREM tasks can enter their memory phases.
This is also done after all blocks have checked out, to ensure that the GPU gives
back the memory lock also for shorter not premized kernels (treated as memory
phase). To enable the integration of the MEMguard call, some modification to
the reloading of the high resolution timer had to be made. Since the call to the
hypervisor is blocking, this time needs to be added to the newly configured WCET
interval.

The high resolution timer is used to ensure that the GPU kernel do not overrun
their given memory and compute phase times. After acknowledging the Enter
memory phase request of the GPU the high resolution timer is configured to
overrun after the estimated memory WCET time. If the running block did not
request a Enter compute phase after the high resolution timer has fired, a memory
phase overrun is detected. If a request was detected, the timer is updated with
the estimated compute WCET. Again, if no phase change request was detected
after the timer has fired, a compute overrun is detected. The detected overruns
are returned at the end of the kernel execution and can be used to tune the
WCET values for the kernel. Those values are not determined per phase, but per
kernel, since constant memory phase and compute phase times are expected. After
no more overruns are detected, the estimated values can be used for a correct
synchronization between the host and GPU PREM tasks.
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Figure 2.19: GPU-guard synchronization with HV

This way of PREM synchronization between the host and GPU introduces two
main causes of overhead: First the shared memory communication is rather slow,
since caches are disabled on host-pinned shared memory. But communication
cannot be performed in other ways, this over head is not reducible. Secondly the
WCET times are estimated over multiple runs (up to several 1000 if starting of
WCET=100ns and adding 100ns on each detected overrun) of the kernel. This
leads to a pessimistically estimated WCET and kernels that perform faster than
the configured WCET time in the high resolution timer have to spin until this
interval has expired. This could be reduced by using a higher sampling rate in
the LKM to detect earlier finishes in the phases and acknowledging faster phases
change requests.

2.7.2 PREM-Synchronization with GPUguard

During the individual project we made some measurements to evaluate the syn-
chronization overhead induced by the premization with the Hercules compiler and
the synchronization with GPUguard. To measure this overhead we instrumented
the premized executable to retrieve the times the program spends in the phases
presented in table 2.1.. CPU-time: Total execution time - kernel (including memcopy) time. GPU-time: Using nvprof - kernel execution time. Premized time: Time collected using binary which is premized by Hercules. Notpremized time: Time collected using binary which was not premized by

Hercules

Figures 2.20a and 2.20b show how much time an executable spends in the single
phases compared to the total execution time. It can be seen, that the dynamic
synchronization overhead is always around 50% which degrades the performance
significantly. This delay is mostly induced due to the slow communication through
the shared main memory.
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Name Desribtion Measurement method

PREM setup Time spend to setup
PREM environment

In libpremnotify

CPU Sync over-
head

PREM synchronization
overhead introduced on
CPU

Premized CPU time minus CPU
time without premization

GPU sync over-
head

PREM synchornization
overhead introduced on
GPU

Premized GPU time minus CPU
time without premization

CPU execution CPU execution without
premization

Notpremized execution totaltime
minus kernel time

Memcopy Memcopy operations Using nvprof
GPU execution GPU kernel execution

without premization
(run target team)

Notpremized execution
nvprof(run target team)

GPU static over-
head

Static GPU overhead
(init device and load bi-
nary)

nvprof

Table 2.1: Measured execution phases
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(b) : GEMM: Static overhead - 2 team

2.7.3 Mem-guard

Memguard was introduced by Heechul Yun et al. [23]. It is used to provide
isolation between PREM tasks during their memory phases. PREM tasks request
Memguard to enter a memory phase. With this requests Memguard ensures that
only one task on the system can enter a memory phase at a time. After the
request is granted, Memguard monitors the memory usage of the running task
using performance counters. If a core outruns its assigned memory budget the
corresponding jobs is preempted and put to sleep. After a preset time instance
the memory budget is renewed and the task is allowed to run further. Thanks
to the use of performance counters, only cache misses are detected. Therefore a
task is allowed to run further if it keeps hitting into is local cache. Memguard
consists of two main parts, the per core regulator and the reclaim manager. The
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2. Background ........................................
monitoring of the memory usage and throttling of the running tasks is done in the
per core regulator and the reclaim manager is responsible to maintain the global
shared reservation (receiving and re-distribution) of the memory budget for all
regulators in the system[23].

Figure 2.21: MemGuard system architecture. [23]
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Chapter 3
Methodology

In this section, we present the used synchronization mechanisms and benchmarks.
We ran all experiments on the Jetson TX2 in NV Power Mode MAXN and with all
frequencies configured to the maximum values by running jetsonclock.sh1 in order
to get reproducible results. The TX2 was flashed with the Jetpack versions 3.1
(CUDA-8) and 3.3 (CUDA-9). First, we performed different artificial experiments
based on sequential and random walks to analyze the caches on the GPU and
their behaviour. We ran the walks in different kernel and thread configurations to
characterize the interference on memory accesses. Later, we evaluated the possible
synchronization mechanisms to schedule the PREM phases on the GPU, and then
we measured the kernel to kernel interference based on a 2D Convolution example.
To reduce the interference and therefore the induced execution jitter, we tiled the
2D Convolution into the PREM phases and scheduled the single tiles with the
globaltimer available on both SMs. Table 3.1 gives a short overview of selected
parameters describing the target platform.

Parameter Value

OS Ubuntu 16.04
Jetpack 3.1 and 3.3
Main memory 8 GB
CPU NVIDIA Denver2 (dual-core)

ARM Cortex-A57 (quad-core)
GPU Pascal (2 SMs with 128 cores)

Table 3.1: Technical specification of the TX2

3.1 Platform characterization

In this section, we describe the used experimental setup to evaluate the cache sizes
and the contention between the running threads on the TX2. All the experiments
are based on random and sequential walks performing read-only accesses on a

1Script provided by NVIDIA to configure board clocks
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3. Methodology........................................
shared array. During the walks, each thread records the average element access
time. For these experiments, we evaluated the change of the average access time
in function of the used dataset size, the number of congruently running threads
and kernels, and induced interference from the CPUs.

3.1.1 SASS

Independent of the used time source to measure the average element access time,
it is crucial to know how the instrumented code segment executes and that it
includes the desired instructions. To allow the extensive parallelize on the GPU,
NVIDIA had to relax the rules for data coherence and dependencies to allow a
more radical reordering of instructions. This can lead to the problem that code
segments we would like to measure can be moved out of the instrumented code
region. To ensure that the measurement is performed correctly, one has to inspect
the assembly output of the NVCC.

To compile a CUDA program with NVCC, the programmer has to specify the
real and virtual target architecture. The virtual architecture (ex. compute_62)
instructs NVCC to generate the Parallel Thread Execution (PTX) Assembly for
this architecture. The PTX assembly can be seen as an intermediate, assembly-
like representation of the CUDA kernels and is not heavily reordered yet. The
compiler optimizes and assembles the PTX code for the target architecture if
the programmer passes the real architecture parameter (ex. sm_62). In this step,
heavy reordering and loop unrolling take place to optimize the executable for
the target architecture. These optimizations are performed in different ways
and with different results from CUDA version to CUDA version. Therefore it is
important to inspect the resulting binary. NVIDIA provides the useful program
cuobjdump -sass prog which shows the passed binary content in the form of a
Streaming ASSembly (SASS) output. SASS is a human-readable output which
allows the programmer to understand the order of the issued instructions.

To visualize to reordering problem we have a look at the simple kernel code
shown in listing 3.1. At the beginning of the kernel, the current cycle counter
value is read and stored into the variable temp1. Then a for loop is executed to fill
in the data_clock array. After this for loop, the cycle counter is reread and stored
in variable temp2. In the end, the two retrieved values are subtracted to get the
total amount of cycles consumed by the for loop and is stored in global memory.

We compile this kernel now for the architecture of the TX2. Once by use of
CUDA 8 (Listing 3.2) and once with CUDA 9 (Listing 3.3). On first sight, the
shown SASS output seems to be similar between the two versions. For sure we
have the same amount of instructions, but if we have a closer look, we see that
the reordering took place differently. For the instructions filling the array in the
for loop, this is not a problem, since we still have the same result. However, the
problem lies with the retrieval of the cycle counts performed with the CS2R Rx,
SR_CLOCKLO calls. In the example compiled with CUDA-8 we can see that the
compiler reordered the code heavily and placed the two SR_CLOCKLO calls to the
beginning of the kernel. This leads to the problem that the consumed cycles
by the for loop are not recorded at all. With CUDA-9 on the other hand, the
SR_CLOCKLO have not been reordered and the measurement takes place correctly.
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Listing 3.1: Simple kernel for SASS generation

# define DSIZE 4
__global__ void kernel(unsigned int*data_clock){

unsigned int temp1, temp2;
temp1 = clock();
for ( int i = 0; i< DSIZE; i++){

data_clock[i] = i;
}
temp2 = clock();
data_clock[0] = temp2 - temp1;

}

This example shows that it is essential to inspect the instrumented kernels to
ensure that we measure the desired pieces of code. To have the same result with
both CUDA versions in this example. It is sufficient to pass DSIZE as a kernel
parameter so the for loop cannot be unrolled that extremely by the compiler.

Listing 3.2: CUDA-8 SASS generation

/*0008*/ MOV R1, c[0x0][0x20];
/*0010*/ MOV R0, c[0x0][0x140];
/*0018*/ CS2R R5, SR_CLOCKLO;

/*0028*/ IADD32I R2.CC, R0, 0x4;
/*0030*/ CS2R R0, SR_CLOCKLO;
/*0038*/ MOV32I R4, 0x1;

/*0048*/ MOV32I R7, 0x2;
/*0050*/ IADD.X R3, RZ, \

c[0x0][0x144];
/*0058*/ { IADD R0, -R0, R5;
/*0068*/ STG.E [R2], R4; }

/*0070*/ { MOV32I R5, 0x3;
/*0078*/ STG.E [R2+-0x4], RZ; }

/*0088*/ STG.E [R2+0x8], R5;
/*0090*/ STG.E [R2+0x4], R7;
/*0098*/ STG.E [R2+-0x4], R0;

/*00a8*/ EXIT;
/*00b0*/ BRA 0xb0;
/*00b8*/ NOP;

Listing 3.3: CUDA-9 SASS generation

/*0008*/ MOV R1, c[0x0][0x20];
/*0010*/ CS2R R0, SR_CLOCKLO;
/*0018*/ MOV R2, c[0x0][0x140];

/*0028*/ IADD32I R2.CC, R2, 0x4;
/*0030*/ MOV32I R4, 0x1;
/*0038*/ MOV32I R5, 0x3;

/*0048*/ MOV32I R7, 0x2;
/*0050*/ IADD.X R3, RZ, \

c[0x0][0x144];
/*0058*/ STG.E [R2], R4;

/*0068*/ STG.E [R2+0x8], R5;
/*0070*/ STG.E [R2+0x4], R7;
/*0078*/ STG.E [R2+-0x4], RZ;

/*0088*/ CS2R R5, SR_CLOCKLO;
/*0090*/ IADD R0, -R0, R5;
/*0098*/ STG.E [R2+-0x4], R0;

/*00a8*/ NOP;
/*00b0*/ EXIT;
/*00b8*/ BRA 0xb8;
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3. Methodology........................................
3.1.2 Measurement overhead

To retrieve the time a program spends in a kernel CUDA offers three time sources:
clock(), clock64() and the globaltimer. To see how much overhead is induced
by the single measurement methods, we run a simple experiment that calls
each time source two times and measures the time between the two subsequent
calls. Depending on the used measurement method in the following experiments,
we subtract this measurement overhead from the results. Table 3.2 shows the
measured overhead. For the two clock sources, we did not measure the time of the
call with the globaltimer. Therefore no information regarding the call duration in
nanoseconds is available. The difference in nanoseconds between two subsequent
calls to read the globaltimer ranges between 0 and 128 ns. This is due to the
resolution of the globaltimer and exhibits the limitations that the globaltimer can
only be used for bigger code segments.

Time source Overhead in Cycles Overhead [ns]

clock() 6 -
clock64() 55 -
globaltimer - 0-128

Table 3.2: Measurement overhead

3.1.3 Cache analysis

To analyze the available caches and their size on the TX2, we launched a kernel
to perform a random, respectively a sequential, walk on differently sized datasets.
We launched the kernels with one CUDA-block consisting of one thread to ensure
that no competition on memory occurs during the walk. Listing 3.4 shows how the
kernel performs the walk. We used the clock64() function to retrieve the cycle
count to avoid overflows of the 32bit cycle counter in the case of bigger datasets.
For the two walks, we allocate an integer (4bytes) array of the desired length and
fill each element with its index of the next element to create a closed loop. For
the random walk, this linked list is shuffled to create one closed random loop.

By default, NVCC compiles the executable to cache global loads only in the
L2 cache. This is useful since the L1 cache is used as fast storage for local kernel
data if register spilling happens. If global loads would be additionally cached in
the L1 cache, this could lead to more evictions for local data and slow down the
execution. If desired, the programmer can configure NVCC to use L1 cache for
global loads via passing the -dlcm=ca parameter to the compilation step.

In the Pascal GPU architecture shared memory and L1 cache do not share the
same physical memory. To ensure that this is true, we run parallel (launched in
different streams) to the kernel performing the walks dummy kernels spinning on
the globaltimer for the duration of the walk and occupying the whole 64kBytes of
shared memory of the two SMs. If shared memory and the L1 cache shared the
physical memory, this would influence the element access times.
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We perform this experiment for dataset sizes starting at 1kByte up to 1.5Mbytes
in three configurations: i) Default settings during the compilations, ii) Enable L1
cache for global loads and iii) Enable L1 cache for global loads and occupy shared
memory by kernels running in parallel. We repeated the measurement for each
dataset size 100 times and then took the average element access times from those
100 runs.

Listing 3.4: Walk kernel

time_start = clock64();
for(int j = 0; j < params.buffer_length; j++){

current = params.targetBuffer[current];
sum += current;

}
time_end = clock64();
time_acc = (clock_t)(time_end - time_start);
// prevent optimization
*params.target_realSum = sum;

// Write element access time with measurement overhead
params.target_times[i] = (time_acc/params.buffer_length)-oh;

3.1.4 Interference between threads

To investigate the contention between multiple threads in a CUDA-block, we
launched kernels to perform the random and sequential walks on a fix sized dataset.
The changing parameter between the walks was the number of threads performing
the walk in parallel. Starting from on thread and going up to 1024 (max. number
of threads in a CUDA-block) threads performing the walk in parallel. We repeated
this experiment for different dataset sizes: 1, 2, 3, 12, 16, 64, 128, and 256KBytes.
Since the executable is compiled with the default NVCC settings, all datasets
should easily fit into the GPU L2 cache.

The linking of the walks took place in the same way as described in section 3.1.3
Cache analysis. All threads performing the walk share the same array to iterate
over the elements. However, each thread starts on a different element specified with
its thread id (See Figure 3.1). If more threads then elements available participate
in the experiment some threads start at the same index — this way each thread
has to load its own element for each access.

Since the datasets used in this experiment are smaller than for the single thread
walks, it is sufficient to use the clock() function without experiencing any cycle
counter overflows. This provides the advantage that the measurement adds less
overhead compared to the method using clock64().

We repeated each measurement for ten times, and then we collected the average,
minimum, and maximum element access times from all access times measured by
the single threads.
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Figure 3.1: Starting elements of the participating threads to perform the walks.

3.1.5 Interference between kernels

Contention on the GPU happens not only inside a running kernel but also if
multiple kernels are launched in parallel from different streams. It is desirable
for the programmers to launch different kernels at the same time to increase the
utilization of the GPU since this allows to use as much of the available resources
as possible. However, since the running kernels have to access main memory, share
the L2 GPU cache and other resources, this can lead to heavy contention.

We tried to characterize this competition on shared resources based on our
random and sequential walk experiments. We fix the experiment parameters
dataset size and number of threads per kernel for each experiment and express the
average, minimum and maximum element access times of the threads collected in
all running kernels in the function of the number of kernels executing the walks in
parallel.

In this setup, each running kernel holds its copy of the dataset, and the threads
inside running kernels always access the same element. That way, we can measure
the overhead introduced by the interference between kernels and can reduce the
interference between the threads running inside a kernel.

We repeated the experiment for the datasets sizes of 128kBytes, 256kBytes,
and 512 kBytes to fill the L2 GPU cache with 1, 2, and four kernels running in
parallel. For each dataset size, the kernels have been launched in configurations
using 1, 32 or 128 threads.

As in the previous experiments, each participating thread was recording its
average element access time for each repetition (we performed ten repetitions
per setup). We took then the average, minimum, and maximum average element
access time from the collected times to print them in the function of the number
of participating kernels.

3.1.6 Interference CPU to GPU

Since the CPU clusters and the GPU share the main memory on the TX2,
contention in memory accesses may happen. To see how this contention takes
place on the GPU, we repeated the experiments described in the chapters 3.1.3
Cache analysis and 3.1.5 Interference between kernels with additional memory
interference originating from the CPU.
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The interference induced by the CPUs is created by the code segment shown in
Listing 3.5. The CPU walks through an array and read and writes the elements.
Before the experiment starts, this array is linked either sequentially or randomly,
generating a closed loop. We have chosen the element size to be the size of a
cache line (64 Bytes) - for each element, a new cache line needs to be fetched -
and the dataset sizes to be 8Mbytes (CPU L2 cache is 2MB) to induce as much
load to the memory controller as possible. We ran this interference on all CPU
cores during the experiments running on the GPU.

In a preliminary experiment, we evaluated the impact of the CPU interference
shortly by using the tegrastats tool provided by NVIDIA. We found that the
sequential interference loaded the memory controller up to 70% and the random
interference only up to 17%. Therefore it can be expected that the sequential
interference has a more significant impact on the GPU execution.

Listing 3.5: CPU interference

while(*finishInference == 0){
for (unsigned int i = 0; i < ARRAY_SIZE; i++) {

sum += dst[current].index;
current = src[current].index;
dst[current].index += src[current].index;

}
}

3.2 Time-triggered GPU

In this section, we describe an approach to apply PREM to GPU kernels by
the use of tiling. First of all, we evaluate different synchronization mechanisms
which could be used to synchronize the PREM-phases. Then we evaluate the
Polybench kernels based on their sensitivity to memory interference, to find the
most appropriate kernel for the experiment. Eventually, we split the chosen 2D
Convolution kernel into tiles to allow the application of the PREM phases for the
tile processing.

3.2.1 Synchronization mechanism

A precondition for applying PREM to GPU workloads is the availability of
fast synchronization. In our previous work, locks in shared memory were used
to synchronize PREM phases on the CPU [1]. Shared memory offered a fast
communication channel since multiple CPU cores share the same cache and the
synchronization bypasses the main memory. On the TX2 GPU, a similar approach
would be to use host-pinned mapped memory, which ensures non-cached zero-copy
operation between CPU-GPU, to arbitrate main memory accesses [20].
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Additionally to the synchronization through memory, the GPU on the TX2 offers

a global nanoseconds timer called globaltimer. This timer runs synchronously on
both SMs and is accessible through a 64bit register read operation. If the synchro-
nization is based on this method, it will offer another advantage to synchronize
with the time sources available on the CPU.

To evaluate an appropriate synchronization mechanism, we assessed the synchro-
nization overhead between multiple concurrently running kernels using host-pinned
zero-copy memory. Further, we measured the timer granularity of the globaltimer
and checked that the globaltimer provides the same timestamps if read from
different blocks and kernels.

3.2.2 Convolution benchmark

Polybench-ACC [2] is a collection of computational kernels such as matrix mul-
tiplication, 2D or 3D convolution, or linear equation solver, used to show the
performance of software solutions such as compilers. Mentioned algorithms are
the core of many high-performance applications such as neural networks or image
processing. For our experimental part, we evaluated the sensitivity of all polybench
kernels to memory interference from CPU and selected 2D convolution as a good
candidate of a memory interference sensitive task. The compute complexity is
O(n2m2) and the memory complexity is O(n2 + m2) where n is the dimension of
square input and output arrays and m is the dimension of the square convolution
mask.

3.2.3 Reduction of intra-GPU interference

To find and address the causes of unpredictable execution on the GPU, we
performed several measurements with different kernel configurations. First, we
evaluated the kernel-to-kernel interference on the original 2D convolution kernel
from polybench-ACC. Then the implementation of the 2D Convolution was
changed to a tiled version. The tiling is done by splitting the input data into
multiple tiles which fit into the shared memory segment within a CUDA block.
The computation is then performed on tiles in shared memory, which are first
loaded from the global memory and at the end written back. This technique is
commonly used to coalescence memory accesses in global memory to speed up
the GPU execution [24, 25]. We take an advantage of this tiled implementation
since it naturally splits into three PREM-phases: prefetch, compute and writeback.
If prefetch and writeback phases are scheduled to have exclusive access to the
main memory the freedom from interference paradigm is satisfied as long shared
memory bank conflicts are avoided inside a CUDA-block.

3.2.4 Tiling

Figure 3.2 shows an example of how the 2D Convolution could be tiled to be
launched by a kernel using two CUDA-blocks. We split the given dataset into
multiple tiles fitting into the shared memory of the block. In the figure, we can
see the first two tiles marked with the red and the green squares. Block0 will
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process the red tile and Block1 the green one. We can further see that the two tiles
overlap in the middle. This is because the convolution mask has the dimension of
3 to 3 elements, and therefore, the border elements need to be considered. For
each tile, the block shifts the convolution mask (orange for Block0 and bright
green for Block1) first along the X-axis and performs the convolution until it
reaches the right end of the tile. Then the mask is applied on the third line of the
tile. After the block has processed the whole tile, the next tile, starting two rows
below, is loaded into the blocks shared memory to be processed. This procedure is
repeated by the running blocks until all tiles have been processed. As we can see,
the method of tiling the dataset naturally splits into the three phases prefetch
(load data into shared memory), compute (process the data in shared memory)
and writeback (write back the results from shared memory to the output array)
for each tile.
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Figure 3.2: Tiling of the 2D Convolution

3.2.5 Tile scheduling

We performed several experiments to evaluate the interference between parallel
running 2D Convolution Kernels. To evaluate how the interference and the
resulting execution time jitter can be reduced, we implemented a simple scheduling
mechanism, based on the globaltimer, to schedule either the whole tile processing
or of the blocks or the individual phases of a tile. Figures 3.3, 3.4, 3.5 and 3.6
visualize how the scheduling takes place for one tile for the example of two kernels,
consisting of two CUDA blocks, running in parallel. This step is repeated for the
following tiles. We implemented four ways to schedule the tiles:
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i) Whole tile scheduling kernel-wise – Figure 3.3 shows the concept of

scheduling the whole tiles (Prefetch, Compute, and Writeback phases are rigidly
connected). The term kernel-wise scheduling indicates that the blocks inside one
CUDA kernel start their tile processing at the same time instance. For each tile,
the scheduling start point is marked with the point SPx. The scheduling offset
PFoff is fixed by the programmer and specifies how much the tile processing
of the two kernels is shifted. In case more then one kernel is used, the offset is
calculated with the formula PFoffkernelx = Kernelid ∗ PFoff . If a block has
finished its current tile, it waits until the hyper period Thyper is expired and then
adds the offset PFoffkernelx to the next starting point SPx+1. We define the
hyper period with Thyper = nofkernels ∗ PFoff with the minimum length of one
tile period. Finally, we can define the start time of the tile processing with:

Tilestartkernelx
= Startkernelx + WU + (n− 1) ∗ Thyper + PFoffkernelx

, where n
is the current tile id, and WU is the warm-up period of the first tile to fill the
instruction cache.

ii) Whole tile scheduling block-wise – The block-wise scheduling takes
place the same way as the kernel-wise scheduling, with the difference, that
the tile-processing of all participating blocks is shifted. Therefore we redefine
PFoffkernelx = ((Kernelid ∗ nofblockskernelx

) + bockid) ∗ PFoff . Figure 3.4 shows
the block-wise shifting. We did not show the warm-up phase due to simplification
reasons. This scheduling approach offers the possibility to additionally reduce the
interference between the blocks running inside a single kernel.

iii) Phase scheduling kernel-wise – To be able to evaluate the interference
between the PREM phases, we implemented another mechanism to shift the
individual phases. In this setup, the prefetch and compute phases are scheduled
together, and the writeback phase can be scheduled alone. Figure 3.5 shows
the example of kernel-wise scheduling. Again, for the sake of simplification, we
removed the warm-up period in this figure. We can see, that the scheduling
reference point for the prefetch and compute phases is called SPx as in the
previous example. Additionally, we can see the schedule start point for the
writeback phases called WBSx. The two shifting offsets for the prefetch, and
writeback phases are called PFoff and WBoff . The two offsets are specified
by the programmer and WBoff can be at shortest TW B/(nofkernels − 1). The
constants TP F , TC and TW B represent the measured duration of the PREM phases.
TW Boff is defined as TW Boff = (nofkernels − 1) ∗ PFoff + TP F . Therefore we
define Thyper = TW Boff + (nofkernels − 1) ∗WBoff + TW B. With this definition,
we allow the writeback phase to be scheduled during another compute phase. Now
we can define the Prefetch phase start point of the current tile as:

PFstartkerx
= Startkerx + WU + (n− 1) ∗ Thyper + kerid ∗ PFoff

and the start point of the writeback phase as:
WBstartkerx

= Startkerx + WU + (n − 1) ∗ Thyper + TW Boff + kerid ∗WBoff ,
where n is the current tile id, and WU is the warm-up period of the first tile to
fill the instruction cache.

iv) Phase scheduling block-wise – The block-wise phase scheduling is per-
formed the same way as the kernel-wise scheduling, but the phase offsets are
calculated per block in the system. This leads to the start points:
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PFstartkerx
= Startkerx + WU + (n − 1) ∗ Thyper + ((Kerid ∗ nofblockskerx

) +
bockid) ∗ PFoff

and the start point of the writeback phase as:
WBstartkerx

= Startkerx+WU+(n−1)∗Thyper+TW Boff +((Kerid∗nofblockskerx
)+

bockid) ∗WBoff , where n is the current tile id, and WU is the warm-up period
of the first tile to fill the instruction cache.
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3.3 KCF-Tracker interference analysis

To apply the Premization to a less artificial example than the 2D Convolution
benchmark, we performed some initial measurements on the KCF tracker1 im-
plemented by Vít Karafiát and Michal Sojka [4] to see how the launched kernels,
computing the complex matrix operations, interfere with each other. To measure
this interference, we run the kernels in standalone and with one to three interfering
kernels in parallel. To ensure that a single kernel does not consume the whole
GPU thread resources (2048 threads per SM) we wanted to launch each kernel
with two CUDA-blocks à 512 threads. With this setup, we ensure that four kernels
run in parallel: 512 ∗ 2 ∗ 4 = 4096 Which equals the number of threads that can
be assigned to both SMs at a time instance. Therefore, we had to change the
KCF-tracker kernels to use grid-stride loops, which allows launching the kernels
with fewer threads than elements.

We test the interference between the sqrt-norm, sqrt-magnitude, conjugate,
sum-channels, matrix multiplication, matrix division, matrix addition, matrix
multiplication with a constant, matrix addition with a constant and matrix
element multiplication kernels. Each of the listed kernels is run in parallel of
0 to 3 instances of the other kernels. The tested kernel is instrumented to
record its block start and end times to retrieve the total kernel execution time:
Tkernel = BlockmaxEndT ime − BlockminStartT ime. Each measurement is repeated
1000 times, and the average execution time, the minimum and the maximum
execution times are collected and stored. With the collected data we created a
heatmap to show the influence between the kernels.

We did not extend the execution time of interfering kernels if the tested kernel
has a longer execution time to be as close as possible to the execution times inside
the tracker.

1https://github.com/CTU-IIG/kcf
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Chapter 4
Experimental evaluation

In this section, we find the results and their discussion from the described ex-
periments. All source code we used for the experiments can be found in the git
repository: https://github.com/CTU-IIG/tt-gpu

4.1 Kernel interference

We evaluated the cache structure and the interference between multiple GPU
kernels running in parallel based on different runs of random and sequential walks.
In the first experiments, we measured the average element access times of the
kernels launched with one CUDA-Block and one thread performing the walks on
differently sized datasets.

In the later experiments, we evaluated how the average access time is influenced
if multiple threads and multiple kernels perform these walks at the same time. In
the end, we assessed the impact of memory interference induced from the CPU
clusters on the walks.

4.1.1 Cache analysis

As we described this experiment in section 3.1.3, we measure the average element
access time based on random and sequential walks on differently sized datasets.
Figures 4.1a and 4.1b show the results for the different cache configurations if a
random and sequential walk is performed. For the experiment enabling the L1
cache for global loads, the cache exhibits a size of 12kBytes. Moreover, for the
experiment occupying the shared memory, we can see, that this does not influence
the average element access time for the L1 cache. This indicates that the shared
memory and the L1 cache indeed do not share the physical memory location.

Further, the L2 cache exhibits a size of 512kBytes which is also confirmed by
the technical specifications. We can see this by the increase of the element access
times for the datasets bigger than 512kBytes.

Even though the measured average element access times are relatively big, this
appears to be reasonable, since in the GPU not the single memory accesses are
optimized to have short latency, but if a latency appears, it is hidden by other
threads performing work in parallel.
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Figure 4.1: Revealing Cache hierarchy based on random and sequential walks per-
formed with one thread each.

4.1.2 Walks - Multiple threads

This experiment evaluates the contention between multiple threads within a
CUDA-block. An integer (4 bytes) array is linked that each element contains the
index of the next element to access for the sequential walks. For the random walks,
we performed the randomization that only one big closed loop is created to iterate
through the whole range. Each thread inside a kernel traverses this array during
one run and collects its average element access time. We repeated this experiment
for different dataset sizes and a changing number of threads. Each thread in the
block starts at a different element of the array and performs the walk through
the whole range. If more threads then elements are available, multiple threads
may start at the same element. From the average access times of all participating
threads, we took the average, minimum, and maximum number of cycles to access
one element. Figure 4.2b shows the result of the different runs of the random
walks on different dataset sizes. The X-axis represents the number of threads
performing one walk in parallel, whereas the Y-axis visualizes the average element
access time. One can see, how the access time increases for all datasets linearly up
to the point where 32 threads are used. Between 32 and 64 threads the average
access time is reduced again. We expect this to be due to the warp-scheduling
in the GPU since one fully occupied warp with 32 threads and an only partly
occupied warp with one to 31 threads are running in parallel. The threads in the
partly occupied warp can finish their walk significantly earlier, which leads to a
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decrease in the average access time of one element. Between 64 and 256 threads
the slow-down remains mostly stable. After this point, the average access time
starts to increase linearly again.

We expect this slow-down only to be partly related to the contention on caches
since all the used dataset sizes should fit into L2 cache. If the L2 GPU cache
uses a random replacement policy, the threads might evict cache lines from each
other even if the used dataset should fit into L2 cache. Further, a regular pattern
appears for the minimum and maximum access times per thread if more than
256 threads are performing the walk in parallel. This pattern exhibits a more
significant jitter for all odd 32 number of threads whereas the jitter is almost
zero for even 32 number of threads. Therefore this overhead and jitter might
additionally be influenced by the warp-scheduling. This measurement indicates
that it is desirable to use a multiple of 64 threads in a block to reduce execution
jitter between the single threads and therefore reduce the maximum execution
time of the running block.

Figure 4.2a on the other hand, does not show such a pattern on the average
element access time for the sequential walks. We can see, that the contention
between the running threads remains relatively stable for all dataset sizes. This
is expected since the GPU architecture is designed to support such streaming
memory accesses by the participating threads.

4.1.3 Walks - Multiple kernel

Concurrent execution of multiple kernels is an important feature to utilize the
available resources efficiently. Inevitable property of simultaneously executed
kernels is, that contention in memory accesses can occur. To evaluate the effect of
this contention, we ran multiple kernels performing random and sequential walks
in parallel.

The maximum number of kernels launched in parallel is 16 since we observed
with nvprof that if more kernels from different streams are launched, they are
not executed in parallel. Each kernel consisted of one block with 1, 32, and 128
threads, and the walks were performed on datasets with the size of 128kBytes,
256kByte, and 512kByte and holds its copy of the linked dataset. All threads
start their walks on the same element to reduce contention inside a kernel. The
walk is performed in the same way as described in experiment 3.1.5 Interference
between kernels. In the case of the sequential walk, the threads iterate through
the array element by element. For each thread in the kernels, the average number
of cycles to access an element is recorded. From all the measured access times,
the average, minimum, and maximum access time is calculated and presented in
Figures 4.3a and 4.3b.

In the case of the random walk, the execution on the 512 kB dataset experiences
a slowdown already with the launch of the second kernel. Since the GPU L2 cache
on the TX2 has a size of 512 kBytes, it is not possible to fit the datasets of both
kernels into this cache. Therefore the kernels evict cache lines from each other.
The same happens for the experiments using the 256 kByte dataset for 3 or more
kernels and the 128 kByte dataset for 5 or more kernels running in parallel.
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Figure 4.2: Walks performed by multiple threads in one block on datasets with
different sizes. Each thread accesses a different element on its start and records its
average element access time. The transparent background shows the minimum and
maximum times a thread took to finish its walk.

The sequential walk is shown in Figure 4.3b and experiences the slow-down at
the same number of kernels running in parallel. Compared to the random walk
experiment the average element access times are much higher (ca. 580 cycles
compared to 350 cycles for the random walk) as soon as the datasets of the kernels
do not fit into L2 cache anymore. This is an indicator that sequential memory
accesses exhibit a higher competition on caches between multiple kernels. It the
kernels are launched with only one thread each performing the sequential walk,
this contention remains quite low.
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Figure 4.3: Walks performed by up to 16 kernels in parallel. The kernels consist of 1,
32 and 128 threads and perform the walks on the datasets with the sizes 128, 256 and
512 kBytes. The transparent background shows the minimum and maximum times a
thread took to finish its walk..

4.1.4 CPU interference

Walks multiple kernels

We repeated the experiments running the sequential walks from different kernels
with additional competition coming from the CPU. Since the GPU and CPU on
the TX2 do not share a cache but main memory, this competition happens in
the memory controller. We performed two experiments with all six cores on the
CPU performing either random or sequential memory read and writes during a
sequential walk. Figures 4.4a and 4.4b present the results of these two experiments.
If we compare the two figures to Figure 4.3b, we can see, that the random CPU
interference adds a much smaller overhead compared to the sequential CPU
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4. Experimental evaluation ...................................
interference. This is also highlighted if tegrastat 1 is run during the experiments
which showed that the random interference utilized the memory-controller to
around 17% whereas the sequential interference reached a utilization up to 70%.
These experiments provide an insight into the competition on main memory and
indicate that sequential memory accesses produce a bigger competition.
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Figure 4.4: The walks are performed by multiple kernels in parallel. During their
execution, the CPU introduced sequential and random memory interference to add
additional competition to the main memory accesses.

Walks single thread

To investigate in more detail the influence of the CPU interference to the average
element access time, we repeated the Cache analysis experiments shown in section
4.1.1 with additional interference induced from the CPU. To extend this experiment,

1System monitoring tool provided by NVIDIA.
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we performed the walks also on host pinned Zerocopy memory. Further, we
compiled the executable with default settings, which means that global loads are
only served through the L2 cache.

We can see in Figures 4.5a and 4.5b that the CPU interference only influences
the average access times if the datasets do not fit into the L2 cache of the GPU.
This makes sense since the CPU and the GPU only share the main memory, and
therefore the contention happens on the memory bus. This effect is especially
more dominant for the random walks since the SM needs to fetch a new cache
line for each random element access and can profit in the case of the sequential
walk from elements already staying in the cache.

We can see that the Zerocopy memory version exhibits much slower element
access times even if no interference is present. We can see in the case of the random
walk slightly increasing access times for datasets bigger than 512kBytes. But not
as much as in the case of the traditional memory model. This indicates that the
Zerocopy memory is not or only party cached on the GPU. This is underlined
with the observation in the case of the sequential walk, where the access times
remain constant for all dataset sizes.

If we look at the influence of the CPU interference in case of Zerocopy memory,
we can see that the interference induced from the PCU influences the average
element access times for all dataset sizes which supports the assumption, that
Zerocopy memory is not cached at all.
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Figure 4.5: Walks performed with one thread each. L2 cache only for global load,
traditional and Zerocopy memory is evaluated. We repeated those experiments with
additional memory interference from the CPU side.
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4.2 Experiments for time-triggered GPU execution

In the following experiments, we evaluate the contention on the GPU based on the
2D Convolution kernel of Polybench, evaluated an appropriate synchronization
mechanism for the PREM phases and performed some first scheduling experiments
with the tiled version of the 2D Convolution. This part of the experiments was
part of the accepted paper Experiments for Predictable Execution of GPU Kernels
for the OSPERT19 conference.

4.2.1 Zero-copy memory synchronization evaluation

We evaluated synchronization based on locks in zero-copy memory with two
experiments. First, we measured the ping-pong round-trip time between two
GPU kernels and later the experiment was repeated to collect the round-trip
times between CPU and GPU since the synchronization mechanism should offer a
possibility to be used for CPU to GPU synchronization. Both experiments have
been repeated for 1000 times. We had to add the membar instruction to ensure
that one GPU kernel sees the updates from the other GPU kernels.

Between GPU kernels the average round-trip time was 2.065 µs (min: 1.92
µs, max: 2.24 µs) and the CPU to GPU round trip time was in average 1.94 µs
(min: 1.47 µs max: 2.56 µs). As mentioned in 3.2.1, these times are sufficient for
synchronizing PREM phases on the CPU, but since PREM phases on the GPU
are expected to be in the range of 1 to 4 µs, the overhead of this synchronization
mechanism is deemed too high.

4.2.2 GPU timer granularity

We evaluated the globaltimer as a synchronization mechanism between GPU tasks.
According to the documentation [26], the globaltimer should have a resolution
in the nanoseconds level. The main criteria for the globaltimer to be used as a
synchronization mechanism are its resolution and that it is running synchronously
on both streaming multiprocessors. To evaluate these properties, we ran a kernel
from Listing 4.1 with four blocks of one thread each. Each block retrieves
the globaltimer timestamps in a for loop, storing them into its shared memory
segment. The shared memory was selected for two reasons: 1) its access time is
short enough to not influence timestamp precision much and 2) allocating shared
memory segments to occupy half of the available shared memory on an SM ensures
that two blocks execute on one SM and two on the other.

Figure 4.6 shows a zoom into the first few iterations of collected timestamps
collected by the first block of the launched kernel. Although not shown in the
figure, we observed that the other blocks running during the kernel execution on
both SMs retrieved the same timestamps synchronously. Running the experiment
in the default settings gives disappointing results. The measured resolution was
only 1 µs. The “Default” points on the left side show the timestamps collected
by block 0. The right side of the figure shows the histogram of the differences
between two subsequent timestamps. For the “Default” setup, it is clearly seen
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Listing 4.1: Simplified kernel to retrieve global timer jitter

__shared__ uint64_t times[NOF_STAMPS];
for (int i = 0; i < NOF_STAMPS; i++)

asm volatile("mov.u64 %0, %%globaltimer;" \
: "=l"(times[i]));
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Figure 4.6: Timestamps and step sizes of the globaltimer after reboot and after one
run of nvprof for one block. The retrieved timestamps of the other blocks exhibited
the same resolution.

that the resolution of the globaltimer is around 1 µs. By coincidence, we found
that running nvprof1 once on an arbitrary kernel reduces the measured resolution
of the globaltimer to 160 ns, as shown with “After Nvprof” points in Fig. 4.6.
The use of nvprof seems to reconfigure the globaltimer on the GPU without
reconfiguring it back at the end. Although this behavior is not documented and
not really intuitive, it helped us to increase the resolution of the globaltimer.

It is important to highlight, that nvprof needs to run only once on an arbitrary
kernel. After this run, the further kernels can run without the instrumentation
with nvprof to still profit from the higher resolution.

4.2.3 Time triggered execution of tiled 2D Convolution

To see how the execution jitter occurs and if it can be reduced if multiple kernels
(4 in our experiments) run in parallel, we compare the original 2D Convolution
polybench benchmark (later denoted as legacy implementation) and our tiled
version of it. Each kernel was run 1000 times then the average, minimum and
maximum execution times have been taken. Both implementations apply a 3x3
convolution mask on a dataset consisting of 1026x1022 float elements. The kernels
were launched with a configuration of two blocks with 512 threads. The tiled
implementation tiles the input data into 512 tiles of 4x512 elements. Each tile is
processed in the following phases: first, the tile is prefetched from global memory
into the CUDA shared memory segment, then the computation takes place, and in

1 nvprof is the profiling tool offered by NVIDIA to analyze traces and timings of called CUDA
API and launched kernels
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Figure 4.7: This figure shows a zoom into the execution of the tiled kernel. The
total execution time is 2.8ms. Whole tiles scheduled against each other with an 1.4
µs offset on both streaming multiprocessors. The blocks within a kernel are scheduled
at the same time instance. Blue, orange and green colors represent prefetch, compute
and writeback phases and blocks with the same hatch correspond to the same kernel.
During the white phases the blocks are spinning on the globaltimer until they are
allowed to process the next tile.

the end, the resulting data is written back to global memory. This procedure is also
shown in listing 4.2. Since the streaming multiprocessor on the TX2 offers 64 kB of
shared memory, we dimensioned our kernel blocks to use 16 kB of shared memory
to allow the execution of 4 kernels in parallel. To investigate the possibility of
interference reduction, we use the globaltimer to synchronize the running blocks
and to control the start times of the tile processing. Figure 4.7 shows how the
tile processing start times are shifted with an offset of 1.4 µs against each other.
The two blocks inside a kernel start processing their current tiles always at the
same time, the white spaces between the tile processing phases represent the time
a block is spinning on the globaltimer until it is allowed to start with the next
prefetch phase.

The 2D convolution kernels were launched in the next scenarios: i) The original
(legacy) implementation with 1 kernel running on the GPU, ii) the legacy imple-
mentation with 4 kernels running in parallel, iii) the tiled version with 4 kernels
running in parallel but without synchronization and iv) the tiled version with the
tile processing shifted by different offsets (as in Fig. 4.7).

Figure 4.8 and Table 4.1 show the average execution time and execution jitter
of the scenarios. For the sake of simplicity, we show only the tile scheduling with
the offsets of 1.3 µs and 1.4 µs since at this point, the jitter starts to be reasonably
reduced. All kernels recorded their block start/end times using the globaltimer.
The difference between the latest block end time and the earliest start time is
taken as the time interval where all kernels finished their work, called scenario
execution time. The blue bars show the average scenario execution time. The
minimum and maximum scenario execution times are represented by the small
error bars on top of the blue bars. The red bars represent the min-max jitter
in percentage relative to the average scenario execution time. It can be seen
that the legacy implementation suffers from high contention in the four kernel
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Listing 4.2: Tile scheduling pseude code

static __global__ void kernelTiled(data)
{
// Allocate shared memory
__shared__ float A_SHM[PREM_SHM_SIZE];
__shared__ float B_SHM[PREM_SHM_SIZE];

// Spin until PREM schedule start time
spinUntil(start_time);
__syncthreads();

for tile_id=block_index; \
tile_id < number_of_tiles; \
tile_id + number_of_blocks:

syncPrefetch(start_time,\
tile_id,\
kernel_id,\
TILE_OFFSET);

__syncthreads();

/* ---------------------------------- */
// Prefetch data
// from global memory into A_SHM
/* ---------------------------------- */
__syncthreads();

/* ---------------------------------- */
// Compute on SHM
/* ---------------------------------- */
__syncthreads();

/* ---------------------------------- */
// Write back data
// from B_SHM to global memory
/* ---------------------------------- */

}
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Figure 4.8: Comparison of scenario execution time. Tiles are scheduled against each
other.

configuration. The Worst observed execution time (WOET) is still slightly shorter
than the WOET of the single kernel version executed four times in a row, but the
execution jitter is around 6.47% of the average execution time.

We can see that the tiled implementation with four kernels already performed
faster than the legacy implementation and its execution jitter is only 1.47%. The
tiling concentrates the accesses to the main memory of the kernels. Therefore,
the kernels do not have to access the main memory in all phases, which leads to
less contention and lower jitter. The scheduled tiled versions have a bit higher
average scenario execution times than the legacy four-kernel version, but with
the advantage of execution jitter reduced to 0.15% and 0.04% for the scheduling
offset of 1.3 µs and 1.4 µs respectively. Still, one could argue that the WOET of
the tiled version (2.42 ms) without scheduling is still shorter than the minimum
execution time of the scheduled version (2.87 ms). However, the version without
the scheduler offers no future possibilities to synchronize the GPU with the CPU,
and the whole execution on the GPU would need to be treated as a single memory
phase for CPU PREM scheduling.

To have a more elaborate overview of the influence of the tile scheduling offset
to the observed execution jitter, we refer to Figure 4.9. We can see with the blue
dots the average scenario execution time and with the red dots the corresponding
execution jitter. The dotted black line represents the average scenario execution
time of the baseline (for legacy kernels in parallel). As we can see, the scenario
execution time and execution jitter remain relatively stable at 2.5 ms respectively
1.4% until the tile offset exceeds 1.2 µs after this point the scenario execution
time increases and the execution jitter decreases. Based on this observation, we
classify the tile offsets of 1.3 µs and 1.4 µs as usable to reduce the execution jitter
while still having a usable scenario execution time.

4.2.4 Phase evaluation

As shown previously, execution jitter can be reduced if the start times of the tile
processing are shifted against each other. As a next step, we evaluate how the
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Figure 4.9: Evaluation to find an appropriate tile offset for the 2D Convolution. The
black line represents the baseline average execution time the four legacy kernels took
to complete.

Scenario Average [ms] Jitter [%]

Legacy, 1 kernel 0.657 1.84
Legacy, 4 kernels 2.675 6.47
Tiled, 4 kernels, no scheduler 2.397 1.47
Tiled, 4 kernels, 1300 ns offset 2.67 0.15
Tiled, 4 kernel, 1400 ns offset 2.874 0.04

Table 4.1: Average execution times and jitter corresponding to Figure 4.8

PREM phases influence each other if no schedule is used. Figure 4.10 shows on the
left the CDF plot of the measured single phase times of the tiled 2D convolution
benchmark launched in one kernel with one block. We chose this configuration to
ensure that no contention between the blocks inside the kernel occurs. The phase
durations are still the same since we did not change the tile size. All phases show
an outlier in the first iteration since the processing of the first tile suffers from
instruction cache misses. If this warm-up iteration is removed, the average phase
times are 1.781 µs, 0.506 µs and 0.421 µs for the prefetch, compute and writeback
phases.

In contrast to this isolated measurement, Figure 4.10 shows on the right the
CDF plot when the tiled version is launched with four kernels running in parallel.
Even if the warm-up iteration, in the beginning, is removed, the WOET times
are 3 to 6 times longer compared to the phase times without any interference. If
one takes the WOET times of the single phases (PF: 7.68 µs, C: 3.2 µs and WB:
2.88 µs), sums them up to a whole WOET tile and multiplies this WOET tile
with the total number of tiles (512), one would end up with WCET of around
(WOETP F + WOETC + WOETW B) ∗Ntiles = 7.045ms. This number represents
a very pessimistically estimated WCET, but we have to consider it since we have
no detailed model of the GPU.

To evaluate in more detail how the phases interfere, further experiments were
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Figure 4.10: CDF of phase execution times without a scheduler

performed. In these experiments, we measured the average phases times, which is
not directly linked to the total scenario execution time since multiple tiles, each
tile consists of the PREM phases, are processed during one kernel execution –
even if the measured jitter of the single phases is high, this can sum up to a lower
scenario execution jitter as shown in the previous experiments.

Figure 4.11 shows the result when the prefetch and compute phases are shifted
against each other. The writeback phase was scheduled later to not run concurrently
with the first two phases. Again, the blocks in one kernel start at the same time
instance to process their current tile. In Figure 4.11, the average compute time
bars are stacked on top of the average prefetch time bars. The bars on the right
represent the execution jitter of the two phases compared to the total average
execution time (PF + C). One can see that the average execution time and the
jitter are reduced the less the phases overlap. This effect is dominant in the prefetch
phases. An interesting fact is that the compute phases have the biggest jitter when
they overlap with other compute phases (no shift). This indicates some contention
on the shared memory or other resources in the streaming multiprocessor. It also
prevents the straightforward application of the PREM model, which assumes that
compute phases do not interfere.

Figure 4.12 shows the results of executing only the writeback phases shifted
against each other. Similarly to the prefetch phases, the less the writeback phases
overlap, the more the execution time is reduced. The execution jitter is reduced
after a shift of 400 ns.

In the experiments shown in Figures 4.11 and 4.12, the two blocks of each kernel
had the same start times to start processing their current tile. This lead to possible
contention between the two blocks. Therefore, we repeated the experiments with
all blocks having different start times to processes their tiles. This reduced the
contention even more with the result of a similar average phase time but reduced
phase execution jitter as shown in Figures 4.13 and 4.14. In the case of 3 µs
shift, the prefetch jitter was reduced by ≈ 17% and the compute phase jitter by
≈ 48%. Similarly, the writeback phase execution jitter was reduced by ≈ 25% for
the phase-shift offset of 1 µs. Even if the phase execution jitter is reduced, the
additional shift between two blocks in the same kernel introduces an extension of
the average total kernel execution time.

When we compare the above-described results with our previous application
of PREM on the ARM CPUs of the Jetson TX1 [1], the prefetch and writeback
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Figure 4.11: Only prefetch and compute phases are scheduled against each other
(X-axis shows shift offset). Writeback phases are moved away by the schedule and do
not influence the previous two phases. In this experiment the two blocks running in a
kernel are scheduled at the same time instance.
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Figure 4.12: Execution time and jitter of writeback phases scheduled against each
other (X-axis shows shift offset). prefetch and compute phases are scheduled away to
isolate the writeback phases

phases took around 100 and 400 µs respectively and compute phases up to 3 ms.
This allowed to schedule a sequence of memory phases in parallel with one or more
longer compute phases and the CPUs were efficiently utilized. On the GPU side,
the three phases have much shorter and differently distributed phase execution
times. Namely, the writeback phase has the shortest phase execution time followed
by the compute and the prefetch phases. Therefore, the approach used for CPU
PREM scheduling, is not generally applicable to the GPU. When combined with
the fact, that the execution time of compute phases is influenced by overlapping
with other compute and prefetch phases, it is clear that the PREM scheduling
rules need to be changed to be properly applicable to the GPU execution. The
experiment, where the whole tiles were scheduled against each other (Fig. 4.8),
showed that the jitter could already be significantly reduced without introducing
big increase of average execution time of all participating kernels. Therefore, a
solution to predictable execution times on the GPU requires a different (less strict)
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Figure 4.13: Only prefetch and compute phases are scheduled against each other
(X-axis shows shift offset). Writeback phases are moved away by the schedule and do
not influence the previous two phases. In this experiment the two blocks running in a
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Figure 4.14: Execution time and jitter of writeback phases scheduled against each
other (X-axis shows shift offset). prefetch and compute phases are scheduled away to
isolate the writeback phases

set of co-scheduling rules than on the CPU. It remains to be seen whether/how
such rules can be used as a proof for freedom from interference.

4.3 KCF-Tracker kernel interference

In Figures 4.15a and 4.15b we can find an overview of interference between the
kernels running in the KCF tracker. If we have a look at the first column of Figure
4.15a, we see the average execution times of the single kernels running in isolation.
As we can see, not all kernels have the same duration to finish their jobs.

This means, if we test the interference between the kernels, some of them
interfere only in the beginning of the execution of the kernel to be measured,
namely the sum_c, conjugate, sqrt_magnitude, add_constant, multiply_constant
and the matrix addition kernels introduce only a short interference period in the
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first part of the execution of the matrix multiplication, matrix division, matrix
element-wise multiplication, and sqrt_normalize. If those short kernels are more
memory intensive, this leads to a more significant execution jitter as we can
see in Figure 4.15b. Especially the conjugate, add_constant, sqrt_norm and
multiply_constant kernels introduce a high jitter in the other kernels. Further,
we can see that the element-wise multiplication and sqrt_norm kernels are the
most sensitive kernels regarding the execution jitter.

If we look at the average execution time, we see that the matrix multiplication,
matrix division, element-wise multiplication, and the sqrt_magnitude kernels
introduce the biggest extension in the execution time to the other kernels.

Those two heat maps give us a good first overview which kernels should be
avoided to run in parallel and where PREM might lead to a benefit.

4.4 Summary

Based on the performed experiments, we found that the TX2 offers an L2 cache
of size 512kBytes and an L1 cache with the size of 12kBytes. By default, the L2
cache is used for global loads, and the L1 cache is used to buffer spilled registers
of the kernels. However, NVCC offers an opt-in argument to enable even the L1
cache for global loads. Further, we found that the GPUs shared memory does not
share the physical memory with the L1 cache.

The experiments performing the random and sequential walks with different
thread and kernel configurations exhibited the interference between the threads and
showed that it is beneficial to access element inside a kernel in a sequential manner,
to reduce contention between threads. We also found that it is advantageous to
launch the kernels with a multiple of 64 threads to reduce execution jitter between
the threads. If multiple kernels are run in parallel, we see, that it is good to
ensure, that all data fits into the L2 cache, to reduce the contention between the
kernels running in parallel.

Further, we found a fast synchronization mechanism based on the globaltimer,
after it was reconfigured by one run of nvprof. This fast synchronization allowed
us to run the tiled 2D Convolution benchmark in time triggered manner, to
reduce the interference between the running kernels. This lead to the reduction
of the execution jitter from 6.47% for the four kernel legacy implementation to
0.15% for the tiled 2D Convolution with a tile offset of 1.3µs. To the end of
the time-triggered experiments, we presented the interference between the single
PREM phases and suggested that it is advantageous to loosen the PREM rules
slightly on the GPU since phases cannot be stacked the same way as in CPU
PREM. In the end, it is important to mention, that this evaluation was only
performed on the 2D Convolution benchmark yet and might change if further
benchmarks are taken into account. We performed the first step into this direction
with the evaluation of the kernels present in the KCF tracker.
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(b) : Heatmap KCF execution jitter

Figure 4.15: KCF heat maps
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Chapter 5
Conclusion

In this thesis, we evaluated mechanisms for the low-overhead application of
predictable execution model (PREM) to GPU kernels. First, we assessed the con-
tention between CUDA-kernels running in parallel based on parallel and sequential
walks. Then we compared two synchronization mechanisms for synchronization
of PREM phases. The memory-based synchronization achieves round-trip time
of around 2 µs, which would result in too high overhead for short PREM phases
on the GPU. Synchronization based on the globaltimer allows reaching lower
overhead, but only after running nvprof, which magically increases the global-
timer resolution to 160 ns. Furthermore, we have shown that by using a tiled
implementation of the 2D convolution kernel and tightly synchronizing execution
of their blocks by using the globaltimer, we can reduce the execution time jitter
from 6.47% to 0.15% while maintaining almost the same average execution time.
We have also shown that the duration and interference of the PREM phases are
different on the GPU compared to CPU. Namely, the phases are 100 to 1000 times
shorter on the GPU, and the execution time of compute phases can be influenced
by other overlapping PREM phases. This and the short compute phase times
make it impossible to execute a sequence of memory phases in parallel with a
compute phase. On the other hand, it looks to be already sufficient to allow partly
isolated execution on the tiles to provide a predictable execution jitter. Therefore,
a possibility might be to loosen the PREM rules between GPU kernels slightly to
provide only partly isolated memory access.

5.1 Future work

Since we performed the first experiments only on the 2D Convolution kernel, we
plan to analyze in more detail how various execution phases influence each other
additionally on other kernels. Especially we would like to evaluate the behaviour
of the PREM phases of more compute intensive kernels. Based on this, we want to
come up with scheduling rules whose application will lead to low execution time
jitter and acceptable performance at the same time. Later we plan to evaluate our
scheduling concept on a real application commonly used in autonomous driving.
Combining predictable GPU execution with PREM-based CPU execution is also
planned.
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Appendix A
Abbreviated terms

COTS Commercial Off-The-Shelve

CPU Central Processing Unit

DP Double-Precision

FFT Fast Fourier Transform

FPGAs Field-programmable gate arrays

FUs Functional Units

GEMM GEneralized Matrix Multiplication

GPU Graphics processing units

HW Hardware

KCF Kernelized Correlation Filter

LD/ST Load/Store

LKM Loadable Kernel Module

MPSoC Multi-Processor Systems-on-Chip

NVCC NVIDIA CUDA Compiler

PREM PRedictable Execution Model

PTX Parallel Thread Execution

SASS Streaming ASSembly

SFUs Special Function Units

SIMD Single Instruction Multiple Data

SM Streaming Multiprocessor

WCET Worst case execution time

WOET Worst observed execution time
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