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Abstrakt

Tato diplomová práce se zabývá problémem spojeńı techniky shape-from-shading
(tvar ze st́ınováńı) s multi-view stereo (MVS) rekonstrukćı při použit́ı Oren-Nayar
modelu odrazivosti pro hrubé př́ırodńı materiály. Byly navrženy dvě metody, které
mohou být použity k vylepšeńı multi-view stereo rekonstrukce použit́ım nové foto-
konzistenčńı metriky. Byly provedeny experimenty s obrázky z laboratoře i s obrázky
povrchu Marsu, které ukazuj́ı, že navržená plane-sweeping metoda využ́ıvaj́ıćı infor-
mace o st́ınováńı, která je vhodná pro spojeńı s algoritmem MVS, dokáže správně
určit polohu povrchu ve 3D scéně. Experimenty také ukázaly, že Oren-Nayar model
odrazivosti je velmi přesný pro některé reálné materiály a může být úspěšně použit v
plane-sweeping metodě k dosažeńı lepš́ıch výsledk̊u než při použit́ı Lambertovského
modelu odrazivosti. Pokud jsou vlastnosti materiálu a pozice a směry zdroje světla a
všech kamer dostatečně přesně známy, je možné dosáhnout přesnosti v řádu několika
centimetr̊u při určováńı polohy povrchu ve 3D scéně.

Abstract

The thesis deals with incorporating the shape-from-shading technique into the multi-
view stereo (MVS) reconstruction framework using the Oren-Nayar reflectance model
for rough natural materials. Two methods for enhancing the MVS algorithm with
new photo-consistency measure are proposed. Experiments with the laboratory im-
ages as well as with images of Mars’s surface were conducted, proving that the
proposed plane-sweeping method using shading information suitable for combining
with MVS can find the correct position of surface in 3D scene. The experiments also
showed, that the Oren-Nayar reflectance model is very accurate for some real-world
materials and it can be succesfuly used in the plane-sweeping method to accom-
plish better results than the Lambert’s reflectance model. With precisely estimated
material parameters and the light source and camera directions, it is possible to
achieve the accuracy of few centimeters in estimating the position of real surface in
the scene.
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Chapter 1

Introduction

For planetary rovers, the time needed for signal to reach a celestial body from the
Earth is considerably high to teleoperate the rover. Therefore it is highly desirable to
develop rover with high level of autonomy to lower the frequency of time consuming
communication. For any mobile autonomous robot it is essential that it is able to
create model of its unknown environment, process these data and make intelligent
decisions, e.g. to which position navigate itself. The navigation task is demanding
for accurate and high-quality environmental models, especially in expensive appli-
cations like planetary robotics. It is inacceptable for the rover to stuck on some
rock or hole. For this, 3D models are necessary, which can be obtained from visual
data. That’s one of reasons why the European Framework Programme 7 - Space
projects PRoVisG (Planetary Robotics Vision Ground Processing) [5] and PRo-
ViScout (Planetary Robotics Vision Scout) focuse on developing the comprehensive
framework for planetary visual processing for future planetary rover missions.

This thesis 1 concerns with the topic of incorporating shape-from-shading tech-
nique into stereo reconstruction technique. Both of them use different cues from the
visual data to obtain 3D shape of the scene and fusing them together, using strong
capabilities of each technique, promisses more accurate and robust results. Stereo
reconstruction is in most cases accurate method for reconstructing the 3D scene.
There are situations, though, where it could be inaccurate or erroneous, such as on
flat surfaces without (or with repetitive) texture, where the corresponding points
in the scene cannot be assigned correctly. It is also inaccurate for distant points, as
the angle between the left camera, scene point and the right camera is very small.
In those cases the cues which are using the shape-from-shading methods can be
helpful.

The work is organized in the following way. At first an overview of recent and
relevant works which concern with fusion of different techniques for obtaining a 3D
model of the scene is given in the Section 1.1 Related Works. Then in the Section 1.2
Background several basic concepts used later in the work are explained. Chapter 2

1This work was supported by grant for SpaceMaster students from the Directorate of Human Spaceflight,
ESA.
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Multi-View Stereo Reconstruction copes in more detail with current state-of-the art
multi-view stereo reconstruction algorithms and searches for the appropriate place
in this technique, where the use of the shading information can be incorporated.
Chapter 3 Reflectance Model introduces the Oren-Nayar reflectance model above
all. Its behavior is investigated in detail and demonstrated on numerous plots. In
Chapter 4 Method are proposed the main ideas how to use the shading information
towards developing better multi-view photo-consistency measure. Chapter 5 Exper-
iments describes verifying the Oren-Nayar reflectance model on several real-world
materials and tests of the proposed plane-sweeping method on images taken in the
lab and images of the Mars’s surface.

The main contribution of this work is verifying that some real world materials
obey Oren-Nayar reflectance model and that this fact can be used to develop new
photo-consistency measure which can be easily incorporated into existing stereo
reconstruction algorithm using the plane sweeping method.

1.1 Related Works

In computer vision there have been developed several techniques for obtaining 3D
shape of the scene from images in last 40 years. Shape from shading introduced by
Berthold K. Horn in 1975 [12], photometric stereo and binocular stereo are the basic
techniques for obtaining 3D information from vision data. Other used methods are
multi-view stereo [10] , shape-from-motion/silhouettes/texture. Each of them using
different clues to estimate the 3D shape of the scene. In recent works, researchers
are trying to combine those basic techniques to get use of each mehod’s strength
or/and incorporate better models of image formation (realistic camera models, more
accurate reflectance models). The goal is to achieve better robustness, accuracy,
faster execution and ability to process larger amounts of data, e.g. high-resolution
images or large data sets. In this section an overview of several recent works dealing
with those problems is stated.

Yuen and Chow in [7] describe integration of shape-from-shading and stereo for
Lambertian objects. Their method solves recovering depth at occlusion, matching
at places with similar shading and matching at smooth silhouettes complementing
the shape from stereo method by SFS. The SFS method they use, on the other
hand, takes use of the prior knowledge of the boundary information provided by
the sparse stereo algorithm in the form of depths of singular points. The method
has the advantage that it is based on a model of the physics of image formation.
Their SFS works with perspective projection and oblique lighting. They show, that
oblique lighting can be regarded as orthographic after using transformation same
as the rectification transformation frequently used in stereo. However, they assume
Lambertian shading model and single light source in infinity. Their stereo algorithm
generates only sparse matches, which ensures that only reliable, easy to identify
points, are matched and overcomes the ambiguity problem of dense stereo algorithm.
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They propose new depth matching method for stereo, which uses SFS to match
a neighborhood centered on a candidate point to match depth directly instead of
intensity. This property overcomes the foreshortening problem caused by distorted
features from different view angles which are hard to match. The SFS uses the
Fast Marching Method [22], which starts in the singular points (the local brightness
maxima with known depth determined by sparse stereo) and propagates towards
the edges of segments attached to other singular poins recovering the depth in the
singular point neighborhood. This is done for each input image and then the depths
are compared instead of intensities to verify the match. They show in experimental
results, that the rectification transformation and the SFS method work with different
lighting directions, also with highly oblique angles, and that the combination of
methods is able to accurately recover visible and occluded parts.

The work of Yan [23] solves a similar problem with proposed technique called
Depth From Shading and Stereo.The difference here is in the focus on images ob-
tained by planet orbitting probes. Those images show the same area of surface from
different view-points, so that the stereo and SFS can be applied. Moreover, the im-
ages are taken under different illumination, because they are not captured in the
same time and the position of the Sun changes. Therefore the cues about the 3D
shape from varying illumination can also be used by photometric stereo method.
Z-only algorithm for solving photo-topography closely coupling the solution of SFS
and stereo in a variational approach by formulating a combined cost function is
used. It is tested on realistic Mars images and can deal with noise, geometry error,
calibration errors and reflectance errors. The limitation is, that it does not handle
varying albedo or very weak shading, it has also problems when the light is comming
from the similar direction as is the view direction.

Other approach attempting to fuse different shape recovering techniques is the
work of Zhang et al. [24]. They define a framework relating optical flow, motion,
lighting and albedo. The general form of optical flow (which is the trajectory of a
scene point in an image sequence) under varying illumination is developed. They
use the key observation that surface positions, normals, motion, and illumination
are all coupled together and can be obtained by one minimization problem solu-
tion. Surface positions are constrained by optical flow trajectories (geometric cue)
and surface normals are constrained by intensity variations along these trajectories
(photometric cue). Their formulation of photometric constraint on point intensity
subsumes as special cases the structure from motion, photometric stereo and multi-
view stereo problems, which all use assumptions that some parameters are known
and allow others to vary. The solution how to get all of the parameters together is
shown and analyzed. Their algorithm iteratively estimates affine camera parameters,
illumination, shape and albedo from a monocular image sequence. It computes dense
shape that is accurate even in uniform untextured regions. However this approach
is not robust to occlusions, shadows, inter-reflections and specularity.

O’Hara and Barnes present in [18] an optimization based SFS algorithm suited
for reconstructions of planetary surfaces whose results overcomes the stereo recon-
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structions details. Their algorithm does not require any 3D data for initialization
and provides flexibility to use various camera and reflectance models. It uses the
steepest descent approach to iteratively minimize the cost function

f =
∑
i,j

(I(i, j)−R(p(i, j), q(i, j), V (i, j))2, (1.1)

where R(p, q, V ) is a reflectance function given by the reflectance model, p(x, y) =
δU
δx

, q(x, y) = δU
δy

are the height gradients of the surface in a discrete height grid

U(x, y), V (i, j) are the unit viewing directions of every pixel (i, j) from the camera
center given by the camera model and I(i, j) is the image. In their implementation
they use Lambert’s and simplified Oren-Nayar (see Chapter 3) reflectance models.
To achieve fine precission in affordable time they exploit two-stage multiresolution
approach, which scales down the image resolution and generates low resolution depth
map in the first stage and use it as initial surface for the second stage with high
resolution image.

1.2 Background

1.2.1 Epipolar Geometry

Epipolar geometry is the basic structure used by stereo reconstruction algorithms
to calculate the position of feature seen by different cameras in 3D space. Considering
two projections p1 and p2 of a 3D point P into the image planes Π1 and Π2 of two
cameras with optical centers O1 and O2, all of the points P , p1, p2, O1 and O2 are
laying in the epipolar plane as described in [9]. This is visualized in Figure 1.1. The
epipolar plane is defined by the two intersecting lines O1P and O2P ; The epipoles e1

and e2 of the two cameras are defined by intersection of the line connecting camera
centers O1 and O2 (baseline) with image planes Π1 and Π2, respectively. The epipole
of one camera is the projection of the optical center of another camera into the first
camera’s image plane and vice versa. The line l1 connecting the epipole e1 with the
projection of point p1 is called the epipolar line associated with the point p2. The
epipolar constraint is the fact, that if p1 and p2 are projections of the same point P
from 3D space, then p1 must lie on the epipolar line associated with p2. This greatly
constraints the search for correspondences done by most stereo algorithms.

Using the arrangement from the Figure 1.1, where the line segments a1, b1, c1

and a2, b2, c2 are known, the distances d1 and d2 of the point P from the camera
centers O1 and O2 can be expressed using for instance the law of sines ( a

sin(α)
=

b

sin(β)
= c

sin(γ)
) and the law of cosines (a2 = b2 + c2 − 2bc · cos(α)) as follows:

cos(α) =
b2

1 + c2
1 − a2

1

2b1c1

→ α
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e1 e2

Π1 Π2

l1 l2

d1 d2

C1 C2
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γ

a1b1
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b2a2

c2

Figure 1.1: Epipolar geometry.

cos(β) =
b2

2 + c2
2 − a2

2

2b2c2

→ β

γ = 180◦ − α− β

d1 =
sin(β)

sin(γ)
· |O1 −O2|

d2 =
sin(α)

sin(γ)
· |O1 −O2| (1.2)

1.2.2 Stereo Reconstruction

The word stereo originaly from greek means ”solid” or ”three-dimensional”. In
computer vision the stereo reconstruction denotes a class of techniques for creating
the three-dimensional models of the environment. The goal of binocular or multi-
view stereo is to reconstruct a complete 3D model from the set of images taken from
known camera positions and directions using the epipolar constraint described in
the previous section. The principle of this technique is also the main source of 3D
information percepted visually by humans and animals which have eyes placed in
front of the head (needed so that both eyes can see the same scene). Let’s write
now for simplicity only about binocular stereo which uses left and right camera
(eye). It is based on the fact, that given two cameras with known parameters,
positions and orientations and a visual feature located in both camera images, one
can calculate the relative position of the object corresponding to the visual feature
straightforwardly using epipolar geometry. The main problem here is finding the
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corresponding feature in both images. Since the left image is taken from different
position then the right one, it is slightly different than the right one. Moreover, to
obtain a dense depth map there has to be found a lot of corresponding points in
every image. Therefore only very small windows are compared for correspondence,
so that the image features are still not distorted too much on this scale, and a lot
of corresponding points can be found.

The two-dimensional normalized cross-correlation (NCC) function is used for
this purpose with relatively small correlation windows (several pixels). For images
with frequent change of brightness (with expressive texture) it works well, difficulties
appear, when trying to find correspondence in low textured places of image. In areas
with uniform color the NCC of two points equals to zero. Discrete version of 2D
NCC function of image I (k× l pixels) with template T (m×m pixels) is described
by following equation

NCC(x, y) =

∑i=m
i=0

∑j=n
j=0 (I(x+ i− n

2
− 1, y + j − m

2
− 1)−mean(I)) · (T (i, j)−mean(T ))

|I −mean(I)| · |T −mean(T )|
.

(1.3)
It assignes values for each position of the template above the image in the range
〈−1, 1〉. 1 is for perfect correspondence of intensity variations, −1 for completely
contrary intensity variations. One property of NCC is, that it cannot express any
difference for template and image which brightness differ by a constant value.That
is it assigns value 1 to two images related by affine intensity transform

I = a · T + b. (1.4)

This is mostly desirable in stereo reconstruction, where the scene is viewed from
different angles and the brightness of the same spot can change due to reflectivity
function of given material (which is usually not perfectly Lambertian), but the shape
of the image feature can remain more or less the same and therefore we want to
confirm the correspondence.

1.2.3 Projective Spaces

In projective geometry the projective spaces are used instead of affine spaces
because of certain advantages for modelling the perspective projection.Projective
space is generalization of the affine space, it is able to distinguish perspective pro-
jections of all points in the space. The most important projective space we will use
is the projective plane. It is given by a 2D affine plane and projection center not
lying in this plane, which in our case correspond to the camera image plane and
the camera center respectively. On the Figure 1.2 is the affine geometrical model of
the projective plane. It is composed of an affine plane A2 (subset of an affine space
A3) and point C not lying in A2. Each point x in A2 can be represented by exactly
one ray r going through the points x and C in A3. The rays passing through C and
parallel to the plane A2 does not intersect with A2 and correspond to special set of
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Figure 1.2: Projective plane.

points - the ideal points. The set of all rays in A3 passing through C is called the
projective plane and the rays are called points of the projective plane [20].

The points in the plane A2 can be expressed using the coordinate system (o,
~b1, ~b2) as x = [x, y]T and in the space A3 using the coordinate system (C, ~b1, ~b2,
~b3) as x = [u, v, 1]T . The latter coordinates are called the homogeneous coordinates
of a point. They describe the basic vector of one-dimensional subspace of <3 (~x
on the Figure 1.2), that means the ray r corresponding to point x, therefore they
are not unique for one particular point and can be scaled by any number α ∈ <,
x = α · [x, y, 1]T .

Using homogeneous coordinates X = [x, y, z, 1]T of a point in 3D in the coor-

dinate system (C, ~b1, ~b2, ~b3, ~b4) we can express the projection of this point into

projective plane to coordinates x = [u, v, 1]T in coordinate system (C, ~b1, ~b2, ~b3) as

α ·

 u
v
1

 = M ·


x
y
z
1

 , (1.5)

where M ∈ <3×4 is the camera projection matrix.
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1.2.4 Homography

Homography is a projective transformation from one projective space to an-
other. In computer vision those spaces would usually be the image planes of models
of projective cameras. Using homography, points with knowh coordinates in one
image plane with known position and orientation in the 3D space can be projected
into another image plane with different position and orientation, i.e. expressing the
coordinates of the 2D points in the new image plane. This is useful when comparing
the appearance of a scene from different view points. There applies ,however, the
assumption that the points in the scene lie in a single plane. Fulfilling the assump-
tion and when the camera centers doesn’t lie in the plane where the points are, it
is possible to express point xβ = [u, v, 1]T in coordinate system β of one camera in
relation to point x′β′ = [u′, v′, 1]T in coordinate system β′ of another camera as

λ ·

 u′

v′

1

 = H ·

 u
v
1

 , (1.6)

where H ∈ <3×3 is the homography matrix and λ ∈ < \ {0}. This equation holds
for all points lying in the same plane in 3D space.

Homography is used in the multi-view stereo algorithms for rectification of the
images seen from different positions so they can be searched for correspondences.
The homography matrix can be computed from coordinates of 4 points in one image
corresponding to 4 points in the second image. In practice we need to assess those
corresponding point coordinates by locating corresponding features in both images.
Reshaping the homohraphy matrix rows into one column in the following manner

H =

 h1

h2

h3

 (1.7)

h =
[
h1 h2 h3

]T
(1.8)

we can express the dependency on two corresponding points (u, v) and (u′, v′) as[
u v 1 0 0 0 −u′ · u −u′ · v −u′
0 0 0 u v 1 −v′ · u −v′ · v −v′

]
· h = 0 (1.9)

Because the homography matrix can be scaled by a real multiple λ to obtain dif-
ferent matrix but still representing the same homography transformation, we are
looking for one-dimensional subspaces of <3×3 matrices of rank 3. Vector h has 9
columns, therefore we need to get at least 8 rows into the matrix on the left-hand
side in equation 1.9 by adding 4 correspondence points (so the solution will have
one undetermined variable).
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Figure 1.3: Perspective projection into virtual image plane Π with pinhole camera model.

1.2.5 Camera Projection Matrix

To describe the image formation process when taking a picture with physical
camera, i.e. the projection of points from 3D space into the image, geometrical
camera models are used. Using the camera model, the projection matrix can be
found and the equation 1.5 can be used to project the 3D points into the image
plane. For perspective projection a model of a pinhole camera is used, where only
one light ray from every direction goes through the pinhole and projects inversly
to the image plane behind the pinhole. For the model purposes the virtual image
plane is considered which is located in a unit distance in front of the pinhole (in
the object space) so the projected images are not upside down. Then the point p

on position [x, y, z] in 3D coordinate system (O,~i,~j,~k) defined as on the Figure 1.3
is projected into the pointpΠ on position [x′, y′] in the image plane with coordinate
system (C,~i,~j) using following equations:

x′ = f
x

z

y′ = f
y

z
,

where f is the distance of the pinhole O from the image plane Π.
In reality cameras with lenses are used to gather more light from the scene,

which mainly causes that the image is not sharply focused in the whole area of
the image (depth of field), but also some other discrepancies from the ideal pinhole
model. The physical retina is not in the unit distance form the optical center, its
coordinate system doesn’t have the origin in the point of intersection of optical
axis with retina, it may be skewed, so the angle between the two image axes is not
90◦, and the position is usually expressed in pixel units instead of meters in retina
coordinate system. The projection matrix relates the world and camera coordinate
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systems and contains all parameters to map it into the physical retina coordinates.
The physical parameters can be divided into two groups - the intrinsic parameters,
such as the focal length of the lens, the size of the pixels, the position of the principal
point, and the extrinsic parameters such as the position and orientation of the
camera. Incorporating those into the camera projection matrix yields [9]

M =

 α −αcotθ u0

0 β

sinθ v0

0 0 1

 [ R t
]
, (1.10)

where α and β are horizontal and vertical magnifications in pixel units, θ is the
skewness angle of the physical retina, (u0, v0) is the position in pixel units of the
point where the optical axis pierces the physical retina, R is the camera rotation
matrix and t is the position of camera in the world coordinate system.
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Chapter 2

Multi-View Stereo Reconstruction

Multi-view stereo reconstruction is a technique for obtaining 3D shape of scene
from the set of images of the scene taken from different view-angles, and the associ-
ated camera projection matrices. Current state-of-the-art methods are wery powerful
and precise tools for reconstructing 3D model of the scene. They exploit the epipo-
lar constraint described in Section 1.2.1. The more cameras see a particular scene
point, the stronger this constraint is. That is why this approach is more accurate
and robust than binocular stereo, where each scene point can be seen at most from
2 cameras (if not occluded).

Since the Middlebury multi-view data sets with laser scanned ground truth mod-
els were introduced together with Seitz’s et al. article [21] and direct quantitative
comparison of different methods got easier, the development of algorithms have
accelerated and they are quickly increasing their performance. Evaluation of the
main multi-view reconstruction algorithms is available online on accompanying web
page [2]. The best methods are approaching the precision of laser-based reconstruc-
tions [11]. However, this applies only for small scenes with Lambertian objects and
precisely controlled imaging conditions. There are situations where the input im-
ages are not precise enough (moving objects, moving camera, unfavourable light
conditions), number of images or camera positions are deficient or the scene itself
is problematic, containing for example shiny objects causing specular reflections
or unsufficiently textured objects, where the correspondence points are ambiguous.
Problematic are also large-scale otdoor scenes mainly due to the difficulties with
visibility and the need to process large amouts of data. In those cases there still is
need for improvement. Lot of works trying to solve those problems have appeared
recently, e.g. the method for reconstruction of large-scale scenes [11] which is used
as a base for the method described in section 2.3.
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2.1 Components of Multi-View Stereo Algorithms

Existing algorithms differ in several attributes or constituents which are: the
scene representation, photoconsistency measure, visibility model, shape prior, recon-
struction algorithm, and initialization requirements as stated in [21].

Scene Representation

Scene representation is the way of describing the 3D geometry. Popular represen-
tation is regularly sampled 3D grid, which divides the space into voxels (volumetric
picture elements) which state if the piece of volume on certain position is occupied
by an object. It can also be defined as a 2D function giving for every pixel on image
plane the distance to the closest surface. 3D grids are popular for their simplicity and
ability to approximate any surface, but they are not suited for scaling up to higher
3D resolutions because the computational demands of algorithms using them grow
cubically. Therefore they cannot be used for reconstruction of large scenes. Another
frequently used representation is the polygon mesh, which represents surface as a
set of adjacent planar facets. Polygon meshes are well-suited for visibility compu-
tations and they are efficient to store and render. Some methods does not describe
the scene centrally with one 3D model, but use depth map given for every input
image separately instead.

Photo-Consistency Measure

Photo-consistency measure is the part of algorithm evaluating how much the
(temporal) scene model corresponds to the input images. There are two categories
- scene space and image space measures. The first one takes a point or patch in 3D,
projects it into the input images and calculate the agreement between projection
and image using eg. sum of squared differences or normalized cross-correlation.
Image space measures use the estimated scene geometry to map one input image on
it and predict image appearance from the viewpoint of another input image. The
predicted and input images are compared which results in the prediction error. The
main difference between those two types of measure is the domain of integration.
Scene space measure error is integrated over a surface and therefore prefers smaller
surfaces, but prediction error is integrated over the set of input images and therefore
penalize the parts with large area or which appear in lot of images.

In stereo algorithms there is mostly assumed, that the brightness of a surface
is view-independent - it has Lambertian reflectance properties. Lately some photo-
consistency mesures appear that use more accurate reflectance models. In this work
new photo-consistency measure is proposed, using the Oren-Nayar reflectance model
for rough surfaces. This measure uses clues from shading of the surface assuming
certain properties of surface material, like albedo and roughness. It needs the knowl-
edge about position of the light source in addition, but using together with some
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standard stereo photo-consistency measure can improve the results of reconstruc-
tion. The condition of known light source should be fulfilled in environments of
expected use of this method. For instance on Mars the only light source is the Sun
and its position on the sky can be determined in any time given the position on
Mars’s surface. Development of this measure and a way of incorporating it into ex-
isting stereo algorithm, fusion of stereo and shape-from-shading in a way, will be
desrcibed in following chapters.

Visibility Model

Visibility models specify which views to consider when evaluating photo-consistency,
they should be utilized by every algorithm because visibility of certain points often
change with the viewpoint. Geometric visibility techniques try to model the image
formation from the estimate of 3D geometry of the scene to determine which points
are visible in which images. Simplification can be made by constraining the allowable
viewpoints distribution which make the algorithms more efficient. Quasi-geometric
techniques use heuristics about the geometry to solve visibility. For example limit-
ting the photo-consistency analysis to groups of nearby cameras minimize the effect
of occlusions. Third type of solving visibility is to treat occlusions as outliers and
then use outlier rejection techniques.

Shape Prior

Photo-consistency measures alone are not sufficient to recover precise geometry
in some cases, particularly in low-textured scene regions. Shape priors are assump-
tions about certain properties of the scene surface. They are necessary for binocular
stereo, which is less constrained than the multi-view stereo. Some algorithms assume
small overall surface areas or smooth surfaces, some build the scene from reference
shapes such as a sphere or a plane. Some algorithms trying to find the largest photo-
consistent scene reconstruction (”photo hull” [16]; it is the shape which encapsulates
all possible photo-consistent shapes) prefer maximal surfaces instead, they do well
in reconstructing high curvature or thin structures, but tend to bulge out in low
textured regions.

Reconstruction Algorithm

Multi-view stereo reconstruction algorithms can be divided into four categories.
The first calculate a cost function on 3D volume at the beginning, and then ex-
tract surface from this volume. Example is the voxel coloring algorithm. A lot of
algorithms work with volumetric Markov random fields and use max-flow or multi-
way graph cut to obtain the optimal surface. Second class is iteratively evolving
the surface represented by voxels, level sets or meshes to minimize a cost function.
Methods based on space carving start from a large initial volume and proceed by
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progressively removing inconsistent voxels. Level-set methods in distinction mini-
mize a set of partial differential equations defined on a volume and they can also
locally expand the evoluted volume. In third class are image-space methods that
compute a set of depth maps for every image and ensure consistency between them
or merge the depth maps into single 3D model as a post process. The last group
of algorithms exctract and match feature points and fit a surface to the matched
features.

Initialization Requirements

Beside the set of input images multi-view stereo algorithms usualy require some
input information about the geometric extent or constraints of the scene. Some
need only a rough bounding box, some require segmentation on foreground and
background for each input image. Image-space algorithms typically use constraints
on the allowable range of depth, that is specifying if part of scene lies near the
camera or in background.

2.2 Stereo Ambiguity

The fundamental problem in stereo reconstruction is the correspondence prob-
lem - assuming Lambertian radiance function (surface radiance is constant over all
outgoing directions), there may be some distinct points in the scene which have
the same radiance and therefore their projection into every image have the same
brightness. Even when the radiance is not Lambertian, there may be pixels in the
image having the same brightness and not corresponding to each other in the scene.
Moreover there can be pixels in input images with different brightness which do cor-
respond to the same 3D scene point. It is therefore hard to match points from one
image with points from another image which correspond to the same scene point.

More generally this is investigated in [6], where the maximal theoretical amount
of information that can be obtained from input images using any passive 3D vi-
sion algorithm wheter it is stereo reconstruction, depth-from-defocus, shape-from-
shading or shape-from-sillhouette is studied theoretically. They call the complete
information that can be obtained from input images the light-field. It is in fact the
radiance as a function of 4 variables, where two of them are coordinates of a point
on a surface in the scene and two are the polar angles of outgoing light ray. They
prove that stereo ambiguities for Lambertian scenes can be caused only by constant
intensity regions in any input image or uncomplete light-field, i.e. insuficient number
of camera viewes. The first reason is inherent and there is nothing that could re-
solve the related ambiguity. The points with the same intensity (or color) match all
with each other and correct correspondence cannot be identified. The shape cannot
be recovered using visual measurements alone, prior information must be used in
addition . The second is only problem in practice, when not enough camera viewes
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can be provided, and could be removed by investing more effort or money to acquire
more viewes.

Let’s mention some practical consequence for some reconstruction algorithms.
Most of the state-of-the-art multi-view reconstruction methods use a 3D point cloud
in one of stages, which is further processed in various ways. The 3D point cloud can
be obtained using stereo based, growing based or plane-sweeping [8] based methods.
For some situations or surfaces those methods doesn’t produce dense support in the
3D point cloud. It is the case mainly for surfaces without expressive texture, eg.
surface areas with constant or slowly varying intensity (color), where no strong cor-
respondences between points can be found.This is a consequence of the facts stated
in previous two paragraphs. The 3D point cloud is sparse also for transparent or
highly reflective surfaces or when using photos as input images, where certain areas
are not focused, which is in a way similar to the textureless surfaces. Those surfaces
cannot be reconstructed using standard stereo matching techniques based on photo-
consistency measures and they will be usually missing or they will produce incorrect
surfaces in the 3D model. However, there are some recent works dealing with those
problems, for instance [15] which copes with the weakly supported surfaces in the
3D point cloud.

2.3 Plane-Sweeping Based Reconstruction

The SFS photo-consistency measure defined further in section 4.2 was developed
in order to be easily incorporated into existing MVS reconstruction algorithm devel-
oped at CTU in the Center for Machine Perception (CMP) [13, 14, 15]. The result
of the Dino data set reconstruction taken from the Middlebury comparison web-
page [2] created with CMP’s algorithm in the year 2009 compared with the ground
truth model and the Dragon dataset reconstruction is on the Figure 2.1 to illustrate
the performance of this algorithm. The accuracy of the Dino data set reconstruction
is 95.9% according to the measure on the Middlebury comparison web page. The
algorithm is also capable of accurate reconstruction of large-scale scenes from large
sets (hundrets of pictures) of hi-resolution (3072 × 2048) images, without the prior
knowledge about the camera matrices. It is continuously under development and
the abilities to cope with weakly-supported surfaces, halucinated surfaces and other
capabilities were added recently. In this section its basic parts are described in order
to see where the possible improvement investigated in this work can fit in.

The CMP’s stereo reconstruction algorithm processing pipeline is based on the
method of Keriven and Pons [11], a state-of-the-art multi-view stereo method for
reconstructing large-scale environments. At first the feasible camera pairs are com-
puted based on the epipolar geometry 1.2.1. Then features are matched in the fea-
sible camera pairs and seeds (a 3D point with a set of cameras it was triangulated
from) are created. For each camera the minimal and maximal depth based on the
related seeds is determined and the dense 3D point cloud is generated using the
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plane-sweeping method originally proposed in [8].
The plane-sweeping method is based on an assumption that the feature in the

image is created by a set of points laying in single plane in 3D. Limiting the size
of features to be small enough, this assumption is close to the truth. Then the
position of the real plane in the scene is searched by shifting some hypothetical
plane in 3D space and looking how would the reprojection of one image into other
images look like if the scene bit generating them had the hypothesized position. The
discrepancy of the reprojected and input images is evaluated and the position of the
hypothesized plane which generated the reprojection with the lowest discrepancy is
estimated to be the position of real surface in the 3D scene. For this all the camera
matrices have to be known.

Plane-sweeping used in CMP’s algorithm can be concisely described as follows.
One camera is taken and marked as reference r. Then a plane parallel to the image
plane of r is hypothesized and it is shifted in the direction of its normal. For each
pixel p and distance d of the hypothesized plane from the image plane of r, the
photo-consistency f(p, d) is computed. α nearest feasible cameras to r are chosen
and marked as target t successively. A window of size 5 × 5 pixels centered in
the pixel p is reprojected from the image plane of r into the image plane of t
using homography transformation (taking assumption that all points from both r
and t lay in 3D space in the hypothesized plane) and c(p, d, r, t) = NCC of those
two windows is computed. The homography matrix can be evaluated because the
projection matrices of cameras are known. This is made for every pixel p, distance
d, reference camera r and target camera t. The photo-consistency f(p, d) is set to
the maximum of c(p, d, r, t) over all target cameras t and fixed r for every pixel
and every distance of hypothesized plane. The reconstructed depth of the pixel p
is chosen as the depth d for which f(p, d) is maximal and the position in 3D space
of corresponding pixels is esimated. This method produces a lot of true 3D points,
but also a lot of false 3D points. A filtering is done on resulting 3D point cloud
such that for each 3D point its small neighborhood is searched for other 3D points
and if there is more than β points from more than β different cameras, the point is
accepted. Other points are considered as unknown.

After obtaining the 3D point cloud a minimum s-t cut based optimization is
made, which outputs a visibility consistent mesh close to the final reconstruction.
The mesh is finally refined using a variational optimization. It is assumed that for
every point in the cloud the list of cameras that can see it is available so further
specialized impovements can be done (eg. removing halucinated surfaces). Describ-
ing this parts of algorithm is out of scope of this work and details can be found for
example in [11].

The weak point of this method is in using the NCC in the plane-sweeping part
when evaluating the amount of resemblance between one input image and repro-
jection of another input image. That is one of the reasons for large numbers of
generated false 3D points in the point cloud. NCC does not take into account the
affine transform of the correlation windows as described in section 1.2.2. This affine
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transform can contain informations about shading which can be used to refine the
correlation function. Particularly, the shading is more informative, when the scene
is non-Lambertian and when the view-points are very different (but still observing
the same part of scene). This is the point where some SFS technique can be used.
Two concrete methods are described further in Chapter 4.
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(a) Rendered 3D model of the Middlebury
Dino data set, reconstructed by 2009 version
of the algorithm.

(b) Ground truth laser-scanned model.

(c) Rendered textured 3D model of the
Dragon data set made by the latest version
of the algorithm [15].

(d) One of the input images from the Dragon
data set.

Figure 2.1: Illustration of the CMP’s MVS reconstruction algorithm performance.
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Chapter 3

Reflectance Model

The behaviour of light being reflected from the surface of objects can be described
by the reflectance model. There are two main types of light reflectance,

• surface reflectance caused by reflection on the interface of two surfaces with different
refractive indices and

• body reflectance caused by subsurface scattering.

Surface reflectance is usually modeled as ideal specular reflectance for flat mirror-like
surfaces or specular reflectance with wider directional lobes for rougher and matt
surfaces. Subsurface scattering was in the field of computer graphics and computer
vision most often modeled as Lambertian reflectance. Lambertian matt surface is
perfectly diffusive and appears equally bright from all view directions. The overall
amount of reflected light can be described by single parameter called albedo which
completely characterises a Lambertian surface. However this is just an approxima-
tion which is valid for only few real-world materials, like matt paper or smooth wall
plaster. There is a lot more materials in the real-world for which the Lambertian
reflectance model is incorrect, for example shiny materials like glass and polished
metals or rough materials like cloth, sand and concrete. Surface of those materials
changes its brightness while the observer changes its view-angle.

Computer graphics is one area, where the reflectance models are used for creation
of realistic images and videos. Its applications ranges from computer rendered films
or video games to medical visualizations, CAD programs or advertisement graphics.
The quality of rendered image depends on the accuracy of used reflectance model.
Another need of reflectance models is in understanding the process of image creation
studied in the field of computer vision. Here the approach is reversed to the one in
computer graphics, where object’s parameters, material, position and viewer posi-
tion and direction are given and the image appearance is in demand. In computer
vision, researchers are trying to obtain parameters of real-world objects from visual
data, for example image from digital camera, microscope or optical telescope. This
is obviously a hard problem because of the large number of scene parameters having
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influence on its visual appereance, e.g. material, distance and orientation of objects,
number, type, position and orientation of light sources or used camera parameters.
Other complicating factors are some complex light behaviour effects like specular
glow, luminence, interreflections and shadows. It would be impossible to get all un-
known information only from images, some parameters of the scene usually have
to be given beforehand or assumed. For example, when we assume only one light
source, we know its direction wrt. the viewer and we assume certain type of surface
material, we can use appropriate reflectance model for this material and informa-
tion about brightness from the image to obtain surface orientation or distance. This
is done by shape-from-shading and photometric stereo algorithms. Therefore it is
important to have accurate reflectance model. As will be seen in Chapter 5, the real-
world materials are often strongly non-Lambertian and Lambert’s reflectance model
is inaccurate for obtaining information from images. Therefore the main motivation
of investigation in following sections is understanding and testing of appropriate re-
flectance model which can be used for rough natural surfaces occuring among others
in planetary exploration.

3.1 Oren-Nayar Reflectance Model

The Oren-Nayar reflectance model is a body reflectance model for diffuse reflec-
tion from rough surfaces introduced by M. Oren and S. K. Nayar in 1994 [19]. It
is succesfully used to predict the appearance of natural surfaces with macroscopic
roughness such as concrete, sand, plaster, etc. It describes the radiance in given
direction going from surface element dA into solid angle dω in dependence on:

• polar angles θi, φi of incident light ray,

• polar angles θr, φr of reflected light ray,

• variance σ2 for Gaussian distribution of elementary surface facets with different slopes
(higher σ means rougher surface) and

• albedo ρ of elementary Lambertian surface facets

Radiance in direction θr, φr caused by flux Φ incoming from direction θi, φi to
area dA in general is given by:

Lr(θr, φr; θi, φi) =
dΦr(θr, φr; θi, φi)

dA · cos(θr) · dωr
[W ·m−2 · sr−1] (3.1)

The θ and φ angles are polar angles related to the normal n̂ of surface dA and are
defined as on the Figure 3.1. The term dAcos(θr) in radiance definition represents
foreshortened area dA projected into direction of reflected ray. Φr is reflected light
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flux (power intensity in wats [W ]) bounded to incident flux Φi by bidirectional
reflectance distribution function (BRDF) ρBD by equation

Φr(θr, φr) =
∫

Ω
ρBD(θr, φr; θi, φi)) · Φi(θi, φi)cos(θr)dωr, (3.2)

where Ω is the outcoming solid angle into which is the flux Φr going. Radiance is
defined so that the coresponding light flux is propagating through area perpendic-
ular to the flux’s direction. It is appropriate for measuring the distribution of light
anywhere in space.

^dA

Figure 3.1: Coordinate system. Ŝ is the light source direction vector, V̂ is the viewer
direction vector, θ and φ are the corresponding polar angles and X̂, Ŷ , Ẑ are the coordinate
system basis vectors. Taken from [19].

The advantage of radiance definition is obvious when we calculate power incom-
ing to some patch with area dA which is tilted to the light flux direction. It is clear,
that it will absorb less power than if it was perpendicular, we have to project area
dA to the direction of light flux, so the projected area is dA · cos(θ). We just take
the radiance in certain point of space comming from certain direction and multiply
it with solid angle subtracted by the light source from the surface patch’s view and
with foreshortened surface patch area dA · cos(θ) and we have the power absorbed
by the patch. When we integrate the radiance Lr over certain surface and over all
outgoing directions, we get the power this surface is radiating. In our case we handle
light sources and other surfaces separately. We suppose that all radiated power from
surface is given only by reflection of power incoming from sources.

21



Brighter Darker

Source direction

Viewer direction Viewer direction

Brighter Darker Brighter Darker

Figure 3.2: Facet foreshortening effect. The overall brightness vary when looking at V-cavity
from different angles. Picture taken from [19].

3.2 Derivation of Oren-Nayar Reflectance Model

The rough surface in Oren-Nayar model is assumed to be composed of a large
number of symetric V-cavities which are formed by two small facets with Lambertian
surface inclined one to another. Further it is assumed that the size of V-cavities is
much smaller than the area of observed surface, i.e. a large amount of V-cavities
is projected into one pixel of the camera, and much bigger than the wavelength of
incident light. This surface structure originates more complex way of reflecting light.
The basic effect is foreshortening of facets when watching from different angles, as
illustrated on Figure 3.2. It can be easily visualized, that when looking at one single
V-cavity from different view angles, one can see various fractions of illuminated
and not illuminated facet and therefore the overall brightness of surface can vary.
Small disparities on the rough surface cause shadowing when the light source angle
θi is large and masking when the view angle θr is large. These phenomena together
with interreflection between opposite facets makes the reflectivity function obviously
non-Lambertian. On Figure 3.3 is depicted magnified profile of such a surface, where
surface normal n̂, facet normal â, source vector ŝ, view vector v̂ and corresponding
angles are noted.

Derivation of the Oren-Nayar model begins with defining the projected radiance
Lrp(θa, φa) of single Lambertian facet into the direction â = (θa, φa) of the surface
plane normal n̂:

Lrp(θa, φa) =
ρ

π
E0
〈ŝ, â〉〈v̂, â〉
〈â, n̂〉〈v̂, n̂〉

, (3.3)

where ŝ is the direction of source, v̂ is the direction of viewer, â is the direction of
the facet normal, ρ is albedo of the Lambertian facet, E0 is the irradiance when
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Figure 3.3: Magnified profile of rough surface modeled by symetric V-cavities which are
composed of 2 similar facets with area dA.

ŝ = â and 〈a, b〉 is dot product of vectors. If a, b are unit vectors and θ the angle
between them, 〈a, b〉 = |a| · |b| · cos(θ).

The total radiance of the surface can then be obtained as the average of Lrp(θa, φa)
by integrating over all possible facet normals â:

L1
r(θr, φr; θi, φi) =

1

2π

∫ π
2

θa=0

∫ 2π

φa=0
P (θa, φa)Lrp(θa, φa)sin(θa)dφadθa, (3.4)

where P (θa, φa) is the slope-area distribution of facets, it gives the fraction of total
surface area which is occupied by facets with normal â = (θa, φa) and sin(θa)dφadθa =
dω, which means integrating over all elemental solid angles in directions of facet nor-
mals.

3.2.1 Model for Gaussian Slope-Area Distribution

The slope-area distribution P (θa, φa) can be given by uniform distribution of
facet orientations φa (isotropic surface) and Gaussian distribution of facet slopes θa
with mean µ = 0 and standard deviation of facet normals σ2. Bigger facet normal
angle is bigger slope of facets compoisng the V-cavity and therefore bigger roughness.
Then the factors expressing the shadowing and masking are included and reflectance
of rough surface due to direct illumination evaluated by functional approximation
of integral 3.4 is

L1
r(θr, θi, φr − φi;σ) =

ρ

π
E0cosθi

[
C1(σ) + cos(φr − φi)C2(α; β;φr − φi;σ)tanβ +

(1− |cos(φr − φi)|)C3(α; β;σ)tan

(
α + β

2

)]
, (3.5)
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where the coeficients are:
C1 = 1− 0.5 σ2

σ2+0.33

C2 =

 0.45 σ2

σ2+0.09
sinα if cos (φr − φi) ≥ 0

0.45 σ2

σ2+0.09

(
sinα− (2β

π
)3
)

otherwise

C3 = 0.125
(

σ2

σ2+0.09

) (
4αβ
π2

)2
α = Max[θr, θi] β = Min[θr, θi]

In this functional approximation all angular values should be given in radians except
for σ2 which is in degrees. The radiance is expressed in dependence on φr − φi only,
because the relative angle between incident ray plane and reflected ray plane per-
pendicular to the surface plane matters for isotropic surfaces. There is also derived
the interreflection component of the radiance, ie. part of radiance which is due to
the light incoming from the neighboring facet, not from the light source in infinity.
Its approximation for surface with roughness σ is

L2
r(θr, θi, φr − φi;σ) = 0.17

ρ2

π
E0cos(θi)

σ2

σ2 + 0.13

[
1− cos(φr − φi)

(
2β

π

)2]
. (3.6)

Total surface radiance is combination of direct illumination component and in-
terreflection component

Lr(θr, θi, φr − φi;σ) = L1
r(θr, θi, φr − φi;σ) + L2

r(θr, θi, φr − φi;σ). (3.7)

The model reduces to the Lambertian model when σ = 0◦. By taking albedo as
a function of the wavelength ρ(λ), the dependency on the wavelength comes out
explicitly.

3.2.2 Qualitative Model

The relative significance of various terms in equation (4) was determined through
numerous simulations by Oren and Nayar. The coefficient C3 makes small contribu-
tion to the total radiance. The following qualitative model is obtained by discarding
C3 and interreflection component

Lr(θr, θi, φr − φi;σ) =
ρ

π
E0cosθi

(
A+BMax

[
0, cos(φr − φi)

]
sinαtanβ

)
. (3.8)

A = 1.0− 0.5 σ2

σ2+0.33

B = 0.45 σ2

σ2+0.09

24



3.3 Behaviour of Oren-Nayar Reflectance Model

Figures 3.4 and 3.5 compare radiances as functions of the view angle θr given by
Lambertian model, Oren-Nayar accurate functional aproximation and Oren-Nayar
less accurate qualitative aproximation, both compared with the functions from orig-
inal Oren’s and Nayar’s article. In Figure 3.4 the incident ray is in the same plane
as all reflected rays, in Figure 3.5 the incident ray is shifted by 45◦ to this plane.
It can be seen on the first of these figures, that the qualitative model was imple-
mented identically and the curve coincides to the one from original paper, only
betveen implemented functional aproximation and numerical evaluation taken from
the original paper are minor differences. In the later figure qualitative models coin-
cide again, but there is larger disparity between the functional approximation and
the numerical evaluation, especially near |θr| = 70◦ and larger. The arrangement for
obtaining this radiance is on the Figure 3.6 and includes:

• elementary facet with rough surface positioned in the center of global coordinate
system with normal n̂(θ, φ) = (0, 0),

• point light source in infinity with direction ŝ(θi, φi) = (75◦, 0◦)

• view directions θr = 〈−90◦, 90◦〉 in the same plane with source vector, φi − φr = 0.

Near to the light source direction the Oren-Nayar model radiance approaches its
maximum. With moving the view direction away from the source direction the ra-
diance drops off, mainly because of the foreshortening and masking phenomena. In
distinction, the Lambertian radiance is constant over all viewer directions and it
differs from Oren-Nayar radiance significantly. There is also obvious difference be-
tween accurate functional aproximation and less accurate qualitative aproximation,
the later one is constant for viewer directions from −90◦ to 0◦, oposite side to the
light source. On Figure 3.7 is ploted radiance function (corresponding to brightness)
of a cut of look on a rough cylinder which is illuminated from the same direction as
is the view direction. As moving to the edge of cylinder, the Lambertian radiance
is decreasing much more than Oren-Nayar radiance which makes the cylinder look
more flat for Oren-Nayar model.

On Figure 3.8 is shown the effect of changing the light source direction θi on
the radiance function for both Lambert and Oren-Nayar model (accurate functional
aproximation). With increasing θi, the radiance is generally decreasing, because the
surface patch with area dA recieves smaller portion of light (projected area dAcos(θi)
is smaller). Also it can be seen, that for light direction perpendicular to the surface
patch θi = 0◦, Oren-Nayar model radiance is flat1, but lower than the Lambertian.
As θi is increasing, the shape of Oren-Nayar model radiance differs more from the
Lambertian. This graph also shows the explanation for the brightness values of

1for the accurate functional aproximation; For numerical evaluation shown in Oren and Nayar’s arti-
cle [19] it is close to flat, but slightly decreasing with larger θi.
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Figure 3.4: Radiance as a function of view direction - comparison of Lamberts and Oren-
Nayar (accurate functional aproximation) reflectance models. Black lines are taken from the
original Oren and Nayar’s paper for comparison. φi−φr = 0◦, σ = 30◦(for Oren-Nayar), ρ =
0.9,Φi = 1W

Figure 3.5: Radiance as a function of view direction - comparison of Lamberts and
Oren-Nayar (accurate functional aproximation) reflectance models. . Black lines are
taken from the original Oren and Nayar’s paper for comparison. φi − φr = 45◦, σ =
30◦(for Oren-Nayar), ρ = 0.9,Φi = 1W
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Figure 3.6: Model scene arrangement for obtaining radiance function on the Figures 3.4
and 3.5. Green lines mark the test surface patch and its normal vector, red line is the light
source direction and blue half-circle are positions of viewer, view angles are in the range
〈−90◦, 90◦〉 wrt. the patch’s center. Light source direction vector and viewers direction
vectors are in the same plane.
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Nayar model. φi − φr = 0◦, σ = 40◦, ρ = 0.9,Φi = 1W

cylinder from Figure 3.7. For equal light source and camera angles θi and θr the Oren-
Nayar radiance is approaching its maximum, especially for larger angles. Compared
to Lambertian radiance, Oren-Nayar radiance is bigger for larger angle values, it
means it is bigger in regions of the cylinder which are close to edges, where the θi
and θr angles are large. This partially compensates decline of brightness due to the
surface forshortening in the near-edge regions and if the cylinder was rendered using
Oren-Nayar model, it would look more flat in comparison with cylinder rendered
using Lambert’s model, which can be also seen from the Figure 3.7. On Figure 3.9 is
plotted the difference of Oren-Nayar and Lambertian radiances for several different
light source angles.

On following three Figures 3.10, 3.11 and 3.12 is ploted changing shape for Oren-
Nayar radiance when changing light source direction θi and φi and surface roughness
σ, respectivelly, while keeping other parameters constant. On the last one of these
figures there is shown that Oren-Nayar model reduces to Lambertian for σ = 0◦

(Lambertian radiance coincide with the line for σ = 0◦).
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Chapter 4

Method

In this chapter two methods exploiting the shading information and Oren-Nayar
reflectance model towards better MVS consistency measure are proposed. This leads
to the fusion of the stereo reconstruction and shape-from-shading. This chapter
reassumes on the Section 2.3, where one part of the CMP’s MVS algorithm - the
plane sweeping method and its weak-points is described. Following two methods
can substitute or complement the NCC photo-consistency measure to enhance the
feature matching and to generate 3D point cloud with less false 3D points.

4.1 Modified Normalized Cross-Correlation

In MVS algorithms the normalized cross-correlation function (Equation 1.3) is
used to find matching correspondences in images and to generate 3D points after-
wards. However, there are situations, where, using the NCC, a lot of false corre-
spondences is found. Some of those can be disregarded using information about the
brihgtness difference or shading. As mentioned in Section 1.2, NCC, as it is defined,
ignores constant brightness differences between two images. That means, it has the
same value for two images I1 and I2 and also for two images I1 and a · I2 + b, where
every pixel of the second image is changed by an affine transform. In this section a
modified normalized cross-correlation function denoted as NCCm is proposed, which
conserves some usefull properties of NCC, but which can distinguish between the
two cases stated above. The not normalized cross-correlation function cannot be
taken in consideration, its properties are completely unsuitable for stereo match-
ing purposes, because it gives high values where the overlapping images have high
intensities, not where their intensities vary in the same manner.

It is usefull to transfer the image vectors into 3D space for visualization. We
can imagine the image with n pixels as a n-dimensional vector of pixel intensities.
The correspondent representation in 3D space would be a 3D vector, though no
image has only 3 pixels in practice, it is suitable for picturing the situation. Now,
having the template ~X and a fraction of image ~Y under the template, their means
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are subtracted to obtain ~x = ~X −mean( ~X) and ~y = ~Y −mean(~Y ), and they can be
visualized in 3D like on the Figure 4.1. What the NCC does is not calculating ~x−~y,
the actual difference between vectors ~x and ~y, but at first it transforms ~x into ~z with
an affine transformation ~z = a · ~x+ b · ~1, so that it is as close to ~y as possible. The
vector ~z is a linear combination of unitary vector multiplied by some constant ~b and
vector ~x multiplied by some constant a and therefore it lies in the green plane in the
Figure 4.1. This represents the disregarding of the constant difference in intensity.
Now the difference of vectors ~y − ~z is smaller than original difference ~y − ~x.

Figure 4.1: Illustration of NCC in 3D space.

The newly proposed correlation measure in the 3D analogy is defined as follows

NCCm( ~X, ~Y ) = 1−
(
|~x− ~z|
c

+
|~y − ~z|
c

)
/2, (4.1)

where ~z = a · ~x + b · ~1, x = ~X − mean( ~X), y = ~Y − mean(~Y ), a, b, c ∈ <, and
~x, ~y, ~z ∈ <3. The variable c is the normalization constant representing maximal
possible value of |~x− ~y|, then the expression for NCCm is in the interval 〈0, 1〉, the
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value 1 represents complete correspondence. It directly transfers from 3D space into
the image space, when the vectors ~x, ~y, ~z ∈ Nm×n represents discrete 2D images.

4.1.1 Rectification

Before two images obtained by two different cameras can be directly compared
using NCC or NCCm they has to be transformed as they were captured from the
same camera position and with the same camera direction. This transformation is
called rectification. It is used in stereo matching algorithms because of one extra
beneficial attribute. Considering only binocular stereo vision, the matching features
in two images are searched along the epipolar lines, which is given by the epipolar
constraint (see Section 1.2.1). After rectification, the epipolar lines change into hor-
izontal lines in both images, therefore a patch from one image can be only shifted
in horizontal direction in the other image to search for match. Here the rectification
is used only in order to be able to directly compare images taken from distinct
view-points with NCC and NCCm. The pseudocode of procedure of rectification of
images from the set of images I and camera matrices C is described in the Algo-
rithm 1. The function xyToHomography uses two corresponding sets of 4 points and
Equation 1.9 to calculate the homography matrix.

4.1.2 Properties of the Modified Normalized Cross-Correlation

Useful properties of NCCm are demonstrated on following synthetic example.
Lets have a scene with flat wall which has a noninformative repetitive texture and
which is lit from the left side, so it is brighter on the left than the right side. The wall
is observed by two cameras from different view-points, therefore its projection into
the image planes is differently distorted because of perspective projection. The view
from one camera can look like on the Figure 4.2(a). Although the emphasized patches
are of the same size in the 3D scene, they have different size and shape in the image.
They are of course differently distorted in the other camera image. In order to use
NCCm, the images are rectified using the Algorithm 1. After this transformation, all
patches look the same from the view of both cameras, e.g. like on the Figure 4.2(b)
(although here is chosen the view direction perpendicular to the wall as the common
view of both cameras and without perspective projection, and not the view of one
of the cameras). Now, when searching for the match of the template T for instance,
it is moved all over the wall and in every position the normalized correlation is
computed. For the purpose of this synthetic example, this process can be imagined
as splitted into computing NCC for each patch separatelly, this is depicted on the
Figure 4.2(c). Because the texture is unexpressive and repetitive, the NCC looks
more or less the same for every patch, there is a lot of places on the wall with high
correlation value, even on the other side of the wall, where the overall brightness
is obviously higher. On the contrary, using NCCm for calculating the correlation
for each patch with the template T , which is shown on the Figure 4.2(d), there
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Algorithm 1: Rectification transformation

begin1

input : set I of n images of size (k × l), set C of n camera projection matrices
output: set R of n rectified images
for i = 1 to n do2

corrPoints[i] = 4 user defined corresponding points from I[i];3

end4

ref = user defined index of reference image in I;5

cpRefHom = AffineToHomogeneous(corrPoints[ref ]);6

/* compute homography matrices H for every image in I from 4

corresponding points. */

for i = 1 to n do7

cpHom = AffineToHomogeneous(corrPoints[i]);8

H[i] = xyToHomography(cpRefHom, cpHom);9

end10

coorRef = 2× (k · l) array of coordinates of the reference image;11

coorRefHom = AffineToHomogeneous(coorRef);12

for i = 1 to n do13

coorRectified = HomogeneousToAffine(H[i] · coorRefHom);14

for j = 1 to (k × l) do15

if Round(coorRectified) lies inside I[i] then16

R[i].image(coorRef [j]) = I[i].image(Round(coorRectified));17

end18

else R[i].image(coorRef [j]) = 0;19

end20

end21

end22

is difference in its overall value, it is increasing when the template is approaching
the patch P8. The average and maximal value of NCCm and NCC scaled into the
interval 〈0, 1〉 for every patch Pi is shown on Figures 4.3(a) and 4.3(b), respectively,
which illustrates this trend more accuratelly. Both, average and maximal value of
NCCm are increasing (almost) monotonicaly as approaching the patch P8, but the
behavior of the same values off standard NCC is not that clear. This reflects the
ability to incorporate also the brightness intensity differences. There is still a lot of
places on the wall with high correlation values, but only near to the actual value of
the template. The conclusion is, that using this correlation measure, a lot of false
matches can be disregarded.
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light source

wall

P1 P2 P3 P4 P5 P6 P7 P8

T

(a) Wall having surface with inexpressive repetitive texture viewed with perspective projection. Close to its
left side is the light source causing the left part of the wall look brighter than the right part. Pi are patches
of the wall texture cutted out in distinct places. T is the template with side length 1

10 of the side length of
each patch pi cutted out from the patch P8.

T

P1 P2 P3 P4 P5 P6 P7 P8

(b) Patches Pi rectified to the same proportions using homography transformation (see the text) with
template T cutted out of the patch P8

NCC1 NCC2 NCC3 NCC4 NCC5 NCC6 NCC7 NCC8

(c) NCC of each patch Pi and template T respectivelly, plotted in gray color scale (-1 is black, 1 is white).
There is a lot of correlating pieces with T in every patch Pi and the overall correlation confidence does not
change much over patches Pi

NCCm,1 NCCm,2 NCCm,3 NCCm,4 NCCm,5 NCCm,6 NCCm,7 NCCm,8

(d) NCCm of each patch Pi and template T respectivelly, plotted in gray color scale (0 is black, 1 is white).
There is also a lot of correlating pieces with T within every patch Pi, but the overal correlation confidence
changes over patches when approaching P8 (from which is the template T cutted out.

Figure 4.2: Illustration of NCC and the newly proposed normalized cross-correlation NCCm

measures on synthetic example with patches having inexpressive repetitive texture, but
diverging in intensity by a constant.
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Figure 4.3: Illustration of maximal and average values of scaled NCC and the newly pro-
posed normalized cross-correlation NCCm measures for the wall example.

4.2 Plane-Sweeping Using Shading Information

The method described in the previous section can use some information about
shading, but in some specific cases there can be more information to employ. That is
case e.g. when the light source position and surface material reflectance properties
are known. It is proved in the Chapter 5, that for some rough real world materials
the reflectance function obeys the analytically given Oren-Nayar model. When the
sample of the material is available, an experiment can be conducted to obtain the
radiance function versus the view angle and the Oren-Nayar model can be fitted to
this function using some optimization technique, which yields values of parameters
of the surface - roughness and albedo and the value of light flux. Having those values,
the radiance can be predicted using the model in general case, for arbitrary source
and viewer directions and for arbitrary surface normal.

The plane-sweeping method used in CMP’s MVS algorithm can be used as the
framework for plane-sweeping method, which uses the position and normal of hy-
pothesized facet, light source and camera to predict the brightness of facet projected
into images. The main principle is the expectation, that the facet projection into
most of the images will have the correct brightness similar to the one predicted by
the suitable reflectance model (Oren-Nayar can be substituted by any other useful
model), when the hypothesized facet position corresponds to the position of real
surface. Of course, the projection into some images can be misleading, because the
surface seen from certain angle from one camera can be hidden by another surface
when observed by another camera, especially when the view angles of cameras differ
a lot. But the assumption is made, that the same surface can be seen by most of
the cameras. This is true for most cases, where the cameras are not very far from
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each other.
The principle of plane-sweeping method is illustrated in the Figure 4.4 on a

simplified 2D scene. Here the hypothesized facet f is initially placed below the
real surface and it has normal with the same direction as the reference camera Cref .
Projection of f into cameras Cref , N1 and N2 cuts out patches of the real surface f1,
f2 and f3 confined by points where the black dashed lines connecting facet corners
with camera centers intersect the real surface. These patches have different normals
~nf1, ~nf2 and ~nf3 and different light source angles which are not known, however.
Even if the light source was modelled as the light source in infinity (with parallel
light rays), the light source angles (which are relative to the surface normal) would
be different for every patch.

Lets at first assume the Lambert’s reflectance model. The patches will have dif-
ferent brightness because of different light source angles. Their brightness is known
(because we can measure it from the patches projected into images). The bright-
ness of the hypothesized facet is also different, because, in general, it has different
normal then the projected patches. The brightness of f is also known, because it
can be predicted using the Lambert’s model. When shifting f along the solid blue
line, the normals of projected facets on the real surface are approaching until they
are (almost) the same when f coincides with the real surface. They are not exactly
the same because of the arbitrary shape of the real surface. It should be also noted,
that the projected patches change with the normal of f . But when the facet is small
enough and its normal does not differ much from the normal of the real surface
in the place of intersection of blue line with the real surface, normals of projected
patches are close to ~nf1. In the ideal case, the predicted and measured brightnesses
by all cameras are the same in this position of f and it can be regarded as the true
position of real surface in the scene. In practice there will always be some difference
between the measured and predicted brightness, but it should be the smallest when
f is near the real surface.

Assuming the Oren-Nayar reflectance model and knowing the positions of all
cameras, we can bring more information into this procedure. Now, the view angles
wrt. the center of f can also be calculated and used for the brightness prediction.
When the real surface has the Oren-Nayar properties, this model predicts better
its brightness and therefore the prediction will also match better the measured
brightness of projected patches.

The algorithm of this method is listed in Algorithm 2. One camera marked as
reference r and a set N of k neighboring cameras of r are chosen. A rectangular
facet f with side size l is hypothesized in 3D space, its position is changed along a
direction vector of r. In every position it is projected into images of cameras in N
and the average brightness of patch which is bordered by the facet’s projection is
computed. In every position of the facet, the direction vectors of the light source and
each camera in N relative to the facet center and the brightness prediction given
by Oren-Nayar model are also calculated. The brightness prediction and average
brightness of projected facet are subtracted to get the value of differenceON for
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Figure 4.4: Illustration of the plane-sweeping method using the information about shading.
For description see the text.
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every position of f and every camera in N . The squares of differenceON are then
summed over all cameras in N , square root of the sum is calculated and the overal
difference differenceONtotal for corresponding facet position is obtained. Finding
the minimum of differenceONtotal over all f to r distances, the corresponding
distance of f from r is determined, which is the estimated distance of rectangular
patch with side length l in the scene and also the output of the Plane-Sweeping algo-
rithm. The procedure can be repeated with different normal of f , reference camera
r, set of neighboring cameras N or with different shifting direction so that more
estimated distances of real surface in distinct places of scene are obtained. Those
results can be averaged or combined in various ways and offer support for MVS
NCC based plane-sweeping. It would be interesting to combine those two methods
also with the NCCm measure to get even more robust results. Since this approach
was not yet experimentally tested yet, it is proposed for future investigation.

Algorithm 2: Plane-Sweeping

begin1

input : set I of n images of size (k × l), set C of n camera projection matrices,
light source L, index ir of the reference camera, the length l of side of
hypothesized facet

output: estimated distance d of the real surface from the reference camera
r = C[ir];2

N ← k neighboring cameras of r from C;3

f = rectangular facet with side length l;4

f.normal = r.normal;5

f.position = r.position;6

for i = 1 to NumberOfShiftingSteps do7

f.position+ = i · step · r.normal;8

distance[i] = GetDistance(f, r);9

lightNormal = GetLightDirection(L, f);10

for j = 1 to k do11

camNormal = GetCameraDirection(N(j), f);12

radianceON [j] = RadianceOrenNayar(f, camNormal, lightNormal);13

brightnessProj[j] = GetAvgBrightnessOfProjectedFacet(f,N [j] and14

corresponding I);
differenceON [j] = radianceON [j]− brightnessProj[j];15

end16

differenceONtotal[i] = Sqrt(Sum(differenceON )2);17

end18

mini = GetIndexOfMin(differenceON );19

d = distance[mini];20

end21
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Chapter 5

Experiments

In first part of this chapter a similar experiment to the one conducted by Oren
and Nayar in their paper [19] is described. The effort was made to find a real-
world material which truly has different reflectance properties than the widely used
Lambert’s model predicts and which obeys Oren-Nayar model in the same time.
Moreover we were trying to find such material that is similar to those which can be
found on Mars. Mars’s surface is mostly covered with fine dust, sand and rocks of
different sizes as illustrated on photo of typical Mars environment taken by NASA
rover Spirit from the mission Mars Exploration Rover (MER) [3] on Figure 5.1.
These materials are expected to have Oren-Nayar model behaviour. When verified
that Oren-Nayar model works for some real-world material, it can be then used in
the shape-from-shading and alike algorithms for more accurate 3D reconstruction
of objects made of this material.

In the next section of this chapter another experiment is described examining
the shape of a cylinder covered with one of materials with Oren-Nayar behaviour. A
plane-sweeping based photo-consistency measure using informations about shading
and predictions of Oren-Nayar model is us used with the cylinder images and images
of the Mars’s surface.

Figure 5.1: Photo of a typical Mars’s surface. It is a fraction of panoramic photo taken by
NASA Spirit rover Pancam in June 2009. The picture is in approximate true-color, it is
reconstruction composed of many photos.
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5.1 Verifying Oren-Nayar Reflectance Model

For verifying the Oren-Nayar reflectance model, an experiment was conducted
to measure the radiance of real-world surfaces. On Figure 5.2(a) is photograph of
the experiment set-up for measuring the radiance function, Figure 5.2(b) depicts
the same on a scheme. 11Mpixel digital camera Canon EOS-1D was mounted on
1m long rotary beam pointing on the sample material fixed in the axis of beam
rotation. An intense white light lamp (in upper right corner of Figure 5.2(a)) was
posted behind the camera, 1.5m far from the sample, 24◦ above the beam rotation
plane, so that no shadowing from the camera could appear. The light source angles
with respect to the sample material surface plane normal and beam rotation plane
was θi = 48◦, φi = 24◦, respectivelly. Then the beam with camera was rotated using
accurate positioning device so that the veiw angle was in interval θr = 〈−85◦, 85◦〉
with step 5◦ and the plane of rotation was defined to have φr = 0◦. In every position
the picture was taken under the same illumination with camera in manual mode with
parameters f-stop = f/16 and shutter speed = 0.5s. During the measurement, all
lights except of the directional lamp were shutted down and windows were dimmed-
out. On Figure 5.3 is the set of chosen sample materials, size of each of these
rectangular samples is approximately 1.5cm× 1.5cm except for the white and black
painting samples which are 0.5cm× 0.5cm.

(a) Photo of experiment set-up.

light source

n

sample

camera

θr 48°

1m

1.5m

(b) Scheme of experiment set-up for measuring
reflectance of real surfaces. n̂ is the sample surface
normal.

Figure 5.2: Experiment set-up for measuring the radiance functions of real-world materials.

Series of images of sample materials viewed from different θr angles were ob-
tained, such as the one for rough sand sample on Figure 5.4. Sample images were
then rectified wrt. the central image Ic using homography (explained in section 1.2.4)
matrices Hi computed from 4 manually selected correspondence points for every im-
age. The correspondence points were chosen so that each one belongs to a feature
which can be seen on every image from all the investigated angles. This was a prob-
lem for the images taken from large θr angles, where the features are distorted too
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Figure 5.3: Set of investigated real-world material samples. From the top left: red clay, light
rough sand, light fine sand, modeller material, cotton pad, white matt painting, abrasive
paper, abrasive rock (carborundum), black matt painting.

much to assign a correctly corresponding points, therefore those images were omit-
ted from rectification. The transformation is computed so that all points Ii(x, y) in
every image Ii hold following equation:

Ii(x, y) = Hi · Ic(x, y), (5.1)

where H is different for every image. After this coordinate transformation the images
can be displayed as they were viewed from the same point, with the same view angle
and can be directly compared to each other pixel by pixel.

The radiance functions of real surfaces were obtained for each color channel
r, g, b separatelly. The overall brightness is calculated as an average over the three
color channels and whole area of the sample. The averaging is important, because
Oren-Nayar model properties appear only when the size of surface elements is small
enough so that lot of these elements projects into one pixel of camera. And since in
the laboratory experiment it was feasible to have only 1m long beam, i. e. sample to
camera distance, the surface was too close and surface elements appear sharply in
the images (see clay and sand samples on the Figure 5.3. By averaging we acquire
similar effect as moving the camera farther.

Experimentally obtained radiance functions of the 9 real-world sample materials
are plotted on Figure 5.5. Some of these functions show behaviour similar to the
Oren-Nayar model, most similar are rough and fine sand samples and red clay
sample, they are plotted with a thick line.These materials have relatively rough
and granular surface, where the particles casts small shadows when the light source
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Figure 5.4: Rough sand sample picture set. Sample patch is viewed from 35 different angles.
It can be seen, that the overal brightness is changing from top left θr = 85◦ to bottom
right θr = −85◦

angle is large. This property seems to be the main pre-requisite for Oren-Nayar
model behaviour. Some other materials like the modeller material, abrasive rock
and black painting show also supposition of increasing brightness when the view
angle θr approaches the light source angle θi, but all of them have also large specular
component in opposite direction to the light source direction. The abrasive paper,
which has quite rough surface with noticeable granulas was expected to have Oren-
Nayar model behavior, but it has very large specular reflectance component instead.
That is caused by small glass granulas which are glued on the surface, which alone
have specular properties. Oren-Nayar model assumes, that the small granulas forging
the surface are Lambertian. On the other hand, none of these materials is truly
Lambertian, the only one which is very close to it, though, is the cotton sample.

On Figure 5.6 is compared measured radiance function of the rough sand sample
with modeled Oren-Nayar radiance function, whose unknown parameters Φi, ρ and σ
were found using the Matlab’s least squares fitting function lsqcurvefit and they are
Φi = 2470.3W, ρ = 1, σ = 11.4◦. The viewer and light source directions are setted
to the same values as during the experiment: θi = −48◦, φi = 24◦, φr = 0◦. It can
be seen, that reflectance properties of this sample are in strong agreement with the
Oren-Nayar model.

5.2 Cylinder Experiment

In this experiment the reflectance of surface of a regular cylinder of proportions
10cm in diameter and 10cm in height was investigated. The cylinder model was
made out of polyvinyl chloride pipe on whose surface was glued cca 2mm thick
layer of rough sand, the same which was proved to have Oren-Nayar properties
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in the the previous section. The cylinder model is shown on the Figure 5.7(a).
The experiment was conducted in the same way as in the previous section with
camera moving in one plane, changing only the θr angle with the step 5◦ in interval
〈−85◦, 85◦〉 and the light comming from the angles θi = −48◦ and φi = 24◦. Again,
the set of 35 images of the cylinder viewed from different angles under constant
illumination was obtained. Using the CMP’s multi-view stereo algorithm (described
in section 2.3), very accurate 3D model of the cylinder was reconstructed, which is
used in following processing as the ground truth. The reconstruction viewed in the
MeshLab software [1] is depicted in the Figure 5.7(b).

(a) The cylinder model with rough sand on
surface. Its size is approximatelly 10cm in
diameter and 10cm in height.

(b) The cylinder model reconstructed with
CMP’s multi-view stereo algorithm viewed
in the MeshLab software

Figure 5.7: The cylinder model

A plane sweeping algorithm, similar to the one proposed in section 4.2 was
implemented in Matlab(R2010b) [17]. The goal was to verify that it can be used to
find a 3D position of surface with known parameters in a scene with known lighting
conditions. Particularly then, if Oren-Nayar reflectance model can accomplish better
results than the less informed Lambert’s model.

5.2.1 Fitting the Reflectance Model

Using this method, it is always needed to obtain the parameters of the surface
material at first. When the parameters roughness σ and albedo ρ of the material
are not known beforehand, a controlled experiment has to be conducted. In this
experiment, the exact position and normal of the sample surface, direction of the
light source and camera positions have to be known and after processing also the
brightness versus view angle. Having all those informations, we have all necessary
parameters which the Oren-Nayar model needs, except for the roughness σ, albedo
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ρ and the light flux Φ. Those parameters can be found using some optimization
technique to fit the analytical expression of Oren-Nayar onto the course of measured
brightnesses versus view angle. In this experiment most parameters were measured
in the lab, but to have precise position of the surface and camera directions the
CMP’s MVS reconstruction agorithm is used here. It processes the set of images of
the scene and gives very accurate 3D reconstruction in the form of the 3D point
cloud and exact positions and directions of cameras.

At first a 3D point cloud p3d from the stereo reconstruction was loaded into
Matlab to have the ground truth information for comparison with the position of
facet determined from the shading information. 4 points from the front of the point
cloud were selected, representing the corners cf,j of the fitting facet ff , they are
plotted in Figure 5.8(a) in red color together with blue points of the 3D point cloud.
The n the normal nff of ff is calculated. The point cloud together with the complete
set of 35 cameras with matrices Pi, their relative positions and orientations is shown
in Figure ??, the plot is in the same scale as the real experiment, all distances are
in meters. Having those informations, the facet corners cf,j are transformed into
homogeneous coordinates cf,hom,j and projected into every camera image using

cpf,hom,j,i = Pi · cf,hom,j. (5.2)

The projections into input images transformed back to affine coordinates cpf,j,i are
depicted as the red points in Figure 5.9 for each view angle. The average brightness
of the polygonal areas circumscribed by cpf,j,i in input images is calculated.

Now the Matlab’s function lsqcurvefit is used to find yet unknown parameters
of the Oren-Nayar model - roughness σ, albedo ρON and light flux ΦON and also
parameters of Lambert’s model albedo ρL and light flux ΦL. The function lsqcurvefit
is provided with the reflectance model function (Oren-Nayar and Lambert’s, respec-
tivelly), fitting facet normal nff , light source and camera directions wrt. the facet’s
center and measured brightness Bi for every view position. The unknown param-
eters of the reflectance model function are stated explicitelly and lsqcurvefit finds
values of these parameters, which minimize the difference between the measured
brightness Bi and the brightness calculated by the reflectance model function. Ob-
tained values of these parameters together with the list of all variable’s symbols
used in this experiment are stated in Table 5.1. The measured brightness together
with predicted radiances (revise, that here radiance is equivalent to brightness) are
plotted in Figure 5.10. Again, the modeled Oren-Nayar radiance function fits quite
preciselly the rough sand radiance function, eventhough the facet is laying now on a
curved surface of the cylinder. The size of this facet is chosen small enough (approx-
imatelly 1

25
of the area of frontal projection of the cylinder) and its position in the

center of cylinder, that the Oren-Nayar behavior clearly appears. The values for the
few left-most cameras are not plotted, because their θ view angles wrt. the center
of the fitting facet are larger than 90◦ and therefore they cannot see the surface of
the fitting facet. This fact can be observed also from the Figures 5.8(b) and 5.9.
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Figure 5.8: The cylinder experiment.

p3d 3D point cloud from MVS reconstruction
cf,j 3D position of 4 fitting facet corners
cpf,j,i fitting facet corners projected into 2D coordinates of input images
nff fitting facet normal
xl, yl, zl position of the light source
Pi set of 35 camera matrices
Ii set of 35 input images
σ = 11.7◦ roughness for Oren-Nayar model
ρON = 0.074 albedo for Oren-Nayar model
ΦON = 306.5W light flux for Oren-Nayar model
ρL = 0.146 albedo for Lambert’s model
ΦL = 146.4W light flux for Lambert’s model

Table 5.1: Summary of known parameters for the cylinder experiment.

5.2.2 Plane-Sweeping

A plane sweeping algorithm was programmed in Matlab to find if the Oren-
Nayar model can predict correct position of hypothesized facet and if it can bring
some more knowledge into the plane sweeping used by MVS algorithms. In the
Figure 5.11 is visualized the plane sweeping method for one reference camera ref
and one camera from the set of neighgoring N , denoted as proj (for projection
camera). The blue point cloud is the reconstructed surface points of the cylinder
and the green rectangle is the facet on different positions during the plane sweeping,
it is moved in the direction of view of the reference camera. In the top right corner is
the position of the light source. The brightness difference function versus distance of
the facet from the reference camera obtained by summing the square of brightness
difference over 10 cameras from N is on the Figure 5.12. The difference functions
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Figure 5.9: Cylinder with projected facet corners. The camera viewes are −85◦ in the top
left image, increasing when moving right and down to 85◦ in the bottom right corner.
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Figure 5.10: Fitted Oren-Nayar and Lambertian radiances for cylinder surface compared
with the measured brightness of fitting facet projected into each input image. The param-
eters obtained by fitting are light flux ΦON = 306.5W , albedo ρON = 0.074, roughness
σ = 11.7◦ for the Oren-Nayar model and ΦL = 146.4W , ρL = 0.146 for the Lambert’s
model.
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using both Oren-Nayar and Lambert’s models are plotted there for comparison.
In the minimum of this curves (the black dot) is the estimated distance of the
real surface from the reference camera. It can be seen that it is different for both
reflectance models.The ground truth position of the surface is in the distance of
0.743m from the reference camera and it is indicated by the solid black line. Oren-
Nayar model estimates the position exactly in the distance of 0.743m (with chosen
shifting step) and Lambert’s model in the distance of 0.724m from the reference
camera, the errors are 0cm and 1.9cm respectively, the Oren-Nayar model is more
accurate. Althought, here, the normal of the hypothesized facet was set to the normal
of the fitting facet, i.e. the normal of the real surface, which is unknown in general
case. Parameters of this plane-sweeping run are sumarized in Table 5.2.

cameras in N P10 to P20

reference camera P15

facet side size 2 cm
facet normal same as the fitting facet normal
shift step 0.47cm
Oren-Nayar model estimation error 0cm
Lambert’s model estimation error 1.9cm

Table 5.2: Parameters and results of the plane-sweeping algorithm run ]1 with the cylinder
data.

The result of another run of plane-sweeping algorithm with different parameters
listed in Table 5.3 is in Figure 5.13. The main difference is in setting the hypothe-
sized facet normal parallel to the reference camera view direction, which is different
from the real surface normal direction and will mostly be the case when using the
algorithm. Here the facet position estimated using the Oren-Nayar model is 2.37cm
closer to the reference camera than is the position of the real surface. But it is still
more accurate than estimation using the Lambert’s model, which is 3.32cm far from
the ground truth.

cameras in N P10 to P20

reference camera P15

facet side size 1 cm
facet normal parallel with the reference camera direction
shift step 0.47cm

Table 5.3: Parameters and results of the plane-sweeping algorithm run ]2 with the cylinder
data.

49



-0.2 0 0.2 0.4 0.6 0.8 1 -0.5

0

0.5
-0.4

-0.2

0

0.2

0.4

y(m)

light

x(m)

ref 
proj20

z(
m

)

(a) Illustration of the plane-sweeping method. proj and
ref are cameras figuring in one step of the algorithm,
blue points form the surface of cylinder and green rect-
angles is the facet in different positions throughout the
whole algorithm. In the top right corner is the position
of the light source.

(b) Detail of the facet positions and cylinder
surface.

Figure 5.11: Plane-sweeping algorithm run]1. The plot is in the same scale as the laboratory
experiment.

5.3 Real Mars Data Experiment

Next simulations were done using the gray scale images of the real Mars’s sur-
face captured by the NASA’s Phoenix Mars Mission landing module [4], which are
depicted in Figure 5.14(a). Again, the 3D model reconstructed by the CMP’s MVS
algorithm shown on Figure 5.14(b) was used as the ground truth. From the 9 pic-
tures provided in the dataset, two subsets of images which contain the same feature
were picked up. Only few images fulfil this requirement. The first subset A is com-
posed of the images 1, 2, 3, 4 and with chosen feature (selected from the 3D point
cloud provided by MVS reconstruction) projected into the images using correspond-
ing camera matrices is in Figure 5.15(a). The second subset containing images 3, 4, 5
is in Figure 5.15(b).

5.3.1 Set A Simulations

The model fitting with image set A was done in the similar manner as in the
previous section in the cylinder experiment. The fitted Oren-Nayar and Lamber-
tian radiances compared with measured brightness are plotted in Figure 5.16. One
difference is, that the light source direction is not known, so it has to be guessed.
There are only the measured brightness data near to θr = 0, so we dont know how
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Figure 5.12: Total brightness difference over all cameras in the set N versus the distance
of hypothesized facet to the reference camera. The result of plane-sweeping algorithm run
]1 with parameters sumarized in Table 5.2.
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Figure 5.13: Total brightness difference over all cameras in the set N versus the distance
of hypothesized facet to the reference camera. The result of plane-sweeping algorithm run
]2 with parameters sumarized in Table 5.3.
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(a) Images of the real Mars’s surface captured by the NASA’s Phoenix Mars Mission landing
module [4].

(b) 3D model reconstruction of the Mars’s surface created by CMP’s MVS algorithm.

Figure 5.14: Images and 3D reconstruction of Mars’s surface.

the right and left sides of Oren-Nayar radiance should look like. Also for the data
available, the radiance cannot be fitted very precisely, Oren-Nayar radiance differs
in particular data points even with the value around 20 brightness units. However,
as will be seen later, such precision is enough to outperform the Lambert’s model.

The plane-sweeping algorithm with parameters listed in Table 5.4 was used for
the image set A. The normal of the hypothesized facet was set to be parallel with the
reference camera view direction. The algorithm was executed several times to find
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(a) Set A.

(b) Set B.

Figure 5.15: Chosen sets of images sharing the same feature. The same patch is selected
in the 3D point cloud and it is chosen as the fitting facet, projection of its corners into
each image is marked with red dots. Under the images are details of the rectified facet
projection.

the optimal light source direction. Illustration of the setting of the scene with camera
positions and positions of the hypothesized facet is in the Figure 5.17. It should be
noted, that in this experiment the exact scale is not known, we dont know the units
of length. The result of the algorithm is on Figure 5.18. Here the prediction of the
position of the real surface with Oren-Nayar model is exactly at the real surface
position (which is now set to be in zero). The predicted surface position using the
Lambert’s model is 0.4469 units far from the ground truth. These precise results are
obtained because of the manual fine tunning of the guessed light direction, but even
when the light direction is little bit different, the results are still quite satisfactory
as proved on Figure 5.19 by another run of the algorithm with slightly different
parameters listed in Table 5.6.

5.3.2 Set B Simulations

The reflectance models fitted on image setB compared with the measured bright-
ness are shown in Figure 5.20. Here even less data points are available, the feature
occures only in 3 images. But the fitted Oren-Nayar model matches little bit better
the measured brightness then with the image set A. The plane-sweeping algorithm
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Figure 5.16: Fitted Oren-Nayar and Lambertian radiances for Mars’s surface image set A,
compared with the measured brightness of fitting facet projected into each input image. The
parameters obtained by fitting are light flux ΦON = 652.3W , albedo ρON = 1, roughness
σ = 26.0◦ for the Oren-Nayar model and ΦL = 1150.6W , ρL = 0.534 for the Lambert’s
model. The 4 data points correspond from the right to the left side to images 1, 2, 3, 4,
respectivelly.
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Figure 5.17: Illustration of plane-sweeping with Mars image set A. P1, P2, P3, P4 denote
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pothesized facet throughout the algorithm and blue points is the 3D point cloud generated
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with guessed direction θi = 57◦, φi = 0◦, which are visualized as the red arrows.
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Figure 5.18: Total brightness difference over all cameras in the set N versus the distance of
hypothesized facet to the real surface. The result of plane-sweeping algorithm run ]1 with
the Mars image set A and parameters sumarized in Table 5.4.
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Figure 5.19: Total brightness difference over all cameras in the set N versus the distance of
hypothesized facet to the real surface. The result of plane-sweeping algorithm run ]2 with
the Mars image set A and parameters sumarized in Table 5.6.
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guessed light source direction θi = 57◦, φi = 0◦

cameras in N P1, P2, P3, P4

reference camera P3

facet side size 0.5 (unknown units)
facet normal parallel with the reference camera direction
shift step 0.112 (unknown units)
Oren-Nayar model estimation error 0 (unknown units)
Lambert’s model estimation error 0.4469 (unknown units)

Table 5.4: Parameters and results of the plane-sweeping algorithm run ]1 with the Mars
image set A.

guessed light source direction θi = 50◦, φi = 0◦

cameras in N P1, P2, P3, P4

reference camera P3

facet side size 0.3 (unknown units)
facet normal parallel with the reference camera direction
shift step 0.112 (unknown units)
Oren-Nayar model estimation error 0.335 (unknown units)
Lambert’s model estimation error 0.559 (unknown units)

Table 5.5: Parameters and results of the plane-sweeping algorithm run ]2 with the Mars
image set A.

executed with parameters in Table 5.6 results into plot on Figure 5.21. The esti-
mated position of the surface using both, Oren-Nayar and Lambert’s models, is in
distance 1.229 units from the ground truth surface. Here the Oren-Nayar model
does not acquire better results than the simpler Lambert’s model even with the
best estimated light direction. It is probably caused by the lack of different camera
viewes, which is the main difference between the image sets A and B. It can be ob-
served, that in some cases the total brightness difference curve can be approximated
with a polynomial of the 2nd order to comprise the overal trend in the area near
the minimum to get more accurate result. These approximations are shown in the
Figure 5.21 as the solid lines.
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Figure 5.20: Fitted Oren-Nayar and Lambertian radiances for Mars’s surface image set B,
compared with the measured brightness of fitting facet projected into each input image
from B. The parameters obtained by fitting are light flux ΦON = 10000W , albedo ρON =
0.05178, roughness σ = 90.0◦ for the Oren-Nayar model and ΦL = 623.89W , ρL = 0.51
for the Lambert’s model. The 3 data points correspond from the right to the left side to
images 3, 4, 5, respectivelly.
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guessed light source direction θi = 57◦, φi = 0◦

cameras in N P3, P4, P5

reference camera P3

facet side size 0.5 (unknown units)
facet normal parallel with the reference camera direction
shift step 0.112 (unknown units)
Oren-Nayar model estimation error 1.229 (unknown units)
Lambert’s model estimation error 1.229 (unknown units)

Table 5.6: Parameters and results of the plane-sweeping algorithm run ]1 with the Mars
image set B.
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Figure 5.21: Total brightness difference over all cameras in the set N versus the distance of
hypothesized facet to the real surface. The result of plane-sweeping algorithm run ]1 with
the Mars image set B and parameters sumarized in Table 5.6.
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Chapter 6

Conclusion

This work attempts to enhance the MVS reconstruction algorithm by incorpo-
rating clues from shading information. The properties of the Oren-Nayar reflectance
model are investigated in detail so it can be fully understood and used to extract
as much information from the brightness of objects in the images as possible. Re-
flectance properties of different materials were examined in the laboratory exper-
iment, finding that behaviour of some of them, and most importantly of those of
high relevance to planetary exploration (), can be very accuratelly described by the
Oren-Nayar model.

The main contribution of this work are then two methods proposed to improve
the MVS photo-consistency measure. First of them, NCCm modifies the NCC func-
tion so it preserves its beneficial ability to distinguish places in two images with
correlating intensity variations and adds the ability to distinguish between places,
which differ in intensity by a constant over whole area of correlation window. Second
method is the adapted plane-sweeping method using the Oren-Nayar and Lambert’s
models to employ shading predictions for determining the position of the real sur-
face in 3D scene. Experiments with images from the laboratory as well as with
images of Mars’s surface showed, that the results of plane-sweeping method using
the Oren-Nayar model surpass the results obtained with the use of Lambert’s model
when the surface material parameters are known with sufficient accuracy. With pre-
cisely estimated material parameters and the light source and camera directions, it
is possible to achieve the accuracy of centimeters, as showed the experiment with
the cylinder with sand on its surface.

6.1 Future Work

The plane-sweeping method should be tested in the future on more various
surfaces and under different illumination conditions to examine more properly in
which scenarious it is usefull. One way of improvement would be to equip the future
imaging system with an automated tools to obtain the parameters of the material.
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It could for example use its own light source and measuring instrument to conduct
an in situ experiment to obtain the radiance function of the unknown material.

In the future, each of the two proposed methods should be implemented into the
CMP’s MVS pipeline to see how much they can improve the accuracy of the used
NCC based plane-sweeping method. Next direction will be to investigate the exact
way how to combine the two methods and NCC plane-sweeping all together to get
the best possible results.
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CD content

The CD is attached to the printed version of this work containg the text of the
Thesis in a PDF file and Matlab source codes of the plane-sweeping algorithm and
for testing the Oren-Nayar reflectance models. The data used in the cylinder and
Mars experiments are also provided. In following table the directory structure on
the CD is described.

Directory/File Description
thesis strunc.pdf the Master’s Thesis report in pdf format
src Matlab source codes
src/data experiment data

Table 1: Directory structure on the CD
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