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Abstract

This thesis deals with the design of a collision avoidance system for trams utilizing V2V
(vehicle-to-vehicle) communication between trams. V2V communication falls under the
category of dedicated short-range communication technology, allowing to establish wireless
communication between two vehicles. The thesis presents an algorithm which could run
onboard a tram and in case of an imminent collision with tram ahead warn a driver that
immediate action is required to prevent the collision. One part of the algorithm is an
estimator of tram longitudinal motion based on Kalman filter which uses for estimation
measurements from inertial sensors and GNSS/GPS. The functionality of this algorithm
is then extensively tested using simulations with a different set of parameters of both the
algorithm and simulations. For this purpose, the thesis also presents a mathematical model
of longitudinal dynamics of a tram, including a model of a driver. The model generates data
with acceptable accuracy close to real measurements.

Keywords: anti-collision system, digital map, kalman filter, V2X-communication.

Abstrakt

Tato práce se zabývá návrhem systému pro předejití srážce tramvají s využitím V2V (vehicle-
to-vehicle) komunikace mezi tramvajemi. V2V komunikace spadá pod kategorii vyhrazené
komunikace krátkého dosahu umožňující bezdrátovou komunikaci mezi vozidly. V práci je
popsán návrh algoritmu, který by mohl běžet na palubě tramvaje a v případě hrozící srážky
s tramvají jedoucí vpřed upozornit řidiče na nutnost neprodlené akce pro zabránění srážky.
Jednou ze součástí algoritmu je pozorovatel stavu systému založený na Kalmanovu filtru
využívající k odhadu stavu systému měření z inerciálních senzorů a GNSS/GPS. Funkčnost
navrženého algoritmu je následně rozsáhle otestována na simulacích s různým nastavením
parametrů algoritmu i simulace. K tomuto účelu práce také předkládá odvození matematick-
ého modelu podélné dynamiky tramvaje společně s modelem řidiče. Pomocí tohoto modelu
lze generovat data věrná reálným měřením ze senzorů s přijatelnou přesností.

Klíčová slova: antikolizní systém, digitální mapa, kalmanův filtr, V2X-komunikace.
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Nomenclature

Acronyms
CAM Cooperative awareness message.
CAN Controller Area Network (bus).
DEM Digital elevation model.
DOF Degree of freedom.
DSRC Dedicated short-range communication.
ECEF Earth-centered, earth-fixed.
FVCWS Forward vehicle collision warning system.
GIS Geographic information systems.
GNSS Global Navigation Satellite System.
GPS Global Positioning System.
IMU Inertial measurement unit.
KF Kalman filter.
LKF Linear Kalman filter.
LMD Longitudinal motion dynamics.
MEMS Micro-electro-mechanical systems.
OSM Open-street maps.
PDF Probability density function.
PDM Power drive mechatronics.
RMSE Root-mean-square error.
SV Subject vehicle/tram.
TV Target vehicle/tram.
UCU Universal communication unit.
UKF Unscented Kalman filter.
V2V Vehicle-to-vehicle.
V2X Vehicle-to-everything.
Greek letters
∆t Sampling period of the system.
ωx, ωy, ωz Measured angular rate around an axis x, y, z.
ψ, θ, φ Heading, slope and bank angles.
σ(x) Standard deviation of an estimation of variable x.
Uppercase latin letters
Aᵀ Transposition of a matrix A.
D Time delay.
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xiv Nomenclature

Fk System (state) matrix of the system in time k.
H(s), H(z) Transfer function for continuous-time and discrete-time system.
Hk Output matrix of the system in time k.
Kk Kalman gain at time k.
Pk Covariance of the estimation error at time k.
T Total time duration of a simulation.
Lowercase latin letters
ax, ay, az Measured acceleration along an axis x, y, z.
ch, cv Horizontal and vertical curvature of a track.
dt(P,Q) Distance along the track between points P and Q.
dbr,k Braking distance at time k.
f(.) Non-linear state equation of a system.
fPDF(x) Probability density function of a variable x.
h(.) Non-linear output equation of a system.
s, ṡ, s̈ Longitudinal position, speed and acceleration.
vk ∼ (µk, Rk) Measurement noise with Gaussian distribution with mean value µk and

covariance matrix Rk at time k.
wk ∼ (µk, Qk) Process noise with Gaussian distribution with mean value µk and covari-

ance matrix Qk at time k.
xc,k Clearance at time k.
xk State vector at time k.
yk Measurement vector at time k.
ys,k Distance along the track measured by GPS at time k.
yv,k Longitudinal (linear) speed measured by GPS at time k.
Other Symbols
≈ Approximation.
:= Assignment.
, Definition.



1 | Introduction

In this thesis, I deal with a problem of collision avoidance for railroad vehicles, especially
trams in an urban area. I focus on the utilization of V2V (vehicle-to-vehicle) communication
in combination with absolute vehicle position estimation. V2V communication falls under the
category of dedicated short-range communication (DSRC) technologies, allowing to establish
wireless communication between two vehicles.

1.1 Motivation

This thesis deals with one part of a collaboration project between the Czech technical univer-
sity in Prague and private company Herman systems. The shared interest is in the utilization
of V2X (vehicle-to-everything) communication for Intelligent public transport. In particular,
in the city of Ostrava, Herman systems have installed V2X-universal communication units
(UCU) into public transport vehicles. To this date, nearly all public transport vehicles have
V2X communication unit1. These communication units are capable of communicating with
other vehicles or the surrounding infrastructure. Also every communication unit contains
inertial measurement unit (IMU), GNSS module and access to Controller Area Network bus
(CAN) of the vehicle (if applicable). Availability of such technology in almost every public
transport vehicle gives the primal motivation of the project: how to create more intelligent
public transport with the use of V2X communication?

In this thesis, I deal with one of the emerged use cases: collision avoidance for trams. This
might seems to be a minor problem but for cities with dense tram infrastructure (such
as Prague, Brno or Ostrava in the Czech Republic), a considerable number of collisions
involving trams occur. For instance, in Prague, there are around 1400 tram collisions each
year of which around 200 collisions are caused by driver of a tram, see statistics2 in Tab. 1.1.
These collisions may cause injuries (or even deaths) of passengers, damage to the tram with
high repair cost and delay of the public transport. I give an overview of several more severe
tram collisions in Tab. 1.2 (gathered from press reports and the Train office of the Czech
Republic). Note that most of these collisions were rear-end.

1[In Czech] zdopravy.cz/v-ostrave-spolu-zacinaji-mluvit-tramvaje-osazeno-uz-je-95-procent-vozidel-24706/
2[In Czech] Taken from:

novinky.cz/ekonomika/476795-srazkam-tramvaji-by-mohl-zabranit-autopilot-dpp-vyviji-system-s-cvut.html

1

https://zdopravy.cz/v-ostrave-spolu-zacinaji-mluvit-tramvaje-osazeno-uz-je-95-procent-vozidel-24706/
novinky.cz/ekonomika/476795-srazkam-tramvaji-by-mohl-zabranit-autopilot-dpp-vyviji-system-s-cvut.html


2 Chapter 1. Introduction

Total number Caused by Caused by Collision
Year of collisions a driver of a tram a driver of other vehicle with pedestrians

2008 1441 219 1055 76
2009 1421 225 1021 91
2010 1432 242 1040 76
2011 1279 177 959 69
2012 1282 204 943 62
2013 1302 204 938 82
2014 1394 226 999 90
2015 1359 194 984 99
2016 1353 183 1026 75
2017 1572 231 1164 111

Table 1.1: Statistics of tram collisions in Prague between years 2008 and 2017.
Source: novinky.cz

Type of Damage Cost Cause:
Year Location a collision Injuries in [CZK] human factor

2008 Ostrava Frontal 3 fatalities, 2.6 millions Yes
11 serious, 55 other

2009 Prague Rear-end 1 fatality 58 millions Partly
2014 Ostrava Rear-end Non 0.3 millions No
2017 Brno Frontal 10 light 0.5 millions Partly
2017 Brno Read-end 1 fatality 0.2 millions Yes
2017 Ostrava Rear-end 14 light 3 millions Yes
2018 Prague Rear-end 25 light 44 millions Yes
2018 Prague Rear-end 7 light N/A N/A
2018 Prague Rear-end 1 half-serious N/A Yes
2018 Prague Rear-end 12 light N/A N/A

Table 1.2: Overview of available data from tram collisions. I gathered the data from press
reports and the Train office of Czech Republic.

1.2 Problem definition

To more accurately describe the problem, I use some terms defined by ISO 15623 [13]. For
the sake of completeness, I list used terms with their definition below. Quotation starts here:

• "Collision warning: information that the system gives to the driver indicating the need
for urgent action to avoid the severity of a potential rear-end collision with another
forward vehicle."

• (modified) "Clearance xc,k: distance xc,k (at time k) from the target vehicle trailing
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xc,k

Subject vehicle (SV) Target vehicle (TV)

Figure 1.1: Terms defined by ISO 15623, namely Subject vehicle (SV), Target vehicle (TV)
and clearance xc,k.

surface to the subject vehicle leading surface."

• (modified) "Subject vehicle or Subject tram (SV): vehicle equipped with FVCWS as
defined herein."

• "Forward vehicle: vehicle in front of and moving in the same direction and travelling
on the same roadway as the subject vehicle."

• (modified) "Target vehicle or Target tram (TV): forward vehicle that is closest in the
forward path of the subject vehicle; forward vehicle that the FVCWS operates on."

• "Forward vehicle collision warning system (FVCWS): system capable of warning the
driver of a potential collision with another forward vehicle in the forward path of the
subject vehicle."

• "Rear-end collision: forward vehicle collision in which the front of the subject vehicle
strikes the rear of the forward vehicle."

Quotation ends here (ISO 15623 [13], p. 1-3). See Fig. 1.1 for illustration of the xc,k, SV
and TV. Since in this thesis, vehicles represent only trams, I will also use terms subject tram
and target tram with the same abbreviations SV and TV. With the use of defined terms,
this thesis aims to propose an implementation of FVCWS utilizing communication units
placed on board of trams.

Collision warning/avoidance systems are heavily studied for cars, mainly for application
such as platooning or autonomous vehicles [22, 23]. Although trams share many similar
attributes with cars, there are specific attributes of trams which complicate the FVCWS
design but also which simplify the design. One of the main attributes of trams (or railroad
vehicles in general) is surely the restriction of their motion on rail tracks. Second important
attribute of trams is their relatively high weight, for instance, 16 tonnes Tatra T3 tram) to
42 tonnes (Škoda 15T tram). Higher weight implies slower dynamics and thus for example,
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higher braking distance. In addition, this weight vary due to a number of passengers in the
tram. For Tatra T3 and Škoda 15T trams, passenger capacity is 100 and 180 respectively.
Assuming the average weight of one passenger to be 70 kg, this increases the total weight
of Tatra T3 tram by ≈ 40 % and the total weight of Škoda 15T tram by ≈ 30 %. Such a
change in weight can dramatically influence the dynamics of a vehicle.

1.3 Thesis outline

Let me now give a brief description of the proposed solution of the defined problem. I first
focus on one of the vital functions of FVCWS: estimation of clearance xc,k. Estimation of
the clearance is typically done using vision-based approaches [15]. Most trams in Ostrava,
however, do not have any sensor capable of measuring the clearance xc,k directly. I solve this
in a distributed manner. Every tram estimates its state of motion using onboard sensors.
Utilizing V2V communication, a tram then broadcasts its motion state to other trams
in the area. When subject tram receives information of target tram’s absolute position,
clearance xc,k can then be computed for FVCWS. Another important functionality of FVCWS
is an estimation of the braking/stopping distance. In general, the braking distance is hard
to predict since it depends on many things such as adhesion conditions of the rail track or
already discussed the weight of the tram. Lastly, a human-machine interface between the
FVCWS and a driver of the tram is important, I do no cover this in the thesis.

The thesis is structured as follows. I first focus on position estimation of a single tram using
sensory measurements. This part starts with Chapter 2 in which I give a description and
an analysis of measurements from sensors placed on board of the tram. In Chapter 3, I
examine available geographic information of the tram track, which plays an important role
in position estimation. In Chapter 4, I focus on the development of dynamic models of
tram motion. I then utilize results from the previous chapter in Chapter 5 in which I solve
the state estimation using Kalman filter. I then focus on collision avoidance in Chapter 6.
Finally, I conclude and discuss the achieved results in Chapter 7.

1.4 Collaboration

This project falls under the collaboration project "Intelligent public transport with the use
of V2X communication" between Ing. Ivo Herman, CSc and Czech technical university in
Prague and is financed by Technology Agency of the Czech Republic. Work on this project
started in January 2018, firstly only by me. Part of the project was then done within course
at CTU: FEE as a team project, lasting to June 2018. Unless otherwise stated, it is supposed
that I did the described work in the thesis.



2 | Sensory measurements

This chapter serves as an introduction to modelling and identification of a railroad vehicle
model, in particular, a tram. In this chapter, I will focus mainly on introducing sensory data
from the inertial measurement unit (IMU) placed onboard a tram during its motion. IMU
consist of triaxial digital, micro-electro-mechanical systems (MEMS) based accelerometer
and gyroscope sensors. Data from IMU are supplemented by measurements from the GNSS
module which measures the absolute geographic position and possibly a longitudinal velocity.

It is intuitive that the position obtained from GNSS is in the long term more reliable than
position obtained by dead reckoning using inertial measurement. Inertial measurement,
however, still plays an important role in state estimation of a tram. In particular, for short
GPS signal outage, dead reckoning is the only way, how to determine the position of the
tram. Therefore, it is desirable to gain as much information from inertial sensors as possible.

In this chapter, I will first give a list of sensors used for measurements. I will describe the
motion of a tram on railtrack and how is this motion reflected in inertial sensors. Lastly, I
will describe and show measured data.

2.1 Used sensors

Herman’s UCU contains several sensors. I identified only the following sensors to be relevant:
accelerometer, gyroscope and GNSS module. Also these sensors are only low-cost. For
our analysis, it is thus appropriate to use sensors similar to which are in Herman UCU so
proposed implementation of FVCWS is designed accordingly. We used a smartphone with
an Android operating system which usually contains IMU and module for GNSS navigation.
For completeness, the type of IMU in the smartphone used for measuring is BMI1601; GNSS
module in the smartphone is unknown. To simultaneously acquire data from IMU and
GNSS, my colleague Vít Obrusník created an Android application. A sampling frequency
of accelerometer and gyroscope is set to around 500 Hz; sampling frequency of GNSS is
set approximately to 0.1 Hz (fastest achievable frequency in smartphones when using only
GNSS). From now on, I will refer to these sensors as ’low-cost’.

We, however, seek also to have sensors which give more precise measurements. This helps
mainly to gain better knowledge about the motion of the tram and also helps in developing
a model of the system in the following chapters. We select IMU from Analog devices:

1Datasheet available at www.mouser.com/ds/2/783/BST-BMI160-DS000-07-786474.pdf

5

https://www.mouser.com/ds/2/783/BST-BMI160-DS000-07-786474.pdf
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ADIS16465-12 and GNSS module from u-blox: C94-M8P application board3 with integrated
GNSS module and active antenna. A sampling frequency of accelerometer and gyroscope
is 2000 Hz; sampling frequency of GNSS is set to 1 Hz. From now on, I will refer to these
sensors as ’precise’.

2.2 Inertial measurement of tram motion

In this section, I examine the motion of a tram and how this motion is reflected in mea-
surements in triaxial accelerometers and gyroscopes. For all measurements, axes of IMU
are aligned with the tram right-handed set of axes. That is, axes x, y and z are aligned
respectively with longitudinal (pointing in driving direction), lateral (pointing left) and
vertical axis (pointing up) of a tram. Note that discussion of inertial measurement in this
section does not include other influences on measurement such as bias, sensor noise or
vibrations from surrounding of the sensor. These influences will be discussed later in Sec. 2.3.
This section is based on work done in [10].

2.2.1 Constrains on motion

In general, considering vehicle as a rigid body, six values (three for a position and three
for an orientation) fully describe its configuration and therefore are needed to describe its
motion accurately. This is for instance a case of unmanned aerial vehicles or underwater
vessels where no holonomic constraints are imposed on the vehicle/vessel motion.

I can, however, describe the motion of a tram (both position and orientation) using only
one parameter, thus having only one DOF. Intuitively, this can be seen if a railtrack is
represented as a curve (center line of two parallel rails) see Fig. 2.1a. Only a single value s, a
distance from starting point of the curve, parametrize the position of any point on the curve.

For describing the orientation of a vehicle, I use Tait–Bryan angles4: heading ψ, slope θ
(longitudinal inclination) and bank φ (lateral inclination) see Fig. 2.1b. I chose North, East
and Down (NED) frame orientation convention. For a given position, heading and slope
angles can be uniquely determined assuming that tram is travelling only tangent to the
track. From perspective of both horizontal and vertical movement, tram needs to follow the
rails unless cases of a derail. Bank of the tram is given by the difference in height of rail
(compensation of the lateral acceleration during the motion in turns). Angles describing
the orientation are therefore functions of distance, denoted as: ψ(s), θ(s) and φ(s). If not
ambiguous, I will omit the dependence of angles on distance s.

2Datasheet available at www.analog.com/media/en/technical-documentation/data-sheets/adis16465.pdf
3Specification available at www.u-blox.com/en/product/c94-m8p
4In flight dynamics, these angles are called yaw, pitch and roll.

https://www.analog.com/media/en/technical-documentation/data-sheets/adis16465.pdf
https://www.u-blox.com/en/product/c94-m8p
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s

(a)

ψ

φ

θ

-z

x

y

(b)

Figure 2.1: (a) Railroad track (two black parallel lines) represented by a center curve (red).
Distance and thus a position on the track of a tram is given by a parameter s. (b) Orientation
of a rigid body represented using Tait-Bryan angles with NED frame orientation convention.
Angles heading, slope and bank are respectively denoted as ψ, θ and φ.

2.2.2 Accelerometer measurements

I denote three components of an inertial acceleration as ax, ay and az. For standing tram,
these values are affected only by a gravity g:axay

az

 =

 −g sin θ

g sinφ cos θ

g cosφ cos θ

 . (2.1)

For moving tram, longitudinal speed ṡ and orientation can change throughout its motion.
Change of speed s̈ is added directly to ax whereas describing influence of change of orientation
is more laborious. It is convenient to define horizontal and vertical curvature ch and cv:

ch =
dψ(s)

ds
, cv =

dθ(s)

ds
. (2.2)

If motion on curved track (both horizontally and vertically) is locally approximated as
circular motion on arc, curvature is reciprocal of the radius r of this arc:

ch =
1

rh
, cv =

1

rv
. (2.3)

For change of heading ch during motion, acceleration is therefore given as:

aheading =
ṡ2

rh
=
dψ(s)

ds
ṡ2 = chṡ

2 . (2.4)
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Taking into account also non-zero bank φ, acceleration (2.4) influence both ay and az:

ay,heading = chṡ
2 cosφ ,

az,heading = chṡ
2 sinφ .

(2.5)

Change of slope cv during motion can be incorporated into accelerometer measurement in
similar way as change of heading:

ay,slope = −cv ṡ2 sinφ ,

az,slope = −cv ṡ2 cosφ .
(2.6)

Note that minus signs are added in (2.6) to be consistent with selected positive orientation
of slope angle and selected orientation of IMU in a tram. Accelerometer thus measures:axay

az

 =

 s̈− g sin θ

g sinφ cos θ + chṡ
2 cosφ− cv ṡ2 sinφ

g cosφ cos θ + chṡ
2 sinφ− cv ṡ2 cosφ

 . (2.7)

For a tram dynamics, bank angle is usually not significant and thus cosφ ≈ 1 and sinφ ≈ 0.
Formula (2.7) is simplified to: axay

az

 =

 s̈− g sin θ

chṡ
2

g cos θ − cv ṡ2

 . (2.8)

2.2.3 Gyroscope measurements

I denote three components of an inertial angular rate vector measured by gyroscope as ωbank,
ωslope and ωheading. Gyroscope measures mainly change of the orientation of vehicle. Using
rotation matrices Cφ and Cθ defining rotation around x axis by φ and rotation around y
axis by angle θ respectively:

Cφ =

1 0 0

0 cosφ sinφ

0 −sinφ cosφ

 , Cθ =

cos θ 0 − sin θ

0 1 0

sinθ 0 cos θ

 . (2.9)

gyroscope measurement is given by equation [21]: ωbank

ωslope

ωheading

 =

φ̇0
0

+ Cφ

0

θ̇

0

+ CφCθ

0

0

ψ̇

 =

 φ̇− ψ̇ sin θ

θ̇ cosφ+ ψ̇ sinφ cos θ

ψ̇ cos θ cosφ− θ̇ sinφ

 , (2.10)
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For small bank angle and restricted tram dynamics, I can simplify the equation (2.10) to: ωbank

ωslope

ωheading

 ,

ωxωy
ωz

 =

φ̇θ̇
ψ̇

 . (2.11)

2.3 Data analysis

Here, I explain and show how I use data from inertial measurements for state estimation
of a tram. In previous Sec. 2.2, I have defined equations (2.8) and (2.11) which describe
how a motion of the tram is sensed by inertial measurements. From these measurements, it
should be possible to determine position and orientation on the tram at every time instance.
These equations, however, do not include other influences which cause errors to motion
measurement and make it impossible to estimate the motion using only IMU measurements.
I therefore show samples from several datasets where these influences are analysed and then
I select features which are relevant for state estimation of the tram.

For this analysis, I use data, which I acquired as a regular passenger in the tram, using both
low-cost and precise IMUs. I placed both IMUs on a horizontal surface in the tram and fixed
them onto the surface by a tape. I intentionally selected a tramway where trams can reach
higher speed and contains both right and left turns.

2.3.1 Filtration

First, see Fig. 2.2a which displays ax measured by precise accelerometer and its spectrogram
in Fig. 2.2b. It can be seen from both figures that there are several sources of noise in
the data. For standing tram (around t ≈ 0 s or t ≈ 80 s), mainly white-noise affect the
measurement (similar power on all frequencies); this is caused by nature of MEMS sensor.
Another significant source creates oscillations with constant frequency, around 290 Hz, and
is probably caused by power drive electronics in the tram.

When the tram started moving, measurement is heavily influenced by vibrations with high
power which makes difficult to get some insight into the data. The motion of high weight
vehicle (such as a tram), however, has slow dynamics. I can therefore use a low-pass filter to
separate only useful signal from the measurement. I use discrete infinite impulse response
(IIR) low-pass filter, third order, with passband frequency 2 Hz. The transfer function of the
used filter is:

Hfilt(z) =
0.0736z3 + 0.2208z2 + 0.2208z + 0.0736

z3 − 0.9761z2 + 0.8568z − 0.2919
. (2.12)

Figs. 2.3a and 2.3b show filtered acceleration ax and angle rate ωy using precise IMU. Other
measurement can be filtered in the same manner. After filtration, features of the motion
contained in the data are more visible which helps in further analysis.
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(a) (b)

Figure 2.2: Acceleration measured by precise IMU on board of Škoda 15T tram. (a) Mea-
surement from accelerometer ax. (b) Spectrogram of ax. Measurement contains white-noise
and is heavily influenced by vibrations during the motion.

(a) (b)

Figure 2.3: Measurement ax and ωy filtered by low-pass filter. After filtration, features of
the motion contained in the data are more visible.

2.3.2 Features of the motion

Now, having measurements filtered from vibrations and partly from noise, it is easier to
extract useful information from them. I first focus on longitudinal acceleration s̈ contained in
ax. When estimating the state of a tram, s̈ can be directly used for acceleration estimation.
As can be seen from Fig. 2.3a, however, ax is also affected by a gravity g causing changing
bias (compare values for t = 0 s or t = 80 s). Since this bias is dependent on the slope θ at the
current position, it can be eliminated when information about the θ is available. Theoretically,
it should be possible to obtain θ from ωy by numerical integration. Measurement ωy, however,
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(a) (b)

Figure 2.4: (a) Horizontal curvature ch visible in ωz and ay. (b) Measurement from
gyroscope: ωx and ωz. Change of bank due to compensation of lateral acceleration is visible
(highlighted by black squares).

contains other low-frequency components which were not filtered out by low-pass filter. As
can be seen in Fig. 2.3b, measurement has constant bias and is affected by swinging of the
tram body due to longitudinal acceleration/deceleration (visible in Fig. 2.3a). For trams,
change of the slope is usually small and therefore it is hard to distinguish it in ωy from other
influences. To de-bias the measurement ax I will use geographic information of a tram track
since orientation of a vehicle is fully given by its position on a track, This idea is explained
in detail in the next chapter.

Another feature of the motion which is contained in the measurement is horizontal curvature
ch. Curvature ch is reflected in ωz and also in ay, see Fig. 2.4a. Again, using geographic
information of a track, I can compare measured curvature ch with the curvature of the track
at a particular position and thus refine position estimation.

Lastly, see Fig. 2.4b which contains measurements ωx and ωz. From this figure, it can be
seen, that there is a change in bank angle accompanying a change of heading to lateral
acceleration (highlighted by black squares). Information of current bank, regarding its small
amplitude, has no use in estimation.

2.3.3 Comparison of data from low-cost and precise IMUs

In the previous subsection, I have shown only datasets obtained by a precise IMU. For a
low-cost IMU, it is intuitive, that several features could be lost in the data due to smaller
sampling frequency or overall lower sensitivity.

First, see the comparison of acceleration ax in Fig. 2.5a. Longitudinal acceleration s̈ of the
tram is visible in the data even from low-cost IMU. Next, see the comparsion of acceleration
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(a) Acceleration ax (b) Acceleration ay

(c) Angular rate ωz (d) Angular rate ωx

Figure 2.5: Comparison of measurements from Precise and Low-cost IMUs.

ay in Fig. 2.5b. Lateral acceleration caused by horizontal curvature ch is visible only for
higher speed of the tram (between 220 s and 240 s). For lower speed of the tram, lateral
acceleration is less visible due to unfiltered noise. Lastly, see Fig. 2.5c and 2.5d which show
measurements of angular rates ωx and ωz. In ωx from low-cost IMU, the bank change is
even less legible than from precise IMU. Measurement ωz from Low-cost IMU is similar to
the measurement from precise IMU and thus can be used for estimation.



3 | Digital map

In this chapter, I will examine available geographic information related to a railroad track
on which subject and target vehicles are travelling. As I have shown in Chapter 2, using the
geographic information, which I refer to as the digital map, it is sufficient to describe the
motion of a tram as a point mass moving on railtrack with one degree of freedom (DOF). The
exact geographic position of the vehicle, including its orientation can then be represented
using the digital map. Such representation gives a simpler description of the motion of the
vehicle and thus enables to create a more efficient dynamic model of a tram. Retaining
information about the vehicle orientation in the digital map is helpful in state estimation.

Further in this chapter, I will describe how the digital map can be constructed for a particular
railroad track using data from geographic information systems (GISs). Note that in this
thesis, I use WGS84 [12] map coordinate system to express the geographic position.

3.1 Representation of the railroad track

One railroad track consists of two parallel rails which are constructed as a smooth curves.
In GISs, however, railroad track is usually stored/represented only as one curve (same
representation used in Sec. 2.2.1). This curve is approximated as a set of points connected
by line segments. As an example, see Fig. 3.1a. Note that these points, which I will refer to
as track nodes, are not selected equidistantly but to reasonably approximate real shape of
the track. Information about the bank of the track is not contained in this representation,
but as shown in Sec 2.3.2, this information is not important.

To get the digital map of a particular area (in this case, I chose an area in Prague), I
merged information from OpenStreet map1 (OSM) with digital elevation model (DEM) from
Geoportal of Prague2. OSM contains only latitude and longitude of these points whereas
DEM contains altitude. See the output of the merge in Fig. 3.1b. There are many other
GISs with needed data but I chose those two for their accuracy.

1www.openstreetmaps.org
2www.geoportalpraha.cz

13

www.openstreetmaps.org
www.geoportalpraha.cz
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(a) (b)

Figure 3.1: (a) Railroad track (red curves) given by set of points (black dots) connected
by a line. Note that each read curve represents one pair of rails. Area captures Prague,
track near Jindřišská street. (b) Merge of data from OSM and DEM. Red curves represents
railroad tracks whereas color at particular point gives the altitude.

3.1.1 Parsing OSM data

OSM data consists of hierarchically structured elements, see documentation on OSM wiki3.
To get relevant data from OSM, I proceeded in the following way. First, I investigated the
structure of data which can be exported from OSM. I found the XML format as the most
convenient since there are several MATLABR© community libraries dedicated to parsing data
in this format. Data for smaller areas like in Fig. 3.1a can be exported directly from OSM
site4. Data for larger areas (e.g. whole city) can be exported for instance from Humanitarian
OSM Team site5. For creating the digital map of tram track, important elements are: node,
way and relation. Each element can also have a tag which further characterizes the element.
Tag is defined by its name and value.

• Node: represents geographic position of a point (black dots in Fig. 3.1a). Nodes can
also define tram stops by having tag "railway" with value "tram_stop".

• Way: represents connection of nodes and thus creates (a segment of) tram track. Ways
representing only tram track has a tag "railway" with value "tram".

• Relation: represents a whole tram line. It consists of set of members. Each member
can be a node (tram stops) or a way (segment of a whole tram line). It has a tag
"name" with value defining the exact tram line, for instance: "Tram 18: Vozovna

3https://wiki.openstreetmap.org/wiki/Beginners_Guide_1.3
4https://www.openstreetmap.org/export
5https://export.hotosm.org

https://wiki.openstreetmap.org/wiki/Beginners_Guide_1.3
https://www.openstreetmap.org/export
https://export.hotosm.org
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Pankrác ⇒ Nádraží Podbaba".

To get the digital map for a particular tram line, I find a corresponding relation (using a tag
"name"). I then iterated through all ways in this relation and for each node in each way, I
stored its geographic location. Information from OSM of a tram line can be gathered to a
structure with following fields:

• Coordinates: list of size n, each i-th entry contains latitude and longitude of a i-th
track node.

• Lines: list of size (n − 1), each i-th entry contains an analytic description of a line
segment connecting i-th and (i+ 1)-th track nodes.

3.1.2 Parsing DEM data

DEMs are usually stored as raster image of an area. The geographic location of the area is
given by coordinates of corner points of the image. The captured area is divided into a grid
of square areas, each square corresponds to one pixel of the image. Therefore, each pixel
contains information about the longitude, latitude and altitude. Key attribute of DEM is
resolution of the grid—the size of an area covered by one pixel. In Fig. 3.1b, DEM has 1 m

grid.

To verify data from DEM, I created a trajectory consisted of equidistantly sampled points
on tram track and directly read an altitude from DEM. Resulted altitude profile is displayed
in Fig. 3.2a (blue line). Altitude profile contains clearly unrealistic change of altitude. This
inaccuracy can be caused by noise in the data but also by an incorrect alignment of OSM
data with DEM data. To solve this problem, I tried several 2-D order-statistic filtering
of DEM image. The best result was achieved by using first order (minimum) filter from
3× 3 vicinity of a pixel. See the filtered altitude profile of the track in Fig. 3.2a (red line).
Information of altitude is added to the structure described above as third coordinates of
track nodes.

3.2 Use of the digital map

In this section, I describe, how I use the digital map for state estimation. For particular
tram, it is not necessary to store the digital map for a whole area. Unlike the other road
vehicles which can move freely on any road in an area, trams are usually constrained by their
current schedule. Therefore, only the digital map of its scheduled path needs to be stored.

3.2.1 Position on the track

Main use of the digital map is to restrict motion of a tram to track and thus use only one
parameter (distance s) instead of two (or three) geographic coordinates.
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(a)

de(P,Q)

dt(P,Q)

Longitude

Latitude

P

Q

(b)

Figure 3.2: (a) Comparison of non-filtered and filtered altitude data obtained from DEM.
(b) Definition of distance along the track dt(P,Q) and comparison with euclidean distance
de(P,Q). Red dashed line represents tram track and red dots track nodes.

It is convenient to define distance along the track dt(P,Q) (or travelled distance) of two
points P and Q, see Fig. 3.2b. It is intuitive that distance along the track better reflects
travelled distance of a tram then Euclidean distance de(P,Q). If not ambiguous, I will refer
to distance along the track only as distance. When one point on the track is selected as a
reference (with s = 0), distance s uniquely gives a position on the track (forward points from
reference points has positive distance, backwards points has negative distance). Coordinates
(latitude and longitude) are then given by iterating from current position through all track
nodes in path to reach distance s. For illustration, see again Fig. 3.2b for dt(P,Q) = s where
P is current point and point in distance s is Q. To get coordinates between two consecutive
track points, analytical description of line connecting two points is used.

3.2.2 Horizontal curvature and slope angle

Another values which I use from the digital map are horizontal curvature and slope angle
computed from track nodes coordinates. I use horizontal curvature directly for position
estimation (comparison with gyroscope measurements ωz) and slope angle to eliminate
bias g sin θ(s) caused by gravity in accelerometer measurement ax = s̈ − g sin θ(s). Note
that because WGS84 coordinates (of track nodes) are not Cartesian, I converted them into
ECEF (earth-centered, earth-fixed) coordinates which are Cartesian. This is important for
computation given below. For further explanation, I introduce following notation:

• P (s): ECEF coordinates of points on track in distance s,

• si: distance of i-th track node,

• P (si): ECEF coordinates of i-th track node.
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P (si)va
vb

∆ψ(si)

Latitude

Longitude

(a)

P (s′ − h)

P (s′ + h)P (s′)

P (sk+N)
Latitude

Longitude

P (sk)

P (sk+m)
P (sk+m+1)

(b)

Figure 3.3: (a) Change of heading computed for track nodes Pi as angle between segments
va and vb. (b) Computation of curvature ch using ∆ψ(si) of track nodes between points
P (s− h) and P (s+ h).

Horizontal curvature

Horizontal curvature ch is given as derivation of ψ(s), see Eq. (2.2). Because the track is
given only by a set of track nodes, a derivation is replaced by numerical differentiation. Since
heading ψ(s) changes only on track nodes (heading is constant on the line between them), I
first compute only changes of heading ∆ψ(si). Let denote the segment which ends by i-th
track node as va and a segment which starts with i-th track node as vb, see Fig. 3.3a. Change
of heading ∆ψ(si) is equal to angle between vectors va and vb. To compute this angle and
retaining information of the sign of orientation (positive to for left turn and negative to the
right turn), I use the following equation:

∆ψ(s) = sign[(n× va) · vb] arccos

(
va · vb
|va||vb|

)
. (3.1)

where n is normalized vector pointing from the origin to point P (si). To compute numerical
differentiation, I use symmetric difference:

ch =
∆ψ(s)

∆s
=
ψ(s+ h)− ψ(s− h)

2h
. (3.2)

I further change this equation so I can directly use ∆ψ(si) instead of absolute values of
heading φ(s+ h) and φ(s− h). Curvature ch at point s′ is then given by equation:

∆ψ(s′)

∆s′
= (2h)−1

k+N∑
i=k

∆ψ(si) , (3.3)

where k, k + 1, ..., k +N are indexes of starting track nodes between points P (s− h) and
P (s+ h), see Fig. 3.3b.

To test the procedure explained above, I computed the ch(k) for 1400 m long trajectory
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(a) (b)

Figure 3.4: (a) Trajectory generated by sampling railroad track with 1 m spacing. Markers
indicates 100 m segments of the trajectory for better pairing with computed curvature.
(b) Curvature of the generated trajectory.

generated along the particular tram line. Points of trajectory are sampled every 1 m, thus
k ∈ {1, 2, . . . , 1399, 1400}. See the generated trajectory in Fig. 3.4a, markers on the figure
indicates 100 m long segments. Markers on the figure indicates 100 m long segments. Resulted
horizontal curvature of this trajectory is shown in Fig. 3.4b. In this case, I found the best
result with h = 15 m. In addition, I used a moving average filter with window size of 10
samples to lower influence of inaccuracy in the data.

Slope angle

Computation of slope angle θ(s) is similar to computation of heading ψ(s) in case of horizontal
curvature. I already explained how I obtained altitude profile of the track nodes in Sec. 3.1.2.
Unlike horizontal curvature, I am interested in absolute value of θ(s) or more precisely
sin θ(s). To get sin θ(s), I compute slope θ(si) for track nodes Pi. For Pi, slope θ(si) is given
by equation:

sin θ(si) =
A(si+1)−A(si)

si+1 − si
. (3.4)

where A(si) and A(si+1) are altitude at point P (si) and P (si+1) respectively. To get value
of sin θ(s′) for arbitrary point s′ on track and robust to inaccuracy in the data, I proceed
in similar manner as for computation of horizontal curvature. First, for sin θ(s′), I select
points P (s′ − h) and P (s′ + h). Then I iterate through all track nodes between these points
and compute (3.4) for all track nodes in the path to get [sin θ(sk), ..., sin θ(sk+N )]. From all
these values, I make a mean which gives a sin θ(s′). Lastly, to again lower the influence of
inaccuracy in the data, I used moving average filter with window size of 20 samples. See
the resulted sin θ(s′) in Fig. 3.5a for s′ ∈ {1, 2, . . . 1300}. I tested this procedure for the
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(a) (b)

Figure 3.5: (a) Slope θ obtained from altitude profile of the generated trajectory. (b) Al-
titude profile of the generated trajectory.

same trajectory which I generated for altitude profile in Fig. 3.2a. For easier comparison of
altitude profile and slope profile, the same altitude profile is shown in Fig. 3.5b.
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With this chapter, I am stepping into the modelling of dynamic system of a tram. In
Chapter 3, I have shown that it is sufficient to describe only the longitudinal dynamics of
the vehicle. Exact geographic position and track characteristics for position estimation are
given by the digital map. In general, it is convenient to have as precise model of a plant as
possible. On the other hand, it is intuitive that white box approach (complete description of
electronics and mechanics of a tram) is unnecessary or even unrealisable.

With available measurements from sensors and insight into the system, I will create two
grey-box models. First, I will develop a simple model which will reflect a motion of the
tram, incorporating the available measurements and use the digital map. I will use this
model in estimation algorithm. Then, I will develop second, high-fidelity model which will
be used mainly to generate a testing data (similar to real data). This enables to evaluate
the proposed algorithm with extensive (Monte Carlo) simulations. Similar evaluation of the
algorithms using real data would be infeasible because of many reasons (missing information
of ground-truth position of the tram, time consumption of real experiments, . . .).

4.1 Simple model

For collision avoidance, main motion-dependent values are: position, velocity and acceleration
of a tram, Since there is no information of input, I use constant acceleration model:

xk+1 =

1 ∆t 1
2∆t2

0 1 ∆t

0 0 1

xk +

0

0

1

wk (4.1)

with state vector consists of longitudinal (along the track) position, speed and acceleration:
xᵀ = [s, ṡ, s̈] and ∆t is sampling period of the system. White noise wk ∼ (0, Qk) is added to
model the uncertainty in change of acceleration caused by the input. Covariance Qw is [18]:

Qk =

∆t5/20 ∆t4/8 ∆t3/6

∆t4/8 ∆t3/3 ∆t2/2

∆t3/6 ∆t2/2 ∆t

 (4.2)

21
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4.1.1 Output model

Creating output model is more laborious. In the Chap. 2, I have shown that only following
measurements from sensors are relevant:

• Position from GPS ys,

• Velocity yv,

• Accelerations ax and ay from accelerometer,

• Angular rate ωz from gyroscope.

Since model (4.1) uses parameter s to represent position whereas GPS gives coordinates in
latitude and longitude, I convert GPS coordinates to representation using s. GPS points
which are on track can be directly parametrized by value of s. Other points (which are
not on track) can be projected onto track as closest point on the line from the GPS point.
Therefore, I handle GPS measurements as direct measurement of current distance s. I denote
GPS position measurement as ys.

Measurements yv and ax are directly given by states ṡ and s̈ respectively. For remaining
measurements ay and ωz, I use the digital map which gives a mapping ch(s). For ay, I
then use Eq. (2.8) and for ωz I use Eq. (2.11). In addition, all measurements contains noise
vk. I model this noise as white, zero mean with covariance matrix Rk. To sum up, output
yk = [ys, yv, ax, ay, ωz]

ᵀ at time k is given two sets of equations, linear:ys,kyv,k

ax,k

 =

1 0 0

0 1 0

0 0 1

xk +

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

 vk , (4.3)

and non-linear:

ay,k = ch(sk)ṡ
2
k +

[
0 0 0 1 0

]
vk ,

ωz,k = ch(sk) +
[
0 0 0 0 1

]
vk ,

(4.4)

where vk ∼ (0, Rk). Furthermore, for GPS outage, only available measurement is ax:

ax,k =
[
0 0 1

]
xk +

[
0 0 1 0 0

]
vk. (4.5)

This can be described as hybrid system where with available GPS, output is given by Eq. (4.3)
and (4.4) and with GPS outage by Eq. (4.4) and (4.5).
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4.2 High fidelity model

In this section, I will create a model of the system which better reflects data measured
on-board of a tram. An important note is that this model is not supposed to be an accurate
model for all trams. Rather, the goal is to have a decent model of a particular tram with
driver based on available data for generating data which would be similar to real data. These
data will be used for evaluation of the estimation algorithm. Most of the data which will be
used for identification are from experiments in Poruba depot. Measurements were acquired
on-board of Tatra T3 tram. Details of these experiments are in the Appendix B.

With insight into the tram mechatronics, I divide the model into five subsystems:

• Driver: controller of a tram motion.

• Power mechatronics: this subsection includes all electronics and mechanics between
the driver’s input and torque created by a motor which is applied to the wheel.

• Longitudinal motion dynamics (LMD): represents the longitudinal motion of a tram.

• Digital map: incorporates track characteristics, already defined in the Chap. 3.

• Model of the sensors (GNSS module and IMU): adding noise to signals.

See their interconnection in Fig. 4.1a. I created a complete model in Simulink.

4.2.1 Driver model

Looking closely at the role of the driver, his task is to drive the tram from point A to point
B (tram stops). Throughout the travel, the driver is adjusting acceleration and speed to
react to the environment. This is, for instance, avoiding collisions with other vehicles on
the track or satisfying soft and hard constraints such as maximal allowed speed, traffic rules
or passenger comfort. Role of the human driver in the tram is thus the same as the role
of a controller in closed-loop dynamic system. However, unlike a regular (deterministic)
controllers such as PID controller or state-feedback [9], driver’s decisions are mainly set by
the experience of the driver and thus not always deterministic. For the purpose of developing
the model, I seek to parametrize how the driver is deciding about the control input: the
position of a lever or a pedal which controls value of torque generated by a motor and thus
the motion of the vehicle. The block diagram of this subsystem is shown in Fig. 4.1b, below
is a description of its development.

Reference on speed

The only available data for parametrizing driver’s decisions are data from experiments in
Poruba depot where we instructed driver to follow speed reference vref which vary from
5 km h−1 to 40 km h−1 with 5 km h−1 spacing. We also instructed driver both to speed up and
to stop as if there were passengers in the tram (satisfying their comfort during acceleration
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Figure 4.1: (a) Interconnection of subsystems in high fidelity model. (b) Block diagram
of the Driver subsystem.

(a) (b)

Figure 4.2: (a) Experiment in which driver followed reference speed with pulse to
vref = 40 km h−1. Displayed is speed v measured by GNSS module and filtered acceler-
ation ax. (b) Dependence of ax on control error ectrl. Areas in red rectangles caused by step
changes of vref .

and deceleration). In Fig. 4.2a, see output from one of such experiment. The best approach
would be to compute control error ectrl = vref − v and create mapping from values of ectrl to
values of input u, for instance position of the control lever. The problem is that there is no
direct information of the chosen input u. I address this problem in the Subsection 4.2.2.

For now, I create a mapping from values of ectrl to value of ax, see Fig. 4.2b. This should
represent which levels of acceleration is driver choosing depending on current value of ectrl.
Points in red rectangles represent the situation when there is a step change of vref . For a
brief moment, there is already high ectrl but driver did not change the control input yet or
the change of the input did not propagate to sensor yet. Except points in red rectangles, the
mapping ectrl → ax agrees with intuition. With higher control error, driver tends to choose
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(a) (b)

Figure 4.3: (a) Dependence of ax on control error ectrl for eight experiments with vref

varying from 5 km h−1 to 40 km ⊥ h. (b) Seventh order polynomial function fpol (red) which
represents driver’s decisions. Function was found using polynomial regression where yellow
points were excluded from regression.

n 7 6 5 4
pn −1.405× 10−6 1.540× 10−6 2.973× 10−4 −2.768× 10−4

n 3 2 1 0
pn −2.007× 10−2 1.705× 10−2 5.798× 10−1 1.1673× 10−2

Table 4.1: Coefficients of seventh order polynomial representing driver’s decision strategy.

higher acceleration (similarly for negative values). It is worth mentioning that values of
acceleration are not symmetric for positive and negative control error. Recreating the same
procedure for all vref tracking experiments, the result is shown in Fig. 4.3a. It can be seen
from the figure, that driver is not always consistent. To get consistent and also injective
mapping ectrl → ax, I approximate the data using polynomial regression, see Fig. 4.3b.
Points displayed in yellow are excluded from regression, since these do not represent the
driver decision as I already discussed. Obtained is seventh-order polynomial function:

a(ectrl) = p7 e
7
ctrl + p6 e

6
ctrl + . . .+ p1 ectrl + p0 , (4.6)

see coefficients pn in the Table 4.1. The function a(ectrl) is used only for eref ∈ 〈−10; 10〉;
extrapolation for values outside the interval are done using values at the end-points of the
interval. To model dynamics of driver’s decisions, I use first order system with time constant
Ts = 0.2 s and unity DC-gain [9]:

Hdriver(s) =
5

s+ 5
, (4.7)
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Reference on position

So far, the model of the Driver has vref or more precisely the ectrl as an input. For further
experiments, I have found necessary to have a model of driver reacting to distance control
error edist = sref − s instead of ectrl. Distance reference sref can represent a distance to next
tram stop or to rear-end of forward vehicle. I propose a cascade structure where reference
on position is transferred to reference on speed so I can use the strategy (4.6).

For transferring sref to vref , I design a following control law: if edist is higher than threshold
Kthres, vref is set to maximal allowed speed vmax. On the other hand, if eref ≤ Kthres, vref is
given as output of PID controller. Following equation characterize the control law:

vref =

kpedist + ki
∫
edist + kd

dedist

dt
if edist ≤ Kthres ,

vmax otherwise .
(4.8)

Reaction to target tram

The last block which I include to the Drive is how sref of subject tram changes in reaction
to target tram. This will be important for experiments in which two trams are moving on
the same track and position reference of subject tram changes due to target tram. I propose
an Algorithm 4.1 which should simulate the behaviour of human driver.

4.2.2 Power drive mechatronics

Structure of power drive mechatronics (PDM) subsystem is shown in Fig. 4.4a. I first assume
that output from Driver subsystem is a control action u, giving a position of the control
lever. The first block in this subsystems models the mechanics of the lever. In T3-type trams,
this lever can only be in discrete positions which in consequence quantizes a power driving
the tram motor. This can be seen from acceleration ax in Fig. 4.4b where acceleration is
decreasing in stairstep manner. For forward motion, the lever has seven positions (levels).
From experiments in Poruba depot, I identify maximal acceleration to be ≈ 1.75 m s−2. Input
u is thus quantized with 0.25 quantization interval.

Second block, first-order system, is black-box representation of the transfer of lever position
to torque generated by a motor. This first order system is again characterized by a time
constant Tpdm and a gain Kpdm. I chose the Tpdm and Kpdm in order to create such torque,
that in consequence gives desired longitudinal acceleration of the tram (to be equal to
a(ectrl)).

4.2.3 Longitudinal motion dynamics

This subsystem is responsible for transferring torque generated by a motor Tmot to longitudinal
motion of a tram. The model of this subsystem is based on the model developed in [19].
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Algorithm 4.1: Change of SV’s position reference sref in reaction to TV’s position.

Input :Position of TV (rear-end) sTV, position of SV sSV, velocity of SV vSV,

position of the destination (tram stop) sstop, safety margin dsafe, relative

distance to start dstart.

Output :Position reference sref .

1 if sTV ≤ sstop then

2 if vSV = 0 then

3 ∆s← sTV − sSV // Relative distance of trams

4 if ∆s ≤ dstart then

5 sref ← sSV // Stay at current position

6 else

7 sref ← sTV − dsafe

8 end

9 else

10 sref ← sTV − dsafe

11 end

12 else

13 sref ← sstop // TV is not in the path to the destination

14 end

To model this subsystem, I use framework of bond graphs. Extensive description of system
modelling using bond graphs is given for instance in [5, 14]. To create the bond graph, it is
important to track the power flow in the subsystem. Main power-blocks, which I identified
in the subsystem, are shown in Fig. 4.5a.

Motor (PDM) is the main source of the power entering the subsystem. I assume that motor
creates torque Tmot independent of its speed ωmot and thus I model the motor as a effort
source given by equation:

Tmot = T (u); . (4.9)

Energy from the motor is transferred into an angular motion of the wheel which I model
using an inertance defined by an equation:

ωwh(t) =
1

Jwh

∫
Ttot(t)dt , (4.10)

where Jwh is moment of inertia of a wheel and Ttot(t) is a total torque action on the wheel.
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u Lever Kpdm

Tpdms+1

Driver LMD

Tmot

a(ectrl) s̈
≈

(a) (b)

Figure 4.4: (a) Block diagram of power drive mechatronics subsystem. Input u is used as
lever position. (b) Acceleration ax changes in stairsteps manner due to quantization of the
control lever.
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Figure 4.5: (a) Block diagram of power flow in LDM subsystem depicted by half arrow
(power bond) and interaction (signal based) with other subsystems (Sensors and Digital
map). (b) Bond graph of the longitudinal dynamics motion subsystem.

Angular velocity ωwh(t) is then transferred to tangential speed vwh(t) = rωwh(t) where r is
radius of the wheel. Another block in the path of the power flow corresponds to adhesion of
a rail and a wheel. Model of adhesion is important to be able determine maximal tractive
force (under certain conditions) which can be used for braking. I model the adhesion as
non-linear resistance (dissipation of the energy) which creates adhesion force Fad(t):

Fad(t) = µ(vS)FN (t) , (4.11)

where FN (t) = M(t)g is a normal force, µ(vS) is adhesion coefficient dependent on slip
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Rail surface conditions µmax KS

Dry 0.3 0.72
Medium 0.2 0.72
Wet 0.1 0.72

Table 4.2: Coefficients defining adhesion under certain rail surface conditions. For further
explanation, see [17].

velocity vS = vwh − ṡ. To compute adhesion coeficient, I use formula from [17]:

µ(vS) =
2KSµ

2
maxvS(t)

µ2
maxv

2
S(t) +K2

S

, (4.12)

where KS and µmax are coefficients given by adhesion condition of the track, see Table. 4.2.
Due to the adhesion, energy accumulated in the wheel velocity is then transferred to
longitudinal velocity of the tram. I model this energy accumulation in motion of the tram
again as inertance:

ṡ(t) =

∫
1

M(t)
Ftot(t)dt , (4.13)

where M(t) is a time varying mass of the tram body and Ftot(t) is total force acting on the
tram body. Since tram usually cannot travel backwards, I added a constrain on speed: ṡ ≥ 0.
Lastly, energy contained in the tram motion is dissipated due to the resistive force Fres

(rolling and grade resistance). For the railroad vehicles, I found that this can be modelled
using Davis formula [8]:

Fres(t) = 1000FN (t)

(
0.1

θπ

180
+ 2.5 +

(3.6ṡ(t))2

850

)
. (4.14)

Formula (4.14) was developed by AnsaldoBreda company for the tram Sirio but I assume
that it should be approximately valid for other types of trams. I altered Eq. (4.14) from [8]
so M is in kilograms, θ in radians and ṡ in meters per second. Final bond graph of this
subsystem is shown in Fig. 4.5b. It is now straightforward to get state-space representation
of the model or model in Simulink from of this bond graph. For completeness, I give the
resulted equation of LMD in Appendix C.

4.2.4 Parameters of the model

Before adding noise to the measured signals, let me first identify (to set) all remaining
parameters in the model to have matching generated signals with filtered measured signals.
All remaining parameters are listed in the Table 4.3. Here, I explain in detail chose of
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Parameter Value Unit Subsystem

vmax 65 kmh−1 Driver
Kthres 100 - Driver
dsafe 2 m Driver
dstart 10 m Driver
PID: kp 0.15 - Driver
PID: ki 0 - Driver
PID kd 0.01 - Driver
Tpdm 1 s PDM
Kpdm 6100 - PDM
Jwh 30 kgm2 LMD
M 16000 kg LMD

Table 4.3: All remaining parameters of high fidelity model.

parameters. I took value of M from online source1. Value of Jwh is only an approximation
based on available parameters (radius of the wheel r). Even thought the maximal speed is
vmax = 65 km h−1, I set maximal speed only to vmax = 50 km h−1 which is approximately
usual speed in urban areas. I set values of Kthres, dsafe and dstart to approximately reflect
the reality. Constants of PID controller needed to be set to get control on position without
overshoot (non-negative impulse response control). In case of position reference given by
a target tram, overshoot might lead to collision. I identified parameters Tpdm and Kpdm

from experiments in Poruba depicted on Fig. 4.2a by setting the same speed reference to the
model. See comparison of acceleration from experiments and the model on Fig. 4.6a and see
comparison of measured speed yv and ṡ on Fig. 4.6b. There are clearly some inaccuracies,
mainly in acceleration, for instance the transient event around ≈ 27 s in Fig. 4.6a.

4.2.5 Model of sensory measurement

Last thing which is needed to add to the model is model of the sensors. To get measurements
ys, yv and ax, I only add noise to s, ṡ and s̈, respectively. Other measurements ay and ωz
need to be generated using the digital map.

Position measurement model

Accuracy of GPS position is not contained in the data from Herman’s UCU. I, therefore,
assume the accuracy to be 5 m. To model GPS position inaccuracy, I first take ground-truth
position s generated from the model. Using the digital map, I then find coordinates (latitude
and longitude) of point P (s). Then, the point P ′ is selected in distance d ∼ (0, 25) with
center in P (s) and uniformly selected heading. This newly selected point P ′ is then again

1https://cs.wikipedia.org/wiki/Tatra_T3

https://cs.wikipedia.org/wiki/Tatra_T3
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(a) (b)

Figure 4.6: (a) Comparison of filtered acceleration ax obtained from real experiments
and acceleration s̈ generated from the high fidelity model. (b) Comparison of speed vGPS

obtained from real experiments and speed ṡ generated from the high fidelity model.

projected onto the track to obtain P ′(s) and its position s on track.

In addition, I also model GPS dropouts/outage. To get an idea of the real typical frequency
of GPS dropouts, I use data gathered by Herman’s UCU. In UCU, GPS is sampled (together
with all other measurements) with sampling period Ts = 100 ms and every sample contains
a timestamp. In every discrete time instance, I compute the difference of GPS timestamps
using most recent GPS data and GPS data used in previous time instance. See the results
in Fig. 4.7a displaying time difference of GPS over time and histogram 4.7b of differences.
GPS dropout occurs when the time difference is higher than 100 ms. It can be seen that
there are mainly dropouts of one GPS measurement. From the histogram 4.7b, I estimate
the probability of such one-step GPS dropout to be pout = 0.2549. It can also be seen that
GPS dropouts with higher duration (in Fig. 4.7a between time 4000 s and 6000 s) usually
exhibit in a burst. Difference equal to 0 ms represents the situation, when in current time
instance, GPS data from previous time instance is used.

Speed measurement model

I assume that both speed and position are measured by GNSS module. Typical accuracy of
measured speed in data obtained by Herman’s UCU is 0.5 m s−1. I model this inaccuracy
as a random walk with values bounded in an interval 〈−0.5; 0.5〉. See an example of noised
measurement yv of a speed in Fig. A.1.
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(a) (b)

Figure 4.7: (a) Time difference of GPS data over time. (b) Histogram of time differences.
Note that y-axis has logarithmic scale.

(a) (b)

Figure 4.8: Data from experiment in Poruba depot, tram Tatra T3. (a) Acceleration ax.
(b) Spectrogram of ax.

Acceleration measurement model

To model noise contained in acceleration, I use data from experiments in Poruba. First, see
measured acceleration ax and its spectrogram in Fig. 4.8a and 4.8b. From spectrogram of the
ax signal, I identified and divide the main contained noise into three components (I denote
constants corresponding to particular component using subscript a, b and c respectively).

First component represents vibrations with constant amplitude on frequency 56 Hz. Source
of these vibrations might be some mechatronic part in the tram (e.g. cooling). I model this
component as sinus signal with constant amplitude and frequency. Even thought this is
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not exactly true, I assume that this component is active only when a tram is moving ṡ > 0.
From power spectral density, I identified the amplitude of these vibrations to be Aa = 0.117.

Second component is white noise with variance depending on the speed of the tram. This
component includes noise of the MEMS sensor but also models the vibration of body of the
tram due to higher speed. From power spectral density, I identified standard deviation of
this noise as

σb = σconst + σvar = 0.015 + 0.009ṡ . (4.15)

Last component represents high-power vibrations with linearly changing frequency (emerged
red curves in the spectrogram). Obviously, all emerged curves reflect only one source
of vibration created as multiplication of fundamental frequency. When comparing the
spectrogram with corresponding speed in Fig. 4.6b, it can be clearly seen, that the frequency
is dependent on the speed ṡ (the same phenomenon can be seen in Fig. 2.2b). My assumption
is, based on values of frequencies and the power, that vibrations are caused by rotation of
the wheels. Therefore, I model this component using sinus signal with varying frequency:

xsin = Ac sin

[
Φ0 + 2π

∫ t

0
f(τ)dτ

]
, (4.16)

where Ac is an amplitude, Φ0 is initial phase and f(t) is a function describing dependence of
frequency on time. I model f(t) as linear dependence on speed:

f(t) = kcṡ(t) , (4.17)

where kc = 288
11 i, i = {1, 2, 3} is slope of speed-frequency dependence which I identified from

Fig. 4.6b and 4.8b. Combining Eq. (4.16) and (4.17) and setting Φ0 = 0:

xsin = Ac sin

[
2π

∫ t

0
kcṡ(τ)

]
= Ac sin [2πkcs(t)] . (4.18)

I identified amplitude Ac = 0.06 again from power spectral density. Finally, see comparison
of generated and measurement of ax in Fig. 4.9a. To check that generated signal has similar
spectrogram as measured ax, see Fig. 4.9b.

Curvature measurement model

Creating a measurement model of ay and ωz is now quite straightforward. With identified
horizontal curvature of a track ch, measurements are given as: ay = chṡ

2 and ωz = ch. To
add noise into the ay, I use the same noise signals as in case of ax. Noise added to ωz also
has the same components as ax but the amplitude of deterministic component divided by
50 and a standard deviation of stochastic components also divided by 50. See examples of
generated noise signals in Fig. 4.10. I do not have a real measurement for comparison. Note
that in turns, simulated lateral acceleration is quite high in the amplitude. This is caused by
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(a) (b)

Figure 4.9: (a) Comparison of generated ax and generated ax from the model. (b) Spec-
trogram of generated ax.

(a) Acceleration ay (b) Angular rate ωz

Figure 4.10: Generated measurements from simulated motion of a tram on track with
several right and left turns.

the fact that I do not include a restriction on speed in turns and thus a tram does not drive
through the turn with realistic speed.
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In this chapter, I will describe and use Kalman filter (KF) for state estimation of a tram
motion and evaluate its performance using extensive (Monte Carlo) simulations.

Kalman filter is a well-known mechanism used in many applications related to state estimation
of the stochastic system. Numerous monographs deal with KF, for instance [2] or [20] thus I
will state only key equations to introduce the notation. I will use two types of discrete-time
KF: linear and unscented. The former is a fundamental form of KF for state estimation.
The problem with linear KF is, however, that the model used for estimation must be
linear. This is not satisfied for output Eq. (4.4). Nevertheless, measurement ωz does not
contain crucial information of the position and thus can be removed with only minor loss
of information. Output equation then becomes linear and linear KF can be used which
has simpler implementation. The latter, Unscented KF (UKF), is dedicated for estimation
using the non-linear model. The reason, why I chose UKF instead of Extended KF (also for
non-linear models), is that extended KF requires the model as a symbolic function whereas
output model (4.4) is in the form of a look-up table. In addition, UKF should theoretically
be able to handle non-linearity in the output model better than Extended KF.

After a brief introduction to KF algorithms, I will evaluate the performance of state estimation
using (Monte Carlo) simulations. Data for the simulations are generated from the high
fidelity model created in Sec. 4.2.

5.1 Estimation algorithms

5.1.1 Linear discrete time KF

Linear discrete time KF estimates state of a stochastic, linear and discrete time system:

xk = Fk−1xk−1 +Gk−1uk−1 + wk−1 ,

yk = Hkxk + vk .
(5.1)

Noises wk and vk are assumed to be white, zero mean and uncorrelated with covariance
matrices Qk and Rk:

E[wkw
T
j ] = Qkδk−j ,

E[vkv
T
j ] = Rkδk−j ,

E[wkv
T
j ] = 0 ,

(5.2)

35
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where E[X] is an expectation of random variable X and δk−j is Kronecker delta function.
Kalman filter for the system (5.6) with assumptions (5.2) is given by following equations:

• Initialization:

x̂0 = E[x0] ,

P0 = E[(x0 − x̂0)(x0 − x̂0)ᵀ] .
(5.3)

• Each time instance k = 1, 2, . . . contains two steps. Former is called Time (prediction)
step and contains time propagation of estimated state x̂k−1 and covariance of the
estimation error Pk−1 using state equations:

x̂k|k−1 = Fk−1x̂k−1 +Gk−1uk−1 ,

Pk|k−1 = Fk−1Pk−1F
T
k−1 +Qk−1 ,

(5.4)

and latter is Data (correction) step which contains a least-squares estimation using
measured data (if no measurement is available in step k, Data step is skipped.):

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1 ,

x̂k = x̂k|k−1 +Kk(yk −Hkx̂k|k−1) ,

Pk = Pk|k−1 −KkHkPk|k−1 .

(5.5)

5.1.2 Unscented KF

Unscented KF is an algorithm for state estimation of stochastic, non-linear discrete time
system:

xk = f(xk, uk, tk) + wk ,

yk = h(xk, tk) + vk .
(5.6)

with the same restriction on the noises wk and vk as in the case of Linear KF. Unscented
KF algorithm is given by following equations [7]:

• Initialization: same as in case of Linear KF (5.3).

• In each time step k = 1, 2, . . ., time step starts with generating the sigma points x̂(i)
k−1

and weights Wi:

x̂
(0)
k−1 = x̂k−1 , W0 = κ(n+ κ)−1 ,

x̂
(i)
k−1 = x̂k−1 + x̃(i) , Wi = (2n+ 2κ)−1 , i = 1, . . . , 2n ,

x̃(i) =
(√

(n+ κ)Pk−1

)ᵀ
i
, i = 1, . . . , n ,

x̃(n+i) = −
(√

(n+ κ)Pk−1

)ᵀ
i
, i = 1, . . . , n ,

(5.7)
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where n is an order of the system,
(√

(n+ κ)P
)
i
is i-th row of the matrix and κ = 3−n

(theoretical optimum for normal distribution). Here, square root of a matrix
√
P is

defined as
√
P

ᵀ√
P = P . Time propagation of x̂k−1 and Pk−1 is defined as:

x̂
(i)
k = f

(
x̂

(i)
k−1, uk, tk

)
,

x̂k|k−1 =

2n∑
i=0

Wix̂
(i)
k ,

Pk|k−1 =

2n∑
i=0

Wi

(
x̂

(i)
k − x̂k|k−1

)(
x̂

(i)
k − x̂k|k−1

)ᵀ
+Qk−1 .

(5.8)

Data step again starts with generation of the sigma points x̂(i)
k|k−1 using Eq. (5.7) with

latest estimation x̂k|k−1 and Pk|k−1 instead of x̂k−1 and Pk−1. Least-squares estimation
using measured data is defined as:

ŷ
(i)
k = h

(
x̂

(i)
k|k−1, tk

)
,

ŷk =
2n∑
i=0

Wiŷ
(i)
k ,

Py =
2n∑
i=0

Wi

(
ŷ

(i)
k − ŷk

)(
ŷ

(i)
k − ŷk

)ᵀ
+Rk ,

Pxy =
2n∑
i=0

Wi

(
x̂

(i)
k|k−1 − x̂k|k−1

)(
ŷ

(i)
k − ŷk

)ᵀ
.

(5.9)

Finally:

Kk = PxyP
−1
y ,

x̂k = x̂k|k−1 +Kk(yk − ŷk) ,

Pk = Pk|k−1 −KkPyK
ᵀ
k .

(5.10)

5.2 Simulation scenario

To evaluate the state estimation, I will use Monte Carlo simulations to generate the data
from high fidelity model developed in Sec. 4.2. I will create three datasets. All dataset will
consist of N = 100 simulation runs each with a different seed of random number generator
to generate different noise vectors of measurements. Each run lasts for T = 450 s. In the
first dataset, I will assume no GPS outage whereas in the second and third dataset, I will
define several intervals of GPS outages. The third dataset will differ from the second dataset
in added constant bias in acceleration measurement.

The scenario (deterministic part) of the simulation is as follows: I place the generated
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Lazarská
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Václavské nám.

(b)

Figure 5.1: (a) Map of Prague, near Jindřišská street with displayed tram track and stops.
(b) Generated travelled distance s corresponding to described scenario. Red rectangles
represents stops at tram stops.

trajectory of a tram on tram track in Prague, near Jindřišská street. The tram starts at
"Václavské náměstí" and travels through "Jindřišská", "Masarykovo nádraží" and "Náměstí
Republiky" to "Dlouhá třída", see Fig. 5.1a. Total travelled distance is ≈ 1.6 km. At each
tram stop, the tram stops for approximately 20 s. Also, total weight of the tram changes at
tram stops due to varying number of passengers in the tram:

• "Václavské náměstí": 17 t,

• "Jindřišská": 21 t,

• "Masarykovo nádraží": 18 t,

• "Náměstí Republiky": 20 t.

I assume constant adhesion conditions (dry conditions) of the track. See the generated
signals (true values) of position s, ṡ and s̈, in Fig. 5.1b, 5.2a and 5.2b respectively. Note the
changes of maximal acceleration and deceleration due to change in total weight of the tram
in Fig. 5.2b.

All measurements are noised according to output model created in Sec. 4.2.5. See an example
of noised data in Fig. 5.2a and 5.2b (distance s is transformed into GPS points and thus
is not displayed). Note the bias caused by non-zero slope ≈ 400 s in Fig. 5.2b. Output
sampling time is 100 ms in accordance with a sampling time of Herman’s UCU.

GPS outages for second and third dataset are displayed in Fig. 5.3a There are continuous
one-step outages with probability ≈ 0.25, two high-duration outages and one burst of outages.
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(a) Velocity (b) Acceleration

Figure 5.2: Generated velocity ṡ and acceleration s̈ corresponding to described scenario as
true values and measurements (with added noise and bias).

(a) (b)

Figure 5.3: (a) Generated GPS outages for the simulation scenario. Red rectangles mark
significant outages. There are two high-duration outages: 10 s outage around t = 80 and
5 s outage around t = 410 and burst of ≈ 1 s outages around t = 200. (b) Close look at
generated GPS outages.

5.3 Evaluation of estimation algorithms

In this section, I evaluate estimation using LKF and UKF on datasets generated in previous
Sec. 5.2. For every simulation run and every state variable, I compute root-mean-square-error
(RMSE) of true value y and estimated value ŷ:

eRMSE(y) =

√√√√ 1

T

T∑
t=1

(yt − ŷt)2 . (5.11)
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eRMSE(s) eRMSE(ṡ) eRMSE(s̈)

Without outages 1.9763 0.1864 0.0638
LKF With outages, without bias 2.0339 0.1906 0.0641

With outages, with bias 2.3498 0.4591 0.1979

Without outages 2.0949 0.1813 0.0648
UKF With outages, without bias 2.1753 0.1842 0.0652

With outages, with bias 2.3672 0.4432 0.1973

Table 5.1: Evaluation of estimation algorithms on different datasets.

Then, I compute mean from all RMSEs across all simulation runs in the dataset. RMSE for
all cases are summarized in Tab. 5.1.

5.3.1 Linear KF

For time-step, I use constant acceleration model (4.1) with ∆t = 0.1. As output model, I
use only linear part of model (4.3). System matrices are:

Fk =

1 0.1 0.005

0 1 0.1

0 0 1

 , Gk = 0 , Hk =

1 0 0

0 1 0

0 0 1

 (5.12)

and covariance matrices are:

Qk ≈

 0 0 0.0002

0 0.0003 0.005

0.0002 0.005 0.1

 , Rk =

25 0 0

0 0.25 0

0 0 0.1

 . (5.13)

I initialize the LKF algorithm with:

P0 =

10 0 0

0 10 0

0 0 10

 , x̂0 =
[
0 0 0

]ᵀ
. (5.14)

In addition, to refine the estimation, I use the digital map to obtain slope θ(ŝk) at estimated
position ŝk which is then used to de-bias acceleration measurement.

Without GPS outages

First, I evaluate performance of LKF on dataset with no GPS outages. Resulted state
estimation of tram motion gives following RMSEs (across all simulation runs in the dataset):
eRMSE(s) = 1.9763, eRMSE(ṡ) = 0.1864 and eRMSE(s̈) = 0.0638. See Fig. 5.4a and 5.4b where
true values are displayed with maximum and minimum bound of estimated values (red area).
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(a) Velocity (b) Acceleration

Figure 5.4: True values of acceleration and velocity with displayed bounds (maximum and
minimum) of estimated values (red area) using LKF with no GPS outages. Shown are only
values for t ∈ 〈0; 200〉 for better legibility.

I do not display similar figure for distance since the difference in estimated values and real
values is very subtle and thus would not be legible in a figure.

With GPS outages, without bias in acceleration

With GPS outages, the only remaining measurement is acceleration ax. In linear case, output
is given by Eq. (4.3) for available GPS and for GPS dropouts only by Eq. (4.5). Resulted state
estimation of tram motion gives following RMSEs: eRMSE(s) = 2.0339, eRMSE(ṡ) = 0.1906

and eRMSE(s̈) = 0.0641.

Comparing the RMSEs with the previous case, RMSEs of estimation do not change dramati-
cally. This is thanks to the quite accurate measurement of ax without bias (removed by use
of the digital map) and after filtration with the low-pass filter. I do not show the figures
with estimation bound as in the previous case since results are similar (differences are not
legible). One thing is, however, worth mentioning and showing. With H = [0 , 0 , 1], system
(F,H) is unobservable [3]. During the GPS outage, this causes an increase in the covariance
of estimated states, see for instance covariance of estimated position in Fig. 5.5a. This is of
course undesirable but reflects the nature of estimation of the unobservable system.

With GPS outages, with bias in acceleration

In this case, I use the same approach as in the case without bias in acceleration. Results are,
however, significantly different. For bias ba = 0.2 m s−2 added to acceleration measurement
ay, I obtain following results: eRMSE(s) = 2.3498, eRMSE(ṡ) = 0.4591 and eRMSE(s̈) = 0.1979.
In GPS outages, estimation of tram position in data step of KF is given only as double-
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(a) (b)

Figure 5.5: (a) Covariance error σs of position estimation influenced by GPS outages.
(b) True value of travelled distance with displayed maximum and minimum bound of
estimated values (red area) using LKF with GPS outages and with bias in acceleration
measurement. Displayed are also close-looks at time interval of GPS outages.

(a) Velocity (b) Acceleration

Figure 5.6: True values of acceleration and velocity with displayed bounds (maximum
and minimum) of estimated values (red area) using LKF with GPS outages and bias in
accelerometer measurement.

integration of acceleration. Even small bias in acceleration is significantly propagated into
the position estimation (in GPS outage intervals), see Fig. 5.5b. To be precise, in zoom-in
plot near time t = 90 s, the estimated value differs from real value up to 20 m and for
zoom-in plot around time t = 200 s, estimated value differs from real value up to 6 m. From
Fig. 5.6a and 5.6b, it can be seen that estimation is biased which is caused by the bias ba in
acceleration measurement.
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(a) Close look at first GPS outage (b) Close look at second GPS outage

Figure 5.7: Comparison of estimated travelled distance of a tram using LKF and UKF.
Displayed are mean estimated values from 100 runs and min/max bounds of the estimation.

5.3.2 Unscented KF

For UKF, if applicable, I use the same setup as in case of LKF. The main difference is
in output model where UKF uses both linear (4.3) and non-linear (4.4) parts. I set the
covariance matrix Rk as diagonal matrix with following entries [25; 0.25; 0.1; 0.01; 0.01] on
the diagonal. I evaluate the UKF algorithm on the same scenarios as LKF. For the sake of
brevity, I do not show the figures from the estimation since the differences with LKF are
not legible. Results from the experiments are summarized in Tab. 5.1. When comparing
the results with LFK, in terms of RMSE, UKF performs in all cases similarly or slightly
worse. Slightly worse performance of UKF (based on RMSE) might be only a statistical error
but also could mean that UKF is not able to sufficiently handle the non-linearity of output
functions. Regardless off the cause, UKF is computationally more expensive than LKF and
its performance is not significantly better and thus might not be appropriate for the real
application. Additional research should be done in this area but in this thesis, I decided to
use only LKF in further development for its simplicity and acceptable performance.

Lastly, to show that UKF can perform better in some scenarios than LKF, I create a
simulation in which I add one 70 s duration GPS outage starting at simulation time 80 s and
one 20 s outage starting at time 340 s. I then use both LKF and UKF for state estimation,
see the comparison of distance estimation in Fig. 5.7 with displayed min/max bounds of
the estimation from 100 simulation runs. Clearly, the UKF is able to track the motion of
the tram (especially when the tram is moving) better than LKF during GPS outage. Such
difference is, however visible only for high duration outages which are not usually present in
reality. With only short GPS outages ≤ 10 s, performances of LKF and UKF are comparable.
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In this chapter, I will describe the design of collision avoidance/warning system (or more
generally FVCWS). In particular, I will focus on solving two aspects of FVCWS: estimation
of clearance xc,k and estimation of braking distance. I will first describe clearance estimation
using V2V communication, utilizing absolute position estimation developed in Chapter 5.
Regarding the clearance estimation, I will also deal with compensation of delay introduced
by V2V communication.

Then, I will describe the estimation of braking distance. Braking distance depends on various
phenomena and thus is hard to estimate accurately. In particular, the collision avoidance
system developed in this thesis serves only as an assistance for a driver. Thus, braking
distance foremost depends on non-deterministic (unpredictable) behaviour of the driver. I
address this problem by creating two models of driver’s behaviour: simple, deterministic
model and probabilistic model. Furthermore, (maximal) transfer from driver’s control action
to a deceleration of the tram heavily depends on adhesive conditions of the track and total
weight of the tram (number of passengers in the tram).

Lastly, I will evaluate the performance of proposed design of collision avoidance/warning
system using Monte Carlo simulations (similarly to the evaluation in Chap. 5). I will generate
the data for simulation using high fidelity model created in Sec. 4.2.

6.1 V2V communication

V2V communication falls under the category of dedicated short-range communication tech-
nologies. It allows establishing a wireless (wifi-based) communication between devices. This
communication is standardized as IEEE 802.11p. One of the components defined by the
standard is cooperative awareness message (CAM) [11]. CAMs are used for transmitting
relevant information to other vehicle and so they increase cooperative awareness in the
network. Use case of such cooperative awareness is given for instance in [4] where authors
deal with cooperative collision avoidance for vehicles on the highway. Defined by the standard,
V2X communication device broadcasts CAM only if following condition is met:

• 100 ms passes from time of previously generated CAM and one of following is satisfied:

– Change in heading from value in previous CAM is higher than 4 degrees,

– Change in velocity from value in previous CAM is higher than 0.5 m s−1,

– Change in position from value in previous CAM is higher than 4 meters,

– More than 1 s passes from time of previously generated CAM.

45
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(a) (b)

Figure 6.1: (a) Time difference of consecutive CAM messages over time. (b) Histogram
of time differences. Median of time differences is 400 ms.

6.1.1 CAM analysis from real data

To get an insight into a typical density of CAM based on generating conditions, I analyse
real data gathered by Herman’s UCU operated on-board of a tram in Ostrava. See Fig. 6.1a
which displays time difference of consecutive CAM messages and in Fig 6.1b histogram of
time differences. Time differences with values ≈ 1000 ms usually corresponds to the situation,
when a vehicle (possibly a TV) is at rest (there is no such change in heading, velocity
or position satisfy CAM generating condition). There are few time differences with value
≈ 1500 s which are probably caused by a packet loss or communication overhead. Clearly,
receive of CAM is not periodic.

6.2 Method design

As already described at the beginning of this chapter, collision avoidance system consists
of several sub-tasks. In addition, each task can be solved in several ways. Combining all
possible solutions for all sub-task would give many possibilities. For sake of brevity, I design
only two algorithms for collision warning system. First algorithm gathers ’average-values’
solutions of the sub-tasks whereas second algorithm gathers conservative (in terms of collision
avoidance) solutions.

6.2.1 Clearance estimation

First, I denote ss to be position of leading surface of subject tram and st to be position of
trailing surface of target tram. Clearance xc,k in time k is then defined as distance between
these two surfaces:

xc,k = st,k − ss,k . (6.1)
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I assume that state estimation gives directly positions of ss and st. This is reasonable
assumption since estimated absolute position (depends on position of GPS antenna) differs
from leading and trailing surfaces only by a constant (known) offset. I propose a following
design of clearance estimation. Both subject and target trams estimate their state of motion
using KF (developed in Chapter 5). Then, using V2V communication, target tram broadcasts
its estimated state of motion (including timestamp) using CAM which is then received by a
subject tram. Now, on-board of the subject tram, clearance can be computed.

The use of communication, however, cause two problems. First problem is communication
(network) delay caused by limited bandwidth or communication overhead [16]. Thus, at
current time k, the most recent available values are ss,k and st,k−D where D is communication
delay. Second problem is non-periodicity in receive of st,k caused by rules of CAMs generation
but also to possible packet loss. I propose two approaches to deal with these problems:
state-based and conservative forward propagation of st,k−D using state-space model.

State-based forward propagation

An intuitive approach of dealing with the delay is to use most recent received state of motion
of target tram and propagate it into current time. Let x̂t,k−D be estimated state of motion
of target tram received by subject tram. For time propagation of x̂t,k−D to current time k, I
use deterministic part of the state-space model (4.1) with ∆t = D. That is:

x̂t,k =

st,kṡt,k

s̈t,k

 =

1 D 1
2D

2

0 1 D

0 0 1


st,k−Dṡt,k−D

s̈t,k−D

 . (6.2)

This propagated state x̂t,k then serves in estimation of the clearance in current time k.
Furthermore, I use the time propagation to solve the problem with non-periodic CAMs
receiving. When no CAM is received in current time, estimation from previous time x̂t,k−1

is used and propagated into current time using state-space model. Diagram of this approach
is shown in Fig. 6.2.

Conservative forward propagation

Second approach, more conservative, is to use the same approach but assume worst-case
scenario (in terms of collision avoidance application) as proposed in [1]. That is, I again
use state-space model for forward propagation but in this case, I assume that target tram
immediately starts braking after CAM is generated. That is:

x̂t,k =

[
st,k

ṡt,k

]
=

[
1 D

0 1

][
st,k−D

ṡt,k−D

]
−

[
1
2D

2

D

]
|atarg| , (6.3)
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Figure 6.2: State-based forward propagation of delayed state of target tram x̂t,k−D. Red
arrows represent generating of CAM. Green arrows represent time propagation usign state-
space model.

where |atarg| is absolute value of maximal deceleration of target tram. As same as in the
model, I assume the restriction ṡt,k ≥ 0.

6.2.2 Braking distance estimation

For collision avoidance application, I define braking distance dbr as a travelled distance from
the time instance of collision warning (given by a FVCWS) to the time when tram stops.
This can be written as:

dbr =

(
ṡktlag +

1

2
s̈kt

2
lag

)
+

(
1

2
(ṡk + s̈ktlag)2a(u, asubj)

−1

)
, (6.4)

where tlag is reaction time of driver to collision warning and a(u, asubj) is applied deceleration
which depends on driver’s chosen braking intensity u and maximal deceleration asubj of
subject tram. First term on right hand side (enclosed in brackets) in (6.4) represents travelled
distance before driver reacts to the warning and second term represents distance to stop
with velocity (ṡk + s̈ktlag) and applied constant deceleration a(u, asubj).

Reaction time and braking intensity

It is intuitive that values of tlag and u are not the same for all drivers. Less experienced drives
might have slower reactions which increase tlag or could underestimate the collision warning
which affects the selection of u. Unfortunately, I do not have any real data from which I
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(a) (b)

Figure 6.3: (a) Probability density function fpdf(tlag) of time lag tlag of a driver. (b) Prob-
ability density function fpdf(u) of braking intensity u.

Mean µ Variance σ2 Left bound Right bound

fpdf(tlag) 1.3 0.5476 N/A N/A
fpdf(u) -0.8 0.09 -1 -0.5

Table 6.1: Parameters of probability density functions of time lag and braking intensity.

could identify values (or the distribution) of tlag and u. To test the proposed algorithm
of collision avoidance, I thus use models from [6]. Reaction time tlag is modelled using
log-normal distribution and braking intensity u is modelled by truncated normal distribution,
see probability density function (PDF) in Fig. 6.3a and Fig. 6.3b respectively. Since braking
intensity is modelled in [6] for cars, I use different parameters of PDF matching with trams,
keeping the similar shape of PDF. Also, instead of direct values of deceleration, I create a PDF
for braking intensity u (input set by a driver). The braking intensity u = −1 corresponds to
deceleration equal to −|asubj| and u = −0.5 corresponds to −0.5|asubj|. Parameters of the
distributions are in Tab. 6.1.

Now, in order to use the information contained in PDFs for braking distance estimation, I
propose two approaches. First is to use only mean values for braking intensity and reaction
time. Second, again more conservative way, is to select values of t̃ and ũ to cover the worst
case with some chosen probability. I select to cover 95% of drivers. I find t̃ and ũ for
the chosen probability by integrating the PDFs fpdf(tlag) and fpdf(u) (getting distribution
function) and finding values of tlag and u for which the integrals equals to 0.95. That is, t̃
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and ũ satisfies following equation:

t̃∫
0

fpdf(tlag)dtlag =

ũ∫
−1

fpdf(u)du = 0.95 . (6.5)

Resulted values are t̃ = 3.2032 and ũ = −0.6517.

Maximal deceleration estimation

I assume time-invariant value of asubj. This has, of course, its caveat. When the estimated
value of asubj is in absolute value higher than real maximal deceleration, some collision
warnings can be given too late. On the other hand, if asubj is in absolute value lower than
real maximal deceleration, it might give many false collision warnings. Even though such
cases are undesirable, this approach is simple and computationally efficient.

I identify maximal deceleration for average based and conservative approaches using the
high fidelity model. For average based approach, I set the total weight of the vehicle to 20 t

and dry adhesive conditions whereas for conservative approach, I set total weight to 24 t

and wet adhesive conditions. From the simulations, maximal deceleration for average based
approach is asubj,avg = −1.74 m s−2 and for conservative approach asubj,cnv = −0.57 m s−2.

6.2.3 Collision warning

In its simplest form, collision warning is in current time k triggered if braking distance is
higher than clearance (with some additional safety distance). It is, however, appropriate
to incorporate a safety distance margin Smargin into the conditions of collision warning
triggering. To be more precise, let g(YN ) be critical function on observed data YN of size
N . I define output of this function as:

g(YN ) =

1 for collision warning ,

0 otherwise .
(6.6)

For collision warning, observed data Y represents estimated clearance and braking distance.
Thus, simple form of collision warning can be written as:

g(YN ) =

1 if (xc,k − dbr) ≤ Smargin ,

0 otherwise .
(6.7)

There are several options how to alter this simple collision warning triggering. One is to
use covariances σ2(xk) from error-covariance matrix P of the estimation to incorporate
uncertainty of estimation into the collision warning. For instance, if estimated position of
subject tram at time k is ss,k and covariance is σ2(ss,k), its position is with ≈ 0.96 probability
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in the interval 〈ss,k − 2σ(ss,k); ss,k + 2σ(ss,k)〉. The same applies to estimated speed and
acceleration. This subsequently influence both uncertainty of dbr and xc,k. To get collision
warning in more conservative manner, 2σ is added to estimated state of the subject tram and
subtracted from estimated state of target tram. Collision warning can be then written as:

g(YN ) =

1 if (x̃c,k − d̃br) ≤ Smargin ,

0 otherwise ,
(6.8)

where both x̃c,k and d̃br are computed using Eq. (6.1) and Eq. (6.4) with:st,kṡt,k

s̈t,k

 :=

st,kṡt,k

s̈t,k

− 2

σ(st,k)

σ(ṡt,k)

σ(s̈t,k)

 ,

ss,kṡs,k

s̈s,k

 :=

ss,kṡs,k

s̈s,k

+ 2

σ(ss,k)

σ(ṡs,k)

σ(s̈s,k)

 . (6.9)

6.3 Simulation scenario

I create two scenarios, first scenario as collision free and second scenario with two added
collisions. These scenarios serves to evaluate performances of proposed collision warning
algorithms.

6.3.1 Collision free scenario

Target tram (leading) is following the same trajectory as described in 5.2. The subject tram
(proceeding) is travelling the same path but with 20 s delay, see Fig. 6.4a and Fig. 6.4b which
show the generated trajectories and the clearance (relative distance between the trams)
respectively. Similarly to target tram, total weight of subject tram also changes at tram
stops due to varying number of passengers in the tram:

• "Václavské náměstí": 19 tonnes,

• "Jindřišská": 17 tonnes,

• "Masarykovo nádraží": 21 tonnes,

• "Náměstí Republiky": 22 tonnes.

To make the simulation more general (closer to a real situation), I assume GPS outages on
both trams and also a small constant bias in acceleration measurement. In every simulation
bias of acceleration measurement (again for both trams) is randomly chosen from a uniform
distribution in the interval 〈−0.2; 0.2〉. GPS outages for target tram are the same as in the
third dataset. GPS outages for subject tram again consist of continuous one-step outages
with probability ≈ 0.25. I then add two burst outages, one overlapping with high-duration
outage (around time 80 s) and one with burst outages (around time 200 s). Lastly, I add one
outage at time 300 s with a duration of 9 s. See Fig. 6.5a displaying GPS outages for subject
tram.
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(a) (b)

Figure 6.4: (a) Generated trajectories of subject and target tram. (b) Relative distance
between the trams over time.

(a) (b)

Figure 6.5: (a) Generated GPS outages for subject tram in simulation scenario. Red
rectangle mark high-duration outage. (b) Generated trajectory with collisions of trams.
Overshoot of relative distance in both collisions is ≈ −2 m.

Communication between the trams using CAM is modelled as described in Sec. 6.1. I assume
constant communication delay D = 250 ms. I do not include packet loss into the scenario.

6.3.2 Collision scenario

Scenario with collisions differs from the collision-free scenario only in the trajectory of subject
tram. I set the trajectory of subject tram to collide with the trajectory of target tram. In
particular, these collisions will be added while stopping at tram stop "Masarykovo nádraží"
and "Náměstí Republiky", see Fig. 6.5b. Collision is represented by a negative overshoot in
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Average-based Conservative

Clearance est. Forward propagation Eq. (6.2) Eq. (6.3), atarg = −1.74
Braking dist. est. tlag 1.3 3.2032

u -0.8 -0.6517
asubj -1.74 -0.57

Collision warn. Critical function g(YN ) Eq. (6.7) Eq. (6.8)

Table 6.2: Summary of ’Average-based’ and Conservative approaches to collision warning.

the relative distance (clearance). In both cases, the overshoot is ≈ −2 m.

6.4 Evaluation of designed collision avoidance method

In total, there are four experiments to be evaluated: two proposed design of collisions
warning system (average-based and conservative) on two simulation scenarios (without and
with collisions). Summary of the two approaches is given in Tab. 6.2. Every experiment is
simulated 100 times with different seed of random numbers. I then statistically evaluate the
results.

6.4.1 Clearance

I first compare the two approaches for clearance estimation. See Fig. 6.6a which displays
real value of clearance xc,k (from simulation) and mean (from 100 runs with no collision)
estimation of two approaches. Clearly, both approaches give similar results. RMSE of average-
based approach is eRMSE(x̂c,avg) = 2.7608 m and of conservative approach is eRMSE(x̂c,cons) =

2.7233 m. This error in the estimation of xc,k is given mainly by an error of absolute position
estimation.

I assume that the reason why the two approaches give a similar result is that the conservative
approach is an acceptable approximation of state-based forward propagation. In addition,
the delay between two consecutive CAM is usually small and thus possible inaccuracy in the
conservative approach is propagated only for a short time interval.

6.4.2 Braking distance

Let’s now focus on the estimation of braking distance using the two proposed approaches. I
compare the estimations with several other values. First is the real value obtained from the
simulation using the same time lag tlag and braking intensity u as in Eq. (6.4) for computation
of dbr. Second values is optimal braking distance, that is with tlag = 0 and u = −1, assuming
good adhesion conditions (dry railtrack). The third is also optimal braking distance but
with worse adhesion conditions (wet railtrack). See the results in Fig. 6.7a for average based



54 Chapter 6. Collision avoidance

(a) Whole run (b) Closer look

Figure 6.6: Comparison of average-based and conservative approaches for clearance esti-
mation with real value (from simulation).

(a) Average based estimation (b) Conservative estimation

Figure 6.7: Comparison of braking distance dbr calculated using Eq. (6.4) and braking
distance obtained from simulations with different settings.

estimation and Fig. 6.7a for conservative estimation.

There are several things which can be deduced from the results. Clearly, the use of Eq. (6.4)
for calculating braking distance lacks real braking dynamics, and therefore, the shape of
an estimated dbr differs from the real value. One of the problems with the conservative
approach is relatively high estimated value of bbr for high speed of a tram, which could cause
false collision warnings. On the other hand, see that conservative estimation upper bounds
both optimal values, whereas average-based estimation is lower than ’Optimal - wet’.



6.4. Evaluation of designed collision avoidance method 55

(a) Average based (b) Average based: closer look

(c) Conservative (d) Conservative: closer look

Figure 6.8: Collision warning for collision free scenario.

6.4.3 Collision warning

Combining the estimation of clearance xc,k and braking distance dbr, I can finally test and
evaluate the collision warning algorithm. Results from all collision warning experiments are
summarized in Subsec. 6.4.4.

Without collision

I first test the two approaches on collision free scenario to evaluate false warnings. See the
results in Fig. 6.8 where in every figure, there is a real (simulated) value of clearance xc,k,
a mean of differences x̂c,k − d̂br from all runs and margin Smargin. Based on the critical
function g(YN ), collision warning is triggered if x̂c,k − d̂br ≤ Smargin.

Even though for average based approach, the mean value of x̂c,k − d̂br is always above
the Smargin, min/max bound (red area) from all runs shows that in some cases, estimated
x̂c,k − d̂br does cross the Smargin. From 100 simulation runs, collisions warning counts at
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(a) Average based estimation (b) Conservative estimation

Figure 6.9: Collision warning for scenario with collisions at second and third tram stop.

every tram stop are: [36, 26, 33, 52]. Highest false collision warning count is at the last tram
stop. This is probably caused by GPS outage (see Fig. 5.3a) of target tram. False collision
warning count at remaining tram stop is similar. Mean of false collision warnings count for
all tram stops is ≈ 37.

Focusing now on the conservative approach, false collision warnings are not only right before
tram stops but also when clearance is relatively high. This is caused mainly by high estimated
braking distance in conservative approach as shown in Fig. 6.7b. There is also an influence
of incorporating the variances according to Eq. (6.9), see Fig. A.2. These false warnings,
however, could be filtered out by some heuristic, for instance using the value of clearance.
The main issue here is false warnings before the tram stops. In this case, the mean of
estimated x̂c,k − d̂br is crossing the Smargin at every tram stop. Among 100 simulations,
there are following counts of false warnings: [63, 56, 38, 68] with mean count ≈ 56. Note that
lowest value of false warnings is at third tram stop which is probably thanks to the fact that
neither of the trams has significant GPS outage.

With collisions

For scenario with collisions, results of the average based and conservative approaches are in
Fig. 6.9a and Fig. 6.9b. Again, I display the real value of clearance xc,k, mean estimation
of x̂c,k − d̂br with min/max bounds and Smargin. In addition, I also display real braking
distance dbr. There are two aspects which I evaluate. First is if given approach detects an
imminent collision and second is if the collision warning is sufficiently in advance for a driver
to prevent the collision. To test if collision warning given at time twarn is sufficiently in
advance, I compare the value of clearance xc,kwarn with value of real braking distance dbr.
Intuitively, if (and only if) xc,kwarn > dbr,kwarn , collision warning is sufficiently in advance.
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Without collision With collision
Tram stop Average Conservative Average Conservative

1st 36 63 – –
2nd 26 56 89/60 100/81
3rd 33 38 78/43 81/67
4th 52 68 – –

Mean 36.75 56.25 51.5 74

Table 6.3: Summary of the approaches to collision warning. All numerical entries in the
table represent number of collision warning at particular tram stop from 100 simulation
runs. Entries in blue represent number of collision warnings provided sufficiently in advance.
Some values in the table are intentionally left unfilled since such values are not relevant for
evaluation.

Again from 100 simulation runs, the average based approach can detect collision at the
second and third tram stop in 89 and 78 cases, respectively. Among these detections, 60
collision warnings at the second tram stop and 43 collision warnings at third tram stop are
sufficiently in advance. One of the reasons why a relatively high number of warnings are
given too late is probably that the estimated value of braking distance d̂br is usually lower
than real value dbr.

Similarly, for the conservative approach, the number of collision detections at second and
third tram stop are 100 and 81. Sufficiently in advance are 81 and 67 warnings. Although
conservative approach gives more sufficiently in advance collision warnings, it has more false
collision warnings.

6.4.4 Summary

To summarize the two approaches, I start with the clearance estimation. I propose to use
conservative forward propagation (6.3) since it gives a better result (in terms of RMSE)
than the state-based forward propagation. Also, this approach is more efficient since less
information is sent through communication. Results from the simulations show that the
approach to braking distance estimation heavily influences triggering of collision warnings.
Furthermore, it is not straightforward to decide which off two approaches is better. The
conservative approach gives a more false warnings, but on the other hand, it provides more
correct collision warnings, see a summary of the simulations in Tab. 6.3. Nevertheless, in
real application, I propose to use the average approach to both braking distance estimation
and collision warning (6.7). The reason is that the collision warning system should only
support a driver and it might be better to give collision warnings to at least a portion of
imminent collisions than giving many false collision warning.





7 | Conclusion

In this chapter, I conclude the thesis by providing an overview of achieved results and
proposing possible future improvements of the developed method for collision avoidance
described in the thesis. The main goal of this thesis was to design an algorithm which would
possibly run onboard a tram and give warning of imminent rear-end collision with a forward
tram. I achieved this goal by developing an algorithm which utilizes V2V communication
and estimation of tram’s state of motion using Kalman filter. Main contributions of this
thesis are:

• I analysed measurements from inertial sensors placed onboard a tram during its motion.
The analysis revealed that measurements from the sensors contain relevant information
of tram’s motion but also that inertial measurement itself is not sufficient to estimate
correctly the motion (Chapter 2).

• I examined available geographic information of tram tracks, which I referred to as the
digital map. Then, I described the use of the Digital map for state estimation and
model development. I explained its construction for a particular tram track, using
data from Open street maps and digital elevation model (Chapter 3).

• I developed a high-fidelity model of the plant: a closed-loop system of a driver and a
tram. The model allows motion simulation of (two) trams on a tram track described
by the Digital map. The model generates data with acceptable accuracy close to real
measurements (Chapter 4).

• I implemented a Kalman filter for tram longitudinal motion estimation exploiting
sensory measurements and the Digital map (Chapter 5).

• I designed a collision warning system and extensively evaluated its performance using
simulations. Besides, I proposed a configuration for a real application (Chapter 6).

7.1 Future work

Development of a collision warning system for trams continues within the collaboration with
project partners. Since the proposed algorithm gave promising results on simulations, the
main goal now is deployment and testing the collision warning system in practice. There are,
of course, several problems imposed by a real environment which I neglected in the design
and which need to be addressed.
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A | Supplementary figures

Figure A.1: Comparison of measured speed from experiment in Poruba depot and generated
yv.

Figure A.2: Comparison of average based and conservative approach to computation of
xc,k − dbr.
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B | Poruba experiments

With our project partners, we realized set of experiments in depot Poruba in city of Ostrava,
see the map of a track in Fig. B.1. Total length of the track is ≈ 1 km. Main experiments
were done mainly on ≈ 300 m straight sections. All experiments were done with tram Tatra
T3 with approximately eight people in the carriage. Adhesion conditions of the track were
excellent according to depot employee (dry track without any significant soil). Here I list
the main experiments which we did:

• Regular driving.

• Speed up with maximal acceleration and slow down (to stop) with maximal deceleration
using only service brake.

• Series of experiments with speed up to given reference speed, keeping the referenced
speed for few seconds and then slow down to stop.

• Emergency braking from given speed.

All experiments were acquired by two sensor platforms: low-cost and precise 2.1. Dataset
from all experiments are on DVD attached to this thesis, stored in JSON format and with
MATLABR© file for a visualization of the data.

Figure B.1: Map taken from maps.google.com which shows the depot Poruba in city of
Ostrava
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C | LMD equations

Equations describing longitudinal motion dynamics:

ωwh =
1

Jwh

∫
(Tmot(t)− rFad(t)) dt ,

ṡ(t) =

∫
1

M(t)
(Fad(t)− Fres(t)) dt ,

Fad(t) = µ(vS)FN (t) ,

vS(t) = vwh(t)− ṡ(t) ,

µ(vS) =
2KSµ

2
maxvS(t)

µ2
maxv

2
S(t) +K2

S

,

Fres(t) = 1000FN (t)

(
0.1

θπ

180
+ 2.5 +

(3.6ṡ)2(t)

850

)
,

FN = M(t)g .

(C.1)

Physical meaning of constants is described in Subsec. 4.2.3. This model is based on the
model presented in
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