
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

An Entertaining Demonstration
of a Multi-Robot System

Bohumil Brož

Supervisor: prof. Ing. Tomáš Svoboda, Ph.D.
May 2022

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

492348Personal ID number:Brož BohumilStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and RoboticsStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

An Entertaining Demonstration of a Multi-Robot System

Bachelor’s thesis title in Czech:

Zábavná demonstrace multirobotického systému

Guidelines:

The aim of the project is to prepare an entertaining demonstration of a multi-robot system. The result can be used in the
promotional materials of the faculty, like open days or for various visitors. The work may exploit the existing multirobotic
system developed for the DARPA SubTerranean Challenge [1]. The work should design an imaginative choreography
with the aim of promoting the school or autonomous robotics at CTU FEE as interesting as possible. Preferably, it should
be an interplay of at least two robots.
The result will often be used in an environment where it will not be possible to separate the robotic working space from
the present spectators. An important part of the choreography must be the ability to deal with the people present in a way
that is deemed socially accepted and safe [2,3]. The approach can be based on the concept of robot leader and robot
monitor, see [4]. The work assumes working mutual communication between robots and possible real time coordination,
however, it is possible to be inspired by work addressing possible collisions between robots and humans [5].The estimation
of movement vectors of the present spectators can draw from the latest results in the field of modeling the movements of
a group of people [6,7].

Bibliography / sources:

[1] T. Rouček et al. System for multi-robotic exploration of underground environments CTU-CRAS-NORLAB in the DARPA
Subterranean Challenge. Preprint arXiv:2110.05911
[2] M. Shiomi, F. Zanlungo, K. Hayashi, T. Kanda. Towards a socially acceptable collision avoidance for a mobile robot
navigating among pedestrians using a pedestrian model. In International Journal of Social Robotics, August 2014
[3] M. Emirler, H. Wang, B. Guvenc. Socially Acceptable Collision Avoidance System for Vulnerable Road Users Socially
Acceptable Collision Avoidance System for Vulnerable Road Users. IFAC2016
[4] M. Saska et al. Formation control of unmaned micro aearial vehicles for straitened environments. In Autonomous
Robots, March 2020
[5] S. Wang et al. Repulsion-Oriented Reciprocal Collision Avoidance for Multiple Mobile Robots. In Journal of Intelligent
and Robotic Systems. 2022, 104:12
[6] K. Katyal et al. Learning a Group-Aware Policy for Robot Navigation. arXiv:2012.12291
[7] Y. Liu, Q.Yan, A. Alahi. Social NCE: Contrastive Learning of Socially-aware Motion Representations. ICCV 2021

Name and workplace of bachelor’s thesis supervisor:

prof. Ing.Tomáš Svoboda, Ph.D. Vision for Robotics and Autonomous Systems FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 20.05.2022Date of bachelor’s thesis assignment: 03.02.2022

Assignment valid until: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Acknowledgements
I would like to thank my supervisor prof.
Ing. Tomáš Svoboda, Ph.D. for valuable
advice and guidance when writing this
thesis. I would also like to thank Mgr.
Martin Pecka, Ph.D. for consultations on
ROS and the robots.

Declaration
I declare that the presented work was
developed independently and that I
have listed all sources of information
used within it in accordance with the
methodical instructions for observing the
ethical principles in the preparation of
university theses.

Prague, date 20.5.2022

.
Signature

v

Abstract
The aim of this work is to design a system
for skid steer robots, that allows them
to follow a given trajectory in formation.
The system can be used in environments
with obstacles that are blocking the path
of the robots. The purpose of the move-
ment is purely aesthetical, the intended
use of the system is for various presenta-
tions, e.g. on an open day. Virtual leader
approach is used to control the movement
of the formation. Robots use LIDAR to
detect obstacles and try to avoid them
with the usage of virtual force field, if
the obstacle is too close, the robot stops.
A simple language for the choreography
description was created. Purely geomet-
rical 2D simulator was created in order
to design and verify new scenarios. The
proposed solution was verified by simula-
tion and on real robots. The results show,
that virtual leader is a viable way of con-
trolling formation of mobile robots, even
when there is a transmission delay in the
communication between the robots.

Keywords: mobile robots, formation of
robots, virtual leader, virtual structure,
virtual force field, ROS

Supervisor: prof. Ing. Tomáš Svoboda,
Ph.D.

Abstrakt
Cílem této práce je vytvořit systém, který
umožní jízdu smykem řízených robotů ve
formaci po zvolené trajektorii v prostředí,
které může obsahovat překážky. Cíl po-
hybu je čistě estetický, systém by měl slou-
žit k různým demonstracím, jako napří-
klad při dni otevřených dveří. K řízení
pohybu formace je využit přístup virtuál-
ního lídra, roboti pomocí LIDARu dete-
kují překážky, objedou je díky virtuálnímu
silovému poli anebo zastaví, pokud je pře-
kážka příliš blízko. Čistě geometrický 2D
simulátor byl vytvořen pro účely návrhu
a testování nových choreografií. Je navr-
žen jednoduchý jazyk pro popis žádané
choreografie. Dosažené výsledky jsou ově-
řeny simulací i nasazením na skutečných
robotech. Výsledky ukazují, že přístup vir-
tuálního lídra je vhodný pro tento účel a
že odstraňuje i problémy způsobené zpož-
děnou komunikací mezi roboty.

Klíčová slova: mobilní roboti, formace
robotů, virtuální lídr, virtuální struktura,
virtuální silové pole, ROS

Překlad názvu: Zábavná demonstrace
multirobotického systému

vi

Contents
1 Introduction 1
2 Description of the used robots 3
3 Description of the system 7
4 Motion control 11
4.1 Limitations of the formation

movement . 11
4.2 Formation control 12
4.3 Control of robot’s motion 14
5 Safety 15
5.1 Failure detection 15
5.2 Obstacle detection 15
6 The language for choreography
description 17
7 Testing and results 23
7.1 Simulation 23
7.2 Results . 26

7.2.1 Simulation 26
7.2.2 Real robots 37

8 Conclusions 41
Bibliography 43
A List of attachments 45

vii

Figures
2.1 The position of the base_link

frame. The x axis is red and the y
axis green, the z axis is pointing
upwards from the figure. The angular
and linear component of the robots
movement are depicted. 4

2.2 HUSKY robot 5
2.3 TRADR robot 5

3.1 All nodes and the topics they use
to communicate 8

3.2 The functioning of network_test
node. Duplicate received messages
are omitted. The box start means,
that the program was launched.
Published messages are grey, received
are blue . 8

3.3 The process of the synchronization.
This figure is continuation of the
figure 3.2. Therefore the robot R1
starts publishing first, followed by R2
and R3. Duplicate received messages
are omitted. Times T1, T2 and T3 are
the times proposed by the
corresponding robots, T is the last
proposed time. Sync messages are
published at higher frequency, only
the important sync messages are
displayed. Note that the robot R3
receives the sync messages from the
other robots before the all_ready
signal. The subscriber is active from
the time when the program is
launched. The network test phase
makes sure, that all sent sync
messages are delivered to other
robots. Robots R1 and R2 had a
verified connection to R3 before the
network test on R3 ended, therefore
they could start publishing sync
messages, these messages were
properly delivered to R3. R3 starts
publishing the sync messages after its
all_ready signal is true, at that
time, it is the last remaining robot to
sync, thus it immediately starts
waiting. R1 and R2 receive the sync
message from R3 with some delay,
but as long as the time delay is
reasonably small (smaller than the
waiting time of four seconds), the
synchronization works correctly. . . . 9

viii

6.1 The trajectory described in
scenario and the trjectory of the
virtual leader. Red axis is the x axis
and the green is y. The depicted
coordinate system is the base_link
of the virtual leader. The frame with
full lines is the current position and
the dashed line is the new desired
position of the virtual leader. The
picture on the left side shows the
trajectory described in the scenario.
There are two waypoints - virtual
leader is currently in the first one,
the second one is the new desired
position. The picture on the right
side shows the real trajectory of the
virtual leader. It does not turn on
spot and thus deviates from the
prescribed trajectory between the
waypoints. 18

6.2 The two movement instructions.
Red axis is the x axis and the green
is y. The depicted coordinate system
is the base_link of the virtual
leader. The frame with full lines is
the current position and the dashed
line is the new desired position of the
virtual leader. The picture a) shows
the instruction move. Rotation is
applied first, translation is done
afterwards. The picture b) shows
circle instruction. The centre of the
arc is placed on the y axis of
base_link at the position r. The
virtual leader should rotate around
the centre by the specified angle Θ. 19

7.1 The modified turtlesim.
Trajectory of each robot is shown
with different color, obstacles are
drawn with black line. 24

7.2 The simulated LIDAR from 2D
simulator for the same world as in
figure 7.1. 25

7.3 The graphical interface of the 3D
simulator. 25

7.4 The simulated LIDAR from 3D
simulator for the same world as in
figure 7.3. 25

7.5 Speeds required by the controller
and distances for the first test
scenario. The inner robot almost
stops while turning, because the
virtual leader is too close. The
distance between the robots decreases
while turning, because the robots are
not following the leaders trajectory
perfectly (they are allowed to do it,
this leads to better rigidity of the
formation). Even though the distance
to virtual leader deviates from the
desired one while turning, the robots
are able to return to the desired
distance shortly after the corner. . . 28

7.6 The trajectory of the robots for the
first test scenario is not perfect, the
virtual leader is turning with finite
velocity and thus is not on the
desired trajectory. The robots follow
the leaders trajectory and that’s why
the part after the turn is not straight
but slightly curved - the virtual
leader is slowly returning to the
desired trajectory. The inner robot is
closer to the other robot at the
corner exit than it should, therefore,
it is turning away from the formation
at the corner exit. 29

ix

7.7 Speeds required by the controller
and distances for the second test
scenario. The inner robot slows down
and the outer speeds up in the arc,
but the speed difference is not big
enough. The outer robot lags behind
the inner robot (from time of 52
seconds to 75 seconds), but the
difference is then lowered in the
straight section of the trajectory.
Formation splits at the time of 78
seconds (sudden change of distance
to the virtual leader). Both robots
follow their virtual leader well after
the formation splits. The distance
decreases while turning, but returns
to the expected value after the turn. 30

7.8 Trajectory of the robots for the
second scenario. The result is as
expected with the same shortcomings
as in the first test. 31

7.9 Speeds required by the controller
and distances for the first test
scenario in 3D simulation. The inner
robot is capable of better following
the virtual leader than in the 2D
simulation. Because of that the
distance between the robots is
increasing this time. Robots again
return to the desired position shortly
after the turn. 33

7.10 The trajectory is more deformed
than in the 2D simulation but still
acceptable. The inner robot again
has to turn away from the formation
at the corner exit, because it got too
far while turning. 34

7.11 Speeds required by the controller
and distances for the second test
scenario. The distance between the
robots in the circular arc is closer to
the desired one than in the 2D
simulation. As a result, the outer
robot lags behind the inner robot
less. 35

7.12 The resulting trajectory looks
more or less the same as the one from
the 2D simulation. Trajectories of
both robots are smooth and match
the scenario quite well. 36

x

Chapter 1
Introduction

Formations of robots have wide range of use. They can be used for scientific
research, each robot carries different measuring device and certain distance is
required between the robots. It is also possible to use formations of robots in
rescue missions where they are searching for survivors in a dangerous area,
arrangement of the robots increases coverage of the area by sensors with
limited range of each robot. Robots could be used to autonomously transport
large payloads. In this case, robots have to move synchronously to keep the
load evenly distributed across all robots. Lately, large formations of drones
have also been used to create various shapes on the sky with light sources
they are carrying.

Various approaches can be used to control a formation of robots. One of
them is leader-follower, used in [1],[2],[3]. One of the robots is designated
as a leader and the other robots are following it. The main disadvantage
of this solution is dependency on one central node. If the leader fails, the
whole formation stops. Successful control also relies on fast and reliable
communication. If some messages are lost, leader position perceived by the
follower might be different from the real one. This could lead to oscillations
of the followers - they are on the correct position but some messages with
leader position were lost and the robots therefore continue to drive forward
even though they should stop. If the messages are delayed robots react to
something that already happened. This causes unsynchronized movement
of the formation, because the delay of the message could be different to
each robot. As a result, the leader-follower approach is feasible only if
communication between robots is flawless or if the formation shape does not
have to be perfectly maintained.

The second approach is virtual structure/virtual leader [4], [5], [6], [7].
The formation is considered as one rigid body that moves according to the
assignment. The structure has a reference point (the virtual leader) and each
robot has a desired distance to the reference point. One of the advantages
is, that frequent communication between the robots is not required, each
robot can compute the current position of the reference point on its own.
The computation can be done by one central node, but in the case of failure,
this node can be replaced by another one immediately. Even if one of the
robots fails, all other robots can continue to follow the prescribed trajectory.

1

1. Introduction
The environment might contain several obstacles. When one of the robots

is blocked by the obstacle, it has to deviate from the desired trajectory to
avoid the obstacle [8], [4], [5]. Virtual repulsive field can be used to steer
the robot around the obstacle [9], [10]. Each point detected by the robot’s
sensors (LIDAR or ultrasonic) creates a small repulsive force. These forces
are summed and the resulting repulsive force is added to the pulling force
of the target. Their sum then determines the desired heading of the robot’s
movement. Another way of avoiding obstacles is to use planning to create a
collision free path [11], [12].

The aim of this work is to design algorithms for an existing multi-robot
system [13], [14], that would allow movement of multiple robots in formation
along a given trajectory. The main target is aesthetically pleasing and safe
movement of the robots. The system can be used in environments with lot
of obstacles, that could get in the way of one of the robots. Robot has to
react to these obstacles in a safe but entertaining way. When obstacle blocks
path of the robot, it speaks and starts beeping to alarm the spectator. The
movement of the formation is described by a simple language that was created
for this work. Virtual leader is used to control the movement of the formation.
Each robot has its own virtual leader and it moves according to a scenario to
maintain the desired distance to the virtual leader. It is possible to change
the formation shape while the robots are moving and even split or merge the
formations.

2

Chapter 2
Description of the used robots

The algorithms were designed for an existing multirobotic system of Depart-
ment of Cybernetics. The system consists of multiple different robots. The
first one is built on chassis HUSKY from company Clearpath Robotics (figure
2.2). It is 99 cm long and 67 cm wide, the maximal linear speed is 1 m/s.

The second robot is tracked, its name is TRADR (figure 2.3). It is 73 cm
long and 60 cm wide. TRADR has additional tiltable tracks at the front and
rear (called flippers). These tracks are in their default position folded on the
side of the robot body. This robot can reach linear speed of only 0.5 m/s. Both
robots can rotate rather quickly, they are capable of reaching angular speeds
in excess of 180 degrees/s. Both robots can only move forward/backward and
rotate around their centre. Both robots are equipped with 3D LIDAR and 5
RGB cameras, that cover the whole surroundings of the robot. HUSKY uses
ROS Noetic and Python 3, whereas TRADR uses ROS Melodic and Python
2. Therefore, the code of this project has to be compatible with Python 2
and 3.

Wifi is used for communication between robots. Nimbro network is used
to share topics and services across the robots.

The root of robot’s TF tree is frame map. This frame is created as a
combination of LIDAR data and odometry. Child of map frame is frame
map_fast. This frame is published at higher frequency, but it is less accurate.
Robot body is represented by frame base_link. This frame is based in the
center of the robot body (see figure 2.1). The x axis is pointing to the front of
the robot, the y axis to the left. Its children are frames that describe different
parts of the robot, for example LIDAR, flippers, all of the cameras.

The LIDAR is capable of registering objects, that are at least 30 cm
away from it. Point clouds are published at frequency of 10 Hz as sen-
sor_msgs/PointCloud2 on topic /points. This point cloud contains points,
belonging to parts of robot that are visible for the LIDAR. These points could
cause problems for obstacle detection. This issue is solved by a filtered point
cloud, that is published on topic /points_filtered. This point cloud has
not only removed robot body, but the overall number of points is reduced too.
LIDAR data on topic /points lags approximately 300 ms behind reality. It
is necessary to factor this delay into obstacle detection. Objects that appear
far from the robot on LIDAR image can be much closer in reality (HUSKY

3

2. Description of the used robots

The front of the
robot

linear speed
angular speed

Figure 2.1: The position of the base_link frame. The x axis is red and the
y axis green, the z axis is pointing upwards from the figure. The angular and
linear component of the robots movement are depicted.

is capable of travelling at speed of 1 m/s, therefore an object could be 30
centimetres closer to the robot, than the latest LIDAR image shows).

Robots accept movement commands on two topics. Messages on these
topics have to be published with frequency of at least 10 Hz, otherwise they
would be ignored. Topic /nav/cmd_vel has lower priority than /cmd_vel.
The code of this project uses the first topic. The user can take over the
control with the gamepad that is used to manually control the robot (its input
is published on /cmd_vel). The messages are of type geometry_msgs/Twist
and have only two valid elements – linear.x and angular.z (other elements are
ignored). The linear component is the speed of the movement in the direction
of the x axis of base_link (movement forward or backward) and the angular
component is the speed of rotation around the z axis of base_link. The two
components of the robot’s movement are explained in the figure 2.1.

4

.............................. 2. Description of the used robots

Figure 2.2: HUSKY robot

Figure 2.3: TRADR robot

5

6

Chapter 3
Description of the system

The program was created in Python with the usage of rospy. The program
is started by a launch file formation.launch. This results in three run-
ning nodes, their connection is shown on figure 3.1. The first one is called
network_test. Its goal is to check, whether the program is running on all
robots and if the connection to all robots is functional in both directions. The
node creates a list of all robots in the formation according to the provided
scenario. The node publishes messages of type std_msgs/String to topic
/sync with frequency of 10 Hz. These messages contain the role of the sender.
The node is also subscribed to this topic. If message from another robot
is received, the role of the robot is added to its end and the message is
published again. If node receives back an altered message, the role at the end
is removed from the list of robots. Once all robots are removed from the list
a std_msgs/Bool message with value true is published to topic /all_ready.

The second node is formation_member. This is the main node that controls
the virtual leader and the robot’s movement. Topic sync is used to synchronize
the movement of the robots. Further description of the synchronization is
in chapter 4.2. The synchronization starts, only after true was published to
/all_ready.

Node formation_member launches (through the Python roslaunch API)
the third node – obstacle_detection. This node processes the data from
LIDAR. It has three outputs – topics /stop_front and /stop_rear of type
std_msgs/Bool and /obstacles of type sensor_msgs/PointCloud2. One of
the arguments (optional) of the node is robot name. It is necessary to use
this argument for simulations, because all robots are running on a single ROS
master. All three topics then have the robot’s name as a prefix. The robot’s
name does not have to be the same as the role.

Launch file also sets two parameters - /length and /width. These pa-
rameters describe the size of the robot. The value is set according to the
environment variable HOSTNAME. If it matches one of the robots (HOSTNAME
ctu-robot or husky-robot), the parameters are set to the dimensions of the
particular robot, otherwise the values are set to the size of the robots in 2D
simulator (length is 1.2 meter and width 0.6 meter). These parameters are
required for correct functioning of obstacle_detection node.

7

3. Description of the system

network_test

formation_member obstacle_detection

/sync

/sync

/all_ready

/stop_front

/stop_rear

/obstacles

/points_filtered

To other
robots

To other
robots

Figure 3.1: All nodes and the topics they use to communicate

t

R1

start

test R1

test R1 R2

test R1

test R3

response

test R1 R3

all ready

start

test R1

test R1 R2

test R1

test R3 response

test R1 R3

all ready

R2

start

test R1

test R2 R1

test R1

test R3

response

test R1 R3

all ready

start

test R2

test R2

test R3

response

test R2 R3

all ready

R3

start

test R1

test R1

test R3

response

start

test R3

test R1

test R2

response

all ready

test R3

response

test R1

response

test R3

response

test R2

response

test R3 R1

test R3 R2

R2 OK

R3 OK

R1 OK

R3 OK

R1 OK

R2 OK

Figure 3.2: The functioning of network_test node. Duplicate received messages
are omitted. The box start means, that the program was launched. Published
messages are grey, received are blue

8

................................ 3. Description of the system

t

R1

test R1

all ready

sync R1

sync R3

all ready

R2

test R1

all ready

sync R2

sync R3

all ready

R3

sync R3

sync R1

sync R2

all ready

test R3sync R1test R3sync R2

R1 OK
T = T

1

R1 OK
T = T

1

R3 OK
T = T

3

R2 OK
T = T

2

R1 OK
T = T

1

R3 OK
T = T

3

R1 OK
T = T

1

R2 OK
T = T

2

R3 OK
T = T

3

T
3

Wait until T
3

Wait until T
3

Wait until T
3

Start the movement

Figure 3.3: The process of the synchronization. This figure is continuation of
the figure 3.2. Therefore the robot R1 starts publishing first, followed by R2
and R3. Duplicate received messages are omitted. Times T1, T2 and T3 are the
times proposed by the corresponding robots, T is the last proposed time. Sync
messages are published at higher frequency, only the important sync messages
are displayed. Note that the robot R3 receives the sync messages from the other
robots before the all_ready signal. The subscriber is active from the time
when the program is launched. The network test phase makes sure, that all sent
sync messages are delivered to other robots. Robots R1 and R2 had a verified
connection to R3 before the network test on R3 ended, therefore they could start
publishing sync messages, these messages were properly delivered to R3. R3
starts publishing the sync messages after its all_ready signal is true, at that
time, it is the last remaining robot to sync, thus it immediately starts waiting.
R1 and R2 receive the sync message from R3 with some delay, but as long as the
time delay is reasonably small (smaller than the waiting time of four seconds),
the synchronization works correctly.

9

10

Chapter 4
Motion control

4.1 Limitations of the formation movement

Since the used robots can’t move sideways, the possibilities of formation
movement are limited. It is impossible to maintain completely rigid formation.
In a sharp corner, at least some of the robots in the formation would have to
move sideways to keep the desired position.

One of the possible solutions to this issue is to allow the robots to move
further away from the desired trajectory. This allows robots to cut the corners
and better maintain the formation shape (then the corner is not that sharp
and the difference between actual position and the desired position is smaller).
This change brings its own problem. The robots can follow trajectory that
barely resembles the desired one. If the desired trajectory has two 90 degree
turns right after each other, robots will instead move in one long arc. If
the scenario has many direction changes in short time, the deviation from
the prescribed trajectory is going to increase with each turn. In the end,
the real trajectory could end up completely different than was the intention.
Therefore, this solution is only acceptable, when the target is to move the
robots in the desired formation to target, without respect to their trajectory.
However, such use contradicts the aims of this work, because the aesthetic
intention of the user is completely ignored.

The approach used in this work is to allow the formation to alter its shape
while moving. The formation changes its length (along the x axis of frame
base_link), but keeps the distance in the perpendicular direction. The
robots in the second row of the formation get a little bit closer to the first row
of robots, while the first row is turning, and the distance slightly increases,
while the second row is turning.

The radius of the corner has significant impact on the way how the robot
on the inside of the corner moves. If the radius is bigger than the distance in
the direction of y axis between the robot and the virtual leader, the robot
can drive forward while turning. On the contrary, if the radius is smaller, the
robot has to reverse to maintain the desired distance to the virtual leader
and the other robots in the same row. To allow the robots to reverse, the
lengthwise distance between the robots has to be greater than the smallest
possible. Unless the distance is big enough, the robot’s movement will be

11

4. Motion control
blocked by the robot behind. This could also affect the robot on the outside
of the corner. Provided that the transverse distance between the robots is
small, the inside robot could be partially standing in the way of the outer
robot (the robot on the inside drives at first further into the corner than it
should be at the corner exit and then moves backwards).

Another limitation is the linear speed of the robots. The formation has to
move slower than the maximal speed of the slowest robot in the formation.
The user has to provide the maximal speed of the slowest robot as one of the
parameters (the entered speed should ideally be slightly lower). The virtual
leader then moves at 70 % of the given speed to allow even the slowest robots
to sufficiently speed up in order to close the gap.

4.2 Formation control

Requirement for correct functioning of the designed algorithms is, that all
robots are on a plain surface, with minimal differences in z coordinate. This
enables the control to be done only in two dimensions.

Communication over Wi-Fi is not adequately reliable, the delay between
one robot sending a message and other robot receiving it is not constant and
not negligible. If one of the robots was designated as leader of the formation
and the other were following it, they would receive the information about
leader’s movement with a delay. Which means that they would react to
something that already happened. This means that the formation movement
would appear chaotic to the observer (transmission delay could be different
to each robot).

Therefore, all robots in the formation follow a virtual reference point (virtual
leader) whose position is calculated by each robot independently. The scenario
defines a desired distance (along the x and y axis) from the virtual leader
for every robot. The virtual leader has two frames, the /role/vl_map and
its child /role/virtual_leader. The frame virtual_leader corresponds
to the frame base_link of the robot.

In order to unify the position of virtual leader on all robots throughout
their movement, the robots have to be synchronized at the beginning. Each
robot periodically publishes message of type std_msgs/String on topic /sync.
These messages contain the role of the robot (its name in the scenario) and
proposal of time when the formation will start to move (current time acquired
by rospy.Time.now() incremented by four seconds to accommodate any
transmission delay). If robot receives message with one role for the first time,
this role is removed from the list of robots, that are waiting for synchronization
(the list is assembled from the scenario) and the proposed time is saved as the
last valid proposal. When the last robot is removed from the list, robot waits
until the last proposed time and then the virtual leader starts to move. All
robots in the formation have internet connection and all have the same clock
thanks to NTP. Each robot uses the same controller to control the virtual
leader movement and thus all the virtual leaders will be at the same place at
all times.

12

.................................. 4.2. Formation control

The usage of virtual leader instead of a physical one allows the formation to
easily split and join together. Only thing that changes is the required distance
to the virtual leader for each of the robots. It is also possible to create new
virtual leader at a different position than the old one, this is beneficial when
the formation is splitting. The best placement for the virtual leader is in front
of the formation and in the middle in the direction of y axis. This ensures
that all robots use roughly the same trajectory. Provided that the virtual
leader was placed on the left side of the formation and the formation was to
sharply turn left, the robots at the right side of the formation would have to
follow a much longer trajectory. Since the linear speed of the robots is limited,
the formation would have to noticeably slow down to allow the robots on the
right side to stay on the right position throughout the turn. Still, the outer
robots might not be able to speed up enough and the formation would fall
apart.

The controller for virtual leader’s motion is:

linear = min(max(1.5 · Gx, 0.1), 0.7 · vmax) (4.1a)

angular = 2 · sgn(Gy) · α (4.1b)

Saturation for angular speed is used, because the rotation of the formation
can’t be too fast, otherwise robots will be unable to follow such a sharp corner.
The limits are −π/2 and π/2. G is the next waypoint for the virtual leader
and Gy its y coordinate, α is the angle between the x axis of base_link and
the waypoint, it is always a positive number, the correct direction has to
be chosen separately (as the sign of y coordinate of the target). vmax is the
maximal speed entered by user.

The controller for linear speed is designed in a way, that the virtual leader
is always moving. This prevents the formation from turning on spot (that is
a movement that skid steer robots are not capable of following). The virtual
leader is not allowed to drive backwards.

Virtual leader uses separate controller for circular arcs, because in this
situation, the trajectory of the virtual leader is not the shortest possible one
as is the case with the controllers 4.1a and 4.1b. The equation 4.2 describing
velocities for motion on circular arc is used to get the ideal linear speed in the
linear speed controller (equation 4.3a). There is a tolerance for reaching the
waypoint, therefore the leader could be slightly off the starting point of the
arc. Angular speed of the movement is controlled (equation 4.3b) to ensure
that the leader reaches the end of the arc.

vid = ωid · r (4.2)

linear = ωid · |r| (4.3a)

angular = sgn(r) · ωid · (1 − 5 · (r − rreal) (4.3b)

r is the radius of the arc from the scenario (can be negative, because it
defines the placement of the arc centre - positive means centre on the left

13

4. Motion control
side of the robot, negative right side), ωid is the desired angular speed from
the scenario and rreal is the current radius (current distance to the centre of
the arc).

4.3 Control of robot’s motion

Each robot in the formation creates its own queue (deque from the library
collections) of virtual leader positions. Instead of following directly the virtual
leader, robots follow the path from the queue.

Linear speed of the robot is given by the deviation between the current
distance to the virtual leader and the desired one. The direction of the
movement is given by the position of the queue head. Angular speed is
calculated from the angle between the x axis of base_link frame and the
desired position of the robot (the head of the queue). Heading of the virtual
leader in the target position is not taken into consideration. The queue is
filled at a frequency of 10 Hz, as a result, the individual points in the queue
are close to each other. Provided that the robot reaches the point from the
queue, it has to select the same orientation as the virtual leader, because that
is the heading, that leads to the next point on the trajectory. The angle to
the trajectory point is always the smallest possible one, i.e. if the point is
behind the robot, the angle will be the one that allows the robot to reach the
point by reversing.

If the virtual leader gets too far away (the current distance is double of the
desired), the queue is cleared and robot starts following directly the virtual
leader. This means that robot takes the shortest path to the virtual leader
and has the best chance to close the gap.

The resulting controller has the form of two equations 4.4a and 4.4b

linear = sgn(Gx) · 0.7 · vmax · |1 + 3 · (dact − dreq)| (4.4a)

angular = 3 · sgn(Gx · Gy) · α − 2 · sgn(Fx) · α2 · |F | (4.4b)

dreq is the required distance to virtual leader and dact is the current one.
Robots are allowed to go backward, to determine the correct steering angle
direction, sgn(Gx · Gy) has to be used. Target is either the virtual leader or
the head of the queue. If the robot is closer to the queue head than 30 cm,
new point is popped from the queue (if the queue is not empty). If there is no
point in the queue, robot follows directly the virtual leader. α2 is the angle
of the virtual repulsive force of obstacles, |F | is the strength of the virtual
force. α is the smallest angle between x axis of base_link and the target
(the angle itself or π − α).

0.7 ·vmax is the maximal speed of the virtual leader. This value is multiplied
by |1 + 3 · (dact − dreq)|, it is a non-negative number that is in ideal conditions
(robot is following the virtual leader with the given gap) equal to one. If the
gap between the robot and the virtual leader is smaller than the desired one,
the value is lower than one and robot moves slower than the virtual leader
(the gap is increasing) and vice versa.

14

Chapter 5
Safety

5.1 Failure detection

The program checks the availability of LIDAR data and all the necessary
transformations. If one of the transformations was unavailable for some
amount of time, control of the robot’s movement would be impossible. If the
data from LIDAR is lost, robot is unable to detect obstacles in its surroundings
and a collision is possible.

Provided that three consequent exceptions in tf_buffer lookup occur or
the LIDAR data is unavailable for more than 0.3 seconds, robot gets into
error state. It is impossible to recover from this state, because any such error
would by caused by a hardware failure or a termination of one of the nodes,
and these errors can’t be fixed without the response of the user. Fixing the
error takes some time and once the issue is resolved, the gap to the rest of
the formation would be too big.

5.2 Obstacle detection

As already mentioned in the chapter 2, LIDAR lags behind the reality. There-
fore, robot has to react to any obstacles in advance. Signals /stop_front
and /stop_rear are set to true, when the obstacle is closer to the robot than
55 cm (at the front or at the rear). If the distance was smaller, robot would
be unable to stop on time. These signals prevent the robot from moving in
the given direction.

The output point cloud /obstacles of node obstacle_detection is created
from the LIDAR data. First of all, an area of 4 by 4 meters around the robot
(robot is in the centre, it is 2 meters to each side of base_link origin) is cut
out from the LIDAR image, only points lower than 1.5 meter are accepted,
other points are not blocking the robot’s movement (for example the ceiling of
the room). The image is not perfect. The first points of floor around the robot
have wrong height, the ground is slightly raised around the robot. Therefore,
all points that are higher than 10 cm in base_link are considered as an
obstacle. The output point cloud has only two dimensions, the z coordinate
of all points is set to zero.

15

5. Safety..
The main purpose of the point cloud is obstacle avoidance by virtual force

field. Obstacle avoidance is not suited for cramped conditions. Because of
the robot’s dimensions, the obstacle has to create noticeable force even from
a distance of 1 to 1.5 meters (to overcome the pulling force of the target).
If the robot is to move alongside some obstacles, this repulsive force will
force greater distance between the robot and the obstacles. It is not possible
to reduce the distance at which the force begins to affect the robot, it has
to prevent the robot from turning into an obstacle, even when the desired
position lies in it.

If the robot has to stop because of an obstacle, sound_play [15] is used to
say sentence “Obstacle is too close, I have to stop”, robot then beeps every 3
seconds, until the way is clear again. Fixed obstacles are not expected to be
in the way of the robot (the scenario should be planned so that there is a
clear path for the robots. Only expected obstacles are the spectators). The
beeping should warn the spectator that he is blocking the robot.

16

Chapter 6
The language for choreography description

The choreography and the formation shape are described in text files. The
whole scenario begins with a list of the used robots. Each robot has its own
unique role – an identifier that is used throughout the scenario to describe
all robots affected by the instruction. The role has to be without spaces and
semi-colons. The next part of the file is optional, it is definition of different
groups of robots. Groups are required if the formation is split and each new
formation has its own instructions. The group identifier has to be unique and
without spaces. It is not connected with the formation shape, only with the
robot roles in the group. The same identifier can be used for two or more
separate formations, if they consist of the same robots and if they don’t occur
at the same time (i.e., if the formation splits, joins back together and then
splits again into the same groups of robots).

The rest of the scenario describes the different formation shapes and their
movement. The first instruction has to be formation description. There are
four supported formation shapes.. row - robots are side by side, origins of their base_link frames are in

one line. column - robots are behind each other, origins of their base_link frames
are in one line. triangle - one robot is in the first row, the others are in the second row.
Both rows are centered - the robot in the first row is positioned in front
of the center of the second row (the middle robot or the middle of the
gap between two robots in the middle of the row).. square - designed for four robots in two rows. It is possible to set the
distance between the rows and the distance between the robots in one
row (can be different for each row).

The notation for each of them is the same. Firstly, the arrangement of the
robots is described (roles are used here). Each row of robots is separated by
semi-colon and the robots in one row are separated by comma. Next, the
distances between the rows of robots are set. Finally, the spacing between
robots in one row is defined, rows are again split by semi-colon. All values

17

6. The language for choreography description

θ

x

Figure 6.1: The trajectory described in scenario and the trjectory of the virtual
leader. Red axis is the x axis and the green is y. The depicted coordinate system
is the base_link of the virtual leader. The frame with full lines is the current
position and the dashed line is the new desired position of the virtual leader. The
picture on the left side shows the trajectory described in the scenario. There are
two waypoints - virtual leader is currently in the first one, the second one is the
new desired position. The picture on the right side shows the real trajectory of
the virtual leader. It does not turn on spot and thus deviates from the prescribed
trajectory between the waypoints.

are in metres and decimal point is used (the values in one row are separated
by comma). All three parts of the description are separated by space.

The movement of the formation is described by two instructions (see
figure 6.2) The instructions decsribe the formation’s trajectory as a series of
waypoints. The first instruction is move x Θ. The parameter x is distance
in the direction of x axis of base_link and the second one rotation around
z axis in degrees. The waypoint is created by rotation around the z axis
and then translation in the direction of new x axis. The direction of the
rotation is defined by the sign of the angle, positive angle means counter
clockwise rotation (robot turns left). Robots and virtual leaders do not fully
follow this trajectory, they are not turning on a spot, they turn while driving
forward/backward instead. The resulting trajectory is longer and curved (see
figure 6.1.

The other instruction is circle r Θ ω. This is movement along a circular
arc with the given radius r and central angle Θ. The centre is placed on
the y axis of base_link when the robot is at the beginning of the arc. The
radius can be a negative number, the direction of rotation is decided by the

18

........................ 6. The language for choreography description

base_link

θ

base_link

S

θ

a) b)

 x

Figure 6.2: The two movement instructions. Red axis is the x axis and the green
is y. The depicted coordinate system is the base_link of the virtual leader.
The frame with full lines is the current position and the dashed line is the new
desired position of the virtual leader. The picture a) shows the instruction move.
Rotation is applied first, translation is done afterwards. The picture b) shows
circle instruction. The centre of the arc is placed on the y axis of base_link
at the position r. The virtual leader should rotate around the centre by the
specified angle Θ.

sign (positive means arc on the left side of the robot). The central angle is in
degrees and has to be positive. The third parameter is the desired angular
speed. It might be impossible to reach the desired angular speed, because
the angular and linear speed of circular motion are bound by equation 6.1

v = ω · r (6.1)

If the necessary linear speed is too high, the linear and angular speed will
be halved until the linear speed is lower than the maximal speed of virtual
leader.

The radius of the arc has to be bigger than the maximal distance between
the robots and the virtual leader in the direction of y axis. If the radius was
smaller, the robot with greater distance would have to revers to maintain
the proper position. The resulting movement of the formation would not
resemble circular arc, it would be similar to the turns created by the move
instruction. The reversing robot would also block any robots in the rows
behind it, this could lead to the formation falling apart.

If the formation shape has to be changed, new formation description is
inserted into the scenario. When robots reach this instruction, their desired

19

6. The language for choreography description
distance to the virtual leader is changed to the new value. It is sometimes
beneficial to move the virtual leader to a different place. For example, when
the formation splits into two, better results will be reached, if the virtual
leader is again placed in the middle of the subformation in the direction of
the y axis. Reset of the virtual leader can be done by instruction newV L,
it has to be placed immediately after a new formation description (no other
instructions can be between them). When this instruction is reached, robots
stop, new position of the virtual leader is computed (the default position – 50
cm in front of the first robot and in the middle of the formation in transversal
direction) and then robots start moving again.

Robots do not share information about their formation with others. Unless
the scenarios are identical on all robots, the trajectories of the different robots
could cross each other, robots could stop or even crash if the gaps between
them are too small (because of the delay of LIDAR data).

Comments can be inserted into the scenario. They start with "# " and can
be placed on a new line not at the end of a line with instruction. It is possible
to leave blank lines in the scenario. When two subformations are present, the
orders for each of them have to be ordered. The instructions can be separated
into two independent blocks or written all together in sequential order (first
instruction for first subformation, first instruction for the second one, etc.),
examples 6.1 and 6.2 have the same results even though the instructions have
different order.

Listing 6.1: Instructions in sequential order
move 1 45 group1
move 1 -45 group2
move 3 -45 group1
move 3 45 group2
move 1 -45 group1
move 1 45 group2
move 2 45 group1
move 2 -45 group2

Listing 6.2: Instructions in two separate blocks
move 1 45 group1
move 3 -45 group1
move 1 -45 group1
move 2 45 group1

move 1 -45 group2
move 3 45 group2
move 1 45 group2
move 2 -45 group2

20

........................ 6. The language for choreography description

An example of a correct scenario is:

Listing 6.3: An example of a correct scenario
robots R1 R2 R3 R4
groups
group1 R1 R3
group2 R2 R4

start
square R1,R2;R3,R4 1.2 1;1
move 2 0
move 4 -90

split the formation in half longitudinally
column R1;R3 1.2 0
column R2;R4 1.2 0
newVL

move the two columns apart and then back together
move 1 45 group1
move 1 -45 group2
move 3 -45 group1
move 3 45 group2
move 1 -45 group1
move 1 45 group2
move 2 45 group1
move 2 -45 group2

join the two subformations
square R1,R2;R3,R4 1.2 1;1
newVL

circle -3 270 0.1

The formation consists of four robots with roles R1, R2, R3 and R4. Two
robot groups will be used in the scenario – group1 and group2. At the
beginning, robots are in a square formation, the distance between the rows is
1.2 meters and the distance between the robots in one row is 1 meter. The
formation will move two meters forward, then turn 90 degrees to the right
and go forward another 4 meters. Afterwards, the formation will split in half
longitudinally, two new formations are columns of two robots with distance
of 1 meter. The two formations are then going to move away from each
other and then back together. They will join back together into one square
formation. The last instruction is a circular arc with radius of 3 meters. The
robots will try to move with angular speed of 0.1 rad/s and the central angle
is 270 degrees. Robots are going to rotate to the right, because the value of
centre is negative.

21

6. The language for choreography description
A Python script check_scenario is part of the package. The script checks,

if all the instructions are correctly written and if there is a possible collision
of robots’ trajectories. This script also provides a demo - if the parameter
provided on startup is demo, a commented scenario is printed to the command
line. This scenario explains the usage of all the possible instructions and the
meaning of the different values.

22

Chapter 7
Testing and results

7.1 Simulation

It is not practical to use the existing 3D simulator just for new scenario
verification, because it is very computationally intensive and even a short
scenario could take more than 30 minutes to simulate. That’s why I created a
simple 2D simulator on the basis of turtlesim from ROS tutorials [16]. The
simulation is purely geometrical, no real properties of the robots are taken
into account. Simulator also creates a simplified LIDAR for each of the robots.
The simulated world is a square room with a side of 10.673 meters (the size
is set as a parameter /room_size by the modified turtlesim node). This
room is on LIDAR represented only by its walls, the floor and the ceiling are
not displayed. It is possible to insert an obstacle into the world. The obstacle
has to consist of finite amount of line segments. Robots and obstacles are 1
meter high, the walls of the room are 2 meters high. No parts of the robot
body are visible to the LIDAR of the same robot. The number of rays is
decreased from 1024 on real LIDAR to 256 in simulation. The obstacles are
detected only in 2 dimensions, the third dimension is added artificially – the
points are copied with a space of 10 cm up to the desired height. The 2D
simulator does not use simulated time (the simulation is real-time), too high
number of robots could cause decreased performance (if the number of robots
is higher than 4, a warning is displayed. One of the consequences of the high
number of robots is decreased frequency of LIDAR images).

2D simulator uses three types of nodes. The first one is the turtlesim
turtle_node. It is an altered version with higher frequency of the main loop
and with a MARV robot image instead of turtles (the package is renamed
to sim2d to avoid any confusion with the original package). The second
node turtle_bridge provides the same interface as a real robot. New topic
cmd_vel is created, because the turtlesim one works in a different way.
Real robot has two cmd_vel topics with different priority. 2D simulator is
subscribed to both, but they are equal. The TF tree is simplified, only the
frames map, map_fast and base_link are present. Each robot has its own
TF tree, the trees are unconnected and its up to the user to create a world
frame. The z axis of frames map and map_fast is inverted in comparison to
base_link, this is consistent with the 3D simulator. The last node type is

23

7. Testing and results

Figure 7.1: The modified turtlesim. Trajectory of each robot is shown with
different color, obstacles are drawn with black line.

lidar_sim. This node is responsible for point cloud creation. Each robot has
its own node that is launched by the turtle_bridge node. The obstacles,
robots and walls can be described as finite number of line segments. The ray
is calculated and then intersections with all lines (not the segments but whole
lines) are found. If the intersection lies inside the line segment the point is
selected as valid. Only the closest valid point to the robot’s base link is then
selected, the only exception are the upper parts of the wall. The lower half
of the wall is added to the point cloud only if no valid intersection was found
for the ray, but the upper half of the wall is always visible.

turtle_bridge accepts one parameter – file with world description. It is
a text file with two parts. The first one is the description of the robots and
their position (x, y and rotation). Each robot has a name that is used as a
prefix for all topics and frames, because all simulated robots are using one
ROS master. Obstacles are described by a sequence of points. The points
have to be in correct order on the circumference of the obstacle, but the
direction does not matter (clockwise or counter clockwise). Obstacle is drawn
in the turtlesim window by a robot named draw with black color.

24

......................................7.1. Simulation

Figure 7.2: The simulated LIDAR from 2D simulator for the same world as in
figure 7.1.

Figure 7.3: The graphical interface of the 3D simulator.

Figure 7.4: The simulated LIDAR from 3D simulator for the same world as in
figure 7.3.

25

7. Testing and results
7.2 Results

7.2.1 Simulation

Two scenarios for two robots were used to test the designed algorithms. The
first one is fairly simple, just two 90 degree turns, the first one to the right
and the second one to the left.

Listing 7.1: The first testing scenario
robots R1 R2
row R1,R2 0 1.2
move 2 0
move 2 -90
move 4 90

The second scenario is much more complicated. It contains sharp and
gentle corners, straight sections of different lengths and a long circular arc.
The formation also splits, new virtual leaders are created and the robots
continue to move separately.

Listing 7.2: The second testing scenario
robots R1 R2
groups
group1 R1
group2 R2

start
row R1,R2 0 1.2
move 2 0
move 2 -90
circle 2 270 0.1
move 1 0

row R1 0 0
row R2 0 0
newVL
move 1 30 group1
move 1 -30 group2
move 1 90 group1
move 1 -90 group2
move 2.5 90 group1
move 2.5 -90 group2

2D

The trajectory followed by the robots is not ideal, but that is caused by the
virtual leader. Its angular speed is limited and therefore, robots don’t go

26

....................................... 7.2. Results

completely straight after the turn, because the virtual leader is not directly
on the desired trajectory, but slightly off. The distance between the robots
slightly changes while turning, the outer robot lags behind at the beginning
of the turn, but manages to close the gap. On the other hand, the inner robot
has a small loss on the outer robot at the corner exit.

Robots are not at their ideal position at the corner exit and are therefore
slightly turning even after the corner. These small corrections lead the robots
to their correct position, but are definitely noticeable. The incorrect position
at the corner exit is caused by imperfect following of the trajectory. If the
robots were to follow the trajectory perfectly, the gap to the virtual leader
and the distance between the robots would be bigger. It is impossible to do a
perfect turn with skid steer robots. Omnidirectional robots are required for
rotation of the whole formation. The robots will always slightly deviate from
their desired position in the corners. This issue gets more prominent in sharp
corners. However, if the straight section behind the corner is long enough,
any errors in robot position will be eliminated.

27

7. Testing and results

Figure 7.5: Speeds required by the controller and distances for the first test
scenario. The inner robot almost stops while turning, because the virtual leader
is too close. The distance between the robots decreases while turning, because
the robots are not following the leaders trajectory perfectly (they are allowed to
do it, this leads to better rigidity of the formation). Even though the distance
to virtual leader deviates from the desired one while turning, the robots are able
to return to the desired distance shortly after the corner.

28

....................................... 7.2. Results

Figure 7.6: The trajectory of the robots for the first test scenario is not perfect,
the virtual leader is turning with finite velocity and thus is not on the desired
trajectory. The robots follow the leaders trajectory and that’s why the part after
the turn is not straight but slightly curved - the virtual leader is slowly returning
to the desired trajectory. The inner robot is closer to the other robot at the
corner exit than it should, therefore, it is turning away from the formation at
the corner exit.

29

7. Testing and results

Figure 7.7: Speeds required by the controller and distances for the second test
scenario. The inner robot slows down and the outer speeds up in the arc, but the
speed difference is not big enough. The outer robot lags behind the inner robot
(from time of 52 seconds to 75 seconds), but the difference is then lowered in
the straight section of the trajectory. Formation splits at the time of 78 seconds
(sudden change of distance to the virtual leader). Both robots follow their virtual
leader well after the formation splits. The distance decreases while turning, but
returns to the expected value after the turn.

30

....................................... 7.2. Results

Figure 7.8: Trajectory of the robots for the second scenario. The result is as
expected with the same shortcomings as in the first test.

31

7. Testing and results
3D

The 3D simulation reflects real properties of the robot, therefore, the results
are worse than in the ideal world of 2D simulation. Robots are still capable
of properly following the virtual leader, but the distance to the virtual is
less stable. On the other hand, the maximal change in the distance between
the robots is almost the same (around 16 cm for 2D and 18 cm for 3D), the
formation looks as stable as in the 2D case. In the second test, the system
performed better than in 2D simulation. The distance between the robots
was more stable, which resulted in a better looking formation movement.
This is due to the imperfect movement of the robots. Robots in 2D respond
to control inputs immediately, but the real robots have some inertia and
therefore are not capable to change the direction instantly. The speed of the
robots is smoothed out which could lead to better formation movement.

32

....................................... 7.2. Results

Figure 7.9: Speeds required by the controller and distances for the first test
scenario in 3D simulation. The inner robot is capable of better following the
virtual leader than in the 2D simulation. Because of that the distance between
the robots is increasing this time. Robots again return to the desired position
shortly after the turn.

33

7. Testing and results

Figure 7.10: The trajectory is more deformed than in the 2D simulation but
still acceptable. The inner robot again has to turn away from the formation at
the corner exit, because it got too far while turning.

34

....................................... 7.2. Results

Figure 7.11: Speeds required by the controller and distances for the second test
scenario. The distance between the robots in the circular arc is closer to the
desired one than in the 2D simulation. As a result, the outer robot lags behind
the inner robot less.

35

7. Testing and results

Figure 7.12: The resulting trajectory looks more or less the same as the one
from the 2D simulation. Trajectories of both robots are smooth and match the
scenario quite well.

36

....................................... 7.2. Results

7.2.2 Real robots

Three scenarios were used for the testing. The first one has only a single turn
(scenario 7.3, the second one includes formation splitting and the third one
was also used for simulation (7.2).

Listing 7.3: The first testing scenario
robots R1 R2

row R1,R2 0 1.2
move 1 0
move 2 -30

Listing 7.4: The second testing scenario
robots R1 R2

groups
group1 R1
group2 R2

start
row R1,R2 0 0.8
move 1 0

row R1 0 0
row R2 0 0
newVl

move 1.5 -30 group1
move 1 -40 group2
move 1 -90 group2

Testing on real robots was done with an older version of the programs.
The controllers were set slightly worse, which resulted in bigger gap while
turning. The inner robot was sometimes turning too fast in sharp corners,
which lead to the robot turning around (the robot exited the corner in reverse
and continued driving this way). The robots were again capable to close
the gap after the corner. If one of the robots was blocked by an obstacle,
it correctly stopped in safe distance and after the obstacle moved from the
robot’s way, the robot continued to follow the given trajectory.

In circular arc the outer robot was lagging behind the inner one and the
inner robot’s movement was unstable – it did a lot of small direction changes
to correctly follow the arc. It is caused by the proximity of the target. If
the target is too close to the robot, any small offset to the side causes a big
change in the angle and therefore a higher angular speed of the robot (robot
has to turn faster to get the correct heading in comparison to the situation,
when the target is far away). These issues were mostly resolved by changes

37

7. Testing and results
in the controller tuning and the distance at which the target is considered as
reached (the distance for the test with real robots was 20 cm and 30 cm for
the results presented in section 7.2.1). The angular speed of the virtual leader
was also limited after the test with real robots. This results in worse virtual
leader trajectory (not so sharp corners), but increases the ability of the robots
to correctly follow the leader’s trajectory (the necessary direction changes are
less abrupt and even though the robots are capable of high angular speeds, it
is impossible to control such a fast motion – the robot is unable to stop as
desired which leads to overshooting of the desired heading).

Further tests with the updated controllers are necessary to prove, that the
proposed solution works not only in simulation, but also with real robots.
The tests that took place with the old version of the controllers show, that
all the basic parts of the system work – robots correctly synchronize and are
able to keep the correct distance in a straight part of the trajectory. The only
problem was the instability in the corners that is solved by the changes.

Scenario 7.3

The movement of the inner robot through the corner was not ideal, it first
started to turn in opposite direction (to move slightly to the left side), but
then it quickly reached the correct heading. The corner was not that sharp
and thus the outer robot managed to keep up with the inner robot. Robots
exited the corner side by side.

This scenario was also used to test robots ability to stop in front of obstacles.
One robot (HUSKY) had the way blocked. Robot properly stopped and
if it was equipped with a speaker, it would make the sounds described in
section 5.2. After the obstacle moved away, the robot continued to follow the
trajectory. In order to catch up to the other robot, it had to significantly
speed up. As a result the robot went too far into the corner and had to stop
because of the other robot. As soon as the outer robot exited the corner,
HUSKY turned and again closed the gap to the other robot.

Scenario 7.4

This scenario was executed without flaws. The robots drive in one formation
just forward without turning, therefore the movement was perfectly synchro-
nized. After the formation splits, the robots continued to follow the virtual
leader’s trajectory without errors, because the leader had no offset to the
side (virtual leader lied at the x axis of robot’s base_link frame). Therefore,
the robot had to move only as fast as the virtual leader, movement with this
velocity could still be controlled.

Scenario 7.2

One of the tests was unintentionally carried out with different versions of the
scenario for each robot, the trajectories of the robots were crossing each other.
The robots were driving side by side.The robot on the left started a 90 degree

38

....................................... 7.2. Results

turn to the right, while the other robot was driving forward. The turning
robot bumped into the other robot, because of the LIDAR data lag. At the
time of the crash, no data suggesting that the way is blocked, was available
and therefore the robot continued to move. This shows a big limitation of
the whole system, if an obstacle appears right in front of the robot, it might
not be able to stop in time.

The inner robot turned around in the 90 degree corner. Robots were mostly
synchronized in the circular arc, but the inner robot was oscillating.

39

40

Chapter 8
Conclusions

The main target of this work was to control formation of skid steer robots.
The formation should follow a trajectory planned by the user. Obstacles
could appear in the environment and robots have to react in a safe way.
Virtual leader was used to control the movement of the whole formation.
Safe operation is ensured by LIDAR - program receives the point cloud and
searches for obstacles in them. Robots try to avoid obstacles with the usage
of virtual force field. If the obstacle is too close to the robot, robot stops to
prevent collision.

The results from simulations and from the tests on real robots show, that
the proposed solution works as intended. The beginning of the movement
is correctly synchronized and the robots maintain their desired position
throughout the majority of the choreography. The formation loses shape in
corners, robots in one row preserve the prescribed distance, but the rows get
closer or further away from each other as the formation is turning.

There are some limitations of the possible followed trajectory (based on the
limited capabilities of the robots), the formation can’t turn on spot and the
formation is not completely rigid while turning. All tests show that the robot
on the outside of a sharp turn slightly lags behind, but this loss is eliminated
after the corner. There are also some deficiencies in the obstacle detection.
If the robot or the obstacle is moving too fast, a collision may happen. The
data from LIDAR lags behind reality and in some cases the obstacle might be
undetected until the collision or detected on a place that is not obstructing
the robot (even though the obstacle is right in front of the robot).

The usage of the program is not limited to the robots used for testing.
The proposed solution could be modified (the structure of the TF tree and
the commands for robot control) for different multi-robot system. Since the
obstacle detection is done in a separate node, the robots do not have to be
equipped with LIDAR for correct functioning of the main node.

41

42

Bibliography

[1] P. Paniagua-Contro, E. G. Hernandez-Martinez, O. González-Medina,
J. González-Sierra, J. J. Flores-Godoy, E. D. Ferreira-Vazquez, and
G. Fernandez-Anaya, “Extension of leader-follower behaviours for
wheeled mobile robots in multirobot coordination,” Mathematical Prob-
lems in Engineering, vol. 2019, 2019.

[2] Y. Dai, V.-H. Tran, Z. Xu, and S.-G. Lee, “Leader-follower formation
control of multi-robots by using a stable tracking control method,” in
International Conference in Swarm Intelligence, pp. 291–298, Springer,
2010.

[3] T. D. Barfoot and C. M. Clark, “Motion planning for formations of mobile
robots,” Robotics and Autonomous Systems, vol. 46, no. 2, pp. 65–78,
2004.

[4] M. Saska, V. Vonásek, T. Krajník, and L. Přeučil, “Coordination and
navigation of heterogeneous MAV–UGV formations localized by a ‘hawk-
eye’-like approach under a model predictive control scheme,” The Inter-
national Journal of Robotics Research, vol. 33, no. 10, pp. 1393–1412,
2014.

[5] M. Saska, V. Spurný, and V. Vonásek, “Predictive control and stabiliza-
tion of nonholonomic formations with integrated spline-path planning,”
Robotics and Autonomous Systems, vol. 75, pp. 379–397, 2016.

[6] Q. Chen, Y. Sun, M. Zhao, and M. Liu, “A Virtual Structure Formation
Guidance Strategy for Multi-Parafoil Systems,” IEEE Access, vol. 7,
pp. 123592–123603, 2019.

[7] M. A. Lewis and K.-H. Tan, “High precision formation control of mobile
robots using virtual structures,” Autonomous robots, vol. 4, no. 4, pp. 387–
403, 1997.

[8] J. Alonso-Mora, E. Montijano, T. Nägeli, O. Hilliges, M. Schwager,
and D. Rus, “Distributed multi-robot formation control in dynamic
environments,” Autonomous Robots, vol. 43, no. 5, pp. 1079–1100, 2019.

43

8. Conclusions
[9] O. Khatib, Real-Time Obstacle Avoidance for Manipulators and Mobile

Robots, pp. 396–404. New York, NY: Springer New York, 1990.

[10] J. Borenstein and Y. Koren, “Real-time obstacle avoidance for fast mobile
robots,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 19,
no. 5, pp. 1179–1187, 1989.

[11] O. Takahashi and R. Schilling, “Motion planning in a plane using general-
ized Voronoi diagrams,” IEEE Transactions on Robotics and Automation,
vol. 5, no. 2, pp. 143–150, 1989.

[12] A. Sgorbissa and R. Zaccaria, “Planning and obstacle avoidance in mobile
robotics,” Robotics and Autonomous Systems, vol. 60, no. 4, pp. 628–638,
2012.

[13] T. Rouček, M. Pecka, P. Čížek, T. Petříček, J. Bayer, V. Šalanský,
D. Heřt, M. Petrlík, T. Báča, V. Spurný, F. Pomerleau, V. Kubelka,
J. Faigl, K. Zimmermann, M. Saska, T. Svoboda, and T. Krajník,
“DARPA Subterranean Challenge: Multi-robotic Exploration of Under-
ground Environments,” in Modelling and Simulation for Autonomous
Systems (J. Mazal, A. Fagiolini, and P. Vasik, eds.), (Cham), pp. 274–290,
Springer International Publishing, 2020.

[14] T. Rouček, M. Pecka, P. Čížek, T. Petříček, J. Bayer, V. Šalanský,
T. Azayev, D. Heřt, M. Petrlík, T. Báča, et al., “System for multi-robotic
exploration of underground environments CTU-CRAS-NORLAB in the
DARPA Subterranean Challenge,” arXiv preprint arXiv:2110.05911,
2021.

[15] ROS Wiki, “sound_play,” 2016 [Online]. http://wiki.ros.org/sound_
play (Accessed 18 May 2022).

[16] ROS Wiki, “turtlesim,” 2020 [Online]. http://wiki.ros.org/
turtlesim (Accessed 18 May 2022).

44

http://wiki.ros.org/sound_play
http://wiki.ros.org/sound_play
http://wiki.ros.org/turtlesim
http://wiki.ros.org/turtlesim

Appendix A
List of attachments

. videos_2d.zip - videos of experiments in 2D simulator. final_test1_2d.mkv - scenario 7.1. final_test2_2d.mkv - scenario 7.2. videos_3d.zip - videos of experiments in 3D simulator. final_test1_3d.mp4 - scenario 7.1. final_test2_3d.mp4 - scenario 7.2. videos_real_robots.zip - videos of experiments with real robots. scenario1.mp4 - scenario 7.3. obstacle_test.mp4 - scenario 7.3 with an obstacle. scenario2.mp4 - scenario 7.4. different_scenarios.mp4. scenario3.mp4 - scenario 7.2 without the formation splitting. code.zip - two ROS packages - sim2d and dancing_robots

45

	Introduction
	Description of the used robots
	Description of the system
	Motion control
	Limitations of the formation movement
	Formation control
	Control of robot’s motion

	Safety
	Failure detection
	Obstacle detection

	The language for choreography description
	Testing and results
	Simulation
	Results
	Simulation
	Real robots

	Conclusions
	Bibliography
	List of attachments

