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Abstract
Diploma thesis Software testing for em-
bedded applications in autonomous vehi-
cles describes methods for software testing
in the automotive industry and presents
possible ways how to verify and vali-
date software for autonomous vehicles.
Robotics simulation is used to develop
and test software for autonomous vehi-
cles.

The opening part of this thesis is an in-
troduction to the topic of software testing
with a focus on automotive industry.

The second part of this thesis intro-
duces Robot operating system (ROS) and
Gazebo simulator and how this software
is used to test the autonomous behavior
of the developed 1/10th scale car. Sim-
ulation test scenarios are developed to
evaluate car behavior in situations that
can occur in the F1/10 race. Car software
correct operation is tested using these sce-
narios.

Last part of the thesis describes the use
of Jenkins automation server to automate
routine tasks such as package building
and test running. The quality of project
source code is tested and verified by static
analysis.

Keywords: software testing, robotic
simulator, autonomous vehicles,
continuous integration

Supervisor: Ing. Michal Sojka, Ph.D.
G-203,
Karlovo náměstí 13,
120 00 Praha 2

Abstrakt
Diplomová práce Testování softwaru pro
vestavné aplikace v autonomních vozi-
dlech se zabývá popisem metod pro testo-
vání softwaru v automobilovém průmyslu
a představuje možnosti, jak v budoucnu
přistoupit k verifikaci a validaci softwaru
v autonomních vozidel. Práce prezentuje
způsob, jakým testovat software pro au-
tonomní vozidla za použití robotických
simulací.

Úvodní část práce je teoretickým úvo-
dem do problematiky testování softwaru
se zaměřením na automobilový průmysl.

V druhé části práce je pak představen
Robotický operační systém (ROS) a simu-
látor Gazebo a jejich využití pro testování
autonomního chování auta v měřítku 1:10.
Za pomoci tohoto softwaru jsou následně
vytvořeny simulační scénáře pro testování
chování auta v situacích, které mohou na-
stat během závodu F1/10. Software v autě
je otestován za pomoci vytvořených simu-
lačních scénářů.

Poslední část práce se věnuje systému
Jenkins a automatizaci rutinních úkolů,
jako je například kompilace balíčků a
spouštění testů. Zdrojový kód je staticky
analyzován pro zajištění kvality kódu a
včasnou detekci chyb.

Klíčová slova: testování software,
robotický simulátor, autonomní vozidla,
kontinuální integrace

Překlad názvu: Testování softwaru pro
vestavné aplikace v autonomních
vozidlech
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Chapter 1
Introduction

In recent years autonomous vehicles have evolved from research topic to devel-
opment goal of almost every major car manufacturer and other technological
companies such as Google or Apple [3]. While these efforts did already bring
many improvements in the field of autonomous driving, there is still a long
way to go before autonomous vehicles will be commercially available. One of
the obstacles to adoption of autonomous cars is the lack of testing approach
that would make it possible to verify the reliability of algorithms used for
autonomous behavior in the vehicle. This thesis does not aim to solve this
challenge completely but tries to provide a direction and insight into the
topic.

Work on this thesis was conducted within the Industrial Informatics Re-
search Center, which is a research group in Department of Control Engineering
at Czech Technical University. One of the research topics in this group is
autonomous driving, and a part of the research efforts is work on the pro-
totype of Formula 1/10. The work involves designing, building, and testing
an autonomous 1/10th scale car capable of speeds more than 60 km/h. The
project goal is to create a research platform that can be used to work on
the topic of autonomous vehicles and enable cooperation with partners from
industry. Any work done in the realm of autonomous driving has to take
into account the development practices that automotive industry uses to
allow deployment of developed solutions into production vehicle in the future.
This thesis summarizes methods and practices used in automotive industry
for software development and testing to provide the theoretical foundation
for second part of the thesis that sets the goal to create tools that enable
construction of test cases for verification of autonomous car behavior. Test
cases are generated in robotics simulation software in combination with Robot
operating system (ROS), which is also used as the development framework
for software in the car.

ROS was successfully used on multiple autonomous cars projects such as
Marvin autonomous car from the University of Austin and Junior autonomous
car from Stanford University [4]. BMW has been using ROS for the develop-
ment of their autonomous car, and after about two years of experience, they
praise its open source nature, distributed architecture, existing selection of
software packages, as well as its helpful community. On the other hand, they
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1. Introduction .....................................
mention barrier for adoption in the automotive industry such as lack of official
real-time support, problematic management of configurations for different
robots and difficulty in enforcing compliance with industry standards like
ISO 26262, which will be necessary for software that’s usable in production
vehicles[5]. ROS community is aware of this fact and proposes a set of code
quality guidelines and quality assurance process, but they come in the form
of non-strict recommendation mostly addressing stylistic concerns, such as
naming convention and code formattings and are not actively maintained.
Use of ROS for building robotics systems is growing and with it increases
the need for quality assurance and better testing [6]. A subgoal of this thesis
is to provide infrastructure for testing and code quality assurance through
automation server and static analysis of source code.

This thesis is structured as follows. Chapter 2 introduces the practice of
automotive software engineering. First, the role of software in the modern
car is described, and a brief history of car software is given. Then, software
processes and standards that automotive industry uses are described to be
an introduction to the type of requirements for development of software that
goes into production cars. Chapter 3 describes software testing in general, as
well as software testing practices that are used in automotive industry and
challenges of testing software for autonomous vehicles, are discussed. Chapter
4 briefly describes F1/10 competition rules and car in the beginning. Then an
approach to testing car software in the simulated environment that can verify
the behavior of the car in the race like conditions and situations is presented.
Multiple tests scenarios are introduced with emphasis on automation of the
testing process. Automation of testing and activities tied to code quality is
further developed in Chapter 5 which introduces a way how to use Jenkins
automation server to run jobs in periodic and automatic manner and how to
report the results back in readable and organized form.

2



Chapter 2
Automotive software engineering

This chapter introduces challenges that software engineers in automotive
industry are solving today. A brief history of software in cars is given in 2.1
to provide the perspective of how software in modern cars evolved. Then ISO
26262 and software development according to it are outlined in 2.2.

Software plays the dominant role in many technical products today, and
this fact also applies to modern cars. It is estimated, that 90% of current
car innovations are based on electronics and software [7]. Software in the car
is a dominant factor for innovations in automotive industry, as well as it is
decisive for competitiveness in the automotive market. With the arrival of
autonomous vehicles and car-to-car communication, the role of software in
vehicles will only grow. Most of the new features in cars will be software-
enabled and software will remain the innovation driver for the next years.
While it is expected that autonomous driving will bring increased safety and
comfort for the passengers, it also presents challenges for developers as well as
for testers responsible for validation and verification of the software inside the
car. Automotive industry is well aware of the need to innovate their practices
to address the changes that are happening.

As the infotainment systems adoption grows, cars get connected to the
internet and with the question of cybersecurity is becoming more pressing. It
has been already revealed by cybersecurity experts that it is possible to take
over some types of cars remotely [8]. The cybersecurity of connected cars
will have to be ensured before wide adoption will be possible. Last but not
least, if the car is driving itself, who is responsible for the accident? Legal
issues are a huge topic in autonomous vehicles and many questions have to
be answered before mass adoption will be possible.

While the focus is currently on self-driving versions of today’s automobiles,
any vehicle that meets the fundamental need to move passengers and cargo will
follow soon. Challenges of development technology to enable full autonomy
are tackled with the usage of modern technologies, such as machine learning,
artificial intelligence, and new sensors. Use of these technologies requires new
methodology for verification and validation of software components before
they can be sent into production, especially with critical applications such as
driving.

3



2. Automotive software engineering ............................
2.1 History of software in cars

The first software found its way into cars only about thirty years ago. From
one generation to the next, the software amount in a number of lines of code
was growing by a factor of ten, or even more. Today we find in premium cars
more than ten million lines of code, and we expect to find ten times more in
the next generation [9].

Software components in cars used to be very isolated and local. That
means that every different task has its dedicated controller(Electronic control
unit or ECU) as well as dedicated sensors and actuators. To optimize wiring,
bus systems were deployed in the cars, and ECUs became connected. Today
premium cars feature not less than 70 ECUs connected by more than five
different bus systems. Up to 40% of the production cost of the car are due to
electronics and software development, and up to 70% of software/hardware
systems development costs are software costs [9].

Software is the most crucial innovation driver for technical systems. In-
novative functions are realized by software, and it also allows new, better
solutions to known tasks [9]. The automotive industry is facing transition to
becoming software companies, and this transition is difficult. The automotive
industry has long tradition in finding and using proprietary solutions, which
leads to steeper learning curve for new engineers as well as little to no reuse
of code from one car to another [10]. On the other hand, the size of the
challenge ahead inspires cooperation between manufacturers as in the case of
Automotive Grade Linux1, to give one example. Automotive Grade Linux
promises to enable rapid innovation in infotainment, connected car, advanced
driver assistance systems (ADAS) and autonomous driving.

The results of this fast transition to software-intensive development is that
car recalls are increasingly happening because of mistakes found in source
code of the vehicle software. These bugs are not just life threatening to car
users, but also cost automakers billions of dollars [11]. Software new position
as first class citizen in automotive industry is addressed by development of
standardized methods for software development and software testing to ensure
quality and safety in critical application.

2.2 ISO 26262

ISO 26262, also titled Road vehicles – Functional safety is international
standard for functional safety of electrical and electronic systems in production
automobiles defined by the International Organization for Standardization
(ISO) in 2011. It is aimed at reducing risks associated with software for safety
functions to a tolerable level by providing feasible requirements and processes
[1].

The need for standardization has increased with the role of software in car.
To ensure quality and safety, common standard to evaluate implementation

1Automotive Linux: https://www.automotivelinux.org/
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......................................2.2. ISO 26262

and processes has to be given. Another reason to standardize processes is
globalization of the automotive market and the fact that contractors are
operating worldwide and standard for quality verification must be established
to enable quality control and unified standards. ISO 26262 seek to stan-
dardize software development process in automotive industry by providing a
foundation for implementing engineering concepts in software development
process. While it takes time for company to achieve compliance with these
standards, the cost of failure associated with software defects is much greater
than the cost of ensuring quality.

ISO 26262 is an adaptation of the Functional Safety standard IEC 61508.
It is intended to be applied to safety-related systems that include one or
more electronic and electrical (E/E) systems and that are installed in series
production passenger cars with a maximum gross vehicle mass up to 3 500
kg [1]. ISO 26262 consists of 9 normative parts which are listed below.. Part 1: Vocabulary. Part 2: Management of Functional Safety. Part 3: Concept Phase. Part 4: Product Development: System Level. Part 5: Product Development: Hardware Level. Part 6: Product Development: Software Level. Part 7: Production and Operation. Part 8: Supporting Processes. Part 9: ASIL-oriented and Safety-oriented Analyses

ISO 26262 is a risk-based standard. The risk of hazardous operational
situations is assessed, and safety measures are defined to detect or control
random hardware failures and avoid or control systematic failures. Approach
to determine risk classes, known as Automotive Safety Integrity Levels (ASIL)
is provided by ISO 26262 in the form of hazard analysis and risk assessment,
which takes place in Concept Phase of product development. Hazard is
assessed based on the relative impact of hazardous effects related to a system,
as adjusted for relative likelihoods of the hazard manifesting those effects.
That is, each hazardous event is assessed regarding the severity of possible
injuries within the context of the relative amount of time a vehicle is exposed
to the possibility of the hazard happening as well as the relative likelihood
that a typical driver can act to prevent the injury [1]. The ASIL levels range
from ASIL D to QM. ASIL D represents the highest degree of automotive
hazard and highest degree of rigor applied in the assurance the resultant
safety requirements. Quality management (QM) represents application with
no automotive hazards and no safety requirements to manage the ISO 26262
safety processes. The intervening levels (A, B and C) are simply a range

5



2. Automotive software engineering ............................
of intermediate degrees of hazard and degrees of assurance required. The
higher the ASIL level, the more rigorous development and testing processes
are required. Safety analysis in this matter also enables to allocate enough
time and resources to project to reflect amount of work which it will take to
develop product for given ASIL level.

2.2.1 Software development according to ISO26262

This section introduces Part 6 of ISO 26262, Product Development: Software
Level. ISO 26262 addresses possible hazards caused by malfunctioning be-
havior of E/E safety-related systems, including interaction of these systems
and specification of phases for product development at the software level.
These phases are initiation of product development at the software level,
specification of software safety requirements, software architectural design,
software unit design and implementation, software unit testing, software
integration and testing, and verification of software safety requirements [1].
Each development phase is described in its respective section below.

2.2.2 Initiation of Product development at the software level

The objective of phase Initiation of Product development at the software level
is to plan and initiate functional safety activities as well as define supporting
processes in the form of project plan, safety plan, etc. Qualified tools and
guidelines to be used in the project are picked according to ASIL level that
was determined by hazard analysis and risk assessment for given product.

The software development process for the software of an item, including
lifecycle phases, methods, languages, and tools, shall be consistent across all
the sub-phases of the software lifecycle and be compatible with the system and
hardware development phases, such that the required data can be transformed
correctly [1]. ISO26262 parts at the Software level of the standard are mapped
to development V-Model as defined by Automotive SPICE, Figure 2.1.

V-Model captures the whole software development lifecycle from system
design to item integration and testing and how each design and implementation
phase on the left side of the model is mapped to verification and validation
phase on the right side of the model.

2.2.3 Specification of software safety requirements

Objectives of phase Specification of software safety requirements are to
specify the software safety requirements from the technical safety require-
ments (including their ASIL) and the system design specification, detail the
hardware-software interface requirements and verify that the software safety
requirements are consistent with the technical safety requirements and the
system design specification [1].

6



......................................2.2. ISO 26262

Figure 2.1: Reference phase model for the software development [1]

2.2.4 Software architectural design

Objectives of phase Software architectural design are to develop a software
architectural design that realizes the software safety requirements and verify
the software architectural design. It gives requirements for notations for
software architectural design with goal to use appropriate levels of abstraction.
It includes design principles to apply to achieve modularity, encapsulation
and minimum complexity. These design principles can be met by use of
hierarchical structure, restricted size of software components and interfaces,
etc. Safety software requirements are allocated to software components.
Software components of differents ASILs are treated as belonging to the highest
ASIL if one software component can affect the other software component.

Safety analysis applied to software architecture helps to identify and con-
firm safety-related characteristics and supports specification of the safety
mechanisms. Software architecture shall also address requirements for error
detection such as plausibility checks, detection of data errors, control flow
monitoring, etc.

Error handling shall also be addressed in software architecture with mech-
anisms such as static recovery, graceful degradation, correcting codes for
data, etc. Last but not least software architecture shall specify verifica-
tion requirements including control flow analysis, data flow analysis, and
inspections.

2.2.5 Software unit design and implementation

Objectives of phase Software unit design and implementation are to specify the
software units by the software architectural design and the associated software
safety requirements after that implement the software units as specified and
finally verify the design of the software units and their implementation.

Requirements for notation based on ASIL level shall be specified to allow
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2. Automotive software engineering ............................
subsequent development activities to be performed correctly and effectively.
Design principles shall be specified and applied to achieve robustness, testa-
bility, and simplicity of source code. Examples of these design principles are
one entry and one exit point in subprograms and functions, limited use of
pointers or usage of a subset of a programming language that is used for
development of the product.

Software unit design and implementation also specify verification strategies
such as control flow analysis, data flow analysis, static code analysis, inspec-
tions and more. Verification shall prove compliance with coding guidelines,
compliance with source code specification and compliance with a hardware-
software interface. Verification shall also prove compatibility with target
hardware.

2.2.6 Software unit testing

Objectives of phase Software unit testing are to demonstrate that the software
units satisfy their specification and do not contain undesired functionality.
Software unit testing addresses planning, selection of test methods such as
interface test, resource usage test, etc. It describes methods of deriving test
cases to demonstrate appropriate specification of test cases such as analysis
of requirements and boundary values analysis.

It specifies test environment requirements that should ideally be as close as
possible to target environment, and it also specifies evaluation criteria such
as compliance with expected results and pass or fail criteria for tests.

The main goal of software unit testing is to demonstrate compliance with
the software unit design specification and the HW/SW interface. Unit tests
shall also show the correctness of the implementation, absence of unintended
functionality and robustness.

2.2.7 Software integration and testing

Objectives of phase Software integration and testing are to integrate software
components into software system. Integration testing shall demonstrate that
the embedded software correctly realizes software architectural design. It
addresses planning of activities related to integration testing and selection
of test method to show that software components and embedded software
achieve compliance with the architectural design and the HW/SW interface.

It shall demonstrate correctness of implementation and robustness of em-
bedded software system. Examples of test methods at integration testing
level are fault injection, resource usage test, etc. Methods for deriving tests
cases such as analysis of requirements and boundary value analysis shall be
documented as well as requirement for the test environment.

2.2.8 Verification of software safety requirements

Objectives of phase Verification of software safety requirements are to demon-
strate that the embedded software system fulfills the software safety require-

8



......................................2.2. ISO 26262

ments in the target environment. It addresses selection of test environments
and practices such as Hardware-in-the-loop (HIL). It shall cover execution
on the target hardware and evaluation criteria that demonstrates compli-
ance with expected results, coverage of the software safety requirements and
pass/fail criteria.

9
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Chapter 3
Automotive software testing

This chapter provides overview of software testing as an engineering discipline,
Software testing terminology is introduced and defined. Practices and methods
that are used in automotive industry for software testing are described. Then,
challenges for testing software in autonomous cars are outlined, and possible
solutions to these challenges are given.

3.1 Software testing

Software testing is an activity with a goal to provide stakeholders with
information about the quality of the product under test. Software quality has
multiple definitions in literature given different authors. In the end software
quality boils down to proving compliance with functional and non-functional
requirements. Functional requirements may be calculations, technical details,
data manipulation and processing and other specific functionality that define
what a system is supposed to accomplish [12]. Non-functional requirements
impose constraints on the design or implementation regarding performance
requirements, requirements for real-time performance, reliability or security.

Software testing involves the execution of the software system on target
hardware to evaluate properties of interest. As the number of possible test
cases even for simple software unit is practically infinite, all software testing
practices have to adopt strategy how to design test cases on given test level.
Test cases are designed to evaluate that the tested system does comply with
functional and non-functional requirements.

3.2 Testing classes

On the broadest level, there are two kinds or classes of testing known as
white-box testing and black-box testing. These approaches describe the point
of view that is used to design a test case.

11
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3.2.1 White-box testing

White-box testing is a process where system is tested, and the tester has
full knowledge of the internals of the system under test. This knowledge of
internals of the system is required to design test cases that test the robustness
of the implementation and correctness of it.

3.2.2 Black-box testing

Black-box testing examines the functionality of the input/output system
without knowledge of the internal structure. The tester does not need to
know the details of the system internals. The test cases are derived based on
high–level system requirements. Test cases consist of setting a test of inputs
and outputs that are expected and observed outputs of the system under test
with the set of defined inputs.

3.3 Test Levels

Software testing is usually performed at different levels throughout the de-
velopment and maintenance process. Definition and description of these
test levels can be different through the literature and internal test guides
in companies. The levels described below follows the description given in
Software Engineering Body of Knowledge (SWEBOK)[13].

Four test levels, Unit, Integration, System, and Acceptance test, are defined
in following sections.

3.3.1 Unit Testing

Unit testing is a software testing method by which individual units of source
code, sets of one or more computer program modules together with associated
control data, usage procedures, and operating procedures, are tested to
determine whether they are fit for use [14]. Unit Testing falls into white-box
testing class. The requirement for unit test is that software element under
test is isolated from the rest of the code and tested separately.

Each unit test must be a standalone case independent from the rest of the
tests. A good rule of thumb is that unit test should only work with objects
that are in working memory of the machine that the test is run on. That
means unit does not need network access, I/O operations or database access.

3.3.2 Integration testing

Integration testing is the level of software testing in which individual software
modules are combined and tested as a group. It occurs after unit testing and
before system testing. Integration testing takes as its input modules that
have been unit tested, groups them in larger aggregates, applies tests defined
in an integration test plan to those aggregates, and delivers as its output the
integrated system ready for system testing [15].
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Integration test can fall to either black-box or white-box testing class. It
depends on software module that is being tested and what information does
the tester need to create test case for software requirement that is being
tested.

3.3.3 System testing

System testing of software or hardware is testing conducted on a complete,
integrated system to evaluate the system’s compliance with its specified
requirements. System testing falls within the scope of black-box testing, and
as such, should require no knowledge of the inner design of the code or logic
[16].

System testing takes as its input an integrated software system that has
passed integration testing phase. System testing is usually considered appro-
priate for assessing the nonfunctional system requirements [13].

3.3.4 Acceptance testing

Acceptance testing verifies that system fulfills all customer requirements. It is
a black-box testing method which is done on target hardware in the operation
like environment to prove the readiness of the product for release. Acceptance
testing is performed by the customer or user of the system under test, and
the goal is to establish confidence in the system under test.

3.4 Testing practices

Following sections introduce testing practices used to ensure software quality
which were picked with correlation to whitepaper [7], which brings an overview
of software testing practices and methods used by car manufacturers and
researchers in automotive. These practices are supported by specialized tools,
following section gives theoretic introduction and specific tools used in this
thesis are described in 5.3.

3.4.1 Peer code review

Peer code review is a procedure in which code is submitted to review process.
Another developer from the team goes through the code. It is intended to
find mistakes overlooked in the initial development phase, improving the
overall quality of software. Code review is also used to check compliance with
company style guide for code writing or with industry coding standards.

3.4.2 Code coverage

Code coverage analysis measures how much of the code is covered by unit tests.
When the unit test suite is run, the execution of the program is monitored, and
code coverage tool generates a coverage report with percentage of code that
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has been executed. This percentage has to be accompanied by information
which coverage criteria has been used. Coverage criteria are listed below.. Function coverage – Has each function (or subroutine) in the program

been called?. Statement coverage – Has each statement in the program been exe-
cuted?.Branch coverage – Has each branch of each control structure (such
as in if and case statements) been executed? For example, given an if
statement, have both the true and false branches been executed?.Condition coverage – Has each Boolean sub-expression evaluated both
to true and false?

While high code coverage does not necessarily imply good quality of code,
it is one of the measures that is used to show to which level the code is tested
[17] Branch coverage is mostly used as it ensures that all paths have been
tested while keeping the test suite smaller than if condition coverage was
used.

3.4.3 Static code analysis

Static code analysis is automated analysis of software that is performed on
the source code without actually executing the program. Static analysis
programs can range from tools that check source code line by line up to tools
that analyze complete source code and can find violations across multiple
files.

Use of static analysis tools is growing in commercial sphere as part of
verification process, mostly used in safety-critical computer systems such
as medical software, nuclear software, aviation and automotive software.
Static analysis software can check for known dangerous language constructs,
compliance with software standards or compliance with code style guide.
The range of open-source and commercial solutions is available for many
programming languages.

3.4.4 Test automation

Software testing is iterative process. Fixing software bug in one part of the
system can generate or illuminate the other bug in different part of the system.
That is why it is necessary to have as many as possible test cases performed
automatically to ensure that bug fixing or new feature implementation does
not break existing code base.

Automation servers are used for automated testing, which means running
given test cases automatically. These automatic runs can be done periodically
or every time source code is changed by connection to Source Control Man-
agement (SCM) program. These tools help to avoid cumbersome repetitive
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task and help improve software quality by giving quick feedback if test cases
fail and help to discover regressions.

3.5 Test methods

There exists a wide variety of test methods as much as types of software exists.
Testing methods described below are selected based on results of survey [7].
Methods that are used in practical part of this thesis are described in more
depth.

3.5.1 Model based testing

Model-based testing is used to test systems developed with model-based
development approach. Software components are no longer handwritten in C
or Assembler code but modeled with MATLAB/SimulinkTM, Statemate, or
similar tool[18].

Model-based development in Matlab and Simulink and therefore model-
based testing is commonly used in automotive industry and makes up to third
of all used development languages[7]. Even though some work on the topic
of model-based development for autonomous vehicles exists [19], different
development approach was used in project F1/10, and model-based testing is
therefore not covered in bigger detail.

3.5.2 Simulation

The simulation does imitate the operation of real-world process or system over
time. Simulation can be used to show the eventual real effects of alternative
conditions and courses of action. Simulation is also used when the real system
cannot be engaged, because it may not be accessible, or it may be dangerous
or unacceptable to engage, or it is being designed but not yet built, or it may
simply not exist [20].

A computer simulation uses a model of real-world or system on a computer
to run simulation scenarios to see and study how the system works. By
changing variables in the simulation, predictions may be made about the
behavior of the system. It is a method to virtually investigate the behavior
of the system under study [21].

3.5.3 X-the-in-loop methods

In-the-loop methods are simulation techniques that are used in development
and testing of complex real-time embedded systems. They are namely Model–
in–the–Loop (MiL), which uses e.g. a MATLAB/Simulink Model, Software–in–
the–Loop (SiL) uses compiled software for the target machine, but runs within
an emulator hosted on the development machine, Processor–in–the–Loop
(PiL) uses the SiL Software and the target processor (e.g. on an evaluation
board) but not the contemplated ECU. Hardware–in–the–loop (HiL) uses the
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target ECU with it specified the hard-wired interface and a simulation input
values via defined signals (I/O and Bus messages) [7].

3.6 Challenges of testing software in autonomous
vehicles

To discuss testing methodology for autonomous vehicles, engineering principles
and technologies that are used for development of autonomous vehicles have
to be described first. An autonomous vehicle is evolutionary goal of Advanced
Drives Assistance System (ADAS) development. The path taken by most car
manufacturers is incremental betterment of ADAS technology up to a point,
where the vehicle become fully autonomous. This goes hand in hand with
development in modern robotics which combines sensing, localization and
mapping and navigation tasks. On the other hand, researchers are working on
the second approach which is called end-to-end learning and is also described
further.

3.6.1 Sensing

The first requirement for autonomous vehicles is to have a set of sensors to
use. Different approaches exist, but in the end, most of the parties working on
autonomous vehicles use one of the following types of sensors. While Google
uses Light Detection And Ranging (LIDAR) sensors with their car[22], Tesla,
which has arguably the most advanced ADAS capability in current market
equips all cars built and delivered starting October 2016 with eight cameras,
12 ultrasonic sensors, and radar [23].

Historically LIDAR and radar technologies were used heavily in development
of self-driving cars, with the advancement in deep learning and hardware,
cameras and computer vision are expected to make bigger and bigger impact
in the field of autonomous driving.

3.6.2 Localization and navigation

ADASes that we can meet in modern cars are for example lane detection,
pedestrian detection, road signs detection and blind-spot monitoring. While
tasks such as automatic cruise control and lane keeping in constrained envi-
ronment such as highway make it possible to achieve good performance with
deterministic algorithms, most of the research and development in autonomous
cars is currently using machine learning.

What all these tasks have in common is that they are vision-based tasks
and deep learning techniques have been applied to computer vision problems
recently. To ensure full autonomy, other capabilities such as traffic light
detection, car detection, and obstacle detection need to be developed. There
also a different approach and that is end-to-end learning. Sensor data are
linked through neural network directly to steering commands [24].
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While this approach has generated interesting results, the challenge of
machine learning, in general, is that the developer has minimal information
about how the system works inside and makes the decision. If the system
makes an error, the developer may not know why it made the error, which
shows the main disadvantage of these systems. How do we prove that the
system we have designed is safe under all circumstances? These challenges
are discussed in section 3.7.

3.7 Software testing for autonomous vehicles

Methodical approach rather than a simple cycle of system-level test-fail-patch-
test will be required to deploy safe autonomous vehicles at scale. The ISO
26262 development process (V model, Figure 2.1) sets up a framework that
ties each type of testing to a corresponding design or requirement document
but presents challenges when adapted to deal with the sorts of novel testing
problems that face autonomous vehicles [25].

ISO 26262 is mandatory for software development in automotive and as
such it is expected that autonomous car development will have to comply
with this standard. This area is currently a topic of research [26] and is also
widely discussed by professionals inside the automotive industry. Functional
safety defined by ISO 26262 requires human driver to oversee the function
of the vehicle, and therefore ISO 26262 in its current form brings challenges
of defining the safety and functional requirement for autonomous vehicles
[27]. This challenges should be addressed by the second edition of ISO 26262
standard which is due for release in early 2018 [28].

The challenge of testing for autonomous vehicles lies in the nature of tech-
nology that is being used to program autonomous vehicles. Non-deterministic
algorithms and statistical algorithms with combination with machine learning
systems are used. Some of the challenges of testing these systems are discussed
in following chapters.

3.7.1 Stochastic systems validation

Non-deterministic computations include algorithms such as planners, percep-
tion algorithms and pedestrian detection. These systems are classification
tasks which by nature have to trade between false positives and false negatives
in classification tasks. Systems with this property have to be setup in order
what rate of false positives to false negatives is acceptable for proper system
function.

This tradeoff with combination of stochastic nature of the system makes
verification and validation of the system difficult. One way this can be
illustrated is testing the behavior of the system in specific edge case scenario.
The challenge here is to know that such a scenario does exist and then design
the specific test case because the scenario can be triggered by narrow set
of input in very specific situation which can be hard to reproduce. What
is more, non-deterministic system can have very different output for similar
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inputs. This implicates that the decision about pass/failure of the test is
not binary because the correctness of behavior of the system is measured in
percentage rather than a true/false statement.

3.7.2 Machine learning validation

In machine learning, there are many approaches such as supervised vs. un-
supervised learning and active learning. All of them use inductive learning,
where training examples are used to derive a model. To test the performance
of trained model, data sets used for learning are usually divided into three
parts, namely training set, validation set, and test set. The training set is
used to train the model, and the validation set is used to estimate prediction
error. The test set is used to evaluate the trained model performance.

Two sets used for testing the model, namely validation and test set are used
to prevent and catch overfitting to training data. Overfitting is when model
learns to describe the noise in the data rather general underlying relationship
in the data. Overfitted model does work very well on the training set and
validation set but works poorly with test set because of novel data points in
this set.

The main takeaway should be, that complete end-to-end testing of the
whole system is infeasible for the task of autonomous driving. Full vehicle
testing is not enough, and not all scenarios can be tested before deployment.
Taken complexity of requirements of autonomous vehicles into account, is
seems likely that rare edge cases will be discovered during use and underlying
software components will have to be retrained to accommodate these new
realities.

An Approach that seems to be applicable to address all the challenges
described is extensive testing and validation through use. To evaluate the
system fit for use, extensive use in target real-world environment has to be
conducted. For example, aircraft permissible failure rates are one in 109

hours[29]. This implies that at least 109 hours of operation testing has to be
conducted, but probably even longer to increase the statistical significance
of such testing. Building a fleet of physical vehicles big enough to run
billions of hours in representative test environments without endangering
the public seems impractical. Thus, alternate methods of validation are
required, potentially including approaches such as simulation, formal proofs,
fault injection, bootstrapping based on a steadily increasing fleet size, gaining
field experience with component technology in non-critical roles, and human
reviews [25].

Another significant part of testing the fleet of the car through use is
the amount of data that will be collected by the cars. Intel predicts that
autonomous car can create up to 4 000 GB od data for one hour of driving
[30]. This illustrates the need not just for back-end infrastructure, but also
the connection to the car with sufficient bandwidth. The data acquisition in
commercially deployed cars also offers legal questions regarding data safety
and customer privacy.

18



........................ 3.7. Software testing for autonomous vehicles

While there are many questions yet to solve, it is probable that some hybrid
approach will be used. New systems can be tested in predefined simulation
scenarios to validate their operation fast before deployment into real car,
where additional assessment is done with continuous monitoring of the car
operation during its use by customer.

3.7.3 Simulation testing

A simulation is a tool that can be used for testing as described in 3.5.2.
Robotic simulator software can be used to test robot, autonomous vehicles in
our case, without depending physically on the actual machine. One of the
main advantages of simulation to the testing of autonomous vehicles through
usage is that simulation does not necessarily need to run in real time and can
run much faster, therefore making the validation and testing time shorter.

As main disadvantage of robotic simulators is often stated their inability
to simulate real environment realistically enough, therefore things that run
in simulation flawlessly, might encounter problems in real world because of
factors that simulation did not simulate such as the wind and other weather
conditions.

Figure 3.1: Synthetized image with object labeled from game data [2]

While this argument is still valid these days, there are first signs of things
changing. With growing quality of computer graphics and photo-realistic like
rendering, simulated environments are used for research into autonomous
vehicles with games such as GTA V. Researches from TU Darmstadt and
Intel Labs developed an approach to automatic labeling images synthesized
by the game. The result of the work shows that model trained on synthesized
images with real word data improves the accuracy of the model against data
set without synthesized images [2]. Microsoft developed open-source AirSim
simulator using Unreal engine for use in drone research. It enables hardware
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in the loop testing with popular drone controllers, and more vehicles are to
be implemented as well soon 1.

There are research labs that try to take advantage of images synthesized in
simulation, use them for training of models and transfer the knowledge into
real world [31],[32]. As the computer graphics get better over time and better
simulation software is developed, we can expect this approach to take bigger
part in development. Use of robotics simulator greatly saves development
times as is enables fast prototyping and prove of concept. Modern robotic
simulators enable simulation of robot control, used sensors and are equipped
with advanced physics engines and quality rendering and 3D modeling. To get
used from these tools it is important to study how simulation scenarios can
be automated and evaluated without the oversight of the developer to enable
regression testing. Ways how to achieve this autonomy in test execution and
evaluation are described in 5.3.3.

1AirSim: https://github.com/Microsoft/AirSim
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Chapter 4
Car testing

In this chapter, first, the car and the F1/10 competition rules are presented
in 4.1. Robot operating system (ROS) is introduced, and selected parts of
ROS which are relevant for the rest of this thesis are then described in bigger
detail as well as ROS built-in support for software testing in 4.2.

In section 4.3 we define what is the system under test and test methods that
are used for car testing. We chose robotics simulation as the main tool for
car testing. Motivation behind this decision is given followed by description
of robotics simulator software in section 4.4 .

Original work starts from section 4.4.2 where car model for simulation is
introduced. Instructions for usage of simulated car and description of created
simulated worlds is given. ROS packages that were developed for creation
of test cases is given in 4.5. Test cases are derived and described in 4.6 and
finally, test results are presented and discussed in 4.7.

Implemented functionality described in following sections is distributed
with printed copy of thesis on enclosed CD, its content, and directory structure
is described in A. Instructions how to install all required software to be able
to run commands described in this thesis is given in Appendix B.

4.1 F1/10 competition

Original document with F1/10 competition rules is located on F1/10 competi-
tion website [33]. Main points that are relevant for understanding what F1/10
competition is about are described in this section to show what kind of au-
tonomous behavior is required from car and what kind of testing methodology
is appropriate to use and brings benefits to the project.

F1/10 competition is a race of autonomous cars built from prescribed parts
that use hardware approved by competition organizer. The race is held in the
hallways of the University which are roughly 2–5 meters wide. The racing
track consists of multiple turns in both directions, uneven walls, varying
lighting conditions and static objects on the track. The race will comprise of
time trials and the car with the fastest time wins. Participating teams will
be split into pools according to their lap times in the qualifying lap. Cars in
each pool will compete in race of two cars against every other car in in that
pool, and the top cars will qualify for the next round.
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The competition rules speak in length about collisions between cars during

the race of two cars and how to judge who is guilty of the collision. The main
take away from it is that a car will be considered responsible for collision if
it hits another car from behind, or it appears to have lost control and hits
opponent car during the race.

4.1.1 Car

This section briefly introduces car and components that it is built from. Car
for F1/10 competition is built on Traxxas Rally 1/10 chassis and can be
fitted with Suspension, Axle Conversion, and Tires that are picked from list
approved by organizers of the competition. NVIDIA Jetson TK1 is used
as main computing unit for planning and perception, and Teensy board
is used for motor control. The car can be fitted with multiple sensors in
compliance with list of approved sensors given in F1/10 competition rules.
Our car is shown in Figure 4.1. The car is fitted with ZED camera, SICK
Tim551-2050001 LIDAR, Razor IMU 9DOF (P/N: SEN-10736 and Netis
WF2190 WiFi adapter. A detailed description of the car and its assembly is
given in [34].

Figure 4.1: CTU car

4.2 ROS

It is required by the F1/10 competition rules to use ROS as part of software
running in the race car. The minimal is to use ROS to listen to start command
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over ROS topic. ROS in version Indigo, which was released in 2014 and targets
Ubuntu 14.04 LTS (Trusty) distribution is used in race car and for this thesis.

4.2.1 ROS architecture

This section gives brief overview of what ROS is and for what application it is
suitable. ROS robot software development framework licensed under standard
three-clause BSD license. It includes hardware abstraction, low-level device
control, implementation of commonly-used functionality, message-passing
between processes and package management. It also provides tools and
libraries for obtaining, building, writing, and running code across multiple
computers. The ROS runtime graph is a peer-to-peer network of processes
(potentially distributed across machines) that are loosely coupled using the
ROS communication infrastructure [35].

In ROS, a process that performs computation is called node. Nodes are
processes that perform computation. Term node arises from visualizations
of ROS-based systems at runtime: when many nodes are running, it is
convenient to render the peer-to-peer communications as a graph (figure 4.2)
with processes as graph nodes and the peer-to-peer links as arcs. Lookup
mechanism that allows processes to find each other at runtime is called Master
[36].

Modular design helps to reduce code complexity in comparison to monolithic
systems. A system which is distributed in this manner is more tolerant to
faults as crash at one node does not result in crash of the whole system. What
is more, implementation details are hidden as nodes expose minimal API.
This also enables communication of nodes written in different programming
languages or running on different machines which are connected over network.

Figure 4.2: Rosgraph displays nodes as ellipses connected by topics with names
in rectangles

ROS framework has support for Python, C++ nad Lisp programming
languages and has experimental libraries for Java nad Lua. ROS has a custom
unit/integration test framework called rostest. ROS currently runs only on
Unix-based platforms and is primarily tested in Ubuntu and Mac OS X
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systems. ROS consists of core functionalities and ecosystem of ROS packages.
Parts of ROS that are relevant for understanding the rest of this thesis are
introduced in following sections.

4.2.2 Communication

Nodes communicate with each other by passing messages. A message is a
strictly typed data structure. Messages can be composed of other messages,
and arrays of other messages nested arbitrarily deep. ROS has four main
communication paradigms which are in brief described in this chapter. Topics
are named buses which nodes use to exchange messages. Topics are work on
publisher/subscriber architecture. Each topic can have multiple publishers
and subscribers1.
Services are used for one-way transport and are build as request/reply

system. Service is defined by pair of messages. One message is used for
the request and second for the reply. ROS node offering a service is called
provider. Client calls the service using request message and after that waits
for the reply2.

While services enable sending a request and receiving a reply with result,
they do not offer the ability to monitor the state of execution of that request
or cancel the request. For this, actionlib package can be used. It implements
server and client pair which communicates over set of predefined messages,
namely goal, feedback, and result3. This functionality is used for example in
navigation system where the goal is sent to the action server, and client gets
periodic feedback on the goal pursue status.

The last way how to share data between nodes in ROS is Parameter
server. It is shared, multi-variate dictionary that is accessible to all nodes via
network API and can be used to store and retrieve parameter at runtime. It
is low-performance application best used for static data such as configuration
parameters4.

4.2.3 Catkin

ROS package management and build system. It includes build system macros
and infrastructure for ROS and offers features such as workspace creation,
package creation and compilation, test running and support for static analysis5.
Catkin workspace is a folder in which catkin packages are built. Catkin uses
CMake, a cross-platform, open-source build system for package building.
While initially targeted compiler is GNU C++ compiler, catkin packages can
be compiled with other compilers such as Clang.

Each catkin package must include catkin compliant package.xml which
provides meta information about the package CMakeList.txt. CMakeList.txt

1Topics: http://wiki.ros.org/Topics
2Services: http://wiki.ros.org/Services
3Actionlib: http://wiki.ros.org/actionlib
4Parameter server: http://wiki.ros.org/Parameter%20Server
5Catkin: http://wiki.ros.org/catkin
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provides information how to build the package. There can be no more than
one package in each folder, and nested packages are not allowed.

Catkin also provides functionality for registering and running tests in
catkin workspace. Each package can also be registered for static analysis
with integrated roslint tool which uses cpplint for C++ code and pep8 for
Python code. Tests and analysis can be run from catkin workspace on one
by one basis or all at once.

4.2.4 Roslaunch

Roslaunch – command line tool which is used to run launch files. Launch file
specify the parameters to set to Parameter server and nodes to instantiate,
as well as the machines that they should be run on. Launch files are written
in XML. A Minimal working example of file foo.launch is presented.

<launch>
<node name="foo" pkg="foo_pkg" type="foo_app">

</launch>

This launch file runs binary foo_app from package foo_pkg under name foo
and is run by roslaunch as.

roslaunch foo.launch

Several tags are defined for launch files that can be used to combine nodes
that are written to coexist as group such as assisgning the same namespace
to group of nodes, give a group of nodes the same name remapping or specify
on which machine they should run on6.

4.2.5 ROS test support

ROS package and build system offers build in support for testing in form
of googletest7 for C++ language and unittest8 for Python language. Use of
these supported frameworks is recommended, but it is possible to use different
unit test framework as long as it is compatible with xUnit framework.

ROS has its own integration test suite called rostest which is based on
roslaunch and is compatible with xUnit framework. Rostest9 enables to use
roslaunch files as test fixtures and do full integration testing across multiple
nodes. Rostest interprets <test> tag in launch file, which specifies test node
to run. Test nodes are nodes that execute defined tests while the system is
running. The advantage of <test> tag is that if file is run with roslaunch,
<test> tags are ignored, and system launches without invoking tests. When
the .launch file is run with rostest command, all the test nodes are invoked.
It is possible and good practice to integrate the rostests into catkin build and

6Roslaunch: http://wiki.ros.org/roslaunch
7Googletest: https://github.com/google/googletest
8UnitTest: https://docs.python.org/2/library/unittest.html
9Rostest: http://wiki.ros.org/rostest
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run them with catkin tools in catkin workspace. Further details are given in
section 4.6.2.

4.3 Test methodology

This section describes architecture of car software system and which parts of
the system will be tested. Requirements for autonomous behavior that the
car has to have to enable participation in F1/10 competition are derived, and
ways how to test these requirements is discussed. Finally, test methodology
for F1/10 project is established.

F1/10 project is a collaboration of a group of students. Software com-
ponents are developed in separation by another team member. To derive
test methodology, brief overview of software architecture is shown in Figure
5.3. Named arrows describe ROS topics over which ROS nodes communicate.
Localization, Navigation, and Map are high-level components which group
ROS nodes together. Main communication topics between these components
are displayed. Implementation details for these components are described in
[34]. Race component is a group of packages that were developed for this
thesis and are introduced in 4.5. Vertical dashed line shows interface between
car software and input from sensors and output to motor control.

Figure 4.3: High level overview of system architecture and topic interface
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4.3.1 System requirements

This section defines system requirements for car software system. Require-
ments for car autonomous behavior are derived from F1/10 competition rules
[33]...1. Car can persistently complete a mission defined by the safe traversal of

ordered series of checkpoints with the objective of minimizing completion
time...2. Car can interpret static obstacles within the environment in order to
maintain collision free progress..3. Car can exhibit context-dependent speed and angular velocity control in
a static environment...4. Car can interpret dynamic obstacles within the race environment in order
to enable predictive controls and planning, such as is necessary to ensure
collision-free progress...5. Car is able to Exhibit context dependent speed and angular velocity
control in a dynamic environment...6. Car is able to navigate in areas where sensors may not provide map-based
localization (i.e., LiDAR range is insufficient).

4.3.2 Test plan

This section describes which test levels are used to test car software, how
requirements listed in 4.3.1 are verified and which test methods are used to
verify them.

Test levels were described theoretically in 3.3. Figure 5.3 shows, that
car software is built by combining existing ROS packages. These packages
are used in multiple ROS projects and are already unit tested, therefore no
more testing on this level is done, and packages are expected to function as
described in their respective documentation. Apart from using existing ROS
packages, new local planner plugin was written for move_base. This plugin
uses predefined interface to integrate with move_base and does not change
move_base API, therefore can be tested as part of system tests.

Communication between nodes is done over ROS communication stack
which was described in 4.2.2. Topics, services, and actionlib provide well-
defined interface which fails at compile time if incompatible type is assigned to
message. Because ROS communication stack is used, specialized integration
tests do not have to be written to test communication between nodes.

This shows that it is possible to view car software as black-box and evaluate
requirements defined in 4.3.1 by testing the system using its input/output
(I/O) interface in prepared test scenarios. Because car software implementa-
tion was done parallel to work on this thesis, it was required that test method
which will be used to verify requirements can also be used for testing during

27



4. Car testing......................................
development. Robotics simulator was selected as tool which will enable to
develop required autonomous behavior and at the same time design test cases
to verify functional requirements.

4.4 Robotics simulation

In this section firstly Gazebo simulator and its integration with ROS is
described, then challenges of modeling car with Ackermann steering are
discussed, and car model is written in Unified Robot Description Format
(URDF) is introduced. Once robot model is established, ways how to control
it in simulation are outlined and at last process how to spawn one or multiple
car models into simulation is documented.

4.4.1 Gazebo simulator

This section introduces Gazebo10 simulator, open source robot simulation
tool licensed under Apache 2.0. Its development is currently stewarded by
Open Source Robotic Foundation11 (OSRF). Gazebo comes prepared with
multiple robots that are ready to be used in simulation. It takes advantage
of multiple open source projects to provide high-performance physics engines
including ODE, Bullet, Simbody, and DART. OGRE 3D library is used to
render realistic environments including high-quality lighting, shadows, and
textures. The Gazebo provides ways to generate sensor data for most sensors
used in modern robotics such as LIDARs, IMUs, high-resolution cameras and
more. These sensor data can be augmented with noise to better simulate
performance of real world sensors.

With recent development in cloud computing, Gazebo provides possibilities
to run simulation on remote servers and interface to Gazebo through socket-
based message passing using Google Protobufs. Cloud simulation and web
browser GUI are currently under development in the form of CloudSim and
Gzweb. Version 7.5 is used in this thesis as it is the highest compatible
version with ROS Indigo.

ROS and Gazebo Interface

Gazebo and ROS communication interface is described in this section. The
Gazebo has been a standalone project since 2015 a no longer has direct code
dependencies to ROS. To integrate Gazebo and ROS, a set of ROS pack-
ages named gazebo_ros_packages provides wrappers around the standalone
Gazebo12. Gazebo_ros_pkgs are crucial part that enables ease of use and in-
tegration of simulation into ROS development workflow. Because ROS topics,
services and controllers in the form of ros_control are used to interface with

10Gazebo simulator: http://gazebosim.org/
11OSRF: https://www.osrfoundation.org/
12ROS integration: http://gazebosim.org/tutorials?tut=ros_overview
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the simulation as well as with the real robot, the switch between simulation
and real world use can be written as one simple parameter in roslaunch file.

While every distribution of ROS comes with support for given version of
Gazebo, it is possible to use newer version of gazebo with older version of
ROS if gazebo_ros_packages are properly recompiled. The only downside
to this approach is that all packages using Gazebo and ROS have to be
compiled manually inside catkin workspace, because packages in ROS ppa
are compiled for Gazebo version coming with given ROS distribution, such
as Gazebo 2 for ROS Indigo. This downside is most of the time worth the
effort as newer version of Gazebo simulator offer significantly more features
and better performance than older versions.

Roslaunch tool, described in 4.2.4, can be used in combination with
gazebo_ros_package to start Gazebo simulator as ROS node. This node
can be called with multiple startup parameters which are described in Table
4.1. To run Gazebo simulation, launch file for empty world, which is default
for Gazebo session is included. To launch a custom world, world_name
parameter is set. It can be absolute path to .world file or relative path to
GAZEBO_RESOURCE_PATH environmental variable. Example usage in
launch file is shown in following code snippet.

<include file="$(find gazebo_ros)/launch/empty_world.launch">
<arg name="world_name" value=
"$(find f1tenth_gazebo)/worlds/$(arg world_file_name).world"/>
<arg name="debug" value="$(arg debug)" />
<arg name="gui" value="$(arg gui)" />
<arg name="paused" value="$(arg paused)"/>
<arg name="use_sim_time" value="$(arg use_sim_time)"/>
<arg name="headless" value="$(arg headless)"/>

</include>

Description format

Universal Robot Description Format13 (URDF) is introduced in this section.
URDF is used in ROS to write robot description for use in simulation
and visualization software. Gazebo, on the other hand, switched to Scene
Definition Format14 (SDF). While URDF can be parsed into SDF and used
with Gazebo simulator, it is not possible to convert SDF to URDF. To use
robot described with URDF in Gazebo, special measures has to be taken
into account. There are efforts in the community to update URDF format or
provide a way to convert from SDF to URDF, but currently, no straightforward
solution exists. ROS tools such as Rviz and Robot state publisher needs to
have robot description in URDF format, that is why URDF has been chosen
to write f1tenth car description for simulation.

13URDF: http://wiki.ros.org/urdf
14SDF: http://sdformat.org/
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Parameter name default description
world_name empty.world Path to .world file, that will

be used for simulation.
debug false Start gzserver (Gazebo Server)

in debug mode using gdb.
gui true Launch the user interface win-

dow of Gazebo.
paused false Start Gazebo in a paused

state/
use_sim_time true Tells ROS nodes asking for

time to get the Gazebo-
published simulation time,
published over the ROS topic
/clock.

headless false Disable any function calls
to simulator rendering (Ogre)
components. Does not work
with gui:=true.

Table 4.1: Gazebo launch parameters

Xacro

This section describes Xacro15 (XML Macros), XML macro language. Xacro
enables to write shorter and better structure robot description in URDF
by writing XML macros that expand XML expression on call. A typical
example of use is writing a macro for creation of wheel for the robot which is
later instantiated for each wheel that the robot has, this reduces the amount
of code that has to be written to describe the robot and also makes the
description files more readable.

Xacro enables to create properties and property blocks which are named
values that can be inserted anywhere in the XML document. Property blocks
are snippets of XML code that can be reused at multiple places. Xacro
enables to evaluate math expressions inside XML documents and also allows
conditional blocks which make it possible to change robot description by use
of configuration files. This enables to quickly change the set of sensors the
robot is using or gazebo plugins which are loaded when the robot is simulated.
Xacro macros are most commonly used to define sensors and other repeating
parts of the robot and enable creation of multiple blocks with different names
and attached to different links.

Links and joints in URDF

URDF has a tree structure with one root link, and the root link in robots
used with ROS is usually called base_link. The URDF tree is composed

15Xacro: http://wiki.ros.org/xacro
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of links and joints. Links are created by usage of simple shapes such as
sphere, box, and cylinder. These links consist of visual, inertial and collision
description. Links are joint together using joints16. Joints are described
by its type, which can be revolute, continuous, prismatic, fixed, floating
or planar. They also have to specify parent and child link that they are
connecting. This is shown in code snippet below which is describing base_link
and fixed joint that is connecting base_footprint and base_link. In the code
snippet below we can see the use of xacro functionality, referencing parameters
such as chassis dimensions in the form of chassisLength,chassisWidth and
chassisHeight. Another example is the use of box_inertia that is a call to
macro that computes moment of inertia for given box.
<joint name="base_footprint_joint" type="fixed">

<origin xyz="0 0 ${centerOfGravity}" rpy="0 0 0" />
<parent link="base_footprint"/>
<child link="base_link" />

</joint>

<link name="base_link">
<inertial>

<mass value="${chassisMass}" />
<origin xyz="0 0 ${centerOfGravity}" />
<xacro:box_inertia m="${chassisMass}"

x="${chassisLength}"
y="${chassisWidth}"
z="${chassisHeight}"/>

</inertial>

<visual>
<origin xyz="0 0 ${centerOfGravity}" rpy="0 0 0" />
<geometry>

<box size="${chassisLength}
${chassisWidth}
${chassisHeight}"/>

</geometry>
</visual>

<collision>
<origin xyz="0 0 ${centerOfGravity}" rpy="0 0 0" />
<geometry>

<box size="${chassisLength / 2}
${chassisWidth / 2}
${chassisHeight / 2}"/>

</geometry>
</collision>

</link>

16Joint: http://wiki.ros.org/urdf/XML/joint
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4.4.2 URDF car model

ROS and its packages have been mainly developed for use with differential
steering robots. This provides challenges for F1/10 project because F1/10
race car is a car-like robot which is using Ackermann steering. Interest group
for development and producing generic interfaces for control, navigation and
simulation of Ackermann robots exists in ROS, but so far did not produce a
solution that would enable to take a ROS package with defined robot and
start simulating.

Describing robot with Ackerman-steering in URDF description format is
problematic because of the tree-like structure of the format. Theoretical
background on why these challenges exist and how to solve them is given in
[37]. For the use in this thesis rbcar_description17 and rbcar_robot_control18

packages from project RBCAR19 that has source code available on Github
under BSD-2-Cause license have been used to jump start the writing of simu-
lated car description. Rbcar_description is URDF description of four wheel
robot with Ackermann steering and rbcar_robot_control is Gazebo plugin
which enables control of Ackerman-steered robots and emulates Ackermann
steering in software as described in [37]. In the end, most of the software
has been overwritten to suit F1/10 project better and extended with new
functionality required for automation of testing scenarios. Visualization of
robot URDF description is in figure 4.4.
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Figure 4.4: URDF car model visualization

All files that describe the car in simulation are stored in f1tenth_description
package. Launch file upload_f1tenth.launch is provided with this package.
This launch file takes parameters that enable to change robot description

17RBcar common: https://github.com/RobotnikAutomation/rbcar_common
18RBcar sim: https://github.com/RobotnikAutomation/rbcar_sim
19RBCAR: http://wiki.ros.org/Robots/RBCAR

32



..................................4.4. Robotics simulation

based on what is needed for which scenario. Description of parameters that
can be passed to upload_f1tenth.launch is given in Table 4.2.

Parameter name default description
perfect_odom false If this parameter is true,

Gazebo publishes exact loca-
tion of simulated car on odom-
etry topic perfect_odom.

has_zed_camera false If this parameter is true, sim-
ulated car has stereo camera
sensor.

has_bumpers false If this parameter is true, sim-
ulated car has contact sensors
on each side of chassis.

has_lidar true If this parameter is true, sim-
ulated car has lidar sensor.

display_laser true If this parameter is true, laser
rays from lidar are displayed
in Gazebo simulator.

Table 4.2: upload_f1tenth.launch parameters

When upload_f1tenth.launch is called, robot description is parsed by the
xacro interpreter, and robot description in URDF format is produced. This
URDF file is stored on parameter server as robot_description. Simulated car
inside Gazebo simulation is shown in Figure 4.5.

base

The base of the car is described by two files. F1tenth_base.gazebo.xacro is de-
fined where Gazebo plugins are loaded. Simulation of car uses gazebo_ros_control
library which provides interface to send commands to actuators via simulated
controllers. The second Gazebo plugin used is called f1tenth_perfect_odometry
and is used to read odometry from Gazebo simulation and provide it as ROS
odometry topic. This plugin was written for the need of the thesis and is
described in 4.5.4.

The second file is f1tenth_base.urdf.xacro which provides description of car
chassis in the form of base_link and base_footprint. These are coordinate
frames which are used as reference frames for navigation and localization and
should always be defined for every robot description. According to REP120
20 base_footprint is the representation of the robot footprint projected on
the floor. In most use cases this frame is not used, and base_footprint is
represented as small, weightless box attached directly to base_link, that is
also the case for F1/10 car description. Base_link is rigidly attached to
mobile robot base, and it is one of basic ROS coordinate frames defined in

20REP120: http://www.ros.org/reps/rep-0120.html#base-footprint
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REP 105 21.

bumpers

It is required to know if the simulated car has taken part in any colli-
sion during the automatic execution of the test to automate simulation
scenarios. The Gazebo offers contact sensor that registers contact be-
tween two links and predefined gazebo_ros_bumper plugin that publishes
gazebo_msgs::ContactsState over ROS topic. The bumper is implemented
as the xacro macro with parameters name, parent, number, origin and box.
Origin parameter provides position reference against base_link and box
specify size and shape of the bumper. The bumper macro definition is in
bumper.urdf.xacro. Following code snippet shows an example of referencing
xacro macro.
<!-- front bumper -->
<xacro:bumper name="front_bumper"

parent="base_link"
number="1">

<origin xyz="${chassisLength/2+0.005}
0.0
${centerOfGravity}"/>

<box size="0.01
${chassisWidth }
${chassisHeight / 2}"/>

</xacro:bumper>

wheels

Wheels are defined as cylinders with given size and moment of inertia is
computed for them as for solid cylinder. Each wheel is equipped with shock
absorber, which is modeled as the prismatic joint. Front wheels are also
equipped with steering link which is modeled as the revolute joint. Each
wheel joint, shock absorber joint and steering joint is equipped with the
actuator which enables the simulation of movement via robot control Gazebo
plugin which is further described in 4.4.3.

sensors

The simulated car is equipped with the same set of sensors as the real car.
Sensors in the simulated car are build by using Gazebo sensor plugins and
parameters are set for each sensor to reflect the performance of the real sensors
counterparts. IMU sensor and LIDAR sensors description come from the
robotnik_sensors package which offers set of predefined set of sensors in the
form of xacro macros22. Stereo camera sensor description in file zed.urdf.xacro

21REP 105: http://www.ros.org/reps/rep-0105.html
22Robotnik sensor: https://github.com/RobotnikAutomation/robotnik_sensors
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was written based on the template from LIDAR sensor and tutorial on Gazebo
wiki23

Figure 4.5: Visualization of the simulated car in Gazebo

4.4.3 Car control

Two levels of control have to be issued to enable car movement in simulation,
At one level, each joint capable of movements such as wheels and steering
has to be actuated. At second level, high-level commands from teleoperation
controller or navigation node have to be taken and transformed to command
for wheels and steering. Functionality that implements these requirements is
stored in f1tenth_car_control ROS package.

Actuators for shock absorbers, steering and axles need to have controllers
assigned to them. For this in ROS exists controller_manager package. Actu-
ators in Gazebo have the form of transmission interfaces which are mapped
to joints they are actuating. Controller_manager provides infrastructure to
load, unload, start and stop controllers. Each actuator is controlled by PID
controller and control constants for each controller are stored in configuration
file f1tenth_controllers.yaml in f1tenth_car_control ROS package.

Controller spawner is used to load and start a set of controllers at once.
When the spawner is run, the listed controllers are loaded, and starter and will
get unloaded once the spawner process is killed. Then the controllers are up-
loaded to parameter server so they can be interfaced by f1tenth_car_control
package which takes commands from planner or teleoperation device and

23Gz plugins: http://gazebosim.org/tutorials?tut=ros_gzplugins
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the commands are transferred to commands for axle and steering actua-
tors. Once joints of the car are actuated, their states are published by
robot_state_publisher on topic joint_states. Functionalities described in
this paragraph are implemented in launch file f1tenth_controllers.launch and
are run using roslaunch.
roslaunch f1tenth_car_control f1tenth_controllers.launch

F1tenth_car_control node listens on cmd_vel topic for geometry_msgs::Twist
which contains command from planner or teleoperation device which consists
of linear velocity and steering angle. When this message is received, the
commandCallback function is called which checks if the requested speed and
steering angle is reasonable and if not, the values are saturated to maximum
values for the simulated car. The f1tenth_car_control operates in the infinite
loop with the frequency of 50 Hz. The steering command is recalculated for
each front wheel according to Ackermann steering geometry and values are
sent to actuators in Gazebo. Node f1tenth_car_control is run by call to
f1tenth_car_control.launch file using roslaunch.
roslaunch f1tenth_car_control f1tenth_car_control.launch

4.4.4 Spawn car into simulation

In order to spawn the car into simulation, upload robot_description to
parameter server as described in 4.4.2 and start Gazebo simulator as described
in 4.4.1. Once simulator is running, launch file spawn_car.launch from
package f1tenth_gazebo is used to place car into simulation and load all
required controllers. Typical call inside launch file is given below.
<group ns="car1">
<param name="tf_prefix" value="car1_tf" />

<include file="$(find f1tenth_gazebo)/launch/spawn_car.launch">
<arg name="init_pose" value="-x 0 -y 0.0 -z 0.0" />
<arg name="init_twist" value="-R 0 -P 0 -Y 0.0"/>
<arg name="robot_name" value="car1" />

</include>
</group>

Group element enables to apply namespace setting to the group of nodes.
A namespace is attached as the prefix to each topic in the group. Parameter
name tf_prefix is used to set the prefix for tf coordinate frames. Usage of
namespaces is not consistent in ROS packages, and while most of the packages
enable the use of namespaces, the group tag is not always enough, and manual
remapping of ros topics is required. That is why robot_name parameter is
passed to spawn_car.launch. For all system to function is important, that
robot_name, group ns parameter, and tf_prefix use the same robot name.
While namespacing would not be required if only one car is simulated, it is
vital when more then one car is simulated. Launch file spawn_car.launch
enables to put the car into the simulation with specified initial pose and twist.
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3D pose with coordinates x,y and z are in meters, while twist Roll, Pitch,
and Yaw is in radians.

4.4.5 Simulation of two cars

This section describes the challenges of simulating more than one ROS con-
trolled car in the Gazebo simulator. Spawning of a single car into simulation
has been described in the previous chapter. This section describes why it
is important to be able to simulate more than one car and what additional
steps have to be taken to enable this functionality. A complete example is
given in file sim_two_cars.launch in in f1tenth_gazebo package and can be
launched as.

roslaunch f1tenth_gazebo sim_two_cars.launch

F1/10 competition rules as described in 4.1 state which behavior must car
execute while racing against opponents car at one track. There is a need to
have a way how to safely evaluate, how the car will behave once it is on the
race track with another car to develop required behavior in various situations
that can happen during the race of two cars. This is hard to test in the real
world for multiple reasons such as not having a second race car to test the
algorithms with and also the potential danger of damaging the cars.

ROS architecture is optimized for use with on robot, which is connected
to the single master node. While there has been work on multi-master
project, for which interest group has been formed, no standard way of to
use ROS with the multi-robot system has emerged. This is a known issue
which will be addressed in ROS 2 [38], but currently, the workaround of
the single-master structure of ROS has to be made. Another challenge is
to spawn two different cars into Gazebo simulation. Gazebo_ros, as well
as ros_control and robot_state_publisher packages, expect to work with
single robot_description parameter. This limitation has not been overcome,
therefore both simulated cars use the same description and are separated
by using namespaces for all topics and coordinate frames. The second car
is spawned into the simulation the same way as described in 4.4.4, only the
robot_name, group ns parameter and tf_prefix has to be changed to different
values.

The previous paragraph has described how to spawn the second car to
Gazebo simulator and load its controllers. The second challenge of the multi-
robot system is to keep track of coordinate frames for each car. Package
tf24 is used in ROS to keep track of multiple coordinate frames over time.
Base_link and base_footprint coordinate frames are described in 4.4.2. To
explain how two cars are tracked by tf, other standard coordinate frames have
to be introduced. Odom frame is a short-term local reference which provides
pose of the mobile platform that evolves in a continuous way without discrete
jumps. Map frame is a world fixed frame with Z-axis pointing upwards and
is used as long-term global reference point. Tf frames form a tree structure,

24tf package: http://wiki.ros.org/tf
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and only such structure can exist for one master node. Part of typical tf tree
is on the left side of Figure 4.6.

To control two cars on single tf tree, these cars have to be tied together
with single reference parent frame. Because each of the cars has to have
unique odometry and base link frame to be able to be navigated by navigation
software, the common reference point is the map frame as shown on the right
side of Figure 4.6

Figure 4.6: Tf tree

It has to be ensured, that map frame has no tf_prefix, and map messages are
published on map topic. In practice, the map is loaded with the map_server
package and it must ensured that this node is not placed inside group tags.

<node name="map" pkg="map_server" type="map_server" args=
"$(find f1tenth_navigation)/maps/$(arg world_file_name).yaml"
output="screen">

<param name="frame_id" value="/map"/>
</node>

4.4.6 Simulated worlds

Five racing circuits were created for Gazebo simulator to test the car in
the environment that resembles racing track as described in 4.1. While it is
technically possible to build realistic simulations of the real-world environment
with 3D file meshes, this does affect simulation time, and the more detailed
world does not have to be beneficial for car performance. While the race
car is equipped with the stereo camera sensor, it is not currently used in
current version of the software, and that does mean that more details and
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realism in the simulated world does only lower simulation performance while
not bringing practical use. Most of the created circuits are therefore very
simple and use only walls to mark the racing track. On the other hand, for
future use and to show results that are achievable with Gazebo simulator,
the detailed circuit was created for use with the camera and visual odometry
testing. An example of simulated worlds are shown in Figure 4.7.

Figure 4.7: Examples of simulated race circuits

All simulated circuits have been built with Gazebo Building Editor25, which
is a graphical interface for creating indoor environments. It offers a 2D view
where a floor plan can be created by inserting walls, windows, and doors. The
walls can be colored or fitted with predefined or custom texture. Additional
models such as furniture and boxes have been taken from Gazebo Model
Database26, which is available for use directly from Gazebo simulator GUI.
Models are free to use under Apache License Version 2.0.

Run simulation

This section describes how to run the simulation with the simulated car.
Example launch file has been prepared that spawns the car into simulated
world. To start the simulation of circuit1.world run command.

roslaunch f1tenth_gazebo sim_one_car.launch \
world_file_name:=circuit1

25Gazebo building editor: http://gazebosim.org/tutorials?tut=building_editor
26Gazebo models: https://bitbucket.org/osrf/gazebo_models
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Once the simulation is started, we need a way how to send commands to the

car and observe how it behaves. For this Rviz27, which is the 3D visualization
tool for ROS, is used. Rviz enables to display messages from sensors such as
scans from LIDAR, local global plans from navigation software and odometry
information. Rviz uses configuration files which stores setup for given car.
To run Rviz with configuration for simulated car run command.
roslaunch f1tenth_navigation rviz.launch

Rviz opens and automatically loads map and topics from the car and
visualizes them. Figure 4.9 shows visualization on the left side, and Rviz view
on the right side, user interfaces of both Gazebo and Rviz are cropped from
the figure. Rviz top toolbar features a 2D Nav Goal button that can be used
to pass navigation goal directly to move_base. Click on 2D Nav Goal button
and then click on the map and the car will start driving to that goal.

Figure 4.8: Car in Gazebo and Rviz

Create map

Map for each simulated circuit was created. Launch file create_map.launch
is prepared for map creation in the f1tenth_gazebo package. The map is
created using simulated lidar sensor and gmaping28 ROS package. Example
usage for world circut1 is given below.
roslaunch f1tenth_gazebo create_map.launch \
world_file_name:=circuit1

Teleoperation such as keyboard or joystick is used to drive the car trough
the world and once the map is complete. It can be saved with the map_saver

27Rviz: http://wiki.ros.org/rviz
28Gmapping package: http://wiki.ros.org/gmapping
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tool from map_server29 ROS package. An example of the map created this
way is in Figure 4.9.

rosrun map_server map_saver -f circut1

4.5 ROS packages

Following sections describe ROS packages that have been implemented as
part of this thesis to enable the creation of test cases described in 4.6 to verify
requirements stated in 4.3.1.

These packages are navigation manager, the shared library which provides
API for communication with move_base action server. Race manager which
uses navigation manager library to follow ordered series of checkpoints. Race
starter which implements countdown mechanism that sends information about
time to start the race to other nodes. Perfect odometry is Gazebo plugin that
provides exact information about pose and twist of the car in the simulation.
Collision detection implements node that listens to all contact sensors from
the simulated car and transforms it into boolean information for test node.

4.5.1 Navigation manager

This section describes shared library written in C++ which implements simple
action client that enables to load navigation goals, send them to move_base
actionlib server and monitor the execution of these goals. The move_base
package provides an implementation of an action server that, given a goal,
will attempt to reach it with a mobile base. Details of planner implementation
are given in [34].

Navigation manager source code is stored na ftenth_navigation_mgr pack-
age. Navigation manager API usage is shown in following code snippet.

NavigationMgr navmgr{"robot1"};
navmgr.LoadGoals("navigation_goals.txt");

while (!ros::isShuttingDown()) {
while (ros::ok() && nh.ok()) {

navmgr.Spin();
}

}

An instance of NavigationMgr class is created in namespace car1. Naviga-
tion goals are loaded from the text file and stored in the queue, instructions
on how to create the file with navigation goals are at the end of this section.
Then, the Spin function of navigation manager is called. Spin function with
committed error message implementation is shown.

29Map server package: http://wiki.ros.org/map_server
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void NavigationMgr::Spin() {

if (ac.isServerConnected()) {
if (HasActiveGoal()) {

CheckGoalState();
} else if (SizeGoalsQueue() != 0) {

SendGoal(FrontGoalsQueue());
} else {

ROS_INFO("Goals queue is empty");
}

}
}

Spin function checks that move_base action server is connected, then check
if navigation manager has an active goal, if it does, goal state is read from
the server in order to check if goal succeeded, if navigation manager has no
active goal and goals to pursue are still in queue, next goal is send. To create
navigation goals file for world circuit1, run.

roslaunch f1tenth_gazebo create_navigation_goals.launch \
world_file_name:=circuit1

Figure 4.9: Rviz control toolbar

Rviz window opens, use 2D Nav Goal button from upper toolbar to select
goals inside the map, once finished, close the application. Goals are stored in
navigation_goals.txt in f1tenth_gazebo/scripts.

4.5.2 Race manager

This section describes race mgr node from f1tenth_race_mgr package. This
node first read the configuration file and then loads navigation goals from file
described in the configuration file. The configuration file is written in YAML
format, and example is given here.

f1tenth_race_mgr:
use_absolute_fpath: false
package_name: f1tenth_race_mgr
fpath: /config/navigation_goals.txt
loop_mode: false

The first line is named under which configuration parameters are all found
on parameter server. If use_absolute_fpath is true, parameter fpath is taken
as the absolute path. Otherwise, it is used relative to package position in the
file system. If race manager is configured to work in loop mode, goals are not
popped from the queue once they are reached, and the car starts to pursue
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the first goal once the last goal is reached. Flowchart of high level logic is
displayed in Figure 4.10.

Figure 4.10: Race manager high level workflow

Navigation manager library is used to load goals. Once the goals are loaded,
race manager waits for the signal to start racing which is send by race starter
node. Once the signal to start racing comes, nav_flag is set to true, and
navigation manager Spin function is called periodically.

4.5.3 Race starter

This section describes race starter node from f1tenth_race_starter package.
This node implements countdown mechanism. The countdown starts from
time_to_start variable which can be setup by the configuration file or default
value 5 seconds is used. Race starter node publisher on topic time_to_start
every second and after every message internal variable is decremented. Once
message with zero value is sent, race starter node terminates. This node
enables to start the race of two cars at the same time.

4.5.4 Perfect odometry

This section describes Gazebo plugin perfect odometry which is part of
package f1tenth_gazebo_plugins. This plugin enables to read simulated
car position from Gazebo simulator and publish it as nav_msgs/Odometry.
It is beneficial to have the source of exact odometry for test purposes and
development of navigation algorithms. Developers and testers can focus on
the evaluation of navigation algorithm without interference from localization
inaccuracy. Of course, once the navigation algorithm is developed with exact
localization, proper localization algorithm is used to see how the system works
together.

Gazebo plugin is compiled as the shared library. It is referenced in robot
description of base which is described in 4.4.2. Perfect odometry plugin is
written as xacro macro and inserted into robot description as shown here.

<xacro:macro name="perfect_odometry">
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<gazebo>
<plugin filename="libf1tenth_perfect_odometry.so"
name="f1tenth_perfect_odometry">
<alwaysOn>true</alwaysOn>
<updateRate>200</updateRate>
<odometryTopic>perfect_odom</odometryTopic>
<odometryFrame>odom</odometryFrame>
<robotBaseFrame>base_footprint</robotBaseFrame>
<rosDebugLevel>na</rosDebugLevel>

</plugin>
</gazebo>

</xacro:macro>

Perfect odometry plugin listens to Gazebo update event which is broad-
casted every simulation iteration. If the time since the last update is
longer than update period, Gazebo API is used to read pose and twist
of base_footprint, saves this information into nav_msgs/Odometry message
and publishes it on topic perfect_odom with update rate 200 Hz.

4.5.5 Collision detection

To automate test of navigation software to the state where simple logic about
pass or failure of the test can be derived is to have the ability to evaluate
if the car reached its goal, how long it did take and if the car managed to
reach the goal without collision with other objects in the simulation. The
simulated car is equipped with four sensors for collision detection which are
described in 4.4.2.

These sensors publish gazebo_msgs/contact_state messages, which con-
tain an array of states which holds info about models, which are collid-
ing together. This states array is empty when no collision is happening.
To track the information from all the collision sensors, dedicated node
f1tenth_collision_detection inside package f1tenth_gazebo_plugins was cre-
ated. This node does subscribe to all the topics from collision sensors and
publishes boolean information about the occurrence of the collision. If the
car hits anything during automated test, it is a sign that something is wrong
and the failed test should be reviewed by the developer.

4.6 Test cases

This section describes test cases that were defined to verify car software
against the set of requirements that were set in 4.3.1. Firstly, the structure of
test node for automatic tests of car software is described, than instructions
on how to build and run tests is given. Finally, test cases created in Gazebo
simulator are described.
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4.6.1 Test node

This section describes test node for the automated test of planner software.
A diagram that shows how the test works is in Figure 4.11.

Figure 4.11: Test flowchart

Test node loads goals for given simulation test scenario. It continuously
checks that the car did not take part in any collision and if it succeeds in
pursuing its goal in reasonable time. Tests like this are run on continuous
integration server which presents test results and measures how long did the
test take. Each test is equipped with timeout mechanism which ensures that
the test does not hang in the undefined state if a bug is committed to the
source code.

4.6.2 Test node build

This section describes how to build and run tests. Tests that are defined in
catkin workspace, which was described in 4.2.3 have to be built before they
can be executed. The build of the tests is done by calling following command
in the catkin_ws folder.
catkin_make tests

The tests itself can be executed in three ways. First and secondly is by using
catkin_make as in the case of the build of the tests. Catkin offers a test
runner that can be invoked by calling:
catkin_make run_tests

This command runs all the test registered in catkin workspace and can also
be tab completed to run only tests for selected package. Another way how to
run tests is to call
catkin_make test

The difference between these two commands is hard to find in official docu-
mentation and other sources are also scarce. The main differences are that
run_tests command provides debugging info during test execution, but tries
to run multiple test cases at once. This is a problem when tests work with the
same resource that can exist in only one instance such as Gazebo simulator
and make test fail in the unexpected, not deterministic way. Therefore usage
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of run_tests command is not recommended for use with system tests proposed
in this thesis.

Call to test command, on the other hand, runs test cases one after the
other and makes sure that all resources used for test execution are closed
before next test is executed. This way of test execution provides stable results
for every run. This is and encouraged way to run the whole test suite for the
F1/10 project. Test command does not provide debug info on test execution,
but this not a problem since a call to rostest can be done while the test case
is developed and debugged.

The third way of test execution is to use rostest. The advantage against
usage of catkin tools is that rostest enables passing parameters from the
command line to test launch file and also can redirect output to stdout
instead of XML file with the test result. This makes the development of
test nodes and their execution with different parameters possible without
recompiling them every time with catkin or changing parameters in test
launch files. An example of rostest call is given below. Test launch file
test_f1tenth_planner_direct_path.test from package f1tenth_gazebo is exe-
cuted with parameter gui set to true.
rostest f1tenth_gazebo test_f1tenth_planner_direct_path.test \
gui:=true

4.6.3 Planner tests

This section describes test suite that is used to test local planner developed in
[34]. Planner tests are automated simulation tests that are used to evaluate
planner performance in simple navigation tasks ranging from going straight
down the narrow hall to driving through the simple circuit which simulates the
possible operational environment. Test node for planner tests are described
in 4.6.1. Test cases for planner test suite are described in Table 4.3.

Gazebo worlds for direct path test, left and right turn test, static obstacle
test, and simple circuit test are shown in Figure 4.12.

4.6.4 Overtaking

This section describes how the scenario in which one car overtakes another
during the race can be simulated. The rules of F1/10 competition described
in 4.1 expects that two cars will race on the same track and describes what
the expected behavior for the autonomous car is. Since the car sensors are
pointed onwards and cannot, therefore, discover another car approaching from
behind. Only relevant scenario for testing is when the opponent car is before
our car, and we plan to make the overtaking maneuver. This situation is
difficult to test with the real car because of the lack of hardware and potential
risks involved. Therefore simulation scenario can be helpful in this case.

The simulation scenario that simulates overtaking is shown in figure 4.13.
Two cars are spawned into the simulation, and both cars start operating once
the race_starter node sends the signal that race has started. One example
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Test name Description
planner_collision Test that collision detection works. Drive

simulated car against wall, test passes once
car hits the wall and collision is detected.

planner_direct_path Test that car can drive in narrow hall and
navigate to set goal.

planner_left_turn Test that car can drive in hall with left
hand turn and navigate to set goal.

planner_right_turn Test that car can drive in hall with right
turn and navigate to set goal.

planner_static_obstacle Test that car can drive through narrow
hall with static obstacle that is not in the
map.

planner_simple_circuit Test that car can finish driving on circuit
while following multiple goals.

Table 4.3: Planner test cases description

Figure 4.12: Gazebo worlds for navigation testing

Figure 4.13: Simulation scenario for overtake testing
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scenario is created for this thesis, but other scenarios are easy to create using
the same approach. A complete example of this simulation scenario is in the
f1tenth_gazebo package under test race_overtake. To run this scenario run
command.

rostest f1tenth_gazebo test_f1tenth_race_overtake.test

Gazebo and Rviz opens, and race_starter node sends the signal to start
after the countdown. The current version of the software in the car uses the
constant velocity of 0.3 m/s compiled into the local planner, therefore both
cars go at the same speed and overtaking is not possible. Base_local_planner
API which is used for local planner integration into move_base enable to
specify maximum linear velocity as the configuration parameter, once this
feature is implemented in car software, cars in the simulation can be spawned
with different maximum velocity to ensure that car2 can go faster than car1
and actually overtake it.

4.6.5 Two cars race

This section describes how to run simulated test scenario in which two cars
race against each other. Once autonomous behavior for the car which is
racing on the track against its opponent is developed by using overtaking
scenarios for testing, race of two cars can be run to see how the cars will
behave in the race like conditions. An example simulated scenario is prepared
in the f1tenth_gazebo package in test race_circuit1. To run this scenario
run following command.

roslaunch f1tenth_gazebo test_f1tenth_race_circuit1.test

Gazebo and Rviz opens, and race_starter node sends the signal to start
after the countdown. In this scenario both cars are autonomous. The current
version of the software in the car is not able to interpret static and dynamic
obstacles, and therefore this scenario ends in the crash. The situation is
illustrated in Figure 4.14.

Figure 4.14: Two cars pursuing the same goal
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4.6.6 HIL testing

This section describes how to run Hardware–in–the–loop test with car soft-
ware running on NVIDIA Jetson TK1 and simulation scenario that runs on
the computer on the same network. Hardware–in–the–loop test method as
described in 3.5.3 enables evaluation of software performance on real hardware
while running with the simulated environment. This approach has multiple
benefits. Software that is being developed is compiled and run on target
hardware which enables to mitigate risks the that arise when porting software
between computers with x86-64 processors architecture and ARM processor
architecture which is used in car. The computational load of used algorithms
is something that has to be taken into account, and some algorithms can
work fine on powerful processors of modern desktop computers but struggle
with performance on embedded devices used on the car. All these risks can
be mitigated by testing on the device early and often. What is more, once car
software runs on the target hardware, Gazebo simulator has more resources
on the development computer and enables to run simulation software faster.
Example use case for HIL is given in Figure 4.15.

Figure 4.15: Schema of hil test case

Examples of HIL tests is given in f1tenth_gazebo package in the hil_circuit1
directory. In order the run the tests act as follows, both NVIDIA Jetson TK1
and Simulation computer has to be connected to the same network. Then
connect over ssh to NVIDIA Jetson TK1 and run.
roscore

To establish rosmater. Simulation computer needs to connect to rosmater run-
ning on Jetson board. On simulation computer export ROS_MASTER_URI
and ROS_API and run some ROS command line command to check that the
simulation computer is connected to rosmater running on Jetson.
export ROS_MASTER_URI=http://JETSON_IP
export ROS_IP=SIM_COMP_IP
rosnode list # check connection to rosmater
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Once the connection is established, run HIL simulation test launch file on
simulation computer. Example call for hil_circuit1 would look like.

roslaunch f1tenth_gazebo test_f1tenth_hil_circuit1.test

Once the simulation is up and running, switch to Jetson and run

roslaunch f1tenth_gazebo \
test_f1tenth_hil_circuit1_system_bringup.test

Since simulated sensors and real sensors publish on topics that are named
the same, it is easy to switch between real and simulated world. The im-
portant thing to remember while doing HIL testing in this manner is to set
use_sim_time parameter to true.

4.7 Test execution and results

Real world testing was done in cooperation with Martin Vajnar and report
of achieved results is given in his thesis [34]. This chapter puts the system
under test using simulated test scenarios as described in 4.6.

Two modes of operation are used. Firstly, to evaluate Trgen_local_planner,
tests are run with localization information provided by perfect odometry
Gazebo plugin which was described in 4.5.4. This setup enables to evaluate
planner performance without interference from inaccurate localization. The
second mode of operation is when the test is run in the simulation with the
same setup as in real world testing.

4.7.1 Navigation with perfect localization

Firstly, automated planner tests which were described in 4.6.3 were performed,
and the results are shown in table 4.4.

Test name Time[s] Status
planner_direct_path 58.05 PASSED
planner_left_turn 84.00 PASSED
planner_right_turn 79.51 PASSED
planner_static_obstacle 14.05 FAILED
planner_simple_circuit 534.52 PASSED

Table 4.4: Test results 1

Trgen_local_planner, which is the system under test, uses ROS base
global planner to create global trajectory and acts as the local planner. It
works as the regulator that keeps the car as close to global plan as possible.
This enables to drive the car in environments without static and dynamic
obstacles. The ability to spot and to avoid obstacles, which should be part
of the local planner, is not currently implemented. That is a reason why
test planner_static_obstacle fails. While the rest of the tests passes, their
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execution time is very slow. This is happening because trgen_local_planner
drive race car at the constant speed which is set to 0.3 m/s.

Because obstacle avoidance is not yet implemented, the car has no capacity
to perform overtaking maneuver or race against another car on the circuit,
therefore simulation scenarios introduced in 4.6.4 and 4.6.5 cannot be tested
and evaluated with trgen_local_planner.

4.7.2 Full system test

The second mode of operation switches from perfect odometry to odometry
given by localization system developed for the F1/10 project and the same
set of tests is executed.

Test name Time[s] Status
planner_direct_path 64.47 PASSED
planner_left_turn 90.10 PASSED
planner_right_turn 89.11 PASSED
planner_static_obstacle 14.13 FAILED
planner_simple_circuit 581.32 PASSED

Table 4.5: Test results 2

We can see that the results are the same while time the test time is longer.
This is caused by bigger processor load because localization algorithm needs
more computational power than Gazebo perfect odometry plugin. This
additional computational load slows down the simulation which makes the
test run longer.

4.7.3 Verification results

This section provides results of verification for requirements stated in 4.3.1..1. This requirement was tested and verified by planner test suite 4.6.3 and
results are given in 4.7.1 and 4.7.2. Car is able to complete a mission
and traverse ordered series of checkpoints. This was tested also with real
car and results are desribed in [34]...2. Current implementation of navigation component and local planner
is not able to interpret static obstacles. This was tested by plan-
ner_static_obstacle test from planner test suite 4.6.3 and also observed
in tests with the real car. Therefore this requirement is not met...3. Current version of navigation software has constant velocity and does
not exhibit context-dependent speed. Therefore this requirement is not
met...4. Car is currently not able to interpret dynamic obstacles. This was
observed while running simulation scenario with two cars which with
current implementation ends in the crash. This requirement is not met.
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not exhibit context-dependent speed. Therefore this requirement is not
met...6. In the current implementation, only LIDAR and IMU sensors are used,
and the car is fully dependent on them, therefore this requirement is not
met.

4.8 Future work

This section describes future work that has to be done on the car to meet
all requirements of F1/10 competition and continues with propositions for
enhancements to testing in the simulation.

To meet the requirements for F1/10 competition, detection for static and
dynamic obstacles has to be added. Detection of other cars during the
race should be supported by computer vision system since the opponent car
can not be reliably detected only by LIDAR sensor. With the addition of
computer vision to the car, visual odometry can be implemented to enable
navigation and localization in environments where LIDAR range is insufficient.
To exhibit context-dependent speed, car navigation software will have to be
updated. Simulated worlds and scenarios developed in this thesis can be used
for development of functions mentioned in the previous paragraph. It is a
question if simulated environment, as it is presented in this thesis will be
suitable for testing computer vision algorithms, or if development work will
have to be done in the real world only.

Test node architecture described in 4.6.1 provides test result in form of
simple PASSED/FAILED boolean information. While this sufficient format for
the result of the unit and integration testing, it turned out to not be ideal for
testing of complex car system inside simulated environment. Simulation test
takes time to run and can fail for various reasons which cannot be determined
instantly, and tester has to rerun the test and watch what happens. Test that
takes 10 minutes to complete and where failure happens before end of the
test is more of a burden than a benefit. A possible solution for this would be
to run Rviz during simulation in the program such as Xvfb, which provides
virtual framebuffer and enables to run all graphical operations in memory
without showing any screen. At the end of the test, the screenshot of Rviz
window would be created and added to test result. We get the graphical
representation of test run with this approach, and the reason of failure can
be pinpointed faster.

Once software functionality for overtaking and racing against other car
is developed, simulation scenarios for these cases can be automated using
the similar approach as with tests of planner software in 4.6.3. This with
combination with automated test run enables to run regression test suite
often and to discover software bugs faster.
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Chapter 5
Continuos integration with Jenkins

This chapter follows the theory of testing practices introduced in 3.4 and after
continuous integration development practice is described, Jenkins automation
server usage for automation of repetitive tasks like package building, test
running and also to achieve better code quality in the form of static analysis
tools is documented.

5.1 Continuous integration

This section introduces development practice continuous integration which
requires developers to commit code to source code management (SMC) tool
multiple times a day. All changes are committed to the single branch which
is connected to automation tool that performs automated build. This setup
enables fast detection and localization of errors and their fast repair.

The main feature of practicing continuous integration is that it enables to
iterate and integrate fast. For continuous integration to work, the automated
build has to be fast to keep feedback loop short. Other jobs such as application
testing can also be performed as part of the automated build. Because
automation server is visible for all members of the development team, it is
easy for everyone to see the status of the project, what is currently happening
and what has changed in the project. Last but not least, usage of automation
tool enables to automate deployment process and perform deployment the
same way every time and mitigating mistakes.

Continuous integration and test automation, in general, has become widely
used in automotive industry as can be seen in [7] and also in software
engineering in general [39]. Multiple open source solutions have been reviewed
for use in this thesis, namely Jenkins, Travis and Team City. Travis CI is full
featured continuous integration server, but its usage is tied to Github service
and therefore is not usable for private repositories that are not hosted on
GitHub. Team city is free service to some degree, but a number of executors
and jobs is limited. Jenkins is open source solution that is widely used and is
completely free without any restrictions. Therefore it was chosen to be used
in F1/10 project.
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5.2 Jenkins

Jenkins is automation server written in Java programming language. It is a
fork of Hudson project, which continued to exist as commercial version under
Oracle development and was discontinued in 2012. Jenkins was originally
developed for use with projects written in Java, but it is a plugin based
system and plugins developed by community members enable extending the
system for many new use cases.

At the time of writing, Jenkins stable long term supported version is 2.46.2,
which is a version that is used in this thesis. Jenkins uses a web-based user
interface for both administrations, job definition, and job execution. An
example of Jenkins user interface is in Figure 5.1. Jenkins also enables to use
its custom command line tool for operations such as adding the job, getting
job descriptions, etc.

Figure 5.1: Jenkins web based user interface

Jenkins simplest execution unit is a job, also called a project. Jenkins job
can range from Freestyle job, that can be used for project or test build up
to Multibranch pipelines which can run jobs in parallel from multiple SCM
branches in one repository. Jenkins job run can be triggered in multiple ways.
The job can be run from Jenkins UI or its command line tool. It can also be
setup to run automatically in the periodic manner or every time a change is
committed into SCM repository, which the job is monitoring and using for
getting the data which it needs for completing the job.

Jenkins is currently in transition from old style job definitions that were
created using web UI and saved in XML format, which can be downloaded
from Jenkins by using its command line tool. Job definition created from
web UI in XML format is hard to change in the text editor, so web app has
to be used for that every time, what is more, job definitions are stored at
Jenkins master and specialized measures have to be taken to backup data,
which add more work to the development team.

The solution for this should be Jenkins pipeline, which is a job definition
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written as code that can be stored into SCM. Jenkins team is encouraging
users to uses pipelines in their project. With this comes transition to the new
version of web user interface called Blue Ocean and pipeline editor and linter
tools, but these projects at the time of writing are far from complete. For
these reasons, Jenkins jobs described in 5.3 are built as freestyle jobs.

Jenkins jobs are executed on execution nodes. Jenkins execution nodes are
divided between one master and potentially multiple slave machines. Master
is responsible orchestrating job execution, sending orders to slave and keeping
track of running jobs and list of connected slaves. Each master can service
multiple slave nodes. Jenkins as a system is used for large scale deployments,
but the underlying hardware infrastructure needs to reflect how the system
is used and what computational load it produces. Jenkins slave node is
connected to master node either using Java web start, or SSH connection.
The latter is used for connection slave nodes in the F1/10 project.

5.3 Jenkins jobs

Following sections provide the overview of jobs that have been created for
the F1/10 project, their usage and usefulness are discussed. Jenkins jobs that
enable to build catkin workspace, run static analyzer tools on the codebase
and automatic test runner have been created. Example of job XML definition
is given in Appendix C. All Jenkins jobs created for this thesis are saved on
enclosed CD in jenkins/jenkins_jobs_definitions directory.

5.3.1 Build workspace and tests

Jenkins job catkin_make and catkin_make_build_test are described in this
section. Catkin_make is used to build software packages located in catkin_ws
folder and job named catkin_make_build_test is used to build tests.

Each Jenkins job creates its workspace by default. This is not always
desirable because some jobs might need to use data which were created in
another job. That is why the only catkin_make job has its workspace and
all other Jenkins jobs described below operates in it. Catkin_make operates
as follows. Firstly, the old workspace of catkin_make Jenkins job is deleted
to ensure clean build environment without any artifacts from other job runs.
Git repository with F1/10 code is fetched for development branch ctu, and
environment variables with the path to header files which are not in standard
system locations are set. Catkin workspace is build using the following shell
script.
#!/bin/bash
source /opt/ros/indigo/setup.bash
source /usr/share/gazebo-7/setup.sh
CPATH=$CPATH:/usr/include/gazebo-7:
/usr/include/sdformat-4.3:
/usr/include/ignition/math2
export CPATH
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cd catkin_ws
catkin_make -DCMAKE_CXX_FLAGS=-Wall -DCMAKE_C_FLAGS=-Wall
catkin_make install

If the build is finished successfully, the catkin_make_build_test job is run
automatically, and all tests in catkin_ws are built.

Warning setting for the compiler is set to ’-Wall’ during compilation and
warnings issued by the compiler are scraped from stdout by Jenkins Warnings
plugin. This plugin displays all warnings acquired during compilation in
the clear web–based presentation form. In bigger projects with the greater
number of developers, build of the application can be reviewed from this
view and decisions about what needs to be fixed can be made effectively. An
example of Warnings plugin output presented in Jenkins is in Figure 5.2.

Figure 5.2: List of warnings issued by compiler presented in Jenkins

5.3.2 Static analysis

This section describes Jenkins jobs that are used to run static analysis software
on project code base. Static analysis of the source code was theoretically
introduced in section 3.4.3. Commercial programs exist that enable to analyze
code for compliance with various standards such as MISRA or High Integrity
C++, which are required for industry products. Open source static analyzers
for C++ language have been reviewed for this thesis and roslint, cppcheck
and clang tidy were chosen. Each static analysis tool has different domain of
expertise and various level of noise (false positive warning) that they return.
This implies that it is beneficial to use multiple tools that are complementary
in their abilities.

Three static analysis tools have been reviewed and prepared for use within
F1/10 project. First of them is roslint1, which is a catkin integrated tool build

1roslint: http://wiki.ros.org/roslint
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with cpplint program and enables to check Python and C++ source code for
errors and compliance with ROS coding standards. Roslint is good in checking
ROS coding standards compliance such as missing license information, wrong
style of include headers or indentation. Roslint analysis is run by Jenkins job
roslint

Another tool that is used is cppcheck2. Cppcheck does not concern itself
with syntax errors in the code and primarily tries to detect bugs that are not
caught by the compiler. This makes it a good addition to code checking during
the build and to roslint which mainly cares about syntax checks. Cppcheck
analysis is run by Jenkins job Cppcheck.

The last tool that is used is clang tidy3. Clang tidy is a linter tool that
aspires to be an extensible framework for diagnosing and fixing programming
errors, interface misuse and style violations. Thanks to its modularity, it
enables to add new checks or setup the checker for custom code style guide.
Checks in clang tidy are gathered into groups such as Google group that checks,
if Google coding conventions are used, cppcoreguidelines which checks against
the set of C++ Core Guidelines issued by C++ language creator Bjarne
Stroustrup or modernize, which advocates use of modern (C++11) language
constructs and much more. Clang tidy is run by Jenkins job clang_tidy.

5.3.3 Automated simulation test

Running automated tests from Jenkins turned out to be more challenging
than expected. Reason for this is that even though the same computer, which
was used for development and test running in 4.7, is used as Jenkins slave,
invocation of commands works differently while running from Jenkins job.

Jenkins jobs are run under jenkins account which is a service account, and
it doesn’t have a shell assigned to it by design in Linux. A service account
is used to execute services (daemon) with restricted scope and privilege.
This might be an issue for applications that expect to be invoked from shell
environment, as was the case when running planner test suite. Solution to
this complication is to use tool that enables to disassociated program from
the original terminal. Examples of these tools are screen, tmux or dtach.
Dtach was used for this thesis. An example call to rostest with the dtach
tool is given.

dtach -n socket bash -c "source /opt/ros/indigo/setup.bash; \
source ~/workspace/catkin_make/catkin_ws/devel/setup.bash; \
source /usr/share/gazebo-7/setup.sh; \
rostest f1tenth_gazebo test_f1tenth_planner_direct_path.test \
2>error_log" while test -e socket; do sleep 1; done

Dtach tool run with -n argument creates a new session, without attaching
to it. A new session is created in which the specified program is executed.
Dtach does not try to attach to the newly created session, however, and exits

2Cppcheck: http://cppcheck.sourceforge.net/
3Clang tidy: http://clang.llvm.org/extra/clang-tidy/
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instead. To keep the socket session open, while loop is run that keeps the
session running while the test runs inside it. Environment variables such as
paths to shared libraries are not passed to the dtach session, therefore must
be sourced before any ros functionality can be used.

This approach enables to run automated simulation tests from Jenkins but
comes with some costs, while it is possible to redirect standard error output
to file and print it after the test is finished, standard output from dtach
session can’t be retrieved. Test results are saved into typical xUnit result
XML file and are loaded by Jenkins to display test results. Standard output
from test run can be in theory retrieved from log files that ROS automatically
produces, but in practice, it turns out to be difficult because the output of
each ROS node is log is kept in the separate file, and therefore the sequence
of commands for the complete system cannot be retrieved.

Results from all tests run by jenkins are stored in catkin workspace in
build/test_results directory. Job 00_test_result crawls this directory and
looks for all XML files with test results and creates the graph of test results.
Each test can review individually, and information about its history which
hold information about failure and how long it takes to execute can be
displayed.

Figure 5.3: Jenkins test results
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5.4 Results

This section describes how continuos integration was used in F1/10 project
and what results it provided for the development team. In the time of writing
this thesis, two students including the author of this thesis have been working
on F1/10 project. Since each student was working on its part of the code
base, continuous build of application did not bring practical benefits since
merge conflicts and broken build after commit rarely happened.

All C++ code developed in F1/10 project have been continuously analyzed
by tools described in 5.3.2. While some warnings have been reported by
analyzers and code was reworked to solve them, no serious bugs have been
found. ROS nodes developed for this thesis and described in 4.5 are written
with basic C++ constructs, without dynamic allocation, complicated use of
pointers and only standard data structures and containers are used, which
might be the cause for the low number of warnings from analyzer tools. The
complexity of the system is not at individual nodes, but in the distributed
nature of the system and how all the nodes operate together.

Way to run automated simulation test from Jenkins have been developed.
This enables to run planner test suite described in 4.6.3 automatically and
use them as regression tests to check that changes to car software do not
introduce bugs into already developed functionality.
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Chapter 6
Conclusion

This thesis goal was to design the appropriate methods to test the software
of autonomous car in the F1/10 project, implement these methods and use
them to test car software. Robotics simulation was selected as the main
testing method. Car model for simulation and necessary control software was
created for use in Gazebo Simulator in combination with ROS. Simulation of
multiple cars was described that is used to test car in the race like condition.
Multiple simulated worlds were created to enable development and testing in
various environments. ROS packages to support test automation in Gazebo
simulator and creation of custom simulation scenarios were developed.

The test cases in the form of automated simulation scenarios were presented
and run with software developed for the car in F1/10 project. Results of
these tests were evaluated against a set of system requirements. Simulation
scenarios to simplify future development of autonomous behavior needed for
the race against opponent car were developed, and use case for hardware-in-
the-loop was presented. To support code quality and team cooperation in
F1/10 project, continuos integration development practice was introduced,
and jobs for Jenkins automation server were set up to automate test running,
code compilation and static analysis.

Presented approach can be modified to accommodate needs for the testing
full-scale car. Gazebo simulator enables to create countryside or city maps and
can be used for development of autonomous vehicles, especially in the phase
of prototyping, testing new ideas and architectures, the variety of simulated
sensors provides a wide range of options, and different configuration can be
quickly tested with the simulated car. Last but not least, simulation can be
used for Hardware-in-the-loop testing to verify software on target hardware.
The simulation software will keep improving in the future, and this will bring
new possibilities as well as better portability of solutions developed inside
simulation directly to the real world.
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Appendix A
CD content

/
jenkins

jenkins_jobs_definitions
catkin_ws

src
3rd_party ... This directory holds

3rd_party ROS packages
with Gazebo sensor
definitions and packages
developed by other
member of F1/10 project.

f1tenth_packages ... Software packages
developed for this
thesis.

f1tenth_description ... URDF description of
simulated car.

f1tenth_gazebo ... Gazebo worlds, test
cases and launch files
for simulation.

f1tenth_gazebo_plugins ... Perfect odometry plugin
and collision detection
node.

f1tenth_navigation ... Maps for simulated
worlds and Rviz
configuration file.

f1tenth_navigation_mgr ... Navigation manager.
f1tenth_race

f1tenth_race_mgr ... Race manager.
f1tenth_race_starter ... Race starter.

f1tenth_teleop ... 3rd_party teleoperation
packages for keyboard
and joystick.

software_testing_for_embedded_applications_in_autonomous_vehicles.pdf
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Appendix B
Installation instruction

This section describes how to install the software required to run simulations
as described in the thesis. All software was tested on ROS Indigo with Gazebo
7. Target operating system for ROS Indigo is Ubuntu 14.04, if you do not
own machine with this operating system, virtualization can be used.

Installing Ubuntu 14.04 on the Virtual box is straightforward, and many
tutorials can be found online. This is preferred an option for Windows users.
Linux users can create Chroot environment with Ubuntu 14.04 as described
in1. Use the second chapter to install Ubuntu 14.04 to Chroot.

All packages needed to build and use the software in F1/10 project have
been placed into the debian package that enables to install all required
software and its dependencies at once. Once you have Ubuntu 14.04 installed
and running, open terminal and add rtime Debian package repository2.
echo deb http://rtime.felk.cvut.cz/debian unstable main \
> /etc/apt/sources.list.d/rtime-debs.list
wget -O - https://rtime.felk.cvut.cz/debian/archive-key.asc \
| apt-key add -

Once the repository is added, update the package list and install.
sudo apt-get update
sudo apt-get install f1tenth-ctu-deb-sources

Package f1tenth-ctu-deb-sources adds ROS and Gazebo repositories to
package list. Update package list again and install f1tenth-ctu-devel package.
sudo apt-get update
sudo apt-get install f1tenth-ctu-devel

This package will install ROS Indigo, Gazebo 7 and all dependencies
required to build catkin workspace for F1/10 project. Source ROS and
Gazebo setup.bash scripts and add gazebo headers to CPATH so compiler
can locate required headers. It is recommended to add following commands
to .bashrc file.
source /opt/ros/indigo/setup.bash

1ROS Indigo in Chroot: http://wiki.ros.org/ROS/Tutorials/InstallingIndigoInChroot
2Rtime wiki: https://rtime.felk.cvut.cz/wiki/index.php/Debian_packages_repository
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B. Installation instruction.................................
source /usr/share/gazebo-7/setup.sh
CPATH=$CPATH:/usr/include/gazebo-7\
:/usr/include/sdformat-4.3:/usr/include/ignition/math2
export CPATH

Now, change directory to catkin_ws and call catkin_make to build all
packages in this workspace.
catkin_make
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Appendix C
Jenkins job example

Example of XML definition for Jenkins job catkin_make.

<?xml version=’1.0’ encoding=’UTF-8’?>
<project>

<actions/>
<description>Fast catkin make, check commit,
build if relevant changes found</description>
<keepDependencies>false</keepDependencies>
<properties/>
<scm class="hudson.plugins.git.GitSCM" plugin="git@3.3.0">

<configVersion>2</configVersion>
<userRemoteConfigs>

<hudson.plugins.git.UserRemoteConfig>
<url>git@rtime.felk.cvut.cz:f1tenth</url>
<credentialsId>cfba3c96-3dc6-4dc0-ac81-1b760bfe47d3
</credentialsId>

</hudson.plugins.git.UserRemoteConfig>
</userRemoteConfigs>
<branches>

<hudson.plugins.git.BranchSpec>
<name>*/ctu</name>

</hudson.plugins.git.BranchSpec>
</branches>
<doGenerateSubmoduleConfigurations>false
</doGenerateSubmoduleConfigurations>
<submoduleCfg class="list"/>
<extensions>

<hudson.plugins.git.extensions.impl.DisableRemotePoll/>
</extensions>

</scm>
<assignedNode>indigo_devel</assignedNode>
<canRoam>false</canRoam>
<disabled>false</disabled>
<blockBuildWhenDownstreamBuilding>fals
e</blockBuildWhenDownstreamBuilding>
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<blockBuildWhenUpstreamBuilding>false
</blockBuildWhenUpstreamBuilding>
<triggers/>
<concurrentBuild>false</concurrentBuild>
<builders>

<hudson.tasks.Shell>
<command>#!/bin/bash

source /opt/ros/indigo/setup.bash
source /usr/share/gazebo-7/setup.sh
CPATH=$CPATH:/usr/include/gazebo-7:
/usr/include/sdformat-4.3:
/usr/include/ignition/math2
export CPATH

cd catkin_ws
catkin_make -DCMAKE_CXX_FLAGS=-Wall -DCMAKE_C_FLAGS=-Wall
catkin_make install

</command>
</hudson.tasks.Shell>

</builders>
<publishers>

<hudson.plugins.warnings.WarningsPublisher
plugin="warnings@4.62">

<healthy></healthy>
<unHealthy></unHealthy>
<thresholdLimit>low</thresholdLimit>
<pluginName>[WARNINGS] </pluginName>
<defaultEncoding></defaultEncoding>
<canRunOnFailed>false</canRunOnFailed>
<usePreviousBuildAsReference>false
</usePreviousBuildAsReference>
<useStableBuildAsReference>false
</useStableBuildAsReference>
<useDeltaValues>false</useDeltaValues>
<thresholds plugin="analysis-core@1.86">

<unstableTotalAll></unstableTotalAll>
<unstableTotalHigh></unstableTotalHigh>
<unstableTotalNormal></unstableTotalNormal>
<unstableTotalLow></unstableTotalLow>
<unstableNewAll></unstableNewAll>
<unstableNewHigh></unstableNewHigh>
<unstableNewNormal></unstableNewNormal>
<unstableNewLow></unstableNewLow>
<failedTotalAll></failedTotalAll>
<failedTotalHigh></failedTotalHigh>
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<failedTotalNormal></failedTotalNormal>
<failedTotalLow></failedTotalLow>
<failedNewAll></failedNewAll>
<failedNewHigh></failedNewHigh>
<failedNewNormal></failedNewNormal>
<failedNewLow></failedNewLow>

</thresholds>
<shouldDetectModules>false</shouldDetectModules>
<dontComputeNew>true</dontComputeNew>
<doNotResolveRelativePaths>true
</doNotResolveRelativePaths>
<includePattern></includePattern>
<excludePattern></excludePattern>
<messagesPattern></messagesPattern>
<parserConfigurations/>
<consoleParsers>

<hudson.plugins.warnings.ConsoleParser>
<parserName>GNU C Compiler 4 (gcc)</parserName>

</hudson.plugins.warnings.ConsoleParser>
</consoleParsers>

</hudson.plugins.warnings.WarningsPublisher>
</publishers>
<buildWrappers>

<hudson.plugins.ws__cleanup.PreBuildCleanup
plugin="ws-cleanup@0.33">

<deleteDirs>false</deleteDirs>
<cleanupParameter></cleanupParameter>
<externalDelete></externalDelete>

</hudson.plugins.ws__cleanup.PreBuildCleanup>
</buildWrappers>

</project>
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