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Abstract

Recent advances in speech recognition and natural language understanding have brought an
edge to the communication between humans and computers. With personal assistants and
chatbots slowly becoming parts of our lives, we implement a conversational platform built
on Amazon Alexa Skills, providing a user with summarized content of a Wikipedia website.
A comprehensive overview of the state of the art in dialogue systems and unstructured text
summarization areas is provided, and an extractive latent semantic analysis and abstractive
discourse-aware attention model are evaluated on publicly available datasets. Word2vec word
embeddings are further proposed and validated as a possible improvement. The selected
approach is implemented into the chatbot providing a practical use case.

Abstrakt

Zpracování p°irozeného jazyka prom¥¬uje, jak jako lidé komunikujeme s po£íta£i. Hlasoví
asistenti a chatboti se pomalu ale jist¥ stávají nedílnými sou£ástmi na²ich ºivot·. Práce
pojednává o návrhu konverza£ní platformy zaloºené na Amazon Alexa Skills, která uºivateli
zprost°edkuje souhrn webové stránky z Wikipedie. Sou£asné p°ístupy k vývoji dialogových
systém· a sumarizace nestrukturovaného textu jsou popsány a dv¥ vybrané metody, extrak-
tivní �latent semantic analysis� a abstraktivní �discourse-aware attention� model, porovnány
na ve°ejn¥ dostupných datasetech. Na základ¥ získaných zku²eností je navrºeno a otestováno
moºné vylep²ení zahrnující word2vec model. Vybraná metoda je integrována do platformy
chatbota poskytující reálný p°íklad uºití.
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Chapter 1

Introduction

Conversation is a key instrument for developing and maintaining mutual relationships. Talk-
ing to someone is probably the most e�ective way how to transfer the necessary information,
apart from nonverbal communication. People started to think that having a conversation
with a computer would be equally convenient.

Recent advancements in arti�cial intelligence and natural language processing made pos-
sible by abundant computational power and large datasets proved that the objective is not
unreachable as there are already many applications of chatbots and voice assistants in our
daily lives. Nevertheless, it might take a long way for verbal communication to become the
�rst choice when dealing with a computer. The famous Turing test focusing on the machine's
ability to replace a human in their behavior indistinguishably remains a high aim.

One of the most attractive use cases for a conversation with a computer is to obtain new
information. It can be a weather forecast for tomorrow, the population of a certain city
or the state of tra�c on the way to work. However, a lot of the information on the web
is in the form of an unstructured text be it paragraphs, articles or essays. While reading
a news article in a web browser is easy; comprehension just by listening to it proves much
more demanding. The long text passages are not suitable for recitation by voice assistants.
Moreover, with the current accelerating tempo of data being generated, a necessity to �lter
only the essential is rising.

Both problems can be solved with the help of automatic text summarization, one of the
many tasks of natural language processing (NLP) �eld. The aim is to provide a coherent
summary of the source text or multiple documents while maintaining the original context
and readability. There are many possible applications such as summarizing news articles in
a couple of bullet points, forming an abstract of a scienti�c article or condensing information
about a certain topic from dozens of source documents. While humans perform naturally
very well at these tasks, shifting the responsibility to a computer might allow us to focus on
more creative work.

In this work, we propose a platform allowing a user to absorb virtually any text document
through a voice-enabled chatbot. The �rst part of this work deals with the development of an
extensible conversational platform �lled with information extracted from the web. Wikipedia
website is used as an example of the source document providing a great range of the possible
topics. Text is processed, summarized and provided to the user via an agent built on top

1



CHAPTER 1. INTRODUCTION 2

of Amazon Alexa. The dialogue management system is based on a frame-based architecture
represented by a state automaton introduced �rst by Bobrow et al. [1]. The solution can
serve as a basis for various NLP experiments in the future.

The second part proceeds with an overview of text summarization techniques. Most of the
approaches can be roughly divided into two classes, extractive and abstractive. Extractive
methods aim to extract the most important sentences from the source document to represent
its message. Three relatively independent steps [2] can be identi�ed ensuring a great variety
between the �nal solutions � intermediate representation captioning the main aspects of
the source text, scoring individual sentences and �nally a selection of the candidate ones
for the summary. Abstractive methods on the other hand try to summarize the source text
using phrases originally not appearing in the document mimicking a human approach better.
Deep learning methods inspired by successful applications in machine translation mainly by
Bahdenau et al. [3] are recently reaching state of the art results.

Implementations of an extractive latent semantic analysis and abstractive discourse aware
attention model are described in this work and tested on two distinguish datasets, CNN/Daily
Mail news articles and longer scienti�c works from the PubMed database. Experiments are
thoroughly evaluated using de�ned metrics and human assessment. Further, we propose and
validate a possible improvement by incorporating word2vec word embedding model into the
latent semantic analysis. Finally, the method best �tting our designed criteria is implemented
into the chatbot providing a tool useful in daily life. The user can absorb a text document
via an interactive conversation instead of reading it alone.



Part I

Chatbots





Chapter 2

State of the Art

The art of maintaining a meaningful conversation is one of the many heavily pursued branches
of natural language processing �eld. One might even call the conversational agents, chatbots
or dialogue systems, a holy grail of NLP as they combine and build atop of its many sub�elds.
The high level structure of every voice assistant system can be broken down into three
independent parts: natural language understanding transcribing the user's voice into text,
the dialogue manager or system containing the processing logic and response generation and
third comes the natural language generating step turning the chatbot's textual response into
an output voice utterance.

Figure 2.1: Structure of a voice assistant

The current state of the dialogue systems research and applications is described in this
chapter. Section 2.1 deals with the second step in the chain, the core of every chatbot, a
dialogue navigation system. Di�erent approaches to maintaining a conversation structure
are presented. The supporting natural language parts are taken care of in Section 2.2 where
we provide a brief overview of publicly available platforms for implementing such solutions
from which one is further used in the work.

5



CHAPTER 2. STATE OF THE ART 6

2.1 Dialogue Systems

Most of the dialogue applications developed nowadays fall into two more or less separated
classes. The �rst class is referred to as task oriented agents, an analogy to expert systems,
highly specialized bots operating in limited number of domains very often equal to one. They
are designed to complete a particular task based on the input information provided by the
user. An example of such a bot can be a digital assistant in your mobile phone, Siri by
Apple, Amazon Alexa or Google Assistant. The particular task might be to answer your
simple question such as, �What is the weather in Geneva going to be tomorrow?�

In a simpli�ed way, a set of actions happen after you ask such a question. Foremost,
the agent has to convert your recorded speech to text and rightly detect the intent, that
you are curious about weather. Then it identi�es the relevant entities in your sentence, such
as the city you take interest in and the particular day in the future. Based on this set of
information the agent can extract the proper knowledge from its own database or a third
party weather forecasting web service. Let's say the model indicates temperature of 23 °C
and a clear sky. Only now, after carrying out all the necessary steps which altogether took
a couple of milliseconds, can the assistant construct and utter the answer to your question
such as, �Tomorrow in Geneva it is going to be 23 °C with a clear sky.�

The second group of dialogue systems can be called general agents and in the com-
plexity of development they are very much comparable to a general AI. Although the public
perceives the term chatbot as basically any type of conversational agent, parts of the NLP
science community see it as this second class of dialogue systems designed for extended and
casual conversation [4]. General agent's highest aim is to mimic inter human dialogues with
their abrupt topic switching, �uency and maybe even subjective points of view. Example of
such an interaction might be a casual small talk with your voice assistant asking you about
your day at work as soon as you come home.

2.1.1 Frame Based

From now on, we will mostly focus on the �rst class of dialogue systems and refer to them as
chatbots. The task oriented agents operate based on the information and commands provided
by the user which means they must be able to extract such data from the utterances. The
dialogue scenario is usually described by distinct frames where each frame can be perceived
as one turn by the bot and one by the user. Navigation between the frames is either �rmly
set or driven by user's response. In any way the whole system can be represented as a state
automaton with individual frames representing states and user's commands as transitions
between them. One option is to allow the user only to interact with the agent through
buttons and prede�ned so called quick replies. As soon as the user responds with a whole
sentence as is in human nature, the bot runs into problems. However, such a way of dialogue
does not o�er the end users much freedom and is thus not very cherished by them.

More user friendly technique which most of the assistants employ nowadays is a frame
driven dialogue system with slot �lling introduced �rst by Bobrow et al. [1]. The goal here is
to understand user's intentions from plain human to human like utterances. The bot knows
what kind of information about the particular topic it needs to extract and thus several
frames, slots and their possible values can be prede�ned to simplify the task. In case the
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chatbot deals with more �elds, the individual domain user is interested in has to be identi�ed
at �rst. A domain in is an area covering similar actions dealing with the same subject, i.e.
GPS navigation, personal calendar or booking a �ight. Then the concrete intent has to
be determined, what in particular is the user trying to accomplish in the already selected
domain, i.e. �nding the fastest way to the o�ce, adding a new meeting to a calendar
or purchasing additional baggage on the booked �ight. Some actions might be performed
without any details but in most cases, additional information has to be provided to the
agent by �lling the prepared slots on the background. The individual piece of information
is called entity and has to be extracted from the utterances including possible synonyms
[4]. Extending former example, those entities can be destination, time of the meeting or the
�ight booking number.

Finally the agent has collected all necessary information to perform the action on user's
behalf. An illustration of the whole process can be drawn from a transcript of an actual
dialogue with GUS (Genial Understander System), the �rst frame driven system specializing
in the domain of booking a �ight trip [1]. Possible intents and entities are highlighted in
blue and orange respectively.

GUS: Hello. My name is GUS. I can help you plan a simple trip by air. Where do
you want to go?

USER: I want to go to San Diego on May 28

GUS: What time do you want to leave?

USER: I must be in San Diego before 10 am

GUS: Would you like P.S.A. �ight 102 that arrives at 9.15 am?

USER: What is the next �ight?

GUS: Air California �ight 310 that leaves at 8.30 am and arrives at 10.00 am

USER: I'll take the �rst one

GUS: In what name should I make a reservation, please ?

USER: Dan Bobrow

GUS: I have con�rmed the following �ight: P.SA. �ight 102 on Wednesday May 28
from San Jose to San Diego that leaves at 7.30 am and arrives at 9.15 am.
What date do you want to return on ?

USER: On Friday in the evening.

GUS: Would you like the �ight that leaves at 7.45 pm ?

USER: That's �ne.

GUS: I have con�rmed the following �ight: P.S.A. �ight 307 on Friday May 30 from
San Diego to San Jose that leaves at 7.45 pm and arrives at 9.30 pm. Thank
you for calling. Goodbye.

Table 2.1: Transcript of a dialogue with GUS from Bobrow et al. [1] with additional high-
lighting of possible intents and entities by authors
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2.1.2 Machine Learning

The dialogues systems bene�t recently from the heavy employment of machine learning
(ML) algorithms. The main di�erence compared to the frame based systems is that the
conversation can be more open and evolve in more or less new ways every time. Both
approaches can however be combined. For example, the navigation between states of an
automaton in the frame based dialogue system can be based on learned probabilities. The
area of dialogue systems development resembles more an alchemy than a strict science.

In the �rst class of ML based solutions, the dialogue control system is perceived as a
sequential process where di�erent subsystems process the obtained information one after
another � user utterance understanding, dialogue frame/state tracking, appropriate action
selection, assistant response generation. Neural network (NN) or other machine learning
models can be used at each stage of the pipeline. For example Levin at al. [5] have used a
combination of supervised and reinforcement learning for stochastic Markov Decision Process
model representing the dialogue structure and navigation.

An emerging approach aims to learn dialogue navigation as an end-to-end model using
usually the Recurrent neural networks (RNN), which are able to produce a sequence of
the most probable output words based on conversation history. All of which happens in
a neural network monolith and does not rely on hand crafted subsystems as in the �rst
case of sequential processing. The models are trained on large datasets and try to produce
utterances similar to human conversation. Sordoni et al. have opened the road to data
driven dialogue navigation with RNNs which are by their de�nition able to keep track of the
conversation context [6].

Another interesting approach is Hybrid coded network (HCN) byWilliams et al. [7]. It is
based on a RNN and adds a mechanism for injecting domain knowledge into the assistant to-
gether with constraints on actions in the form of utterances templates. Advantage of limiting
the possible number of options simpli�es the model and reduces its learning complexity.

2.2 Available Platforms

A supporting structure is necessary around the dialogue managing system to take care of the
communication between user's device and the server, transcribing their speech into textual
form and sending back the generated reply converted into speech. The two biggest players
in the �eld nowadays are Amazon and Google. Both of the platforms are fully functional
standalone but also o�er tools for own application development, a feature interesting for our
intentions.

The voice assistant Amazon Alexa was �rst released in November 2014 empowered by un-
derlying technology Amazon Lex, a service for building conversation interfaces in both voice
and text form. It provides the developer with speech recognition and language understand-
ing capabilities. Thanks to many possible endpoints, the multi-platform development e�ort
is highly reduced [8]. Google Home was initially released two years after Alexa in November
2016 with similar features. Developers are allowed to build applications for Google Home
standalone devices or Google Assistant running on mobile phones with the help of Dialog�ow
(formerly API.AI), a tool for creating voice and conversational interfaces [9]. Description of
both of the platforms' features and development process follows.
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2.2.1 Amazon Alexa

Amazon provides developers with an interactive console for creation and management of so
called Alexa Skills1. Initially, a developer has to either select one of the prepared templates
or enter the custom mode providing the most freedom. In order to be able to run the new
skill, all items on the builder checklist informing about the necessary steps of development
have to be checked. At �rst the invocation name of the skill is chosen. That is the word
which wakes the assistant up when pronounced. The next step is de�ning intents � mappings
between user's queries and bot's actions � assistant should recognize in conversations. They
can be either chosen from more than 20 prede�ned ones or introduced newly with sample
utterances, di�erent entities, intent slot types and the option for required comprehension
con�rmation. Slot types or entities � important pieces of information to be extracted from
the utterances � can be de�ned including synonyms. Another possibility is to upload a JSON
�le de�ning the whole interaction model schema.

Various interfaces or peripheries can be connected to the skill (audio, display, video,
gadgets), each providing its directives and requests for content streaming and control. Last
but not least, the service endpoint has to be chosen. Two options exist, either an AWS
Lambda, a serverless computing service by Amazon Web Services, or a HTTPS Web service
of the developer's own choice. These endpoints receive POST requests whenever a user
interacts with the Alexa Skill and can enrich the conversation with data obtained from the
application's backend.

Figure 2.2: Developer console of Amazon Alexa Skills

1Alexa Skills developer console, https://developer.amazon.com/alexa/

https://developer.amazon.com/alexa/
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2.2.2 Google Assistant (Home)

Actions on Google is a developer platform o�ering the opportunity to extend abilities of
Google Assistant. The implemented actions can be accessed through Google Home or any
mobile phone/device with Google Assistant application installed. Very similarly to Alexa
Skills, developer can choose invocation name of their agent and its voice from a short list of
options. As Google Assistant deployed on mobile phones also features a graphical interface,
the look of an agent on the screen can be customized.

The real power can be however found while de�ning various actions built into the as-
sistant. Here Google introduces another of its services, Dialog�ow, a platform for building
NLP based solutions2. The service is under abrupt developed and some of its latest released
features are still in beta version. Developer is allowed to de�ne intents and entities similarly
to Alexa Skills. Very interesting feature still in beta version is the ability to create knowledge
base just by uploading a PDF document, text in Q/A format or a website URL. Agent is
then supposedly able to answer user's questions based on the provided unstructured text.
In order to enhance agent with higher functionality, it can be connected through POST re-
quests from webhooks or Cloud Functions3, serverless compute platform equivalent to AWS
Lambda, to application's backend. On the frontend side, various messaging platforms can
be connected to the developed application as Google Assistant is only one of the options.
Many prebuild agents, small talk regime for chit chat with the user and the chance to utilize
machine learning for training are also o�ered.

Figure 2.3: Developer console of Dialog�ow, Google NLP platform

2Dialog�ow developer console, https://console.dialogflow.com/
3Google Cloud Functions, https://cloud.google.com/functions/

https://console.dialogflow.com/
https://cloud.google.com/functions/
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Platform Development

Based on the acquired knowledge from previous chapter, the conversation platform is devel-
oped here. Its functionality is designed in a bottom up approach followed by implementation
of the individual parts. A functional prototype of the chatbot is presented and discussed.

3.1 Design

The design phase is an important step before the implementation itself as many problems
and challenges can be detected and addressed at a lower cost. Main ideas of the chatbot's
structure are described here including its knowledge base acquisition and dialogue navigation.
We further dive into the decentralized system architecture and design the main components
functionality as well as communication in between them.

3.1.1 Knowledge Base Acquisition

In order to build a chatbot some form of a knowledge base or a �xed dialogue structure has
to be present. At �rst our idea was to obtain such information by scraping text documents
in di�erent formats and converting their text into a hierarchy of headings and paragraphs,
from which a dialogue scenario could be build. While converting text documents into a form
suitable for a conversation structure looked like a great idea, the reality turned out to be
much more complicated. For example PDFs are very well readable for humans and their
formatting remains the same no matter the platform they are viewed on. However, their
machine readability is very limited and extracting a �rm structure out of the text turned
out to be almost impossible. Thus while searching for an alternative data source, Wikipedia
came to our minds.

An important advantage of Wikipedia websites is that they all have the same structure.
Not only they are noticeably all divided into a set of similar headings and sections, even
their HTML source code is structured in the same way which makes content scraping much
easier. Moreover, many websites could be scraped making the chatbot more universal by
extending its possible knowledge base virtually to the whole Wikipedia.

We employ the fact that all headings, subheadings or normal paragraphs are written in
their distinct ways using di�erent HTML tags. It is possible to look for example only for top

11
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level headings of sections on the page and build the content structure of the website. Next,
headings of a lower level subsections can be found and assigned to the appropriate top level
sections. The same process is then repeated with the textual paragraphs and in the end the
complete textual content of the website is arranged in a hierarchic tree.

3.1.2 Navigation

The website's structure is further represented as a state automaton and serves as a knowledge
base for the chatbot. Each (sub)section of the website represents a state with links to both
sections on the same level and to its own subsections. Apart from the section title, a
corresponding paragraph and other meta data are assigned to each state. The idea is that
the agent will be able to use this automaton and navigate through the states, an approach
very similar to the frame based chatbots described in Section 2.1.1.

Figure 3.1: Structure of the crawled content from Wikipedia page about Earth with sections
and subsections on the left and the actual contents as showed on the website1. The structure
obtained by scraping is identical to the original one.

In the diagram above we can see the sections and subsections, which represent the states
of the automaton. In order to keep track of the mutual connections between them, several
relations are de�ned � parent state, children states and sibling states. For illustration, let's
imagine that the initial state is Name and etymology. It does not have any subsection
or otherwise children states. However, from there it can be proceeded to a sibling state
Chronology which already has several children states such as Formation or Origin of life.
Their parent state is again Chronology whose sibling states are Name and etymology and
Physical characteristics.

1Wikipedia page about Earth, https://en.wikipedia.org/wiki/Earth

https://en.wikipedia.org/wiki/Earth
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The navigation in the state automaton is determined by the three relations between its
states that have been described above. The agent can pass between the states on the same
level (sibling states) as well as between the parent state and children states or vice versa. In
the example above that means transfer from Future is permitted to Chronology but not to
Chemical composition as that is a children state of a di�erent parent and thus not a sibling
state. Such navigation through the dialogue structure might seem a bit lengthy as we might
have to pass through a particular state several times. However, this design choice allows for
navigation problem simpli�cation while maintaining a su�ciently rich frame based model
for future experiments.

3.1.3 System Architecture

The aim of this work is not to design a �awless software application but rather to use a
simple system to demonstrate and experiment with various NLP techniques. The design
is kept uncomplicated and functional. Despite author's experience with Google Dialog�ow,
Amazon development platform has been selected in the end due to accessibility to a physical
Amazon Alexa device. Most of the architecture choices are made with the idea of solution
transferability in mind.

The �rst element closest to the end user is the Amazon Alexa with its Skills platform. It
functions as the frontend interface uttering the chatbot's responses but also taking care of
the speech recognition and basic intent detection. In order to process the transcribed text,
our Alexa Skill has to be connected to a an endpoint. Out of the two options the serverless
compute service AWS Lambda has been selected as it is o�cially recommended. The choice
can also be perceived as an opportunity to explore microservices architecture. One of the
many good traits of Lambda functions is that they scale automatically according to the
current tra�c with a default limit of one thousand concurrent executions.

The Alexa Skill is connected to AWS Lambda function called Switch, where all the top
level logic takes action. The transcribed text is analyzed and detected intents and entities
govern the next actions. Switch sends further requests to another AWS Lambda function,
the Controller, and creates user friendly text responses based on the data received back.
While di�erent voice assistant platforms have various interfaces, the Switch endpoint can be
easily rewritten for any of them making the chatbot transferable.

Figure 3.2: Diagram of the designed architecture solution for our application.
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Controller represents the state automaton built upon the website's content. It receives
requests from Switch such as �go to the next section� and returns data related to the next
state. In order to be able to do so, it is connected to an AWS S3, an object data storage
service where the website's content, the domain is stored. When the domain is not yet in
memory, Controller can scrape the particular website to obtain it. Controller also keeps
track of the user's pro�le to maintain continuity of the conversations. It does so with the
help of AWS DynamoDB which is a key-value NoSQL database.

While a vendor lock-in might be a danger for a business company, the simplicity of
running di�erent services at AWS highly accelerates the development and provides us with
more time to focus on the real objective of this work.

3.2 Implementation

Now when the architecture and agent's functionality have been designed it is time to move to
the implementation phase. Every part of the solution's chain is described starting with the
Alexa Skill followed by methods of the two main Lambda functions Switch and Controller
as well as the structure of several objects used throughout the design and access to the data
storage services. The goal here is not to comment on every line of code but rather to explain
the general concepts and interesting choices made along the way.

3.2.1 Alexa Skill

Although Alexa Skill is the only part which does not required nor allow writing own code,
for integrity the setup through the graphical interface described in Section 2.2.1 should not
be omitted. Apart from setting the invocation name of our skill to �askwiki� and connecting
it to the Lambda functions, most of the work lies in de�ning various intents which together
with their entities, slot values control the behavior of the chatbot.

Every new skill comes with a prede�ned set of intents controlling the highest level logic,
such as activation and termination of the certain skill or handling exceptions. For the
purposes of navigation through a domain scraped from a Wikipedia website, we have further
de�ned three intents called next-section, previous-section and speci�c-section. These intents
recognized with the help of prede�ned examples of user's sentences drive the logic of the
state automaton moving between adjacent sections or jumping over to a speci�c one. In
the case of a speci�c-section it is also necessary to extract the name of the section a user
is interested in. That is where slot values come up. Through the console it is possible to
de�ne certain values of various types that should be extracted from the user's utterances
such as date AMAZON.Date or the name of an airport AMAZON.Airport. A list of possible
values of the slot can be prede�ned or any detected input can be passed to a slot type
AMAZON.SearchQuery. As the idea is to keep the chatbot as universal as possible, the
second option is employed for section name detection.

The detected intent and possibly the relevant slot value are passed with much more of
the request's meta data to the connected Switch AWS Lambda function in a form of a JSON.
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3.2.2 Switch

According to the design, the Switch Lambda function is sorting the requests received from the
skill based on the detected intent and forwards them to the Controller. When it immediately
receives back information from Controller, it generates a human readable and a voice suitable
message which is sent to the skill.

The decision logic of the chatbot follows guidelines provided by Alexa Skills Kit SDK
for Python2 sample skill using decorators approach. Decorator is a design patter allow-
ing extension of an existing object functionality without modifying its structure. At �rst
the entrance method lambda_handler() deals with the incoming request type and decides
whether the Skill has been launched, a new session with the user is to be started or termi-
nated and of course handles request exceptions. As the request's type is determined, relevant
method is called taking care of the necessary steps. These can be for example on_launch(),
on_exception(), or on_intent().

As the supporting methods are implemented, the main focus shifts to the last of the
mentioned methods where the agent's behavior is guided by the detected intents. At �rst the
Amazon built in intents such as AMAZON.HelpIntent or AMAZON.StopIntent are treated
and then we implement our own ones, next-section, previous-section and speci�c-section.

In most of the cases a request to the Controller is generated based on the extracted data
from the user's utterance. As Controller replies, a �nal textual response for the user is built
and forwarded to the Skill.

The Alexa Skill response is supposed to be provided in the form of a JSON containing
some meta data, a parameter whether it is the �nal agent's utterance or the dialogue session
is to be continued and several types of textual response � the speech to be pronounced by
the device, a card visible on devices with graphical interface and alternatively a reprompt
asking the user to provide additional information.

As the domain's data about the particular section is received from the Controller, the
information is inserted into prepared string templates and passed in the form of parameters
to the response building method build_response() where the whole JSON for the Skill is
created.

3.2.3 Controller

Controller is an AWS Lambda function hidden from the user taking care of the state au-
tomaton logic, scraping content from Wikipedia websites and building the new domain.
Necessary operations further include text preprocessing and cleaning as well as handling the
two connected data storages.

According to the design, Controller receives a message from Switch requesting a particular
state automaton operation for the given user, for example next-section. It extracts the current
user's state from the Dynamo database or creates a new pro�le with default initial state. In
the next step the domain is loaded from S3 in the form of a custom Domain object supporting
the state automaton navigation. Based on the requested operation (next, previous or speci�c
section), the automaton transition is carried out. That basically means the user's pro�le is

2Alexa Skills Kit SDK for Python, https://alexa-skills-kit-python-sdk.readthedocs.io/

https://alexa-skills-kit-python-sdk.readthedocs.io/
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updated in the DynamoDB to re�ect the new current state and the actual section name
with the processed textual content extracted from the website section are sent in a JSON
response back to the Switch. The text processing steps and summarization of unstructured
text are addressed in Part II.

The best way how to extract content from a website is utilizing its provided API. Never-
theless, to maintain generality of the proposed solution, it has been decided to scrape the
content utilizing Python library Beautiful Soup3 instead. As every Wikipedia page holds
the same HTML structure, the crawler can be deployed on any of them. The page usually
consists of sections and their subsections of multiple levels.

At �rst the crawler loops through the top level section headers omitting those bringing
little value to the conversation and occurring on almost every page such as �Notes and
references�, �External links�, �Bibliography�, etc. For each of the meaningful sections an
instance of object State is created with section's name, textual content and information
about its adjacent sections (parent on higher level, siblings on the same level just beside,
and a list of children states on the lower level) used by the state automaton. Wikipedia
links citing other pages are removed from the text at this point. For each of the sections,
the crawler goes one level deeper and loops over its subsections replicating the process.

In the end, an instance of object Domain is returned as a pair of the website's name and
an array of interconnected State object instances representing the state automaton which
Controller steps through. The �nal result highly resembles the structure in Figure 3.1.

Once the Domain instance is formed by scraping, it is saved in the S3 data storage in
a form of a Python serialized object Pickle4. Every domain does not have a �xed amount
of sections/states as every website has di�erent length. This would cause many problems
during saving the structure in a SQL database with de�ned columns. Thus it has been
decided to employ object serialization and Pickle is the �rst choice in Python. Working with
byte streams in DynamoDB showed to be problematic and the S3 service was used.

Setup and communication with the S3 data storage is thanks to the interconnected AWS
services very straightforward. The Domain object is paired with a unique key identi�er and
saved in a bucket representing some space in the storage. Two situations might arise: either
the domain has been already crawled and saved in the data storage or it still has to be
obtained �rst. We thus try to request the domain by it's known key being the website's
name and the domain is either loaded straight from S3 or scraped and saved �rst.

DynamoDB database is used for keeping track of users' pro�les. Each pro�le consists
of the user-id retrieved from the Alexa Skill request, the domain a user is currently located
in and their current state in it.

Several operations are necessary to maintain this information up to date. Method
get_user() is de�ned retrieving the user's pro�le from the database based on their user-id
which represents the key in the NoSQL schema. Next, method update_user() creates a new
user pro�le in case the provided user-id is not found in the database with default domain

3Beautiful Soup: Python library for pulling data out of HTML and XML �les, https://www.crummy.com/

software/BeautifulSoup/bs4/doc/
4Pickle: Object serialization in Python, https://docs.python.org/3/library/pickle.html

https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://docs.python.org/3/library/pickle.html
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and initial state in it. If some user is matched, their domain and current state are updated
based on the parameters provided. Finally, remove_user() deletes the pro�le record from
database in case a conversation session ends. The user's pro�le is kept in memory only
during the individual dialogues so that their history does not interfere with latest session.

3.2.4 Chatbot Prototype

When all the sections described above are successfully combined together, the objective
of building an experimental conversational platform is ful�lled. A prototype of an agent
providing information from Wikipedia page about Earth is operating allowing basically three
possible operations � moving back and forth through the page's content and jumping to a
speci�c section. In order to determine which section to go to, the cosine distance has been
used to identify the section name closest to the requested section by the user.

Figure 3.3: A sample conversation between the end user and the chatbot

As can be noticed, some Wikipedia links persisted the cleaning e�orts and the number
format is damaged. Such issues will be addressed together with the implementation of text
summarization method in the following part allowing for better content selection than simply
selecting the �rst sentence of every section.





Part II

Text Summarization





Chapter 4

State of the Art

With internet being nowadays an inherent part of our lives the amount of available informa-
tion is skyrocketing. It is hard to �nd reliable evidence but some of the sources quote that
alone over the span of last two years 90 % of the data in the world has been generated and
the pace is still accelerating. Most of the data is unstructured and text is representing a
substantial part. Naturally a strong desire arises to distinguish between relevant and useless
data to reduce the volume of information we have to absorb. Although the research dates
back to the end of last century [10], automatic summarization techniques are booming re-
cently with the increased need and availability of cheap computational power necessary for
machine learning algorithms, mainly NNs.

According to Radev et al. [11] a summary is de�ned as a text that is composed of one
or more source documents, that conveys important information in the original text(s), while
being no longer than half of the original text(s) and usually even less. As humans we have
developed an exceptional sense for natural language and ability to easily spot even minor
deviations from the established norm, both semantic and syntactic. That makes any NLP
task very challenging and automatic text summarization is no exception. Let's have a look
at several techniques used for shortening and extracting the signi�cant information from
text. Most of the current approaches can be categorized into two classes, extractive and
abstractive ones with more and more algorithms combining recently both worlds. Further,
the text summarization applications can be divided by the number of source documents.
Either a single or multi document summaries are produced. This work deals with the �rst
case.

4.1 Extractive Approach

Extractive summarization methods try to identify the most signi�cant sentences in the orig-
inal text and build a summary solely from such selection. Following the methodology of
Nenkova and McKeown [2], three relatively independent steps can be identi�ed in the pro-
cess � intermediate representation, sentence scoring and summary sentence selection.

As the �rst step, the intermediate representation of the document is created. It
captures the main aspects of the source text. The most popular methods employ topic
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representation and identi�cation of topics discussed in the text. Others use indicator repre-
sentation which assigns to each sentence a features such as its position in the document or
paragraph, its length or the number of named entities.

Further, based on the provided representation all original text sentences are scored.
For mentioned topic representation, each sentence is assigned a score related to how well it
represents various topics from the document. Several metrics can be combined at once with
di�erent weights. External context of the source document such as links pointing to the
document on web might also be considered as shown by Hingu et al. [12].

Lastly, the �nal selection of sentences has to be conducted based on their score.
That can be accomplished in several ways. Either the desired length of the summary is
prede�ned and the appropriate number of sentences or a ratio of the original text length is
chosen. Another way is to iteratively select sentences in a greedy way until a certain level of
match is reached between the source text and its summary while maximizing coherence and
minimizing redundancy [2].

An advantage of such division into three separate steps is that di�erent methods at
the individual stages can be combined together providing a vast space of alternatives to be
explored. Some of the existing approaches are described below in greater detail in accordance
with Nenkova and McKeown [2].

4.1.1 Topic Words

Probably one of the earliest works focusing on automatic text summarization was done by
Luhn already in 1958 [13]. He proposed a method aiming to identify descriptive words in
the source text representing the document's topic. Words occurrence in the document was
employed to distinguish between those probably of low importance and those that are key
for the topic. The excluded words might be those occurring very often such as prepositions
or domain speci�c words as well as words on the other side of the frequency scale which are
very rare.

An updated approach based on the Luhn's method [13] has been developed by Dunning

[14] utilizing the power of log-likelihood ratio test for identi�cation of words that are highly
descriptive of the input, also called topic signatures. Topic signature words occur in the
source text more often than one would expect by chance and are thus rare in other documents
[2]. The χ2 distribution table can be used to look up probabilities of obtaining certain value
by chance. Adoption of this statistical signi�cance approach led to great improvement in
selecting relevant content in multi-document news summarization [15].

Once the topic signature words are identi�ed, the salience of every sentence in the docu-
ment is computed either from the number of topic signatures it contains or from the ratio of
topic signatures with respect to the other words. Although both heuristics are based on the
same intermediate representation, they can produce very di�erent results. The �rst approach
favors longer sentences simply because they contain more words and thus theoretically more
topic signatures. The second method on the other hand measures density of key words which
can be more precise.
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4.1.2 Frequency Driven

In topic words representation, the words are assigned a binary value, one or zero. However,
the possibilities here are much broader and that is where frequency driven methods come
to light. The simplest approach assigns each word a raw frequency of occurrence in the
source corpus. That score can be highly in�uenced by the length of the document as a
word occurring twice in one sentence might be important, but not necessarily so in hundred
sentences. Word probability overcomes that issue by computing score of each word w as
a ratio between the number of the word's occurrences n(w) and the total number of words
N in the whole source document [2].

p(w) =
n(w)

N
(4.1)

Such word probability has been used for example in the work of Vanderwende et al.

[16] expanding an existing SumBasic system. SumBasic assigns each sentence s with total
number of words ns a salience score S(s) equal to the average probability of the contained
words p(w).

S(s) =

∑
p(wi)

ns
(4.2)

Selection of sentences for the �nal summary is then conducted in an iterative greedy
way selecting the top scored sentence containing the word with current highest probability
assuming that word represents the most salience topic [2]. For each word contained in the
chosen sentence the probability is adjusted to deal with redundancy and re�ect the iterative
buildup of summary until its desired length is reached.

The word probability methods rely on a stop word list to eliminate the most common
words carrying little information. Formation of such a list is controversial and demanding.
Frequency method called TF-IDF (Term Frequency � Inverse Document Frequency) tackles
the challenge of scoring corpus words without the need for such a list. It does so by comparing
the number of occurrences of a certain word to its expected frequency learnt from a (multi-
document) source corpus

TF-IDF = n(w) log
D

d(w)
(4.3)

where d(w) represents the number of documents in the corpus containing the word w
and D the total number of corpus documents. Instead of the nominal number of words
in the document n(w), a probability p(w) can be used to compensate for the document's
length. Based on the TF-IDF score, descriptive words are those that appear more often in
the current document than in the whole corpus as words contained in most of the documents
have very low IDF [2].

As TF-IDF provides a very good indication of word's salience and is not computationally
demanding, it is often employed by many current systems as the initial words representation
on which more complex sentence selection mechanisms are built.
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4.1.3 Latent Semantic Analysis

Latent Semantic Analysis (LSA) is an unsupervised method representing the source text
based on co-occurrence of words in sentences. Several variants of the algorithm exist today.
Gong and Liu [17] initially proposed the method for identifying important topics in both
single and multi-document cases. The intermediate representation is built by creating a
matrix A from the source text of dimensions n words × m sentences. Each element of the
matrix aij represents a score of the i word in the sentence j. The score can be for example
equal to TF-IDF and set to zero if the sentence does not contain the particular word. Linear
algebra singular value decomposition (SVD) is then applied to the matrix A resulting in
product of three distinct matrices.

A = UΣV T (4.4)

Matrix U holds information about words and topics. Its dimensions are n words × k
topics and each element contains the weight of the word (row) in relation to a certain topic
(column). Matrix Σ is a diagonal descending k × k matrix giving each topic from matrix U
a certain weight with respect to the whole source document. Finally, matrix V T ties topics
in k rows to sentences in m columns.

From these matrices it is possible to extract an indication of how much a certain sentence
represents a given topic resulting in matrix D where each element dkj contains the score of
topic k for sentence j.

D = ΣV T (4.5)

This approach allows for setting a certain threshold of importance under which all
marginal topics in the source text can be omitted. Such dimensionality reduction can be
done by removing last t rows of U , last t rows and columns from matrix Σ and last t rows
of V T simplifying the problem and focusing only on the information rich topics.

Original implementation of Gong and Liu [17] selects one sentence for each topic perform-
ing dimensionality reduction down to the number of sentences to be kept in the summary.
This approach however does not count with cases where several sentences are needed to
su�ciently describe a certain document's topic. Other approaches try to assign an overall
weight to each of the topics and select the appropriate number of sentences based on that
value or choose sentences which discuss several topics at once.

One of the most promising sentence selection heuristics has been introduced by Ozsoy

et al. [18] under the name of cross method. They include a preprocessing step between the
SVD and summary formation with the aim to remove less related sentences in each of the
topics while keeping the most informative ones. For every topic represented by a row in
V T , the average score over individual sentences is calculated and then the values below this
threshold are set to zero [18]. Length of a sentence vector represented by a column of V T is
then summed up and the longest sentence vectors are selected for the resulting summary.

The richness of various implementations nicely illustrates the advantages of splitting
the summarization into three distinct steps. While retaining the exactly same intermediate
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representation and employing di�erent sentence selection algorithms, very diverse results can
be achieved.

4.2 Abstractive Approach

As extractive methods build summary only from sentences already present in the source
document. They do not create any new content nor paraphrase the existing one. Due to
their ability to achieve satisfactory results despite relatively simple implementation, most
of the research has been historically focused on extractive approaches. However, some of
their typical drawbacks are lack of coherency and unnatural sentence composition. With the
abundance of computational power and advancements in NLP, the research has been recently
shifting towards the abstractive methods. They aim to reformulate the source text in an
unseen form using vocabulary not originally present and thus better mimicking the work of
humans. Jing [19] has shown that in 300 human written summaries, 19% of sentences were
written from scratch and the rest rather by cutting and pasting, paraphrasing or reducing
several sentences into one.

The abstractive methods are usually further classi�ed into two main categories, the struc-
ture based and the semantic based approach. Moreover, most of the recent research is based
on the uprise of deep learning. A basic overview of the main methods is provided below in
accordance with [20], [21] and [22].

4.2.1 Structure Based

All structure based techniques employ prior knowledge and schemas such as templates, struc-
tures like tree or ontologies and extraction rules to encode the most salient information from
the source document. The individual methods are named according to the information stor-
ing structure they utilize for representing the content.

Tree based methods represent the source document by a dependency tree consisting of
phrases from the text. The summary is then curated with the help of various algorithms
such as local alignment across pair of parsed sentences combined with a language generator
[20]. The method can also be easily applied to multi-document summaries when the multiple
trees are aligned with each other.

Template based methods have a set of linguistic patterns and extraction rules at their
heart which together serve as a template representing the source text. Corresponding snip-
pets from the document are matched with the template's slots to form a kind of a database of
the content from which the �nal summary is generated. An advantage of template methods
is that summaries are highly coherent. Example of this approach can be found in the project
of Gistexter [23] which identi�es topic related information from the document and appends
them to a database from which it forms a summary.

Ontology based approach exploits the fact that most documents are con�ned to a
certain topic domain. Each domain has its knowledge structure which can be represented
by an ontology. We can create an ontology from the information provided by the source
document and complete the missing or uncertain data with information from an existing
knowledge base from the particular domain which results in a fuzzy ontology.
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Graph based solutions utilize a structure where each node represents a word or an
n-gram with directed edges connecting them together into sentences and paragraphs. Such
graph is then searched for valid sub-graphs encoding a syntactically valid sentence while
maximizing the contained information. From a set of found paths the �nal summary is then
extracted. While the extraction might make it look like an extractive method, new phrases
can be generated thanks to the exploration of new paths in the graph classifying it as an
abstractive method [21].

4.2.2 Semantic Based

A second class of abstractive methods consists of algorithms using the semantic representa-
tion of a document. They identify noun and verb phrases which are then fed into a language
generation module. Several subclasses can be distinguished and are brie�y reviewed here.

Multimodal semantic methods build a representation of multiple topic documents by
capturing main concepts and relations in between them. The trick is to employ the right
heuristics scoring the salience of concepts which are then turned into sentences forming the
�nal summary. The rating can be computed based on information density, completeness,
links to other concepts or number of the expression's occurrences [21].

Information item based solutions generate the summary based on an abstract repre-
sentation of the document rather than from its raw sentences. The unit of such structure is
an information unit, a smallest element of coherent information in the text. For example a
triplet of subject � verb � object retrieved from the source text by a syntactic analysis and
a parser. As these units do not usually form a whole sentence, they have to be combined
together. These newly built sentences are ranked based on their frequency score or other
metric and arranged in a concise summary [22].

Semantic graph based models build in the �rst step a rich semantic graph where verbs
and nouns of the input text are represented as graph nodes and the edges show semantic
and topological relations among them. The created graph is then reduced based on a certain
importance heuristics and the �nal summary is generated [22].

4.2.3 Deep Learning

Large part of progress in text summarization is heavily inspired by the advances in machine
translation (MT) and speech recognition. The main idea is to map an input sequence to an
output sequence representing the source as accurately as possible. These models are called
sequence-to-sequence (seq2seq) models and they have proven to be successful in tasks ranging
from machine translation or speech recognition to video captioning. Opposed to translation
which is essentially a n-to-n problem regarding the relations between the input and output
sequences length, summarization produces a text much shorter than the input. Finding the
correct mapping is thus less straightforward. While most of the deep learning approaches to
summarization utilize one or more of the structure and semantic methods introduced above,
a unique group of applications is highlighted here.

Several sources providing the overview of current deep learning research state exist [24].
It shows that most of the approaches are based on seq2seq architecture of RNNs and LSTMs
introduced for machine translation by Bahdenau et al. [3] and adopted by Nallapati et
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al. [25] for summarization. They employ a bidirectional RNN as an encoder creating a
new representation of the input text and uni-directional RNN as a decoder producing the
summary. Several other tricks improving the results can be employed, such as introduction
of a large vocabulary or an attention mechanism. Another great contribution for the research
community has been their introduction of a CNN/Daily Mail dataset heavily used since then.

Figure 4.1: Baseline seq2seq model with attention [26]

See et al. [26] further improved the algorithm to be able to handle repetition of facts
and detail inaccuracies in the summary. The mechanism named pointer generator networks
allows for copying of unique words from the source text via pointing to them while most of
the output text is still newly generated . The upgrade is clearly visible in Figures 4.1 and
4.2 showing the original and improved architecture respectively.

Figure 4.2: Pointer generator model with the ability to copy rare words directly from the
source text while still generating most of the summary from scratch [26]
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Attention mechanism has recently become a great part of the researched solutions. A
recent paper published by Cohan et al. [27] focuses on summarization of long documents
as opposed to shorter news texts in the preceding works. They do so by combining the
RNN encoder of a seq2seq model described above with an attentive decoding mechanism.
In order to deal with the longer texts, the encoder has to be able to capture hierarchy of
the document's structure. It does so by encoding the source text at �rst at the word level
and further on the whole section level. The attentive mechanism implemented also at both
levels prevents repetition of the same phrases in the summary. The authors have named their
model a discourse-aware attention model and its architecture can be explored in Figure 4.3.
Some of the used mechanisms are however missing, for example the pointer copying. Due
to the lack of longer documents summarization datasets, the authors have publicly released
two new datasets collected from science article repositories arXiv.org and PubMed.com.

Figure 4.3: A discourse-aware attention model built on top of a pointer generator seq2seq
architecture by See et al. [27]



Chapter 5

Implementation

One of the aims of this work is to experiment with text summarization algorithms and based
on the obtained results propose an improvement suitable for the area of voice assistants.
Two recent state of the art methods have been chosen, representatives of both extractive
and abstractive methods. Following their description and implementation, our experience
with a computation cluster employed throughout the testing is mentioned.

The extractive approach is represented by LSA method introduced by Ozsoy et al. [18].
Although the algorithm's results have been overcame many time since its release, it clearly
illustrates the principles of extractive methods and sometimes still performs on par with more
sophisticated implementations by elegantly utilizing the basic principles of linear algebra.

The pool of abstractive methods is represented by the discourse-aware attention model
from Cohan et al. [27]. This algorithm represents according to the authors state of the art
and has outperformed most of the current competition on selected datasets. Its function is
not purely abstractive but rather bene�ts from a fusion of both extractive and abstractive
approaches.

5.1 Latent Semantic Analysis

While the theory behind LSA method has been already deeply described in Section 4.1.3,
only several implementation technicalities are mentioned here. The code is adopted from a
Python module PyTLDR1 by Jai Juneja and adjusted to our needs.

Python NLP platform NLTK2 is utilized at the �rst step to tokenize sentences of the
input text into words. From the words a matrix A is built with the help of TfidfVectorizer
from scikit-learn, a machine learning library for Python3 which builds a sparse representation
of words TF-IDF scores per sentences. After the source matrix is built, it is split by SVD
into the three matrices, U , S and V T . The topic average score is calculated and used to �lter
sentences below it. By a dot product between the squares of S and V T the length vector is
calculated and top sentences selected to be next returned in their original order.

1PyTLDR: Automatic text summarization in Python, https://github.com/jaijuneja/PyTLDR
2NLTK: Python natural language toolkit, https://www.nltk.org/
3scikit-learn: Machine learning in Python, https://scikit-learn.org/stable/
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A list of stop words from NLTK is used to �lter out frequent and unimportant words
during the representation matrix creation. Examples from the list can be �yourself�, �i�,
�but�, �again�, �which� or �those�. Obviously, the words bear none or very little information
about the meaning. The list of stop words has been further extended by words speci�cally
occurring in the used datasets. While LSA works on the individual document level, we run
it in a loop over the individual articles from a dataset. Two additional parameters are to be
set for our method. The length of the �nal summary can be given either in the form of a
ratio with respect to the original length such as 1/9 or by the desired number of sentences.
Number of topics to be detected in the source document can also be set.

5.2 Discourse-Aware Attention Model

Authors of the article presenting the unique seq2seq architecture enhanced with an attention
decoder [27] have open sourced their whole code for easier results reproduction. A part of
the release are also instructions for obtaining the PubMed and arXiv datasets [28]. We have
adopted their implementation and refer to the method by abbreviation DAAM.

The original code is run with identical con�guration provided by the authors with the
aim to reproduce their results. As the discourse-aware attention model code is originally
based on See et al. [26] work which is also publicly available, the number of tips for running
the code is quite high and helps during our setup. The model's hyper parameters had been
also already suggested there. With some variation they are de�ned by Cohan et al. [27] as
follows: two bidirectional LSTMs with cell size of 256 and embedding dimensions of 128.
Embeddings were trained from scratch (i.e. without pre-trained embeddings). Vocabulary
size constrained to 50,000. Mini-batches set to size 16, the document length limited to
2000 and section length to 500 tokens, and number of sections to 4. Batch-padding and
dynamic unrolling were used to handle variable sequence lengths in LSTMs. Training was
done using Adagrad optimizer with learning rate 0.15 and an initial accumulator value of
0.1. The maximum decoder size was set to 210 tokens. The model is trained initially without
coverage which is added at the last two epochs to help the model converge faster. Training is
performed for about 10 epochs and each training step takes about 3.2 seconds. Beam search
is used at decoding time with beam size of 4. The abstractive baselines are trained for about
250K iterations [27].

TensorFlow 1.4 was used for implementing the model's architecture but the current Ten-
sorFlow's version is 2.04 and the API has changed greatly. Hence, we had to experiment
with our development environment setup and �nally ended with TensorFlow 1.8, which still
supported the authors' code. The batch size had to be decreased to 8 instead of 16 because of
full memory issues. Due to the model's complexity and limited space we suggest the reader
to go through the well commented code by themselves and consult the original paper for
theory and design choices whenever necessary.

Regarding data preprocessing, the PubMed dataset is one of the two originally used
by the authors so no bigger problems have arisen during the training or evaluation phase.
Preprocessing of the CNN/DM dataset into a format suitable for the model turned out

4Tensor�ow: An end-to-end open source machine learning platform, https://www.tensorflow.org/api_

docs/python/tf
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to be a much bigger challenge. Both datasets are completely di�erent, not only regarding
the content but also in their form and length. Cohan et al. [27] take advantage of the
clearly divided sections of PubMed scienti�c articles which is lacking in the CNN/DM news
dataset. While we did not want to extensively alter the code in order to maintain result
comparability, most of the work has been put into the preprocessing stage. For example, at
least three sections are necessary for a document to be taken into consideration by the model.
The news articles were thus split into several parts containing equal number of sentences.
Minimum length of a section and abstract has also been decreased to accommodate the bullet
points headings. Each article was then transformed into a JSON object containing abstract,
article text, sections with their headings. The JSONs are then written in one of the training,
evaluation or testing source �les line by line.

5.3 Cluster

Training of neural networks and especially LSTMs utilized in the abstractive summarization
approach is computationally demanding and cannot be performed on regular laptop. Instead
a cluster of GPU (graphics processing units) has to be employed. We have gained access
to one located at CIIRC, Czech Technical University in Prague, consisting of several high
performance compute nodes.

To run the desired code on the cluster, two types of software are used. Environment mod-
ule system Lmod5 simpli�es the management of dependencies such as libraries or packages
on the cluster. Slurm workload manager6 takes care of the queue of jobs submitted to the
cluster and distributes the workload between the available nodes. Although a piece of code
can be tested on the master node accessed over SSH, it is not recommended to run heavy
computations there. The training has been carried out on nodes containing four GPUs GTX
1080 Ti 11 GB and RAM 192 GB providing enough computational power.

Before a job can be run on the cluster, resources have to be allocated via Slurm. To run
a job, we need to submit a job script, a Bash �le with special directives at the beginning
specifying the number of CPUs, GPUs, required memory or the maximal runtime. Next the
desired dependencies of the code are loaded via Lmod and the right environment is setup.
Finally the command to run the code itself follows which can naturally include arguments
to be speci�ed. They make the cumbersome operation on the cluster much easier and are
thus highly desirable.

When a job script is prepared, the job can be submitted to the queue by command
sbatch job_script.sh which eventually runs the code in non-interactive batch mode. The
output is written to a speci�ed log �le. An option to run jobs in an interactive mode also
exists but is not requisite for our purposes.

5Lmod: New environment module system, https://lmod.readthedocs.io/
6Slurm: Workload manager, https://slurm.schedmd.com/

https://lmod.readthedocs.io/
https://slurm.schedmd.com/
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A reduced example of a job script might look like this:

#!/ bin/bash

#SBATCH --job -name=pubmed_train

#SBATCH --output=pubmed_train.log

#SBATCH --cpus -per -task=1

#SBATCH --gres=gpu:4

#SBATCH --mem=80G

#SBATCH --time =2 -00:00:00

module load CUDA/9.0.176 -GCC -6.4.0 -2.28

module load cuDNN/7.1.4.18 -fosscuda -2018b

module load Anaconda3 /5.0.1

conda activate seq2seq

python home/summ/run_summarization.py \

--mode=train \

--data_path=home/data/pubmed/train.bin \

--vocab_path=home/data/pubmed/vocab \

--log_root=pubmed_log \

--exp_name=exp_11 \

--batch_size =8 \

--vocab_size =50000 \

--optimizer=adagrad \

--coverage=False \

..
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Experiments

What is tricky about text summarization is that no ideal abstract of a text exists and
everyone de�nes a good summary di�erently [29]. If we gave a document or a collection of
documents to several people and ask them to summarize its content, the summaries would
be far from identical. The lack of ground truth makes any evaluation of text summarization
very challenging. Certain desirable qualities can still be identi�ed and used for assessment.

A good summary should contain all the important information from the source text in
a shorter form while not repeating itself. The de�nition of importance might further vary
depending on the reader's perspective. The �nal text has to be coherent, maintain context
of the original document as well as correct grammatical structure. Readability should not
be impaired. That is a lot of criteria to be ful�lled simultaneously. Datasets and evaluation
metrics are presented here and later used for assessment of the tested methods' results.

6.1 Datasets

To be able to compare results of di�erent methods, two requirements must be ful�lled � an
evaluation metrics and �xed conditions during all the experiments. The second ingredient is
typically represented by a publicly available dataset consisting of samples and corresponding
ground truth which can be used by any scientist to verify their method. Further, NNs and
especially deep learning techniques are very greedy regarding the number of samples which
can go to millions.

It turned out that not many curated datasets exist in the area of text summarization.
What is needed is a raw text to process and at least one example of its summary written by
a human so that an automatic evaluation and comparison is possible between the model and
reference summaries. A good overview of available datasets has been provided by Dernon-

court et al. [30] with metadata about each of them. Based on the summarization methods
chosen above, availability of the datasets and an attempt to introduce some variability in
the source text type and summary length, a set of news articles and a database of medical
scienti�c research papers have been selected.

33
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6.1.1 CNN/Daily Mail

CNN and Daily Mail dataset is a collection of news articles paired with multi sentence bullet
style summaries written by journalists which has been created by Hermann et al. [31] for
question answering task and later modi�ed by Nallapati et al. [25] for text summarization.
In a whole, the corpus consists of 286,817 training pairs, 13,368 (4.7%) validation pairs and
11,487 (4%) test pairs and the source documents have on average 766 words spanning 29.7
sentences while the reference summaries consist on average of 53 words in 3.7 sentences [25],
see Table 6.1. We use the original version of the dataset where name entities are kept and
not replaced by IDs as in the anonymized version.

6.1.2 PubMed

As the news articles are relatively short, a second dataset is introduced in order to asses the
methods' ability to summarize several pages documents which is where text summarization
brings the greatest bene�t. Cohan et al. [27] have introduced the PubMed dataset of
medical scienti�c paper together with more technical arXiv archive. We use the �rst one of
the two. They have downloaded scienti�c papers from the public repositories, discarded too
short/long articles and utilized the more or less standard structure of the articles to extract
typical sections hierarchy. Abstract is then used as the ground truth summary of the source
text. The corpus consists of 119,924 training, 6,633 (5%) validation and 6,658 (5%) test pairs
with the average document length of 3016 words split between 86.4 sentences and summary
of 203 words in 6.7 sentences on average.

Although it was not intended since the beginning, a similarity between Wikipedia pages
and scienti�c articles showed up. Both sources contain a lot of numerical values and ex-
pressions which are not typical for non-technical documents such as news articles. This will
allow us to test our Wikipedia use case and evaluate it on the PubMed corpus.

Dataset
number of

docs

avg doc
length
(sent)

avg doc
length
(words)

avg summ
length
(sent)

avg summ
length
(words)

CNN/Daily Mail 311 672 29.7 766 3.7 53

PubMed 133 215 86.4 3016 6.7 203

Table 6.1: Quantitative overview of the used datasets. Number of documents, average
document length in sentences and words and average summary length in sentences and
words for CNN/Daily Mail and PubMed dataset.

The variety between the datasets is obvious. Table 6.1 shows that PubMed articles are
roughly four times longer word wise than CNN/DM. Their sentences are longer as well cor-
responding to the di�erent writing style. Abstracts of scienti�c articles cannot be compared
to bullet points form of news. Most of the current research focuses on one type of source
documents and optimize their methods for one single use case. We believe that evaluating
algorithms on such diverse test scenarios will provide us with better understanding of their
advantages and weaknesses and make our results more convincing.
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6.2 Metrics

Without the ability to measure, it is not possible to precisely assess, compare and quantify
any results. As we can see, most of the criteria de�ning a good summary are purely qualita-
tive and subjective. Four main evaluation methods trying to overcome this issue and score
a produced summary have been selected.

6.2.1 Human

When the quality of a summary is so subjective and hard to quantify, evaluation by a
human critic is an obvious option. There have been several campaigns in the US since late
1990s trying to establish standards and assess the quality of machine summaries. They
include SUMMAC (1996-1998), DUC (Document Understanding Conference, 2000-2007)
where judges were evaluating the coverage of the original document by a summary, and
more recently TAC (Text Analysis Conference, 2008-present) with query based summaries
being evaluated based on to what extent they answer the given question [32]. An assessment
by a judge or preferably an aggregation over a plenary of judges results in the most natural
human evaluation. However, its complexity and resource demands are very high. That is
why researchers have been trying to develop an automatic evaluation metric similar to the
human rating.

6.2.2 ROUGE

The most used set of metrics for summarization nowadays have been introduced in 2004 by
Lin [33] under the name of Recall-Oriented Understudy for Gisting Evaluation (ROUGE). It
measures the quality of an automatically generated summary by comparing it to the ground
truth one(s) provided by humans. The score is based on the number of overlapping text
units such as n-grams, word sequences or word pairs [33]. The original paper presents four
main similar measures: ROUGE-N, ROUGE-L, ROUGE-W and ROUGE-S. All three main
scores are implemented in default � recall, precision and resulting F1.

ROUGE-N is a measure comparing the number of n-grams (usually bi-grams and tri-
grams) between the generated model summary and a reference summary or alternatively a
set of them. The recall score is computed as

ROUGE-n =
number of mathing n-grams

number of n-grams in reference summaries
(6.1)

ROUGE-L employs longest common sequence (LCS) of both texts. The intuition tells
the longer the LCS between two sentences, the more similar they are. It captures well
similarity at the sentence level but su�ers from the fact that it counts only the in-sequence
words and thus alternative or shorter LCSs are not re�ected by the score [33].
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ROUGE-W is rewarding consecutive LCSs by adding weight to the longer sequences.
It improves the ROUGE-L score to re�ect similarity between texts better.

ROUGE-S or a skip bi-gram co-occurrence statistics allows for arbitrary gaps between
words and thus provides more �exibility in the sentence structure. An extension isROUGE-
SU adding the possibility to skip uni-grams apart from bi-grams and thus allows insertion
of multiple words between the �rst and the last words of the bi-grams. They do not have to
form a consecutive sequences of words [32]. The maximum skip distance (number of inserted
words) can be limited. Star symbol (*) signi�es no set limit.

Lin [33] compared ROUGE results to three years of DUC conference data. From his
conclusions it can be drawn for our purposes that (1) ROUGE-2, ROUGE-L, ROUGE-W, and
ROUGE-S work well in single document summarization tasks, (2) ROUGE-1, ROUGE-L,
ROUGE-W, ROUGE-SU4/9 perform great in evaluating very short headline-like summaries,
(3) using multiple references usually improves correlation to human judgment [33]. Each test
case is evaluated with the help of ROUGE-1, ROUGE-2, ROUGE-L and ROUGE-SU*, both
recall and F1 measures. We have found out that especially ROUGE-1 and ROUGE-SU* F1
scores serve as good indicators of performance in our experiments.

It might be worth to remind ourselves of how di�erent accuracy measures are computed
to understand why exactly recall and F1 have been chosen. Let's de�ne True Positive (TP)
samples as n-grams occurring both in reference and model summary, True Negatives (TN)
which are in neither, False Positives (FP) as n-grams not in the reference but occurring in
the model summary and False Negatives (FN) those in the reference which are not included
in our produced model summary. Then accuracy, precision, recall and F1 scores can be
computed as follows.

accuracy =
TP + TN

TP + FP + FN + TN
(6.2)

precision =
TP

TP + FP
(6.3)

recall =
TP

TP + FN
(6.4)

F1 = 2 × recall× precision
recall + precision

(6.5)

Extractive methods only select sentences already contained in the source document so we
are more interested in the FN than FP ratio. It is desirable to construct summaries as similar
to the reference ones as possible and the LSA method does not contain any mechanism
substituting human creativity. Thus accuracy and precision are of lower importance to
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us than recall, a sensitivity measure of correctly selected n-grams from the gold standard
summary. As distribution of the four observation classes is unequal, F1 score is employed
for compensation of di�erent importance of FP and FN as explained above.

6.2.3 BLEU

BiLingual Evaluation Understudy (BLEU) was originally introduced as a method for au-
tomatic evaluation of machine translation by Papineni et al. [34]. However, the principle
is very similar to evaluating summarization results and the metrics is thus often used for
such purposes as well. BLEU measure is precision based and ranges from 0 to 1 similarly
to ROUGE, lowest to highest which is demanding to achieve even for a human translator.
The idea behind is to count the ratio of n-grams in the candidate translation overlapping
with the reference [33] with addition of penalizing texts which are of di�erent length than
the reference.

The di�erence between ROUGE-N precision and BLEU score is the brevity penalty for
long texts and the fact that BLEU computes matches between n-grams in model and reference
for several n values as opposed to one �xed n in ROUGE. Both metrics are used in this work
providing a complete palette of evaluation options.

6.2.4 Run Time

Integration of a text summarization algorithm with a chatbot place demands not only on
precision and coherency of the summary but also on low latency of the communication.
Another evaluation metric is thus introduced here, the measurement of summary generation
computation time.

As LSA method is tested on regular personal laptop and discourse-aware attention model
trained on a cluster with variable con�guration, the comparison of their run times cannot
be exact. It is also very well possible that other tasks are putting load on the CPUs during
the experiment and thus interfering with the in-line measurements. Nevertheless, the run
time values mentioned with every set of results will help us when deciding about suitability
of each method for the chatbot.

6.3 Results

The results of several experiments are presented here. Extractive LSA and abstractive
discourse-aware attention model are evaluated on the CNN/Daily Mail and PubMed datasets
with the help of ROUGE and BLEU metrics together with qualitative human assessments.
Computation time is measured in all cases. Further, the selected methods are fed with a
Wikipedia web page content to evaluate their suitability for chatbot integration.

Di�erent datasets give preference to extractive or abstractive methods. Each summa-
rization method is suitable for either short or long texts. ROUGE scores are said to favor
extractive methods [26]. It is hard if not impossible to present a fair comparison between
the methods. Nevertheless, we consider the various testing conditions presented here to be
a unique added value of this work.
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6.3.1 Latent Semantic Analysis

A great advantage of Latent Semantic Analysis is its low computational requirements. As
each source text is summarized independently on others, there is no need to provide any huge
dataset for a model training. Vocabulary is built only from the article being summarized
and does not use the whole corpus. The length of the produced summary is set to two and
�ve sentences for CNN/DM and PubMed datasets respectively. We have also experimented
with the parameter of number of topics to be identi�ed in the source document. The highest
scores have been obtained with just one topic although that may not sound reasonable at
the �rst sight.

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-SU* BLEU

Dataset R F1 R F1 R F1 R F1

CNN/DM 0.2611 0.2547 0.0762 0.0739 0.1753 0.1706 0.0783 0.0678 0.0630

PubMed 0.3230 0.3123 0.0928 0.0910 0.1856 0.1802 0.1230 0.1061 0.0809

Table 6.2: Results of LSA method on CNN/Daily Mail and PubMed datasets according to
ROUGE-1, ROUGE-2, ROUGE-L and ROUGE-SU*, recall and F1 scores and BLEU metric.

Several observations can be made about the results in Table 6.2. ROUGE-1 score is
naturally higher than ROUGE-2 as single words are more probable to match between the
model and reference summaries than are bi-grams. As ROUGE-SU* allows for insertion of
unlimited number of words between the �rst and last word of every bi-gram, the score is
higher than ROUGE-2. Better results are generally achieved for PubMed than for CNN/DM
dataset. That might be caused by the fact that scienti�c articles are longer and contain more
technical terms than news articles which which LSA might identify better as important.

Looking at the pure numbers does not say much about the quality of the summaries
produced by LSA but serve as a good basis for comparison between the di�erent methods.
The results achieved by our implementation are comparable to what can be found in other
sources [35]. ROUGE score is based only on exact text overlap and neglects content overlap
potentially obscured by humans choosing original words of similar meaning when writing
their summaries. The coherency of the produced snippets also cannot be assessed by the
quantitative metrics. From those reasons two particular outcome examples are mentioned
here for illustration. Each of them consists of the original article, the reference human
summary and a model summary produced by the LSA algorithm.

In the �rst case in Table 6.3 the algorithm has very well mimicked the human author
and included the very same pieces of information found in the source text. However, as an
extractive method, it naturally lacks the ability to reformulate the original sentences. The
resulting model summary is thus slightly longer than the reference one containing additional
information. In general, it highly depends on the speci�c context of the reader what kind
of data and thus parts of the sentences are unnecessary and should be omitted and which
are important. This time the reader can clearly understand the message of the article. As
is desirable for a sport event coverage, all important scores and players' names are included.
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Not only the individual sentences are well chosen, also their order seems natural and the
summary is quite coherent.

Such conclusions are only supported by ROUGE scores being much higher for the par-
ticular article than the average values in Table 6.2. ROUGE-1 F1 scores 0.4898 which is
roughly two times higher than the average across the whole dataset. However, when we look
at ROUGE-2, the di�erence already signi�cantly increases. Even metrics focused on match
of longer phrases from the text prove that LSA is able of producing summaries of relatively
high quality such as the example in Table 6.3 with ROUGE-SU* F1 equal to 0.1803.

SOURCE andy murray marched into the third round of the bnp paribas open at indian
wells with a routine 6-1 6-3 win over canadian vasek pospisil . the scot raced
through the opening set , carving out �ve break points and taking three , before
another two breaks of serve in the second earned him victory in one hour and
19 minutes . his opponent , the world number 62 , did not trouble the 27-
year-old , making only 46 per cent of �rst serves . andy murray is all smiles
after sealing his progress into the last 32 of indian wells on saturday . andy
murray -lrb- right -rrb- shakes hands with vasek pospisil having beaten the
canadian 6-1 , 6-3 at indian wells . murray took full advantage to set up a
meeting with germany 's philipp kohlschreiber . ` i thought i did quite well , '
the british number one said on sky sports 3 . ` he did n't serve so well today .
` i thought i played quite solid . i was using my forehand well . ' murray put
in an assured performance to defeat the world no 62 in just under 80 minutes
. murray admitted the contrast in atmosphere from great britain 's davis cup
tie against the united states in glasgow last weekend took some getting used to
. ` it 's a completely di�erent vibe on the court , ' he said . ` it 's extremely
di�erent to what it was like in davis cup . i tried to give myself some positive
energy � that helped a little bit , but it was tough . ' murray , who earlier this
week revealed he was set to add jonas bjorkman to his coaching team , said he
would like the davis cup quarter-�nal with france in july to be held at queen 's
club . the british no 1 celebrates his comprehensive win by hitting some signed
tennis balls into the crowd .

REF the british no 1 defeated the canadian youngster 6-1 , 6-3 . moves into the
indian wells third round to play philipp kohlschreiber . murray is set to add
jonas bjorkman to his coaching team .

MODEL andy murray marched into the third round of the bnp paribas open at indian
wells with a routine 6-1 6-3 win over canadian vasek pospisil . murray , who
earlier this week revealed he was set to add jonas bjorkman to his coaching
team , said he would like the davis cup quarter-�nal with france in july to be
held at queen 's club .

Table 6.3: Example of a good summary of CNN/DM article produced by the LSA. Scores
ROUGE-1 F1 0.4898 and ROUGE-SU* F1 0.1803.

Unfortunately, LSA does not always perform so well. Below in Table 6.4 we can see
a summary produced by the method which bears resemblance to the reference resulting
resulting in high ROUGE scores. ROUGE-1 F1 overcomes the average more than twice with



CHAPTER 6. EXPERIMENTS 40

value of 0.5319, ROUGE-2 reaches even higher meaning many more than usual matching
bi-grams were found between the reference and model summaries. With some leeway in the
word structure, ROUGE-SU* F1 reaches 0.2192.

SOURCE by . matt blake . published : . 06:08 est , 3 october 2012 . | . updated :
. 08:56 est , 3 october 2012 . these ghastly photographs are likely to cause
ripples across the art world . they were taken by andrey antov who spent ten
years building his collection of extraordinary images by photographing rock
formations re�ected in water . one , taken at the rila and pirin mountains in
bulgaria , earned the nickname the ` devil ' when mr antov spotted a demonic
face after he rotated it 90 degrees . devilish : this picture , taken at the rila and
pirin mountains in bulgaria , earned the nickname the ` devil ' when mr antov
spotted a demonic face in the rock . another bears an uncanny resemblance
to a llama , with tufts of grass making up the animal 's furry coat . mr antov
, from oxford in connecticut , america , said he did n't rely on the computer
to enhance the shots , simply using his camera on a tripod . the 36-year-old
explained : ` it all started when i went on a �eld trip and took the image of
the ` devil ' . ` i noticed the face by chance a few days later after developing
the image and turning it 90 degrees on one side . art in nature : this picture ,
left , bears an uncanny resemblance to a llama , with tufts of grass making up
the animal 's furry coat while the other , right , could be a bird ? re�ections of
another world : mr antov , from oxford in connecticut , . america , said he did
n't rely on the computer to enhance the shots , . simply using his camera on a
tripod . ` afterwards this i began to �nd more faces in the rocks . ` it 's taken
me more than 10 years to build up the collection because the images are not
easy to spot . ` i try to spot the faces when there is a perfect re�ection . this
is more likely in a lake and when there is no wind . ` then i place my camera
on a tripod and set the self timer . ` it 's pretty simple , it does n't involve
photoshop or other alteration techniques . ' he added : ` i 've had a great
reaction to the pictures . people have been very surprised that it is possible . '

REF andrey antov , from oxford , connecticut , spent ten years on the collection .
he did n't rely on the computer to enhance the shots , simply a tripod . they
are all shots of rocks re�ected in water then rotated 90 degrees .

MODEL one , taken at the rila and pirin mountains in bulgaria , earned the nickname
the ` devil ' when mr antov spotted a demonic face after he rotated it 90 degrees
. mr antov , from oxford in connecticut , america , said he did n't rely on the
computer to enhance the shots , simply using his camera on a tripod .

Table 6.4: Example of a bad summary of CNN/DM article produced by the LSA. Scores
ROUGE-1 F1 0.5319 and ROUGE-SU* F1 0.2192.

Despite the exceptionally high ROUGE scores, the text is incomprehensible. The main
motive of the source article stays unclear as the algorithm gives higher priority to long
sentences describing speci�c details instead of focusing on the main idea behind the story.
That corresponds to what has been said about the �rst example in Table 6.3, reader's context
is very important for the �nal impression of the summary. And while it might be desirable to
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mention exact score and names of the players in the case of a sport match coverage, it does not
make much sense in a more descriptive kind of an article as in the second case. Sense for such
�ne nuances are inherent to humans but pose a great challenge for arti�cial solutions. The
example also illustrates the gap between automatic scoring and human qualitative evaluation
which should thus never be omitted.

According to the author's knowledge, there is no dataset allowing for quantitative evalu-
ation of Wikipedia pages summarization. Pure human qualitative assessment is the only way
how to test suitability of the LSA method. The algorithm is applied to the individual sub-
sections of the Wikipedia page about Earth with the aim to identify their most characteristic
sentences. They will be then used by the chatbot from Part I to return relevant information
about the topic. Although sections and subsections are often further divided into para-
graphs, this di�erentiation is not considered initially as the topic of individual paragraphs
is hard to identify without a provided heading. The outcomes are again presented through
two examples consisting of a section name, its original content and a summary provided by
our LSA model with a set length of two sentences.

SECTION Name and etymology

SOURCE The modern English word Earth developed from a wide variety of Middle En-
glish forms, which derived from an Old English noun most often spelled eorðe.
It has cognates in every Germanic language, and their proto-Germanic root has
been reconstructed as erþ	o. In its earliest appearances, eorðe was already being
used to translate the many senses of Latin terra and Greek g	e: the ground, its
soil, dry land, the human world, the surface of the world (including the sea),
and the globe itself. As with Terra and Gaia, Earth was a personi�ed god-
dess in Germanic paganism: the Angles were listed by Tacitus as among the
devotees of Nerthus, and later Norse mythology included Jörð, a giantess often
given as the mother of Thor.
Originally, earth was written in lowercase, and from early Middle English, its
de�nite sense as �the globe� was expressed as the earth. By Early Modern En-
glish, many nouns were capitalized, and the earth became (and often remained)
the Earth, particularly when referenced along with other heavenly bodies. More
recently, the name is sometimes simply given as Earth, by analogy with the
names of the other planets. House styles now vary: Oxford spelling recognizes
the lowercase form as the most common, with the capitalized form an accept-
able variant. Another convention capitalizes �Earth� when appearing as a name
(e.g. �Earth's atmosphere�) but writes it in lowercase when preceded by the
(e.g. �the atmosphere of the earth�). It almost always appears in lowercase in
colloquial expressions such as �what on earth are you doing?�

SUMMARY As with Terra and Gaia, Earth was a personi�ed goddess in Germanic pa-
ganism: the Angles were listed by Tacitus as among the devotees of Nerthus,
and later Norse mythology included Jörð, a giantess often given as the mother
of Thor. Originally, earth was written in lowercase, and from early Middle
English, its de�nite sense as �the globe� was expressed as the earth.

Table 6.5: Example of a good summary of Wikipedia page section produced by the LSA
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In the �rst case in Table 6.5, LSA selected the last sentence of the �rst paragraph and last
sentence of the second paragraph. That was probably caused by the simultaneous occurrence
of several unique words and names with low frequency in the source text, such as paganism or
Thor. If a human was to mimic an extractive approach and select two sentences representing
the section, these would probably end up between the hot candidates. However, the �rst one
is possibly getting too much into the detail and thus for example the �rst sentence of the
section might be a better choice.

The second example in Table 6.6 illustrates how LSA is not at all �awless. The algorithm
has selected two sentences containing very speci�c words, such as mantle or lithosphere

which do occur often in the source text. However, the context is missing in the produced
summary and reader is served with speci�c details that are hard to comprehend without the
general overview of the section. An human adopting an extractive approach would probably
choose the �rst sentence of the paragraph accompanied maybe by the last one leaving the
technicalities out of the short summary.

SECTION Internal structure

SOURCE Earth's interior, like that of the other terrestrial planets, is divided into lay-
ers by their chemical or physical (rheological) properties. The outer layer is a
chemically distinct silicate solid crust, which is underlain by a highly viscous
solid mantle. The crust is separated from the mantle by the Mohorovi£i¢ dis-
continuity. The thickness of the crust varies from about 6 kilometres (3.7 mi)
under the oceans to 30�50 km (19�31 mi) for the continents. The crust and the
cold, rigid, top of the upper mantle are collectively known as the lithosphere,
and it is of the lithosphere that the tectonic plates are composed. Beneath
the lithosphere is the asthenosphere, a relatively low-viscosity layer on which
the lithosphere rides. Important changes in crystal structure within the mantle
occur at 410 and 660 km (250 and 410 mi) below the surface, spanning a tran-
sition zone that separates the upper and lower mantle. Beneath the mantle,
an extremely low viscosity liquid outer core lies above a solid inner core. The
Earth's inner core might rotate at a slightly higher angular velocity than the
remainder of the planet, advancing by 0.1�0.5° per year. The radius of the
inner core is about one �fth of that of Earth.

SUMMARY The crust is separated from the mantle by the Mohorovi£i¢ discontinuity. The
crust and the cold, rigid, top of the upper mantle are collectively known as the
lithosphere, and it is of the lithosphere that the tectonic plates are composed.

Table 6.6: Example of a bad summary of Wikipedia page section produced by LSA

Overall, the performance of LSA highly depends on the source text. We have shown that
it is able to capture the general concepts of a source text at some occasions. It seems like
the text has to be more descriptive and contain less technicalities and numbers, see Table
6.5. Even in the opposite cases, LSA might achieve great results if the exactness in the �nal
summary is desirable, such as in the sport event coverage in Table 6.3. However, in other
cases the general concept and overview are blurred by the article's speci�c terminology, a
good instance of such behavior can be found in Tables 6.4 and 6.6. Example summaries of
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PubMed datasets are not included from space saving reasons. From the comparison of our
good and worse examples of LSA application we can roughly assume the performance limits.

A criterion which should not be neglected is the computational demands and mainly run
time. LSA method summarizes each source document independently on any grater corpus
which serves as a great advantage in domains where large datasets are missing. Due to its
relative simplicity and no model training required, LSA implementation has been run on
a standard laptop with con�guration Intel i5-6200U 2.30 GHz, RAM 8GB. We have been
able to summarize CNN/DM articles at the pace of 0.0056 s/doc and more than three times
longer PubMed documents at roughly two times slower rate of 0.0136 s/doc. Run time is
not directly proportional to the source text length which can pose an advantage in case of
long input documents.

6.3.2 Discourse-Aware Attention Model

We run the model with similar con�gurations on both CNN/DM and PubMed datasets
varying only when necessary. As has been already indicated in Section 5.2 the model is not
optimized for CNN/DM dataset as opposed to the original PubMed. Better results might
have been obtained after some tuning. However, the mutual comparison would not have
been very apt anymore and particularly better results were not obtained during later tuning
experiments.

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-SU* BLEU

Dataset R F1 R F1 R F1 R F1

CNN/DM 0.2565 0.2697 0.0687 0.0722 0.2351 0.2473 0.0692 0.0629 0.0464

PubMed 0.2250 0.2815 0.0617 0.0785 0.2043 0.2557 0.0582 0.0779 0.0425

Table 6.7: Results of DAAM method on CNN/Daily Mail and PubMed datasets according
to ROUGE-1, ROUGE-2, ROUGE-L, ROUGE-SU*, recall and F1 scores and BLEU metric.

For all metrics in Table 6.7, recall score is higher for the CNN/DM dataset and F1 on
the other hand for PubMed. However, the di�erence is not signi�cant enough to make any
conclusions. ROUGE-1 is again naturally higher than ROUGE-2. ROUGE-SU* scores are at
a similar level as ROUGE-2 indicating that allowing unlimited number of words to extend bi-
grams does not increases the match between reference and model summaries. Interestingly,
both ROUGE-L scores are quite high compared to other metrics. That might be explained
by the model creating long common sequences similar to the reference human summaries.

We were not able to fully replicate the results achieved in the original paper, speci�cally
for PubMed dataset ROUGE-1 F1 0.3893, ROUGE-2 F1 0.1537 and ROUGE-L F1 0.3521.
ROUGE-SU* and recall scores are not stated by the authors. Finding a reason why the same
performance was not achieved was challenging. Consulting other researchers experience and
the authors' suggestions at the GitHub forums did not help. The model might have been
trained with slightly di�erent coe�cients or their values were altered during the process.
According to the tips provided by See et al. [26] and Cohan et al. [27] we have tried to rerun
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the training several times with di�erent setups. For example, the dimension of encoder
and decoder can be reduced at the beginning of the training phase. After every couple of
epochs it can be gradually increased up to the indicated values. Such approach speeds up
the learning process and allows for more iterations resulting potentially in better results.

From those reasons the much more sophisticated abstractive approach actually achieved
results comparable to the extractive LSA which scores can be found in Table 6.2. Discourse-
aware attention model scores slightly higher in most of the ROUGE metrics with the excep-
tion of ROUGE-L where the advantage compared to LSA is signi�cant. However, training
of the model and decoding the outcome summaries themselves is very time consuming which
gives advantage to a much quicker LSA. The training of the model took around four full
days on the cluster, see Section 5.3. Each training step took around 3.5 s. The smaller
encoder/decoder dimensions accelerated the training but the loss settled again after three
days and did not bring any improvement to ROUGE scores. The summary generation took
tens of seconds for both datasets which is incomparable to the LSA.

REF background : whole - genome comparisons can provide great insight into many
aspects of biology . until recently , however , comparisons were mainly possible
only between distantly related species . complete genome sequences are now
becoming available from multiple sets of closely related strains or species. re-
sults:by comparing the recently completed genome sequences of vibrio cholerae
, streptococcus pneumoniae and mycobacterium tuberculosis to those of closely
related species � escherichia coli , streptococcus pyogenes and mycobacterium
leprae , respectively � we have identi�ed an unusual and previously unobserved
feature of bacterial genome structure . scatterplots of the conserved sequences
( both dna and protein ) between each pair of species produce a distinct x -
shaped pattern , which we call an x - alignment . the key feature of these align-
ments is that they have symmetry around the replication origin and terminus
; that is , the distance of a particular conserved feature ( dna or protein ) from
the replication origin ( or terminus ) is conserved between closely related pairs
of species . statistically signi�cant x - alignments are also found within some
genomes , indicating that there is symmetry about the replication origin for
paralogous features as well.conclusions:the most likely mechanism of genera-
tion of x - alignments involves large chromosomal inversions that reverse the
genomic sequence symmetrically around the origin of replication . the �nding
of these x - alignments between many pairs of species suggests that chromo-
somal inversions around the origin are a common feature of bacterial genome
evolution .

MODEL background : the aim of this study was to evaluate the e�ects of closely related
bacterial genomes in the duplication of whole genomes . methods : this study
was performed in this cross - sectional study . the subjects were divided into
two groups ( n = 10 ) , which was treated with the x - whitney u test ( n
= 30 ) , which was performed in the study . the results showed that the
genomes were signi�cantly higher in the group than in the group than those
with related bacterial species . in this study , we found that large - scale
genomic duplications might be used to promote arabidopsis thaliana .

Table 6.8: Example of a summary of PubMed article produced by the DAAM. Scores
ROUGE-1 F1 0.2277 and ROUGE-SU* F1 0.0426.
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The quality of the produced summaries is illustrated by an example from the PubMed
dataset in Table 6.8. For the length of the original scienti�c articles, only the reference and
model summaries are shown without the source text itself. Even from the abstract it is
obvious how technical the articles are. The trained model is thus very domain speci�c as
can be seen later. The algorithm has proven its abstractive abilities to form new sentences
unseen in the original document. Summary nicely follows the structure of a scienti�c article
abstract. Sentences are not necessarily �uently connected to each other which would be
unwelcome in other types of texts but is typical for scienti�c articles. The ROUGE scores
for this particular document fall generally below average with ROUGE-1 F1 value 0.2277 or
ROUGE-SU* F1 score 0.0426 showing that although the generated model summary might
seem reasonable, the match with the reference abstract is relatively low. Possible cause might
be the fact that model summary is shorter than the reference one as set number of sentences
of the summary is �xed upfront and stays the same for every document in the dataset. In
other documents frequent repetition of certain words or whole phrases was observed even
the well known problem of abstractive methods should have been solved by the employment
of attention coverage in the decoder according to Cohan et al. [27].

SECTION Name and etymology

SOURCE The modern English word Earth developed from a wide variety of Middle En-
glish forms, which derived from an Old English noun most often spelled eorðe.
It has cognates in every Germanic language, and their proto-Germanic root has
been reconstructed as erþ	o. In its earliest appearances, eorðe was already being
used to translate the many senses of Latin terra and Greek g	e: the ground, its
soil, dry land, the human world, the surface of the world (including the sea),
and the globe itself. As with Terra and Gaia, Earth was a personi�ed god-
dess in Germanic paganism: the Angles were listed by Tacitus as among the
devotees of Nerthus, and later Norse mythology included Jörð, a giantess often
given as the mother of Thor.
Originally, earth was written in lowercase, and from early Middle English, its
de�nite sense as �the globe� was expressed as the earth. By Early Modern En-
glish, many nouns were capitalized, and the earth became (and often remained)
the Earth, particularly when referenced along with other heavenly bodies. More
recently, the name is sometimes simply given as Earth, by analogy with the
names of the other planets. House styles now vary: Oxford spelling recognizes
the lowercase form as the most common, with the capitalized form an accept-
able variant. Another convention capitalizes �Earth� when appearing as a name
(e.g. �Earth's atmosphere�) but writes it in lowercase when preceded by the
(e.g. �the atmosphere of the earth�). It almost always appears in lowercase in
colloquial expressions such as �what on earth are you doing?�

SUMMARY we report a case of a giantess - old man with a history of middle word Earth
word Earth , which was treated with of the of the earth on the basis of the was
performed

Table 6.9: Example of a summary of Wikipedia page section produced by the DAAM



CHAPTER 6. EXPERIMENTS 46

Despite the lack of available data did not allowed for training the model particularly for
the Wikipedia use case, not so precise summaries of its sections might still be generated by a
model trained on a di�erent dataset. After processing the webpage into a suitable format, we
run the decoding process whose results can be assessed at least qualitatively. Same section of
the page about Earth is chosen for comparison with the LSA outcome in Table 6.5. The model
trained on PubMed dataset fails utterly to produce any acceptable summary of the source
text as we can see in Table 6.9. This single example is no exception among other sections of
the webpage. Phrases used in scienti�c articles comically sneak into the text and no context
or information from the original document are present. Additional experiments and di�erent
setups would be necessary to better asses the abilities of the discourse-aware attention model.
The original authors have shown that it is able to achieve state of the art results on newly
presented datasets in comparison with several other methods. Transferability of the trained
model into new domains seems to be at least challenging based on our tests with Wikipedia.
The model is built on top of a certain vocabulary and semantic relations which di�er widely
between such specialized documents.

Although the mechanism of neural networks is understood, the intermediate results and
their �nal outcomes are hard to predict upfront. That is applicable to one of the recent
advancements in deep learning, the attention mechanism employed by Cohan et al. [27].
Any option to grasp the decision process inside the algorithm is thus warmly welcomed. A
publicly available attention visualization tool developed by See [26] is mentioned here with
the hope to inspire the reader to get more insight into the results.

Figure 6.1: Attention Visualizer showing a sample PubMed article, reference abstract and
generated summary produced by the DAAM

The visualizer shows the distribution of attention in a text based sequence-to-sequence
tasks such as translation or summarization [36]. As the user hovers their mouse over the de-
coded summary words, the source text is overlaid with an attention heat map. For networks
utilizing the pointer mechanism, generation probability of each decoded word is displayed as
well [36]. The original DAAM code produces source �les needed for attention visualization
so we can run the tool and observe the behavior of the decoder.



Chapter 7

Improvement Proposals

After experimenting with selected text summarization methods, we have arrived at the stage
where possible improvements might be proposed based on the gained experience. The aim
is to try to perfect a chosen method in accordance with the overall objective of this work,
summarization of text for chatbot, namely a Wikipedia page.

Although the DAAM approach is much more recent and theoretically promising better
results, both training and summary generation proved to be very time consuming. More-
over, its focus on one particular domain de�ned by the training dataset does not make it a
good candidate for our further work. The chatbot should be as universal as possible regard-
ing a source text. From those reasons LSA method has been chosen as the candidate for
enhancement attempts o�ering clear functioning principle, domain transferability and low
computation time.

Two main ways of altering the LSA algorithm appear. The heuristics for selecting sen-
tences for the �nal summary can take on many forms from which several have been already
described by Ozsoy et al. [18]. We have thus decided to experiment with the construction
of an input matrix A representing relations between sentences and words. In this work,
the matrix is originally built from TF-IDF scores. While that method provides information
about the word occurrence in the document, it does not capture any semantic information
and mutual relations between the words.

We propose a new representation of the sentences and words matrix by employing well
proven word embedding language models. Instead of representing a word by its frequency, it
can be embedded into a continuous vector space where semantically similar words are mapped
nearby each other. The principle is often illustrated with the help of a symbolic equation
KING−MAN + WOMAN = QUEEN showing how capable is the model of learning semantic
relations between words simply from raw text. According to our best knowledge, it is the �rst
attempt to combine LSA method with word2vec model. Several variants consisting of various
pre-trained models and sentence vector construction are presented here. Implementation
highlights are mentioned together with comparison of results with the existing solutions.

47
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7.1 Implementation

The proposed improvement is extending an already implemented LSA algorithm and the
code should be altered as little as possible for later results comparison. Preprocessing step
is preserved from earlier. Too short sentences or stopwords are �ltered from the source
text which is then tokenized into individual sentence and words. While the length of the
documents from CNN/DM or PubMed dataset does not allow for training a word embedding
model, two pre-trained ones are tested: glove-wiki-gigaword-50 built from vectors of
length 50 based on Wikipedia 2014 dump and Gigaword containing 5.6B tokens and 400K
vocab1 and word2vec-google-news-300 trained on 3M words and phrases from the Google
News dataset with dimension 3002 based on the word2vec model �rst introduced by Mikolov

et al. [37]. The two models have been chosen with respect to their distinct and far dimensions
as well as di�erent corpora used during training. The variety of conditions should make the
assessment of results more credible. Both of the models can be found aside many others in
a repository uniting data for Gensim library3. Gensim is a Python NLP library focusing on
long texts processing which can be used for topic modeling, document clustering or similarity
assessment [38]. The library is employed in the work for the word embeddings manipulation.

Remembering matrix A, it represents the relations between sentences from the source
text in columns and words in rows. A score is assigned to each of the intersections, in this
case the similarity between word and sentence vector. Words present in the pre-trained
model already have their vectors. Regarding vectors of sentences, we experiment with two
ways of obtaining them. Our so called sent2vec method is computed either as an average of
word vectors or as an average of word vectors weighted by each word's TF-IDF.
Average of the vectors is used in both cases instead of pure sum to compensate for varying
sentences length. The TF-IDF algorithm has been reimplemented based on the theory from
Section 4.1.2 in order to have a complete control over its function.

Individual values of matrix A are set to the cosine similarity between the intersecting
sentence and word vectors. The resulting value is scaled instead of a usual interval (−1,+1)
to (0, 1) accommodating former conventions. It may happen that some unique words are not
present in the word embeddings pre-trained model and thus their vector is unknown. These
out of vocabulary words are omitted from the sentence vector construction and relevant cells
of A are set to zero. From the constructed matrix, standard procedure of the LSA follows
with SVD and summary sentences selection as in the original implementation.

7.2 Results

Two choices of a word2vec embedding model and two variants of sent2vec computation give
four possible test cases in total described in Table 7.1. They are compared among each
other and with the original LSA and DAAM implementations evaluated in Section 6.3 on

1GloVe: Global vectors for word representation, https://nlp.stanford.edu/projects/glove/
2Word2vec: Tool for computing continuous distributed representations of words, https://code.google.

com/archive/p/word2vec/
3Data repository for pre-trained NLP models and NLP corpora, https://github.com/

RaRe-Technologies/gensim-data

https://nlp.stanford.edu/projects/glove/
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://github.com/RaRe-Technologies/gensim-data
https://github.com/RaRe-Technologies/gensim-data
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the CNN/DM and PubMed datasets with the help of introduced ROUGE metrics, mainly
ROUGE-1 and ROUGE-SU* F1 scores.

Con�g embedding model sent2vec method

con�g 1 glove-wiki-gigaword-50 averaging

con�g 2 glove-wiki-gigaword-50 TF-IDF weighted averaging

con�g 3 word2vec-google-news-300 averaging

con�g 4 word2vec-google-news-300 TF-IDF weighted averaging

Table 7.1: Con�gurations of the LSA word embeddings experiments

The results are summarized in Tables 7.2 and 7.3. It can seen that the more complex the
approach gets, the better ROUGE F1 scores are obtained in all metrics. Highest match be-
tween the reference and model summary is secured by word2vec-google-news-300 embedding
model with the combination of sent2vec computed via averaging of word vectors weighted
by words' TF-IDF. However, outcomes of all four tested approaches are very similar and
insigni�cant. The di�erence stays in the range of units of percents. Both ROUGE-1 and
ROUGE-SU* F1 scores also correlate strongly with each other in all of the six tested cases
and no anomalies are observed. DAAM performs relatively better on PubMed dataset than
on CNN/DM compared to the various LSA word embedding con�gurations similarly to the
original LSA implementation which stems from its domain specialization.

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-SU* BLEU

Method R F1 R F1 R F1 R F1

LSA 0.2611 0.2547 0.0762 0.0739 0.1753 0.1706 0.0783 0.0678 0.0630

DAAM 0.2565 0.2697 0.0687 0.0722 0.2351 0.2473 0.0692 0.0629 0.0464

con�g 1 0.2686 0.2495 0.0703 0.0650 0.1746 0.1619 0.0791 0.0625 0.0571

con�g 2 0.2708 0.2525 0.0723 0.0671 0.1762 0.1640 0.0807 0.0641 0.0605

con�g 3 0.2826 0.2517 0.0740 0.0653 0.1812 0.1608 0.0867 0.0622 0.0540

con�g 4 0.2847 0.2555 0.0760 0.0674 0.1829 0.1633 0.0883 0.0643 0.0562

Table 7.2: Results of the LSA word embeddings experiments on CNN/DM dataset compared
with the original LSA and DAAM implementations.

Utilization of the word embeddings introduces additional steps in the processing such
as computation of the word and sentence vectors and �nding their similarity. Altogether
they slow down the average processing time per document to 0.6625 s/doc for CNN/DM
and 3.6287 s/doc for PubMed dataset on the same personal laptop as before. Loading of
the pre-trained embedding model into memory is also very time consuming reaching tens of
seconds. It is done only once at the beginning of processing the whole set of data and is
thus not included in the average run times. The relative di�erence between CNN/DM and
PubMed articles processing times is roughly two times higher when compared to the original
LSA implementation.
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Figure 7.1: Results of the LSA word embeddings experiments on CNN/DM dataset compared
with the original LSA and DAAM implementations. Run time per document is not stated
for DAAM due to incomparable hardware.

Although the increasing complexity of test con�gurations does not signi�cantly improve
the ROUGE scores, the step up in the word2vec embedding model brings obviously longer
processing times. Summarization of a document from CNN/DM dataset using a model of
dimension 50 takes 0.5739 s/doc in average and model with vector length 300 already 0.7512
s/doc, a rise of roughly 30 % visible in Figure 7.1. The increase is observable in a similar way
for the PubMed dataset in Figure 7.2. On the other hand, averaging with TF-IDF weighting
was presumed to take more time than simple averaging but it did so only in half of the test
con�gurations proving nothing.

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-SU* BLEU

Method R F1 R F1 R F1 R F1

LSA 0.3230 0.3123 0.0928 0.0910 0.1856 0.1802 0.1230 0.1061 0.0809

DAAM 0.2250 0.2815 0.0617 0.0785 0.2043 0.2557 0.0582 0.0779 0.0425

con�g 1 0.3314 0.3180 0.0856 0.0842 0.1823 0.1756 0.1222 0.1047 0.0731

con�g 2 0.3327 0.3178 0.0899 0.0871 0.1836 0.1759 0.1243 0.1052 0.0761

con�g 3 0.3521 0.3190 0.0972 0.0893 0.1941 0.1767 0.1404 0.1051 0.0845

con�g 4 0.3480 0.3209 0.0966 0.0901 0.1912 0.1780 0.1369 0.1064 0.0829

Table 7.3: Results of the LSA word embeddings experiments on PubMed dataset compared
with the original LSA and DAAM implementations.

Comparing coherency and readability of summaries produced by the original LSA imple-
mentation and the proposed word embedding con�gurations on both articles and Wikipedia
page sections, both selected with minor exceptions the very same sentences from the source
texts. As no clear winner can be selected through a human quality assessment, we have
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to rely on the quantitative metrics. In the best case, con�guration 4 including word2vec-
google-news-300 word embedding model and sentence vectors computed by TF-IDF weighted
averaging improved the original LSA ROUGE scores by roughly 10 % for both datasets. The
higher score comes at a cost of soaring computation time, 135× than pure LSA for CNN/DM
and even double that di�erence for PubMed dataset! The step change in run time is obvious
in Figures 7.1 and 7.2.
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Figure 7.2: Results of the LSA word embeddings experiments on PubMed dataset compared
with the original LSA and DAAM implementations. Run time per document is not stated
for DAAM due to incomparable hardware.

Although combining the word2vec model with LSA might be desirable in certain cases
as it provides a slight increase in the performance regarding ROUGE scores, we believe the
cost of longer computation time is too high for the real time chatbot use case in this work.
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7.3 Chatbot Integration

To bring this work to conclusion, the chatbot platform developed in Part I and a selected
text summarization algorithm from Part II are joined together for easier comprehension
of long documents. Based on the experiments, we have selected the LSA method with
TF-IDF weighting to take care of the summarization due to its reasonable performance on
CNN/DM and PubMed datasets as well as the lowest run time achieved. The deployed
solution in based on implementation described in Chapter 3 with the addition of the LSA
summarization method into the source text processing pipeline in the AWS Lambda function
Controller block. In order to keep the original set of information in the database untouched
and complete, summarization is integrated as the last step in the chatbot's response formu-
lation before it is sent back via Switch to the end user. Thanks to the extensible design
and self-containment of the various methods, the integration proved itself to be easy and
straightforward.

Figure 7.3: A sample conversation between the end user and the chatbot employing LSA



Chapter 8

Conclusion

Is there a better way how to conclude a work about text summarization than by summarizing
the work itself? Following is a �ve sentence summary of this very own conclusion generated
by the implemented latent semantic analysis algorithm.

Possible improvements of the approaches are suggested and a suitable method is

implemented into the chatbot binding the two areas together. The current state

of the art of dialogue systems has been depicted in Chapter 2 in combination with

available development platforms. After a thorough overview of various approaches

to unstructured text summarization in Chapter 4, two of them are selected as rep-

resentatives of extractive and abstractive streams for further experiments illustrat-

ing the richness of possible solutions. Based on the experiments and analysis of

existing solutions, we have proposed possible improvements of the method by in-

corporating word2vec word embeddings. However, taking all essential parameters

into account, mainly low latency requirements of the chatbot, the original LSA

method has been selected as the most suitable candidate and implemented into the

chatbot providing a user with curated content of the source documents.

A unique problem has been tackled in this work � chatbot able of discussing the content
of a long text document or web page with a human. The �nal solution incorporates two
distinct areas of NLP. In Part I the dialogue system is developed based on the presented
theoretical basis. Part II then focuses on experiments with automatic summarization of
unstructured text. Possible improvements of the approaches are suggested and a suitable
method is implemented into the chatbot binding the two areas together. All initially set
objectives of the work have been accomplished.

Dialogue management problem still has not been satisfactorily solved until today. Nev-
ertheless, we have managed to design and implement an experimental platform based on a
state automaton. It can describe a selected Wikipedia website by communicating its scraped
content to the end user talking to an Amazon Alexa device. The current state of the art of
dialogue systems has been depicted in Chapter 2 in combination with available development
platforms. From there an inspiration has been drawn for our solution design. Implementa-
tion based on AWS services is comprehensibly documented to provide the reader with insight
into the development choices made along the way.
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After a thorough overview of various approaches to unstructured text summarization in
Chapter 4, two of them are selected as representatives of extractive and abstractive streams
for further experiments illustrating the richness of possible solutions. Implementation of
latent semantic analysis (LSA) algorithm and discourse-aware attention model (DAAM) is
further covered in greater detail. The solutions are evaluated on documents of various na-
ture from two datasets, news articles of CNN/Daily Mail and scienti�c articles from PubMed
database, providing both qualitative human assessment and quantitative ROUGE metrics
evaluation in Chapter 6. Despite much higher computation time demands, the DAAM was
not able to outperform LSA. Due to more promising results and better source document
domain transferability, the LSA method has been chosen as a candidate for future improve-
ments.

Based on the experiments and analysis of existing solutions, we have proposed possible
improvements of the method by incorporating word2vec word embeddings. Four distinct
con�gurations of pre-trained models and sentence vectors computation are presented. The
e�ort has been successful and led to achieving better ROUGE scores. However, taking
all essential parameters into account, mainly low latency requirements of the chatbot, the
original LSA method has been selected as the most suitable candidate and implemented into
the chatbot providing a user with curated content of the source documents.

There is plenty of opportunities for future research in the area of dialogue control making
our chatbot more user-friendly and �uent in conversations. At least a couple of years will
pass until a universal text summarization algorithm comparable to a human is developed.
By designing the chatbot platform as an extensible one consisting of independent modules,
we can make sure that the �nal solution providing users with a unique way of absorbing text
content through a chatbot will always bene�t from the most recent research.



Appendix A

Contents of the Attached CD

� README.txt � enclosed �les overview and instructions

� lsa.py � implementation of LSA

� lsaw2v.py � implementation of LSA with word embeddings

� pipeline.py � testing pipeline for LSA and LSA word embeddings experiments

� rouge.py � evaluation script for ROUGE metrics

� bleu.py � evaluation script for BLEU metric

� tfidf.py � implementation of TF-IDF score for LSA

� pubmed_run.sh � example of a cluster job Bash script for DAAM

� switch.py � main logic of Switch

� resp.py � response generation for Switch

� controller.py � main logic of Controller

� crawler.py � crawling structure and content of a Wikipedia page

� domain.py � storing acquired knowledge base for Controller

� state.py � representation of individual states for Controller

� database.py � access to DynamoDB and S3 for Controller
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