ARTIST?2 Embedded Sysems

RT-Linux Motor Controller

Michal Sojka, OndFej Spinka

Department of Control Engeneering
Faculty of Electrical Engeneering
Czech Technical University

NoE on Embedded Systems Design — ECS Graduate Course
A RTI ST2 Valencia, Spai

ia, Spain. April 5-8, 2005

DC Motor Controller in RT-Linux

The goal is to create a controller which controls the
speed of the motor.

A RTI ST2 NoE on Embedded Systems Design — ECS Graduate Course

Valencia, Spain. April 5-8, 2005

Description of the Model

PC
o - ST
i L1
oz | -)|
Quit
RTL_FiFO& @
outb()

RT-Linux

PWM, 1 kHz

#

Printer port

-h

IRC, 0 - 21 kHz

A RTI ST2 NoE on Embedded Systems Design — ECS Graduate Course

©® N o oA W N

Valencia, Spain. April 5-8, 2005

Steps to Create a Controller

. Create a basic RT-Linux module.

Try to rev up the motor at full speed.

Write a thread generating PWM signal (period 1 ms)
Write an IRQ handler (position measuring).

Write a thread measuring the speed.

Implement a velocity controller (PID).

Enable communication with user-space.

. Write a user-space interface for the controller.

A RTI ST2 NoE on Embedded Systems Design — ECS Graduate Course

Valencia, Spain. April 5-8, 2005

Steps to Create a Controller

1,

2.

3. Write a thread generating PWM signal (period 1 ms)
4,

5.

6. Implement a velocity controller (PID).

/.

8.

A RTI ST2 NoE on Embedded Systems Design — ECS Graduate Course

A Basic RT-Linux Module
= The same kind of module Linux uses to implement drivers etc.

= The code runs in the kernel-space (shares both code and data with
the Linux kernel).

n Q] #include <linux/module.h>
Source S|mp|eC > #inzludz <linux/k:rnei.h>
= Makefile for compilation int init module(void)
{

printk("Init\n");
return 0;

all: simple.o }

%nclude /usr/rtlinux/rtl.mk void cleanup module(void)
include $(RTL _DIR)/Rules.make { -

printk("Cleanup\n");
Running the application: }

shell# insmod simple.o MODULE_LICENSE("GPL");

A RTI ST2 NoE on Embedded Systems Design — ECS Graduate Course

Valencia, Spain. April 5-8, 2005

Parallel Port

/ PWM: bits 0, 1
[] . ' DATA 8 \
Motor rotation: IRQ — =

— left: outb (1, 0x378); e —

: IRC {qe e —) -:> 379h
— right: outb (2, 0x378); ERROR ———

SELECT IN +———

. INIT +——— 37Ah
= |RC signals: e — /<:

- inb(0x379); PWM (left, right)

D7|06|D5| D4 | D3| D2 0x378
000000 ©
za@f@ g,

378h

0x37a

A RTI ST2 NoE on Embedded Systems Design — ECS Graduate Course

Valencia, Spain. April 5-8, 2005

Periodic Threads

#define MS (1000000) start time

void *thread func(void *arg)

{
pthread make periodic np(pthread self(), gethrtime(), 2*MS);
while (1) { AN
/* do something */ period
pthread wait np();
}
return NULL;
t wait for the start of the next period
int init module(void)
{
pthread t thr;
pthread create(&thr, NULL, &thread func, NULL);
return 0;
}

A RTI ST2 NoE on Embedded Systems Design — ECS Graduate Course

Valencia, Spain. April 5-8, 2005

PWM Generation

= The value of the variable action specifies the control action.

= Use the usleep function to suspend the thread for given
number of microseconds.

= The PWM period should be about 1 ms. This is due to the
RT-Linux scheduling error (~10 us).

while (1) {
set output (1l);
usleep (action * T
set output (0);
pthread wait np ();

PWM PWM

PWM);

A RTI ST2 NoE on Embedded Systems Design — ECS Graduate Course

Valencia, Spain. April 5-8, 2005

Thread Priorities

= Rate Monotonic Priority Assignment

— the lesser task period the higher assigned priority

= |In RT-Linux: The higher number the higher priority

int init module(void)

{

pthread attr t attr;
struct sched param param;
the priotity of the thread
pthread attr init(&attr) ;/
param.sched priority = 1;
pthread attr setschedparam(&attr, ¶m);
pthread create(&thr, &attr, &thread func, NULL);
return 0;

-10 -

A RTI ST2 NoE on Embedded Systems Design — ECS Graduate Course

Valencia, Spain. April 5-8, 2005

IRQ Handling

= Parallel port: IRQ 7

= |nterrupts reception should be reenabled in the
nandler!

= Enable interrupt generation by setting a bit in
parallel port control register: outb(0x10, 0x37a);

unsigned int irqg handler(unsigned int irq, struct pt regs * regs)

{
/* do something */
rtl hard enable irq(irq);
return 0;

}

status = rtl request irq(irg number, irq handler);

-11 -

A RTI ST2 NoE on Embedded Systems Design — ECS Graduate Course
Valencia, Spai

ia, Spain. April 5-8, 2005

Signals From an IRC sensor

channel A ‘

channel B

channel C (IRQ)

wak 4 4 4

= Whenever the value of any IRC sensor channel
changes, electronics in the motor generates the IRQ.

= The motor is equipped by IRC with 100 pulses per turn
and there are 4 IRQs per one step. So there are 400

IRQs per turn.

=12 -

A RTI ST2 NoE on Embedded Systems Design — ECS Graduate Course

Valencia, Spain. April 5-8, 2005

PID Controller

k

Desired value + ~¢ (k) PID y(k)
; controller

Motor [«——
Speed ot Voltage (PWM duty cycle)

e = motor->reference - motor->velocity

k—1

y(k)ZP-e(k)—I-I-Z e(i)+D-(e(k)—e(k—1))

i=0

A RTI ST2 NoE on Embedded Systems Design — ECS Graduate Course
Valencia, Spain. April 5-8, 2005

Fixed Point Arithmetic

We need to use decimal numbers in calculations

For this simple task we don't need to use a
mathematical coprocessor. Smaller processors don't
have any coprocessor. Integer part (24 bit)

Decimal part 8 bit

5.0 ~ 0x500, 2.5~ 0x280

Addition:
5.0+ 2.5 ~0x500 + 0x280 = 0x780 ~ 7.5

Multiplication:

5.0 2.5 ~ 0x500 >> 4 * 0x280 >> 4 = 0x50 * 0x28 = 0xC80 ~ 12.5 y

A RTI ST2 NoE on Embedded Systems Design — ECS Graduate Course

Valencia, Spain. April 5-8, 2005

RT FIFOs

= Communication between RT-Linux and user-space.

= Unidirectional communication, for bidirectional
communication we need two fifos.

#include <rtl fifo.h>

RT-Linux side
int fifo = o; «—— We use the FIFO number 0

rtf create(fifo, 1000);
rtf create handler(fifo, &read handler);

retval = rtf put(fifo, &variable, sizeof(variable));

int read handler(unsigned int fifo)

{

int reference;

rtf get(fifo, &reference, sizeof(reference));
return 1;

-15 -

A RTI ST2 NoE on Embedded Systems Design — ECS Graduate Course

Valencia, Spain. April 5-8, 2005

RT FIFOs - User-Space Side

= From the user-space a FIFO looks like an ordinary file.

int 1, J;

if ((fifo out = open("/dev/rtf0", O WRONLY)) < 0)
{

perror("/dev/rtf0");

exit(1l);
} We use the FIFO number 0

write(fifo out, &i, sizeof(i));

read(fifo in, &j, sizeof(]));

A RTI ST2 NoE on Embedded Systems Design — ECS Graduate Course
Valencia, Spain. April 5-8, 2005

How to Start

= |n the first boot menu chose ARTIST2Linux
= |n the second RTLinux (2.4.24-rtl)
= Log in as root, password realtime

= (30 to the directory (you should be already there)
cd /root/artist2/artist2-motor-rtl/src

= Start RT Linux; rtlinux start
= Compile the application: make

= | oad both real-time and user-space part of the
application: . /load app gui

-17 -

A RTI ST2 NoE on Embedded Systems Design — ECS Graduate Course

Valencia, Spain. April 5-8, 2005

Content of Directories

= src — the code for real-time part
— motor.c — the code of application (you will modify this file)
— motor.h — common declarations for both RT and US part
— Makefile — commands for compilation.
— load_app_gui — script for starting the application

= gtmotor — graphical user-space interface

= curmotor — text-based user-space interface

-18 -

A RTI ST2 NoE on Embedded Systems Design — ECS Graduate Course
Valencia, Spain. April 5-8, 2005

Your Tasks

= Extend the PWM thread to generate PWM signal
based on the value motor->action.

= Implement a controller.

— start with a P-controller which computes action as

action = K, * (reference — velocity)

— Experiment to find the value of K,

— Extend the controller to PI. In the simplest case, you'll need
to store the sum of errors.

= You may try to do other extensions — windup handling,
use fixed-point arithmetic, use better implementation of
PID, etc.

-19 -

A RTI ST2 NoE on Embedded Systems Design — ECS Graduate Course
Valencia, Spain. April 5-8, 2005

Debugging

= |nside the code use the rtl_printf() function to print the
values you are interested in.

rtl printf(“vValue of action: %d\n”, action);

= You can see those messages using “dmsg” command.

=90 -

