
Static priority scheduling

Michal Sojka

Czech Technical University in Prague,
FEE and CIIRC

December 1, 2021

Some slides are derived from lectures by Steve Goddard and James H. Anderson

1 / 58



Classification of scheduling algorithms
(used in real-time systems)

Scheduling algorithms

Off-line scheduling
(static, clock-driven)

On-line scheduling
(dynamic)

Static-priority scheduling
(VxWorks, SCHED_FIFO)

Deadline-driven
scheduling
(EDF, …)

General purpose OS
scheduling

(fair, interactive, …)

2 / 58



Outline

1 Introduction

2 RM and DM scheduling and their optimality

3 Utilization-based schedulability tests

4 Time demand analysis and variants
Time demand analysis
Response-time analysis
Tasks with arbitrary deadlines

5 Summary

3 / 58



Introduction

Outline

1 Introduction

2 RM and DM scheduling and their optimality

3 Utilization-based schedulability tests

4 Time demand analysis and variants
Time demand analysis
Response-time analysis
Tasks with arbitrary deadlines

5 Summary

4 / 58



Introduction

Static priority scheduling
Fixed-priority scheduling

All jobs of a single task have the same (static, fixed) priority
We will assume that tasks are indexed in decreasing priority order, i.e.
τi has higher priority than τk if i < k.
We will assume that no two tasks have the same priority.

Notation
pi denotes the priority of τi.
hp(τi) denotes the subset of tasks with higher priority than τi.

5 / 58



Introduction

Basic questions

How to assign task priorities?
How to verify that all deadlines are met (schedulability)?

6 / 58



RM and DM scheduling and their optimality

Outline

1 Introduction

2 RM and DM scheduling and their optimality

3 Utilization-based schedulability tests

4 Time demand analysis and variants
Time demand analysis
Response-time analysis
Tasks with arbitrary deadlines

5 Summary

7 / 58



RM and DM scheduling and their optimality

Rate-Monotonic scheduling
CZ: Rozvrhování podle frekvence (Liu, Layland)

Rate-Monotonic priority assignment
The less period Ti the higher priority pi.
For every two tasks τi and τj: Ti < Tj ⇒ pi > pj.

Example (RM schedule)
Three tasks (T,C): τ1 = (3, 0.5), τ2 = (4, 1) a τ3 = 6, 2.

8 / 58



RM and DM scheduling and their optimality

Rate-Monotonic priority assignment

Example

Task Period Priority
τ1 25 0
τ2 60 2
τ3 42 1
τ4 105 4
τ5 75 3

9 / 58



RM and DM scheduling and their optimality

Deadline-Monotonic scheduling
Rozvrhování podle termínu dokončení (Leung, Whitehead)

Deadline-Monotonic priority assignment
The earlier deadline Di, the higher priority pi.
Pro each two tasks τi a τj: Di < Dj ⇒ pi > pj.

Example (DM schedule)
Let’s change the RM example by tightening deadline of τ2 = (T,C,D):
τ1 = (3, 0.5), τ2 = (4, 1, 2) a τ3 = 6, 2.

10 / 58



RM and DM scheduling and their optimality

RM vs. DM
The periodic tasks given by:

task ri Ti Ci Di
τ1 50 50 25 100
τ2 0 62.5 10 20
τ3 0 125 25 50

DM schedule:

τ1

0 50 100 150 200 250

τ2

0 62.5 125 187.5 250

τ3

0 125 250

11 / 58



RM and DM scheduling and their optimality

RM vs. DM
The periodic tasks given by:

task ri Ti Ci Di
τ1 50 50 25 100
τ2 0 62.5 10 20
τ3 0 125 25 50

RM schedule:

τ1

0 50 100 150 200 250

τ2

0 62.5 125 187.5 250

τ3

0 125 250
deadline miss

deadline miss

DM fails ⇒ RM fails. DM can produce feasible schedule when RM fails.
12 / 58



RM and DM scheduling and their optimality

RM and DM optimality

Theorem
Neither RM nor DM is optimal.

Proof.
Consider τ1 = (2, 1) a τ2 = (5, 2.5). Total system utilization is 1, so the
system is schedulable (see the EDF lecture).
However, under RM or DM, a deadline will be missed, regardless of how
we choose to (statically) prioritize τ1 and τ2.

τ1

0 2 4 6 8 10

τ2

0 5 10
τ2

0 5 10

13 / 58



RM and DM scheduling and their optimality

Simply periodic systems

RM algorithm is optimal when the periodic tasks in the system are simply
periodic and the deadlines of the tasks are no less than their respective
periods.

Definition
A system of periodic tasks is simply periodic1 if for every pair of tasks τi
and τk in the system where Ti < Tk, Tk is an integer multiple of Ti.

Theorem
A system T of simply periodic, independent, preemptable tasks, whose
relative deadlines are at least their periods, is schedulable on one processor
according to the RM algorithm if and only if its total utilization is at most
one.

In practice, people often use periods: 1 ms, 10 ms, 100 ms and 1 s.
1CZ: jednoduše periodický

14 / 58



RM and DM scheduling and their optimality

Proof
We wish to show: U ≤ 1 ⇒ T is schedulable.
We prove the contrapositive: T is not scheulable ⇒ U > 1.
Assume T is not schedulable. Let Ji,k be the first job to miss its deadline.

τi

t−1 ri,k ri,k+1

Note: We suppose that tasks are in phase (not shown in the figure above) and
processor never idles before Ji,k missed its deadline.
Because the system is simply periodic, ri,k+1 − t−1

Tj
is integer.

15 / 58



RM and DM scheduling and their optimality

Proof (cont.)

Because Ji,k missed its deadline, the demand placed on the processor in
[t−1, ri,k+1) by jobs of tasks τ1, . . . , τi is grater than the available processor
time in [t−1, ri,k+1]. Thus:

ri,k+1 − t−1 = available processor time in [t−1, ri,k+1] <

< demand placed on processor in [t−1, ri,k+1] by jobs τ1, . . . , τi =

=
i∑

j=1

(the number of jobs of τj released in [t−1, ri,k+1]) · Cj ≤

≤
i∑

j=1

ri,k+1 − t−1

Tj
· Cj

16 / 58



RM and DM scheduling and their optimality

Proof (cont.)

This we have

ri,k+1 − t−1 <

i∑
j=1

ri,k+1 − t−1

Tj
· Cj

Canceling ri,k+1 − t−1 yields

1 <

i∑
j=1

Cj
Tj

,

i.e.
1 < Ui < U,

This completes the proof.

17 / 58



RM and DM scheduling and their optimality

Optimality among fixed-priority algorithms

Theorem
A system T of independent, preemptable, periodic, synchronous tasks that
have relative deadlines at most their respective periods can be feasibly
scheduled on one processor according to the DM algorithm whenever it
can be feasibly scheduled according to any fixed-priority algorithm.

Corollary
The RM algorithm is optimal among all fixed-priority algorithms whenever
the relative deadlines of all tasks are proportional to their periods.

18 / 58



RM and DM scheduling and their optimality

Proof

We can always transform a feasible static-priority schedule that is not
a DM schedule into one that is.
Suppose τ1, . . . , τi are prioritized not in accordance with DM.
Suppose τi has a longer relative deadline than τi+1, but τi a higher
priority than τi+1. Then, we can interchange τi and τi+1 (switch the
priorities) and adjust the schedule accordingly by swapping “pieces”
of τi with “pieces” of τi+1.

τi
0 1 2 3 4 5 6 7 8 9 10 11 12

τi+1

0 1 2 3 4 5 6 7 8 9 10 11 12

τi+2

0 1 2 3 4 5 6 7 8 9 10 11 12

19 / 58



RM and DM scheduling and their optimality

Proof (cont.)
After the switch, the priorities of the two tasks are assigned on the
DM basis relative to the other tasks.

τi+1

0 1 2 3 4 5 6 7 8 9 10 11 12

τi
0 1 2 3 4 5 6 7 8 9 10 11 12

τi+2

0 1 2 3 4 5 6 7 8 9 10 11 12

By induction, we can correct all such situations and transform the
given schedule into DM schedule.
Note: It is always possible to switch the priorities of tasks and hence
the time intervals without leading to any missed deadline when tasks
are in phase. Why?

20 / 58



Utilization-based schedulability tests

Outline

1 Introduction

2 RM and DM scheduling and their optimality

3 Utilization-based schedulability tests

4 Time demand analysis and variants
Time demand analysis
Response-time analysis
Tasks with arbitrary deadlines

5 Summary

21 / 58



Utilization-based schedulability tests

Utilization-based RM schedulability test
CZ: Test rozvrhnutelnosti RM na základě zatížení

Theorem (Liu, Layland)
A system of n independent, preemptable periodic tasks with relative
deadlines equal to their respective periods can be feasibly scheduled on
one processor according to the RM algorithm if its total utilization
U =

∑n
i=1 ui satisfies:

U ≤ n(2 1
n − 1)

URM(n) = n(2 1
n − 1) is the schedulable utilization of the RM algorithm.

Note: This is only a sufficient (not necessary) schedulability test.

22 / 58



Utilization-based schedulability tests

URM as a function of n

n URM(n)
2 0.828
3 0.779
4 0.756
5 0.743
6 0.734
7 0.728
8 0.724
9 0.720
10 0.717
... ...
∞ ln 2 ≈ 0.693

23 / 58



Utilization-based schedulability tests

Proof

See Liu’s book.

24 / 58



Utilization-based schedulability tests

Other utilization-based tests

Liu’s book presents several other utilization-based schedulability tests.
Some of these tests result in higher schedulable utilizations for certain
kinds of task sets.
Other deal with different task models such as those similar to MPEG
decoder.

25 / 58



Time demand analysis and variants

Outline

1 Introduction

2 RM and DM scheduling and their optimality

3 Utilization-based schedulability tests

4 Time demand analysis and variants
Time demand analysis
Response-time analysis
Tasks with arbitrary deadlines

5 Summary

26 / 58



Time demand analysis and variants

Critical instant

The following analysis methods are based on a notion of “critical instant”.

Definition (Critical instant)
Critical instant of a task τi is a time instant such that:

1 the job of τi released at this instant has the maximum response time
of all jobs in τi, if the response time of every job of τi is at most Di,
the relative deadline of τi and

2 the response time of the job released at this instant is greater than Di
if the response time of some jobs in τi exceeds Di.

Informally, a critical instant of τi represents a worst-case scenario from τi
standpoint.

27 / 58



Time demand analysis and variants

Critical instant in static-priority systems

Theorem (Liu, Layland)
In a fixed-priority system where every job completes before the next job of
the same task is released, a critical instant of any task τi occurs when one
of its job Ji,c is released at the same time with a job of every higher
priority task.

τ1

τ2

τ3
0 1 2 3 4 5 6 7 8 9 10 11 12

Critical instant of τ3 is 0.

We are not saying that τ1, . . . , τi will all necessarily release jobs at the
same time, but if this does happen, we are claiming that the time of
release will be a critical instant for τi.

28 / 58



Time demand analysis and variants → Time demand analysis

Time-demand analysis (TDA)
CZ: Analýza časové poptávky

Compute the total demand for processor time by a job released at a
critical instant of the task and by all the higher-priority tasks.
Check whether this demand can be met before the deadline of the job.
TDA can be applied to produce a schedulability test for any
static-priority algorithm that ensures that each job of every task
completes before the next job of that task is released.
For some important task models and scheduling algorithms, this
schedulability test will be necessary and sufficient.
Time-demand analysis was proposed by Lehoczky, Sha, and Ding.

29 / 58



Time demand analysis and variants → Time demand analysis

Scheduling condition

Definition
The time demand function of the task τi, denoted wi(t), is defined as follows.

wi(t) = Ci +
i−1∑
k=1

⌈
t

Tk

⌉
· Ck for 0 < t ≤ Ti.

Note: We are still
assuming tasks are
indexed by priority.

For any static-priority algorithm A that ensures that each job of every task
completes by the time the next job of that task is released.

Theorem
System T of periodic, independent, preemptable tasks is schedulable on one
processor by algorithm A if the following holds.

∀i : ∃t : wi(t) ≤ t, 0 < t ≤ Ti.

30 / 58



Time demand analysis and variants → Time demand analysis

Necessity and sufficiency

Condition ∀i : ∃t : wi(t) ≤ t, 0 < t ≤ Ti is necessary for
synchronous real periodic task systems and
real sporadic task systems.
Why?

For a given i, we don’t really have to consider all t in the range
0 < t ≤ Ti. Two ways to avoid this:

1 Iterate using t(k+1) := wi(t(k)), starting with a suitable t(0) (e.g.
t(0) = Ci) and stopping when, for some n, t(n) ≥ wi(t(n)) or t(n) > Ti.

2 Only consider t = j · Tk, where k = 1, 2, . . . , i;
j = 1, 2, . . . , ⌊min(Ti,Di)/Tk⌋.

Explanation is in Liu’s book.

31 / 58



Time demand analysis and variants → Response-time analysis

Response-time analysis
CZ: Výpočet doby odezvy

A special (simple) case of Time Demand Analysis
If we know the critical instant, we can find task’s worst-case response
time by “simulating” the schedule from the critical instant.
The found worst-case response time Ri is compared with the
corresponding deadline:

Ri ≤ Di

The response time can be calculated as follows:
Ri = Ci + Ii,

where Ii denotes the interference from higher priority tasks.
In time interval [0,Ri) the higher priority task τj will be executed
several times:

number of τj executions =
⌈

Ri
Tj

⌉
Total interference from τj to τi is: Ii,j =

⌈
Ri
Tj

⌉
Cj

32 / 58



Time demand analysis and variants → Response-time analysis

Response-time analysis (cont.)

Ri = Ci +
∑

j∈hp(i)
Ii,j

Ri = Ci +
∑

j∈hp(i)

⌈
Ri
Tj

⌉
Cj

Can be calculated by the recurrence formula:

wn+1
i = Ci +

∑
j∈hp(i)

⌈
wn

i
Tj

⌉
Cj

Sequence w0
i ,w1

i , . . . is monotonically non-decreasing. If wn
i = wn+1

i
then it is the solution of the equation. Choice of w0

i is important. It
should not be greater than Ri. We can start with 0 or Ci.

33 / 58



Time demand analysis and variants → Response-time analysis

Response-time analysis (cont.)

Ri = Ci +
∑

j∈hp(i)
Ii,j

Ri = Ci +
∑

j∈hp(i)

⌈
Ri
Tj

⌉
Cj

Can be calculated by the recurrence formula:

wn+1
i = Ci +

∑
j∈hp(i)

⌈
wn

i
Tj

⌉
Cj

Sequence w0
i ,w1

i , . . . is monotonically non-decreasing. If wn
i = wn+1

i
then it is the solution of the equation. Choice of w0

i is important. It
should not be greater than Ri. We can start with 0 or Ci.

34 / 58



Time demand analysis and variants → Response-time analysis

Response-time analysis (cont.)

Ri = Ci +
∑

j∈hp(i)
Ii,j

Ri = Ci +
∑

j∈hp(i)

⌈
Ri
Tj

⌉
Cj

Can be calculated by the recurrence formula:

wn+1
i = Ci +

∑
j∈hp(i)

⌈
wn

i
Tj

⌉
Cj

Sequence w0
i ,w1

i , . . . is monotonically non-decreasing. If wn
i = wn+1

i
then it is the solution of the equation. Choice of w0

i is important. It
should not be greater than Ri. We can start with 0 or Ci.

35 / 58



Time demand analysis and variants → Response-time analysis

Response-time analysis example

Example

Task Period Execution time
τa 7 3
τb 12 3
τc 20 5

Ra = 3

w0
b = 3

w1
b = 3 +

⌈
3

7

⌉
3 = 6

w2
b = 3 +

⌈
6

7

⌉
3 = 6

Rb = 6

36 / 58



Time demand analysis and variants → Response-time analysis

Response-time analysis example (cont.)

Example

w0
c = 5

w1
c = 5 +

⌈
5

7

⌉
3 +

⌈
5

12

⌉
3 = 11

w2
c = 5 +

⌈
11

7

⌉
3 +

⌈
11

12

⌉
3 = 14

w3
c = 5 +

⌈
14

7

⌉
3 +

⌈
14

12

⌉
3 = 17

w4
c = 5 +

⌈
17

7

⌉
3 +

⌈
17

12

⌉
3 = 20

w5
c = 5 +

⌈
20

7

⌉
3 +

⌈
20

12

⌉
3 = 20

Rc = 20

37 / 58



Time demand analysis and variants → Tasks with arbitrary deadlines

Fixed-priority tasks with arbitrary deadlines

Di > Ti ⇒ More than one job of a task can be ready for execution at
a time.
We assume that jobs are schedules in FIFO order.
TDA schedulability condition holds only if di,k < ri,k+1

38 / 58



Time demand analysis and variants → Tasks with arbitrary deadlines

Busy interval

Definition (Level-pi busy interval)
A level-pi busy interval(t0, t] begins at an instant t0, when

1 all jobs in hp(τi) released before the instant have completed and
2 a job in hp(τi) is released.

The interval ends at the first instant t after t0 when all the jobs in hp(ti)
released since t0 are complete.

Example (Priority pi = i)
τ1

τ2

τ3
0 1 2 3 4 5 6 7 8 9 10 11 12

Level-1 busy interval

Level-2 busy interval

Level-3 busy interval

Level-1 busy interval

Level-2 busy interval

39 / 58



Time demand analysis and variants → Tasks with arbitrary deadlines

Busy interval

Definition (Level-pi busy interval)
A level-pi busy interval(t0, t] begins at an instant t0, when

1 all jobs in hp(τi) released before the instant have completed and
2 a job in hp(τi) is released.

The interval ends at the first instant t after t0 when all the jobs in hp(ti)
released since t0 are complete.

Example (Priority pi = i)
τ1

τ2

τ3
0 1 2 3 4 5 6 7 8 9 10 11 12

Level-1 busy interval

Level-2 busy interval

Level-3 busy interval

Level-1 busy interval

Level-2 busy interval

40 / 58



Time demand analysis and variants → Tasks with arbitrary deadlines

Busy interval

Definition (Level-pi busy interval)
A level-pi busy interval(t0, t] begins at an instant t0, when

1 all jobs in hp(τi) released before the instant have completed and
2 a job in hp(τi) is released.

The interval ends at the first instant t after t0 when all the jobs in hp(ti)
released since t0 are complete.

Example (Priority pi = i)
τ1

τ2

τ3
0 1 2 3 4 5 6 7 8 9 10 11 12

Level-1 busy interval

Level-2 busy interval

Level-3 busy interval

Level-1 busy interval

Level-2 busy interval

41 / 58



Time demand analysis and variants → Tasks with arbitrary deadlines

In phase busy interval

Definition
A level-pi busy interval is in phase if the first jobs of all tasks in hp(τi) that
are executed in this interval have the same release time.

Example (Priority pi = i)
τ1

τ2

τ3
0 1 2 3 4 5 6 7 8 9 10 11 12

In phase level-2 busy interval

In phase level-3 busy interval

42 / 58



Time demand analysis and variants → Tasks with arbitrary deadlines

Analysis of tasks with arbitrary deadlines is not as easy
Lehoczky counterexample

Consider two tasks (Ti,Ci): τ1 = (70, 26), τ2 = (100, 62).
RM schedule:

τ1

0 70 140 210 280 350 420 490 560 630 700

τ2

0 100 200 300 400 500 600 700

Seven jobs of τ2 execute in the first level-2 busy interval.
Their response times are: 114, 102, 116, 104, 118, 106, 94.
Response time of the first job is not the largest.

43 / 58



Time demand analysis and variants → Tasks with arbitrary deadlines

Response time calculation

Test one task at a time from τ1 to τN (see next slides).
For the purpose of determining whether a task τi is schedulable,
assume that all the tasks are in phase and the first level-pi busy
interval begins at time 0.
While testing whether all the jobs in τi can meet their deadlines (i.e.,
whether τi is schedulable), consider the subset hp(τi) of tasks.

44 / 58



Time demand analysis and variants → Tasks with arbitrary deadlines

Response time calculation (cont.)

1 If the first job of every task in hp(τi) completes by the end of the first
period of the task, check whether the first job τi,1 meets its deadline.
τi is schedulable if τi,1 completes in time. Otherwise, τi is not
schedulable.2

2 If the first job of some task in hp(τi) does not complete by the end of
the first period of the task, do the following:

a Compute the length of the in phase level-pi busy interval by solving the
equation t =

∑i
k=1⌈

t
Tk
⌉Ck iteratively, starting from t(1) =

∑i
k=1 Ck

until t(l+1) = t(l) for some l�1. The solution t(l) is the length of the
level-pi busy interval.

b Compute the maximum response times of all ⌈t(l)/Ti⌉ jobs of τi in the
in-phase level-pi busy interval in the manner described next and
determine whether they complete in time.

c τi is schedulable if all these jobs complete in time; otherwise τi is not
schedulable.

2The same case as if Di ≤ Ti 45 / 58



Time demand analysis and variants → Tasks with arbitrary deadlines

Response time calculation (cont.)

1 If the first job of every task in hp(τi) completes by the end of the first
period of the task, check whether the first job τi,1 meets its deadline.
τi is schedulable if τi,1 completes in time. Otherwise, τi is not
schedulable.2

2 If the first job of some task in hp(τi) does not complete by the end of
the first period of the task, do the following:

a Compute the length of the in phase level-pi busy interval by solving the
equation t =

∑i
k=1⌈

t
Tk
⌉Ck iteratively, starting from t(1) =

∑i
k=1 Ck

until t(l+1) = t(l) for some l�1. The solution t(l) is the length of the
level-pi busy interval.

b Compute the maximum response times of all ⌈t(l)/Ti⌉ jobs of τi in the
in-phase level-pi busy interval in the manner described next and
determine whether they complete in time.

c τi is schedulable if all these jobs complete in time; otherwise τi is not
schedulable.

2The same case as if Di ≤ Ti 46 / 58



Time demand analysis and variants → Tasks with arbitrary deadlines

Response time calculation (cont.)

1 If the first job of every task in hp(τi) completes by the end of the first
period of the task, check whether the first job τi,1 meets its deadline.
τi is schedulable if τi,1 completes in time. Otherwise, τi is not
schedulable.2

2 If the first job of some task in hp(τi) does not complete by the end of
the first period of the task, do the following:

a Compute the length of the in phase level-pi busy interval by solving the
equation t =

∑i
k=1⌈

t
Tk
⌉Ck iteratively, starting from t(1) =

∑i
k=1 Ck

until t(l+1) = t(l) for some l�1. The solution t(l) is the length of the
level-pi busy interval.

b Compute the maximum response times of all ⌈t(l)/Ti⌉ jobs of τi in the
in-phase level-pi busy interval in the manner described next and
determine whether they complete in time.

c τi is schedulable if all these jobs complete in time; otherwise τi is not
schedulable.

2The same case as if Di ≤ Ti 47 / 58



Time demand analysis and variants → Tasks with arbitrary deadlines

Response time calculation (cont.)

1 If the first job of every task in hp(τi) completes by the end of the first
period of the task, check whether the first job τi,1 meets its deadline.
τi is schedulable if τi,1 completes in time. Otherwise, τi is not
schedulable.2

2 If the first job of some task in hp(τi) does not complete by the end of
the first period of the task, do the following:

a Compute the length of the in phase level-pi busy interval by solving the
equation t =

∑i
k=1⌈

t
Tk
⌉Ck iteratively, starting from t(1) =

∑i
k=1 Ck

until t(l+1) = t(l) for some l�1. The solution t(l) is the length of the
level-pi busy interval.

b Compute the maximum response times of all ⌈t(l)/Ti⌉ jobs of τi in the
in-phase level-pi busy interval in the manner described next and
determine whether they complete in time.

c τi is schedulable if all these jobs complete in time; otherwise τi is not
schedulable.

2The same case as if Di ≤ Ti 48 / 58



Time demand analysis and variants → Tasks with arbitrary deadlines

Response time calculation (cont.)

1 If the first job of every task in hp(τi) completes by the end of the first
period of the task, check whether the first job τi,1 meets its deadline.
τi is schedulable if τi,1 completes in time. Otherwise, τi is not
schedulable.2

2 If the first job of some task in hp(τi) does not complete by the end of
the first period of the task, do the following:

a Compute the length of the in phase level-pi busy interval by solving the
equation t =

∑i
k=1⌈

t
Tk
⌉Ck iteratively, starting from t(1) =

∑i
k=1 Ck

until t(l+1) = t(l) for some l�1. The solution t(l) is the length of the
level-pi busy interval.

b Compute the maximum response times of all ⌈t(l)/Ti⌉ jobs of τi in the
in-phase level-pi busy interval in the manner described next and
determine whether they complete in time.

c τi is schedulable if all these jobs complete in time; otherwise τi is not
schedulable.

2The same case as if Di ≤ Ti 49 / 58



Time demand analysis and variants → Tasks with arbitrary deadlines

Response time calculation of the first job
Step 2b

Almost the same as in the time demand analysis for Di ≤ Ti.
The time-demand function wi,1 is defined as follows:

wi,1(t) = Ci +
i−1∑
k=1

⌈
t

Tk

⌉
· Ck for 0 < t ≤ wi,1(t)

The only difference is here.
The maximum possible response time Ri,1 of job τi,1 is

Ri,1 = min{t|t = wi,1(t)}

The same iterative computation as in response-time analysis.

50 / 58



Time demand analysis and variants → Tasks with arbitrary deadlines

Response time calculation for any job in the busy interval
Step 2b

Lemma
The maximum response time Ri,j of the j-th job of τi in an in-phase
level-pi busy interval is

Ri,j = min
{

t|t = wi,j
(
t + (j − 1)Ti︸ ︷︷ ︸

Release time
of j-th job

)
− (j − 1)Ti

}
,

where

wi,j(t) = jCi +
i−1∑
k=1

⌈
t

Tk

⌉
· Ck for (j − 1)Ti < t ≤ wi,j(t).

Can be solved by the recurence relation as before.
51 / 58



Time demand analysis and variants → Tasks with arbitrary deadlines

Response time calculation for any job in the busy interval
Step 2b

Lemma
The maximum response time Ri,j of the j-th job of τi in an in-phase
level-pi busy interval is

Ri,j = min
{

t|t = wi,j
(
t + (j − 1)Ti︸ ︷︷ ︸

Release time
of j-th job

)
− (j − 1)Ti

}
,

where

wi,j(t) = jCi +
i−1∑
k=1

⌈
t

Tk

⌉
· Ck for (j − 1)Ti < t ≤ wi,j(t).

Can be solved by the recurence relation as before.
52 / 58



Time demand analysis and variants → Tasks with arbitrary deadlines

Example

Let us apply the previous Lemma to the Lehoczky example:
τ1 = (70, 26), τ2 = (100, 62).

τ1

0 70 140 210 280 350 420 490 560 630 700

τ2

0 100 200 300 400 500 600 700

1) Does not apply because R2,1 > T2.
2a) The length of level-2 busy interval is 694.
2b) Compute response times R2,j for 1 ≤ j ≤ ⌈695/100⌉ = 7.

53 / 58



Time demand analysis and variants → Tasks with arbitrary deadlines

Example – calculation of R2,1

τ1 = (70, 26), τ2 = (100, 62).

τ1

0 70 140 210 280 350 420 490 560 630 700

τ2

0 100 200 300 400 500 600 700

R2,1 = minimal t satisfying:

t = w2,1(t) = C2 +

2−1∑
k=1

⌈
t

Tk

⌉
· Ck

= 62 + ⌈t/70⌉ · 26

Try substitute 114 for t:

114 = 62 + ⌈114/70⌉ · 26 =

= 62 + 2 · 26 =

= 114 OK!

What if we don’t know
what to substitute?

54 / 58



Time demand analysis and variants → Tasks with arbitrary deadlines

Example – calculation of R2,2

τ1 = (70, 26), τ2 = (100, 62).

τ1

0 70 140 210 280 350 420 490 560 630 700

τ2

0 100 200 300 400 500 600 700

R2,2 = minimal t satisfying:

t = w2,2(t + T2)− T2 =

= 2C2 +

2−1∑
k=1

⌈
t + 100

Tk

⌉
· Ck − 100 =

= 124 + ⌈(t + 100)/70⌉ · 26− 100

Try substitute 102 for t:

102 = 124 + ⌈202/70⌉ · 26− 100 =

= 124 + 3 · 26− 100 =

= 102 OK!

55 / 58



Time demand analysis and variants → Tasks with arbitrary deadlines

Example – calculation of R2,3

τ1 = (70, 26), τ2 = (100, 62).

τ1

0 70 140 210 280 350 420 490 560 630 700

τ2

0 100 200 300 400 500 600 700

R2,3 = minimal t satisfying:

t = w2,3(t + 2T2)− 2T2 =

= 3C2 +

2−1∑
k=1

⌈
t + 200

Tk

⌉
· Ck − 200 =

= 186 + ⌈(t + 200)/70⌉ · 26− 200

Try substitute 116 for t:

116 = 186 + ⌈316/70⌉ · 26− 200 =

= 186 + 5 · 26− 200 =

= 116 OK!

56 / 58



Summary

Outline

1 Introduction

2 RM and DM scheduling and their optimality

3 Utilization-based schedulability tests

4 Time demand analysis and variants
Time demand analysis
Response-time analysis
Tasks with arbitrary deadlines

5 Summary

57 / 58



Summary

Summary

RM and DM are optimal among fixed priority scheduling algorithms.
Utilization based test is simple but only a sufficient condition.
Response time analysis is both sufficient and necessary.
Generic time demand analysis can handle many cases not covered by
the response time analysis.

58 / 58


	Introduction
	RM and DM scheduling and their optimality
	Utilization-based schedulability tests
	Time demand analysis and variants
	Time demand analysis
	Response-time analysis
	Tasks with arbitrary deadlines

	Summary

